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ABSTRACT 

 Cyanobacteria are important components of the aquatic system, valued for their oxygen 

production, nitrogen fixation, and as the base of many aquatic food webs.  This study 

investigated several aspects of cyanobacteria such as the diversity and response to nutrient 

enrichments.  A survey of Northeast Florida was conducted between the years of 2010 and 2012; 

a total of 145 taxa were identified in freshwater habitats, such as springs, lakes, rivers, and 

retention ponds.  While surveying the St. Johns River in Jacksonville, Florida, a novel 

Stigonematalean taxon was isolated and cultured.  Subsequent morphological and genetic 

analyses indicate that this taxon is related to Fischerella, Nostochopsis, and Westelliopsis, 

though with poor bootstrap support.  Thus, a new genus and species (Reptodigitus chapmanii 

gen. et sp. nov.) is proposed.  Cyanobacterial community shifts are increasingly being employed 

as an indicator of ecosystem health.  The last part of this study is an experimental manipulation 

of nutrients and subsequent community analyses.  Chlorophyll a, total number of cells, and 

Dmax were significantly different between control groups and nutrient enriched groups.  

Phosphate was not strongly correlated to species richness, chlorophyll a, evenness, total number 

of cells, species richness, or diversity in either the control or the nutrient enriched groups.  

Nitrogen displayed similar results, though it was slightly more strongly correlated to evenness 

and diversity in the nutrient enriched group than the control group.  The results of the survey and 

nutrient enrichment experiment are important parts of the investigation into how cyanobacterial 

communities respond to changes in nutrient concentrations, which can then be used to devise a 

standard metric against which water management agencies can compare to determine the health 

of a given aquatic system. 
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INTRODUCTION  

Algal relationships 

 Algal lineages are divided, and related, by the photosynthetic pigments used and the 

systems that employ them.  Cyanobacteria are unique among prokaryotes in that they produce 

chlorophyll a and release oxygen from photosynthesis.  These oxygenic photosynthesizers first 

appeared ca. 2.7 billion years ago and gave rise to an oxygen-rich atmosphere, allowing the 

switch from anaerobic to aerobic respiration, and fostering the rise and diversification of 

eukaryotic algae (Eigenbrode & Freeman 2006).   

Eukaryotic algae originated from early heterotrophic eukaryotic organisms that most 

likely engulfed cyanobacterial cells and formed an endosymbiotic relationship; these 

cyanobacterial endosymbionts eventually evolved into plastids.  Primary plastids, those that 

arose from ingested cyanobacterial cells, possess two envelope membranes; this feature 

characterizes red and green algae, and glaucophytes.  Secondary plastids arose from 

phagocytosis on a eukaryote containing a primary plastid; likewise, tertiary plastids evolved 

from phagocytosis on a eukaryote containing a secondary plastid.  Based on these relationships, 

algal lineages are interrelated. 

Red algae appeared about 1.2 billion years ago and form a monophyletic group.  The red 

algae plastids are unique in that Type ID rubisco, primarily found in proteobacteria, is used as 

opposed to Type IB rubisco, which occurs in green algae and land plants, and is thought to have 

been present in the first cyanobacterial endosymbionts.  This difference can be explained through 

horizontal gene transfer from Type ID rubisco-containing proteobacteria into early red algal 

plastids (Delwich & Palmer 1996, Rice & Palmer 2006).  The red appearance of these algae is 

due to the pigment phycoerythrin, which is very efficient at harvesting light in the blue and green 
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spectrums.  Along with phycocyanin and allophycocyanin, the five types of phycoerythrin are 

able to utilize wavelengths otherwise inaccessible to chlorophyll, and transfer the light energy 

directly to chlorophyll a.   

Green algae have generally been regarded as a close relative of red algae due to the 

presence of primary plastids with similar genetic content.  Although, the debate continues over 

primary plastids and whether the similar gene content between red and green plastids is due to a 

single evolutionary event in a common ancestor or convergent evolution (Stiller, Reel, & 

Johnson 2003, Keeling 2004).  Evidence for convergent evolution comes from the lack of 

thylakoid-bound phycobilisomes and phycobilin accessory pigments, which are found both in 

cyanobacteria and the plastids of red algae.  The major accessory pigments employed by green 

algae are chlorophyll b, lutein, and beta-carotene, which confer the various green colors for 

which these algae are named.   

Dinoflagellates emerged around 200 million years ago and are generally considered 

heterotrophic phagotrophs, however, recently discovered plastid-bearing protists suggest the 

possibility that plastidless dinoflagellates formed from plastid-bearing ancestors (Taylor 2004, 

Moore et al. 2008).  About half of all dinoflagellates contain plastids acquired from different 

photosynthetic eukaryotes, including cryptomonads, haptophytes, green algae, and diatoms (i.e. 

phagotrophy or kelptotrophy).  Most plastid-bearing dinoflagellates utilize a unique xanthophyll 

pigment, peridinin, contained within golden-brown plastids.  There are two basic hypotheses 

concerning the evolution of these plastids; either they descended from red algal plastids via 

secondary endosymbiosis, or via tertiary endosymbiosis with plastid-bearing stramenopiles 

(Bodyl & Moszczynski 2006, Delwiche 2007).  Evidence for the tertiary endosymbiosis 

hypothesis is in the presence of chlorophyll c, contained within the golden-brown plastids; this 
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accessory pigment is present in photosynthetic stramenopiles, but not in red algae (Bodyl & 

Moszczynski 2006).  The peridinin pigment absorbs light in the blue-green range, which is 

inaccessible to chlorophyll alone and present in aquatic habitats.   

Diatoms have been found in deposits formed up to 180 million years ago.  The major 

pigments found are beta-carotene and the xanthophyll fucoxanthin, which give diatoms and other 

photosynthetic stramenopiles a golden-brown or brown color; chlorophylls a and c are also 

present in diatoms.  The photosynthetic stramenopiles are thought to have evolved from a 

common ancestor containing plastids obtained from a secondary red algal endosymbiont 

(Guillou et al. 1999, Karpov, Sogin, & Silberman 2001, Kuhn, Medlin, & Eller 2004).  

Xanthophylls not only absorb light wavelengths inaccessible to chlorophyll, they also provide 

protection to the photosystem from high levels of light intensity. 

 

Cyanobacteria 

Cyanobacteria, also known as blue-green algae, are among the most ubiquitous 

organisms on Earth.  Representatives can be found in almost every ecosystem, from aquatic to 

terrestrial, from equatorial to polar (Birkemoe & Liengen, 2000; Novis et al. 2007).   

Cyanobacteria play a critical role in biogeochemical cycles accounting for ca. 30-40% of global 

oxygen production, while the genus Trichodesmium alone is responsible for ca. 42% of the 

global nitrogen fixation (Berman-Frank et al. 2005, Latysheva et al. 2012).  While cyanobacteria 

form the basis of many aquatic foodwebs, other species are toxic to animals and deleterious to 

other members of the phytoplankton community.  Furthermore, numerous species may form 

large blooms, rendering lakes and reservoirs unusable by man (Berg et al. 1987, Falconer 1998).  
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The terms cyanobacteria and blue-green algae originated from the organism’s ability to 

produce phycocyanin, a phycobilin pigment, which in high concentrations result in a bluish tint.  

Many other pigments are produced by these photooxygenic prokaryotes, including chlorophyll a 

and b, which give a greenish tint.  Cells may range in color from brown, red, orange, violet, blue, 

green, and any color in between depending on environmental conditions and the presence of 

accessory pigments (Graham et al. 2008).  The term ‘blue-green algae’ is used almost 

exclusively in water management, whereas in research, the term ‘cyanobacteria’ is preferred; 

Stanier et al. (1978) suggests using the term ‘cyanobacteria’ exclusively (sensu Whitton & Potts 

2000).   

The morphology of cyanobacteria is possibly as diverse as the colors.  Species are either 

unicellular (e.g., Chroococcales) or filamentous (e.g., Oscillatoriales), and may be solitary or 

form colonies.  Many species form a mucilaginous sheath composed of exopolysaccharides, in 

which case the cells are termed trichomes; those species without sheaths are described as 

filaments (Graham & Wilcox 2008).  Many species form gas vacuoles to aid in buoyancy.  

Heterocytes, which are differentiated cells in which nitrogen fixation occurs, are formed by 

species adapted to living in nitrogen depleted conditions (Anagnostidis & Komarek 1999).  In 

less than optimum conditions, some cyanobacterial taxa may produce akinetes, which are 

dormant cells used for overwintering or surviving sub-optimal conditions.  Filamentous species 

may also form hormogonia, which are modified filaments associated with dispersal and 

reproduction via production of necridial cells (Hernandez-Muniz & Stevens 1986).  This large 

array of morphological features may stem from possessing multiple copies of the genome, which 

can also explain the occurrence of multiple phenotypes produced by clonal isolates of one 

filament (Swingley et al. 2008).   
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Cyanobacteria form the base of many aquatic food webs and are sensitive to 

environmental parameters such as light levels, nutrient concentrations and ratios, and dissolved 

oxygen levels (Case et al. 2008).  As a result, phytoplankton in general and cyanobacteria 

specifically have been considered useful indicator species for monitoring of aquatic systems 

(Burford 1997, Perona et al. 1998, Douterelo et al. 2004, Case et al. 2008, Romo 2008, Leigh et 

al. 2010, Maske & Sangolkar 2010, Katsiapi et al. 2011).  Several studies have observed 

dramatic shifts in cyanobacterial species composition following increased nutrient levels (Perona 

et al. 1998, Douterelo et al. 2003).   

Nutrient loading in freshwater has been shown to exacerbate harmful cyanobacterial 

blooms (Paerl et al. 2011).  To date, it is unclear which nutrient (nitrogen or phosphorus) is 

responsible, and it may differ depending on local conditions and which species are present.  For 

example, some classical research has pointed out that phosphorus is the limiting nutrient in the 

Laurentian Great Lakes (Vollenweider 1975, Schindler 1977), while others suggest nitrogen 

(e.g., Moore et al. 2002), and still others suggest the N:P ratio is ultimately responsible, rather 

than individual nutrient levels (e.g., Huisman & Weissing 2001).  Cyanobacteria have been 

shown to be highly competitive for ammonium in nitrogen-limited conditions, but not 

competitive for nitrate (Whitton & Potts 2000).  Cyanobacterial diversity and abundance is 

greatest at mid- to high pH (e.g., 7-12), although some picocyanobacteria and filamentous 

species have been found in pH as low as 4.0.  Many of these species are heterocystous, 

suggesting a competitive advantage to being able to fix nitrogen (Steinberg et al. 1998).  

Hakanson et al. (2007) compiled chlorophyll a, cyanobacteria community analyses, salinity, total 

phosphorous, and total nitrogen data from over 500 freshwater and coastal ecosystems in an 

attempt to create a model that accurately predicts cyanobacterial biomass.  They determined that 
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the relationship between cyanobacterial or chlorophyll a concentrations and the ratio of total 

nitrogen to total phosphorus was a complex one and in need of much more data to be reliably 

predictable. 

