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ABSTRACT

The research in this thesis is focused on the problem of Block Sorting, which has appli-

cations in Computational Biology and in Optical Character Recognition (OCR). A block

in a permutation is a maximal sequence of consecutive elements that are also consec-

utive in the identity permutation. BLOCK SORTING is the process of transforming an

arbitrary permutation to the identity permutation through a sequence of block moves.

Given an arbitrary permutation π and an integer m, the Block Sorting Problem, or the

problem of deciding whether the transformation can be accomplished in at most m

block moves has been shown to be NP-hard. After being known to be 3-approximable

for over a decade, block sorting has been researched extensively and now there are sev-

eral 2-approximation algorithms for its solution. This work introduces new structures

on a permutation, which are called runs and ordered pairs, and are used to develop

two new approximation algorithms. Both the new algorithms are 2-approximation al-

gorithms, yielding the approximation ratio equal to the current best. This work also

includes an analysis of both the new algorithms showing they are 2-approximation al-

gorithms.

viii



Chapter 1

INTRODUCTION

1.1 The Block Sorting Problem

An n-permutation is an arrangement of natural numbers from 1 through n. The n-

permutation in which the number j occupies position j for j = 1,2, · · · ,n is called the

identity permutation. In this thesis, an arbitrary permutation will denoted by a lower

case Greek letter, and is referred to the identity permutation as id.

A block in a permutation π is a maximal sequence of consecutive elements that are also

consecutive in the identity or sorted permutation i d . Block sorting is the process of

transforming an arbitrary permutation to the identity permutation through a sequence

of block moves. An arbitrary permutation refers to a randomly-picked permutation

from a set of permutations. bs(π) is denoted as the least number of block moves needed

to transform π to the identity permutation. The Block Sorting problem may be formally

stated as:

Given an arbitrary n-permutation π and an integer m, is bs(π) ≤ m?

The above statement is known as the decision version of the Block Sorting problem and

it has been shown to be NP-hard (Bein et al., 2002). NP-hard is the abbreviation of Non-

deterministic Polynomial-time hard. Being NP-hard means not only that no known ef-

ficient algorithms is available for solving the problem, but also that it is quite unlikely
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that the algorithm exists (Hochbaum, 1997). Thus, approximation algorithms have been

designed to approximate the block sorting problem.

Block sorting has been known to be 3-approximable (Bein et al., 2002) for over a decade

now, which means there exists a 3-approximation algorithm for block sorting, and cur-

rently there are several 2-approximation algorithms (Mahajan et al., 2006; Bein et al.,

2005) for solving this problem. The design of algorithms with approximation ratio less

than 2 still remains an open question.

1.2 Scope of Present Work

1.2.1 Related Previous Work

Sorting methods like block sorting have gained much attention in the past decade mai-

nly because of their applications in the study of genome rearrangements in computa-

tional molecular biology and in optical character recognition. Most of the problems

in these application domains have either been proven to be computationally hard, or

questions related to their computational complexity still remain open. Hence, a major-

ity of the algorithms designed for these problems are approximation algorithms. Some

of the well-studied primitives used for sorting suitable for these problems are Transposi-

tions (Bulteau et al., 2011; Elias and Hartman, 2006; Christie and Irving, 2001; Firoz et al.,

2010), Reversals (Caprara, 1997; Bafna and Pevzner, 1996; Hannenhalli and Pevzner,

1999), Prefix Reversals (Bulteau et al., 2012; Gates and Papadimitriou, 1979), and Block

Interchanges (Lin et al., 2005; Christie, 1996; Mira and Meidanis, 2007). After having a 3-

approximation algorithm, block sorting has been researched intensively as well, leading

to several 2-approximation algorithms.
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1.2.2 Contributions of the Thesis

This work introduces new structures on a permutation, which are called runs and or-

dered pairs, and uses them to develop two new approximation algorithms. While the

algorithms are still 2-approximation algorithms, they run in O(n), (linear) time in the

number of block moves performed as compared to the O(n2) (quadratic) time of the al-

gorithm of (Bein et al., 2005), and the O(n3) (cubic) time of the algorithm of (Mahajan

et al., 2006). Moreover, the algorithms are much simpler than Block Merging and Block

Deletion approximation algorithms to implement and analyze. This work also includes

an analysis of both algorithms showing they are 2-approximation algorithms.

