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ABSTRACT 

 Plants and insects are some of the most biodiverse groups in the world and are constantly 

interacting. One unique interaction that has been observed occurs between carnivorous plants 

and insects; some plant species are capable of capturing and digesting insects for nutrients. 

Despite preying on these insects, there are cases where such interactions can been viewed as 

mutualistic. For instance, a nectar reward is produced by the plant to attract insects, and during 

visitation insects may fall prey to these plants. Additionally, carnivorous myrmecophytic plants 

may receive an added indirect benefit in the form of reduced herbivory, since ants have the 

ability to indirectly protect and drive off herbivores from the plant. However, this type of indirect 

defensive benefit has been rarely observed in carnivorous plants. To determine the nature of the 

relationship between carnivorous plants and ants, a predator-exclusion experiment was 

performed in situ using a natural population of the hooded pitcher plant, Sarracenia minor.  The 

presence of the red imported fire ant, Solenopsis invicta, was manipulated in the pitcher plant 

population to determine if the presence of this non-native ant affects the survival and growth of 

this carnivorous pitcher plant. From June-November 2014 mean pitcher height and width, 

number of pitchers, and proportion of pitchers with herbivory present was recorded monthly. 

Results indicated that pitcher width (p = .042) and the number of pitchers (p = .038) was 

significantly lower when the presence of S. invicta was reduced. Specifically, the limited 

presence of S. invicta led to a 21% reduction in mean number of pitchers and a 2.2% reduction in 

mean pitcher width. This indicated that this non-native ant does provide a direct nutritional 

benefit for the plant.  However, the presence of the ant had no effect on pitcher height and the 

proportion of pitchers with herbivory present. But, when the proportion of pitchers with 

herbivory present was compared to a previous native ant study, herbivory proportions where 
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similar or lower when taking the number of ants present into account. This suggests that this 

non-native ant and native ants equally provide defensive benefits for this native threatened 

species. Overall, this studied illustrated that carnivorous plants may exhibit similar multiple 

benefits from a single interaction with a non-native insect that is both prey and provides defense 

against herbivores.  
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INTRODUCTION 

Plant-Insect Interactions  

 There are 283,000 described species of plants and 1,013,692 described species of insects, 

accounting for 78% to 80% of the world’s known biodiversity (Costello et al., 2013). Such great 

biodiversity among plants and insects has led to the evolution of numerous types of interactions 

between them.  Plant-insect interactions are usually grouped (with exceptions) into two broad 

categories: herbivory and mutualism. Herbivory results when an insect consumes a portion or the 

entirety of a plant. Because insect herbivory represents a strong selection pressure in many 

ecosystems, examples of coevolution between plants and insects have been well described (e.g. 

Ehrlich and Raven, 1964; Hougen-Eitzman and Rausher, 1993; Ramanujan, 2008; Van Zandt 

and Agrawal, 2013). For instance, some plants have evolved defensive mechanisms such as 

thorns, spines, and chemicals to deter herbivores (Ehrlich and Raven, 1964; Agrawal et al., 2013; 

Ramanujan, 2008). In response to these defensive strategies, herbivores have developed different 

types of resistance to plant defenses. For example, the Monarch butterfly, Danaus plexippus, has 

developed a resistance to milkweed toxin allowing it to consume the generally toxic plant 

(Dussourd and Eisner, 1987; Holzinger and Wink, 1996): Moreover, D. plexippus is also capable 

of storing the milkweed cardiac glycoside toxin and utilizing it in their own defense against 

predators. 

 Conversely, mutualism is defined as the interaction between two organisms where both 

organisms benefit from one another. One of the most studied mutualistic interaction between 

plants and insects are pollination complexes. Plants and insects have evolved characteristics and 

behaviors that enhance this mutualism, such as plants evolving brightly colored flowers to attract 
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insects and insects altering their behavior to maximize foraging and plant visitations (Hill et al., 

1997; Sout et al., 1998; Chittka et al., 1999; Goulson et al., 1997). For example, Houston et al. 

(1993) observed that Verticordia nitens and Verticordia aurea specifically attract Colletidae bees 

with their unique, prominently-displayed flowers. As these bees visit flowers they acquire pollen, 

and inadvertently distribute this pollen to other plants. This exchange of pollen between plants 

allows fertilization to occur. This insect mediated cross pollination provides plants with a more 

secure means for successful reproduction than other pollination methods. In exchange for 

distributing pollen, bees receive food benefits in the form of pollen and nectar when visiting 

plants.   

 Another mutualistic interaction between plants and insects is seed dispersal. This type of 

interaction is readily seen in ants that gather seeds and transport them to their colonies. The 

placement of seeds in their colonies provides seeds with nutrient –rich substrates and protection 

from predators. In exchange for seed dispersal, ants receive nutrients in the form of an 

elaiosome, a detachable food body found on the seed that is composed of lipids, fatty acids, 

amino acids, sugars, and proteins. This interaction has been observed in North America between 

many ant species and spring flowering herbaceous plant species (Rico-Gray and Oliveria, 2007).  