 

Cyanobacteria as indicator species 

In a world of increasing anthropogenic eutrophication of freshwater ecosystems, 

monitoring the health of economically and recreationally important lakes and streams becomes 

vital to their continued use.  Phytoplankton community assessment using species diversity, 

biomass, and abundance has been suggested as a tool for management of eutrophic waters 

(Burford 1997, Douterelo et al. 2004, Case et al. 2008, Romo et al. 2008, Leigh et al. 2010).  For 

example, following excessive nutrient increases in tropical shrimp culture ponds in Brazil, Case 

et al. (2008) observed a dominance shift from diatoms and copepods to cyanobacteria, protozoa, 

and rotifers.  Species composition shifts from diatoms to cyanobacteria and flagellates were 

found to coincide with decreased silicate concentration, increased ammonia concentrations, a 

higher ratio of total ammonia to total dissolved inorganic nitrogen, as well as a higher ratio of 

dissolved inorganic nitrogen to orthophosphate (Burford 1997).   

For example, shifts in cyanobacterial species following nutrient alterations have been 

observed in Lake Albufera de Valencia, Spain which has been eutrophic since the 1970’s (Romo 

et al. 2008).  Due to conservation pressures, 30% of the nutrients entering the lake have been 

diverted elsewhere, which coincided with a trend towards fewer filamentous cyanobacteria and 

increased coccoid species.  The filamentous Planktothrix agardhii in particular seemed to be a 

good indicator species of nutrient enrichment in the lake (Romo et al. 2008).  Perona et al. 

(1998) observed a trend of decreasing species richness, abundance, and diversity, as nutrients, 
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mainly soluble reactive phosphate, increased downstream in the Alberche River, Spain.  

Although a decrease in species richness was shown to follow an increase in the soluble reactive 

phosphate and a decrease in the dissolved inorganic nitrogen to soluble reactive phosphate ratio, 

no such relationship was found with dissolved inorganic nitrogen alone (Perona et al. 1998).  

Decreases in both heterocystous and non-heterocystous species were observed; however, the 

reduced species richness was largely due to marked decreases in heterocystous species (Perona et 

al. 1998).  Douterelo et al. (2003) noted changes in cyanobacterial species richness and diversity 

upstream and downstream from sewage effluent discharges.  Particularly, they observed a shift 

from Nostocales species in lower nutrient loads to Oscillatoriales species in higher nutrient loads 

(Douterelo et al. 2003).  They concluded that polluted sampling sites had low species richness, 

with large population sizes, while unpolluted sites had high species richness, but species 

typically exhibited lower abundance.  In order to use cyanobacterial community composition to 

determine the level of eutrophication, a study of how the community composition and nutrient 

concentrations is vital.   

 

Taxonomy 

 The cyanobacteria are amongst the most taxonomically challenging, yet species rich, 

lineages of microbes (Perkerson et al. 2011).  Originally classified based solely on morphology, 

wholesale revisions of the cyanobacteria were proposed by the International Code of Botanical 

Nomenclature, which relied on a series of papers published from 1886 to 1892 as a starting point 

for taxonomy.   Stanier et al. (1978) proposed that the cyanobacteria be placed under the 

International Code of Nomenclature of Bacteria.  However, two of the major requirements (the 

need for axenic cultures and 16S DNA:DNA hybridization values) have proven nearly 
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impossible to satisfy and thus the majority of researchers continue to use the International Code 

of Botanical Nomenclature.   

Two major attempts have been made to change the overall cyanobacterial classification 

system.  One challenge in untangling the systematics of the cyanobacteria is the extensive 

phenotypic plasticity evidenced in some lineages.  For example, heterocystous species only 

produce heterocysts in nitrogen limited conditions, while other morphological features may be 

altered in phosphorous limited conditions.  Therefore, a cultured species may have a different 

phenotype from a field specimen, due to the environmental conditions in which it was cultured 

(Casamatta et al. 2003).  Hypothesizing that the vast biodiversity of the cyanobacteria was really 

only the result of a few taxa that exhibit a tremendous amount of phenotypic plasticity, Drouet 

and Daily (1956) used only a few simple morphological characteristics for taxonomy, resulting 

in the total number of proposed species of the day being reduced from over 2000 to just 62.  This 

system was quickly replaced, save for two generic names used extensively in research.  Komárek 

and Anagnostidis (1985, 1999, 2005, etc.) proposed the other major revision to the classification 

system, suggesting many name changes, especially in the Oscillatoriales.  Komarek and 

Anagnostidis advocated a system of smaller, monophyletic genera identifiable using 

morphological, genetic or ecological apomorphies (Johansen & Casamatta 2005).   It is their 

revision which forms the basis of modern cyanobacterial systematics.   

 

Morphological plasticity  

Yet another obstacle in the road to identification is the tendency of cyanobacteria to 

display differential morphologies determined by environmental factors (e.g., Casamatta & Vis 

2004).  This morphological plasticity can occur due to temperature and light fluctuations, as well 
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as changes in nutrient concentrations, specifically nitrogen and phosphate (Zapomelova et al. 

2008a, Zapomelova et al. 2008b, Bonilla et al. 2012).  Temperature has been shown to 

significantly alter vegetative cell morphology, heterocyst morphology and trichome coiling in 

Anabaena sp.; vegetative cell morphology was also affected by differential phosphorous 

concentrations (Zapomelova et al. 2008a).  In another study, Zapomelova et al. (2008b) found 

significant effects of growth conditions on the occurrence of heterocysts, branching of the 

trichomes, formation of necridial cells, and trichome coiling in multiple strains, including 

Nostoc, Scytonema, and Tolypothrix species.  Differential responses of planktonic and soil strains 

to nitrogen concentration were observed as well; the frequency of heterocysts in all soil strains 

was significantly greater in nitrogen-limited medium, while only one of the planktonic strains 

showed sensitivity.  It was suggested that two of the planktonic strains used probably did not 

reach nitrogen limitation in the given medium treatments (Zapomelova et al. 2008b).   

In order to effectively research the ecology of cyanobacteria, multiple facets need to be 

examined more closely, such as the choice of strain, how the strains are stored, and nutrient 

concentration of the culture medium used.  In this study, preserved field specimens were 

compared to cultured samples in an attempt to verify the species identity.  One goal of this study 

is to survey the cyanobacterial species present in relatively natural freshwater streams, lakes, and 

rivers of North Florida.  A second goal was to experimentally determine the changes in 

community composition over time in nutrient-enriched waters.  The experimental results and the 

survey were then used to relate community composition to nutrient concentrations in order to 

provide a baseline for future studies of the effects of nutrient addition on species composition.  A 

final goal was to name any taxa new to science discovered during the course of this project. 
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Chapter 1  

A survey of freshwater cyanobacteria from Northeast Florida. 

 

INTRODUCTION 

 Cyanobacteria are photosynthetic prokaryotes that form much of the basis of aquatic food 

webs (Lance et al. 2006).  Species respond differentially to environmental parameters, such as 

temperature, dissolved oxygen, and light, and therefore the natural fluctuation of these 

parameters can create a continuum of community compositions.  With knowledge of the 

cyanobacterial community, it is possible to monitor aquatic habitats and accurately identify a 

system that is changing trophic state.  As such, cyanobacteria are increasingly being employed as 

a means of assessing the health of aquatic ecosystems (Znachor et al. 2006, Fristachi et al. 2008, 

Wood et al. 2010).  

Numerous biological indicators of ecosystem health have been proposed and are 

currently employed: diatoms, fish, invertebrates, phytoplankton, plants etc., all with variable 

success (e.g., Kelly 1998, Soto-Galera et al. 1999, Oertli 2008, Romo et al. 2008).  Algae have 

several characteristics which make them excellent candidates for indicator species: they are 

ubiquitous, present year round, have rapid generation times, are sessile and are relatively easy to 

identify to broad taxonomic group (e.g., Reynolds 1984, Cattaneo 1987, Carrick, Lowe, & 

Rotenberry 1988, Lowe & Pan 1996, Kelly 1998). 

Increased nutrient loading and eutrophication has been shown to often elicit a concurrent 

increase in cyanobacteria in numerous freshwater habitats (e.g., Douterelo et al. 2003).  

Likewise, a decrease in nutrient concentrations may lead to decreased cyanobacterial dominance 

in the phytoplankton community (e.g., Romo et al. 2008).  As nutrient concentrations increased 
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downstream of the Alberche River, in Spain, cyanobacterial species richness, abundance, 

diversity, and total biomass decreased (Perona et al. 1998).  Douterelo et al. (2003) also 

observed a decrease in species richness following sewage effluent discharge, but an increase in 

the overall cyanobacterial abundance.  These contradicting results may stem from a difference in 

factors other than nutrient loads, such as light, dissolved oxygen, or biotic interactions (e.g., 

Havens et al. 1998, Smith & Lester 2007, Case et al. 2008).   

Many studies that have investigated changes in cyanobacterial populations due to nutrient 

flux established reference populations before a nutrient-altering event occurred (i.e. diverting or 

adding sewage) (Douterelo et al. 2003, Case et al. 2008, Romo et al. 2008).  Overall, these 

studies have shown dominance shifts from diatoms and copepods to cyanobacteria, protozoa, and 

rotifers following an excessive nutrient increase, while nutrient decreases produced communities 

dominated by cyanobacterial with variable or shifting compositions (Douterelo et al. 2003, Case 

et al. 2008, Romo et al. 2008).  As a management tool, knowledge of cyanobacterial populations 

in recreational waters can be valuable, but only with continued sampling and comparison can 

they provide accurate representations of a nutrient flux.  This survey provided a snapshot to 

which future samples can be compared.  

One of the chief impediments to employing cyanobacteria as a surrogate for ecosystem 

health is the lack of a baseline assessment of the natural community.  In this survey, springs and 

retention ponds make up the majority of the sampled sites due to their ubiquity and ease of 

sampling, followed by lakes and rivers.   

 

METHODS AND MATERIALS 

Site descriptions 
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  The sites selected for sampling represent varied freshwater aquatic habitats from north 

Florida, including retention ponds, rivers, lakes, streams, and springs (Appendix 1, Figure 1).  

The Suwannee River is a blackwater river that flows through four of the nine parks sampled and 

is characterized by limestone bluffs, a sandy to muddy bottom, and aqueduct fed-springs that line 

the river.  The Santa Fe River is a lake fed, slow moving river with dark water that flows into the 

Suwannee River.  The Ichetucknee River is a tributary of the Santa Fe River, and is fed by 

crystal clear springwater.  The springs have differing levels of anthropogenic influence, 

depending on size, flow, and frequency of visitors, while the Suwannee River is exposed to farm 

runoff near the headwaters.  Lake Rosalie is bordered by Lake Kissimmee State park on one side 

and partially bordered on the other side by Catfish Creek Preserve.  Some of these sites reside 

within state parks, and as such, are relatively untouched by anthropogenic forces.  State parks 

have restricted access, and typically possess buffer areas of terrestrial plants which ameliorate 

excess nutrient runoff, and thus these sites experience reduced anthropogenic influence (Rossi et 

al. 2010).  In contrast, retention ponds generally have very few terrestrial plants, unrestricted 

access, and are often in areas that experience very high levels of herbicide and fertilization (i.e., 

commercially tended lawns or golf courses).   The retention ponds sampled were chosen 

haphazardly within the study area.   