It is proven that moving all the blocks of π except the blocks of the longest run would

yield a 2-approximation algorithm which is presented as the first algorithm. It is further

proven that keeping 2 blocks corresponding to any ordered pair in π intact (and moving

other blocks) will be sufficient to yield another 2-approximation, which is presented as

the second algorithm.

1.3 Motivations and Applications of Block Sorting

1.3.1 Computational Biology

As mentioned previously, the genome rearrangement problem, frequently studied in

computational molecular biology, lends itself naturally to resemble block sorting, which

is the focus of this thesis.
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A few decades ago, biologists learned how to analyze DNA, where genes reside. The

important techniques of analyzing DNA include copying, cutting, pasting, measuring,

and probing DNA. Genomic sequence comparison is a very powerful tool to discover

the evolutionary procedures and fundamental relationships between genes (Gu et al.,

1999).

The term genome is used to represent the entire DNA of a living organism. A gene is a

segment of the DNA that is involved, in producing a protein, for instance, and its orien-

tation depends on the DNA-strand that it lies on.

Figure 1.1: Genome Rearrangement

Genome rearrangement or rearrangement of syntenic blocks has become a topic of in-

tensive study by phylogenists, comparative geneticists, and computational biologists.

The rearrangements of mitochondrial genomes of cabbages and turnips are studied

by Palmer and Herbon (Palmer and Herbon, 1988). Their study indicates that the two

species are closely related to each other genetically (See Figure 1.1), as many genes of

the two species are 99-99.9 percent identical (Palmer and Herbon, 1988). However, the
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orders in which the genes appear in the two species are different. The study suggests

that the evolutionary path between genomes can be traced by using global rearrange-

ment events, such as reversals and transpositions of genome segments (Hartman and

Shamir, 2006). A transposition is an operation to rearrange the permutation by cutting

a segment out of the permutation and pasting it at another location (Gu et al., 1999).

Thus, genome rearrangements have been modeled by a variety of sorting primitives,

such as reversals, transpositions, block moves and block interchanges. Genome rear-

rangement is equivalent to sorting a permutation under a single or a combination of

such primitives.

The methodology consists of using a single or a combination of well-defined primitives

to transform one genome into the other. The number of primitive steps needed to trans-

form one genome into another is a measure for the evolutionary distance between the

two species. Genome rearrangement can be formally stated as:

Given genomes G1, G2, and a set S of primitives, what is the shortest

sequence of elements of S that will be needed to transform G1 into G2?

A related, simpler problem is to compute the evolutionary distance, dS(G1,G2), i.e. just

the length of the shortest sequence. There are many variants of the above problems,

depending on how genomes are modelled, and what and how variations are taken into

account.

Genomes are represented by permutations of the genes in the model that has been em-

ployed.
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Therefore, in this model genomes:

1. Genomes are considered as ordered sequences of genes or other segments.

2. Two genomes which only differ in the order in which segments occur are consid-

ered.

3. It is assumed that there are no duplications or deletion of segments when moving

from one genome to another.

4. The individual gene segments in the genomes may be numbered as desired. As-

sume that the target genome is always the identity or the sorted permutation

i d = 12 · · ·n.

5. Hence, genome rearrangement becomes a sorting problem. One starts from one

genome, the starting genome; and sorts it to yield the target genome.

Given a permutation π and a well-defined sorting primi-

tive S, what is the smallest number of operations, dS(π),

of applying S on π at each step that transforms π into i d?