Mutualisms, such as the one that occurs between the bull’s horn Acacia tree, Acacia 

cornigera and the acacia ant, Pseudomyrmex ferruginea, have been observed to provide multiple 

benefits to both plant and insect. It has been established that these two species have a mutualistic 

relationship; Janzen (1966) found that A. cornigera provides benefits to P. ferruginea in the form 

of shelter and food resources while P. ferruginea provides defenses against potential herbivores.  

More specifically, Acacia cornigera produces large thorns that P. ferruginea burrows into and 
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colonizes. Additionally, A. cornigera produces carbohydrate-rich extrafloral nectaries at the base 

of its leaves and Beltian bodies at the tip of leaflets that are filled with fats and proteins which 

are consumed by P. ferruginea. In return, P. ferruginea protects A. cornigera from herbivores. 

Pseudomyrmex ferruginea have been observed to kill insects, attack large vertebrates, and even 

cut leafs of encroaching plants. Additionally, P. ferruginea are known to clear the base of A. 

cornigera of herbaceous vegetation, protecting the tree from forest fires and competing plants 

(Janzen, 1966).  

However, mutualistic interactions between species may have the ability to breakdown if 

the cost of the interactions exceed its benefits.  This normally occurs when there is an 

environmental shift or change.  Palmer et al. (2008) excluded large mammals for a ten year 

period in the African savannah from consuming Acacia trees. This resulted in Acacia trees 

reducing the amount of nectar and thorns produced. In response, ants shifted from a nectar-

dependent mutualist to an antagonistic species that did not depend on plant reward. Similar 

mutualistic breakdown have been observed by Janzen (1973) between the plant Ceropia peltata 

and Azteca ants, Azteca andreae. On islands in the Caribbean, C. peltata does not produce 

glycogen-rich food bodies like C. peltatas on the mainland suggesting that the island plants do 

not need to attract Azteca ants for their defensive benefits. Janzen (1973) also observed that 

herbivory exerted on C. peltatas on islands were reduced when compared to that on the 

mainland. As a result of reduced herbivory, the mutualistic interaction between C. peltata and 

Azteca ants were no longer beneficial for the plants on the Caribbean islands.   
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Pitcher Plant: Background 

Carnivorous plants are unique among plants, possessing the ability to capture and consume 

organisms such as insects to obtain nutrients; yet they are photosynthetic and capable of 

producing their own carbohydrates (Plummer and Kethley, 1964). These plants trap prey with 

the use of highly specialized structures composed of modified leaves. Plant carnivory has been 

theorized to have been independently evolved many times in plants to compensate for living in 

nitrogen-poor environments (Pietropaolo and Pietropaolo, 1999; Romanowski, 2002). 

Independent evolution allowed for a diverse set of prey trapping mechanisms. These mechanisms 

can be grouped into two categories; active and passive traps (Pietropaolo and Pietropaolo, 1999; 

Romanowski, 2002; Schnell, 2002; Barthlott et al., 2007; McPherson, 2007; Ellison and Gotelli, 

2009). A passive trap is defined as a trap that does not require movement to capture prey. The 

most common passive trap is the pitfall trap, which is simply a trap that insects fall into and 

become captured. This type of trap will be furthered explained later in the paper.  An active trap 

is defined as a trap that requires movement to capture prey. The most well noted example of this 

is the Venus fly trap, Dionea muscipula. This plant contains hairs in its trapping structures, once 

these hairs are triggered by the prey it stimulates the plant to close this structure through a 

complex interaction with tugor pressure, elasticity, and growth to trap the prey. Another example 

of active traps are those possessed by bladderworts, Ultricularia spp. These plants capture small 

prey like protists and rotifers swimming in water-saturated soil. To accomplish this the plants 

have small traps that resemble bladders which contain a small opening that is controlled by the 

triggering of hairs. Once the hairs are triggered the opening is sealed, and ions are pumped out of 

the bladder as well as water through osmosis. This action creates a vacuum where the prey is 

sucked into the bladder and becomes trapped and digested.  
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  However, there has been some debate as to whether these plants actually need to capture 

prey to fulfill their metabolic need and whether the costs of producing these specialized 

structures outweigh the profits (Lemmons, 2013). Generally, it is believed that carnivorous 

plants use both predation and photosynthesis to acquire nutrients and this dual mechanism 

provides these plants with a competitive advantage over plants in nutrient poor environments that 

lack these adaptations. Interestingly, another benefit to the hooded pitcher plant, Sarracenia 

minor, has been identified; native ants have been shown to provide defense against herbivores of 

the pitcher plant (Moon et al., 2012). Defensive benefits associated with insect presence and 

visitation in addition to acquiring added nutrients may suggest why this characteristic and 

interaction has been so strongly and independently selected for in nature.  

Pitcher Plant: Ecological Importance 

 Pitcher plants provide numerous beneficial roles in their ecosystem. For instance, they 

provide nectar resources to a variety of organisms such as ants, beetles, flies to even small 

vertebrates like tree shrews and Hardwickes wolly bats (Clarke et al., 2009; Grafe et al., 2011). 

Even though the extent to which these organisms rely on pitcher plants for nutrients is unknown, 

these organisms have been documented to use nectar as a food source.   