 

Sample collection and processing 

Sampling season ranged from March to September, and was conducted during the years 

2010 through 2012.  Cyanobacterial samples were collected from sediments, surface scrapings of 

rocks and vegetation, floating algal mats, and the directly from the water column.  For sediment 

samples, one liter of sediment was obtained using a PVC pipe and negative pressure (sensu 
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Round 1953).  Planktonic species were sampled using a three minute plankton net tow.  Floating 

mats (metaphyton) were sampled from the edge, one sample per mat, where available.  Any 

submerged vegetation or rocks were scraped with a microscope slide and placed into whirlpacks.  

The total number of samples from each site varied depending on the different habitats available 

in each sample site (e.g. epilithic, episammic, epiphytic, etc.).  Subsamples of each field sample 

were preserved in 2.5% glutaraldehyde and used in identification.  Culturing took place on 1.5% 

nutrient (BG11/Z8 media) agar plates, with a natural light cycle (for NE Florida, 14:11 l:d in the 

summer, 10:14 l:d in the winter).  To obtain single species colonies for genetic analysis, each 

sample was plated upon return to the lab and allowed to grow for a period of up to two weeks.  

Following this growth period, plates were subcultured onto multiple new plates and allowed to 

grow for up to another two weeks.  This was repeated until a single species colony has formed on 

one agar plate.  Cyanobacteria were identified using a light microscope at 40 and 100x 

magnification, and identified using standard taxonomic keys (e.g., Anagnostidis & Komarek 

1999, Komarek & Anagnostidis 2005, Hindak 2008), with taxonomy updated as necessary 

(Komarek & Hauer 2013).  Sediment collected was poured into large petri dishes and left to 

settle for 24h.  Afterwards, excess water was siphoned off.  A piece of water-permeable cloth 

was placed on top of the sediment and three glass cover slips were placed on top of the cloth.  

The petri dishes were left to sit for another 24-48h to allow time for cyanobacteria to migrate up 

onto the cover slips; after which the cover slips were placed on slides and examined under the 

microscope (400 cyanobacterial cell count per sample). 

 

RESULTS AND DISCUSSION 
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 A total of 145 cyanobacterial species were identified from the 25 sampling sites.  The 

majority of species belong to the order Oscillatoriales (60%), followed by Chroococcales, 

Nostocales, and Stigonematales (27%, 10%, and 3%, respectively) (Appendix 2).  No single 

species was present at all 25 sites, although Oscillatoria limosa and Phormidium formosum were 

present in ca. 50% of the sites.  Filamentous taxa belonging to Oscillatoriales were present in all 

sites, while Chroococcalean and Nostocalean species were present in most sites.  Most of the 

total species identified (69%) were found in only one or two sites, including all representative 

Stigonematalean taxa.  Overall, retention ponds had the greatest species richness, with as many 

as 26 species, but on average contained 14 species.  In contrast, samples from sites located 

within state parks or otherwise buffered (i.e. Lake Oneida) had an average of 6.4 species and a 

maximum of 13 species.  In a previous epiphyte survey (Dunn, Dobberfuhl, & Casamatta 2008), 

numerous sites in the St. Johns River were sampled and found to have as many as 34 species and 

an average of 17.4 (Appendix 2).   

A strong positive relationship between prevalence of taxa belonging to Oscillatoriales 

and high nutrient concentrations has repeatedly been established, particularly with soluble 

reactive phosphate (Douterelo et al. 2003, Kruskopf & Plessis 2005, Pulina et al. 2011, Salmaso 

2011).  A similar relationship has been found between Chroococcalean taxa and increased 

nitrogen and phosphate concentrations, as well as with Nostocalean taxa and low nutrient loads 

(Douterelo et al. 2003, Rejmankova & Komarkova 2005, Pulina et al. 2011).  In nitrogen-limited 

environments, species that form heterocytes (Nostocales) have a competitive edge over those that 

do not; Oscillatoria simplicissima, for example, display shortened filaments and increased 

hormogonia production in nitrogen-depleted conditions (Kruskopf & Plessis 2005).  
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Due to the individual species’ preferences for environmental parameters and rapid 

generation times, the cyanobacterial community displays great spatial and temporal 

heterogeneity.   While many agree that increased cyanobacterial prevalence in relation to 

eutrophication and high organic pollution is the general rule, cyanobacterial blooms also occur in 

oligotrophic systems, and have been implicated in the acceleration of eutrophication of 

oligotrophic, nutrient-limited lakes (Douterelo et al. 2003, Carey et al. 2008, Romo et al. 2008).   

Current surveys of algae are often lacking cyanobacteria; previous algal surveys such as 

the Dillard series and A Manual of Freshwater Algae focus on algae other than cyanobacteria 

(Whitford & Schumacher 1985, Dillard 1993, Dillard 2007, Hasler et al. 2012).  Existing 

cyanobacterial surveys are spread across the world, and many are focused on extreme conditions 

(i.e., arid deserts, rocks, soils, or thermal vents) (Tilden 1910, Daily 1942, Castenholtz 1969, 

Skulberg & Skulberg 1985, Budel & Wessels 1991, Budel et al. 1994).  In the United States, 

southern Massachusetts, eastern California, and western Nevada have been surveyed; worldwide, 

Venezuela, Chile, Norway, Iceland, and other European countries have been surveyed (Drouet 

1938, Daily 1942, Drouet 1943, Castenholtz 1969, Skulberg & Skulberg 1985, Budel & Wessels 

1991, Budel et al. 1994).   

Very little attention has been paid to the cyanobacterial community in the past; recently 

however, in the interest of water management, cyanobacteria and other possible indicator species 

have increasingly been investigated for use in monitoring aquatic systems (Kelly 1998, Soto-

Galera et al. 1999, Znachor et al. 2006, Fristachi et al. 2008, Oertli 2008, Romo et al. 2008, 

Wood et al. 2010).  This study focused on compiling the cyanophycean taxa that live in the 

North Florida region from a variety of habitats, including springs, rivers, lakes, and retention 

ponds (Appendix 1, Figure 1).   
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Figure 1. Map of Florida depicting sampling sites chosen for study. 

 

 
 

 

 

  



22 
 

REFERENCES 

Anagnostidis, K. & Komarek, J. (1999). Süßwasserflora von mitteleuropa Tiel 1: Chroococcales. 

Budel, B. & Wessels, D. C. J. (1991). Rock inhabiting blue-green algae/cyanobacteria from hot 

arid regions. Archiv fur Hydrobiologie/Algological Studies, 64, 385-398. 

Budel, B., Luttge, U., Stelzer, R., Huber, O., & Medina, E. (1994). Cyanobacteria of rocks and 

soils of the Orinoco lowlands and the Guayana uplands, Venezuela. Botanic Acta, 107, 422-

431. 

Casé, M., Leça, E. E., Leitão, S. N., Sant’ Anna, E. E., Schwamborn, R., & Moraes, A. T. Jr. 

(2008). Plankton community as an indicator of water quality in tropical shrimp culture 

ponds. Marine Pollution Bulletin, 56, 1343-1352. 

Carey, C. C., Weathers, K. C., & Cottingham, K. L. (2008). Gloeotrichia echinulata blooms in 

an oligotrophic lake: helpful insights from eutrophic lakes. Journal of Plankton Research, 

30(8), 893-904. 

Carrick, H. J., Lowe, R, L., & Rotenberry, J. T. (1988). Guilds of benthic algae along nutrient 

rich gradients: Relationships to algal community diversity. Journal of the North American 

Benthological Society, 7, 117-128. 

Castenholtz, R. W. (1969). The thermophilic cyanophytes of Iceland and the upper temperature 

limit. Journal of Phycology, 5, 360-368. 

Cattaneo, A. (1987). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and 

Aquatic Sciences, 44, 296-303. 

Daily, W. A. (1942). The Chroococcaceae of Ohio, Kentucky, and Indiana. American Midland 

Naturalist, 27, 636-661. 

Dillard, G. E. (1993). Freshwater Algae of the Southeast United States. Bibliotheca Phycologica, 

Band 112. 

Dillard, G. E. (2007). Freshwater Algae of the United States. Bibliotheca Phycologica, Band 112. 

Douterelo, I., Perona, E., Mateo, P. (2004). Use of cyanobacteria to assess water quality in 

running waters. Environmental Pollution, 127, 377-384. 

Drouet, F. (1938). The Oscillatoriaceae of souther Massachusetts. Rhodora, 40, 221-273. 

Drouet, F. (1943). Myxophyceae of eastern California and western Nevada. Botanical Series of 

the Field Museum of Natural History, 20, 145-176. 



23 
 

Dunn, A. E., Dobberfuhl, D. R., & Casamatta, D. A. (2008). A survey of algal epiphytes from 

Vallisneria americana Michx. (Hydrocharitaceae) from the lower St. Johns River, Florida. 

Southeastern Naturalist, 7, 229-244. 

Fristachi, A., Sinclair, J. L., Hall, S., Berkman, J. A. H., Boyer, G., Burkholder, J., Burns, J., 

Carmichael, W., DuFour, A., Frazier, W., Morton, S. L., O’Brien, E., & Walker, S. (2008). 

Cyanobacterial harmful algal blooms: state of the science and research needs. Advances in 

Experimental Medicine and Biology, 619, 45-103. 

Hasler, P., Dvorak, P., Johansen, J. R., Kitner, M., Ondrej, V., & Poulickova, A. (2012). 

Morphological and molecular study of epipelic filamentous genera Phormidium, 

Microcoleus, and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea, 12, 

341-356. 

Havens, K. E., Phlips, E. J., Cichra, M. F., & Li, B. (1998). Light availability as a possible 

regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater 

Biology, 39, 549-556. 

Hindak, F. (2008). Colour Atlas of Cyanophytes. Bratislava, Slovakia: Veda. 

Kelly, M. G. (1998). Use of the trophic diatom index to monitor eutrophication in rivers. Water 

Research, 32, 236-242. 

Komarek, J., & Anagnostidis, K. (2005). Süßwasserflora von mitteleuropa Tiel 2: Oscillatoriales. 

Komarek, J. & Hauer, T. (2013). The on-line database of cyanobacterial genera. Retrieved from 

http://www.cyanodb.cz/main 

Kruskopf, M. & Plessis, S. D. (2005). Growth and filament length of the bloom forming 

Oscillatoria simplicissima (Oscillatoriales, Cyanophyta) in varying N and P concentrations. 

Hydrobiologia, 556(1), 357-362. 

Lance, E., Brient, L., Bormans, M., & Gerard, C. (2006). Interactions between cyanobacteria and 

Gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the 

kinetics of microcystin bioaccumulation and detoxification. Aquatic Toxicology, 79, 140-

148. 

Lowe, R. L. & Pan, Y. (1996). Benthic algal communities as biological monitors. In R. J. 

Stevenson, M. L. Bothwell, & R. L. Lowe (Eds.), Algal ecology: Freshwater benthic 

ecosystems (pp. 705-739). New York, NY: Academic Press. 