The similarity between two sequences will be measured by the minimum number of

special operations such as transpositions, reversals, block moves etc., to transform one

sequence into the other. Since the target sequence is always 1,2, · · · ,n, the problem is

considered a sorting problem. But this is not the usual sorting problem which we are

familiar with. It is to sort a sequence in such a way that the number of these special

operations is minimized. In other words, finding the algorithms which always sort a

sequence with the minimum number of these special operations is an interesting prob-

lem.
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Some well-known primitives for genome rearrangements are transpositions (Bafna and

Pevzner, 1998), reversals, also known as inversions (Bafna and Pevzner, 1996), block

moves, also known as strip moves (Bein et al., 2002; Mahajan et al., 2006), block in-

terchanges (Christie, 1998), prefix reversals (Gates and Papadimitriou, 1979), and strip

exchanges (Roy and Thakur, 2007). At times, a combination of more than one primi-

tive is used to determine the distance. For instance, transreversals are combinations of

transpositions and reversals (Christie and Irving, 2001).

Thus, sorting problems as defined above using special primitives are combinatorial op-

timization problems, in which the number of steps required to sort an arbitrary permu-

tation needs to be optimized. While SORTING BY REVERSALS (Caprara, 1997), SORTING

BY TRANSPOSITIONS (Bafna and Pevzner, 1998), SORTING BY PREFIX REVERSALS (BUL-

TEAU ET AL., 2012), and BLOCK SORTING (Bein et al., 2002) have been proven to be NP-

hard, the computational complexity of sorting by strip exchanges still remains an open

question. SORTING BY BLOCK INTERCHANGES is one of the very few problems which

have been proven to be polynomially solvable. An O(n2) exact algorithm exists for this

problem (Christie, 1998).

A block move is a special case of another primitive, a transposition. Block sorting is a

nontrivial variation of sorting by transposition. Sorting by transposition also arises in

the context of genome rearrangements in computational biology. In sorting by trans-

position, any substring of π may be moved, not necessarily a block, to a different posi-

tion at each step (Bafna and Pevzner, 1998). To compute the minimum number of such

moves to sort an arbitrary permutation has been recently shown to be NP-hard (Bul-

teau et al., 2011). The current best-known algorithm for sorting by transposition has an

approximation ratio of 1.375 (Elias and Hartman, 2006), and is not known whether it
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admits a polynomial-time approximation scheme (PTAS). It is not known yet whether

block sorting takes 3 times number of transpositions to sorting the arbitrary permu-

tation. However, it is known that optimal transpositions never need to break existing

blocks (Mahajan et al., 2007a). This shows how the two problems are closely related.

The study of the computational complexity of block sorting, therefore, might provide

more insight into the complexity of sorting by transposition.

1.3.2 Optical Character Recognition (OCR)

Block sorting is also motivated by applications in OCR (Gobi et al., 2000; Latifi, 1996).

OCR is a method to locate and recognize text stored in an image, usually a digital image,

such as a jpeg or a gif file, and then convert the text into a computer recognized form

represented by either ASCII or unicode. Essentially, it converts the pixel representation

of a letter into its equivalent character representation in a computer (Palkovic, 2008).

Text regions, referred to as zones, are selected by drawing rectangles or polygons around

the text pieces. The order of zones is significant although the output in practice gen-

erated by a zoning procedure will not necessarily be the same as the original or correct

text. Zones need to be processed further if they are not in correct order either manu-

ally by a human editor or by using a certain device. The OCR community has defined

a zoning metric (Kanai et al., 1995) as the number of editing operations which may be

a variety of deletions, insertions and moves (Bein et al., 2005). It is easy to see how this

corresponds to the block sorting problem. In essence, the solution to block sorting plays

a significant role in defining the zoning metric.
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OCR has a large number of benefits. A large collection of paper forms and documents

have been documented in many agencies, companies and libraries, from which useful

data can be extracted by implementing OCR techniques. It will cost a large amount of

time and money to do this manually.
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Chapter 2

BACKGROUND

2.1 Block Sorting

Various experiments seem to have been performed initially to test a number of strate-

gies that have been found to perform well practically in the research history of block

sorting. As a measure of performance of approximation algorithms, researchers often

define the approximation ratio as:

Approximation Ratio =
max. # of operations the approximation algorithm takes

min. # of operations any other optimal algorithms take

If the approximation ratio equals r and it takes m number of block moves to sort the

permutation, the approximation algorithm will have r × m moves to get the identity

permutation. The first non-trivial approximation algorithm with an approximation ra-

tio of 2 solves the block merging problem, a problem related to block sorting (Bein et al.,

2005).

