
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1997

Analysis of Digital Logic Schematics Using Image
Recognition
James A. Giles
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1997 All Rights Reserved

Suggested Citation
Giles, James A., "Analysis of Digital Logic Schematics Using Image Recognition" (1997). UNF Graduate Theses and Dissertations. 425.
https://digitalcommons.unf.edu/etd/425

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

ANALYSIS OF DIGITAL LOGIC SCHEMATICS
USING IMAGE RECOGNITION

by

James A. Giles

A thesis submitted to the
Department of Computer and Information Sciences in partial

fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

August, 1997

The thesis "Analysis Of Digital Logic Schematics Using
Image Recognition" submitted by James A. Giles in partial
fulfillment of the requirements for the degree of Master of
Science in Computer and Information Sciences has been

Approve~ the thesis committee: Date

Dr . Yap S. Chua
Thesis Adviser and Committee Chairperson

Dr. Ralph Butler

Accepted for the Department of Computer
Sciences:

and Information

Dr. Charles N. Winton
Chairperson of the Department

Accepted for the College of Computing Sciences and
Engineering:

Dr . Charles N. Winton
Dean of the College

Accept e d for the University:

Dr . William J . Wilson
Dean of Graduate Studies

ii

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGMENT

There are several people without whose unwavering support

and encouragement completion of a Master's degree would not

have been a possibility for me. I would like to give a

special "thank you" to my wife Linda for her patience and

help in giving me the necessary free time for study and

preparation. I would like to give heart-felt thanks to my

mother and father, Jean and Ted Wittner, without whose help

it would not have been possible for me to go back to

college. I would like to thank Dr. Yap Chua for his

encouragement throughout my time at UNF, for his excellent

teaching, hard work, and concern for all of his students.

Also, I want to thank Dr. Ralph Butler, Dr. Robert Raggio,

Dr. Krissten Cooper, Dr. Charles Winton, Mr. Paul Higbee,

Dr. Layne Wallace, and Dr. Susan Wallace, for their hard

work in providing excellent classes at UNF.

iii

CONTENTS

List of Figures vii

Abstract . ix

Chapter 1: Introduction 1

1.1 The Image Recognition Process 3

1.2 A Survey Of Recognition Techniques
And Applications . 3

1.2 .1 Traditional Approaches 3

1.2.1.1 Data Capture 3

1. 2 .1.2 Pre-Processing 5

1.2.1. 3 Feature Extraction 20

1.2.1.4 Recognition 32

1.2.2 Neural Network Techniques 53

1. 2. 3 Applicat ions 62

Chapter 2: The Design Of The Recognition Program 68

2.1 "Thick Line" Vectorization And
Corner Detection . 8 0

2.2 Detection Of Curvature 80

2.3 Representation Of Digital Schematics
As A Collection Of Related Shape
Objects 80

iv

2.4 Representation Of Schematic Components
As A Set Of Related Simple Shapes 83

2.5 Representation Of Simple Shapes As
Token Lists 85

2.6 Storage Of Shape Relationships And
Token Lists In A Token Library 92

2.7 Detection Of Closed Polygons- The
Foundation For Schematic Analysis 93

2.8 Component Identification: The Detection
Of Base Shapes, Appendage Shapes, And
Input/Output Connections In Schematic
Components 95

2.9 Isolation Of Schematic Components From
Connector Lines 96

2.10 Determination Of Electrical Connections
Between Connector Lines Using Circular
Connection Symbols 98

2.11 Schematic Component Connection
Analysis 98

2.12 Construction Of A Token List For
Equation Generation Based On The
Connection Analysis 102

2. 13 Construction Of A YACC-Generated Pars e r
To Analyze Equation Token Lists 104

2.14 Connection Line-Following Techniques,
Equation Determination And Output 107

2.15 User-Adjustable Parameters For The
Recognition Process 108

Chapter 3: Notes On The Implementation Using The
Microsoft Foundation Classes And A
YACC-Generated Parser 118

3.1 The Development Environment 119

3.1.1 Automatic Generation Of Skeleton Code
And User Interface Resources 119

v

3.1.2 Visual Class Tree View With Fast
Access To Member Functions
And Class Definitions 121

3 .1. 3

3.2

High Quality Debugger With
Convenient Visual Features

The Microsoft Foundation Classes

3.2.1 Effective Encapsulation Of The

121

122

Windows API 123

3.2.2 Template Classes Which Support Dynamic
Arrays, Lists, And Maps 123

3.2.3 Effective Memory Management And
Support For Large Collections
Of Objects 124

3.2.4 Problems Encountered During
Development 125

3.3 Development Of The Parser 125

Chapter 4: Exper imental Recognition Results 12 7

Chapter 5: Conclusions And Suggestions For
Further Development 133

References 137

Appendix A: Source Code Listings 140

Appendix B: User Manual For The Recognition
Program 157

Vita 205

vi

FIGURES

Figure 1: The Pixel Neighborhood Surrounding
Pixel p 17

Figure 2: Thick Line Vectorization 23

Figure 3: Measurement Of Curvature 25

Figure 4: The Artificial Neuron 55

Figure 5: Multilayer Feedforward Network 57

Figure 6: Component Shapes/Colors On A Conveyor Belt 59

Figure 7: Feedforward Neural Network For Robot Arm .. 60

Figure 8: Image Analysis Processing Flow #1 71

Figure 9: Image Analysis Processing Flow #2 72

Figure 10: Representation Of The Entire Schematic
By Shape Objects 82

Figure 11: Breakdown Of Schematic Components Into
Simple Shapes 84

Figure 12: Relationship Between Token Lists And
Schematic Components 86

Figure 13: Assignment Of A Token To A Perimeter
Arc In A Shape 89

Figure 14: Connection Matrix Contents 100

Figure 15: Computer-Drawn Test Image With Every
Type Of Logic Gate Which Can Currently
Be Recognized 129

Figure 16: Scanned Image - Exercise Circuit 130

vii

Figure 17: Scanned Image - First Stage Of Full
Adder Circuit . 131

Figure 18: Scanned Image - Four Input Multiplexer . 132

viii

ABSTRACT

This thesis presents the results of research in the area of

automated recognition of digital logic schematics. The

adaptation of a number of existing image processing

techniques for use with this kind of image is discussed,

and the concept of using sets of tokens to represent the

overall drawing i s explained in detail. Methods are given

for using tokens to describe schematic component shapes, to

represent the connections between components , and to

provide sufficient information to a parser so that an

equation can be generated.

A Microsoft Windows-based test program which runs under

Windows 95 or Windows NT has been written to implement the

ideas presented. This program accepts either scanned images

of digital schematics, or computer-generated images in

Microsoft Windows bitmap format as input. It analyzes the

input schematic image for content, and produces a

corresponding logical equation as output. It also provides

the functionality necessary to build and maintain an image

token library.

ix

Chapter 1

INTRODUCTION

The field of automated image recognition is an area of

Computer Science which offers some unique challenges and

difficulties. The goal of a typical recognition system is

to detect shapes in a binary image, and recognize them as

understandable objects of some type, usually by comparing

them with a library of known shapes. Once lower level

objects have been recognized, inferencing and/or domain

specific knowledge is often applied to put the recognized

shapes together into higher level objects. At the end of

the process, the image is represented by a set of

constructs which contain information about all of the

recognized objects. The resulting representation is usually

much more compact than the original binary form, and the

recognized objects may be manipulated and changed as whole

entities, rather than simply as collections of pixel

values.

Two of the most difficult challenges for the researcher

have to do with the representation of visual objects in a

form useful for recognition, and with the construction of a

library of known objects which can be accessed efficiently,

- 1 -

so that the recognition process does not take an inordinate

amount of time.

The techniques presented in this paper, and implemented in

the source code and executable program provided with the

paper, address both of these issues, and have produced

favorable results with the small set of test images used in

the project. One of the fundamental concepts in this

project is the use of tokens as shape descriptors . This

works well in the context of schematic diagrams, and is a

natural approach to the problem when the desired result is

an equation which describes the image. This approach

applies some of the ideas presented in the paper

"Knowledge - Directed Interpretation Of Mechanical

Engineering Drawings" [Joseph92]; most notably the use of a

YACC-generated parser as a component of an image processing

program.

In the remainder of this chapter we will provide a brief

description of the image recognition process in general,

and a summary of some of the processing techniques commonly

used in the traditional approach to image processing. Then

we will look at neural networks and how they can be

applied, using methods which depart from the traditional

approach.

- 2 -

1.1 The Image Recognition Process

Analysis and recognition of an image is usually a multi

step process, and when the traditional approach is used,

each of these steps is fairly well defined. We can break

down the process into four steps: Data Capture, Pre

Processing, Feature Extraction, and Recognition. In the

following sections we will present a brief survey of the

specific methods used in each of these four steps, and also

how neural networks can be used in a non-traditional way to

analyze images.

1.2 A Survey Of Recognition Techniques And Applications

1.2.1 Traditional Approaches

1.2.1.1 Data Capture

Image information may be captured by the computer in either

an "off-line" or "on-line" mode. When paper documents are

analyzed, they are typically read into the computer system

using an image scanner. The scanner produces an electronic

file which contains color and/or intensity information for

- 3 -

each pixel on the video display monitor or printer that

will be used to display or re-print the image. This is

"off-line" data capture, where all of the electronic

information about the image is produced directly from the

image itself, and is stored in a file that serves as the

input for further image processing.

When "on-line" data capture is used, information about the

image is captured directly as the image is being produced.

A typical device which allows this kind of input is the

digitizer pad and pen, where the user draws images (or

hand-written text) on the electronic pad with the hand-held

pen, and receives feedback information about the resulting

image through a video display monitor and printer. When an

image (or text) is captured in this manner, it is possible

to provide more information to the computer system than can

be provided using "off-line" capture. For example, pen

speed, pressure, and the order and direction of individual

strokes can be provided in addition to the actual resulting

image data. This extra information can sometimes be very

helpful in interpreting the resulting image.

The capture of visual information through direct input is

an important technological advancement, which will have an

increasing impact on daily life in the future. However, the

- 4 -

"off-line" capture of scanned paper images, medical CAT

scans, radar images, and many other kinds of visual data

presently has a much wider range of practical application.

It is this kind of data capture which is the source of

input for the project we are describing in this paper.

1.2.1.2 Pre-Processing

The next step in the traditional approach to image

processing may be called "Pre-Processing", because

operations are performed on the input data at this point

which do not result directly in recognition, but which

prepare the image for further analysis, and which help to

simplify the computation necessary in later steps. We will

look briefly at three important pre-processing functions:

thresholding, noise reduction, and thinning. Although image

pre-processing may include several other operations which

are performed on the image, these three are typical

functions used in many image applications, and they are

often critical to successful recognition.

Thresholding is an operation which is performed on

grayscale or color images in order to clearly separate the

"background" of an image from the "foreground". The

"foreground" consists of the objects of interest which are

- 5 -

depicted in the image. The "background" consists of the

image area which surrounds the "foreground" objects. In

order to have a clear distinction between "foreground" and

"background", we would like to reduce the number of shades

of gray (or color) so that there is one shade for the

"foreground", and another distinct shade for the

"background". In a typical grayscale image, there are 256

possible shades of color ranging from pure white, through

many shades of gray, to pure black. A numeric value is

assigned to each possible shade, with 0 being pure black,

255 being pure white, and all other values representing the

various shades of gray. The goal (typically) of the

thresholding function is to reduce the number of shades in

the image to the values 0 and 255, where all "foreground"

pixels have the value 0, and all "background" pixels have

the value 255. This idea can of course be easily extended

to color images, where typically there is a red, green, and

blue component to every color in the image, and where the

intensity of each component is represented by the same

numeric value range: 0 - 255.

In order to accomplish proper thresholding, it is necessary

to examine each pixel, and make an accurate decision as to

whether it belongs to the image "foreground" or

"background". In the case of images which have a fairly

- 6 -

uniform distinction between "background" and "foreground"

colors across the entire image, it is possible to come up

with a single numeric value, called a "global threshold",

which can be used to make the "foreground"/"background"

decision for each image pixel. Once the appropriate value

has been found, it is compared with each pixel, and if the

pixel color value falls on one side of the threshold, the

pixel's color is changed to the pure "background" color; if

it falls on the other side of the threshold value, the

pixel's color is changed to the pure "foreground" color.

The process becomes more difficult when either the image

contains a lot of "noise" (extraneous shades of color in

many of the pixels which do not accurately represent the

image, often occuring because of poor quality image

scanning, faulty equipment, etc.), or the image contains

many variations in shading or color at different locations.

In this case, a "global threshold" will not provide the

appropriate value for making the "foreground"/"backqround"

decision in all parts of the image. In order to get around

this problem, it becomes necessary to use "adaptive

thresholding" techniques, which "adapt" to local shading

values in different parts of the image. This is often

accomplished by making the "foreground"/"background"

decision based on the color values present in pixels which

- 7 -

surround the pixel of interest, or in other words, by

looking at a small "window" of color data around the pixel,

deriving a local threshold value based on that data, and

changing the pixel of interest based on the local

threshold.

Even adaptive thresholding as described above is not always

sufficient to give accurate results when there are many

variations in color throughout an image. In some cases it

is necessary to make the window size (the amount of data

analyzed around the pixel of interest) adjustable by the

user, or even to make the window size dynamically

adjustable by the program, and have it vary the size during

analysis, based on domain-specific information about the

image.

Regardless of whether a global or local threshold is used,

it is necessary to have a method for determining the

threshold value based on either the data in the entire

image, or in a small window. Several different methods may

be used, including (among others) manual adjustment,

histogram-based selection, weighted-histogram selection,

and statistical selection.

- 8 -

Manual adjustment is the simplest of the methods; the user

selects a threshold value manually, and has the program

apply it to the image. Adjustments to the value are then

made manually, until the results are optimal.

Histogram-based selection is done by compiling a histogram

of pixel color values throughout the image. The histogram

can be thought of as a two-dimensional graph, with color

intensity on the x-axis, and number of pixels on the y

axis. When there is a fairly clear distinction between

"foreground" and "background" already present in the image,

the graph will have two distinct "peaks", one for the

primary "foreground" intensity, and one for the primary

"background" intensity. The threshold can then be chosen in

the "trough" between the two peaks. If there is not a

fairly clear distinction between "foreground" and

"background", then the "peaks" and "troughs" will not be

distinct, and it becomes difficult to choose the proper

threshold value.

Weighted-histogram selection is based on the same kind of

histogram just described, except that the pixel count for a

given intensity value is weighted, depending on the

location of pixels of that intensity in the image. Pixels

which are in the interior region of an object in the image

- 9 -

will be weighted more heavily than pixels near the edge of

the object.

Statistical selection of the threshold value typically

involves dividing the pixels in the image into foreground

and background classes. Various threshold values are tried

experimentally, and the resulting class membership is

examined for each potential value. The threshold which

maximizes the variance in intensity values between the two

classes, and which minimizes the variance in intensities

within each class is selected and applied to the image.

There are numerous other thresholding techniques which work

well in different situations, such as the "YDH",

"Nonlinear Adaptive", and "Integrated Function" techniques,

as reported in [Kamel93]. For further general reading on

this topic, see [O'Gorman95], chapter 2.

Noise reduction: "Noise", in the context of image

processing, can refer to any kind of distortion of the

information in the image. The distortion may result from

the application of computerized algorithms to the image

data, or it may simply be caused by errors introduced at

the time the image was created. When we are talking about

image pre-processing, we are primarily interested in the

- 10 -

removal of noise which was introduced during the creation

of the image. More specifically, erroneous color values may

be set in individual pixels in the image, usually because

of scanning equipment problems, poor photographic

reproduction, poor quality facsimile transmission, and the

like. The noise often takes the form of isolated ON pixels

within OFF regions, and isolated OFF pixels in ON regions.

It can also appear as lightly shaded gray areas or white

areas or black areas (in a grayscale image) ln a region of

the image which should be some other color, or as minor

distortions in the shapes of objects within the image (or

some combination of all of these) .

Numerous methods have been used to correct image noise; we

will briefly discuss two of them, both of which are based

on the concept of analyzing a "window" of data around a

pixel of interest, and setting that pixel's color value

according to the results of the analysis. Usually, the

"window" of data consists of a square matrix of pixels,

with the pixel of interest at the center of the matrix.

Each pixel in the image is examined (as the pixel of

interest), and it's color value is set depending on the

surrounding data.

- 11 -

The first method uses a pair of processes, called

"erosion", and "dilation" in various combinations to smooth

out the boundaries of shapes, remove extraneous white

pixels from black areas and extraneous black pixels from

white areas, join narrow gaps, fill in small "holes ", and

other similar processing. "Erosion" is the process of

removing a thin layer of ON pixels from the boundaries of

shapes in the image (usually with layers having one pixel

of thickness) by turning them OFF. "Dilation" is just the

opposite; a thin layer of OFF pixels surrounding the

boundaries of the shapes in the image is turned ON (also

typically with each layer having one pixel thickness). The

"erosion" and "dilation" operations are applied to the

image in groups, in order to perform "opening" or " closing"

on the shapes in the image.

To perform " opening", where boundaries are smoothed out and

small areas of noise are removed, one or more iterations of

"erosion" are performed on the image, followed by the same

number of iterations of "dilat ion". Although the layers of

pixels removed by the " erosion" are replaced by the

" dilation", the replacement is not exactly the same as the

removal, and the result is the desired noise reduction.

- 12 -

The "Closing" operation smoothes out boundaries, joins

narrow gaps, and fills small "holes" in the image caused by

noise. It is accomplished by performing one or more

iterations of "dilation", followed by the same number of

iterations of "erosion". The extra layers of pixels added

by the "dilation" are removed by the "erosion", but the

removal is not exactly the same as the addition, and the

result is the desired noise reduction.

The second noise reduction method (or filter) which we will

look at is similar to "opening" and "closing", in that it

modifies pixels in the image based on a "window" of

surrounding pixel data, but it does not necessarily remove

or add layers around the entire boundary of a shape. As in

the previous example, the analysis "window" is passed over

the whole image so that each pixel becomes the pixel of

interest at some point, and that pixel is changed according

to the rules of the particular algorithm being used. The

filter may be applied one or more times to the image, until

the desired results are achieved. One example of an

algorithm for modifying the color of the pixel of interest

can be found in [Andrews76]: the average color value of all

of the pixels in the "window" is calculated, and is used as

a local threshold. If the color value of the pixel of

interest is less than (blacker than) the average value, it

- 13 -

is set to pure black. Otherwise, it is set to pure white.

See [O'Gorman95], chapter 2 for more details about these

and other noise reduction techniques.

Thinning: This is the third and final image pre-processing

technique which we will cover in this introductory

material. When it is applied to an image, all of the shapes

are reduced to a set of thin lines (usually with one pixel

thickness) which approximately traverse the center of each

original shape, thus giving a "skeleton" outline of the

image content. Thinning is particularly useful when we are

dealing with elongated shapes such as lines, which we wish

to describe as a set of vectors, or in some other way which

is usable by a computer. It is much easier to produce

vectors which accurately describe the original shape by

following these "skeleton" lines than it is to attempt to

follow thicker shape contours.

In order for the "skeleton" lines to be useful for image

interpretation, it is necessary that the thinning algorithm

adhere to several constraints, as given in [O'Gorman95],

page 16:

1. Connected image regions must thin to connected

line structures.

2. The thinned result should be minimally eight-

- 14 -

connected (explained below) .

3. Approximate end line locations should be

maintained.

4. The thinning results should approximate the

medial lines.

5. Extraneous spurs (short branches) caused by

thinning should be minimized.

Item 1 ensures that the representative "skeleton" lines

will not loose any of the connections which were originally

present among the shapes in the image. Item 2 stipulates

that there should be only one pixel of thickness at

connection points between shapes. The term "minimally

eight-connected", as applied to any two connected pixels in

an image, means that each pixel is one of the eight

possible neighbors of the other, and there are no other

immediately adjacent neighbors present. Item 3 ensures that

"skeleton" lines are not shortened significantly (from the

length of the original shape) by the thinning process. Item

4 specifies that the resulting "skeleton" lines should

closely approximate the medial axis of each original shape.

The medial axis consists of the set of points taken from

the interior of the shape such that each point is

equidistant from it's two closest neighbors on the shape's

boundary. (In other words, it is approximately the center

- 15 -

line of each shape). Item 5 says that the thinning process

should not leave behind short spur lines attached to the

"skeleton" line data (because they can cause confusion in

later processing). See [O'Gorman95], pages 14-18 for more

general information about the thinning process.

As with all of the other techniques that we are

considering, there are numerous ways to implement thinning.

We will look in detail at one typical method, which is also

used in the program developed for this project. For more

information about the process we are about to describe, see

[Lam92].

We need to define some notation and terminology (as

specified in [Lam92])in order to describe this method,

which was created by C. J. Hilditch in 1969. First,

consider the neighborhood of pixels surrounding the pixel

of interest (p), as in the diagram below.

Let N(p) represent this neighborhood of pixels around p.

The pixels xu x 2 , ••• , x 8 are said to be the 8-neighbors of

p, and are 8-adjacent to p. The pixels x 1 , x 3 , x 5 , and x 7

are also said to be 4-neighbors of p, and they are 4-

adjacent to p.

- 16 -

x4 x3 x2

Xs p xl

x6 x7 X a

Figure 1: The Pixel Neighborhood Surrounding Pixel p

For each new location of the pixel p, we will need to

calculate what Hilditch calls a "crossing number" and

defines as "the number of times one crosses over from a

white point to a black point when the points in N(p) are

traversed in order , cutting the corner between 8-adjacent

black four n eighbors " [Lam92]. Algorithmically, we can

calculate this number as follows, letting C be the

"crossing" number:

1. c = 0.

2. If x l 0 and Xz 1 and x 3 1, add 1 to c.

3 . If x 3 0 and x 4 1 and Xs 1, add 1 to c.

4 . If Xs 0 and x 6 1 and X? 1, add 1 to c.

5. If X7 0 and Xe 1 and xl 1, add 1 to c.

- 17 -

With all of this in mind, we now want to pass the 3x3

"window" shown in figure 1 over the entire image,

processing in raster scan order (left to right, and top to

bottom), where the pixel of interest pis placed at each

pixel location in the image. When p is located over a pixel

on the edge of the image, the neighboring points about p

which fall outside of the bounds of the image are

considered to be 0 or OFF. At each new location of the

"window", apply the rules listed below to determine if the

point p should be set to 1 (ON) or 0 (OFF) . Points which

are to be turned off (or deleted) are not immediately

turned off at the time the determination is made, because

their present value is still needed to make a decision

about neighboring points. They are flagged for deletion,

and at the end of one complete raster scan, all points

flagged for deletion are turned off. The raster scan is

then repeated until no points have been flagged for

deletion during the last pass.

Rules for deletion (setting the color value to 0, or OFF)

of the point p:

1. p must be currently turned ON.

2. p must not be isolated, or an end point, which means

that there must be at least two black (ON) neighbors

adjacent to p.

- 18 -

3. p must be located on the contour of a shape, which means

that p must have at least one white (OFF) 4-neighbor.

4. At least one black (ON) neighbor of p must not have

already been flagged for deletion.

5. The "crossing number" must be 1 at the start of the

current raster scan.

6. If x 3 has been flagged for deletion, then setting x 3 to 0

(OFF) must not change the crossing number which would be

calculated at the current location of p.

7. If x 5 has been flagged for deletion, then setting x 5 to 0

(OFF) must not change the crossing number which would be

calculated at the current location of p.

8. If rules 1-7 are met at the current location of p, then

pixel p is flagged for deletion at the end of the current

raster scan. Otherwise, p is not flagged for deletion.

This algorithm has been implemented in the program

developed for this thesis, and in the cases tested by the

author it successfully meets all of the criteria set forth

by O'Gorman (above), except that some spur lines are

created at locations where a lot of points are removed from

the image by thinning, and the contours of the original

shapes at those locations are not extremely smooth.

- 19 -

1.2.1.3 Feature Extraction

"Feature extraction" is a broad term which encompasses

several different kinds of processes that are applied to

the image after pre-processing has been completed. One of

these processes is often called "segmentation", where the

individual shapes that make up the content of the image are

precisely located, distinguished from background

information and from other shapes (even when the shapes

partially overlap each other, in some cases), and are

quantified into groups of numbers of some sort (often

vector coordinates). At a smaller scale, "feature

extraction" also means the identification of important

features within individual shapes (the location and shape

of the wings of an airplane, for example) .

As we have already mentioned, there are many ways to go

about each part of the image recognition process, and

feature extraction is no exception. In order to remain

within the scope of this project, we will briefly discuss a

few of the more important techniques here , and leave

further investigation to the reader. The references

included at the end of the paper provide a good starting

point for additional research.

- 20 -

One of our first concerns with regard to feature extraction

has to do with the encoding of shapes into a form which can

be manipulated by the computer. We will discuss two common

methods which are used for this purpose: vectorization, and

chain coding.

Vectorization involves the detection of lines and contours

in the image, and the representation of those lines with a

set of vectors. Coordinates for the vectors are typically

stored in the computer system, and form the basis for

further processing. In the author 's opinion , vectorization

is on the borderline between image pre-processing and

feature extraction. When performed in isolation, it can be

considered a low level technique, but it can also be

combined with higher level processes such as c urvature

detection. As we will see shortly, the program developed

for this project uses a hybrid technique which combines

vectorization with both curvature measurement and

polygonalization, all in one operation.

In [O'Gorman95], pages 22-23, there i s a good introduction

to vectorization, and methods are presented which can be

used on a non-thinned image. In one method, horizontal

straight lines in the image are found first, then adjacent

horizontal lines on neighboring scan lines are grouped

together and connected , and other remaining lines are then

- 21 -

found and appropriate connections to existing vectors are

made. Another method is also discussed in which digitizing

hardware has the capability of tracking along straight

lines as they are scanned, and performing vectorization

during creation of the image. In this paper, rather than

going into detail on these methods, we will discuss the

hybrid technique used in the program developed for this

project.

This technique (better known as a "thick line" method)

works on images which have been binarized and thinned, and

it provides vectorized approximations of both straight

lines and curves. The starting data point for each series

(or chain) of vectors is found by performing a raster scan

on the image. When a data point is found , the program

switches immediately to a "line -following" mode of

operation , where it follows connected data points in any

direction. Figure 2 below illustrates the technique,using a

typical OR gate as an example.