Oertli, B. (2008). Dragonflies in the assessment and the monitoring of aquatic habitats. In, 

Dragonflies and Damselflies; Model organisms for ecological and evolutionary research 

(79-95). Oxford UK: Oxford University Press. 

http://www.cyanodb.cz/main


24 
 

Perona, E., Bonilla, I., & Mateo, P. (1998). Epilithic cyanobacterial communities and water 

quality: an alternative tool for monitoring eutrophication in the Alberche River (Spain). 

Journal of Applied Phycology, 10, 186-191. 

Pulina, S., Padedda, B. M., Sechi, N., & Luglie, A. (2011). The dominance of cyanobacteria in 

Mediterranean hypereutrophic lagoons: a case study of Cabras Lagoon (Sardina, Italy). 

Scientia Marina, 75(1), 111-120. doi: 10.3989/scimar.2011.75n1111 

 

Rejmankova, E. & Komarkova, J. (2005). Response of cyanobacterial mats to nutrient and 

salinity changes. Aquatic Botany, 83(2), 87-107. 

Reynolds, C. S. (1984). The Ecology of Freshwater Plankton. New York: Cambridge University 

Press.  

Romo, S., Garcia-Murcia, A., Villena, M. J., Sanchez, V., & Ballester, A. (2008). Phytoplankton 

trends in the lake of Albufera de Valencia and implications for its ecology, management, 

and recovery. Limnetica, 27, 11-28. 

Rossi, A. M., Moon, D. C., Casamatta, D., Smith, K., Bentzien, C., McGregor, J., Norwich, A., 

Perkerson, E., Perkerson, R., Savinon, J., Stokes, K., & Doebberfuhl, D. (2010). Pilot study 

on the effects of partially restored riparian plant communities on habitat quality and 

biodiversity along first-order tributaries of the lower St. Johns River. Journal of Water 

Resource and Protection, 2, 771-782. 

Round, F.E. (1953). An investigation of two benthic algal communities in Malham Tarn, 

Yorkshire. Journal of Ecology, 41(1), 174-197. 

Salmaso, N. (2011). Interactions between nutrient availability and climatic fluctuations as 

determinants of the long-term phytoplankton community changes in Lake Garda, Northern 

Italy. Hydrobiologia, 660, 59-68. doi 10.1007/s10750-010-0394-5 

Skulberg, O. M. & Skulberg, R. (1985). Planktonic species of Oscillatoria (Cyanphyceae) from 

Norway – characterization and classification. Archiv fur Hydrobiologie/Algological 

Sciences, 38-39, 157-174.  

Smith, K. F. & Lester, P. L. (2007). Trophic interactions promote dominance by cyanobacteria 

(Anabaena spp.) in the pelagic zone of Lower Karori Reservior, Wellington, New Zealand. 

New Zealand Journal of Marine and Freshwater Research, 41(2), 143-155. 

Soto-Galera, E., Paulo-Maya, J., Lopz-Lopez, E., & Serna-Hernandez, J. A. (1999). 

Environmental auditing: change in fish fauna as indication of aquatic ecosystem condition in 

Rio Grande de Morelia-Lago de Cuitzeo Basin, Mexico. Environmental Management, 24(1), 

133-140. 



25 
 

Steffensen, D., Burch, M., Nicholson, B., Drikas, M., & Baker, P. (1999). Management of toxic 

blue-green algae (Cyanobacteria) in Australia. Environmental Toxicology, 14, 183-195. 

Svrcek, C., & Smith, D. W. (2004). Cyanobacteria toxins and the current state of knowledge on 

water treatment options: A review. Journal of Environmental Engineering and Science, 

3(3), 155-185. Retrieved from 

http://search.proquest.com/docview/20699775?accountid=14690.4. 

Tilden, J. (1910). Minnesota Algae. Minneapolis, MN: Ohio State University. 

Whitford, L. A. & Schumacher, G. J. (1984). A Manual of Freshwater Algae. Raleigh, NC: 

Sparks Press. 

Wood, S. A., Prentice, M. J., Smith, K., & Hamilton, D. P. (2010). Low dissolved inorganic 

nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in 

a temperate, eutrophic reservoir. Journal of Plankton Research, 32(9), 1315-1325. 

Znachor, P., Jurczak, T., Komarkova, J., Jezberova, J., Mankiewicz, J., Kastovska, K., & 

Zapomelova, E. (2006). Summer changes in cyanobacterial bloom composition and 

microcystin concentration in eutrophic Czech reservoirs. Environmental Toxicology, 21(3), 

236-243. 

 

 

 

 

 

 

 

 

 

http://search.proquest.com/docview/20699775?accountid=14690.4


26 
 

Chapter 2 

Reptodigitus chapmanii gen. nov.: a unique Stigeonematalean (Cyanobacteria) genus based on a 

polyphasic approach. 

 

INTRODUCTION 

 Cyanobacteria are a morphologically and ecologically diverse group of photoxygenic 

prokaryotes found across the planet (Graham 2008).  Traditionally classified based on 

morphological features, phylogenetic relationships of this clade have recently undergone major 

revisions (e.g., Anagnostidis and Komarek 1999, Komarek and Anagnostidis 2005).  Not 

surprisingly, many morphological features traditionally employed as phylogenetic characters 

have been shown to be plastic, thus necessitating the use of molecular methods and a polyphasic 

approach employing characters such as ecology, life history, chemotaxonomy, 16S-23S ITS 

secondary folding structures, etc. (Casamatta et al. 2005, Rehakova et al. 2007, Perkerson et al. 

2011, Engene et al. 2012).  Further, many cyanobacterial taxa are difficult to identify due to lack 

of clear morphological apomorphies and generic placements that have been shown to be overly 

broad.  As such, molecular methods (e.g., the 16S rDNA gene sequence and the 16S-23S ITS 

folding patterns) are increasingly being employed for phylogenetic assessments (e.g., Finsinger 

et al. 2008, Kastovsky and Johansen 2008, Casamatta et al. 2012).   

 The Stigonematales is a monophyletic lineage of cyanobacteria whose members produce 

specialized calls and exhibit cell division in multiple planes (Stanier et al. 1971).  The 

Stigonematales is amongst the least studied cyanobacteria, possessing great genetic and 

ecological variability (Kastovsky & Johansen 2008).  This group also displays true branching of 

filaments, which is the highest level of morphological differentiation and complexity in 
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cyanobacteria (Hoffmann and Castenholz 2001, Gugger and Hoffmann 2004).  Members of the 

Stigonematales proliferate by various means, including hormogonia, hormocysts, trichome 

breakage, and akinetes, depending on the genus.  

 One of the most problematic clusters of organisms in the Stigonematales is the clade 

including the genera Hapalosiphon, Westiellopsis, and Fischerella.  Unfortunately, many of 

these taxa have been described from very restricted habitats and thus their true genetic and 

ecological diversity remains unknown.  A novel strain of this lineage was isolated as an epiphyte 

on eelgrass (Vallisneria alternifolia L.) from the St. Johns River (Jacksonville, FL, USA).  

Superficially resembling Hapalosiphon, this strain possesses some unique morphological 

characters, 16S rRNA gene sequence and 16S-23S ITS secondary folding patterns.  Based on a 

polyphasic approach, this paper proposes the erection of a new genus and species within the 

Stigonematales, Reptodigitus chapmanii. 

 

MATERIALS AND METHODS 

Isolation and Culture 

The cyanobacterial strain used in this study were collected, isolated and identified from 

the St. Johns River in Jacksonville Florida, United States.  Strains were initially grown in liquid 

Z-8 media (Carmichael, 1986) and incubated at 20
o 
C under fluorescent light (200 E/s

-1
/cm

-2
) 

with a 16:8 hr light/dark photoperiod.  Growing cultures were then transferred to both Z-8 agar 

plates and slants and were maintained in the above conditions.  

Morphological Characterization 

All isolates were examined using a high-resolution Olympus BX-52 photomicroscope 

equipped with Nomarski DIC optics to study cellular features.  Morphology was examined using 
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a stereomicroscope.  Morphological characteristics such as sheath type, type of branching, cell 

and trichome dimensions, presence of peripheral thylakoids, constrictions at crosswalls, 

meristematic zones, and shape of end cells were noted.   

Molecular Methods  

Total genomic DNA was extracted from cultures using the CTAB method as modified by 

Cullings (1992) for the isolation and purification of DNA from mucilaginous organisms (Doyle 

and Doyle, 1987).  DNA pellets were re-suspended in 50 L of TE buffer and the resulting 

genomic DNA was checked using 1% agarose/ethidium bromide gels.  Extracted DNA samples 

were stored at –20
0
 C.   

PCR primers were modified from Wilmotte et al. (1993) and Nübel et al. (1997).  The 

relative locations and position of these primers with respect to the 16S rRNA and 23S rRNA 

genes are shown in Boyer et al. (2001 and 2002).  All PCR reactions were performed in a total 

volume of 100 L containing 10.0 L of 10 X Taq polymerase buffer (Promega Corp., Madison, 

WI); 0.5 L primer mixture (1.2 L primer 1 or 6, 1.2 L primer 2, 7.6 L dH2O); 0.5 L of a 

stock solution of dNTPs [(10 mM in each dNTP); dATP, dCTP, dGTP, and dTTP]; 0.5 L 

(Promega) Taq polymerase; 1.0 L of extracted genomic DNA (50 ng), and the appropriate 

amount of dH2O to bring the volume to 100L.  Thermal cycling was conducted using an 

Thermolyne’s Amplitron and Temptronic thermalcyclers (Barnstead International, Dubuque, IA) 

using the following parameters: 94
o
 C for 60 s, 55

o
 for 45 s, and 72

o
 C for 4 minutes repeated for 

35 cycles (primer pair 1 and 2), and 94
o
 C for 60 s, 55

o
 for 45 s, and 72

o
 C for 2 minutes repeated 

for 20 cycles (primer pair 2 and 6).  After amplification, a 7-minute/72
o
 extension step was 

included for primer pair 1 and 2, whereas primer pair 2 and 6 received no such extension.  PCR 

products were analyzed on 1% agarose/ethidium bromide gels in 1X TBE buffer. 
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Cloning 

   Amplified PCR products were cloned using the TOPO
TM

 TA cloning kit (Invitrogen 

Corp., Carlsbad, CA) under manufacturer specifications.  Two replicate plasmid samples were 

isolated from each cloning plate and sequenced by Cleveland Genomics (Cleveland, OH).  

Automated sequencing was performed using universal infrared (IR) primers M13IR forward and 

reverse. 

Data Analysis 

The 16S rRNA gene and associated 16S-23S ITS region were sequenced following the 

molecular protocols detailed in Boyer et al. 2001, Boyer et al. 2002, Flechtner et al. 2002, 

Casamatta et al. 2005.  Outgroup taxa sequence data were obtained from GenBank 

(http://www.ncbi.nlm.nih.gov) and other sequenced taxa (accession numbers in Figure 2).  