2.1.1 Lower Bounds for Block Sorting

Given that there are n blocks in a permutation, since there will be only one block in the

identity permutation, n−1 blocks need to be removed to get to the identity permutation.

One particular block move can at most eliminate three blocks (Mahajan et al., 2006).
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Thus, at least (n −1)
/

3 block moves will be needed to sort an arbitrary permutation

which has n blocks to begin with. In other words, the lower bound for the number of

block moves in block sorting equals (n −1)
/

3.

2.1.2 A 3-Approximation Algorithm for Block Sorting

It is fairly straightforward to show that a 3-approximation algorithm exists for Block

Sorting. If the starting permutation is not sorted, an arbitrary maximal block may be

simply picked and moved to a position to form a bigger block (Bein et al., 2005). Thus,

one block move can eliminate at least one block by using the trivial algorithm. It can be

concluded that the upper bound for block sorting is n−1 block moves. That is, it will take

at most n −1 block moves to reach the identity permutation. The lower bound of block

sorting is (n −1)
/

3. Therefore, the approximation ratio of block sorting is
(n −1)

(n −1)
/

3
,

which equals 3.

In the following, two of the existing approximation algorithms for block sorting will be

discussed.

2.1.3 Block Merging

Block merging is similar to block sorting in which the input permutation is divided into

a set of maximal increasing sequences (Narayanaswamy and Roy, 2015). Block merging

allows to merge the increasing sequences by moving blocks across the increasing se-

quences (Narayanaswamy and Roy, 2015). The block merging problem has been shown

to be polynomially solvable with a O(n3) run time (Mahajan et al., 2006). Block merging
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also guarantees at most 2 times the optimal number of block moves needed to sort any

permutation in polynomial time.

An increasing sequence in a permutation is a maximal increasing subsequence of the

permutation (Mahajan et al., 2006). For instance, the permutation, 8 2 5 6 3 9 1 4 7,

consists of the four increasing sequences (8), (2, 5 6), (3, 9), (1, 4, 7). Thus, a permutation

may be considered as a multi-set of disjoint increasing sequences (Mahajan et al., 2006).

A block merging move is to choose a block from any of the increasing sequences and

insert the block into one of other sequences so as to merge the block into a new bigger

block there (Mahajan et al., 2006). With a block merging move, all increasing sequences

of the permutation stay as increasing sequences, but with different blocks (Mahajan

et al., 2006).

Figure 2.1 shows an example of how block sorting works. In Figure 2.1,

1. The block 2 is moved to be positioned following the block 1 to form the new

block 1 2 .

2. The block 3 is moved to be positioned between 1 2 and 4 to form the new block

1 2 3 4 .

3. The block 5 6 is moved to be positioned between the block 1 2 3 4 and the block

7 to form the new block 1 2 3 4 5 6 7 and the new block 8 9 since the block 5 6

is moved else where.
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Figure 2.1: Block Sorting Moves

Figure 2.2: Block Merging Moves

– 13 –



4. The block 8 9 is moved to be positioned following the block 1 2 3 4 5 6 7 to get

to the identity permutation, which is a single block at the end.

Block merging divides the permutation into the increasing sequences, which are shown

in the boxes in Figure 2.2. In Figure 2.2,

1. The block 2 is moved to be positioned following the block 1 from its increasing

sequence to another increasing sequence to form the new block 1 2 .

2. The block 3 is moved to be positioned between the block 1 2 and the block

4 from its increasing sequence to another increasing sequence to form the new

block 1 2 3 4 .

3. The block 5 6 is moved to be positioned between the block 1 2 3 4 and the block

7 from its increasing sequence to another increasing sequence to form the new

block 1 2 3 4 5 6 7 .

4. The block 8 is moved to be positioned following the block 1 2 3 4 5 6 7 from its

increasing sequence to another increasing sequence to form the new block

1 2 3 4 5 6 7 8 .