In addition to providing nutritional resources, some pitcher plants contain communities of 

organisms and provide a refugia to many micro and macro fauna. These organisms live inside the 

phytotelmata of pitchers and form inquiline communities. These communities have been 

thoroughly studied in the pitcher plant, Sarracenia purpurea. In S. purpurea, inquiline 

communities are composed of bacteria, mites, midges, protozoa, rotifers, copepods, cladocerans, 

and dipteran larvae (Fish and Hall, 1978; Bradshaw and Creelman, 1984; Heard, 1994; Kneitel 
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and Miller, 2002; Mouquet et al., 2008; terHorst, 2010). Within these communities dipteran 

larvae are the top predators while rotifers and protozoans feed on bacteria; and the bacteria, 

mites, and midges feed on detritus. Inquiline communities are beneficial to S. purpurea because 

they provide a source of nutrients and amino acids released by residing organisms (Jones et al., 

2009). Therefore, inquiline communities allow for a secondary method for metabolizing captured 

prey besides the production of digestive enzymes provided by the plant.  

Ecology of Sarracenia minor 

Sarracenia minor, commonly known as the hooded pitcher plant, is a carnivorous plant 

native to the southeastern United States. Specifically, the range of S. minor includes Georgia, 

Florida, South Carolina, and North Carolina (USDA, 2012). Saracenia minor is a facultative 

wetland species and as result their natural distribution includes a wide range of environments 

such as seepage savannahs, bogs, fens, and wet to intermediate pine-barrens (Wunderlin and 

Hansen, 2008; Hermann, 1995; Meyer et al., 2001; Pietropaolo and Pietropaolo, 1996; Plummer, 

1963). Sarracenia minor is also a fire-dependent herbaceous perennial; meaning it is aided by 

the effects of fire to thin densities of competing species. Sarracenia minor grows and blooms in 

the spring and summer seasons and dies back in the autumn and winter seasons (Pietropaolo and 

Pietropaolo, 1996). It also has the capability to reproduce both asexually and sexually (Barthlott 

et al., 2007).  

Unfortunately, populations of S. minor are declining to the extent that the species is listed 

as a threatened by the state of Florida (Wunderlin and Hansen, 2008; USDA, 2012; Jennings and 

Roher, 2011). Decreases in S. minor populations are primarily due to habitat loss from residential 

and commercial development (Jennings and Rohr, 2011). Because S. minor is a facultative 
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wetland species, it can tolerate much drier conditions than most other carnivorous plants. As a 

result of this tolerance, populations of S. minor may be found in long leaf pine forests which are 

a prime locations for development (Herman 1995; Jennings and Rohr, 2011). Other threats to S. 

minor include agriculture, aquaculture, fire suppression, biological resource use, poaching, off-

road vehicle traffic, natural systems modifications, invasive and other problematic species, and 

lastly pollution (Jennings and Rohr, 2011; Chafin, 2008). Therefore, in order to protect S. minor 

populations from further threat, it is critical that we understand the abiotic and biotic factors that 

hinder or promote the health of S. minor populations. This information will allow for the proper 

establishment of conservation strategies for the threatened hooded pitcher plant.  

Trapping Mechanism 

 Sarracenia minor produces modified leaves that form into small hooded pitchers, relying 

solely on these passive pitfall trap to capture prey (Herman, 1995). On average, S. minor ramets 

consist of five to twenty pitchers (Moon et al., 2010). These pitchers are primarily green in 

coloration with the hood occasionally being brightly red colored. This bright coloration acts as a 

visual cue for insects. In addition, areoles (white-pigmented spots) located on the hood of the 

pitcher, allow for the passage of light which illuminates the inside of the pitcher. The 

illumination lures insects into the pitcher to further explore the plant. The entrance of the pitcher 

is referred to as the lip which is brightly colored and contains extrafloral nectaries. These 

nectaries produce carbohydrates that attract insects to the entrance of the pitcher. Internal walls 

of the pitcher contain miniature hairs that point downwards and serve to direct insects towards 

the base of the pitcher (Lemmons, 2013). Further down in the pitcher, the walls become lined 

with a waxy cuticle that causes insects to slip and fall to the bottom of the pitcher, which 
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contains water and enzymes such as amylase, esterase, lipase, phosphatase and protease that are 

produced by the plant. These plant enzymes along with those produces by resident bacteria help 

digest insects allowing the plant to absorb vital and limiting nutrients such as phosphorus and 

nitrogen (Pietropaolo an Pietropaolo, 1996; Romanowski, 2002).  

 Ants are the most common prey item captured by S. minor. For instance, 94% of the 

biomass found inside S. minor pitchers is composed of ant exoskeletons, suggesting that S. minor 

is a myrmecophytic plant (Givnish, 1989; Moon et al., 2010).  Sarracenia. minor has been 

documented to capture a wide range of ant species but the most common species is Solenopsis 

invicta, also known as the red imported fire ant (RIFA) (Ellison and Gotelli, 2009; Moon et al., 

2010). Despite the association of the hooded pitcher plant and RIFA, the relationship and 

interaction between S. minor and S. invicta has been researched very little and is poorly 

understood.  Owing to the relationship that has developed between this threatened native plant 

and an introduced ant, it is imperative to fully understand the relationship and interaction 

between these two species. Understanding this relationship could provide valuable information 

about plant-insect interactions, predator-prey interactions, and conservation techniques for S. 

minor. 