Starting at data point A, we wish to draw a series of

vectors which describe the OR gate. We proceed along the

connected ON pixels, and extend an imaginary line from A to

the current end-point. We then find the perpendicular

distance from that line to every ON pixel we have already

- 22 -

traversed. If any of the distance measurements exceed a

user-specified maximum, then the approximation provided by

the line is too far from the data, so we back up to the

nearest ON pixel we have already traversed, and define a

data point (or vector end-point) there. The process then

starts over at the new data point. In the diagram, we

extend a line to pixel C, and measure the distance from

line segment AC to previous data point B. Given that this

Figure 2: Thick Line Vectorization

- 23 -

distance is acceptable, we continue in like manner until we

reach pixel D. Here, we find that the distance from the

line to pixel C is too great. so we back up and establish a

vector data point at the pixe l just prior to D. Then we

start over with this process from the new data point. (In

the example we are showing pixels A, B, C, and D as

isolated pixels some distance apart. In actual images there

would be many connected pixels between A, B, C, and D.)

The vectorization technique also employs curvature

measurement, and determination of right (clockwise) or l ef t

(counter-clockwise) curvature, which is calculated as

illustrated in figure 3 below.

After the vectors AB and BC are generated, using the

methods illustrated in figure 2 , we want to measure the

change in direction encountered as we traverse the shape

from the first vector to the second. To do this, we ex tend

vector AB out to point D such that BD has the same length

as BC, and measure angle DBC, which we have labeled as B in

the drawing. Let r be the length of BD, and let q be the

length of CD. Noting that triangle BCD is isosceles, we can

extend a segment from B to the midpoint of CD, which we

will call point Q. Then let h be the length of segment BQ.

- 24 -

A

········\······
)B

D

Figure 3: Measurement Of Curvature

Then, we have:

h = r cos B/2

cos B/2 = h/r

B/2 arccos (h/r)

B = 2 arccos (h/r)

We can find r and q by using the distance formula, plugging

in points B and D, and C and D respectively. We can also

find h by using the Pythagorean theorem to write: r 2 = h 2 +

- 25 -

(q/2) 2
, and solve for h. Then we can solve forB given h

and r.

To determine left or right curvature, imagine a three

dimensional coordinate system with the xy plane on the

surface of figure 3, and with the positive z axis extending

straight up out of the paper toward the reader from the

origin at point B. As we traverse the vectors from AB to

BC, we have a clockwise change in direction of B degrees,

which we can also call "right curvature". We can apply the

" right hand rule" for vector cross products, to see that BD

X BC will result in a vector of non-zero length on the

negative z axis for right (or clockwise) curvature, and it

will result in a vector on the positive z axis for left (or

counterclockwise) curvature. So to determine mathematically

if we have right or left curvature in the example, let

point D have the three dimensional coordinates (Dl, D2, 0),

and let point C have coordinates (Cl, C2, 0). Then we have:

(Dl, D2, 0) X (Cl, C2 , 0) = (0, 0, Z), where Z is non-zero.

If Z is negative, we have right curvature; if it is

positive we have left curvature.

In the example of figure 3, we are traversing the OR gate

shape in a clockwise direction (i.e. traversing from vector

AB to vector BC), and we would determine that we have right

- 26 -

curvature in this traversal. If we started at point C and

traversed the shape in the opposite direction, we would

have found left curvature between these same two vectors.

In the program developed for this project, when component

shapes are detected, the program ensures that the traversal

is always made in the counter-clockwise direction, so that

the determination of left or right curves is always

consistent. This method is adapted from a discussion on

adaptive and multiscale methods for critical point

detection in [O'Gorman95], which is nearly identical,

except that in O'Gorman's method, vectors are extended on

either side of a data point until a threshold distance from

the actual curve is reached.

The program developed for this project also adds another

extension to the "thick line" method: the user is able to

specify both a maximum distance from the approximating

vector to the actual data line, and also a maximum

curvature. When the curvature between two vectors exceeds

this maximum, a vector end point is forced at the location

of high curvature.

Overall, this hybrid method combines vectorization,

polygonalization (approximating curves with a series of

straight lines), and critical point detection (finding

- 27 -

points of maximum curvature in shape contours) into one

integrated algorithm.

When vectorization is performed on images which have

already been thinned, or which have had other pre

processing techniques applied, the resulting vectors are

subject to distortion error introduced by the earlier

processes. Many variations of the basic vectorization

method have been tried, with modifications to overcome

distortion (and other) errors. One interesting example of

this is a method described in [Hori92], in which document

analysis was being performed on the buildings drawn in a

city map. The lines which made up the building shapes were

relatively thick, so that there was considerable distortion

in the original vectorization (i.e. square buildings would

be vectorized with rounded corners, etc.). The researcher

overcame these problems by implementing a low level

recognition process as a part of vectorization. Simple

closed polygons with only a few sides and with an enclosed

area which fell within a correct range (determined by

statistical analysis) were determined to be buildings. When

the vectors which described these polygons did not have

parallel sides, their end points were adjusted to fit more

closely with the expected shape of a building. This

adjustment resulted in much greater overall accuracy.

- 28 -

For yet another method which performs vectorization similar

to that described in figure 2, but with minimal

calculations, see [Wall84].

Another method for encoding shapes which deserves mention

is "chain coding". Rather than forming a reasonably close

approximation of a shape, chain coding attempts to follow

the data lines in an image exactly. This may or may not be

desirable, depending on the application, because the

approximations created by vectorization often help to

smooth out local "noise", and make it easier to discover

the true nature of the shape which is being encoded. The

essence of chain coding is that each pixel in a line is

encoded, and the direction from the current pixel to it's

connected neighbor is stored, rather than the absolute

coordinates of each pixel. A raster search is performed

initially, and the absolute coordinates of the first pixel

are saved, but from that point on, as connected pixels are

found, the only information encoded is a single number

which indicates direction. The number is usually in the

range 0-7, and refers to one of the 8 possible 8-connected

neighbors of the current pixel. See [O'Gorman95], pages 19-

22 for more information.

- 29 -

The detection of "critical" or "dominant" points is another

important part of feature extraction. The points of extreme

curvature are vital in providing an accurate description of

a shape. We have already discussed one method for measuring

curvature, as shown in figure 3. If we look at all of the

curvature measurements for all vectors, and apply a

threshold value, such that all measured curvatures beyond

the threshold indicate corners (or critical, or dominant

points), we have a useful means of identifying the

curvature extremes in the shape. There are many other ways

of finding the critical points, but the example of figure 3

provides a good representative method, and is sufficient

for the purposes of this project.

The overall goal of feature extraction and description is

to provide an accurate representation of a shape in a form

which can be successfully compared with known forms in

order to arrive at an identification (in the context of

model-based recognition, which is the focus of this paper)

Polygonalization is one of several methods used to describe

shapes in a manner useful for recognition. Other methods

use known shapes which can be easily described

mathematically, and fit them to the data points in the

image.

- 30 -

One of the simplest of these methods fits a combination of

straight lines and circular curves to the data. For data

points which come close to forming a straight line, the

equation of an exact straight line is found such that the

error distance from this line to all of the data points it

approximates is minimized. For data points which form

curves, the equation of an exact circle is found which

closely fits the data points. When straight lines merge

into a curve, the transition points (from straight line to

curve) are found, and then the location of the center of

the circle (which approximates the curve data points) is

found based on the transition points. Corners which have

some rounding can be distinguished from curves by using a

threshold value for the arc length of the curve. See

[O'Gorman95], pages 102-103.

Other methods of shape description use higher order

mathematical equations that produce smooth curves, and the

curves are adjusted to fit the data points. One example of

this is the B-spline, which is a curve generated by a

polynomial (often third degree) . Given a set of data points

where there are two end points and a series of points in

between which describe a curve, a B-spline can be generated

which exactly fits the end points, and which forms a smooth

curve that approximates the shape described by the

- 31 -

intermediate data points. See [O'Gorman95], pages 103-105

for more information, and [Medioni87] for a specific

example of the use of B-splines.

The methods of higher level shape description used by the

program developed for this project differ from all of the

methods presented here, and will be discussed in detail in

chapter 2.

1.2.1.4 Recognition

After the objects in an image have been encoded and higher

level shape descriptions have been applied, the next major

phase in a (model based) recognition system is to match the

shape descriptions with a set of known shapes which have

already been analyzed using the same descriptive technique,

and identify the shapes in the image based on successful

matching with the known shapes.

We will present here a summary of recognition methods used

by several different researchers.

- 32 -

1. General recognition methodology [O'Gorman 95]. Lawrence

O'Gorman presents four common methods for recognition:

Shape Metrics:

One of the easiest methods for distinguishing among shapes

is to use simple measurements related to the size, such as

the total area within the shape (which can be easily

measured by counting the number of ON pixels or by using

faster area calculations when shapes are regular), or the

total perimeter around the boundary. If there is enough

distinction between the metrics of each possible shape in a

particular type of image, then this method may provide a

simple solution to the problem.

Analysis Of Moments:

The "moments" of a shape can be used as a mathematical

measure of the "nonroundness, eccentricity, or elongation"

of a shape [O'Gorman95]. There are several different kinds

of mathematical "moments", including: 1. The "first

moment", which is the average (x, y) coordinate for all

data points in the shape region, where all individual x

coordinates are summed, and the result is divided by the

number of points in the region, and the average y

coordinate is calculated in a similar fashion. This average

(x, y) coordinate pair gives the average location of the

- 33 -

shape. 2. The "second moment" is calculated like the "first

moment", except that the squares of each x value (and y

value) are summed, and the average is taken. 3. The " third

moment" is calculated like the second, except that the cube

of each coordinate value is summed. This continues in like

manner for higher order moments. The first , second, third,

(and so on) " central moments" are measurements which are

normalized with respect to the first moment, so that they

are independent of location in the image. The "second

central moment" is calculated as follows:

mx '2
l (1 In) L (Xi - mx '1

l)
2

Iny '2' = (1/n)L(Yi - ffiy (ll) 2

where mx' 2' is the second central moment x value , Iny '
2

' is

the second central moment y value, mx' 1
' is the first moment

x value, Iny '
1
' is the first moment y value, and x i and Yi are

the ith data coordinate pair.

If there is enough distinction between the moments of the

expected shapes in a class of images, then this kind of

ana l ysis can be used for recognition.

Topological Features:

Another simple method of distinguishing shapes is to simply

- 34 -

note the number of holes and branches found in each shape.

For some applications this is sufficient to distinguish

among all of the possible shapes.

Fourier Descriptors:

The Fourier transform of the curvature around the boundary

of a shape can be calculated, giving a description of the

shape in terms of Fourier coefficients (or Fourier

descriptors). In many cases, the set of Fourier descriptors

may be unique for each possible shape, and they can thus be

useful in distinguishing among shapes. It is possible,

though, for different shapes to have the same frequency

information, and thus the same set of Fourier descriptors,

so this method is not always sufficient by itself.

2. Recognition of mechanical engineering drawings using

shape blocks and mesh encoding vectorization [Vaxiviere90],

[Vaxiviere92].

Pascal Vaxiviere and Karl Tombre are two scientists and

educators who have been working on the problem of

recognition of mechanical engineering drawings for a number

of years, and in particular, the conversion of paper

drawings into a CAD format usable by the French CAD system

known as CATIA, from Dassault Systemes. Some of their

research has been focused on the development of a program

- 35 -

named CELESSTIN which implements their methodology. Many

aspects of their work are interesting and unique, but two

areas which stand out in particular are the method used to

perform vectorization, and the way that recognition is

performed on image blocks and entities , making use of

artificial intelligence techniques to identify complex

components.

Vectorization is performed by subdividing the input image

with a carefully sized square mesh, and then looking at the

intersections of lines in the image with the sides of each

square in the mesh. The square size is chosen based on

prior knowledge of mechanical drawing standards , which in

the case of their research is the French standard NF E 04-

103. This standard specifies the relative thickness of

"thin" and "thick" lines ("thin" lines must have one fourth

the thickness of "thick" line s) , the minimum distance

between any two thick lines (.Smm), and the allowable

distances between any two hatching lines (1.5mm - 2mm)

Based on this standard, the square size of the mesh is

selected so that each square is larger than the maximum

line thickness, and smaller than the minimum distance

between any two lines. This ensures that there is at most

one line in any particular direction which intersects a

square , and that there are no lines thick enough so that

- 36 -

the cross section of the line would overlap more than two

adjacent squares. Numerical codes are assigned to the

different possible ways in which the sides of the squares

can be intersected by lines in the image. Each square is

examined, and the vectors which represent the drawing are

encoded using a series of the mesh-square codes. Large

regions of ON pixels in the image are initially encoded as

mesh squares containing all ON pixels, and during a

subsequent line-following process, they are handled

separately from the lines.

It may not be possible to represent some complex areas in

the image, such as compound line junctions, with any of the

defined mesh-square codes. When this situation is detected

by CELESSTIN, the region is further broken down into a set

of overlapping squares, each of which contains a simpler

portion of the complex area, which can be properly encoded.

The mesh squares used for the encoding process are not

fixed in size. CELESSTIN dynamically adjusts the size and

location of the squares so that junction points are

centered within a square, and lines which overlap the

border between squares are placed inside the adjusted

squares.

- 37 -

After the mesh encoding has been completed, other

processing is performed to classify lines in the image as

"thick" or "thin" , remove line spurs , perform other

adjustments to improve accuracy , and identify dot-dashed

lines which show the axis of symmetry for components.

From this mesh-square vectorization, higher level

constructs are built which allow shape recognition. Minimal

closed polygons (or blocks) bounded by thick lines, which

may contain thin line "attributes" (such as hatching) are

found first. Then, a set of simple rules derived from the

standards for mechanical drawings are applied to the blocks

to determine if they represent the solid matter of some

component in the drawing, or empty space surrounding a

component. (For example, "Any minimal closed polygon with

thick lines sharing at least one edge with the object's

external contour has to enclose matter. If the polygon is

hatched, it lies in the section plane; if it is empty , it

may represent a piece in front of or behind the section

plane" [Vaxivi~re92]).

CELESSTIN begins the recognition process by looking for

blocks of solid matter which are crossed by the dot-dashed

lines that represent the axis of symmetry. When a block is

found which clearly represents solid matter, additional

- 38 -

domain-specific rules are followed to determine neighboring

blocks which must also represent solid matter. Recognition

of this type proceeds through all neighboring blocks until

the boundaries of larger components have been found. Groups

of connected blocks which make up the larger components are

linked together to form larger single entities. It is then

possible to match the large scale entities with specific

CAD components taken from a library, for which precise

technical details are known. The recognized entities are

then replaced in the drawing with the precise CAD library

components.

Many important details have been left out of this brief

description, such as the ways in which CELESSTIN checks on

its own accuracy of recognition by attempting to

disassemble components which have been recognized (because

it must be possible to disassemble all mechanical

components). For more information, see [Vaxiviere90] and

[Vaxiviere92].

3. Recognition of mechanical engineering drawings using a

YACC-generated parser to control segmentation and

recognition [Joseph92]

- 39 -

In the paper "Knowledge-Directed Interpretation of

Mechanical Engineering Drawings", a totally different

approach to image recognition is presented, and is

implemented in a research program named ANON. Instead of

following the usual bottom-to-top process where low level

information is analyzed and built into progressively higher

level constructs which eventually result in recognition,

ANON combines both a top-down and bottom-up approach to the

problem. It works directly on grayscale images without

benefit of pre-processing, and a knowledge-directed search

is performed from starting "seed" points in the image , to

locate the next part of particular drawing constructs,

starting with the location determined to be the most likely

candidate, based on prior results.

ANON's control structure consists of a set of "schemas"

which contain descriptions of the drawing entities expected

in input images , a YACC-generated parser which applies

search rules to the data and the schemas, and a set of low

level image analysis functions which operate directly on

the image.

Analysis starts with the partitioning of an input image

into 9 x 12 pixel sub-areas, each of which is analyzed for

a grayscale threshold level, noise characteristics, and

- 40 -

concentrations of ON-pixels (large black areas). Then, the

search for drawing components begins at the locations where

large concentrations of ON pixels have been found. A

drawing-level schema is made active initially, which starts

the search (in dense ON-pixel areas). Once the search has

been initiated, an iterative process is maintained, as

follows: a. The current schema directs exploration of the

image in locations most likely to produce results

(initially near the seed points in the image), by calling

the low level search routines. (The drawing-level schema is

active at the start of the analysis, and many other schemas

which control the analysis of hatched lines, shapes,

dimension indications, words, letters, etc. may be made

active at different times during the course of the

analysis). b. The low level search routines return results

to the calling schema, which modifies itself according to

the feedback it receives. c. The current schema may remain

active, or control may be shifted to another more

appropriate schema, depending on the feedback from the low

level searches. The management of schemas is performed at a

higher level by the execution of rules in the parser.

d. The set of schemas which eventually provide a

description of the image, are continually modified

throughout the analysis in a three part "perception cycle"

where the schema directs exploration, which in turn samples

- 41 -

the data in the image, which in turn causes the content of

the schema to be modified, which results in further

exploration, and so on.

Based on the author's description of ANON, it is a research

program intended for the exploration of knowledge-directed

recognition techniques, rather than a production-ready

system designed to produce complete CAD information, as we

have seen in the CELESSTIN program. However, the research

presented in the ANON paper is valuable and indicates that

accurate recognition of complex drawings is possible with

little human intervention. The only information provided by

the user is a "position and radius of a cursor used to

specify an initial circular search" [Joseph92], and this is

necessary only when the program is run in interactive mode.

It can also be run in a fully automatic mode, where all

search locations are determined by the program. See

[Jo seph92] for more information, and for processing

examples which demonstrate ANON's recognition ability.

4. Fingerprint recognition [Ratha96]

The example we present here is of a fingerprint matching

and retrieval system, designed for use in the context of a

large multimedia database. Although the emphasis is on

matching and retrieval, we are still dealing with model-

- 42 -

based image recognition, where the database of fingerprints

contains the models, the image of the fingerprints in

question is the input, and a suspect's name is the label we

want to apply to the input image as a result of successful

recognition. [Ratha96] presents an unnamed research system

which uses a four step approach to the problem of complex

image matching against an extremely large library (up to

many terabytes of information) .

In this system, a fingerprint query consists of a hierarchy

of sub-queries, some of which are text-based, and some of

which deal specifically with the content of fingerprint

images. The text-based queries are executed first, because

they are much less computationally intensive, and because

the database is structured so that the search space can be

narrowed to as little as 25% of the original library size

by text-based retrieval. The image content sub-queries are

then applied to the remaining images.

To retrieve potential fingerprint matches from the

database, the following steps are followed:

a. A text-based search is performed first, based on textual

identifying information which may be available, such as

last name, age range, and color of hair.

- 43 -

b. A text-based search is executed on the result set from

step a to match on the class of the fingerprint, which may

be one of five basic classes: arch, tented arch, left loop,

right loop, and whorl.

Pre-filtering the database with these first two queries has

been shown to reduce the size of the search space by as

much as 75 % in the tests run by the researchers.

c. An image content query is executed on the result set

from step b to extract images which have a "ridge count"

that falls within a specified range of the "ridge count"

value calculated for the input image. Only images which are

retrieved by this query are retained for further

processing.

To calculate the "ridge count", "core" and "delta" points

must first be found, and the " ridge count" is determined by

counting the number of ridges which intersect with an

imaginary line drawn from a "core" point to a "delta"

point. The "core" point is the top-most point of the inner

most ridge in the fingerprint, and a "delta" point is a

location in the print which has three ridges radiating from

it.

- 44 -

Although this method is conceptually simple (just counting

lines from a specified starting location to a specified

ending location), the computation needed to first prepare

the input image for analysis (such as applying line

thinning techniques, etc.) and then to successfully locate

"core" and "delta" points and finally count ridge lines is

massive.

d. A final image content query is executed on the result

set of step c, to narrow down the result set to a size

easily manageable by human analysis. This query performs

the most detailed level of content matching by examining

what are called "minutiae points". In order to determine

which prints match the query, minutiae points are extracted

from the input image, and are compared against pre

extracted points from the library images.

A minutiae point (as used in this context) is a location in

the fingerprint where a ridge abruptly ends, or where it

bifurcates into two ridges. A primary ridge direction is

calculated and associated with each extracted minutiae

point. The input image is then registered with a library

image (in the result set from step three) and the two

images are aligned as closely as possible (there often is

no exact alignment, because two different prints from the

- 45 -

same finger may vary a lot, depending on how the print was

made). The registration is done by finding transformation,

rotation and scaling functions which bring the maximum

number of minutiae points from both images into alignment

with each other. The closeness of match between the input

image and a library image is determined by the number of

minutiae points which are closely aligned (within a

specified tolerance) .

From the description of the fourth query, it is easy to see

that it is by far the most computationally intensive of

all, and that it must be applied only against a relatively

small number of library images. For this reason, the

hierarchical structure of the query, and the text-based

nature of the first two queries are both vital to the

success of the system. The concept of using a hierarchy of

progressively more complex queries in a high volume

environment has wide application in image processing and

other areas of computer science.

5. Recognition of objects using vectorized shape

descriptors [Mehrotra95]

As in the case of the paper we have just discussed, the

primary emphasis of [Mehrotra95] is on the efficient

- 46 -

retrieval of images from a library which successfully match

with an input image, but a completely different matching

mechanism is implemented.

Shapes are stored in a library as a set of high-dimensional

vectors, and an index is built and used for fast retrieval

based on similarity to an input shape. This method has been

implemented in a research program named FIBSSR (Feature

Index-Based Similar-Shape Retrieval), which was constructed

only for research purposes; it is not used in any

commercial application.

FIBSSR was designed to test a retrieval method that

attempts to address three of the primary issues in image

recognition which we have been discussing: how to properly

represent shapes in a recognition model, how to measure the

degree of similarity between the input image and the

library image, and how to obtain and retrieve query results

efficiently.

In this system, shape representation is accomplished by

first performing polygonalization (in a manner similar to

that which we have already discussed) . The vertices of the

resulting polygon are called "interest points". A "boundary

feature" is defined to be a collection of a few "interest

points". A feature can be represented by a set of two-

- 47 -

dimensional "interest point" coordinates (recognition is

restricted to two-dimensional images in this project). A

rigid shape is then defined as a collection of features.

Articulated shapes (shapes with moving parts) are

represented as a set of rigid components as described

above, and a set of articulation points which are shared

among the rigid components.

A feature encoding scheme is used which adjusts for scale,

translation, and rotation, as follows: Each adjacent pair

of calculated feature points are selected in turn to define

a "basis vector" for the entire feature. The basis vector

is normalized, and the lengths of all other vectors which

are part of the feature (defined by pairs of feature

points) are adjusted to match the basis vector. A

coordinate system is then selected so that the origin is at

one end point of the basis vector, and the point (1, 0) is

at the other end point. All feature point coordinates are

then adjusted to this coordinate system.

The resulting encoded feature is part of a set of features

which describe the entire shape. If we let F1 , F2 , ••• , Fn

be the set of features which describe a particular shape in

a library, then we can think of the individual values in

F1 , F2 , ••• , Fn as coordinates in a high-dimensional vector.

- 48 -

If we let I 1 , I 2 , ••• , I n be the set of features which

describe an input image which is being used to query the

library, we can use the Euclidean distance between the

... ' ... , In) as a measure

of the similarity between the query shape and the library

shape. If we build an index of feature vectors for each

shape in the library, and use the extracted feature vector

from the input shape as a key to access the index, we then

have an image retrieval mechanism based on comparison of

shapes. This is a rough description of what takes place in

the FIBSSR system during the execution of a query.

A similarity tolerance amount is specified in the query, to

determine how close to the input the retrieved shapes

should be. When the result of a query contains a large

number of similar shapes, the system attempts to take each

retrieved shape, align it with the input image, and

calculate the closeness of fit of the "interest points", in

order to further narrow the result set.

6. Statistical recognition with shape models [Cootes95]

Up until this point, we have discussed recognition systems

which are based on matching against a library of fixed

models. [Cootes95] presents a different approach to the

- 49 -

structure of the image library, through the use of

"deformable models". The basic idea is that a single model

can be matched successfully against shapes which vary

somewhat from the shape described by the model if there is

a carefully constrained method for "deforming" the model to

make it match the input shape. The deformation must be

constrained so that the model is not changed to the point

of no longer resembling its intended shape. An example of

this, taken from [Cootes95] is the recognition of

electrical resistors mounted on a printed circuit board.

Although all of the resistors on a particular board may

have the same basic shape, each individual resistor is

likely to differ slightly from the others, because of the

manufacturing method used. It is desirable in a computer

vision system which recognizes resistors to store a single

model which can be matched successfully, in spite of the

small individual differences among actual resistors. The

research in [Cootes95] indicates how to build a model of

the typical shape of a resistor, and to add the permissible

variability from that shape which may occur , as a part of

the model. The method can be summarized as follows:

a.) Starting with a representative shape (the outline of a

typical resistor, in the case of our example), identify

points of interest (similar to the critical or dominant

- 50 -

points we have discussed) of the following three types:

i) Points which indicate parts of the shape that are

significant in terms of the shape's function (from our

example, the wires coming out of the resistor are a

functional part of the resistor's shape, so points which

outline the shape of the wires would fall in this

category). ii) Points which mark extremes in curvature, and

distinguishing features, even when they do not have

functional significance. iii) Additional points which can

be interpolated from points of types i and ii, and which

help fill in some of the details of the overall shape.

b.) Collect a training set of images of various resistor

shapes, and identify the points of interest described in a)

for each one. The manual labeling of points of interest

occurs only during the training phase, while the model is

being built.

c.) Align each member image of the training set with the

representative shape described in a). This is done by

performing scaling and rotation so that corresponding

points of interest are as closely aligned as possible. The

closest possible alignment can be calculated by minimizing

a weighted sum of squares of distances between

corresponding points. The details of this calculation are

- 51 -

in [Cootes95] . The weights for this calculation are chosen

so as to give more importance to the points which are the

most stable (the points which do not move significantly in

their relative location from image to image) . The more a

particular point tends to vary between images, the lower

the weight assigned to it.

d.) Determine the points of interest for a mean shape,

where the points are derived from corresponding points on

each shape in the training set. This is done by i) aligning

each member of the training set with the representative

shape determined in a), ii) calculating the mean shape from

an average of the points of interest in the training set,

iii) normalizing the orientation, scale, and origin of the

mean calculated in ii) to a set of default values, such as

the representative shape from a), iv) realigning each image

in the training set with the normalized mean from iii), v)

repeating steps ii - iv until the variance in each newly

calculated mean falls below some threshold value (so that

the calculated mean converges to a particular set of

values) .

e.) Use statistical methods (described in detail in the

paper) to determine a region of allowable movement for each

point of interest in the mean shape as found in d) . The

- 52 -

statistical methods take into account the fact that the

allowable movements for particular interest points are

related to those of neighboring points.

f) Having built the shape model in steps a) -f), image

matching can be performed by applying the model shape to an

input image, and varying the model's points of interest in

ways which conform to the regions of allowable movement

determined in e). If the points of interest can be aligned

with the edges of the input image using only allowable

movements, then there is a successful match.