5. The block 9 is moved to be positioned following the block 1 2 3 4 5 6 7 from its

increasing sequence to another increasing sequence to get to the identity permu-

tation.

– 14 –



The last step in Figure 2.1 moves 8 9 as one block while 8 and 9 are in two different

sequences in Figure 2.2. Therefore, the block 8 and the block 9 have to be moved to the

other increasing sequences to get to the identity permutation.

Block merging is the problem of finding the minimum number of block moves k, such

that the multi-set can transformed into an identity permutation, or just a single increas-

ing sequence; if n is the number of blocks in the original multi-set, it has been proven

that
n −1

2
≤ k ≤ n −1 (Mahajan et al., 2006).

On the one hand, any block moved into other sequences can remove the number of

blocks by at most 2. The total number of blocks that need to be removed is equal to n−1.

Thus, the lower bound of the block merging problem is
n −1

2
, which is the best case. On

the other hand, it removes at least one block each step as the worst case. For instance,

the permutation in the descending order gives rise to repeatedly move the block that

contains one block to its successor(Mahajan et al., 2006). Thus, the upper bound is

n −1, which makes block merging a 2-approximation algorithm for block sorting.

2.1.4 Block Deletion

The second currently known 2-approximation algorithm solves the block deletion prob-

lem, which has been shown to be equivalent to the block sorting problem. Staring from

a given permutation, block deletion proceeds by deleting one block at a time until an

increasing subsequence that is not a block is obtained. (Bein et al., 2005). That is, to
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delete a block in each step until it becomes a monotonically increasing sequence. If

each block is named equal to one of its elements, the block sorting problem on an ir-

reducible list must be equivalent to the block deletion problem on the list of distinct

block names (Bein et al., 2002). Block deletion was designed as an approximation algo-

rithm for block sorting after block merging has been designed. Block deletion may be

related to block merging but they are not identical problems (Bein et al., 2002). Block

deletion also takes two times the number of block moves of block sorting (Bein et al.,

2002). While block merging takes O(n3) run time, block deletion has an improved O(n2)

run time (Bein et al., 2002).

As an example, corresponding to the block sorting moves shown in Figure 2.3, block

deletions as shown in Figure 2.4 are carried out.

In Figure 2.3,

1. The block 4 is moved to be positioned in front of the block 5 6 to form the new

block 4 5 6 .

2. The block 5 6 is moved to be positioned following the block 3 to form the new

block 2 3 4 5 6 .

3. The block 2 3 4 5 6 is moved to be positioned between the block 1 and 7 to

form the new block 1 2 3 4 5 6 7 .

4. The block 8 9 is moved to be positioned following the other block to get to the

identity permutation.
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Figure 2.3: The Block Sorting Moves

Figure 2.4: Relative Block Deletions
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In Figure 2.4,

1. The block 4 is deleted corresponding to the block move 4 in Figure 2.3.

2. The block 5 6 is deleted corresponding to the block move 4 5 6 .

3. The block 2 3 is deleted corresponding to the block move 2 3 4 5 6 .

4. The block 8 9 is deleted corresponding to the block move 8 9 in Figure 2.3.

When once moves a block in block sorting, the block is deleted in block deletion so as

to have the monotonically increasing sequence at the end, which corresponds to the

identity permutation in block sorting. The example above gets 1 7 as the monotonically

increasing sequence at the end. The end result of 1 7 in block deletion then indicates

that the original permutation has been sorted with the idea that the blocks deleted will

occupy their correct positions in the identity permutation.

2.2 Sorting by Transpositions

The sorting by transpositions problem occurs in the study of genome rearrangement

in the field of computational biology (Bafna and Pevzner, 1998). In the genome rear-

rangement problem, the genes on a genome of a species can be represented by a list of

integers (Bafna and Pevzner, 1998), such as 1,2,3, · · · ,n. Thus, a genome can be repre-

sented by a permutation of integers. A Transposition can be defined as a primitive to

transform a given genome. In other words, a transposition transforms a given permuta-

tion to another permutation.
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A transposition exchanges two adjacent subsequences of any length without changing

the order of the two subsequences. For instance, suppose the starting genome is X: 3

1 5 2 4, and the target genome is Y: 1 2 3 4 5, the genome A: 3 2 4 1 5 can be obtained

by exchanging 1 5 and 2 4. Similarly, genome A may lead to the genome B: 2 3 4 1 5 by

exchanging 3 and 2. Finally, the target genome Y: 1 2 3 4 5 from the genome B can be

obtained by exchanging 1 and 2 3 4. Thus, the genome X is transformed into the genome

Y by three transpositions.