Background of Solenopsis invicta 

Originally from South America, S. invicta is an exotic ant species believed to have been 

introduced to North America between 1933 and 1945 via a shipping container from Brazil that 

entered through the county through Mobile, Alabama (Jemal and Hugh-Jones, 1993; Mobley and 

Redding, 2005; Shattuck and Barnett 2005; Holway et al., 2002).  Solenospsis invicta has also 

been introduced to other areas such as Australia, the Caribbean, and Asia (Shattuck and Barnett, 



  9 

 

2005; ISSG 2006). Its range in North America includes Maryland, Alabama, Arkansas, Florida, 

Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia 

to the west coast including New Mexico, Oklahoma, and California (ISSG, 2006; Williams, 

2008; Holway et al., 2002). It’s believed that habitat restrictions and its lack of tolerance for cold 

are the only factors limiting the habitat range of S. invicta in North America (ARS, 2003). 

However, it is likely that S. invicta’s range will expand over time in temperate regions due to 

increasing temperatures.  Similar distribution expansion is predicted to occur in many other 

species; for instance, modeling suggests that Monarch butterflies, D. plexippus and its host plants 

Asclepias spp. distribution will increase northward due to climate change (Lemoine, 2015). And 

many plant dominant mountain top species in Southern California have already expanded their 

range up mountains by approximately 65 m in a 30-year period (Kelly and Goulden, 2008). 

Typical of aculeate hymenopterans, S. invicta possess a modified ovipositor (stinger) that 

the ant uses offensively and defensively.  When using its stinger, female ants may inject an 

alkaloid venom into organisms.  The venom is toxic and can be delivered via multiple stings that 

can kill small animals such as lizards. For humans the venom is painful and causes white 

pustules to appear the following day (Cohen, 1992). The name fire ant is a reference to the pain 

induced by the venom which has been compared to an intense burning sensation. 

Like many introduced species, S. invicta is considered a pest. As a generalist, it consume 

invertebrates, small vertebrates, carrion, and sugary substances (honey dew and nectar) (USDA, 

1993; Vinson and Sorenson, 1986; Mount, 1981). However, the key feature that makes these ants 

such a nuisance and dangerous especially in disturbed habitats is their aggressive behavior and 

ability to rapidly form new colonies (Langkidle 2009; Adams and Balas, 1999). Solenopsis 
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invicta is extremely hostile and may attack any foreign organisms they encounter. Their 

aggressive behavior is so formidable that it has been hypothesized to have selected for  

behavioral (avoidance of S. invicta) and morphological adaptations (longer hind limbs) in 

Eastern fence lizards, Sceloporus undulates, since its introduction 70 years ago (Langkidle, 

2009). These rapid evolutionary adaptation in lizards suggests that S. invicta is a primary source 

of mortality in Eastern fence lizards.  

However, the aggressive behavior that makes S. invicta such a threat too many species may 

benefit S. minor. It’s been previously noted that the presence and visitation of native ant species 

benefits S. minor in two distinct manners. First, an increase in ant presence and visitation led to 

direct nutritional benefits for S. minor. Second, depredation by native ants significantly reduced 

herbivory of S. minor from the pitcher-mining moth, Exyra semicrocea (Moon et al., 2008). If 

these less aggressive native ants have such a significant effect on deterring herbivores from 

S.minor, then S. invicta, which is more bellicose than native ants, may reduce pitcher plant 

herbivory more than endemic species. Thus, this much-maligned invasive species may actually 

aid in maintaining healthy pitcher plant populations  

Interactions between Native and Non-native Species   

The benefits of non-native organisms to their invaded communities are poorly understood, 

but examples have been reported (Keller et al. 2007; Rogalski and Skelly, 2012; Bulleria et al., 

2008; Pec and Carlton, 2014).  For instance, Pec and Carlton (2014) showed that a native 

herbaceous tree, Cryptantha muricata, in Southern California benefited in survival, growth, and 

reproduction from the presence of non-native grasses (Avena barbata, Bromus diandrus, B. 

madritensis ssp. rubens, B. tectorum, Ehrharta calycina and Festuca myuros). These grasses 
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benefited this herbaceous tree species by inhibiting the establishment and growth of competing 

woody tree species. Another study conducted by Glefitsch and Carlo (2011) illustrated a strong 

positive correlation between the presence of non-native honeysuckles, Lonicera, and the 

establishment of native frugivore bird communities such as Dumetella carolinensis and Turdus 

migratorius. The strong correlation suggests that this non-native berry is the primary source of 

nutrients for these bird communities.  Therefore, similar beneficial interactions is plausible 

between the native S. minor and non-native S. invicta. 