1.2.2 Neural Network Techniques

To complete our introduction to image processing

techniques, we will look at another approach to the problem

which involves the use of the artificial neural network

(ANN). Distinguishing a shape from its background , or one

kind of shape from another , or distinguishing multiple

shapes which may partially block the view of each other in

an image is quite often a non-trivial task; particularly

when it is approached using the sequential algorithms

necessary on a uni-processor. The task appears trivial at

first glance because of the fact that the human mind and

human vision system are so adept at performing very

sophisticated image recognition without conscious effort.

- 53 -

The human visual neural network and brain are capable of

working on many parts of the image processing problem

simultaneously and performing "parallel processing" on an

enormous scale, while the computer system, which may have

one to a few thousand processors, is much more constrained

to work on it's data in a sequential manner. One area of

research in computer science and other disciplines for the

past few years has been how to app l y concepts discovered

from analysis of brain and neural system function to

improve our data processing methods. One of the results

from this research has been the creation of artificial

neural networks, which have been applied to a number of

applications, including image processing. We will now

summarize some of the more important aspects of this field

of study by describing the makeup of the typical artificial

neuron (which is based on some of the features of the human

neuron) , discussing some of the ways in which sets of

artificial neurons are connected into networks, giving a

brief description of training algorithms, and looking at a

very simple example of how a neural network can be applied

to an image recognition problem.

The typical makeup of the artificial neuron is shown in

figure 4 below. The values x11 , Xu , ... , x~ represent input

signals which may be binary or consist of a range of

- 54 -

Inputs Weights

Bias term

L:xijwij
linearity

Figure 4: The Artificial Neuron [Kartalopoulos96]

several possible values. There are n inputs to the neuron,

and the i subscript indicates that we are looking at the

ith neuron out of a network of connected neurons. The boxes

which contain the terms Wu , wi2 , ••• , win represent

weighting factors which determine the strength of the

signal which arrives at the neuron. Each input signal is

multiplied by the corresponding weighting factor, and the

result is sent to the neuron. The circle represents the

neuron, where all of the weighted input signals are

processed. The sum of all of the signals is determined, and

- 55 -

compared to a threshold value set for the individual

neuron. If the result of the summation is greater than or

equal to the threshold, the neuron "fires", or sends an

output signal; otherwise, no signal is sent. The box

labeled fi represents a non-linearity function which limits

the magnitude of possible output values to a specified

range. There may be one or more output connect ions to other

neurons or to an output circuit.

In order to process information, neurons are connected

together in a number of different possible combinations ,

and the output of one neuron may become an input for one or

more other neurons. We will limit ourselves here to the

description of one type of network, as shown below in

figure 5.

The multilayer feedforward network receives external inputs

at the input layer. Each input arrow in the diagram may

represent a single input signal, or a set of input signals.

The neurons influence the processing of neighboring neurons

to which their output is connected in a forward direction

only (in the case of the feedforward network) . The middle

layer is called the hidden layer , because the outputs are

not visible external to the network. The outputs from the

entire network are handled exc lusive ly by the output layer.

- 56 -

Input Layer Hidden Layer Output Layer

Figure 5: Multilayer Feedforward Network [Kartalopoulos96]

In other configurations, the output from an intermediate

layer may be sent back as input to a prior l ayer , so that

there is a feedback relationship.

One important part of the network which is not shown in

figure 5 is a training circuit. The "program" which is

executed by the network consists of the set of weights and

thresholds assigned to each neural node. At the time the

network is built, this program must be "written", by

repetitively running sample sets of input data through the

network, determining if the desired output has been

achieved, and correcting the weights and thresholds so as

- 57 -

to obtain correct outputs. A typical way of doing this is

to temporarily attach a training circuit to the network,

which receives the output and compares it against expected

output for a given data sample. When the output is not

correct , an error signal is sent back to the neural nodes,

which causes adjustments to be made to the input weighting

factors and threshold values [Kartalopoulos96].

With this information in mind, we will now look at a very

simple example of how a feedforward neural network can be

applied to an image processing problem.

Suppose we have a conveyor belt in a factory which carries

four different manufactured components, and that a robot

arm is positioned over the belt, which selects two specific

kinds of the components, picks them up, and drops them into

shipping packages which are passing on another lower

conveyor belt. The robot is equipped with a television

camera mounted in the arm, and simple image recognition

circuitry which can find the edges of the shapes, count the

number of pixels enclosed by edges (in order to determine

surface area) , and determine that an object is either black

or white, depending on the grayscale color intensity

detected by the camera. Suppose also that the shape and

coloring of the objects (as seen by the rather primitive

- 58 -

REJECT SELECT FOR PACKAGING

Figure 6: Component Shapes/Colors On A Conveyor Belt

camera) is as shown in figure 6 above. The recognition

circuitry is able to classify the objects as either large

or small (based on surface area) , and black or white (based

on grayscale intensity). We will see how a simple

feedforward neural network can be given a set of weights

and thresholds which will allow it to distinguish (for

example) large black objects and small white objects

successfully.

- 59 -

X

Possible I nput
Vectors :

y

(x , y)

(0 , 0)
(0 , 1)
(1 , 0)

(1 ' 1)

Input Layer Hidden Layer

1------+- 1 +10

+1

+1

Output Layer

+1

+1

Corresponding
Outputs:

0
1
1
0

Figure 7: Feedforward Neural Network For Robot Arm,
Adapted From [Kartalopoulos96]

Our first step will be to assign two-dimensional vectors to

each shape seen through the camera, based on the output of

the recognition circuitry, as follows:

x - 0 if the object is large, or 1 if the object is small.

y 0 if the object is white, or 1 if the object is black.

These values will serve as input to our neural network

shown in figure 7. The values shown inside the circ les

(neurons) are the threshold values; when the sum of the

- 60 -

inputs meets or exceeds the threshold, the neuron sends an

output signal with magnitude shown by the numbers next to

the arrows connecting the neurons. The output of the

network will be a one if the robot arm should select the

object, and a zero if it should reject an object.

One of the first things which comes to mind when looking at

this example is that a neural network isn't needed to

perform pattern matching for such a trivial application. It

would be much easier to add a small additional circuit to

the recognition hardware to make the same selection. While

this is certainly true, the method shown here can easily be

extended to much more complicated pattern matching and non-

trivial networks. Suppose, for example, that instead of

using a two dimensional "feature vector" containing size

and color, we decide on a vector containing multi

dimensional coordinates for the points of interest (or

critical points) that describe an object with a complex

shape, such as those we discussed earlier in [Mehrotra95]

(the FIBSSR program). Our method of matching might involve

finding the Euclidean distance from an n-dimensional input

vector to a set of allowable shape vectors. The dimension

of the vectors involved could be as large as several

hundred entries. In this kind of situation, the power of

parallel processing and the neural network architecture may

- 61 -

offer a solution with much better performance than that

which can be obtained by using a sequential algorithm.

[Gonzales92] offers another example which uses a non

trivial feedforward network to recognize the shapes of four

different aircraft silhouettes in 48 different scales,

including cases where the silhouettes are distorted by

noise. The same basic principles from our trivial example

also apply in this example. See [Gonzales92], pages 611-616

for more details.

1.2.3 Applications

Automated image recognition is used many different ways,

some of which we have already seen. The rapidly growing

demand for improved capabilities and new applications will

provide challenges for the researcher well into the future.

In this final introductory section we will take a brief

look at some current applications and challenges for future

development.

Dr. Karl Tombre has described some of the more recently

developed applications for document image analysis, along

with suggestions for their improvement in a paper submitted

- 62 -

to the International Association For Pattern Recognition

(IAPR). Some of the applications include programs to

analyze mechanical engineering drawings and convert them

from paper to computerized files in CAD format (as we have

already seen in this paper) , programs to analyze and

understand architectural drawings, and programs to convert

cartographic information from paper maps to computerized

input for Geographical Information Systems (GIS)

[Tombre95] . Many of the improvements needed in the existing

programs have to do with the level of automated

understanding of the document as a whole. An example of

this with regard to the conversion of engineering drawings

is the need for automated conversion from two-dimensional

renderings on paper to computerized, three-dimensional

projections. It must be possible to construct the

projections from multiple two-dimensional views of the same

object. Another example in the area of Geographic

Information Systems, is the need to have automated matching

of cartographic information from multiple sources into a

single integrated and computerized source. For example ,

elevation information taken from paper maps should be

matched and merged with aerial and/or satellite photographs

of the same geographic area.

- 63 -

In [O'Gorman95], Lawrence O'Gorman makes some interesting

predictions about future trends in image recognition: 1) As

graphic libraries which contain symbols for specific

applications such as electronic schematics, architectural

structures, mechanical parts, etc. become more complete and

comprehensive over many subject areas, recognition systems

may begin to recognize drawings across multiple domains by

matching on the kinds of individual symbols which are

present in an image (similar to the way in which

recognition of printed text in multiple fonts can be done

now). 2) Improved noise reduction techniques, and faster

matching and indexing methods will be developed, as well as

improved machine/human interfaces, to make the recognition

process easier and less time consuming for the user.

3) Construction of three dimensional projections from two

dimensional drawings will improve.

We will close this section with a final example application

which supports content-based retrieval of still images and

motion video clips from a multimedia database, which has

been very recently developed by IBM: the QBIC (Query By

Image Content) System [Flickner95].

In the QBIC system, queries can be based on similarity to

example images, similarity to user-drawn sketches, selected

- 64 -

color and texture patterns, camera motion (such as a

specific panning motion made with a camera while recording

video images), object motion (the recorded movement of

objects within video images), and other graphical

information.

The QBIC system is divided into two main components:

database population, and database query. Database

population consists of loading an image into the database,

and extracting features from the image which can be used

for query comparisons. The features which are extracted

include colors, textures, shapes, camera motion , and object

motion. The queries which are executed against this

extracted data are built in a graphical user environment.

The data model used by QBIC for query matching handles both

still images, and video c lips. Still images are analyzed to

distinguish between objects in the image and the

surrounding " scene". This makes it possible to query on

individua l objects within images. Video clips are broken

into series of contiguous still image sequences called

"shots". The boundaries of shot sequences are determined by

abrupt changes in scene , changes in camera operation,

changes in the objects which appear in the images (such as

the appearance or disappearance of objects), and se l ection

- 65 -

of shot boundaries by the user. From these shots,

representative image frames (or r-frames) are selected to

represent the entire sequence of frames in the "shot". In

some cases , a composite r-frame is built by creating a

mosaic of all frames in the shot in such a way that image

motion can be represented.

To construct the data model from the input images, QBIC

combines automat i c image recognition with a set of semi

automated tools which are used manually to help identify

backgrounds and objects. A typical manual operation might

be to click the mouse (once) when the cursor is over a

background point, or when it is over an object point. The

tool would then automatically select pixels in the image

which are within a certain range of color and intensity

around the selected pixel. In this way, entire objects or

scenes can be defined with a minimal number of mouse

operations.

The matching process, which compares query data with the

data model, varies depending on the type of query being

executed. Queries which are looking for certain percentages

of a given color in an image may send a set of three

dimensional color coordinates as input, which are matched

with a histogram of the color values found in a given image

- 66 -

in the library. Queries which are looking for similarity of

objects in an image to a sketched object will reduce the

input sketch to an edge map, and then compare it with

extracted objects in the library using template-matching

techniques. These are just two examples of a set of

matching methods which are used by the system.

A demonstration version of the QBIC system is available on

the Internet at http://wwwqbic.almaden.ibm.com/.

- 67 -

CHAPTER 2

THE DESIGN OF THE RECOGNITION PROGRAM

We will now turn our attention from a general survey of

image recognition to the specific design of the program

developed for this project, called TOKSCAN (TOken-based

SChematic ANalysis).

TOKSCAN analyzes images of digital logic schematics, and

generates logic equations which describe the circuits. It

implements a simple method for representing the circuit

components: a set of token lists which describe basic

shapes, that are linked together through a relationship

table to describe the more complex shapes of the circuit

components.

Once the logic components in a schematic have been

identified, they are isolated from their connecting signal

lines, and connection analysis is then performed. During

the analysis, electrical connections between the connector

lines are located, and the connector lines are flagged at

these locations so that all electrical paths are followed

properly.

- 68 -

TOKSCAN is an experimental program which was written for

research purposes to demonstrate the feasibility of token

based electrical circuit analysis in image recognition. It

currently recognizes a limited set of schematic symbols:

the AND, OR, NOT, NOR, NAND, and XOR gates, and circular

"connectors" which represent the electrical connections

between signal lines. Higher level components such as flip

flops, memory units, and other large scale circuits which

are typically represented by rectangular blocks with

input/output lines are not currently included in the

project. Also, text recognition and automatic recognition

of sequential circuits with feedback are not currently

included in the project.

Although TOKSCAN works on a limited set of symbols and

configurations, it strives for a complete understanding of

the circuit being analyzed. The descriptive equation

generated by the analysis is not many steps removed from

the ability to label a circuit as "four-to-one

multiplexer", or "full adder", for example. It also would

not be difficult to add graphical tools which would allow

the user to flag sub-circuits within more complex circuits

for analysis.

- 69 -

The following sections in this chapter present the design

details of TOKSCAN. Chapter three provides some additional

notes on the implementation tools used, and how they helped

to shorten the total development time. Chapter four

provides samples of the analysis performed by TOKSCAN on

several different schematics.

Figures 8 and 9 below provide a description of the

processing flow in TOKSCAN. The program uses grayscale

image scans of schematic circuits in Windows BMP file

format as input, and it generates the resulting output

equations at the bottom of the displayed bitmap. Other

visual aids which track the analysis process are also

generated, such as the highlighting and labeling of

recognized components in the displayed schematic, the

labeling of signal line connection points with large red

circles, and the shading of signal lines in blue as they

are followed during connection analysis. Although image

pre-processing is not the focus of this project, a pre

processing step is included in TOKSCAN because binarization

and line thinning are necessary for successful analysis.

Immediately following figures 8 and 9 are comments on each

processing step.

- 70 -

Image Pre-processing

Binarization
Rotation/Zoom

Smoothing
Thinning

Vectori zation

"Thick Li ne"
Technique

Reorganization Of
Vectors Into Long

Strings .

Vector St r ing
Search

Token Libra r y
Analys i s

Generation Of
Shape Tokens

Schematic
Component

Determination

Linking Of Base
Shapes In Image
With Appendages

Matching Of
Compound Shape
Objects Against

Library

Labeling Of
Schemat i c

Components

Determinat i on of
Connections With

Input/Output Lines

Image

Simple
Shape

Objects

Initial
Compound

Shape
Objects

Token
Library

Completed
Compound

Shape
Objects

Defini tion Of
Token Library

Definit i on Of
Shape
Relationships

Definition Of
Token Lists.

Figure 8: Image Analysis Processing Flow #1

71

Connector Line
Determination

Removal Of
Identified

Components E'rom
Initial Shape

Objects

Fi ltering Of Noise
Lines

Conversion Of Line
Data E'rom Simple
Shape Objects To

Compound Shape
Objects

Location Of Line
Junctions And

Electrical
Connector Shapes

Connection Matrix
Generation

Line E'ollowing
Performed On

Connector Line
Objects

Insertion Of
Tokens And

Connection E'lags
Into Connection

Equation
Generation

Passing Of Tokens
E'rom The

Connection Matrix
To The YACC Parser

Execution Of The
Parser

Display Of
Equations

-

• [

Simple
Shape

Objects

I mage

Completed
Compound

Shape
Objects

User-
Defined

Input And
Output
Points

Connection
Matrix

Image

l
Definition Of
Input/Output

Points

User Indicates
Location Of The
Points With The

Mouse

v

Figure 9 : Image Ana l ysis Processing Fl ow #2

7 2

Comments On The Processing Steps

1. Image Pre-Processing

Image pre-processing functions are provided and may be

selected and applied at the option of the user. Thinning

and binarization must be performed on raw grayscale images

for proper vectorization and recognition. The binarization

function works with a global grayscale threshold value

(local or adaptive thresholding is not available currently

in this program) . Zoom and rotation functions are provided

to assist the user with image alignment and scaling. A

simple smoothing function has also been provided for

optional use, which performs a raster scan of the input

image, and uses a "window" of local surrounding data to

determine how to set the color value of each "pixel of

interest". The average grayscale color value of the entire

"window" of data is compared with a user-set threshold

value, and if the average value is greater than (whiter)

the threshold, the "pixel of interest" is set to pure white

(value 255) . If the average value is less than (blacker) or

equal to the threshold, the "pixel of interest is set to

pure black (0).

- 73 -

2. Vectorization

TOKSCAN performs vectorization using the "thick line"

technique which is described in the text accompanying

figures 2 and 3 in the introduction. A reorganization

process is also executed as a part of vectorization, which

reorients sets of neighboring vector chains so that they

all have a matching direction (as much as possible) . Simple

"shape objects" are created (which are actually program

objects implemented with Visual C++) that contain a single

vector chain in each object. The final output of this step

is a collection of these "shape objects".

3. Closed Polygon Determination

In this step, the vector chains are followed by the program

in order to detect closed, minimal polygons. These polygons

form the basis for schematic component identification. A

"skeleton" version of a "compound shape object" is created

(another C++ object) for each detected minimal polygon,

which contains (among other things) the vectors that

represent the polygon. When the skeleton compound shape

objects have been fully filled out with data from later

analysis, there is sufficient information present to

identify a schematic component, such as an AND gate or an

- 74 -

OR gate. Tokens which describe the shape formed by each

detected polygon are generated, and embedded in the

associated compound shape object for later analysis.

4. Schematic Component Determination

In this step, the polygons detected in step 3 which are

close neighbors, and which have an acceptable shape

description, are linked t ogether to form compound shapes ,

with enough complexity to be identifiable as schematic

components. Connecting input and output signal lines are

also taken into account, and are used to aid in the

identification process. The output of this step is a set of

compound shape objects which have been labeled with

schematic component names. A corresponding visual labeling

takes place at the same time in the bitmap displayed for

the user. An important part of this step is the comparison

of linked compound shapes with a shape token library of

pre-defined token lists, to aid in identification and

labeling. Much more information on this step is provided in

following sections.

- 75 -

5. Connector Line Determination

Two different kinds of objects were created in earlier

steps: simple shape objects containing vector chains, and

compound shape objects which represent minimal closed

polygons and recognized schematic components. In this step,

all minimal closed polygons which could not be recognized

as a schematic component are removed from the collection of

compound shape objects, and the vector chains which

describe the recognized schematic components are removed

from the collection of simple shape objects. After this

removal has taken place, the remaining simple shape objects

describe either signal lines which connect schematic

components, or noise in the image. One of the functions

performed in this step is the removal of very short noise

vectors (with a length that falls below a user-specified

maximum) After the filtering has been completed, the

remaining simple shape objects are converted to compound

shape objects with labels that indicate connecting signal

lines. A final process which takes place in this step is

the location of circular signal line connectors that

indicate an electrical connection between signal lines.

This is accomplished by examining a circular region around

the end points of each of the connector lines. Each

connector line at this point is represented by a properly

- 76 -

labeled compound shape object which contains vector

coordinates for the line end points in the image. The color

value for each pixel in the circular region (with a user

specified radius) is examined, and if all returned values

are ON (or black), then the location is flagged as an

electrical connection. The circular search is flexible

enough to allow for distortion in the thinned image,

because multiple circular searches are actually performed,

each one with a center point that falls within a user

specified radius around each line end point. Another

important point is that TOKSCAN has extracted data from the

thinned image up until this point, but for identification

of circular connectors, it is necessary to go back to the

original bitmap, using the vector coordinates of line end

points found in the thinned image (because the circular

connectors have been removed by the thinning process).

The location of each circular connector is flagged in a

vector coordinate record which is a member variable of a

"LINE" type compound shape object. In the "Connection

Matrix Generation" step (see below) we describe how this

information is used in connection analysis for the circuit.

- 77 -

6. Connection Matrix Generation

Once the schematic components, signal lines, and circular

connectors have been identified, the next step is to

perform connection analysis on the components, by following

the signal lines from their source through any intermediate

components to their final output destination. In order to

properly identify the starting and ending points for this

analysis, TOKSCAN accepts mouse input from the user which

identifies signal line end points where input signals are

applied to the entire circuit, and where output signals are

sent by the circuit. Only the initial inputs and final

outputs are identified manually. Then, at user request,

TOKSCAN starts at the identified starting points, and

traces signal lines throughout the schematic, by following

the vector chains contained in compound shape objects which

are labeled as signal lines. At locations where circular

connectors were found, recursive analysis is performed, to

take into account every signal path emanating from an

electrical junction. As the line-following process takes

place, a "connection matrix" is built, which describes the

entire circuit, complete with all connections, in a form

which can be used to generate tokens that describe an

equation for the circuit. The completed connection matrix

is the final output from this step.

- 78 -

7. Equation Generation

After the connection matrix has been completed, the final

step in the process is to send a series of tokens which

describe the circuit to a YACC-generated parser, which

translates the token string into a logic equation. The

resulting equation is displayed on the circuit bitmap for

the user. In order to generate the necessary token string,

a process in this step starts at the output side of the

circuit, and works backwards toward all inputs, retrieving

token information from the connection matrix recursively.

The tokens sent to the parser are character string labels

which identify schematic components (AND GATE, OR GATE,

etc.), and the order in which they are sent to the parser

implicitly indicates the connections between them. Much

more information on all parts of this step are found in the

following sections.

We will now discuss each of these steps in more detail,

from the point of view of program design and

implementation.

- 79 -

2.1 "Thick Line" Vectorization And Corner Detection

In section 1.2.1.3 of this paper, we discussed the exact

vectorization technique used by TOKSCAN in detail. See that

section, and figures 2 and 3.

2.2 Detection Of Curvature

The vectorization technique discussed in section 1.2.1.3 of

this paper includes measurement of curvature as an integral

part of the technique. The method described there is

precisely what is used in TOKSCAN. See that section, and

figures 2 and 3.

2.3 Representation Of Digital Schematics As A Collection
Of Related Shape Objects

From an implementation point of view, the goal of TOKSCAN

is to represent every shape in a digital schematic image as

a "compound shape object" which contains not only the

vector chain that describes the shape, but enough

additional information to positively identify each

component, and relate it to the surrounding components. In

TOKSCAN, there are two primary object types which are used

for representation of the image. The first is called

- 80 -

CimageObject (see Appendix A, Code Fragment 1 for the C++

definition), which contains the shape vectors generated

during the vectorization process. The second is called

CCompoundimageObject (see Appendix A, Code Fragment 2 for

the C++ definition), which contains sufficient information

for recognition, and which is derived from CimageObject.

The CCompoundimageObject class is used to represent each of

the schematic components (AND, OR, NOT, XOR, NOR, and NAND

gates), and the connecting signal lines. The various

component types are distinguished by a member variable in

the class which labels the component. The representation of

the circular connector (which indicates an electrical

connection between signal lines) is embedded in

CCompoundimageObject as a flag in the vector coordinate

member variable. It specifies the location of the circular

connector in terms of a vector coordinate. The entire

schematic image is represented by the CCinputBitmapDoc

class (which is derived from the Microsoft Foundation Class

"CDocument"). The signal input locations and signal output

locations for the entire circuit which are specified by the

user, are represented by an array of vector coordinates

stored in a member variable of the CCinputBitmapDoc class.

Figure 10 below shows how the various components in a

typical schematic image are represented by the three

- 81 -

CCinputBitmapDoc Object- Contains All Lower Level Objects

Figure 10: Representation Of The Entire Schematic By Shape
Objects

82 -

objects we have just described. Each compound shape object

is assigned a unique identifying number, called a chain

number. Chain numbers of related objects are embedded in

each object to link groups of objects together.

2.4 Representation Of Schematic Components As A Set Of
Related Simple Shapes

Figure 11 below shows how the more complex shape which

represents each schematic component is broken down into a

set of simpler shapes, which can easily be described by a

set of simple tokens. The dialog box which is part of

Figure 11 shows the user's view of the relationship table

in TOKSCAN which links descriptions of simple shapes

together into a compound description of a schematic

component.

Each schematic component (AND, OR, XOR , NOT, NOR, or NAND

gate) can be decomposed into one or two input signal lines,

an optional input appendage shape (used by the XOR gate

only), one of three possible base shapes (NOT, AND, and

OR), and optional output appendage shape (used by the NOT,

NOR, and NAND gates only), and one output signal line.

The dialog box in the figure shows how these items are

linked together to describe a logic gate. For example, the

ANDGATE compound shape consists of two input lines, no

- 83 -

Input Line
Shape

LINE 52
LINE 51
LINE 52
UNES2
LINE 52

Input Appendage
Shape

(XOR Gate Only)

]

NONE
NONE
NONE
NONE
SMALLCIRCLEAPPEND

Base
Shapes

D
OR

D
OR

~

ORSHAPEBASE
NOTSHAPEBASE
ANDSHAPEBASE
ORSHAPEBASE
ORSHAPEBASE

lnp'ut Appendage. Basic Shape -

Output Appendage
Shape (NOT,

NOR, NAND Gates)

0

NONE
SMALLCIRCLEAPPEND
SMALLCIRCLEAPPEND
SMALLCIRCLEAPPEND
NONE

Output Appendage

Output Line
Shape

Output Lines

LINE 51
LINE 51
LINE 51
LINE 51
LINES1

Output Lines.

l NONE EF .I A~DSHAPEBASE 3· -· I NONE a 1 LINES1 il
Dele!