Maximum Parsimony trees were generated using a heuristic search constrained by random 

sequence addition (1000), steepest descent, and tree-bisection branch swapping using PAUP 

v.4.02b (Swofford, 1998).  Bootstrap values were obtained from 1000 replicates with one 

random sequence addition to jumble the data.  A Maximum Likelihood tree employing the 

General Time Reversible model with corrected invariable sites (I) and Gamma distribution shape 

parameters (G) obtained using Modeltest v3.06 (Posada and Crandall, 1998) was constructed 

with 100 rounds (each with its own random addition) of ML analysis, and bootstrap resampled 

(100 rounds due to computational constraints) using PAUP v.4.02b .  

Secondary structure of the 16S-23S ITS was determined using Mfold version 2.3 (Zuker 

et al. 2003).  Structures were determined by folding and identifying each conserved helix 

separately first, and then constraining the sequence to produce the entire structure.  Apart from 

the folding temperature, which was set at 20º C, default conditions were in all cases used.  
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RESULTS 

Phylogenetic analysis 

 In order to assess the phylogenetic placement of the proposed taxon, maximum 

parsimony, Bayesian analyses, and distance analyses of 75 stigonematalean OTUs yielded a tree 

that showed a poorly supported cluster sister to Nostochopsis (Figure 2).  It should be noted, 

though, that our strain is poorly supported and distant from the highly supported cluster 

containing Nostochopsis (Figure 2).  This clade is modestly associated with a cluster containing 

Westiellopsis, Hapalosiphon, and Fischerella.   

Analysis of secondary structure of 16S-23S ITS motifs 

 ITS regions were amplified, and the D1-D1' helix was folded for use in phylogenetic 

analyses (Figure 3).  The D1-D1' helices for all four taxa (R. chapmanii and three sister taxa) 

were highly similar, all consisting of 70 nt, with a 6 nt unilateral bulge (side loop) that has a 

highly conserved sequence (CAUCCC) found in three of the four taxa.  The exception to this 

was Nostochopsis HA4207-MV1 (UCAUCC) (Figure 4).  The loop at the apex of the helices 

consisted of 7 nt of two separate sequences; Nostochopsis and Reptodigitus displayed the same 

sequence (GUAAAAG), while F. muscicola and Westiellopsis displayed a sequence different by 

only two nucleotide substitutions (GUUGAAG).  A bilateral bulge was also present just below 

the apex, ranging from 5-9 nt, with variable sequences.  The basal pairings in each of the four 

taxa were also highly conserved (GACCU-AGGUC) (Fig. 5). 

 The Box-B helix ranged from 35-38 nt, each with variable sequences (Figure 5).  The 

loop at the apex of the helices ranged from 10-15 nt (Figure 5).  A highly conserved bilateral 
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bulge was also present in all four taxa, as well as highly conserved basal pairings (AGCA-

UGCU). 

 The V3 helix was highly variable between all taxa sampled (Figure 6).  Ranging from 41-

66nt, and containing from 1-4 bilateral bulges, strains exhibited a highly variable loop at the 

apex of the helix, which ranged from 4-11 nt (Figure 6).  Basal pairings were conserved in three 

of the four taxa (UUCA-UGAG), again, Nostochopsis was the odd taxon out (GUAA-UUAC).   

 

DISCUSSION 

 Many Stigonematalean taxa are highly phenotypically plastic, which may account for 

their presence in a variety of environments, such as subaerial, aquatic, hot springs, 

cryptoendolith, in Sphagnum bogs, and in caves (Gugger & Hoffmann 2004; Finsinger et al. 

2008; Soe et al. 2011).  Stigonematalean taxa are separated from other cyanobacteria by the 

presence of true branching, which is characterized by branch-point cells that contact with three 

different adjoining cells (Stanier et al. 1971).  Golubic et al. 1996 classified three major types of 

branches displayed in Stigonematales: ‘T’, ‘V’, and ‘Y’.  T-branches are formed by an almost 

perpendicular branching, caused by a change in the plane of division from transverse to 

longitudinal.  V-branches arise when a dichotomous bifurcation originates from a change in the 

division plate at, or near to, the trichome tip.  Y-branches are formed by meristematic growth 

that displaces an intercalary branch-point cell.  Many forms of multiplication are employed by 

Stigonematales, including hormogonia, akinetes, hormocysts, and trichome breakage (Gugger 

and Hoffmann 2004).  Our new taxon exhibits two types of branching, ‘T’ and ‘V’ (Figures 7 

and 8), which has not been observed in sister taxa.  While R. chapmanii superficially resembles 

Hapalosiphon, the branching pattern and growth is very different.  Thus, we are confident that 
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this morphological autapomorphy warrants the erection of a new genus as advocated by others 

(e.g., Johansen and Casamatta 2005, Komarek and Mares 2012, Lamprinou et al. 2012)  

 An analysis of the 16S rRNA sequence places Reptodigitus as sister to Fischerella and 

Nostochopsis.  While Reptodigitus clearly falls within the Stigonematales morphologically and 

genetically, poor bootstrap support indicates that many of the sister taxa in this lineage may not 

have been identified or sequenced thus far.  The 16S-23S ITS secondary folding patterns suggest 

that R. chapmanii is related, but distantly, to the poorly defined genera Fischeralla, 

Westiellopsis, and Nostochopsis (e.g., Kastovsky & Johansen 2008).  For instance, the D1-D1' 

and Box-B helices were both fairly well conserved among the aforementioned taxa, possessing 

similar structures (i.e. side loops, apex loops, bulges, etc.), numbers of nucleotides, and basal 

pairings.  The V3 helices, however, were highly variable between the four taxa, varying greatly 

in structure and number of nucleotides.  Both the ITS and 16S rRNA sequence analyses suggest 

erecting a new genus to include our new strain. With further sampling and sequencing of 

Stigonematales the phylogenetic relationships can be more accurately determined.   

 Recent trends in cyanobacterial systematics have advocated the erection of smaller, 

clearly defined genera based on a polyphasic approach employing clear, stable apomorphies 

(e.g., Johansen and Casamatta 2005, Hoffman et al. 2005, Komarek 2010).  In order to actualize 

this approach, we are employing the phylogenetic taxonomy concept of Mishler and Theriot 

(2000), which seeks to erect monophyletic genera with clear apomorphies employing 

morphological, ecological and/or molecular characters (e.g., Komarek et al. 2009, Perkerson et 

al. 2011, Casamatta et al. 2012, Engene et al. 2012).  Given the unique mode of growth, 16S 

rDNA gene sequence and unique 16S-23S ITS secondary folding patterns we are unable to 
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assign this new taxon to any currently described genus.  Thus, the erection of a new genus to 

encompass our new taxon is proposed.         
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Figure 2.  Bayesian analyses of 16S rRNA gene sequence from 76 taxa.  Node support is 

indicated as bootstrap support from parsimony analysis/Bayesian posterior 

probabilities/bootstrap support from distance analysis; “-“ means support <0.50 or 50%. 
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Figure 3.  D1', BoxB, and V3 transcript secondary-structure helices sequenced from 

representative cyanobacterial taxa.  (A-D) D1'.  (E-H) BoxB.  (I-J) V3. 
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Figure 4.  D1' transcript secondary-structure helices sequenced from representative 

cyanobacterian taxa.  (A) Nostochopsis HA4207-MV1.  (B) Reptodigitus chapmanii (C) F. 

muscicola SAG 2027.  (D) Westiellopsis Ar73. 
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Figure 5.  BoxB transcript secondary-structure helices sequenced from representative 

cyanobacterial taxa.  (A) Nostochopsis HA4207-MV1.  (B) Reptodigitus chapmanii (C) F. 

muscicola SAG 2027.  (D) Westiellopsis Ar73. 
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Figure 6.  V3 transcript secondary-structure helices sequenced from representative 

cyanobacterial taxa.  (A) Nostochopsis HA4207-MV1.  (B) Reptodigitus chapmanii (C) F. 

muscicola SAG 2027.  (D) Westiellopsis Ar73. 
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Figure 7. V-branching of R. chapmanii taken at 1000x magnification.  Arrow points to branch-

point cell. 
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Figure 8. T-branching of R. chapmanii taken at 1000x magnification.  Arrow points to branch-

point cell. 
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Chapter 3 

An investigation into the factors which influence the epibenthic cyanobacterial community. 

 

INTRODUCTION 

 Cyanobacteria play a major role in biogeochemical cycles of nitrogen and oxygen 

(Berman-Frank et al. 2005, Latysheva et al. 2012).  Cyanobacteria are responsible for 30—40% 

of global oxygen production and are important components of aquatic ecosystems planetwide 

(Eigenbrode & Freeman 2006).  Yet cyanobacteria are most often known for dominance in 

eutrophic systems as bloom-forming, often toxic species (Berg et al. 1987, Falconer 1998, Case 

et al. 2008).   

Cultural eutrophication of economically and recreationally important freshwaters leads to 

many problems including reduced aesthetic value, light attenuation, mechanical issues from 

increased biomass and potentially toxic algal blooms (Paerl et al. 2011).  To date, it is unclear 

which nutrient (nitrogen or phosphorus) is responsible for cyanobacterial blooms; classic and 

modern research has shown conflicting results with some researchers indicating nitrogen, others 

phosphorus, and still others suggest the ratio of nitrogen to phosphorus itself is the key 

(Vollenweider 1975, Schindler 1977, Huisman & Weissing 2001, Moore et al. 2002).  For 

example, Hakanson et al. (2007) determined the relationship between cyanobacterial or 

chlorophyll a concentrations and the ratio of total nitrogen to total phosphorus was complex and 

in need of much more data to be reliably predicted.  In general, though, it is agreed that polluted 

sampling sites have low species richness and excessive algal abundance, while unpolluted sites 

have high species richness and individual taxa in low abundance (Perona et al. 1998, Douterelo 

et al. 2003).   
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As the impact of cultural eutrophication becomes more apparent, researchers have turned 

to cyanobacteria as indicators of ecosystem health (Znachor et al. 2006, Fristachi et al. 2008, 

Wood et al. 2010).  The cyanobacterial community displays great spatial and temporal 

heterogeneity, due to individual species’ preference for environmental parameters and rapid 

generation times.  Generally, individual cyanobacterial orders, such as Oscillatoriales and 

Nostocales, are dominant in differing nutrient concentrations.  Oscillatorialles has a strong 

positive relationship with high nutrient concentrations, particularly soluble reactive phosphate; a 

similar relationship has been found between Chroococcales and increased nitrogen and 

phosphate concentrations (Douterelo et al. 2003, Kruskopf & Plessis 2005, Pulina et al. 2011, 

Salmaso 2011).  Conversely, taxa belonging to the Nostocales are negatively related to nutrient 

concentrations (Douterelo et al. 2003, Rejmankova & Komarkova 2005).  It is noted that these 

are general relationships, and orders may contain species that display great variability with 

nutrient concentrations.  

Biological indicators of ecosystem health, such as diatoms, fish, invertebrates, 

phytoplankton, etc., have been explored and met with variable success (e.g., Kelly 1998, Soto-

Galera et al. 1999, Oertli 2008, Romo et al. 2008).  However, inherent limitations to using these 

organisms include seasonal or otherwise migratory species, taxonomic difficulties, and a lack of 

species appearances with ecological parameters.  Several characteristics of algae make them 

useful as a bioindicator: their ubiquity, year-round presence, rapid generation times, sessile 

nature, and ease of identification to broad taxonomic group (e.g., Reynolds 1984, Cattaneo 1987, 

Carrick, Lowe, & Rotenberry 1988, Lowe & Pan 1996, Kelly 1998).   