Objectives 

The main goal of my study was to characterize the direct and indirect effects of S. invicta 

on both the survival and performance of S. minor. An expected direct effect of higher nutrient 

levels for S. minor provided by S. invicta should be evident in plants with consistent interaction 

with S. invicta  than plants deprived of this interaction, since ants are the most common prey 

item available for this plant (Moon et al. 2010; Ellison and Gotelli, 2009).  In addition, a 

proposed decrease in herbivory and pitcher mortality are both forms of indirect effects that are 

induced by the presence and behavior of S. invicta. High aggression may play a role in deterring 

insect herbivores from visiting the plant which in turn may increase pitcher plant survival and its 

ability to capture prey. 

METHODS 

Study site 

This study took place on a 65 x 20 m stretch of cleared pine barren located along a 

Jacksonville Electric Authority (JEA) power line corridor near McGirt’s Creek Park in 
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Jacksonville, FL (N: 30°13.432’; W: 081°46.965’) (Lemmons, 2013) from June-November 2014 

(Figs. 1 and 2). This site was selected based on two key features; it is semi-protected from the 

public and contains healthy populations of both S. minor and S. invicta. Because these two 

species thrive in open, periodically disturbed habitats, biannual mowing at this site acts as a 

source of occasional disturbance which S. invicta prefers and may substitute as a fire disturbance 

known to benefit S. minor (Herman, 1995; Stuble, 2011). This source of disruption likely limits 

the colonization and presence of native ants that prefer pristine and less distributed area and may 

compete poorly with S. invicta.  

Experimental Field Design 

To examine the effects of S. invicta on the mortality and performance of S. minor, a 

presence-exclusion experimental approach was used in the study. Fifteen 3x3 meter plots were 

established within the populations of S.minor ramets and S. inivicta colonies. Three treatments 

were used in this study excluded, present, and open treatments. Each treatment group was 

replicated in five plots, with at least two S. minor ramets present in each to avoid a plot sample 

size of one. S. minor ramets were selected for each treatment based on their proximity to an 

initial S. invicta colony. The ramets with colonies closest to them were selected for the present 

and open (control) treatment. The open treatment had an n = 27, the present had an n = 18, and 

the excluded treatment had an n = 50. 

  The manipulative treatment in this study was the exclusion of S. invicta from plots 

containing S. minor (excluded treatment). In order to ensure that S. invicta ants were completely 

excluded from field plots, numerous precautions were taken. First, a drift fence composed of 25 

cm high aluminum flashing and 45 cm wooden pine stakes was constructed around the exclusion 
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plots. The drift fence was placed flush against the ground to prevent holes between the ground 

and the drift fence. Secondly, Tangle Trap™ (115 19 Dallas RD, Victoria, BC V8V 5A6, 

Cannada), a sticky petroleum-based agricultural product was used to create a barrier along the 

very top edge of the drift fence to prevent S. invicta ants from entering the plot. Specifically, 

Tangle Trap™ was applied as a thin layer so that only smaller insects like S. invicta were 

excluded but not larger insects. Tangle Trap™ was reapplied as needed to the drift fence 

throughout the study. Lastly, four tablespoons of AMDRO™ (2030 Powers Ferry Road, Suite 

370, Atlanta, GA 30339) a fire ant pesticide, was applied to field plots on a monthly basis as 

directed by the manufacturer’s instructions. These exclusion practices did not exclude Exyra 

semicrocea because of its ability to fly over the barriers. 

Two control treatments were used in this study. Although both treatments included the 

presence of S. invicta, one treatment specifically tested the effects of caging alone. To test for 

any caging effects, a drift fence was placed around five plots (present treatment) while the five 

remaining plots were completely open to the environment and did not have drift fencing 

bordering the plots (open treatment).   

  Once all the plots were constructed individual S. minor ramets were marked using wire 

flags and given a unique identification number for monitoring purposes. Individual S. minor 

ramets were measured once a month from June-November 2014. These measurements included 

number of pitchers, average pitcher height (mm) and width (mm), and the number pitchers with 

herbivory present.  Average mature pitcher height and width were taken by measuring three 

mature pitchers and then averaging the height and width of all three. If three mature pitchers 

were not present, all mature pitchers were measured and averaged. Pitcher height was measured 
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to the nearest millimeter from the ground to the apex of the hood using a plastic a ruler to the 

nearest millimeter. Pitcher width was measured to the nearest .01 mm with the use of digital 

calipers. Herbivory was recorded as present if any holes or brown discoloration were present on 

the pitchers. The brown discoloration and holes on pitchers are caused by E. semicrocea 

caterpillars which consume pitchers from the inside (Moon et al., 2008).  