Compound Shape Name
Add

is used to label the schematic,_~
components in the image

Figure 11: Breakdown Of Schematic Components Into Simple
Shapes

- 84 -

input appendage, the AND base shape, no output appendage,

and one output signal line.

2.5 Representation Of Simple Shapes As Token Lists

In figure 11 we saw how schematic components are decomposed

into simple shapes, and how those shapes are assigned a

relationship to each other. Figure 12 illustrates how a

list of tokens with possible values "RIGHTCURVE",

"LEFTCURVE", "STRAIGHTLINE", "SMALLPERIM RIGHTCURVE",

"SMALLPERIM_LEFTCURVE", "SMALLPERIM_STRAIGHTLINE", and

"CORNER" can be assigned to a simple shape. The AND gate at

the bottom of the figure is assigned the token list:

"LEFTCURVE CORNER STRAIGHTLINE CORNER LEFTCURVE CORNER" as

follows: 1) Choose an arbitrary starting point at a corner

on the perimeter of the simple shape (In the example, the

point where the output signal line intersects the base

shape is chosen). 2) Proceeding in a counter-clockwise

direction, traverse the arc between the starting corner and

the next corner, and determine if it is a straight line or

a left or right curve. (The text which explains figure 13

below gives precise details on how this determination is

made). 3) Assign an appropriate token from the above list

to describe the arc . 4) Insert the "CORNER" token to

iindicate a corner .

- 85 -

Shape T ok.en Library Update

ToAddA Ne~ ShapeTypeTo The Library. Type A Shape-Name In The Fi_tMOn The Lef_t.And Press ">"loAdd It To The ·~
List-Of ValioShapes. Once A Shape Name Has Been Entered, Select Its Name FromThe'Ust On The Right And Add Tokens
To The Current Shape Token List By Following The Directions Below. Relationships Between Shapes May Be Defined By
Pressing "Shape Rela~ionships'i. ~nd E~te~ing _Relationship lnformatio~ As Directed. · · · · · · -

To Add AT oken To The C!.rrentSnapeToken li~t Select A Toke From The List On The Left And Press">". To Remove A
' Token From The Current List Select A Token From) he List On Th Right. And Press~'<" -

RIGHTCUF:VE
LEFT CURVE
STRAIGHTLINE
CORNER

· SMALLPERIM RIGHTCURVE
SMALLPERIM-LEFTCURVE

. SMALLPERIM=STRAIGHTLINE

. STRAIGHTLINE
CORNER
LEFT CURVE
CORNER

LEFT CURVE
CORNER

. STRAIGHTLINE
CORNER
LEFT CURVE
rno~1co

If ThereAr~ MultipleV.3iid Token Lists Foi A Given Shape Name (Ei<cluding·
Permutations Of An Existing List). Press "Start New List" To End he Current
Token List And Start A New One. · · ·

< • • ' -

LEFT CURVE

I cORNER

Figure 12: Relationship Between Token Lists And Schematic
Components

- 86 -

5) Repeat steps two through four until we arrive back at

the starting point.

An arbitrary starting corner can be used because TOKSCAN

checks all permutations of each token list (which maintain

the same relative ordering among entries) when matching

against a library of known tokens. Token lists are always

generated using a counter-clockwise traversal of the vector

chain which describes the shape, in order to ensure

consistency in the token lists.

In the AND gate of figure 12, a corner is shown at the

point where the output signal line contacts the base shape.

This is shown for illustrative purposes, because many AND

gates will have a fairly sharp corner at the intersection

point, caused by distortion introduced by the thinning

process. In actuality, the particular AND gate in the

example would be assigned the token list "LEFTCURVE CORNER

STRAIGHTLINE CORNER", where the LEFTCURVE consists of the

entire convex arc which contacts the straight line at its

two end points. The screen print of the dialog box in

figure 12 shows that TOKSCAN handles this situation by

allowing multiple token lists to be assigned to the same

base shape (Lists are separated by dashed lines in the

- 87 -

dialog box) . Note that "STRAIGHTLINE CORNER LEFTCURVE

CORNER" is another valid token list which describes the AND

base shape. It would successfully match against the token

list "LEFTCURVE CORNER STRAIGHTLINE CORNER", since that is

a simple permutation of the list (which maintains relative

order) in the dialog box.

Input and output appendage shapes are handled somewhat

differently as follows: The user is given the capability of

choosing a maximum shape perimeter length for appendage

shapes which must be smaller than the minimum perimeter

length for the smallest base shape. The appendage shapes

are assigned tokens in the same fashion as other shapes,

with the exception that a "SMALLPERIM " prefix is added to

each token when the total perimeter length of the shape is

less than or equal to the user-defined threshold. When

TOKSCAN performs recognition, it knows immediately that it

is dealing with an appendage when it finds the

"SMALLPERIM_" prefix, regardless of the other contents of

the token list.

This simple token assignment scheme is quite sufficient for

the limited set of shapes recognized by TOKSCAN. For more

complex shapes, tokens would still be quite usable; one

method of extending their use would be to add appropriate

- 88 -

prefixes and/or suffixes which could indicate position

within the drawing, size, position relative to other

shapes, etc. The use of tokens as descriptors throughout

TOKSCAN was motivated by the desired final output; a

descriptive equation. A YACC-generated parser provides an

easy method for converting a token list into the desired

results.

The determination that an arc is a "STRAIGHTLINE",

"LEFTCURVE", or "RIGHTCURVE" is somewhat more complex, as

Threshold On Either Side Of Line AB Perimeter Arc Outside Of The Threshold

Straight Li ne Between Detected Corners A and B

Figure 13: Assignment Of A Token To A Perimeter Arc In A
Shape

- 89 -

shown in figure 13. The method chosen must work properly in

the face of distortion caused by the thinning process. In

particular, two or more vectors with sharp curvature are

often introduced into the vectorization at the points where

the two input signal lines intersect the base shape, with

the result that corners may be detected improperly, and the

originally straight line may have significant curvature.

This is overcome by using a modified version of the "thick

line" technique already discussed. To assign a token to arc

BA in figure 13, we imagine a straight line drawn through

corner points B and A. Then we "draw" imaginary threshold

lines parallel to line BA and on either side of it. The

distance from line BA to either threshold line is specified

by the user. Next, we traverse arc BA (by following the

vector chain), and determine the distance from each vector

end point to line BA. We note the vector end points which

are on one of the threshold lines, or beyond it, and

measure the perimeter length which falls outside of the

threshold. We then calculate the ratio of this measured

perimeter length to the perimeter length of the entire

shape. If the resulting ratio is greater than or equal to a

user-specified maximum, then we have detected a curve. If

we imagine that we are standing at corner B and looking at

corner A, and if the detected curve is to our right, then

we have an arc with counterclockwise (or LEFT) curvature,

- 90 -

and the proper token is "LEFTCURVE " (again, assuming a

counter-clockwise traversal around the corners of the

shape) . Simi larly, if the detected curve is to our left,

then we have clockwise, or RIGHT curvature, and the proper

token is "RIGHTCURVE". If all of the perimeter on arc BA

falls within the two threshold lines, then we assume no

curvature, and assign the "STRAIGHTLINE" token.

There are additional difficulties to overcome when

assigning tokens that are also introduced by the thinning

process. We mentioned above that points of high curvature

may be introduced into the vectorization where the input

signal lines intersect with the base shape. Often this

curvature is high enough for TOKSCAN to improperly detect

one or more corners at these locations. This is overcome by

allowing successive vectors with opposite curvature to

" cancel each other out" by looking at the net curvature for

any two successive vectors. Another method used is to

ensure that corners are only detected at a minimum of a

user-specified distance apart. This, and a few other small

details related to token assignment may be seen by looking

at Code Fragment 3 in Appendix A.

- 91 -

2.6 Storage Of Shape Relationships And Token Lists In A
Token Library

In figures 11 and 12, we have seen the dialog boxes which

serve as the user interface to a library of token lists and

relationships which is maintained by TOKSCAN. When the

library is being built, TOKSCAN is run in a special

"Library Analysis" mode, where it detects minimal closed

polygons in input images and generates tokens that describe

the polygons. The user is then able to select a detected

polygon from the displayed image with the mouse (detected

polygons are highlighted in purple in the visual display),

retrieve the generated token list, assign a name to the

list (such as "ANDSHAPEBASE"), and add it to the library.

The user may also add token lists to the library manually

by using the dialog box in figure 12.

After the library has been built, image matching and

recognition are performed by extracting minimal closed

polygons from a new input image, generating the

corresponding token lists, analyzing simple shape

relationships among the minimal polygons, and comparing the

results with the token lists and relationships stored in

the library.

- 92 -

2.7 Detection Of Closed Polygons- The Foundation For
Schematic Analysis

Detection of the closed minimal polygons in an input image

is the foundation for proper segmentation of the schematic

into distinct components and connecting signal lines. It is

the first major step performed by TOKSCAN after

vectorization has been completed.

The output of vectorization is a set of simple shape

objects, each of which contains a chain of connected vector

coordinates. The polygon detection function follows each

vector chain in each simple shape object, and checks the

distance from successive vector end points to all prior end

points which have already been traversed in the current

chain. If the current end point either matches a prior

point exactly, or if it is within a user-specified maximum

distance from a prior point (as detected by performing a

circular search around the current end point), and if

certain other criteria (explained below) are met, then a

minimal closed polygon has been detected. If the entire

vector chain in a simple shape object is traversed without

detecting a closed polygon, then a circular search is

performed around the final endpoint in the chain to see if

there are any neighboring chains which should be used to

- 93 -

continue the search. If neighboring chains are found, the

vectors from these chains are also added to the list of

traversed vectors, as they are being checked for a junction

with a prior vector.

Other criteria which must be met for detection of a minimal

closed polygon include the following: 1) a minimum

perimeter length around the detected polygon (specified by

the user, and intended to filter out extremely small

polygons which are present because of noise in the image),

and 2) the lack of any other closed polygons which are

enclosed by the detected polygon.

This last criteria (no enclosed polygons) is met by making

proper directional choices when there are two or more

possible "next" vectors close to the current end point

(i.e., we have followed a vector chain to a branch point

with two or more possible paths). TOKSCAN checks all

possible candidates for the "next" vector at any branch

point, and uses a selection criteria which favors left

curvature. In other words, at a branch point, TOKSCAN

chooses the vector which has the greatest left (counter

clockwise) curvature from the direction of the preceding

vector, or which has the least right curvature, if none of

the possible paths have left curvature. In short, TOKSCAN

- 94 -

continually "turns left" when following vector chains, as

much as possible.

When a minimal closed polygon has been detected, a

"skeleton" compound shape object is created (as discussed

earlier in this chapter) which contains all of the vectors

in the "traversed vector" list. This compound shape object

is then considered to be a POTENTIAL simple shape in the

schematic. After matching has been performed against the

token library, compound shape objects which did not match

successfully are eliminated, under the assumption that they

were formed in error from crossed signal lines or noise in

the image.

2.8 Component Identification: The Detection Of Base
Shapes, Appendage Shapes, And Input/Output Connections
In Schematic Components

As we have said earlier, schematic component recognition is

a two part process in which simple shapes are recognized

first, and then the compound schematic components are

identified from groups of simple shapes. The identification

and labeling of simple shapes comes as a result of direct

comparison of token lists which describe the shapes against

the token library. Simple shapes which are close neighbors

are linked together into POTENTIAL compound shapes. When

- 95 -

this linking takes place, information is extracted from the

appendage shape objects and connecting input/output signal

line objects which are neighbors with a simple base shape,

and the information is placed in the base shape object. For

example, a NOR gate has one output appendage, two input

lines, one output line which is attached to the output

appendage, and one OR base shape. There will be shape

objects present which represent all of these shapes and

which are all close neighbors. Information such as the

"APPENDAGE" identifying label is taken from the appendage

shape object (and other information from the signal line

objects), and is inserted into special member variables in

the base shape object. Then the base shape object is

compared with the shape relationship table in the the token

library, to see if the correct collection of parts has been

identified in order to attach a schematic component label.

A successfully labeled schematic component is highlighted

in red in the visual image, and a visual text label is also

displayed inside the component on the bitmap.

2.9 Isolation Of Schematic Components From Connector Lines

At the beginning of this chapter, we discussed the process

where vectors which represent schematic components are

- 96 -

placed into compound shape objects, and are removed from

the initial simple shape objects. We mentioned that the

remaining vectors in the simple shape objects describe the

connecting signal lines, and are transferred to compound

objects which are then identified with a LINE label.

Part of the problem of separating signal lines from

components also has to do with distinguishing valid

component shapes from invalid shapes detected in error

because of multiple, crossed signal lines. When there are

many signal lines in a schematic, there tends to be a

number of rectangular shapes formed from crossed lines. The

vectorization process, which tends to smooth out corners to

some degree, can easily change a rectangular shape into a

straight line attached to a smooth arc. When this happens,

it is easy to mistake this closed polygon with the AND base

shape (for example). Part of the separation process then,

is to distinguish false base shapes from true ones. Three

methods are used by TOKSCAN to make the proper

distinctions. First, the user is able to specify the

proportion of the perimeter of a shape which should be made

up of LEFTCURVEs or RIGHTCURVEs. Secondly, it is also

possible for the user to specify that multiple left or

right curves should have approximately the same length. And

thirdly, the user must specify a maximum base shape

- 97 -

perimeter. If a potential shape does not meet all of these

specified criteria, it is removed from consideration as a

schematic component.

2.10 Determination Of Electrical Connections Between
Connector Lines Using Circular Connection Symbols

At the beginning of this chapter, in the description of the

processing flow of TOKSCAN, we discussed in detail the

process of locating circular line connectors, and flagging

their location in the appropriate vector chains. See

processing step 5, "Connector Line Determination", for a

review of this information.

2.11 Schematic Component Connection Analysis

We provided a detailed overview of the connection analysis

process at the beginning of this chapter. In this section

we will describe the details of the connection matrix, and

precisely how it is processed in order to formulate tokens

for the equation which describes the circuit.

In figure 14 below, we show a typical circuit, and the

accompanying connection matrix which would be generated by

TOKSCAN during connection analysis. In this example, the

- 98 -

user selected circuit input points A, B, C, and D, and

output point E, as labeled in the schematic.

After the component recognition processes have been run,

the user requests for TOKSCAN to generate an equation. It

begins (in the example) by starting at each of the user

selected input points for the circuit (A, B, C, and D), and

following all signal connection lines through all

components until it reaches the indicated output point E.

If the schematic has multiple outputs, TOKSCAN creates an

equation for each output. The connection matrix supports

multiple outputs because it is dynamically allocated, and

contains columns for each output indicated by the user. It

is always a square matrix, and the columns are allocated as

follows: 1) The first n columns are allocated for the user

defined input points to the circuit, where n inputs have

been specified. 2) One additional column is allocated for

each schematic component recognized in the image. 3) The

last m columns are allocated for the user-defined output

points from the circuit, where m outputs have been

specified. There is a corresponding row in the matrix for

each column, ordered as shown in figure 14. The data

inserted in the matrix is always a 1 (connection) or 0 (no

connection) . Each column can be viewed as a list of all of

- 99 -

A B c D
ANDl

1\
LJ L~ NOTl

ORl 1 [>---
jJ

l OR2

NANDl
~) E

Dt
r---1

XOR2

\A\
NORl)LJ

)

INP INP INP INP AND OR l XOR NOT NAN NOR XOR OR OUT
A B c D 1 1 ~ 1 1 1 1 2 2 E

INP A 1 1

,..,....,..,~

INP B 1 1

..
INP c 1 1

INP D 1 1

................

1

OR 1 1

.... ~,. . . ,..

XOR 1 1

~ ~ >-W.O.,_H,_,.,.,_,_,

NOT 1 1

.........,

NAN 1 :! 1

1! :1
........... , ... ,., ,,.,..,_,_.. ,.,

NOR 1 1

,.,, .. _,.....,_,,,

XOR 2 1

OR 2 1

OUT E

Figure 14: Connection Matrix Contents

- 100 -

the components which are connected to the input side of the

component which the column represents. For example, looking

at the "AND 1" column, inputs A and B are connected to the

input side of AND gate 1, as indicated by the ones in the

first two rows of that column. Similarly, each row can be

viewed as a list of all of the components which are

connected to the output side of the component which the row

represents. Looking at the "AND 1" row, for example, we see

that the output of the AND 1 gate is connected only to the

input side of the XOR 1 gate.

During the line-following process, when TOKSCAN determines

that a signal line makes a connection with a component, it

makes an entry in the connection matrix. At each point

where a circular line connector has been identified,

TOKSCAN performs recursive analysis, and follows each

possible output from the electrical junction.

The final result of the line-following analysis for the

example in figure 14 is as shown in the matrix. All entries

which are blank contain zeros (which are omitted for

clarity).

- 101 -

2.12 Construction Of A Token List For Equation Generation
Based On The Connection Analysis

After the connection matrix has been completed, we have

extracted sufficient information from the image to generate

the desired equations. The next step performed by TOKSCAN

is to start with the output columns in the matrix, and work

backwards toward the user-indicated inputs to the whole

circuit, generating a set of tokens (taken from the matrix

row/column labels) which identify each schematic component.

The generated tokens are ordered so as to indicate the

connections between the components. In order to work

backwards from output to input, TOKSCAN follows the

connections indicated in the matrix. For example, looking

back at figure 14, TOKSCAN starts with the OUT E output

column and looks for entries in this column which indicate

a connection. It finds one connection with the OR 2

component, and generates an OUT-E output token, followed by

an OR-2 output token. Then it examines the OR 2 column,

looking for any connections, which it finds with components

NOT 1 and XOR 2. It generates NOT-1 and XOR-2 output

tokens, and examines the NOT 1 and XOR 2 columns. This

process continues in like manner until all connections have

been processed, and all paths have been traced back to the

user-indicated inputs. The output tokens are passed to a

- 102 -

YACC-generated parser which is described in the next

section. TOKSCAN is capable of handling up to four input

signal lines for each AND, OR, NAND, NOR, and XOR gate in a

schematic. The parser is only capable of handling two-input

components, so when a component is recognized in the image

with more than two inputs, the single component is replaced

(in the connection matrix only) with a logically equivalent

set of two-input components. For example, a four input AND

gate would be replaced in the matrix by the following set

of gates:

Original Replacement

A
N

A D \- A
N --- N
D A 1-- D
I N
I D

The four-input OR and XOR gates have a similar replacement

in the matrix.

- 103 -

A four-input NAND gate would be replaced by the following

set of gates:

Original Replacement

A
N N N
A D \- A
N --- N
D A 1-- D
I N
I D

The replacement equivalent for the four-input NOR gate is

like the NAND, substituting OR gates for AND gates, and a

NOR gate for the NAND gate.

2.13 Construction Of A YACC-Generated Parser To Analyze
Equation Token Lists

The final analysis step is to take the tokens generated

from the connection matrix, and send them to the parser for

conversion into a logic equation. We will look first at the

input to the parser, and then at the rules used in the

parser for conversion. The following is an example of the

token input to the parser (which is the output of the

connection matrix processing described above) for the

example in figure 14. The sample tokens shown here are not

in the exact format used by the program; they have been

- 104 -

altered to match the labeling in figure 14. The important

points are that each token is a label which identifies a

schematic component, and the tokens are ordered so that

connections between them are preserved.

OUT.OUT-E
OR .OR2

OR .OR2
XOR . XOR2
NOT.NOT1

XOR.XOR2
NAN .NAND1
NOR.NOR1

NAN .NAND1
INP.INP-B
INP.INP-D

NOR.NOR1
INP. INP-A
INP.INP-C

NOT.NOT1
XOR.XOR1

XOR.XOR1
AND.AND1
OR .OR1

AND.AND1
INP. INP-A
INP.INP-B

OR .OR1
INP.INP-C
INP.INP-D

Blank lines and tabs have been added to the token list to

make it easier to read and associate related components

visually. Each group of tokens represents a specific

- 105 -

component in the schematic and the one or two associated

components which are connected to it's input side. When the

components which are connected to the input also have

components connected to their input, additional groups of

tokens are inserted for them, with the same meaning. The

tokens are inserted in the list with the same output-to

input ordering which is used by the process that goes

through the connection matrix and creates the tokens.

Whenever that process encounters a component which has two

input connections, it uses recursive analysis to create

tokens for both input trees (the whole structure can be

though of as a tree with the circuit output point as the

root).

The first three characters of each token (INP, XOR, etc.)

are passed to the YACC-generated parser. The parser

replaces the tokens with appropriate Boolean operators and

parentheses, and it extracts the input identification

letters (A, B, C, etc.) and places them in the proper

places among the operators and parentheses. The YACC rules

used to generate the parser can be found in Appendix A,

Code Fragment #4 .

- 106 -

2.14 Connection Line-Following Techniques, Equation
Determination, And Output

We have already discussed most of the important points

related to the line-following function in TOKSCAN: 1) The

line-following process is performed using the vector chains

stored in compound shape objects labeled as LINEs.

2) Electrical connections between signal lines are detected

by looking for circular line connectors, and at each

detected junction, recursive analysis is used to follow all

paths. 3) The user indicates input and output points for

the circuit as a whole. 4) Using the vector chains, lines

are followed from the circuit inputs through detected

components, to circuit outputs, and a connection matrix is

built at the same time. 5) Line following can be tracked

visually by the user, because the signal lines are

highlighted in blue during execution of the process.

One small additional point to be made here is that TOKSCAN

checks all line end points for a junction with other line

end points, and when found, forces every end point at the

junction to have the same exact vector coordinates (prior

to starting the line-following process).

- 107 -

After the line-following function and the parser have

completed processing, the logic equation created by the

parser is passed back to TOKSCAN, and is displayed visually

on the image bitmap.

2.15 User-Adjustable Parameters For The Recognition
Process

In our previous discussion, we have mentioned a number of

variables in the recognition process which may be adjusted

by the user in order to adapt TOKSCAN's processing to a

particular image. In this section we will list those

already mentioned, plus several more, and provide a brief

explanation of how they are used to facilitate recognition.

All user-adjustable parameters in TOKSCAN may be accessed

from the USER PARMS menu. The parms are grouped together

under the dialog box which displays them for the user.

Curvature And Junction Margin Of Error Dialog:

Curvature Range For Corner Detection: The user can set low

and high threshold values for detection of a corner during

the vectorization process. When the measured curvature

between vectors falls within the threshold range, then

- 108 -

TOKSCAN identifies the location as a CORNER (when analyzing

a schematic component) .

Maximum Gap Between Base Shapes And Appendage Shapes Or

Line End Points For A Junction To Exist: The user can

specify how close neighboring objects must be to each other

before they are linked together to form a compound object.

Curvature Detection - Threshold Distance: This is the

threshold distance discussed in section 2.5, and

illustrated in figure 13.

Curvature Detection - Percent Beyond Threshold: This is the

percentage of the total perimeter of the shape which must

be beyond the threshold value (above) in order to consider

the arc between two corners as a left or right curve. See

section 2.5 and figure 13.

Curvature Detection - Minimum Distance Between Shape

Corners: This is the minimum distance between any two

corners in a shape. See section 2.5 and figure 13.

Curvature Detection - Percent Of Perimeter For Maximum

Curve Vector Lengths: If two successive vectors in a shape

both have right or left curvature, and the first vector of

- 109 -

the pair is sufficiently small, the sum of their curvature

will be calculated and used to determine the presence of a

corner. Also, if two successive vectors in a shape have

opposing curvature, and if the first vector is sufficiently

small, then the net curvature of both vectors is calculated

(so there is a "canceling out" effect) before determining

if a corner exists at the location. This user-adjusted

parameter specifies the maximum length of the first vector

of the pair in both of these cases, expressed as a

percentage of the total perimeter length of the shape.

Perimeter Values Dialog:

Base Shape Max Perimeter: The user can specify the maximum

perimeter length for schematic component base shapes (AND,

OR, and NOT shape). Shapes with a larger perimeter are

ignored.

Appendage Max Perimeter: The user can specify the maximum

perimeter of appendage shapes (used in the XOR, NOR, NAND,

and NOT gates). Any detected closed minimal polygon with a

perimeter length less than or equal to this threshold will

be recognized as an appendage shape, provided that the

perimeter is greater than the minimum perimeter for closed

minimal polygons.

- 110 -

Line Smoothing Parameters Dialog:

Pixel Low Range - Pixel High Range: These two user

determined parameters specify the minimum and maximum

length of vectors (in pixels) to which the associated

parameters "Maximum Distance From Curve" and "Maximum

Curvature For lilly Two Vectors" should be applied, during

the vectorization process.

Maximum Distance From Curve: The user can specify the

maximum distance the approximating vectors can be from the

actual data points in the image (in the vectorization

process). See section 1.2.1.3 and figures 2 and 3.

Maximum Curvature For lilly Two Vectors: The user can specify

the maximum curvature between any two vectors for purposes

of generating a vector end point. If, for example, a value

of 45 degrees is specified, and a potential vector would

have a curvature with the last vector of 45 degrees or

more, then the vectorization algorithm backs up to a prior

data point and forces a vector end point to be created . See

section 1.2.1.3, and figures 2 and 3.

- 111 -

Close Polygon Search Parameters Dialog:

Maximum Number Of Chains: The search algorithm which

detects closed minimal polygons searches through multiple

simple shape objects in its attempt to find polygons. The

user may specify the maximum number of neighboring chains

which will be added to the "traversed list" before giving

up on a particular search. This is to prevent excessive

processing time when there are a large number of shape

objects to search.

Maximum Distance In Pixels From End point Of Current Vector

To A Data Point Within A Previously Processed Vector In

Order To Detect A Closed Polygon: The user can specify the

maximum gap between a vector end point and previously

traversed vectors in order for a closed polygon to be

detected.

Minimum Non-used Percentage: The user can specify the

percentage of the perimeter length of a potential closed

polygon which must not have already been used in other

successfully detected closed polygons, in order for the

potential polygon to be accepted. This is to prevent the

same closed polygon from being detected multiple times in

different searches.