  Some studies have suggested that the epipelic communities are not useful indicators of 

trophic state, in part because a large amount of planktic species can be found in the upper littoral 
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sediment layers (Poulickova et al. 2004, Kelly 2006, Poulickova et al. 2008b).  Methods to 

separate the planktic species from the epipelic species were created by Round (1953).  The 

methods used in this study are an adaptation of Round (1953), where negative pressure is used to 

collect the top few centimeters of sediment.  The sediment is then transferred to a container and, 

after a period of time, excess water is siphoned off.  A piece of water-permeable cloth is placed 

on top of the sediments and cover slips are placed on top of the cloth.  This operates on the 

principle that phototaxic epipelic cyanobacteria will migrate and adhere to the cover slips, which 

can then directly be used in microscopy.  The epipelic community is generally difficult to 

separate from the total microalgal community, although it has been agreed that using water 

permeable cloths to collect epipelic algae is an efficient means of separation (Round 1981, 

Spears et al. 2010, Poulickova et al. 2008a).  These methods are a popular means of assessing 

the microalgal community (Lysakova et al. 2007, Hasler et al. 2008, Mann et al. 2008, Spackova 

et al. 2009).   

Another step to understanding the relationship between nutrient concentrations and 

cyanobacterial community dynamics is an experimental manipulation of nutrients in enclosed 

systems.  Knowledge of how the cyanobacterial community responds to environmental changes, 

especially anthropogenic ones, can be a powerful tool in management of recreational and 

residential waters (Steffensen et al. 1999).  With full development of this tool, it should be 

possible to monitor aquatic habitats and accurately identify a system that is changing trophic 

state.  This study is one more resource that may be used to develop a reliable method of 

observation of cyanobacterial communities and correlation with nutrient levels, thus enabling 

more effective management of aquatic systems.   
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METHODS AND MATERIALS 

Sediment collection and processing 

 Sediment was collected from five ponds around UNF campus, Jacksonville, Duval 

County, Florida (Table 1).  Ca. 9.5 l of sediment was collected with a shovel from each pond 

(total of 47 l) and formed the bulk of the mesocosms.  One liter of the top layer (no deeper than 

2.5 cm.) of sediment from each pond (total of 5 l) was collected using PVC pipe (1.27 cm 

diameter) and negative pressure (sensu Round 1953).  The bulk sediments from each pond were 

mixed together and distributed into 20, 19 l buckets.  Similarly, the top layer sediments from 

each pond were mixed and distributed evenly amongst the same buckets.  To maintain a natural 

light cycle for Florida, buckets were kept in the UNF greenhouse at a constant 22°C.  Ca. 20 cm 

of DI water was also maintained on each bucket.  Water samples from each pond, as well as 

weekly from each treatment, were analyzed for measurements of nitrogen (NO3-N) and 

phosphate (PO4
2-

) (LaMotte Smart2 colorimeter), and chlorophyll a (Turner Designs 

colorimeter) (Tables 1 and Appendix 3, respectively).   

Nutrient additions and sample processing 

 In the nutrient enriched treatments, ca. 12 cm lengths of PVC pipe with 1 cm holes drilled 

into them were filled with 50 g of OsmocoteTM slow release fertilizer and suspended in the 

water approximately 10 cm above the sediment (Figure 9) (Bucolo, Sullivan, & Zimba 2008, 

Heck et al. 2000).  Previous laboratory experiments on OsmocoteTM dissolution rates show that 

the fertilizer releases an initial burst of nutrients, followed by a relatively constant release rate; 

the laboratory and in situ dissolution estimates agreed within ±10% (Heck et al. 2000).   

To determine the community composition of each treatment, as well as each pond 

individually, 50 ml of the top layer sediment, obtained by a pipette, was poured into petri dishes 
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and left to settle for 24 h.  Afterwards, excess water was siphoned off.  A piece of water-

permeable cloth was placed on top of the sediment and three glass cover slips were placed on top 

of the cloth.  The petri dishes were left to sit for another 24 h to allow time for cyanobacteria to 

migrate up onto the cover slips; after which the cover slips were placed on slides and examined 

under the microscope (400 cell counts per sample sensu Lund, Kipling, & LeCren 1958).  The 

data were then analyzed for species richness, evenness, Simpson’s diversity, and percent 

heterocytes.   

Statistics 

 The 20 mesocosms were arranged in a randomized block design to eliminate any light or 

temperature gradients in the greenhouse.  Means were compared using paired independent t-tests 

for nitrogen, phosphate, species richness, evenness, Simpson’s diversity, chlorophyll a, total 

number of cells, and Dmax (the maximum diversity possible), between the control and the 

nutrient enriched treatments.  In the case of nitrogen and phosphate, variances violated 

homogeneity requirements of ANOVA and were analyzed using the Wilcoxin Signed Rank Test.  

Correlations and linear regressions were performed on the following variables, nitrogen, 

phosphate, species richness, evenness, Simpson’s diversity, and chlorophyll a.  The following 

values were correlated with nitrogen and phosphate, respectively, species richness, Simpson’s 

diversity, and evenness, among the treatments. 

 

RESULTS 

 Mean chlorophyll a levels were significantly higher for the nutrient enriched treatment 

compared to the control group (t = -5.183, df = 17, p<0.001).  Additionally, the mean number of 

cells per sample were also significantly higher for the nutrient addition treatment compared to 
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controls (t = -2.937, df = 18, p<0.01).  Conversely, mean Dmax was significantly lower in the 

nutrient enriched treatment group compared to the control (t = 2.849, df = 17, p<0.05).  Species 

richness, evenness, and diversity were not affected by nutrient addition (t = 0.869, 0.429, 0.549, 

df = 17, 17, 17, p = 1, respectively).  For the chlorophyll a data, one outlier was discovered (>3sd 

from the mean) and was removed from the dataset and a t-test was performed (Table 2).  No 

significant correlations between nitrogen or phosphate and chlorophyll a, species richness, total 

number of taxa, Simpson’s diversity, Dmax, or evenness were found (Table 3).  However, the 

nutrient enriched group showed slightly stronger correlations between nitrogen and Simpson’s 

diversity, evenness, and species richness (Table 4).  Likewise, linear regressions did not show a 

strong correlation between phosphate and species richness, total number of algal cells, or 

Simpson’s diversity in either treatment (Appendix 4a-f).  Linear regressions of nitrogen showed 

similar results, although nitrogen and evenness, and nitrogen and Simpson’s diversity were more 

strongly correlated in the nutrient enriched group than in the control group (r
2
 = 0.52 and r

2
 = 

0.53, respectively) (Appendix 4a-f).  Two Anabaena species were found with heterocytes; 

overall, these two species increased in abundance in the control group, while the average number 

of heterocytes per filament increased greatly in the second to last week (Figures 10 and 11).  

Two replicates in the control group contributed the most to the increase in species abundance and 

heterocytes; individuals in these replicates had as many as ten heterocytes, while most filaments 

contained between one and four heterocytes. 

 

DISCUSSION 

 This study both contradicts and supports previous experiments.  For example, Perona et 

al. (1998) observed a decrease in species richness, abundance, and diversity as soluble reactive 
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phosphate increased, and found no relationship with nitrogen.  This study found a similar 

relationship between phosphate and species richness, and a very slight negative relationship 

between phosphate and diversity in both treatments.  Species richness, diversity, and evenness all 

displayed positive relationships with nitrogen, however previous research found no relationship 

(Perona et al. 1998, Douterelo et al. 2003).  This may be due in part to nitrogen and phosphate 

levels between treatments (i.e., nitrogen levels in the nutrient enriched treatments averaged over 

250x the levels in the control treatment, while phosphate levels in the nutrient enriched 

treatments averaged 2.5x those of the control group, thus the increase in phosphate may not have 

been enough to elicit a response).  Chlorophyll a levels were highly significantly different 

between treatments.  The nutrient enriched treatment averaged about double the chlorophyll a 

levels of the control; this generally agrees with other studies that have used chlorophyll a as a 

proxy for algal biomass (Barica 1993, Cano et al. 2008, Boyer et al. 2009).  Pseudo-bloom 

conditions in two replicates of the control treatment are responsible for the majority of the 

increase in species abundance and concurrent increase in number of heterocytes.  Anabaena spp. 

were recorded in all control replicates and the majority of the nutrient enriched treatments, 

though abundances varied among treatments and species. 

 Lake productivity in oligotrophic waters has been found to be heavily impacted by 

sediment associated communities (Libouriussen & Jeppesen 2003, Casco et al 2009).  Even so, 

some authors are skeptical as to the capacity of sediment microalgae to indicate trophic level 

(Poulickova et al. 2004, Poulickova et al. 2008b, Kelly 2006).  Lake sediments are known 

nutrient sinks, with a greater concentration of nutrients and less variability than in the water 

column, particularly for phosphorus (Rooney & Kalff 2003, Sondergaard et al. 2003, Casco et al. 

2009).  Indeed, in Lacombe Lake, total phosphorus concentrations in sediments were as much as 
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10 times the concentrations in the water column; variation in sediment chlorophyll a and total 

phosphorus concentrations in water were not significantly correlated (Casco et al. 2009).  

Nutrients in the water column may be sequestered by sediment-dwelling microalgae for growth, 

thus decreasing the water column nutrient concentrations and trapping those nutrients within the 

sediments (Wetzel 2001, Dodds 2003).  Conversely, phytoplanktic Gloeotrichia echinulata 

blooms may move nutrients from sediments into the water, which could accelerate 

eutrophication in oligotrophic lakes (Carey et al. 2008).   

 The true diversity of epipelic microalgae is largely unknown and, with the continued 

discoveries of cryptic diversity, difficult to elucidate (Poulickova et al. 2013).  Increasing use of 

molecular methods coupled with morphological means of identification has led to the discovery 

of many new species (e.g., Hasler et al. 2012).  For example, analysis of three epipelic species of 

Sellaphora revealed species complexes that contained many morphologically similar, yet 

reproductively isolated and genetically different species (Mann et al. 2008, Evans et al. 2009).  

Similarly, the cyanobacterium Microcoleus vaginatus displays cryptic diversity between strains 

from desert soil crusts and strains from the epipelon, whereas Phormidium autumnale is 

morphologically and genetically similar between strains from Europe and strains from the Arctic 

and Antarctic (Strunecky et al. 2010, Hasler et al. 2012, Poulickova et al. 2013).   

  It is important to keep in mind that a general model for prediction of nutrient 

concentrations by cyanobacterial communities is inherently simple and as such, should be 

adapted to the individual environment of interest.  For example, lakes may experience alternative 

states of equilibrium, where temporal and spatial variability, such as in the total phosphorus to 

chlorophyll a ratio, are heavily regulated by growth cycles of macrophytes (Casco et al. 2009).  