Solenopsis invicta Visitation 

Ant visitation per plot was measured in order to test whether the exclusion treatments were 

successful. Pitfall traps composed of a petri dish and a 1:1 mixture of radiator fluid and maple 

syrup were placed in the middle of all the plots for five days. After the fifth day, the traps were 

collected and observed in the lab under a magnifying glass. The number of S. invicta captured in 

the traps were recorded. This sampling method was repeated four times throughout the study. A 

second monitoring method used in this study involved selecting one S. minor ramet per plot if 

sample size permitted (n>2) with the use of a random number generator. The selected S. minor 

ramet measurements (the number of pitchers, average pitcher height and width, and the number 

pitchers with herbivory present) were not included in the data (to prevent pseudoreplication) but 

were still measured normally throughout the study to ensure that the S. minor ramet sampled was 

not an outlier. After three months, the two tallest pitchers of the selected S.minor ramets were 

collected. This was performed by cutting the pitchers as close as possible to the ground. The 

pitchers were then brought back to the laboratory and cut open from the apex to the bottom with 

a razor blade. Pitcher contents were placed on a weigh boat and observed under a dissecting 

microscope for S. invicta head capsules. Only head capsules were counted and recorded to 

prevent recounting of the same ants that may have been broken apart due to digestive enzymes 
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inside of the pitchers.  After the field study was concluded (six months), this process was 

repeated using the previously sampled S. minor ramets. Plots previously not sampled due to 

small sample (n<2) size were also sampled.  

Solenopsis Invicta also has distinct characteristics that enable them to quickly be 

differentiated from native ant species. Specifically, S. invicta can be identified by its two-

segmented pedicel (the region that connects the thorax and abdomen.), most similar native ants 

possess one. Another distinguishable characteristic is the genticulated ten-segmented antenna 

that ends in a two-segmented club (Hedges, 1998; Hedges, 1997). For instance the native 

Acrobat Ant, Crematogaster ashmeadi, which was the most abundantly captured ant in Moon et 

al. (2010), also contains a two-segmented petiole but the first segment is wider than the second. 

It also contains a genticulated eleven-segmented antenna that ends in a three-segmented club, a 

pair of spines on a propodeum, and a ventrally convex gaster (Vail et al., 1994). The native fire 

ant, Solenopsis geminate, is very similar in appearance to S. invicta, the only main differences is 

that this species contains a small “tooth” which a central clypeal hair emerges and the workers 

are large-headed (Vail et al. 1994; Clouse, 2007). All of these unique characteristics were used to 

identify ant species. In addition, the entire study site was examined monthly for ant mounds and 

the species for each mound was identified (All mounds observed belonged to S. invicta).       

Prey diversity 

The number of unique insects visiting the plots each week was also measured. This was 

accomplished by placing sticky traps composed of yellow neon painted index cards wrapped in 

transparency film and coated with Tangle Trap™ in the middle of the plots.  Sticky traps were 

left out at the beginning of each week and collected at the end of the week throughout the 
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entirety of the field study. Once collected, the sticky traps were observed under a dissecting 

microscope and the number of each unique species was recorded. The single highest recorded 

number of unique species for each plot was used to compare each treatment in the statistical 

analysis.  

Statistical Analyses of Treatment 

To compare ant visitation, ant capture, and prey diversity between treatments a one-way 

ANOVAs and a Tukey’s HSD post hoc test was used when significant main effects were found.  

To compare number of pitchers, average pitcher height and width, and proportion of pitchers 

with herbivory present four repeated-measures ANOVAs was used. Furthermore, the values 

obtained with the repeated-measures ANOVAs did not meet the assumption of sphericity. 

Therefore, the Greenhouse-Geisser procedure was used to estimate epsilon and correct the 

degrees of freedom. The Greenhouse-Geisser correction was used instead of the Huynh-Feldt 

correction because it is known to be the more conservative correction. 

RESULTS 

The mean number of ants collected using pitfall traps, was not significantly different 

between treatments (F2, 14 = 1.35, p = .297) suggesting similar visitation rates between treatment 

plots (Fig. 3). However, the number of ants found inside the pitchers showed a highly significant 

difference among treatments, with S. invicta presence being reduced by 85% (F2, 14 = 8.168, p 

=.006) (Fig. 4).   

A repeated measures ANOVA indicated that the presence of S. invicta had significant 

effects on the number of pitchers (F6.03 = 2.26, p = .038) and pitcher width (F6.13 = 2.19, p =.042) 



  17 

 

(Fig. 5 and 7). Specifically, the limited presence of S. invicta led to a 21% reduction in mean 

number of pitchers and a 2.2% reduction in average pitcher width.  Furthermore, prey diversity 

was significantly different among treatment (F2= 5.49, p = .020) (Fig. 9). The limited presence of 

S. invicta resulted in a 20% reduction in prey diversity. However, pitcher height (F6.64 = .672, p = 

.688) and the proportion of pitchers with herbivory present (F5.11 = 1.59, p =.165) showed no 

significant differences between treatments even though an increased amount of S. invicta 

lowered herbivory by 9% (Fig. 6 and 8). 

  Additionally, time had a significant effect on proportion of pitcher with herbivory present 

(F2.55 = 8.26, p = <.001), number of pitchers produced (F3.01= 14.59, p = <.001), and pitcher 

width (F3.07 = 6.930, p = <.001).  However, time was trending towards having a significant effect 

on pitcher height (F3.32 = 2.116, and p = .092). As a result, pitcher height, pitcher width, and 

number of pitchers exhibited a parabolic trend over time, all having an increase and reaching a 

high in September before declining later on. The proportion of herbivory present on pitchers 

displayed an increasing trend over time.   