- 112 -

Minimum Length Of Perimeter Of Detected Closed Polygon: The

user can specify the minimum perimeter of a valid minimal

closed polygon. Polygons with a smaller perimeter are

ignored.

Maximum Gap In Pixels Between Vector End Points In Order To

Join Two Shape Chains Into A Single New Shape Chain When

Reorganizing Vectors: The vector chains contained in the

simple shape objects are reorganized and combined into

longer chains with a more uniform direction during

vectorization. Neighboring vector chains may be joined

together into a single chain if the gap between them is not

greater than a user-specified maximum, which is this

parameter.

Maximum Gap Between The End Of A Previous Vector And A Data

Point On A New Shape Chain In Order To Determine A New Next

Shape Chain To Add To The Current List When Determining

Closed Polygons: As vector chains are merged into a list

which eventually describes the perimeter of the closed

polygon, each data point along the vector chain is examined

to see if it is close enough to a data point in a

neighboring vector chain so that the neighboring chain

should be merged into the list. This parameter is the

threshold (maximum) distance for that merge to take place.

- 113 -

Shape Object Parameters Dialog:

Maximum Length Of Vectors Which Are Automatically Removed

From Compound Shape Objects Because Of Insignificant

Length: After recognized schematic components are removed

from the collection of simple shape objects, and before the

remaining simple shape objects are converted into signal

line objects, TOKSCAN looks for small vectors with a

maximum length specified by this parameter , and eliminates

them entirely from consideration. This i s done to filter

out extraneous "noise" vectors caused by distortion.

Minimum/Maximum Degrees Curvature For Detection Of

Counterclockwise Traversal In A Closed Polygon: In order to

ensure that the shape t okens which describe basic shapes

are consistent , TOKSCAN must traverse all of the closed

polygons in the same direction (clockwise or counter

clockwise) during vectorization and token generation, and

the counter-clockwise direction has been arbitrarily chosen

(either would be equally acceptable). This pair of user

parameters must be set to a range of values which surround

- 360 degrees. The net curvature for the entire perimeter is

summed during a traversal, with all right (clockwise)

curvature being positive, and all left (counter-clockwise)

curvature being negative. The result is compared with this

- 114 -

threshold range. If the result is within the range, then

the vectors which describe the shape were generated with a

counter-clockwise traversal; otherwise, the direction of

all vectors in the chain is reversed (to make the traversal

counter-clockwise). A threshold range is provided (rather

than using -360 degrees precisely), because the measurement

of curvature in a discreet x,y coordinate system can never

be exact, and because of floating point rounding errors .

Center Point Search Radius: TOKSCAN performs a circular

search around the end points of signal lines to see if

circular line connectors are present. In order to provide a

flexible search which can overcome distortion, multiple

circular searches are actually performed, each with a

center point that falls within a user-specified radius

around the end point of a given line. This parameter is

that user-specified radius.

Circular Line Connector Radius: When TOKSCAN searches for

circular line connectors, it looks for a black circle in

the input image with a minimum radius which is specified by

the user. This parameter is that radius.

Maximum End Point Gap: The user can specify a maximum gap

between two connector line objects in order for there to be

- 115 -

a junction between the lines. This parameter is that

maximum gap.

Minimum Connector Line Length: The user can specify the

minimum length of a connector line with this parameter.

Shorter lines are removed from consideration during image

recognition.

XOR Gate Spur Line Maximum Length: The XOR gate has two

small "spur " lines which are attached to the input

appendage as a normal part of the symbol. TOKSCAN removes

these spur lines in order to avoid errors in the detection

of input signal lines for XOR gates. The user can specify

the maximum length of these spur lines with this parameter.

Lines longer than the user-specified value are not removed,

even when they are in the proper position on the input side

of an XOR gate.

Token Edits Dialog:

Convex Perimeter Percent: This user-defined parameter is

used to help distinguish valid component shapes from

invalid closed polygons. The AND and OR shapes should have

a certain percentage of their total perimeter which forms a

convex arc. This parameter specifies that percentage.

- 116 -

Plus/Minus Percent: This parameter specifies a threshold

range around the Convex Perimeter Percent value. If the

length of the perimeter forming a convex arc is equal to

the Convex Perimeter Percent plus or minus the value set in

this parameter, then the shape has a correct proportion of

convex arc.

- 117 -

CHAPTER 3

NOTES ON THE IMPLEMENTATION USING THE
MICROSOFT FOUNDATION CLASSES AND A YACC-GENERATED PARSER

Microsoft's Visual C++, version 4.2 (Enterprise Edition)

was used to implement TOKSCAN (it can also be compiled,

linked, and tested successfully with version 4.0, without

making any modifications). The development environment and

the Microsoft Foundation Class library which are provided

as a part of this software package both proved to be

invaluable during project development. In this chapter, we

will discuss a few of the most helpful features in the

software, and we will also briefly discuss the use of the

YACC (Yet Another Compiler Compiler) software package used

to create the token parser.

The full source code, executable code, supporting data

files and test image files of schematic circuits for this

project are all available on a Zip Disk in the office of

the College of Computing Science and Engineering at the

University of North Florida. Small portions of the code

were generated using the Microsoft utilities described in

this chapter. A very few sections of code (primarily having

to do with reading, writing, and displaying bitmap files)

- 118 -

were adapted to this project from sample source code

provided by Microsoft Corporation.

3.1 The Development Environment

The "Microsoft Developer Studio" is the development

environment which was used for this project. It consists of

a set of integrated editors which can handle the plain text

files used for C++ source code, and the various kinds of

support file formats used in the Microsoft Windows

environment, such as icon bitmaps, general purpose bitmaps,

toolbar graphics files , dialog resources, and other various

resource files.

3 .1.1 Automatic Generation Of Skeleton Code And User
Interface Resources

One of the features of the Developer Studio which worked

well and saved a great deal of time was automatic skeleton

code generation through the use of the "App Wizard" and the

"Class Wizard" (Microsoft's terms for code generation

functions which they provide) . The "App Wizard" made it

possible to generate a set of skeleton C++ source files and

resource files at the time the project was created on the

computer, which contained enough code to open a "standard"

- 119 -

Windows program with a multi-document interface - in a

matter of a few minutes.

As the project was being developed, the "Class Wizard" made

it possible to add new skeleton C++ files which supported

various dialog windows (at a minimal level) with a few

clicks of the mouse.

Dialog resource editors also made it possible to build new

dialog windows quickly with the mouse, using a "drag and

drop" graphical user interface.

Other tools made it possible to build graphical toolbars

and mouse cursors, and to import standard class

functionality into the program (such as a "progress" dialog

box which gave a graphical indication of the amount of

progress made in a long running task), all in a matter of a

few minutes.

This does NOT imply that all of the development could be

done with "point and click" methods. It took five months of

intensive C++ coding, debugging, and refinement to fill in

the "shell" programs that were created automatically.

However, based on the author's past experience with Windows

development without the benefit of the Developer Studio or

- 120 -

Foundation Classes, these tools saved a significant amount

of time. Initially, they were slower and more tedious to

use than other, more familiar development methods, but once

mastered, the increase in productivity was rapid.

3.1.2 Visual Class Tree View With Fast Access To Member
Functions And Class Definitions

A feature of Visual C++ version 4.0 and 4.2 which proved to

be extremely helpful during development was the class "tree

view" window in the Developer Studio. Whenever a new C++

class is defined and added to a project, a visual entry is

made in this window. The user can expand the "tree" with

mouse clicks, and all of the class member functions and

member variables are displayed. If the user double-clicks

on any of these displayed items, the Developer Studio

automatically opens the source code at the place where the

entity is defined. The tree view serves as a dynamic index

to every source code entity in the project, with hypertext-

like links to each item. During the development of the

project, this index worked very well, and saved development

time.

3.1.3 High Quality Debugger With Convenient Visual
Features

A high quality program debugger was provided with Visual

C++, which provided much better presentation of program

- 121 -

data than older versions of Microsoft debuggers. In

addition to displaying variable states and data just by

pointing the mouse cursor, it was possible to view the

information contained within an entire object instance of a

class with a few mouse clicks. Also, a "call stack" display

was provided, which showed the various layers of function

calls currently active at any point during program

execution, including source code references for each call.

3.2 The Microsoft Foundation Classes

The Microsoft Foundation Class (MFC) library was the single

most effective time saving tool provided with Visual C++.

Complicated graphics manipulation, dialog box management,

memory management, and many other processing functions

could often be handled just by instantiating a particular

MFC class, and making a few member function calls, often

with only a very few lines of source code.

It must be emphasized that initially, it proved to be very

slow, tedious work to use the MFC library, until

familiarity was gained with the various classes, and how

they work together. However, as in the case of the

Developer Studio, once mastered, the gain in productivity

was enormous, and well worth the initial effort.

- 122 -

3.2.1 Effective Encapsulation Of The Windows API

The Windows API (Application Programming Interface)

consists of hundreds of complicated function calls, often

with numerous, and sometimes obscure parameters being

passed to the operating system. The purpose of many of the

MFC classes is to encapsulate the API calls into a class

interface which is more organized and easier to remember

and use. In many cases during the development of this

project, it proved possible to accomplish with two or three

lines of source code using MFC what would have taken a page

or more of source code using the Windows API directly.

3.2.2 Template Classes Which Support Dynamic Arrays,
Lists, And Maps

The MFC template classes CArray and CMap, (and a few

others) proved very useful in nearly every situation where

dynamic allocation of an array or collection was needed.

The CArray class can be defined to hold an array of object

instances, or the primitive data types. The CMap class can

be defined to both hold a collection of object instances,

and provide keyed access to particular instances of the

object, through the use of a hash table. The CMap class can

handle very large numbers of instances of objects in an

efficient manner. During testing, thousands of object

- 123 -

instances were created (at one time) and manipulated using

CMap functionality without any problems related to the

Microsoft implementation.

Performance was never a problem when using the template

classes during the development of the project. Although

there were many performance issues to resolve, none of them

were related to the implementation of MFC.

3.2.3 Effective Memory Management And Support For Large
Collections Of Objects

The nature of the TOKSCAN program made it necessary to

manipulate hundreds or thousands of instances of objects in

memory at one time. Dynamic memory allocation was a

requirement throughout the program. When using MFC, the

only source code which had to be written which was directly

related to memory management had to do with freeing object

instances which were created using the C++ "new" operator.

This code consisted of issuing the "delete" command with a

reference to a pointer to an object instance. (A few

functions were written without using MFC functionality,

such as those needed to read, write, and manipulate Windows

BMP files. In this case, more coding was necessary to

properly allocate and free memory) .

- 124 -

3.2.4 Problems Encountered During Development

There was only one problem encountered during project

development of any real significance which was directly

related to the Microsoft MFC implementation. This had to do

with using the DAO (Data Access Object) classes to access a

Microsoft Access database file. MFC version 4 has an

internal problem where it unloads a system DLL from memory

during program shutdown before it has finished accessing

the DLL. This showed up during the development of the

project, and resulted in a program GPF (General Protection

Fault) during shutdown. Microsoft provided a one line

source change to work around the problem which was

successful; to issue the command:

"LoadLibrary(''msjt3032.dll") ;" during program startup.

(msjt3032.dll is a dynamic link library which supports

access to Microsoft Access database files) .

3.3 Development Of The Parser

In order to generate the parser for the TOKSCAN project, a

port of the Bison YACC program which runs under Microsoft

Windows 95 was selected, and downloaded from the Digital

Equipment Corporation archive mirror site:

http://ftp.digital.com. The full address to reach index

- 125 -

information about the program is:

http://ftp.digital.com/cgi-bin/grep-index?bison

The file downloaded for the project was:

/pub/micro/pc/winsite/win95/programr/flexbison.zip.

Information about the author was not easily available.

After installing this version of Bison on a PC, the source

code containing the YACC rules was processed to create the

necessary C source code (the full YACC source is shown in

Appendix A, Code Fragment #4). The C code was compiled and

linked into a static link library, which was then included

into the TOKSCAN project.

The parser was developed with very few problems 1n a matter

of a few days.

- 126 -

CHAPTER 4

EXPERIMENTAL RECOGNITION RESULTS

In the following pages are some figures which show output

from TOKSCAN's recognition process.

Figure 15 is a test image which was created with the

Microsoft PAINT utility program. It contains a sample of

each type of logic gate that TOKSCAN can recognize. The

logic equations for all of the images use the following

symbols:

(+) exclusive OR

* AND

+ OR

NOT

Extensive use of parentheses is present to ensure non

ambiguity of results (at the expense of readability).

Figure 16 is a scanned test circuit. The complete image

could not be displayed because of its size. The labels for

- 127 -

input and output were drawn in for publication, because the

computer-generated labels were scrolled off the screen.

Figure 17 is scanned, and is an image of the first stage of

a full adder circuit. A NOR gate at the top of the image

(which provides circuit OUTPUT A) is not shown, because it

is scrolled off the screen. Inputs A and B are signal lines

for two binary values which are to be added together. Input

Cis a CARRY IN signal(which would be connected to the

CARRY OUT from another adder circuit). Output A is the

CARRY OUT signal from the adder, and output B is the result

signal from the addition of the two input values.

Figure 18 is scanned, and is an image of a four - input

multiplexer circuit. Input signal line A is not shown

because it is scrolled off the screen. Inputs A, B, C, and

D are the four primary inputs to the multiplexer. Inputs E

and F (bottom of the screen) are the switching signals

which trigger the selection from the four inputs. Output A

is the output from the circuit.

- 128 -

r--rr._lmage Recognition library 1!'!100 EJ

"\
·~---· OUT·!

m m m m Circuit Equation:

ZA(A.B,C ,D) = ((((.A. ... B)(+)(C+D)))'+((B ... D) '(+)(A+C)'))

Figure 15: Computer-Drawn Test Image With Every
Type Of Logic Gate Which Can Currently

Be Recognized

- 129 -

,__
.. w

0

$
~
 I

m
a

g
e

 R
e

c
o

g
n

it
io

n
 l

ib
ra

ry

l!!
lr

;l
£

i

In
p

u
ts

A

,B
,C

,D

!:!
el

p

C
ir

cu
it

E
q

u
a

ti
on

Z
B

(A
.,

B
,C

,D
)

=
 (

((
A

)'
+

(B
"C

))
'"

lD
"(

A
)'

)'
)

Z
A

(A
.B

,C
 ,D

)
=

 (
((

.t
l,)

'"
(D

r.
(A

)')
')'

"(
(A

)'+
(B

r.
C

))
)

F
ig

u
re

1

6
:

S
c
a
n

n
e
d

Im

ag
e

-
E

x
e
rc

is
e

C

ir
c
u

it

(B
la

c
k

a
rr

o
w

s
w

e
re

d

ra
w

n

in

la

te
r

fo
r

la
b

e
li

n
g

)

J)
.N

O
G

:')
,T

if:

O
u

tp
u

ts

A
,B

f-
'

w

f-
'

,;.I
-_

 Im
a

g
e

 R
e

c
o

g
n

it
io

n
 l

ib
ra

ry

l!i
ri

J
£1

I
T

o
N

O
R

G

a
te

I

.,

IW
J!o

.. .
. ,

IN
"-

C

11
<

1'
-C

?:c
' ·~:

C
ir

cu
it

E
q

u
a

tio
n:

F
ig

u
re

1

7
:

S
c
a
n

n
e
d

Im

ag
e

-
F

ir
s
t

S
ta

g
e

O
f

C
ir

c
u

it

(N
O

R

g

a
te

,
u

p
p

e
r

ri
g

h
t,

n

o
t

(B
la

c
k

a
rr

o
w

s
a
n

d

b

o
x

e
s

w
e
re

d

ra
w

n

in

la

te
r

T
o

N
O

R

G
a
te

O
u

tp
u

t
o

f
N

O
R

g

a
te

i

s
O

u
t
p

u
t

A

f-
~o
ti
OG
AT
E

F
u

ll

A
d

d
e
r

sh
o

w
n

)
fo

r
la

b
e
li

n
g

)
O

u
tp

u
t

B

f-
'

w

[\
,)

,;.,.
.,:-

-_I
m

a
g

e
 R

e
c
o

g
n

it
io

n
 l

ib
ra

ry

fl!
!lr

.;:
J

f.3

·§

f
iie

'
lm
ag
e:
Pr
ep
ro
~i
ng

lf

fi
,g

e:
A

na
ly

si
s

' ·
u

se
r-P

ar
m

s
T'

o
k

m
li

br
ar

y
''

ro
ol

s·

y
~

f:!
eJ

p!

:_
'/

 ·.
,

,.
.

,
:·

.
..

·•
,

..
.

'·.•
-

"··
.

,.
'"·

·
'·

•2
f~
{
R
f

;~
 :
R
3
i
i
~

-,~~
r

':~
--~
l

;?
.
f
~
r
~
r
~
r

;]
J

:l

7
~
~
~
~
-
~
c
~

·
·

·;_
~
,
.
.
,
.
,
_
~
·
-
-
;
=
-
:
-
-
T
~
~
,
~
-
-

-.
--

-
· ·

··

·
· ...

 -
·

·
...

.
...

.
'

· .
-=·

..

ll
iP

.A

I
\

..
..

 I

t
·"

'-N
O

G
.O

.T
b

't;c
,

I In
p

u
t

A

(t
o

to

p

A
N

D

G
a

te

I

~:~
~

~-
:1

 .. !

·'"0~.
)
-

'I>
··

!t
4P

-f
l

'
~:~- ~
 .. r~
 ... ·.

~

I

O~
C"

""
-T

E.

;{
.

O
L

JT
·I
\

F-
'"2

1

ANOG
~T)
--

'
1~
"
-
C

··
:

~
·

-~~

.
'

IH
P

·D

~I
•
'

A
t
~
D
G
<
I
T
L

~'

·,.

•7
r

1
~-
~

..

)
TGAT

'
J.

T~.,

/ ,:· \.(
 ~;~. ~-·
-; ..

C
ir

cu
it

 E
q

u
a

ti
o

n
:

~
~
~

I
Y
~
r

--
:

Z
A

(A
 ,B

 ,C
 ,D

 ,E
 ,F

).
=

 (
 ((

(.
A

"(
E

)'
)'"

 (F
)'

)+
(F

"{
B

"(
E

)'
))

)+
((

(C
"E

)"
(F

)'
)+

(F
"(

D
''E

))
))

~

f.Fi
'~

;d
Y

~~.:
-;:A~

~~
:~::

~··-
~:~:

~::~
 ~-~

~-)'
._ -

~--
-~-

~
,;:·-

~~-·
~~;:

:~--
-.~~

.~.:
:.,·

7;:;
~:.~

~,:r
~~

!!
o~.
Y
~
~
=~

~=
=-

~--~
-:.:

,· __ ,;_
'"

:~
.~ .. ~;