Figure 2.5: Transpositions in Sorting by Transposition
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Block sorting is a nontrivial variation of sorting by transposition (Mahajan et al., 2007b).

A sequence of block moves defines a sequence of transpositions while a sequence of

transpositions is not necessarily a sequence of block moves (Bein et al., 2002). Block

sorting is a special case of sorting by transpositions with a block move during each step

as a restriction. Figure 2.5 presents an example illustrating how a transposition differs

from a block move.

There are five transpositions.

1. T1 exchanges 2 8 7 and 5 4 3.

2. T2 exchanges 8 7 5 4 and 1 2.

3. T3 exchanges 5 4 and 8 1 2 3.

4. T4 exchanges 6 7 8 and 1 2 3 5. Since 6 7 8 is also a block, T4 is also a block move.

5. T5 exchanges 4 and 5 6 7 8. T5 is also a block move since 4 itself can be a block.

Both block sorting and sorting by transpositions have been proven to be NP-hard. A

block cannot be divided once two or more blocks are combined into a new block. Block

sorting sorts a given permutation based on block moves as a primitive while sorting by

transpositions does not have the restriction of blocks, which results in the much bet-

ter approximation ratio for sorting by transpositions than for block sorting. In general,

the best approximation algorithm of sorting by transpositions is not applicable to block

sorting.
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Chapter 3

NEW APPROXIMATION ALGORITHMS FOR BLOCK SORTING

This chapter represents our contributions to the research on block sorting and presents

two new approximation algorithms for block sorting, beginning with a few definitions

and concepts.

3.1 Preliminaries

Figure 3.1: Blocks and the Corresponding Identity Permutation

Let the set {1,2, · · · ,n} is denoted by [n], and let Sn denote the set of all permutations

over [n], and i d the sorted or identity permutation of length n. Figure 3.1 shows an

example of blocks in the permutation and the corresponding identity permutation. It is

clear that the identity permutation is a single block.

Definition 1 (Block Move). A block move picks up a block and places it elsewhere in the

permutation.
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Figure 3.2: An Example of a Block Move

As an example, Figure 3.2 shows a block move on a permutation π to obtain the permu-

tation π′. The permutation 3 1 4 6 2 5 7 9 8 contains 9 blocks. A block 1 is moved in

front of the block 2 and the block move reduces 2 blocks in the permutation.

Definition 2 (Block Sorting Schedule). A block sorting schedule S is a sequence of block

moves such that performing the sequence of block moves on permutation π results in the

identity permutation i d.

The length of a block sorting schedule is the number of block moves in the schedule.

Block sorting distance bs(π) is the number of block moves in a minimum length block

sorting schedule for π. A block sorting schedule is shown on the permutation 8 2 5 6

3 9 1 4 7 in Figure 3.3. The block moves are indicated at each step. The block sorting

distance for this example equals 3 since the number of block moves in Figure 3.3 is 3.
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Figure 3.3: An Example of a Block Sorting Schedule

For the following definitions, it is denoted that a block a ∈π, its position in π by π(a).

Definition 3 (Reversal). In a permutation π, a pair of consecutive elements or blocks a

and b form a reversal if a > b, and π(b) =π(a)+1.

Denote the number of reversals in π by r ev(π). It has been shown that a block sorting

sequence of length r ev(π) is optimal (Mahajan et al., 2006), since the block sorting dis-

tance bs(π) ≥ r ev(π). As an example, the reversals in the permutation 8 2 5 6 3 9 1 4 7

are {(8,2), ( 5 6 ,3), (9,1)). There are n − 1 reversals in the reversed permutation with n

blocks, which is the worst case.