DISCUSSION 

 Ant capture rates (the number of ants found inside the pitchers) was significantly different 

between all treatments. Although the exclusion treatment did not completely prevent S. invicta 

from being captured, the results indicate that the treatment significantly reduced the number of 

ants captured by S. minor when compared to the control plots. Such a reduction of S. invicta ants 

could potentially limit nutrient absorption in S. minor leading to poor growth and decreased 

pitcher production. 
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Even though ant capture was significantly different between all treatments, ant visitation 

(the number of ants captured by pitfall traps) was not significantly different between treatments, 

which was not consistent with predictions that S. invicta would be excluded or significantly 

reduced in the exclusion treatment. Such contrasting results could have arisen from a small 

sample size (n= 4) in regards to the ant visitation data or could have been caused by preference 

for S. minor nectar. It is possible that S. invicta workers favored S. minor nectar over the 1:1 

mixture of maple syrup and radiator fluid that was placed inside pitfall traps. This preference 

may have led ants to visit plants more frequently causing an increase in ant capture by S. minor. 

As a result of these potential explanations, ant visitation results were not heavily used as an 

indicative measure of the presence of S. invicta. Instead, results from the ant capture 

observations were used as a reliable measure for ant presence. Thus, using this measure, the 

methods used to reduce S. invicta ants in specified treatments worked effectively in this study.   

 Number of pitchers and pitcher width was significantly lower when S. invicta was limited 

from plots, indicating that these plant were lacking nutrition which could potentially be related to 

the limiting numbers of S. invicta present. However, mean pitcher height was not significantly 

different among treatments, indicating that pitcher height is not affected by the presence of S. 

invicta. Although previous studies on S. minor show that average pitcher width and pitcher 

height tend to exhibit similar growth patterns (Moon et al., 2010). Differences between pitcher 

width and height in this study may be due to disparities in sensitivity to fluctuations of available 

nutrients. 

In addition, it has been observed in a closely related species, Sarracenia purpurea, that 

pitcher plants can store nitrogen in tissues and use this stored nutrient the following growing 

season (Butler and Ellison, 2007). If S. minor has a similar ability to store nitrogen, it is probable 
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that any effects that the treatments may have had on the plants may have been somewhat negated 

by previously stored nutrients leading to the observed outcome on pitcher height. Allowing this 

study to continue over multiple growing seasons might lead to more direct results regarding 

pitcher height and tease out any effects due to nutrient storing.  Overall, the results are consistent 

with expectations that the presence of S. invicta will lead to direct nutritional benefit for S. 

minor.   

  These findings are consistent with previous studies investigating S. minor and ant 

interactions.  Moon et al. (2010) observed nutritional benefits such as increased average pitcher 

height, pitcher width, and number of pitchers with regards to higher native ant visitation and ant 

capture. However, the duration of the Moon et al. (2010) study was considerably longer 

compared to this study, 13 months to 6 months, respectively. This extended amount of time may 

have played a role in the observed changes in pitcher height.  Furthermore, in similar prey 

limiting experiments with Sarracenia purpurea, the addition of prey did not lead to direct 

nutritional benefits (Chapin and Pastor, 1995; Wakefield et al., 2005). Therefore, it seems that 

nutrient limitations can affect different species of carnivorous plants even those belonging in the 

same genus very differently.   

The proportion of pitchers with herbivory present was not significantly different among 

treatments, which indicates that all S. minor ramets regardless of being exposed to normal or 

reduced presence of S. invicta were subjected to equal amounts of herbivory. These results differ 

from Moon et al. (2010) who found that an increase in native ant visitation led to a decrease in 

herbivory in S. minor. This could potentially signify that S. invicta does not deter herbivores 

from consuming S. minor as effectively as native ants. Another possible explanation is that only 

a few S. invicta ants are necessary to deter herbivores from consuming S. minor and that increase 
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in the abundance of S. invicta does not necessarily correlate with a reduce amount of herbivory. 

When examining native ant visitation and its effect on herbivory in S. minor, Moon et al. (2010) 

found that the average proportion of herbivory when roughly 45 ants were captured was 

approximately 67%. However, the average proportion of herbivory under limited S. invicta 

visitation (22 ants captured) was 59%, suggesting that the presence of S. invicta can reduce the 

amount of herbivory more effectively than a similar number of native ants. Since, S. invicta 

workers are much more aggressive than native ant workers, it is possible that such formidable 

aggression plays a large role in deterring herbivores from consuming S. minor plants at low ant 

presence. 