.~-J
r .. .r

:'"~
-~~: .. ·

~~~
L, .

.. ::
J~~
:
~
 L_

~:~
E\
m

:u
~r
T
}
~
~
 

F
ig

u
re

 
1

8
: 

( B
la

c
k 

a
rr

ow
 

S
c
a
n

n
e
d

 
Im

ag
e 

-
F

o
u

r 
In

p
u

t 
M

u
lt

ip
le

x
e
r 

a
n

d
 

b
o

x
 

w
e
re

 
d

ra
w

n 
in

 
la

te
r
 

f
o

r 
la

b
e
li

n
g

) 



CHAPTER 5 

CONCLUSION AND SUGGESTIONS FOR FURTHER DEVELOPMENT 

In conclusion, we have shown that token-based analysis of 

schematic images is practical, and that it provides a 

simple method for representing logic components in a form 

which can be easily manipulated by the computer. TOKSCAN 

was developed as a prototype to show the usefulness of this 

approach. It is the hope of the author that others 

interested in image processing will work with it further, 

and extend its capabilities. 

There are a number of improvements needed in TOKSCAN, that 

were beyond the scope and/or time constraints for this 

project. Some of these are as follows: 

1. Improved pre- processing of images. The thinning function 

is adequate, but introduces significant distortion that 

impairs recognition. An improved algorithm should be 

implemented, preferably one which performs thinning with a 

single raster scan of the image. Additional processing to 

remove "spur" lines (which are artifacts left behind by the 

thinning process) would also be helpful. The binarization 

- 133 -



function should use adaptive local thresholding rather than 

the simple global threshold which is currently implemented. 

The noise reduction function should be improved by using a 

different algorithm for smoothing. There was not sufficient 

time to experiment thoroughly with different methods for 

noise reduction. 

2. The shape relationship information, shape description 

tokens, and equation generation tokens are implemented with 

some "hard coding". For example, to identify base shapes 

(as opposed to appendage or line shapes), the program looks 

at the name of each relationship in the relationship table, 

and searches for names ending with "BASE". It looks for 

names ending in "APPEND" to identify appendage shapes. It 

also identifies the kind of equation generation token to 

send to the parser by looking at the first three characters 

of the name in the relationship table, expecting to find 

"AND", "OR", "NOT", "XOR", "NOR", "NAN", "INP", or "OUT". 

All code related to token usage should be reviewed, and 

should be modified to make the addition of new kinds of 

tokens possible without recompiling the program. A more 

extensive change would be to build a "rules" file which 

specifies the processing rules to be applied for a given 

token, thus generalizing the token functionality further. 

- 134 -



3. The set of functions which identify closed minimal 

polygons should be made more robust. When new input images 

are analyzed, a few components are usually missed because 

of a failure to detect a closed minimal polygon. This 

problem can usually be corrected by either adjusting the 

user- specified parameters, or making a minor program 

change. When this problem occurs, it is usually related to 

noise in the image caused by distortion from the thinning 

process. 

4. The set of user-specified parameters is large and 

complex. A rather extensive modification which would make 

TOKSCAN easier to use, would be to have the program manage 

more of the parameters, and perform automated adjustments 

to the initial parameter values, based on a comparison of 

processing results with a user-input set of expected 

results. For example, the user could provide a small amount 

of quick mouse input prior to image analysis, setting a 

boundary around each component in the image, so that 

TOKSCAN would know the number and approximate location of 

all components prior to analysis. 

5. The set of recognizable components should be expanded to 

include the more complex symbols used in most logic 

schematics. Text segmentation and recognition would have to 

- 135 -



be included as well, because in some cases text labels in 

the schematic help to identify the type of symbol. 

6. The scale of recognition could easily be increased. It 

would be easily possible to build a library of equations, 

or equation prototypes, which could be linked with the 

names of more complex logic structures, such as memory 

units, J-K flip-flops, etc., and which could be associated 

with the current equation output. The result would be a 

high order labeling of more complex components. 

7. Another useful extension of TOKSCAN would be to give it 

the ability to handle sequential circuits, and feedback. 

One approach which could be used, would be to give the user 

the ability to select combinational circuit components 

within sequential circuits (probably via visual selection 

with the mouse), and to analyze each combinational block 

separately. Feedback signals could be isolated in the 

diagram, and handled separately. 

- 136 -



REFERENCES 

[Andrews 7 6] 
Andrews, H., "Monochrome digital image enhancement", 
Applied Optics, 15, (February 1976), pp. 495-503. This 
article reprinted in Digital Image Processing and 
Analysis: Volume 1: Digital Image Processing, < Bill 
D. Carroll, Jack Cotton, Jerome R. Cox Jr, Ez 
Nahouraii, Chuan-lin Wu>, ed., IEEE Computer Society 
Press, Silver Spring, Maryland, 1985, pp. 431-439. 

[Cootes95] 
Cootes, T., et al, "Active Shape Models - Their 
Training and Application", Computer Vision And Image 
Understanding, 61, 1, (January 1995), pp . 38-59. 

[Flickner95] 
"Query by Image and Video Content: The QBIC System", 
Computer, 28, 9, (September 1995), pp. 23-31. 

[Gonzales92] 
Gonzales, R. and R. Woods, Digital Image Processing, 
Addison-Wesley Publishing Company, Reading, 
Massachusetts, 1992, pp. 81-156, 595-619. 

[Hori92] 
Hori, 0. and A. Okazaki, "High Quality Vectorization 
Based on a Generic Object Model", Structured Document 
Image Analysis, Springer-Verlag, (1992), pp. 325 -
339. This article reprinted in Document Image 
Analysis, <Lawrence O'Gorman and Rangachar Kasturi > , 
ed., IEEE Computer Society Press, Los Alamitos, 
California, 1995, pp. 78-92. 

[Joseph92] 
Joseph, S. H., and T. P. Pridmore, "Knowledge-Directed 
Interpretation of Mechanical Engineering Drawings", 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 14, 9, (September 1992) , pp. 92 8 - 94 0. 
This article reprinted in Document Image Analysis, 
<Lawrence O'Gorman and Rangachar Kasturi >, ed., IEEE 

- 137 -



Computer Society Press, Los Alamitos, California, 
1995, pp. 453-465. 

[Kamel93] 
Kamel, M. and A. Zhao, "Extraction of Binary 
Character/Graphics Images from Grayscale Document 
Images", Computer Vision, Graphics, and Image 
Processing, 55, 3, (May 1993), pp. 203- 217. This 
article reprinted in Document Image Analysis, 
<Lawrence O'Gorman and Rangachar Kasturi>, ed., IEEE 
Computer Society Press, Los Alamitos, California, 
1995, pp. 29-43. 

[Kartalopoulos96] 
Kartalopoulos, S., Understanding Neural Networks And 
Fuzzy Logic - Basic Concepts And Applications, IEEE 
Press, Piscataway, New Jersey, 1996. 

[Lam92] 
Lam, L., et al, "Thinning Methodologies -A 
Comprehensive Survey", IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 14, 9, (September 
1992), pp. 869- 885. This article reprinted in 
Document Image Analysis, Lawrence O'Gorman and 
Rangachar Kasturi>, ed., IEEE Computer Society Press, 
Los Alamitos, California, 1995, pp. 61-77. 

[Medioni87] 
Medioni, G. andY. Yasurnoto, "Corner Detection and 
Curve Representation Using Cubic B-Splines", Computer 
Vision, Graphics, and Image Processing, 39, (1987), 
pp. 267-278. This article reprinted in Document Image 
Analysis, <Lawrence O'Gorman and Rangachar 
Kasturi>,ed., IEEE Computer Society Press, Los 
Alamitos, California, 1995, pp. 133-144. 

[Mehrotra95] 
Mehrotra, R. and J. Gary, "Similar-Shape Retrieval In 
Shape Data Management", Computer, 28, 9, (September 
1995), pp. 57-62. 

[O'Gorman95] 
O'Gorman, L. and R. Kasturi, Document Image Analysis, 
IEEE Computer Society Press, Los Alamitos, California, 
1995. 

[Ratha96] 
Ratha, N. , et al., "A Real Time Matching System For 
Large Fingerprint Databases", IEEE Transactions On 

- 138 -



Pattern Analysis And Machine Intelligence, 18, 8, 
(August 1996), pp. 799-812. 

[Tombre95] 
Tombre, K., "Graphics recognition- general context 
and challenges", Pattern Recognition Letters, 16 
(1995)' pp. 883-891. 

[Vaxiviere90] 
Vaxiviere, P. and K. Tombre, "Interpretation of 
Mechanical Engineering Drawings for Paper-CAD 
Conversion", MVA'90 IAPR Workshop on Machine Vision 
Applications, (Nov. 28-30, 1990), pp. 203-206. 

[Vaxiviere92] 
Vaxiviere, P. and K. Tombre, "Celesstin: CAD 
Conversion of Mechanical Drawings", Computer, 25, 7, 
(July 1992), pp. 46-54. This article reprinted in 
Document Image Analysis, <Lawrence O'Gorman and 
Rangachar Kasturi>, ed., IEEE Computer Society Press, 
Los Alamitos, California, 1995, pp. 444-452. 

[Wall84] 
Wall, Karin, and P. Danielsson, "A Fast Sequential 
Method for Polygonal Approximation of Digitized 
Curves", Computer Vision, Graphics, and Image 
Processing, 28, (1984), pp. 220-227. This article 
reprinted in Document Image Analysis, <Lawrence 
O'Gorman and Rangachar Kasturi>, ed., IEEE Computer 
Society Press, Los Alamitos, California, 1995, pp. 
111-118. 

- 139 -



APPENDIX A 

Source Code Listings 

This appendix contains only selected sections of the source 

code which are referenced in the paper. The full source, 

along with the executable program and data files are 

provided on the accompanying Zip Disk which is available in 

the office of the College Of Information Science And 

Engineering. 

Code Fragment 1: CimageObject (Simple Shape Object) This is 

the definition of the first, and simpler of the two primary 

objects which represent shapes in the schematic image. It 

contains vector chains which represent lines found 

initially in the schematic. The compound shape class in 

Code Fragment 2 below is derived from this class. 

II ClmageObject . h : header file 
II 

class ClmageObject : public CDocument 
{ 

friend class CCompoundlmageObject; 

protected: 

II Attributes 
public : 

- 140 -



short m_de l flag; 
short m_shapetype ; 
CPoint m_upperleft; 

CPoint m_lowerright; 

int m chainnum ; 
CString m_loopfla-g ; 
CString m_nextvector t ype ; 
int m_shapetoken ; 

I I O= >not deleted from shape map, !=>deleted 
II shape type code 
II upper left corner coordinates of rectangle 
II which bounds the shape 
II lower right corner coordinates of rectangle 
II which bounds the shape 
II chain number assigned by analysis routines 
II flag indicating if the chain forms a loop 
II connect type of second vect in the shape chain 
II token id for this chain's shape 
I I (leftcurve , rightcurve , etc) 

short m linethickness; // thickness of the curve in# pixels width 
CArray <Curvelnfo, Curvelnfo > m_curves ; // array of curve information for 

II each curvature change 
CArray <HodVector , HodVector > m_curveschanged ; II array of old and new curvature 

II info , where vector values 
I I were adjusted 

ChainStartKey m_thisobjchain ; // CHAINSTART table key for the chain which 
II makes up this object 

linesmoothparm sparms(maxlinesmoothingparms); II line smoothing parms 
short parmcount; II number of line smoothing parms 
CPoint m_endchain ; II x , y coordinates of end of chain 

ClmageObject *m_startjunc; 

CPoint m startcoords ; 
ClmageObject *m_endjunc ; 

CPoint m_endcoords ; 

private: 

CCinputB itmapDoc * m_at tacheddoc; 

CPoint 

II Operations 
public: 

I I Overrides 

start, prior , curr ; 

II pointer to shape object which continues 
II on from this object's shape - start side 
II coordinates of junction point in other chain 
II pointer to shape object which continues on 
II from this object's shape - end side 
II coordinates of junction point in other chain 

II The bitmap document t o which this object 
I I is attached 

I I ClassWizard gene rated virtual function overrides 
//{{AFX_VIRTUAL(CimageObject) 
public : 
virtual void Serialize(CArchive& ar) ; //overridden for document i/o 
protected: 
virtual BOOL OnNewDocument() ; 
//}}AFX_VIRTUAL 

I I Implementation 
public: 

CimageObject () ; 
CimageObject(const CimageObject& imobjSrc) ; 

virtual - CimageObject() ; 
const CimageObject& operator=(const CimageObject& imobjSrc) ; 
void CopyObject(const CimageObject& imobjSrc) ; 

void StartNewChain(int xcoord , 
int ycoord , 
int chainnum , 
int curvelow , 
int curvehi , 
int junctionerr) ; 

void InsertNextVector(CCinputBitmapDoc *pDoc , 
int xcoord , 
int ycoord , 
int curvelow , 
int curvehi , 
int junctionerr) ; 

141 -



int MarkEndOfChain(CCinputBitmapDoc *pDoc , 
int curvelow , 
int curvehi , 
int junctionerr) ; 

void SetSysParms(linesmoothparm *lsp , short parmct); 

short loadVectorChains (CTraverseVectorChain *tvect, 
CDAOChainStartSet *pcset , 
CDAOVectorChainSet *prset) ; 

void SetDocPointer(CCinputBitmapDoc *theDoc) ; 
void DetectCorners (int curve low , int curvehi , int junctionerr); 
void DrawShapeObjectVectors(int type , CString label) ; 
void SaveShapeObjectVectors(CDAOChainStartSet *pcset, CDAOVectorChainSet *prset) ; 
void BuildCurvelnfo(int ptcount , CArray <CPoint , CPoint >* ppoints) ; 
void ReverseShapeDirection(int updshapemapflag) ; 

void InsertShapeVectors(CimageObject *lm0b2 , 
int vectstart , 
int vectdir , 
int blendflag) ; 

void RecalcCurvature(void) ; 

#ifdef DEBUG 
-virtual void AssertValid() const ; 
virtual void Dump(CDumpContext& de) const; 

#end if 

II Generated message map functions 
protected: 

} ; 

II{{AFX_MSG(CimageObject) 
II NOTE - the ClassWizard will add and remove member functions here. 

II}}AFX_MSG 
DECLARE_MESSAGE_MAP() 

- 142 -



Code Fragment 2 : CCompoundimageObjec t (Compound Shape 

Object) This is the definition of the second, and more 

complex of the two primary object s whi c h repres e nt shapes 

in the s c hemati c image. It contains all information 

n ece s sary for recognition. 

class CCompoundlmageObject : public ClmageObject 
{ 
public: 

CCompoundlmageObject() ; 
CCompoundlmageObject(const ClmageObject& imobjSrc) ; 
CCompoundlmageObject(const CCompoundlmageObject& imobjSrc) ; 

const CCompoundlmageObject& operator=(const CimageObject& imobjSrc) ; 
const CCompoundimageObject& operator=(const CCompoundlmageObject& imobjSrc) ; 

int FindContinuationShape(candidateshape *end , 
int allowcircsearch , 
int pastfirstvect); 

v~id CalcCurvature(CPoint ptbefore, 
CPoint junction , 
CPoint ptafter , 
int *rtcurvcalc, 
int *lfcurvcalc) ; 

void SetShapeDescriptorArray(int descriptor) ; 
CString GetShapeDescriptorArray(int *idx) ; 
int AnalyzeShape(int startidx , int endidx , tokdata *tok) ; 
void InsertHergeKey(CString key) ; 
int HeasurePerimeter(void) ; 
void GenerateTokens(void) ; 
int HasCounterClockwiseTraversal(); 
void ReverseTraversalDirection() ; 
void RemoveSmallVectors() ; 
CString HatchBaseShapeTokens() ; 
CString HatchAppendageTokens() ; 
void CopyOriginalVectors() ; 
void RemoveShapeFromVectorChains() ; 
Distlnfo CalcClosestVectorPoints(CCompoundlmageObject *otherobj) ; 
CPoint HasRectOverlap(CCompoundlmageObject *otherobj) ; 
int FindConnectedObjects(int objtype) ; 
float HeasurePerimeterBetweenConnections(CPoint conl , CPoint con2); 
void AnalyzeCompoundShape(void) ; 
void ForceConnectorlineAlignment(int largestlinesmootherrordist) ; 
void AdjustBoundingRect(CCompoundlmageObject *CimOb) ; 
void CheckForCircularlineConnectors(int centerpointdiameter , int searchdiameter) ; 
int CheckForlineConnector(CPoint centerpoint , int searchdiameter) ; 
void DrawlineConnector(CPoint centerpoint , int diameter , in t draw) ; 
void UpdatelineEndpointsWithConnector(CPoint location) ; 
int CheckVectorPairForCorner(int curridx) ; 

int IsXORSpurline(CCompoundimageObject *ComponentOb , 
CCompoundlmageObject *lineOb , 
CPoint connectlineend) ; 

int OtherEndptlsCloser (CPoint thisendpt , 
CPoint otherlinept , 
CCompoundlmageObject *CimOb , 

- 14 3 -



CCompoundimageObject *OtherOB); 

II Attributes 
public: 
CArray<int, int > 
int 

sdesc ; 
sdesccount ; 
de leteflag; 

II Compound shape descriptor array 
II Count of# elements in the array 

int 

CArray<Curveinfo, Curveinfo> m_curvesorig; 

int 

int 

CString 
(String 

int 

int 

m_curvesorigcount ; 

objecttype; 

objectname ; 
objectcompoundname; 

linestartsatconnector ; 

lineendsatconnector; 

CArray <CString, CString > inlines ; 

CArray <int, int > 

CArray<CPoint, CPoint > 

CString 
int 

CString 
int 

CString 
int 

CString 
int 
CPoint 

CString 

inlinechainnums ; 

inlinecoords ; 

inappendage ; 
inappendchainnum ; 

basename; 
basechainnum; 

outappendage ; 
outappendchainnum; 

outline ; 
outlinechainnum ; 
outlinecoords ; 

matrixkey; 

CAr ray <CStr i ng , CStr i ng> token info ; 

int linefollowingnumlines ; 

int circularsearchparm; 

private : 
CArray<CString, CString> mergekeys ; 

144 -

II array of original, 
II non-adjusted curve information 

I I 0 => base shape , 1 => appendage , 
II 2 => connecting line 
II Name of object from token library 
II Name of compound object of 
II which this object is a part 

II 0 => obj is not a line , or 
II line does not start at 
II a connector 
II 1 => obj is a line , and line 
II starts at a connector 

II 0 => obj is not a line , or 
II line does not end at a connector 
II 1 => obj is a line, and line 
II ends at a connector 

II Input Connecting lines 

II Chain Numbers of input 
II connecting lines 

II Coordinates of junction 

II Input Appendage Shape 
II Chain Number of input appendage 

II Name of base shape 
II Chain number of base shape 

II Output Appendage Shape 
II Chain number of output appendage 

II Output connecting line 
II Chain# of output connecting line 
II Coordinates of junction 

II Key for this object in the 
I I connection matrix, returned 
II by function 
II BuildHatrixKeyAndlabel() 

II Coordinates of corners in shape , 
II and desc of associated line 

II Number of input lines for 
II this object as determined by the 
II line-following function 

II 0 => search from closest 
II points to farthest points 
II in circular search for 
II a continuation vector chain 
II (closed polygon search) . 
II 1 => search from farthest 
II points to closest points 



int mergekeyscount; 

II Operations 

public: 

II Overrides 
II ClassWizard generated virtual function overrides 
//{{AFX_VIRTUAL(CCompoundlmageObject) 
public : 
virtual void Serialize(CArchive& ar) ; II overridden for document i/o 
protected : 
virtual BOOL OnNewDocument() ; 
//}}AFX_VIRTUAi. 

II Implementation 
public : 

virtual -CCompoundlmageObject() ; 
¥ifdef DEBUG 

virtual void AssertValid() const ; 
virtual void Dump(CDumpContext& de) const; 

#end'i f 

II Generated message map functions 
protected : 

//{{AFX_HSG(CCompoundlmageObject) 

} ; 

II NOTE - the ClassWizard will add and remove member functions here . 
I I} }ATX_tlSG 
DECLARE_HESSAGE_HAP() 

Code Fragment 3: Member Functions Of CCompoundimageObject 

which assign tokens to basic shapes. 

void CCompoundlmageObject : :GenerateTokens() 
{ 

int 
int 
float 
C~tring 
Curvelnfo 
CArray<tnt , 1nt> 
CArray <int, int > 
cttrray <int , int > 
FloatCPoint 
111athfunctions 
tokdata 

size , idx, cornerscount; 
r i ghtdeg , lefnleg ; 
curvechange; 
sbuf, sbu-f"2 ; 
cvinf , cvinfZ , cvinf3 , cvinf4 , cvinf5; 
corners ; 
leftlengths ; 
rightlengths; 
pl . pZ , p3; 
mfunc; 
tok ; 

II First, remove any vectors with zero length , or very small length 
RemoveSmallVectors() ; 

size = m_curves.GetSize(); 

if (size < 1) 
{ 

$buf . Format("Error - Compound Shape# %d Has Less Than 2 Shape Vectors" , 
m chainnum); 

AfxHessageBox(sbuf) ; 
return ; 

- 145 -



II Clear the token array of any existing values 
$desc.RemoveAll() ; 
sdesc.SetSize(l , 1) ; 
$desccount = 0 ; 
tokeninfo . RemoveAll() ; 
tokeninfo . SetSize(O , 1); 

II Force the last vector endpoint to equal the first vector starting point , and 
II recalculate length for the last vector 
cvinf2 m curves.GetAt(size - 1) ; 
cvinf3 = m-curves .GetAt(size - 2); 
cvinf = m-curves . GetAt(O); 
cvinf2 .m endx cvinf .m startx ; 
~vinf2 . m=endy = cvinf . m=starty ~ 

cvinf2 . m_length = 
(short) mfunc.RoundFloat(mfunc .distance((float) cvinf2.m startx, 

(float) cvinfi . m_starty , 
(float) cvinf2 . m endx , 
(float) cvinf2 .m=endy)) ; 

m_curves . SetAt(size - 1, cvinf2) ; 

Jl Recalculate curvature for all shape vectors except the first 
RecalcCurvature() ; 

II Now , find the curvature between the last vector in the compound 
11 shape and the first , 
II and 
l' l.x 
pl. y 
f 2.x 
p2.y 
!'3.x 
p3.y 

save it to put in the first vector's curvature fields 
(float) cvi"nf2. m s ta r-tx ; 
(float) cvinf2 . m=starty ; 
(float) cvinf2 . m endx ; 
(float) cvinf2 . m=endy; 
(float) cvinf .m en~x ; 
(float) cvinf . m=endy ; 

rightdeg = 0 ; 
leftdeg = 0 ; 
( urvechange = mfunc . {alcCurvature-(p1 , -p2 , p3) ; 
if (curvechange > 0) 

rightdeg = mfunc . ConvertToDegrees(curvechange) ; 
e lse 

if (curvechange < 0) 
leftdeg mfunc.ConvertToDegrees((float) -1 * curvechange) ; 

~vinf . m_leftdegreechg = leftdeg; 
cvinf . m_rightdegreechg = rightdeg ; 
m_curves . SetAt(O , cvinf) ; 

II Now , find the corners in the shape vector array 
Clmagelib* pApp = (Cimagelib *) AfxGetApp(); 
Gorners . RemoveAll() ; 
cornerscount = 0 ; 
<;orners . SetSize(S , 1) ; 

float curvedist , curvedist2; 
f loatCPoint lastcurve , thiscurve , firstcurve ; 
lastcurve . x = (float) -1.0 ; 
lastcurve . y = (float) -1 . 0; 
firstcurve . x = (float) -1 . 0; 
firstcurve .y = (float) -1.0 ; 
curvedist2 = (float) 9999.0 ; 
int perim = HeasurePerimeterO ; 
int vectpaircheck ; 

II If the curvature between the last vector and the first is correct for a 
II corner , then add a corner at the f i rst vector 
vectpaircheck = CheckVectorPairForCorner(O) ; 

if ((rightdeg >= pApp- >UserDat . curvelow && rightdeg <= pApp -? UserDat.curvehi) I I 
(leftdeg >= pApp- >UserDat . curvelow && leftdeg <= pApp- >UserDat . curveh i ) I I 
vectpaircheck == 1) 

146 -



if (vectpaircheck != 2) 
{ 

corners . SetAtGrow(cornerscount++ , 0) ; 
lastcurve . x = cvinf .m startx ; 
lastcurve . y = cvinf.m=starty; 
firstcurve = lastcurve ; 

for (idx = 1 ; idx < size ; idx++) 
{ 

cv i nf = m curves . GetAt(idx) ; 
vectpaircheck = CheckVectorPairForCorner(idx) ; 
if ((cvinf .m_rightdegreechg >= pApp -> UserDat . curvelow && 

cvinf . m_ rizhtdegreechg <= pApp -> UserDat . curvehi) II 
(cvinf .m_leftdegreechg >= pApp -> UserDat . curvelow && 
cvinf .m_leftdegreechg <= pApp- >UserDat . curvehi) II 
vectpai rcheCk == J.) 

thiscurve . x = cvinf.m startx; 
thiscurve . y = cvinf . m=starty ; 
if (lastcurve . x == (float) -1.0) 
{ 

I/ On the first curve , make sure the distance che~ 
II will not prevent entry 
lpstcurve . x = thiscurve . x + 5000 ; 
lastcurve.y = thiscurve . y ; 

l 
curvedist = mfunc.distance(lastcurve . x , lastcurve.y , 

thiscurve . x, thiscurve . y) ; 
1f (firstcurve . x ! = (float) - 1 . 0) 

curvedist2 = mfunc .distance(firstcurve . x, firstcurve . y , 
thiscurve . x , thiscurve . y) ; 

! I check curve dist against user-defined percentage of 
II length of shape perimeter 
H ((curvedist > 

((float) pApp -> UserDat .mindistbetweenshapecorners 
i (float) 100) • (float) perim) && 
(curvedist2 > 
((float) pApp -> UserDat.mindistbetweenshapecorners I 
(float) 100) • (float) perim)) 

if (vectpaircheck != 2) 
{ 

corners . SetAt Grow(corner scount++, idx) ; 
\astcurve = thiscurve ; 
if (firstcurve . x == (float) -1.0) 

firstcurve = lastcurve ; 

II Init the token generation data struct 
tok . shapeperim = 0 ; 
tok . smallperimflag = 0 ; 
tok . leftcurvetotperim = 0 ; 
tok . rightcurvetotperim = 0 ; 
tok . straightlinetot perim = 0 ; 
tok . thiscurvelef t perim = 0 ; 
tok.thiscurverightperim = 0 ; 
tok.thiscurvestraightperim = 0 ; 
tok . leftcurvecount = 0 ; 
tok . rightcurvecount = 0 ; 
tok .straightcount = 0 ; 
leftlengths . RemoveAll() ; 
leftlengths.SetSize(O , 1) ; 
ri ghtlengths . RemoveAll() ; 
rightlengths .SetSize(O , 1) ; 

II Now , analyze the shape vectors and corner index array , 

- 147 -



I I arrd ~ace a s-e-t a-f. ~ tokens ttl"to- the ~e.. 
II descriptor array which describe the shape 

int wk4, wk5 = 0, maxlcurve = 0, maxrcurve = 0; 
for (i.~:£ = 0 ; tdx < cornerscount; idx++) 
{ 

wk4 = CQr~rs.GetAt(id:£); 
if (idx < (cornerscount - 1)) 

else 
.{ 

witS = (corners . GetAt (idx + 1) - 1) ; 

wk5 = (corners.GetAt(O) - 1) ; 
if (wk5 < 0) 

wk5 = size - 1; 

II scan between the m_curves entries referenced by 
II indices wk4 and wk5, and determine a shape descriptor 
int shapetok = AnalyzeShape(wk4, wk5, &tok); 
SetShapeDescriptorArray(shapetok) ; 

int tkidx; 
for (tkidx = 0 ; tkidx < numtokens; tkidx++) 
{ 

if (shapetok == tokentab[tkidx).code) break; 
} 
if (tkidx < numtokens) 

sbuf tokentab[tkidx] .desc; 
else 

sbuf "TOKENTABERROR"; 

cvinf4 = m curves.GetAt(wk4); 
cvinf5 = m=curves.GetAt(wkS); 
int rptperim; 
if (tok.thiscurveleftperim > 0) 

rptperim = tok.thiscurveleftperim ; 
if {tok.~hiscurverightperim > 0) 

rptperim = tok.thiscurverightperim; 
if (tok.thiscurvestraightperim > 0) 

rptperim = tok.thiscurvestraightperim; 

sbuf2.Format("%s: %d,%d - %d,%d Length : %d", 
sbuf, cvinf4 . m_startx , cvinf4.m_starty, 
cvi nf5 . m_endx , cvi nf5 . m_endy , 
rptper i m) ; 

tokeninfo . SetAtGrow(tokeninfo . GetSize() , sbuf2) ; 

if (tok.thiscurveleftperim > 0) 
{ 

} 

int lsize = leftlengths . GetSize() ; 
leftlengths.SetAtGrow(lsize , tok . thiscurveleftperim) ; 
if (to~ . thiscurveleftperim > maxl~urve) 

maxlcurve = tok.thiscurveleftperim ; 

if (tok.thiscurverightperim > 0) 
{ 

} 

int rsize = rightlengths.GetSize(); 
rightlengths.SetAtGrow(rsize , tok.thiscurverightperim); 
if (tok .thiscurverightperim > maxrcurve) 

maxrcurve = tok . thiscurverightperim; 

II add in a corner descriptor for each corner in the shape 
SetShapeDescriptorArray(CORNER) ; 

II Scan the array of tokens , and eliminate duplicate entries (can happen at the 
II start point of the shape vector array, if the start is not at a corner -
II could have STRAIGHTLINE , STRAIGHTLINE, ... for example 
for ('tdx = 1; idx < sdesccount; ) 
{ 

wk4 = sdesc.GetAt(idx) ; 

- 148 -



} 

wk5 = sdesc . GetAt(id)(- 1) ; 
if (wk4 == wk5) 
{ 

} 
else 

sdesc.RemoveAt(wk4 , 1) ; 
sdesccount-- ; 

idx++; 

sdesc.SetSize(sdesccount , 1); 

if (sdesccount > 1) 
{ 

wk4 = sdesc.GetAt(O) ; 
wk5 = sdesc . GetAt(sdesccount - 1) ; 
if (wk4 == wk5) 
{ 

sdesc . RemoveAt(sdesccount - 1) ; 
sdesccount-- ; 
sdesc . SetSize(sdesccount , 1) ; 

II Determine if LEFTCURVE or RIGHTCURVE tokens describe the shape ' s convex curve 

I I it will be the token type which has the largest proportion of the total 
II perimeter of the shape . If both types have equal perimeter , then we will 
I I arbitrarily choose LEFTCURVE as the convex curve descriptor 