Sediment quality also appears to influence cyanobacterial distribution (Hasler et al. 2008).  
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Creating the model for bioindication of trophic level is only the first step; much more difficult is 

to apply the model to environments while taking into account the various adaptations to the 

model each environment necessitates.  In the grand scheme of things, the true diversity of 

cyanobacteria is unknown, as well as exactly how the community responds to environmental 

flux.  In order to elucidate this information, there is a strong need for more surveys, more 

experiments, and more genetic sequencing.   
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Table 1. Environmental parameters for the five UNF campus ponds from which sediment was taken. 

      Pond T°C DO Chl a Nitrogen Phosphate pH GPS 

Building 52 16.2 4.6 7.3 1.6 2.94 8 
30°15'33.31"N 

81°30'17.34"W 

The Village 16.8 5.4 8 0.21 0.06 8 
30°16'0.76"N 

81°30'32.08"W 

Lot 14 16.5 10.7 6.6 0.21 0.04 7 
30°16'9.77"N 

81°30'47.56"W 

Lot 18 17.6 9.1 5.4 0.16 0.1 7 
30°16'50.47"N 

81°30'38.31"W 

Engineering building 15.3 8.5 6.7 0.26 0.1 7 
30°16'20.29"N 

81°30'26.43"W 

 

 

 

 

 

 

 

 



53 
 

Table 2. Means and standard errors from t-test for treatment differences.  C = control, NE = nutrient enrichment, s = species richness, 

N = total number of algal cells, Ds = Simpson’s diversity, Dmax = maximum value of Simpson’s diversity, Chl a = chlorophyll a; * = 

p<0.05, ** = p<0.01, *** = p<0.001. 

Treatment s N Evenness Ds Dmax  Chl a 

C 14.34 ± .47 666.24 ± 40.51 0.55 ± 0.03 0.52 ± 0.03 0.92 ± 0.003 15.05 ± 1.84 

NE 13.79 ± .44 917.56 ± 75.36** 0.54 ± 0.18 0.50 ± 0.02 0.91 ± 0.002* 40.26 ± 4.72*** 
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Table 3. Correlation table for the control group showing correlation coefficients.  s = species richness, N = total number of algal cells, 

Ds = Simpson’s diversity, Dmax = highest possible value for Simpson’s diversity. 

  Nitro. Phos. Chl a s N Ds Dmax Evenness 

Nitro. 1 

       Phos. -0.08502 1 

      Chl a -0.17451 -0.05607 1 

     s 0.379189 -0.06034 -0.16869 1 

    N 0.256826 -0.08424 -0.19105 -0.03428 1 

   Ds 0.316648 0.006877 0.023479 0.731285 -0.32632 1 

  Dmax 0.373377 -0.0218 -0.08405 0.927929 -0.10573 0.734631 1 

 Evenness 0.314513 0.012259 0.032431 0.711352 -0.33175 0.999448 0.721198 1 
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Table 4. Correlation table for the nutrient enriched group showing correlation coefficients.  s = species richness, N = total number of 

algal cells, Ds = Simpson’s diversity, Dmax = highest possible value for Simpson’s diversity. 

  Nitro. Phos. Chl a s N Ds Dmax Evenness 

Nitro. 1 

       Phos. -0.01467 1 

      Chl a -0.00269 0.107712 1 

     s 0.664569 -0.35935 -0.14851 1 

    N 0.224368 -0.30129 -0.25932 0.56873 1 

   Ds 0.732473 -0.06773 -0.10192 0.832372 0.265864 1 

  Dmax 0.643106 -0.35365 -0.06027 0.931075 0.478169 0.794076 1 

 Evenness 0.727431 -0.03237 -0.09503 0.80355 0.238651 0.998454 0.765426 1 
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Figure 9. Nutrient enriched treatments received a PVC pipe (1.27 cm x 20 cm) filled with 50 g of Osmocote brand plant fertilizer and 

capped using parafilm. 
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Figure 10. Filament count of two Anabaena species over a 24 d period in the control and nutrient enriched treatments.  C = control, 

NE = nutrient enriched. 
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Figure 11. Average number of heterocytes per filament of two Anabaena species over a 24 d period. 
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Appendix 1. Description of sites, including specific habitats sampled, county, and GPS coordinates.  Sampling sites are located in the 

northern half of Florida, USA, and are comprised of springs, lakes, retention ponds, and rivers. 

Site Type 
Habitat(s) 

sampled 
County GPS 

Ocean pond Lake Benthos Baker 
30°14'14.53"N 

82°25'38.74"W 

Commador 

Point 

Retention 

pond 
Benthos Clay 

30° 6'32.55"N 

81°42'59.04"W 

Fiddler’s Ridge 
Retention 

pond 
Benthos Clay 

30° 6'31.26"N 

81°42'52.27"W 

Forest Park 
Retention 

pond 
Benthos Clay 

30° 6'45.76"N 

81°43'9.83"W 

Water Park 

Pond 

Retention 

pond 
Benthos Clay 

30° 6'22.65"N 

81°42'48.25"W 

Tennis Court 
Retention 

pond 
Benthos Clay 

30° 6'20.19"N 

81°42'32.11"W 

O’Leno State 

Park 
Spring 

Benthos, 

epiphyton, 

metaphyton 

Columbia 
29°55'31.43"N 

82°34'49.93"W 

Ichetucknee 

State Park 
River 

Benthon, 

epilithon, 

epiphyton, 

metaphyton 

Columbia 
29°58'5.65"N 

82°45'57.57"W 

Jarbo Park 
Retention 

pond 
Benthos Duval 

30°18'55.71"N 

81°23'56.94"W 

Selva Marina 

Country Club 

Retention 

pond 
Benthos Duval 

30°20'25.55"N 

81°24'18.61"W 
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Jack Russel 

Park 

Stagnant 

channel 
Benthos Duval 

30°19'50.58"N 

81°24'9.52"W 

Huguenot Park 
Retention 

pond 
Benthos Duval 

30°16'21.36"N 

81°23'16.36"W 

Sunshine Park 
Retention 

pond 
Benthos Duval 

30°15'57.10"N 

81°23'43.73"W 

Crossroad 

Church 

Retention 

pond 
Benthos Duval 

30°15'31.02"N 

81°32'24.95"W 

Crossroad 

Church 2 

Retention 

pond 
Benthos Duval 

30°15'29.13"N 

81°32'27.41"W 

Merrill Lynch 
Retention 

pond 
Benthos Duval 

30°15'37.03"N 

81°33'1.36"W 

Premier Park 
Retention 

pond 
Benthos Duval 

30°15'11.27"N 

81°33'20.50"W 

Aventine 
Retention 

pond 
Benthos Duval 

30°15'25.23"N 

81°32'18.06"W 

Lake Oneida Lake Benthos Duval 
30°15'57.05"N 

81°30'48.15"W 

Fanning 

Springs State 

Park 

Spring 

Epilithon, 

epiphyton, 

plankton 

Levy 
29°35'13.89"N 

82°56'8.23"W 

Madison Blue 

Springs State 

Park 

Spring 
Epiphyton, 

plankton 
Madison 

30°28'39.71"N 

83°14'39.81"W 

Lake Rosalie Lake 

Epilithon, 

epiphyton, 

plankton 

Polk 
27°56'42.28"N 

81°23'0.36"W 

Kissimmee 

Canal 

Slow-flowing 

canal 

Benthos, 

epiphyton, 

metaphyton 

Polk 
27°56'38.71"N 

81°22'28.10"W 
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Suwannee 

State Park 
River 

Benthos, 

epilithon, 

epiphyton, 

plankton 

Suwannee 
30°23'4.81"N 

83°10'12.04"W 

Manatee 

Springs State 

Park 

Spring 

Epilithon, 

epiphyton, 

metaphyton, 

plankton 

Volusia 
29°29'59.80"N 

82°58'12.00"W 
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Appendix 2. Taxa found in each habitat type. SP = State Parks, RP = retention ponds, SJR = St. Johns River.   

    Taxa SP RP SJR 

Chroococcales (total of 40 taxa) 

   Aphanocapsa cf. delicatissima 

 

X X 

Aphanocapsa holsatica 

  

X 

Aphanocapsa incerta 

 

X 

 Aphanocapsa sp. 

 

X X 

Aphanothece microscopica 

 

X 

 Aphanothece sp. 

  

X 

Aphanothece stagnina 

  

X 

Chamaesiphon sp. 

 

X 

 Chamaesiphon minutus 

 

X 

 Chondrocystis deromochroa 

 

X 

 Chroococcidiopsis sp. 

 

X 

 Chroococcus limneticus 

 

X X 

Chroococcus cf. minutus 

 

X X 

Chroococcus prescottii X 

  Chroococcus obliteratus 

 

X 

 Chroococcus sp.  

  

X 

Chroococcus turgidus 

 

X X 

Coelomoron pusillum 

 

X 

 Coelomoron sp. 

 

X 

 Coelosphaerium aerugineum 

 

X 

 Coelosphaerium kuetzingianum 

  

X 

Cyanogranis ferruginea 

 

X 

 Cyanothece aeruginosa X 

  Dactylococcopsis sp. 

  

X 

Eucapsis minor 

 

X 

 Eucapsis parallelepipedon 

 

X 

 Gomphosphaeria lacustris 

  

X 
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Gomphosphaeria sp. 

  

X 

Mantellum sp. 

 

X 

 Merismopedia elegans 

 

X X 

Merismopedia glauca X X 

 Merismopedia punctata X X 

 Merismopedia spp. 

  

X 

Merismopedia tenuissima 

 

X X 

Microcystis aeruginosa 

  

X 

Synechococcus sp. 

 

X 

 Synechocystis aquatilis 

 

X 

 Synechocystis sp. 

 

X 

 Microcystis sp. 

 

X 

 Xenococcus sp. X 

  Total number 5 27 17 

    Oscillatoriales (total of 87 taxa) 

   Arthrospira jenneri 

 

X 

 Coleofasciculus chthonoplastes 

 

X 

 Geitlerinema acutissimum 

 

X 

 Geitlerinema cf. acus X 

  Geitlerinema amphibium X X 

 Geitlerinema carotinosum X 

  Geitlerinema lemmermannii 

 

X 

 Geitlerinema splendidum X X 

 Geitlerinema pseudacutissimum 

 

X 

 Geitlerinema spp. X X 

 Geitlerinema unigranulatum 

 

X 

 Heteroleibleinia sp. X 

  Homeothrix sp. 

  

X 

Homeothrix stagnalis 

  

X 

Jaaginema spp. X X 
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Johannesbaptista sp. 

 

X 

 Johansenia constricta X X 

 Johansenia pseudoconstricta X X 

 Komvophoron hindaki X X 

 Komvophoron schmidlei 

 

X 

 Komvophoron minutum X X 

 Komvophoron spp. X X 

 Leibleinia epiphytica 

 

X 

 Leibleinia cf. epiphytica 

 

X 

 Leptolyngbya boryana 

  

X 

Leptolyngbya halophila 

 

X 

 Leptolyngbya lagerheimii 

  

X 

Leptolyngbya cf. protospira 

 

X 

 Leptolyngbya spp. X X X 

Leptolyngbya subtilis 

  

X 

Leptolyngbya tenuis 

  

X 

Limnothrix cf. mirabilis 

 

X 

 Lyngbya birgeii 

  

X 

Lyngbya confervoides 

 

X 

 Lyngbya contorta 

  

X 

Lyngbya hieronymussi 

 

X 

 Lyngbya maior 

 

X 

 Lyngbya cf. martensiana 

 

X 

 Lyngbya meneghiniana 

 

X 

 Lyngbya salina 

 

X 

 Lyngbya semiplena 

 

X 

 Lyngbya sordida 

 

X 

 Lyngbya spp. 