Definition 4 (Inversion). In a permutation π, a pair of elements or blocks a and b form

an inversion if b = a +1, and π(a) >π(b).
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Inversions are also called dual reversals (Mahajan et al., 2006). Denote the number of

inversions in π by i nv(π). It has been shown that a block sorting sequence of length

i nv(π) is optimal (Mahajan et al., 2006), since the block sorting distance bs(π) ≥ i nv(π).

For instance, the inversions in the permutation 8 2 5 6 3 9 1 4 7 are {(1,2), (4, 5 6 ), (7,8)).

To emphasize, (8,1) and (9,1) are not inversions in the research. There are n −1 inver-

sions in the reversed permutation with n blocks, which is the worst case.

Definition 5 (Run). The blocks {a, a +1, a +2, . . . , a + r −1} form a run of length r if, r is

the largest values such that π(a) <π(a+1) <π(a+2) < . . . <π(a+r −1) (Huang and Roy,

2014).

Then number of runs in π is denoted by r uns(π). As an example, the runs in the permu-

tation 8 2 5 6 3 9 1 4 7 are {(1), (2,3,4), ( 5 6 ,7), (8,9)). The longest run in the permutation

is (2,3,4), which has 3 blocks. The number of the blocks in the longest run will help

generate a lower bound of block sorting.

3.2 Run Merging Algorithm

To get to the lower bounds for block sorting, it is denoted that

1. n is the number of blocks in π,

2. i is the number of inversions in π, i.e. i nv(π) = i ,

3. b is the number of reversals in π, i.e. r ev(π) = b,
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4. r is the number of blocks in the longest run of π.

Then bs(π) ≥ n −1− (i +b) (Bein et al., 2002). Algorithm 1 describes the first new ap-

proximation algorithm for block sorting. This algorithm is called run merging. In simple

words, the longest run in π need to be found, then keeping the r elements of that run

intact, every other block is moved to obtain the sorted permutation i d .

Algorithm 1 Run Merging Algorithm.
π← the input permutation
i d ← the sorted permutation
R ← longest run in π

while π ̸= i d do
if Block B ∉ R then

if B is not in proper position then
Move B either before succ(B) or after pr ed(B)

end if
end if

end while

Theorem 3.2.1. Algorithm 1 (Run Merging) is a 2 approximation algorithm for block
sorting.

Proof. The above algorithm takes at most n − r moves where n is the number of blocks

in π. It was proceed to be proven that the approximation ratio
n − r

n −1− (i +b)
is at most

2 by considering different ranges of value for n −1− (i +b).

First, let us consider the case n − 1− (i +b) < 0. In this case, since the ratio is always

negative, it cannot exceed 2.

Next, consider the case n −1− (i +b) ≥ 0, and then the following sub cases.
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Case A: n −1− (i +b) < i +b. This means n −1 < 2(i +b). In order for
n − r

n −1− (i +b)
≤ 2

to be true, it must be true that:

n − r ≤ 2(n −1)−2(i +b)

n − r < 2(n −1)− (n −1)

n − r < n −1

For all r > 1, n − r < n −1 is always true. Thus, the bound has been established.

Case B: n − 1 − (i + b) ≥ i + b. This means n − 1 ≥ 2(i + b), or
n −1

2
≥ (i + b). Thus,

n − r

n −1− (i +b)
≤ n −1

n −1− (i +b)
< n −1

n −1− n −1

2

= 2.

Theorem 3.2.2. Algorithm 1 (Run Merging) runs in linear time O(n), where n is the num-
ber of blocks in π.

Proof. Finding the longest run inπ takes O(n) time. The remaining part of the algorithm

takes at most n − r block moves which is again O(n). Therefore the total runtime is

O(n).

3.3 Ordered Pair Fixing

Definition 6 (Ordered pair). The blocks (a,b) form an ordered pair if a < b and π(a) <

π(b).

As an example, some of the ordered pairs in the permutation, 8 2 5 6 3 9 1 4 7, are

{(8,9), (2, 5 6 ), (2,3)(2,9), (2,4), (2,7)}. In other words, (a,b) ∈ π form an ordered pair if
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they appear in the same order in π as they appear in the identity permutation i d .