II (it doesn't matter , either could be choosen in this case) . Then , see 
I I if the sum of the convex curve l~ngths is a correct percentage of the 
II total perimeter length . 

int convex, minuspct , pluspct ; 
if ((tok . leftcurvecount > 0 I I tok.rightcurvecount > 0) && !tok . smallperimflag) 
{ 

if (tok . leftcurvetotperim > tok . rightcurvetotperim) 
convex= LEFTCURVE ; 

else 
if (tok . rightcurvetotperim > tok . leftcurvetotperim) 

convex RIGHTCURVE ; 
else 

convex= LEFTCURVE ; 

pluspct pApp- >UserDat . convexperimpct + pApp- >UserDat . plusminuspct; 
if (pluspct > 100) pluspct = 100 ; 
minuspct = pApp -> UserDat . convexperimpct - pApp- >UserDat . plusminuspct; 
if (minuspct < 0) minuspct = 0 ; 
int perimlow = 
(int) ((float) tok. shapeperim * (float) 0. 01 * (float) minuspct); 
int perimhi 
(int) ((float) tok . shapeperim * (float) 0 . 01 * (float) pluspct) ; 

if (convex == LEFTCURVE) 
{ 

} 
else 
{ 

if (tok . leftcurvetotperim < perimlow II 
tok . leftcurvetotperim > perimhi) 

SetShapeDescriptorArray(REJECT) ; 

if (tok . rightcurvetotperim < perimlow II 
tok . rightcurvetotperim > perimhi) 

SetShapeDescriptorArray(REJECT) ; 

if (pApp- >UserDat . multicurvesamelength && !tok . smallperimflag) 
{ 

if (convex == LEFTCURVE) 
{ 

int lperimlow = (int) ((float) maxlcurve * (float) 0 . 01 * 
(float) pApp -> UserDat.plusminuspct) ; 

- 149 -



} 
else 
{ 

int lperimhi = maxlcurve + lperimlow; 
lperimlow = maxlcurve - lperimlow ; 
if (lperimlow < 0) lperimlow = 0 ; 
int asize = leftlengths . GetSize() ; 
int wklen ; 
for (idx = 0 ; idx < asize; idx++) 
{ 

wklen = leftlengths.GetAt(idx) ; 
if (wklen < lperimlow II wklen > lperimhi) 
{ 

SetShapeDescriptorArray(REJECT) ; 
break ; 

int rperimlow = (int) ((float) maxrcurve * (float) 0 . 01 * 
(float) pApp- >UserDat . plusminuspct) ; 

int rperimhi = maxrcurve + rperimlow ; 
rperimlow = maxrcurve - rperimlow ; 
int asize = rightlengths .GetSize() ; 
int wklen ; 
for (idx = 0 ; idx < asize ; idx++) 
{ 

wklen = rightlengths . GetAt(idx) ; 
if (wklen < rperimlow I I wklen > rperimhi) 
{ 

SetShapeDescriptorArray(REJECT); 
break ; 

int CCompoundimageObject: :CheckVectorPairForCorner(int curridx) 
{ 

Curveinfo 
int 

cvinf , cvinf2; 
size, totdeg = -1; 

float pctwk ; 

Cimagelib* pApp = (Cimagelib *) AfxGetApp() ; 
pctwk = (float) pApp- > User~t.maxcornervectlenpctofperim; 
pctwk *= (float) 0 . 01 ; I I Convert percent 
size = m curves . GetSize(); 
cvinf = m curves.GetAt(curridx) ; 
if (cvinf~m_rightdegreechg == 0 && cvinf . m_leftdegreechg 
int perim = HeasurePerimeter() ; 

if (curridx == 0) 
{ 

cvinf2 = m_curves . GetAt(size - 1); 
} 
else 

cvinf2 = m_curves . GetAt(curridx- 1); 

0) return 0 ; 

if (cvinf2 . m_length > (int) ((float) perim . pctwk)) return o· 

if ((cvinf . m_rightdegreechg 
cvinf . m_ rightdegreechg 
(cvinf . m_leftdegreechg 
cvinf . m_leftdegreechg 

>= pApp- >UserDat . curvelow && 
<= pApp- >UserDat.curvehi) I I 
>= pApp- >UserDat.curvelow && 
<= pApp- >UserDat . curvehi)) 

if (cvinf.m_leftdegreechg > 0 && cvinf2.m_rightdegreechg > 0) 
{ 

} 

totdeg = cvinf .m_leftdegreechg - cvinf2 . m_rightdegreechg ; 
if (totdeg < 0) totdeg *= (-1); 

if (cvinf . m_rightdegreechg > 0 && cvinf2.m_leftdegreechg > 0) 
{ 

- 150 -



} 
else 
{ 

} 

} 

totdeg = cvinf.m_rightdegreechg - cvinf2 . m_leftdegreechg; 
if (totdeg < 0) totdeg *= (-1); 

if (totdeg != -1) 
{ 

if {totdeg >= pApp- >UserDat . curvelow && 
totdeg <= pApp -> UserDat.curvehi) 

return 0 ; 
else 

return 2 ; 

if (cvinf.m_leftdegreechg > 0 && cvinf2 . m_leftdegreechg > 0) 
{ 

totdeg = cvinf.m_leftdegreechg + cvinf2 . m_leftdegreechg; 
} 
if (cvinf .m_rightdegreechg > 0 && cvinf2 . m_rightdegreechg > 0) 
{ 

} 
if 
{ 

totdeg = cvinf.m_rightdegreechg + cvinf2.m_rightdegreechg ; 

(totdeg != -1) 

if (totdeg >= pApp- >UserDat . curvelow && 
totdeg <= pApp- >UserDat.curvehi) 

r"E?turn 1 ; 

return o· 

Code Fragment 4: YACC Parser Generation Rules 

%{ 
#include <stdlib . h> 
#include <string . h> 
#include <stdio.h > 

#define YYSTYPE char * 
#define YYERROR_VERBOSE 
#define YYDEBUG 1 

/ * Input values are char strings */ 

void 
void 
extern void 
void 

SetGroupSymbols(char *operatorfld , int newgrp) ; 
EditTokensiNP(int numtokens) ; 
YaccOutput (char *data) ; 
Insertlnputs(char *input) ; 

char operators[500) = "" , tokeni[40) , token2[40) , outdata[540) , inputs[SOO) 

char outputname[40); 
int insertflag = 0, opidx , lenoperators ; 
%} 

%token OUTTOK OR XOR NA N INP NOR NOT AND 
%% 

statement: outexpr toklist3 expression 
{ 

i nt idx ; 
strcpy(outdata , "Z") ; 
strcat(outdata , outputname + 4) ; 
strcat (outdata , "( ") ; 
for (idx = 0 ; idx < (int) strlen(inpu t s) ; idx++) 
{ 

strncat(outdata , &inputs[idx[ , I) ; 
if (idx < (int) strlen(inputs) - I) 

- 151 -



expression : 

I * 

I * 

I * 

I* 

I • 

I * 

I * 

I * 

I * 

I * 

strcat(outdata , " , ") ; 
} 
strcat(outdata , ") = ") ; 
strcat(outdata , operators) ; 
YaccOutput(outdata) ; 
operators(OI '\0' ; 
inputs(O) '\0' ; 
insertflag = 0; 

outexpr toklist3 
{ 

} ; 

int idx ; 
strcpy(outdata , "Z") ; 
strcat(outdata , outputname + 4) ; 
strcat(outdata , "(") ; 
for (idx = 0 ; idx < (int) strlen(inputs) ; idx++) 
{ 

} 

strncat(outdata , &inputs(idx) , 1); 
if (idx < (int) strlen(inputs) - 1) 

strcat (outdata , " , ") ; 

strcat(outdata , ") = " ) ; 
EditTokensiNP(l) ; 
strcat(outdata , tokenl) ; 
YaccOutput(outdata) ; 
operators(O) '\0' ; 
'inputs(O) '\0' ; 
insertflag = 0 ; 

expression andgroup 
{ 

EditTokensiNP(2); *I 
} 
expression orgroup 
{ 

Ed i tTokensiNP(2) ; *I 
} 
expression xorgroup 
{ 

fditTokensiNP (2) ; *I 

expression norgroup 
{ 

EditTokensiNP(2) ; *I 
} 
expression nangroup 
{ 

EditTokensiNP(2); *I 
} 
expression notgroup 
{ 

EditTokensiNP(l) ; *I 
} 
andgroup 
{ 

Edi tTokensiNP (2) ; *I 

or group 
{ 

EditTokensiNP(2); *I 

xorgroup 
{ 

EditTokensiNP(2) ; *I 

nor group 
{ 

EditTokensiNP(2) ; *I 

nang roup 

- 152 -



I* 

I* 

andgroup : 

orgroup: 

xorgroup: 

norgroup: 

nangroup: 

notgroup: 

Edi tTokensiNP (2) ; *I 

notgroup 
{ 

} 
INP 
{ 

} ; 

EditTokensiNP(1); *I 

Tnsertlnputs ($1 + 4); 

AND toklist1 toklist2 
{ 

} ; 

OR 
{ 

}; 

if (!insertflag) 
SetGroupSymbols("AND", 0) ; 

5etGroupSymbols(tokenl, 0); 
SetGroupSymbols (token2 , 1) ; 

toklistl toklist2 

if (!insertflag) 
SetGroupSymbols("OR" 0); 

SetGroupSymbols(tokenl, 0); 
SetGroupSymbols (token2, 1); 

XOR toklist1 toklist2 
{ 

} ; 

if (!insertflag) 
SetGroupSymbols("XOR" , 0) ; 

SetGroup5ymbols(token1, 0); 
SetGroupSymbols (token2, 1); 

NOR toklist1 toklist2 
{ 

} ; 

if (!insertflag) 
SetGroupSymbols("NOR", 0); 

SetGroupSymbols (token1, 0) ; 
SetGroupSymbols (token2, 1); 

NAN toklist1 toklist2 
{ 

} ; 

if (!insertflag) 
SetGroupSymbols ("NAN", 0); 

SetGroupSymbols(tokenl, 0); 
SetGroupSymbols (token2 , 1) ; 

NOT toklistl 
{ 

} ; 

if (!insertflag) 
SetGroupSymbols("NOT", 0); 

SetGroupSymbols (tokenl, 1); 

toklist1 : AND 
{ 

} 
OR 
{ 

} 
NOT 
{ 

} 
XOR 

strcpy(token1, $1); 

strcpy(tokenl, $1); 

strcpy(token1, $1); 

- 153 -



strcpy(tokenl. $1); 
} 
NOR 
{ 

strcpy(token1, $1) ; 
} 
NAN 
{ 

strcpy(token1 , $1) ; 
} 
INP 
{ 

strcpy(token1 , $1) ; 
Insertlnputs($1 + 4) ; 

} ; 
toklist2: AND 

{ 
strcpy(token2 , $1) ; 

} 
OR 
{ 

strcpy(token2 , $1); 
} 
NOT 
{ 

strcpy(token2, $1) ; 
} 
XOR 
{ 

strcpy(token2, $1) ; 
} 
NOR 
{ 

strcpy(token2 , $1) ; 
} 
NAN 
{ 

strcpy(token2, $1); 
} 
INP 
{ 

strcpy(token2 , $1) ; 
Insertlnputs($1 + 4) ; 

} ; 

toklist3 : AND 
{ 

strcpy(token1 , $1) ; 
} 
OR 
{ 

strcpy (token1 , $1) ; 
} 
NOT 
{ 

strcpy(token1 , $1) ; 
} 
XOR 
{ 

strcpy (token1, $1); 
} 
NOR 
{ 

strcpy (token1 , $1); 
} 
NAN 
{ 

strcpy (token1 , $1) ; 
} 
INP 
{ 

- 154 -



} ; 

strcpy(token1, $1); 
Insertlnputs ($1 + 4) ; 

outexpr : OUTTOK 
{ 

strcpy(outputname , $1) ; 
}; 

%% 

void SetGroupSymbols(char *operatorfld, int newgrp) 
{ 

int idx ; 
char work[SOO] , data[40] ; 

if (!strncmp(operatorfld , "INP" , 3)) 
strcpy{data , operatorfld + 4) ; 

if {! strcmp{operatorfld , "AND")) 
strcpy(data, "(&*&) ") ; 

if {!strcmp(operatorfld , "OR ")) 
strcpy(data , "{&+&) ") ; 

if (!strcmp(operatorfld, "XOR")) 
strcpy(data , "(&{+)&) "); 

if (!strcmp(operatorfld , "NO"R")) 
strcpy{data , "{&+&) '") ; 

if (!strcmp(operatorfld , "NAN")) 
strcpy(data , " (&*&) 0 

" ) ; 

if (! strcmp(operatorfld o "NOT")) 
strcpy(data o "(&) 0 

") ; 

if ( ! insertflag) 
{ 

} 
else 
{ 

insertflag = 1 ; 
strcpy(operators o data) ; 
lenoperators = strlen(operators); 
opidx = 0 ; 

for (idx = opidx ; idx < lenoperators; idx++) 
{ 

} 

if (operators[idx] == 0 &0
) 

{ 
break ; 

if (idx < lenoperators) 
{ 

} 
else 

strcpy(worko &operators[idx + 1]) ; 
strcpy{&operators[idx], data) ; 
strcpy(&operators[idx + strlen(data)], work); 
opidx = idx + strlen(data); 
lenoperators = strlen(operators); 

for (idx = opidx ; idx < lenoperators; idx++) 
{ 

if (operators[idx] == 0 &0
) break; 

} 
if (idx == lenoperators) 
{ 

opidx = 0 ; 

strcpy(operators , "GENERATION ERROR"); 

if (newgrp) 
opidx o· 

- 155 -



void EditTokensiNP(int numtokens) 
{ 

if (strncmp(tokeni , "INP" , 3)) 
YaccOutput("ERROR - Could not find path from output back to input") ; 

if (numtokens == 21 
{ 

if (strncmp(token2 , "INP" , 3)) 
YaccOutput("ERROR- Could not find path from output back to input") ; 

void Insertlnputs(char * input) 
{ 

char work [500] ; 
int idx, len; 

len = strlen(inputs); 
for (idx = 0 ; idx < len ; idx++) 
{ 

if (!strncmp(input, &inputs[idx]. I)) break; 
} 
if (idx == len) 
{ 

for 
{ 

} 
if 
{ 

} 

(idx = 0 ; idx < len ; idx++) 

if (inputs[idx] > input[O]) break ; 

(idx < len) 

strcpy(work , &inputs[idx]) ; 
strncpy(&inputs[idx], input , I) ; 
strcpy(&inputs[idx + I], work) ; 

else 
strncat(inputs, input , I) ; 

- 156 -



APPENDIX B 

User Manual For The TOKSCAN Program 

This user manual has two parts: 1) A description of the 

graphical user interface, which explains the operation of 

the various visual controls, and 2) Operational 

instructions for processing the test images provided with 

the program. The Zip Disk which comes with this paper 

contains the set of test image files as well as the program 

executables and supporting data files. 

- 157 -



The Graphical User Interface 

The user controls in each window and dialog box are shown in the next few 
pages, with an explanation of the function provided. 

1. Main Application Window - Toolbar 

f~. TOKSCAN - Token-Based Schematic Analysis "I!] 1£3 

A. Open new file. 

A file-open dialog box is displayed, where the user can select an image file to be 
opened and displayed. The file must be in Windows BMP format. 

B. Perform Binarization 

A dialog box is displayed which allows the user to select a binarization global 
threshold value in the range 0 - 255, where 0 is pure black, 255 is pure white, 
and every other value is a shade of gray in between. From the dialog box, the 
user can apply binarization to the image using the selected grayscale value. 

C. Perform Noise Reduction 

A dialog box is displayed which allows the user to select a threshold value for 
the noise reduction operation, and to apply noise reduction to the image. A 
"window size" can also be selected, which specifies the number of pixels which 
surround a pixel of interest that are used to calculate an average grayscale 
value for the pixel of interest. The average value is compared with the selected 

- 158 -



threshold value, and the color of the pixel of interest is set to either pure white or 
pure black accordingly. 

D. Rotate Image 5 Degrees To Right 

The displayed image is rotated clockwise by 5 degrees. Menu options are 
available which allow the user to rotate the image by incrementally larger 
amounts. 

E. Rotate Image 5 Degrees To Left 

The displayed image is rotated counterclockwise by 5 degrees. Menu options 
are available which allow the user to rotate the image by incrementally larger 
amounts. 

F. Zoom Image In By 5 Percent 

The displayed image is magnified by 5 percent, and the total size of the bitmap 
is increased by 5 percent. Menu options are available which allow the user zoom 
in by incrementally larger amounts. 

G. Zoom Image Out By 5 Percent 

The displayed image is compressed in size by 5 percent. Menu options are 
available which allow the user zoom out by incrementally larger amounts. 

H. Load Image Vectors From Database Into Memory 

Vectors which describe the currently displayed image, which were previously 
created by TOKSCAN and saved in the database, are loaded into memory for 
processing. This function is provided in order to avoid having to perform 
vectorization every time an image is loaded for recognition . A file-open dialog 
box is displayed, so the user can select a "pre-thinned" binary image for 
processing. The original image must have already been thinned, and the result 
saved in the file which is opened at this point. 

I. Save Image Vectors From Memory Into Database 

Vectors which describe the currently displayed image, which have just been 
created by the vectorization process, and which currently reside in memory, are 
saved in the database. They may be reloaded into memory, as described in H. 

- 159 -



J. Save Image File To Disk In Windows BMP File Format 

A file-save dialog box is displayed, which allows the user to save the displayed 
image in Windows BMP file format on a hard disk or diskette. 

K. Perform Token Library Analysis 

Pressing this button causes TOKSCAN to perform image recognition on the 
displayed image up to the point of detecting closed minimal polygons, and 
generating the shape tokens which describe the polygons. If the image has 
already been thinned, and if vectorization has already been performed, the 
program will go immediately into polygon detection; otherwise it will perform 
thinning and vectorization as needed. It is possible to "pre-thin" and "pre
vectorize" an image, and save the results on disk. Then, the thinned image and 
the accompanying set of vectors can be reloaded at a later time, and image 
recognition can be performed without having to go through thinning and 
vectorization again. In the second section of this manual, instructions are given 
for processing the images provided with the software. Specific directions are 
provided for "pre-thinning" and "pre-vectorization". 

L. Perform Full Image Recognition 

Pressing this button causes TOKSCAN to perform full image recognition on the 
displayed image. Components are located and labeled, and connecting signal 
lines and circular line connectors are located. After this function completes 
execution, the image is ready for the user to specify circuit input and output 
points, and to request generation of the equation. 

M. Toggle Mouse Cursor Between Standard Cursor And Circuit 
Input/Output Indicator 

The user specifies the location of all input signals to the circuit, and all output 
signals from the circuit, by selecting line end points with the mouse. To do this, 
the user must change the mouse cursor from its standard form to an inpuUoutput 
indicator form. This toolbar button toggles the mouse cursor between standard 
form and inpuUoutput indicator form. 

N. Generate Equation For Recognized Schematic Image 

The user presses this button after full image recognition has been completed, 
and after all circuit input and output points have been identified (manually). 

- 160 -



TOKSCAN follows all connecting signal lines from input to final output, and 
generates one or more logic equations which describe the recognized circuit. 

0. Display The "ABOUT" Dialog Box 

The user presses this button to display a dialog box with information about 
TOKSCAN. 

1. Main Application Window - Menu Selections 

File Menu 

A. Open 

A file-open dialog box is displayed, where the user can select an image file to be 
opened and displayed. The file must be in Windows BMP format. 

B. Recent File List 

If a file from this list is selected (a recently opened image file), it will be opened 
without displaying the file-open dialog box. 

C. Exit 

The application closes. 

- 161 -



1. Main Application Window - Menu Selections Continued 

f}_ TOKSCAN- Token-Based Schematic Analysis L!l~£4 

User Parms Menu 

Each item in this menu opens a dialog box which provides access to a set of 
user-adjustable parameters which influence or monitor the image recognition 
process. In all cases except for the line-smoothing parameters and log file 
parameters, slider controls are used to allow the user to pick a valid numeric 
value from a given range. In the line-smoothing and log file dialog boxes, the 
user types data into a set of edit controls. Each parameter from all of these 
dialog boxes (except for the log file parameters) is explained in detail in section 
2.15 - "User-Adjustable Parameters For The Recognition Process", and the 
explanations are grouped in order by dialog box. 

An example of each dialog box is shown in the following pages. 

- 162 -



Curvature And Junction Margin Of Error Dialog 

Image Analysis Parameters- Curvature And Junction Margin 01 Enor 

J ~--

·, 
~.. -~--. . ... 

M-~xilllUm Gap BetWeen Base Shapes And Appendage Shai;esOr Line Endpoinl~ For A 'JunptiorfT oExisr= 

·•· -Curvature Oet~diot)·V~~s: Threshold Distance: The perpendicular distance from a data point lo.cated betweeQ two corners to an ~ 
imaginary line~drawn he tween the !wo corner points·. Qata points beyond the tbresnold indicate vec!Ots that a [a part of a curve. 
Percent Beyond Threshold: The ·minimum percentage of perimeter length between t~o corners of a shaJ)e object which are beyond 
the threshold distance (described above) for the periJ!lele! segment to be, described as a "left curve" or "right cur_ve". 

' Min Distanc~ Betw~n Shape Garners: The !flin allowable dist (expressed:as a !)eicentage of shaiJB!lerime\er length)bet\.ieen ~ 
shape corners; I( a corner js detected at a lac less than the min dist from the_last corner, it is not inserted into the shape desc. · 

.Pet OJ Pe~im·MaK Curve Vect [n; Two ~uccessive sma(veclors w~h sumni~d curvC~tUre that exceeds uie carrier d~tectton value are 
used to determine a_ comer. The max length of these vectors is a percentage· of_ total shape _pe~ime~er length. 
Aloo, two succesiive smal vectors with opposite curvatwe, where· the summed cuf'tature is less than the corner detection,value are · 

. used to determine that a coiner should not be detected, even when one vector alone has 'sufficent curvature lot a corner. . . 
( - •' ~- ' •• "\ - • - • -. _.: -· :: -. ' -;- • • - "" - ' ; • ' ' ' • _.< ~ -

~~q~nt Be~?~-I~!~d: 4~ P~~eni: 
f·-' 

The parameters in this dialog box have to do with the threshold curvature for 
corner detection, the maximum distance between shapes in order for them to be 
linked together into a compound shape, and the threshold values for shape 
token generation. See section 2.15 for a detailed explanation of each 
parameter. 

163 



Perimeter Values Dialog 

Image Analysis Parameters · Perimeter Values 

The parameters in this dialog box have to do with the maximum perimeter 
lengths for base shapes and appendage shapes. See section 2.15 for a detailed 
explanation of each parameter. 

164 



Line Smoothing Parameters Dialog 

The parameters in this dialog box have to do with line smoothing during the 
vectorization process. See section 2.15 for a detailed explanation of each 
parameter. 

- 165 -



Closed Polygon Search Parameters Dialog 

Image Analysis Parameters - Closed Polygon Search Parameters 

The parameters in this dialog box have to do with the detection of closed minimal 
polygons. See section 2.15 for a detailed explanation of each parameter. 

- 166 -



Shape Object Parameters Dialog 

Image Analysis Parameters - Shape Object Parameters 

Maximi,Jm [e~g~ O!V~ctors Wh~h AieAut~malicafty Flemoved:From ComJ)OUnd Shap·e Obje~ts'sed~u~e ann significant Length: - ; .. . . ~ . ·-; . . 

'.• 

: Lines. · ·-

The parameters in this dialog box have to do with the processing of the various 
shape objects which are created during the recognition process. See section 
2.15 for a detailed explanation of each parameter. 

- 167 -



Processing Log Dialog 

Processmg log 
.. '~-

-.· .. 
R'' v~cto; char; Log · 

.. ~:.Shape Object Log 

The Processing Log dialog differs from the other user parameter dialogs, in that 
the user sets values which control the display of a processing log which 
monitors the image recognition process. In the lower left corner, the user can 
select the kinds of messages which should be included in the log from any of 
three categories: 

Vector Chain Log - lists the vectors which describe the simple shape objects 
selected by the shape determination log filter. 

Shape Object Log - lists information about compound shape objects selected by 
the shape determination log filter. 

Basic Shape Determination Log - lists processing information during the 
detection of closed minimal polygons. 

- 168 -



The processing log is used for debugging purposes to gather detailed 
information about the program execution when an image is not recognized 
properly. 

Simple and compound shape objects can be selected for log information by 
entering their identifying chain number in one of two ways: 1) They may be 
entered manually by pressing the "Shape Determination Log Filter" button, and 
typing in the proper chain numbers. 2) Objects in the image may be selected 
directly from the image by using the mouse. When an object is selected, a dialog 
box opens which provides recognition information about the object, including its 
identifying chain number. The user can either type in the displayed chain 
number (#1 above), or double click on the chain number displayed in the object 
information dialog to have it automatically inserted into the list of object numbers 
for which log information is being collected. To select an object with the mouse, 
the mouse cursor should be placed near the desired object, and the left mouse 
button should be held down, while moving the mouse toward the object. A 
selection rectangle will be drawn in the window, and any objects which fall within 
that rectangle will be selected and displayed in the dialog box. 

There are two different dialog boxes which may be displayed when an object is 
selected, one for simple shape objects, and the other for compound shape 
objects. The simple shape object dialog is displayed when an object is selected 
before Library Analysis or Image Recognition is run. The compound shape 
object dialog is displayed when an object is selected after Library Analysis or 
Image Recognition is run. 

These two dialog boxes are shown and described later in this manual. 

- 169 -



Processing Log Dialog 

Shape Selection Oala f3 

~ . 

01 82 

This dialog box is displayed when the "Shape Determination Log Filter" button is 
pressed in the Process Log dialog box. It allows the entry of identifying chain 
numbers for shape objects in order to display program execution information 
about the objects in the process log. The list may be updated manually using this 
dialog, or entries may be added by direct selection from the image, as described 
above in the "Process Log Dialog" information. 

- 170 -



Token Edits Dialog 

·:. :·~:- - ....... ,•-:: . .··. - -. ~; ~· -.. -. . . _-. -~ : .. ·..:. ' . -~.: ~ . -·· ~,- ·. · . .... _ ~- \ . __ - - -
: 'P fM1.1Itiple UiFTCURV£'s.Dr RIGHJCUR\I£'s Shoold_H&v~ Nearl.l' Ihe Same Length[+: 'Plus/Minus Percent"x Longest Curve] , ·. 
,. • _"- • • • -. - . ~ ' . .!.-' • • ~ - . - .. -· •• • : :--· -.. • - - ' •• ' • ""' - • ' ~ • 

The parameters in this dialog box have to do with distinguishing between valid 
component shapes and invalid shapes formed from crossed signal connector 
lines. See section 2.15 for a detailed explanation of each parameter. 

- 171 -



i:r-. TOKSCAN - Token-Based Schematic Analysis: l!lliiEJ 

loke""Libracy Men\,1 

The EDIT TOKEN LIBRARY selection displays a dialog box which allows 
descriptive token lists to be added or updated in the token library. The dialog box 
is documented on the following page. 

- 17 2 -



Shape Token Library Update Dialog 

Shape Token library Update 

~ . ·' 

~ ,. ··;, ... 

-:' 

,_·. 

"' . .-

To'AddA Token Toe The O.neri S!we T ok~ L~l select AT ~eri Frtm The tJston The leJt,ArdPres$ ''>". ToA~veA 
.. TQkenFrexn TheDlrentlisLSelecl~ Token From The ListOn TheRiglt,ArdPres$"<". . · -' 

LEFT CURVE 
STRAIGHTLINE 

· CORNER 
.. SMALLPERIM RIGHTCURVE 
· SMALLPERIM-LEFT CURVE 

... SMALLPERIM)TRAIGHTLINE 

·u The~~ Are M~leVaid T okei).Lists ForA ~iven Shap3.Name (E~k):lng 
·. , .. Pemua!ioos Of M Emtllg Ll$!1..Press "Stait'New .List" l o End T~ ~ert . 

• T ~en Lisi:Ard Start A Ne\'1 One. . . . 

This dialog box is used to update the shape token library with new token lists. 
Lists may be added or removed, by following the directions shown in the dialog 
box. Token lists may also be added to the library by using the "Compound Shape 
Object Information" Dialog, which is described later in this manual. 

- 17 3 -



Basic Shape Linear Relationships In Compound Shape Dialog 

8as1c Shape Lineal Aelahonsh1ps In Compound Shape 
;!. •,. 

· ~c:~N.aoe'oi~st.~pe: JAND!it\TE 
• '· .. • . ~. -r. 

C~Shc4ie N<rne · 1~[-iles 
r.; . -::- •·· ,., •• -

ORGATE 
, NOT!i6.TE 
· ·. NANDGATE 
l NORGME 
~ XOR!i6.TE 

UNES2 
LINES! 
LINES2 
LINES2 
LINES2 

NONE 
NONE 
NONE 
NONE 
SMALLCIRCLEAPPEND 

ORSHIIPtBASE 
NOTSHAPEBASE 
ANDSHAPEBASE 
ORSHIIPtBASE 
ORSHIIPtBASE 

NONE 
SMALLCIRCLEAPPEND 
SMALLCIRCLEA??END 
SMALLCIRCLEAPPEND 
NONE 

LINES! 
LINE S! 
LINES! 
LINES1 
LINES! 

This dialog is displayed by pressing the "Shape Relationships" button in the 
"Shape Token Library Update" dialog box. It allows the user to specify the 
relationship between the simple shapes which make up the more complex 
schematic component. As an example of how this is used, look at the first line of 
data shown above in the dialog box. 

The compound shape, named "ANDGATE" is a schematic component, and when 
a successful match is made with an AND logic gate in a schematic image, the 
component will be labeled as an "ANDGATE". Reading from left to right, the data 
line which describes the ANDGATE may be interpreted as follows: the 
ANDGATE has 2 input lines, no input appendage, it uses the AND base shape, 
it has no output appendage, and it has one output line. All of these simple 
shapes are arranged in the linear order given by reading left to right. 

A new compound shape can be added by entering a name in the "Name Of 
Compound Shape" edit control, and then selecting appropriate entries from each 
of the "drop-down combo-boxes" below it, and pressing the ADD button. Deletes 

- 174 -



may be done by selecting an existing entry, and pressing the DELETE button. 
Note that if a new shape is added, corresponding "hard coding" will have to be 