However, as the number of native ants increases (~90 ants captured) the proportion of 

herbivory decreases to around 46% (Moon et al., 2010), compared to typical numbers of S. 

invicta present (~140 ants captured) the proportion of herbivory present decreases to 50%. Thus, 

the magnitude of deterring herbivores is nearly equivalent, which supports the idea that an 

increase in S. invicta does not decrease herbivory significantly and that an herbivory threshold is 

reached.  It may be that S. invicta reaches this herbivory threshold more quickly with fewer ants 

than native ants due to their highly aggressive behavior. One also has to take into account that 

these studies were conducted in separate years and in different habitat types, so differences in 

weather and herbivore densities could also be affecting these proportions. Nonetheless, it does 

seem that S. invicta is able to deter herbivores from consuming S. minor and thus offers an 

indirect protection for the plant, regardless of an increase in the number of S. invicta. This 

defensive benefit exerted by S. invicta is consistent with other mutualistic plant-insect 

interactions. Kuptor (1984) observed that some ant species deterred herbivores more effectively 

than others, but herbivory overall on the plants was significantly less when ants were present.  
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Additionally, prey diversity was significantly lower in the excluded treatment than the 

control treatment. This may suggest that the presence of S. invicta increases prey diversity in S. 

minor’s habitat. This may be accomplished by S. invicta aggressive behavior deterring predators 

of these species from hunting near their colonies and food supplies. This contradicts a previous 

study that observed S. invicta lowering all insect biodiversity regardless of the insect being a 

predator or herbivore (Eubanks, 2001).   

Overall, these results suggest that the presence of the invasive S. invicta is beneficial to the 

threatened native S. minor.  This is one of the first robust examples of S. invicta directly and 

indirectly benefiting a native species. Although a previous study noted that S. invicta does limit 

agricultural pest of cotton and soybean plants, it also limits the biological controls of these pests 

as well (Eubanks, 2001). This a crucial outcome because most research conducted on S. invicta 

focuses on the negative impacts that this organism has had in introduced ecosystems. However, 

recent research has shown that these impacts may have been overstated. Morrison and Porter 

(2003) showed positive correlations between S. invicta densities and species richness for non-S. 

invicta ants and non-ant arthropods, suggesting that these sampled communities are more 

resistant to S. invicta invasion that previously thought. Similar findings were observed by King 

and Tschinkel (2006), when the presence of the red imported fire ant colonies were limited in 

pastures, there was no change in co-occurring ant species. This may indicate that S. invicta is not 

a superior competitor to native ants and that other factors such as disturbances and recruitment 

limitations may be the limiting factor for native species in specific habitats. Conservationists 

preserving S. minor should take these studies into account as well as the lack of a biological 

control for S. invicta, and assess whether removing S. invicta from their conservation areas will 
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in fact benefit communities and if this benefit outweighs the positive effects S. invicta will have 

on the threatened S. minor populations.  

This study provides an example of a mutualistic plant-insect interaction between S. minor 

and S. invicta and is also an example of a New World pitcher plant that is indirectly benefited by 

a New World non-native ant species. The only other example has been observed by Moon et al. 

(2010) with S. minor and native ants. However, another example of a beneficial relationship has 

been described in Borneo between Nepenthes bicalcarata and Camponotus schmitzi. These ants 

colonize and occupy N. bicalcarata tendrils and in return deter weevils from consuming the plant 

(Clarke and Kitching, 1995; Merbach et al., 2007). With growing examples of defensive benefits 

being observed between carnivorous plants and insects, this interaction may function as a crucial 

benefit for the selection of these unique carnivory structures. Rutter and Rausher (2004) noted 

that extrafloral nectaries are produced at a great expense to plants, and thus should only be 

observed in plants that can offset this cost. With the low capture rates being observed by pitcher 

plants, only .37% of prey is captured when visiting the plant, thus carnivory alone is questioned 

to fulfill these offsetting requirements (Newell and Nastase, 1998). However, when combining 

the added benefit of defense against herbivores and extra nutrients these benefits may 

overshadow the steep costs of producing extrafloral nectaries and pitchers.  

However, much is still unknown about the relationship between S. minor and native and 

introduced ants. Further investigation should primarily focus on indirect defensive benefits of 

native ants and introduced ants. Conducting a study that simultaneously observes both ant types 

and its effects on S. minor through multiple growing seasons could help resolve which ant 

species significantly prevents herbivory. Also, by adding a treatment that excludes ants but not 

herbivores may help illustrate the magnitude of herbivory deterrence performed by these ants. 
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Another area that should to be furthered examined to strengthen conservation efforts of S. minor 

is germination. It has been observed that germination time of S. minor seeds is prolonged, 

potentially reaching five years. Understanding what factors influence this slow germination 

process may lead to novel ways for conservationists to speed up the process and quickly increase 

S. minor populations in the future.    
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APPENDIX: FIGURE  

 

                

 

Figure 1: Map of Florida where a Sarracenia minor population was used for this study.  
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Figure 2: Aerial photo of the power line corridor where the study site was located in. The box 

highlights the border of the study site.   
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Figure 3: The mean (± SD) number of ants visiting each treatment.  
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Figure 4: The mean (± SD) number of ants captured per pitcher for each treatment.  
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Figure 5: The mean (± SEM) number pitchers for each treatment throughout time.  
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Figure 6: Mean (± SEM) pitcher height in mm for each treatment throughout time.  
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Figure 7: Mean (+ SEM) pitcher width in mm for each treatment throughout time.  
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Figure 8: The mean (± SEM) percent of pitchers with herbivory present for each treatment 

throughout time.  
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Figure 9: The mean (± SEM) amount of unique species observed in each treatment.  
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