In this section, it is observed that keeping just one ordered pair fixed instead of the

longest run as in run merging, and sorting the rest of the elements is sufficient to yield

a 2-approximation algorithm for block sorting.

Algorithm 2 (Ordered Pair Fixing) An ordered pair (a,b) in π needs to be found first.

Then, keeping the elements a and b of that ordered pair intact, every other block is

moved to obtain the sorted permutation i d . However, if π does not contain an ordered

pair, it is the reversed permutation.

Algorithm 2 Ordered Pair Fixing Algorithm.
π← the input permutation
i d ← the sorted permutation
(a,b) ← an ordered pair in π

while π ̸= i d do
if B is a block such that a ̸= B and b ̸= B then

if B is not in proper position then
Move B either before succ(B) or after pr ed(B)

end if
end if

end while

Theorem 3.3.1. Algorithm 2 (Ordered Pair Fixing) is a 2 approximation algorithm for
block sorting.

Proof. Algorithm 2 (Ordered Pair Fixing) takes at most n −2 block moves where n is the

number of blocks in π. The approximation ratio is thus
n −2

n −1− (i +b)
. This ratio is at

most 2 by exploring different ranges of value for n −1− (i +b).
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First, let us consider the case n − 1− (i +b) < 0. In this case, since the ratio is always

negative, it cannot exceed 2.

Next, consider the case n −1− (i +b) ≥ 0, and then the following sub cases.

Case A: n −1− (i +b) < i +b. This means n −1 < 2(i +b). In order for
n −2

n −1− (i +b)
≤ 2

to be true, it must be true that:

n −2 ≤ 2(n −1)−2(i +b)

n −2 < 2(n −1)− (n −1)

n −2 < n −1, which is always true.

Case B: n − 1 − (i + b) ≥ i + b. This means n − 1 ≥ 2(i + b), or
n −1

2
≥ (i + b). Thus,

n −2

n −1− (i +b)
≤ n −1

n −1− (i +b)
< n −1

n −1− n −1

2

= 2.

Theorem 3.3.2. Algorithm 2 runs in linear time O(n), where n is the number of blocks in
π.

Proof. Finding an ordered pair (a,b) ∈ π takes O(n) time. The remaining part of the al-

gorithm takes at most n−2 block moves which is again O(n). Therefore the total runtime

is O(n).
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3.4 Significance of Result

The result is significant because it considerably simplifies the design of a 2-approxima-

tion algorithm for block sorting. It eliminates any preprocessing that the previous al-

gorithms (Bein et al., 2005; Mahajan et al., 2007a, 2006) rigorously perform to achieve a

2-approximation. Though this two algorithms are equivalent in terms of the approxima-

tion ratio to the best known algorithms, the implementations offered use considerably

less resources than their predecessors.

– 29 –



Chapter 4

CONCLUDING REMARKS

This chapter restates the results on block sorting that have been discovered in the study.

It also includes the discussion of directions for further research on the problem.

4.1 Summary of Contributions

The study developed two approximation algorithms for block sorting, known as Run

Merging and Ordered Pair Fixing. The development is based on the new concepts in-

troduced, namely, runs and ordered pairs. The two algorithms have an approximation

ratio of 2 equal to the best known. Additionally, they incur linear time in terms of the

number of block moves as opposed to the cubic and quadratic times needed by the pre-

ceding algorithms for block sorting. The two algorithms are the simplest algorithms for

this problem in terms of analysis and implementation.
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4.2 Future Directions

There are still a few open questions on block sorting and sorting by transposition. A few

of them are listed below.

1. Is there an approximation algorithm for block sorting with an approximation ratio

less than 2?

2. Can block sorting be performed using an algorithm that takes a number of block

moves less than 3 times the number of transpositions used by sorting by transpo-

sition?

3. Is sorting by transposition hard to approximate?

4. Can a fully polynomial-time approximation scheme(FPTAS) for sorting by trans-

position be designed?
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