  

X 

Microcoleus spp. 

 

X 

 Microcoleus vaginatus 

 

X 

 Oscillatoria anguina 

  

X 



70 
 

Oscillatoria curviceps 

 

X 

 Oscillatoria froelichii 

 

X 

 Oscillatoria limosa X X 

 Oscillatoria lloydiana 

 

X 

 Oscillatoria margaritifera 

 

X 

 Oscillatoria minata 

 

X 

 Oscillatoria nigro-viridis 

 

X 

 Oscillatoria princeps 

 

X 

 Oscillatoria sancta X 

  Oscillatoria simplicissima 

 

X 

 Oscillatoria spp. X 

 

X 

Phormidium animale 

 

X 

 Phormidium autumnale 

 

X 

 Phormidium chalybeum 

 

X 

 Phormidium chlorinum 

 

X 

 Phormidium aerugineo-caruleum 

 

X 

 Phormidium formosum 

 

X 

 Phormidium subfuscum 

 

X 

 Phormidium terebriforme 

 

X 

 Phormidium tergestinum X X 

 Phormidium spp. X X X 

Planktolyngbya contorta 

  

X 

Planktolyngbya limnetica 

  

X 

Planktothrix agardhii 

 

X 

 Pseudanabaena catenata X X 

 Pseudanabaena galeata X X X 

Pseudanabaena galeata Fe3+ X X 

 Pseudanabaena limnetica X X X 

Pseudanabaena lonchoides 

 

X 

 Pseudanabaena minima 

 

X 

 Pseudanabaena spp. X X X 
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Schixothrix calcicola 

  

X 

Spirulina labyrinthiformis 

 

X 

 Spirulina major 

 

X 

 Spirulina cf. major 

 

X 

 Spirulina spp. X 

  Spirulina subsalsa 

 

X 

 Spirulina cf. subsalsa X 

  Synechocystis aquatilis 

 

X 

 Synechocystis sp. 

 

X 

 Tychonema bornetii 

 

X 

 Total Number 25 67 19 

    Nostocales (total of 14 taxa) 

   Anabaeba fuscovaginata X 

  Anabaena planctonica 

 

X 

 Anabaena spp. X X X 

Calothrix fusca 

 

X 

 Calothrix epiphytica 

  

X 

Calothrix spp.  

 

X X 

Cylindrospermopsis raciborskii 

 

X 

 Cylindrospermum sp.  

  

X 

Nostoc carneum 

 

X 

 Nostoc spp. 

 

X 

 Scytonema coactile 

 

X 

 Scytonema crispum 

 

X 

 Tolypothrix spp. 

 

X X 

Trichormus variabilis X X 

 Total number 3 11 5 

    Stigonematales (total of 4 taxa) 

   Fischerella spp. 

 

X 
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Hapalosiphon spp. 

 

X 

 Reptodigitus chapmanii 

 

X 

 Stigonema spp. X 

 

X 

Total number 1 3 1 

    Synechococcales (total of 1 taxon) 

   Synechococcus sp. 

  

X 

Total number 0 0 1 

    Total number of taxa 34 108 43 
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Appendix 3. Weekly values for nitrogen (N), phosphate (P), and chlorophyll a. 

 

 
Week 0 Week 1 Week 2 Week 3 Week 4 

Treatment N P Chl a N P Chl a N P Chl a N P Chl a N P Chl a 

C 0 0 18 0 1.4 11 0.1 0 18 0.4 0.4 7.6 0.1 0 8.6 

C 0 0 17 0.1 0 114 0.3 0 8.3 0.2 0.4 5.5 0.2 0.1 7.8 

C 0 0 9.4 0.1 0 11 0.3 0 7.1 0.1 0 8.6 0.2 0 12 

C 0 0 13 0.1 0 22 0.3 0 8.2 0.1 0 7.2 0.2 0.1 11 

C 0 0 17 0 0 23 0.3 0 13 0.1 1.2 8.8 0.2 0 15 

C 0 0 11 0 1.6 19 0.4 0 11 0 0 12 0.1 0 13 

C 0 0 15 0 0 20 0.4 0 11 0.1 0 9.9 0.1 0 11 

C 0 0 15 0 0 34 0.1 0 9.7 0.1 0 13 0.2 0 15 

C 0 0 11 0 0 20 0.2 0 15 0.2 0 10 0.1 0 12 

C 0 0 10 0 0 20 0.3 0 9 0.1 0 11 0 0 12 

NE 0 0 10 15 1.4 107 9.4 0 430 28 0.2 15 22 0 15 

NE 0 0 17 17 3.1 82 22 0 24 30 1.2 29 28 0 15 

NE 0 0 11 16 3.2 78 30 0 76 23 0.9 17 20 0.1 17 

NE 0 0 9.4 14 2.4 60 20 0.6 136 24 2.3 7.1 46 0.1 19 

NE 0 0 11 19 4.2 49 30 1.4 86 22 0.6 30 35 0 17 

NE 0 0 13 17 0.5 37 22 0.4 65 27 0 39 37 0 25 

NE 0 0 11 15 2 50 30 1.1 15 23 1.1 24 44 0 28 

NE 0 0 12 15 2 88 27 0 9.9 21 0.2 28 35 0 33 

NE 0 0 9.2 13 0.8 48 30 0 49 20 0.4 37 44 0 26 

NE 0 0 15 22 2.6 62 30 0.3 206 20 0.8 49 35 0 43 



74 
 

Appendix 4a. Linear regression for phosphate and species richness in the control group. 
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Appendix 4b. Linear regression for phosphate and Simpson’s diversity in the control group. 
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Appendix 4c. Linear regression for phosphate and evenness in the control group. 
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Appendix 4d. Linear regression for phosphate and species diversity in the nutrient enriched group. 
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Appendix 4e. Linear regression for phosphate and Simpson’s diversity in the nutrient enriched group. 

 

 

  

y = -0.0214x + 0.5194 
R² = 0.0073 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 1 2 3 4 5 

Si
m

p
so

n
's

 d
iv

e
rs

it
y 

Phosphate 

Simpson's Diversity 

Linear (Simpson's 
Diversity) 



79 
 

Appendix 4f. Linear regression for phosphate and evenness in the nutrient enriched group. 
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Appendix 5a. Linear regression for nitrogen and species richness for the control group. 
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Appendix 5b. Linear regression for nitrogen and Simpson’s diversity in the control group. 
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Appendix 5c. Linear regression for nitrogen and evenness in the control group. 
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Appendix 5d. Linear regression for nitrogen and species richness in the nutrient enriched group. 
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Appendix 5e. Linear regression for nitrogen and Simpson’s diversity in the nutrient enriched group. 
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Appendix 5f. Linear regression for nitrogen and evenness in the nutrient enriched group. 

 

 

  

y = 0.0151x + 0.2412 
R² = 0.5225 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 10 20 30 40 50 

Ev
e

n
n

e
ss

 

Nitrogen 

Evenness 

Linear (Evenness) 



86 
 

Curriculum Vitae 

Holly Stocks 

 

Masters Student 

Department of Biological Sciences 

University of North Florida 

 

Education: 

 

M.S. Biology – In progress 

 University of North Florida, Jacksonville, Florida 

 Thesis: Chapter 1 Survey of the α-level taxonomy of the cyanobacteria from North  

Florida 

B.S. Biology – 2009  

 Western Carolina University, Cullowhee, North Carolina 

 

 

Professional Experience: 

 

 Graduate Teaching Assistant, University of North Florida, 2011 

 Microbial Biology Lab, University of North Florida, 2012, 2013 

 

 

Organizational Memberships: 

 

Phycological Society of America 

 

 

Teaching Experience: 

 

General Biology I, University of North Florida 

 

 

Talks/Presentations: 

 

H.S. Stocks, S.A. Verhulst, and D.A. Casamatta. Preliminary Survey of Filamentous 

Cyanobacteria from Suwannee River State Park. Southeastern Phycological Colloquy, October 

2011. 

 

H.S. Stocks. S.A. Verhulst, and D.A. Casamatta. Leptolyngbya ferruginosa sp. nov., a novel 

siderophoric cyanobacterium isolated from an iron-depositing hot spring. Phycological Society 

of America, July 2012. 

 

A.P. Omran, N.A. Pennington, H.S. Stocks, S.A.Verhulst, C.I. Ross and D.A. Casamatta. 

Putative roles of microcystins isolated from Microcystis aeruginosa (Cyanobacteria) on 



87 
 

heterotrophic bacterioplankton isolated from the St. Johns River (FL). Phycological Society of 

America, Seattle, Washington, July 2011. 

 

S.A. Verhulst S. F. Eastman A.P. Omran H.S. Stocks D.A. Casamatta. Response of the epiphytic 

algal community to eutrophic conditions in the Guana Tolomato Matanzas National Estuarine 

Research Reserve.  Phycological Society of America, Seattle, Washington, July 2011. 

 

 

Papers in Prep: 
 

H.S. Stocks, M. Vaccarino, J.R. Johansen, & D.A. Casamatta. Reptodigitus chapmanii gen. nov.: 

a unique Stigeonematalean (Cyanobacteria) genus based on a polyphasic approach. 

H.S. Stocks & D.A. Casamatta. A survey of the freshwater cyanobacteria from Northeast 

Florida. 

H.S. Stocks & D.A. Casamatta. An investigation into the factors which influence the epibenthic 

cyanobacterial community. 

 

 

 
 

 


	UNF Digital Commons
	2013

	A Survey of the Taxonomy of the Cyanobacteria from Northeast Florida, Descriptions of Novel Taxa, and an Investigation into the Factors Which Influence the Epibenthic Cyanobacterial Community
	Holly Stephanie Stocks
	Suggested Citation


	Title Page
	Table of Contents
	List of Figures and Tables
	Abstract
	Introduction
	Algal relationships
	Cyanobacteria
	Cyanobacteria as indicator species
	Taxonomy
	Morphological plasticity
	References

	Chapter 1.A survey of freshwater cyanobacteria from Northeast Florida
	Introduction
	Methods and Materials
	Site descriptions
	Sample collection and processing

	Results and Discussion
	References

	Chapter 2.Reptodigitus chapmanii gen. nov.: a unique Stigeonematalean (Cyanobacteria) genus based on a polyphasic approach
	Introduction
	Materials and Methods
	Isolation and Culture
	Molecular Methods
	Cloning
	Data Analysis

	Results
	Phylogenetic analysis
	Analysis of secondary structure of 16S-23S ITS motifs

	Discussion
	References

	Chapter 3.An investigation into the factors which influence the epibenthic cyanobacterial community
	Introduction
	Methods and Materials
	Sediment collection and processing
	Nutrient additions and sample processing
	Statistics

	Results
	Discussion
	References

	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5