added to the source code in the current version of TOKSCAN to generate new 
token types for the parser, so that the new shape is included in the resulting 
equation. See Appendix B for more information about hard coding. 

- 175 -



1. Main Application Window - Menu Selections Continued 

View Menu 

A. Toolbar 

Selecting this item toggles the appearance of the toolbar, making it appear or 
disappear from the window. 

B. Status Bar 

Selecting this item toggles the appearance of the status bar at the bottom of the 
window, making it appear or disappear. 

i~. l OKS CAN - Token-Based Schemahc Anal.vs•s R~ f3 

Help Menu 

Selecting About TOKSCAN displays a dialog box with information about the 
program. 

- 176 -



2. Document Window - Menu Selections 

f~_ TOKSCAN -Token-Based Schematic Analysis I!J(i] £i 

A. Save Bitmap As 

A file-save dialog box is displayed which allows the displayed bitmap to be 
saved in Windows BMP file format. 

B. Load Shape Object Vectors From DB 

Vectors which describe the currently displayed image, which were previously 
created by TOKSCAN and saved in the database, are loaded into memory for 
processing. This function is provided in order to avoid having to perform 
vectorization every time an image is loaded for recognition . A file-open dialog 
box is displayed, so the user can select a "pre-thinned" binary image for 
processing. The original image must have already been thinned, and the result 
saved in the file which is opened at this point. 

- 177 -



C. Save Shape Object Vectors In Db 

Vectors which describe the currently displayed image, which have just been 
created by the vectorization process, and which currently reside in memory, are 
saved in the database. They may be reloaded into memory, as described in B. 

D. Open Database File 

TOKSCAN is capable of maintaining a library of database files, each of which 
contains the vectorization output for one image which has been processed by 
the program. When images are reprocessed, the appropriate database of 
vectors may be opened and transferred into memory, and recognition may be 
performed without having to perform vectorization again. A file-open dialog is 
displayed, which allows the user to select a .dbs file from the library. 

E. Save Database File As 

After vectorization has been completed on an image, the user can save the 
resulting database file into the library of vectorization files (described in D). A 
file-save dialog is displayed, which allows the user to save the database in the 
library with a .dbs file type. 

F. Open Token Library File 

TOKSCAN is capable of maintaining a library of token files. The token library for 
a specific image or group of images is saved in a single file, but TOKSCAN can 
handle multiple distinct token libraries in separate files. A file-open dialog is 
displayed which allows the user to open a token library file of type .tok. 

G. Save Token Library File As 

A token library may be saved in a single file, which may be added to a library of 
token files, each of which is a separate token library. The user may choose an 
appropriate token library for use with a specific image or group of images, as 
described in F. A file-save dialog is displayed which allows the user to save the 
token file in the library with a .tok file type. 

H. Open User Parm File 

TOKSCAN is capable of maintaining a library of user parameter files. Each 
parameter file contains one complete set of user parameters, which control the 
recognition process. Using this feature, the user can automatically set all of the 
user-adjustable parameters at one time to values which are appropriate for a 

- 178 -



particular image. A file-open dialog is displayed, which allows the user to open 
a user parameter file of type .upr. 

I. Save User Parm File 

After the user sets the processing parameters for a particular image, they may 
be saved permanently in a user parameter file. This file can be opened later for 
use with any desired image. When it is opened, all of the adjustable parameters 
are set according to the values saved in it. TOKSCAN can save and open 
multiple user parm files from a library, so that a distinct parm file can be 
maintained for each image. A file-save dialog is displayed, which allows the user 
to save the parm file with file type .upr. 

J. Exit 

The application is closed. 

- 179-



2. Document Window - Menu Selections Continued 

f}_ TOKSCAN - Token-Based Schematic Analysis R l!U:J 
~ file 

~. . ~ ~. ·'.., :~) " li :_- ai;}~_ri~i~~- ~- -- ~ .. ·c -: ~: 
L · · '- ·. N?_ise Real.{ction . _, . t==~=====!.;;=~ ....... -l;;;;.;..;:_...__.:;..;,_;....:.~..:.......;..;.....-...-

:· , ¢:qomln E!_y: · .' -· ~ 

i ·' Z~o~ Out By: ---_- · _-. -~ · 
· Rciiate Image. Right 8{ . ~ 
, RotateJmage LeftBy: ·.- . 1-------. 

A. Binarization 

A dialog box is displayed which allows the user to select a binarization global 
threshold value in the range 0 - 255, where 0 is pure black, 255 is pure white, 
and every other value is a shade of gray in between_ From the dialog box, the 
user can apply binarization to the image using the selected grayscale value. 

B. Noise Reduction 

A dialog box is displayed which allows the user to select a threshold value for 
the noise reduction operation, and to apply noise reduction to the image. A 
"window size" can also be selected, which specifies the number of pixels which 
surround a pixel of interest that are used to calculate an average grayscale 
value for the pixel of interest. The average value is compared with the selected 

- 180 -



threshold value, and the color of the pixel of interest is set to either pure white or 
pure black accordingly. 

C. Zoom In By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "zoom percentage values". After a 
percentage value is selected, the displayed image is magnified by the selected 
percentage, and the total size of the bitmap is increased by that percentage. 

D. Zoom Out By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "zoom percentage values". After a 
percentage value is selected, the displayed image is compressed by the 
selected percentage, and the total size of the bitmap is decreased by that 
percentage. 

E. Rotate Image Right By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "rotation degree values". After a degree value 
is selected, the displayed image is rotated clockwise by the selected number of 
degrees. 

F. Rotate Image Left By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "rotation degree values" . After a degree value 
is selected, the displayed image is rotated counterclockwise by the selected 
number of degrees. 

- 181 -



Select Binarization Threshold Level Dialog 

This dialog box is used to control the binarization process. The slider is used to 
set the global threshold to a value in the range 0 - 255, and it is applied to the 
image by pressing the APPLY button. 

Apply Noise Reduction Filter Dialog 

- . 

Apply Noise Reduction Fille1 

This dialog box is used to control the noise reduction process. The sliders are 
used to set a "window'' size (of data around a pixel of interest), and a global 
threshold value that is compared with the average grayscale intensity in the 
window. The effects of the settings may be observed by pressing the PREVIEW 
button. Each time PREVIEW is pressed, the image reverts to its original state 

182 -



before noise reduction is applied again. When the APPLY button is pressed, the 
last noise reduction performed is applied to the image for the duration of 
processing. 

- 183 -



2. Document Window - Menu Selections Continued 

f}_ TOKSCAN- Token-Based Schematic Analysis -t1!11!1Et 

'( 

NOTE: The USER-PARMS and TOKEN-LIBRARY menu items have exactly 
the same functionality as the corresponding menu items in the main 
application window, which have already been discussed. They are not 
presented again in this section. 

A. Find Basic Shapes For Library Update 

Making this selection causes TOKSCAN to perform image recognition on the 
displayed image up to the point of detecting closed minimal polygons, and 
generating the shape tokens which describe the polygons_ If the image has 
already been thinned, and if vectorization has already been performed, the 
program will go immediately into polygon detection; otherwise it will perform 
thinning and vectorization as needed. It is possible to "pre-thin" and "pre-

- 184 -



vectorize" an image, and save the results on disk. Then, the thinned image and 
the accompanying set of vectors can be reloaded at a later time, and image 
recognition can be performed without having to go through thinning and 
vectorization again. In the second section of this manual, instructions are given 
for processing the images provided with the software. Specific directions are 
provided for "pre-thinning" and "pre-vectorization". 

B. Find And Process Basic Shapes 

Making this selection causes TOKSCAN to perform full image recognition on the 
displayed image. Components are located and labeled, and connecting signal 
lines and circular line connectors are located. After this function completes 
execution, the image is ready for the user to specify circuit input and output 
points, and to request generation of the equation. 

C. Generate Schematic Equation 

The user makes this selection after full image recognition has been completed, 
and after all circuit input and output points have been identified (manually) . 
TOKSCAN follows all connecting signal lines from input to final output, and 
generates one or more logic equations which describe the recognized circuit. 

- 185 -



2. Document Window - Menu Selections Continued 

·.;==..::=:=:::::=~::::::±::::=::!:..:.:::::::=::::::!::=...:=±::::::t::::::!::=:::::::~:::! , E~tr<!Ct Shape Object V~ctors · 
' · Dr<~;w Shape Objectyectors · 
' ··.·Reorganize Shap~ Vec_tors 
· . Draw Comecting Lines . 

: . _.8~set BitQli:!P .. ~- "'- : _ · · 
Load Thinned .Bitmap Fror:n File 

NOTE: The VIEW and HELP menu items have exactly the same functionality 
as the corresponding menu items in the main application window, which 
have already been discussed. They are not presented again in this section. 

A. Thin Image 

Making this selection causes TOKSCAN to perform thinning on the displayed 
image. 

B. Extract Shape Object Vectors 

Making this selection causes TOKSCAN to perform vectorization on the 
displayed image, and save the resulting vectors in the database. 

- 186 -



C. Draw Shape Object Vectors 

Making this selection causes TOKSCAN to draw all of the shape object vectors 
which were placed in simple shape objects as a result of the vectorization 
process. 

D. Reorganize Shape Vectors 

Making this selection causes TOKSCAN to reorganize the vector chains created 
during vectorization into a more usable form where gaps between end points 
are eliminated, and where the vectors in neighboring chains are given the same 
direction. 

E. Draw Connecting Lines 

Making this selection causes TOKSCAN to draw the recognized signal 
connector lines. 

F. Reset Bitmap 

Making this selection causes TOKSCAN to refresh the currently displayed 
bitmap image from the file on the hard disk. 

G. Load Thinned Bitmap From File 

Images may be "pre-thinned" and "pre-vectorized", in order to save processing 
time when they are called up for testing multiple times. In order to accomplish 
this, it is necessary to perform thinning on the original image, and then to save 
the thinned image as a separate file. When this selection is made, a file-open 
dialog is displayed which allows the user to select a "pre-thinned" image to load 
for image recognition. The next section provides instructions for working with 
"pre-thinned" and "pre-vectorized" images. 

H. Refresh Identified Objects 

Making this selection causes TOKSCAN to perform image recognition on the 

- 187 -



Chain Shape Object Information Dialog 

Chain Shape Object lnf01mation 

-- -.• !" 

_.:., 

\'. 
- ~-- - .. 'CHt.IN 11· 0051 . - -- . .. . . . . - o- . • - . - ... .. . - - .. - ... .- - .. . • .., ...... - . . 

SHAPE KEY: 0355 0100 0 0352 0106 2 
Curve II 000001 : Length: 00007 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Sta~t: 0355.0100 End: 0352,0106 

· Curve II 000002: Length: 00013 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0352.0106 End: 0345,0117 
Curve II 000003: Length: 00013 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0345,0117 End: 0333,0123 
Curve II 000004: Length: 00012 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0333,0123 End: 0321,0125 
Curve II 000005: Length: 00005 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0321,0125 End: 0316,0124 

CHAIN II: 0060 
· SHAPE KEY: 0318 0075 0 0331 0076 2 
Curve II 000001: Length: 00013 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0318,0075 End: 0331,0076 
Curve II 000002: Length: 00013 II Deg Rt Curvature: 00022 II Deg Left Curvature 00000 Start: 0331 ,0076 End: 0343,0082 
Curve II 000003: Length: 00010 II Deg Rt Curvature 00018 II Deg Left Cwvature 00000 Start: 0343,0082 End 0350,0089 

. Curve II 000004: Length: 00012 II Deg Rt Curvature: 00020 II Deg Left Curvature 00000 Stait: 0350,0089 End 0355,0100 

This dialog is displayed when an image has been opened, and either 
vectorization has been performed, or the database of vectors from a previous 
vectorization has been loaded into memory. The user has used the mouse to 
select a shape object by placing the mouse cursor near the desired object(s), 
holding down the left button, and moving the mouse over the object( s) so that the 
visual selection rectangle overlaps the object(s). The user has then released the 
left mouse button, and the above dialog is displayed. The information displayed 
is as follows: 1) Chain number: the internal identification number used for all 
simple and compound shape objects. 2) Shape key: another internal key used to 
access both kinds of shape objects. 3) The vector chain coordinates which are 
contained in the selected shape. 

If the user double-clicks the mouse on the "Chain#" line in the listbox, two things 
happen: 1) The shape which is described by the displayed vectors is highlighted 
in red in the displayed bitmap. 2) The chain number is added to the list of 
process log selection entries, so that debugging information can be displayed for 
the object in the process log. 

- 188 -



Compound Shape Object Information Dialog 

Compound Shape Object Information £1 

·r ~ .. 

,. 
~: . 

_,; 

Start(x,y) End(x,y) Length 
163,029 161.042 013 
161,042 162,049 007 
162,049 161.068 019 
161,068 162,075 007 
162,075 164,079 004 

. 164,079 176,077 012 
. 176,077 185,068 013 
185,068 190,055 014 
190,055 188.047 008 

' 188,047 183,037 011 
183,037 173,030 012 
173,030 163,029 010 

Shape Name: 
Compound Shape Name: 
Input Appendage N m/Chain 
Output Appendage Nm/Chain 

RtCIV Left Crv 
000 086 
000 016 
011 000 
000 011 
000 018 
000 072 
000 035 
000 023 
000 035 
000 012 
000 028 
000 029 

1 
!. 
i··,. 

Chain Numbers And Connection Comdnates Of Input Connecting Lines: 
NONE 

·:. Chain Number And Connection Comdinates Of Output Connecting Line: 
NONE 
Token lriormation: 
STRPJGHTLINE: 163.29 ·164.79 Length: 50 

BASE SHAPE 
ANDSHAPEBASE 
NONE 
NONE 
NONE 

This dialog is displayed when an image has been opened, and either Library 
Analysis or Image Recognition has been performed. The user has used the 

- 189 -



mouse to select a shape object by placing the mouse cursor near the desired 
object(s), holding down the left button, and moving the mouse over the object(s) 
so that the visual selection rectangle overlaps the object(s). The user has then 
released the left mouse button, and the above dialog is displayed. The 
information displayed is as follows: Top-left listbox: 1) Chain number: the 
internal identification number used for all simple and compound shape objects. 
2) The vector chain coordinates which are contained in the selected shape. Top
right listbox: The shape tokens which were generated to describe the object. 
Bottom listbox: Information stored in the compound shape object. 

NOTE: when the listbox is first opened, only the information in the top left listbox 
is shown. If the user selects the chain number of the desired object with the 
mouse, the other listboxes are filled in with information about the selected object. 
If the user selected more than one object from the image, then the top-left listbox 
will contain information about each selected object. 

If the user double-clicks the mouse on the "Chain#" line in the listbox, two things 
happen: 1) The shape which is described by the displayed vectors is highlighted 
in green in the displayed bitmap. 2) The chain number is added to the list of 
process log selection entries, so that debugging information can be displayed for 
the object in the process log. 

- 190 -



Zip Disk Installation Instructions 

The Zip disk which is available as a part of this project contains all source files, 
the executable file, all necessary supporting data files, and a set of test image 
files which can be successfully processed by TOKSCAN. 

To install the program, it is only necessary to copy the entire directory structure 
(TOKSCAN and all sub-directories) to the hard disk, and optionally, to create a 
Windows 95 or Windows NT Shortcut icon which points to the executable file. 
The debug version of the executable has path name 
TOKSCAN\DEBUG\tokscan.exe, and the release version has path name 
TOKSCAN\RELEASE\tokscan.exe. If the shortcut is not created, start 
TOKSCAN by opening the Windows Explorer, going to directory 
TOKSCAN\RELEASE or TOKSCAN\DEBUG, and double-clicking the mouse on 
file tokscan.exe. When copying files and directories, use the Windows Explorer 
CUT/PASTE operations, so as to preserve long file names. 

To create a Windows 95 shortcut, specify that the program should start in the 
TOKSCAN\Release (release version) or TOKSCAN\Debug (debug version) 
directory. The target should be TOKSCAN\RELEASE\TOKSCAN.EXE (release 
version) or TOKSCAN\DEBUG\TOKSCAN.EXE (debug version). 

When setting up Visual C++ (version 4.0 or 4.2- Enterprise Edition) to compile 
and test this program, make sure that the database installation option is selected 
(to install database components). Also, install the DAO (Data Access Object) 
Software Development Kit (SDK). The DAO SDK should be installed even if 
Visual C++ is not installed. The project file which should be opened from within 
Visual C++ is TOKSCAN\imagelib.mdp. 

If there are any problems executing the program, it may be necessary to install 
the DAO SDK redistribution package from Microsoft (included in the Zip disk, in 
directory TOKSCAN\EXTRA\DAOUPGRADE), and/or Microsoft Access. The 
database used by TOKSCAN is a Microsoft Access file. 

If the directories are copied to a hard drive other than C:, two changes will be 
necessary in the project make file . Start Visual C++, and open the project 
workspace - TOKSCAN\imagelib.mdp. Select menu BUILD, and item 
SETTINGS. When the project settings dialog box opens, select imagelib- Wln32 
Debug from the list on the left side of the dialog box. Select the LINK folder on 
the right side of the dialog box. Change the drive specification in the 
"ObjecULibrary modules" edit control to the correct drive. Next, select imagelib -
Win32 Release from the list on the left side of the dialog box. Select the LINK 
folder on the right side of the dialog box. Change the drive specification here to 
match what was done for the debug link. Press OK, and close the project 

- 191 -



workspace in order to write the changes to the project workspace file. 

In order to run debug sessions from Microsoft Developer Studio, select the 
DEBUG folder from the project settings dialog box, and make sure that the 
"Working Directory" is set to the TOKSCAN directory. 

The DEBUG version of the program (built by setting the current configuration to 
DEBUG in the Microsoft Developer Studio) must be run under Windows 95, 
because it uses a profile file (imagelib.ini) which works properly only under 
Windows 95. The RELEASE version of the program (built by setting the current 
configuration to RELEASE) will run properly either under Windows NT or 
Windows 95. 

Directory For Zip Disk Files 

The following is a list of the directories and some of the files on the Zip disk, with 
explanations. (Hard disk C: is assumed here). 

Directories: 

C:\tokscan 
subdirectories 
C:\tokscan\data 
supporting files 
C:\tokscan\Debug 
C:\tokscan\Extra 
Install 
C:\tokscan\Extra\DAOUpgrade 
C:\tokscan\Extra\Extralmages 
C:\tokscan\FiexBison 
C:\tokscan\FiexBison\BISON124 
C:\tokscan\FiexBison\FLEX24 7 
C:\tokscan\FiexBison\FiexBisonTest 
C:\tokscan\Release 
C:\tokscan\res 
C:\tokscan\YACC 
C:\tokscan\Y ACC\Debug 
C:\tokscan\yacclib 
C:\tokscan\yacclib\Debug 
C:\tokscan\yacclib\Release 

Selected Files 

C:\tokscan\imagelib.mak 
C:\tokscan\imagelib.mdp 
C:\tokscan\imaglib.dat 

- 192 -

Contains all source files and 

Contains test image files and 

Build directory with obj files (debug) 
Extra untested image files, and DAO 

DAO Redistribution Files 
Extra untested image files 
FLEX and BISON port to Windows 95 
BISON port to Windows 95 
FLEX port to Windows 95 
FLEX and BISON test files 
Build directory with obj files (release) 
Windows resource files for project 
YACC parser test files for project 
Build directory for YACC parser test 
YACC parser source and .lib files 
Build directory for YACC .lib (debug) 
Build directory for YACC .lib (release) 

Project make file 
Project workspace file 
Run file which points to directory with 
data 



C:\tokscan\data\adder.bmp 

C:\tokscan\data\adder.dbs 

C:\tokscan\data\adder.upr 
C:\tokscan\data\adderthin.bmp 

C:\tokscan\data\exercisescan.bmp 

C:\tokscan\data\exercisescan.dbs 

C:\tokscan\data\exercisescan.upr 

C:\tokscan\data\exercisescanthin.bmp 

C:\tokscan\data\imagdata.mdb 

C: \toksca n\data \imagetok.dat 

C:\tokscan\data\multiplexer.bmp 

C:\tokscan\data\multiplexer.dbs 

C:\tokscan\data\multiplexer.upr 

C:\tokscan\data\multiplexerthin.bmp 

C:\tokscan\data\schematic1.bmp 
C:\tokscan\data\schematic1.dbs 
C:\tokscan\data\schematic1.upr 
C:\tokscan\data\schematic1 thin. bmp 

C:\tokscan\Debug\tokscan.exe 

C:\tokscan\Debug\imaglib.dat 

C:\tokscan\Release\tokscan.exe 

C:\tokscan\Release\imaglib.dat 

C:\tokscan\Y ACC\driver.c 
C:\tokscan\YACC\Test.y 
C:\tokscan\YACC\testinp.dat 
C:\tokscan\Y ACC\test_tab.c 
C:\tokscan\YACC\test_tab.h 

C:\tokscan\Y ACC\workpj. mak 
C:\tokscan\Y ACC\workpj. mdp 

C:\tokscan\yacclib\AIIoca.c 

- 193 -

Scanned image file for full adder 
schematic 
Vector database for full adder 
schematic 
User parm file for full adder schematic 
Thinned image file for full adder 
schematic 

Scanned image file for exercise 
schematic 
Vector database for exercise 
schematic 
User parm file for exercise schematic 

Thinned image file for exercise 
schematic 

Database work file used by TOKSCAN 

Token library file 

Scanned image file for multiplexer 
schematic 
Vector database for multiplexer 
schematic 
User parm file for multiplexer 
schematic 
Thinned image file for multiplexer 
schematic 

Drawn image file for test schematic 
Vector database for test schematic 
User parm file for test schematic 
Thinned image file for test schematic 

Debug executable 

Run file which points to data directory 

Release executable 

Run file which points to data directory 

Source for YACC parser test driver 
YACC input source (rules) 
YACC parser test input file 
Test output C source from YACC 
Test output C header source from 
YACC 
YACC parser test make file 
YACC parser test project file 

Memory allocation source (from 
FLEXBISON) 



C:\tokscan\yacclib\yaccparser.c 

C:\tokscan\yacclib\Debug\yacclib.lib 
C:\tokscan\yacclib\Release\yacclib.lib 

YACC parser source (created from 
test_tab.c) 

YACC parser link library (debug) 
YACC parser link library (release) 

Performing Full Image Processing On An Image 

TOKSCAN can perform image recognition in two different modes. In the fully 
automatic mode, an image file is opened, binarization is done, and then 
TOKSCAN is requested to perform recognition. It automatically goes through the 
complete process of thinning, vectorization, determination of minimal closed 
polygons, determination of schematic components, determination of connecting 
signal lines, and location of circular signal line connectors. The user then 
identifies circuit inputs and outputs, and requests equation generation. 

In the manual mode, the user can "pre-vectorize" and "pre-thin" an image, and 
save the 

results in files which can later be opened along with the image, in order to avoid 
performing vectorization and thinning again. This is useful when testing is being 
performed on an image, and it is necessary to perform library analysis or 
recognition multiple times on the same image. 

In this section, we will illustrate the fully automatic mode by providing specific 
instructions for the test input image "schematic1.bmp". The same instructions 
apply for all other test images provided with the program. 

Instructions for fully automatic recognition on "schematic1.bmp" 

1. Start the TOKSCAN program. 

2. Verify that the token library file has been located and opened by doing the 
following: 

a. Select menu item "Token-Library". 
b. Select "Edit Token Library" from the drop-down menu. 
c. Press the "Shape Relationships" button in the "Shape Token 

Library Update" dialog box which is opened after step b is 
completed. 

d. Verify that there are six entries in the listbox displayed in the 
"Basic Shape Linear Relationships In Compound Shape" 
dialog box which is opened after step cis completed. If there is 
no data in the listbox, then check that the starting directory in the 
shortcut is C:\TOKSCAN\RELEASE (assuming drive C:), or that 

- 194 -



the program was started using Windows Explorer, as described 
above. 

3. Select the FILE menu item, and then the OPEN menu item (from the drop
down menu). 

4. From the file-open dialog box, move to the TOKSCAN\DATA directory, 
and open the file "schematic1.bmp". If a message box is displayed 
indicating that there is no user profile file for the selected image, then 
the starting directory for TOKSCAN is not set correctly. (It should be 
C:\TOKSCAN\RELEASE, assuming that the C: drive is used). 

5. Select the menu item "Image-Preprocessing", and the menu item 
"Binarization" from the drop-down menu. 

6. In the "Select Binarization Threshold Level" dialog, select a global 
threshold value of 80, and press the "Apply" button. After the image has 
been binarized, press the "Close" button. 

7. Select the menu item "Image-Analysis". 

8. Select the menu item "Find And Process Basic Shapes" from the drop
down menu displayed after completing step 5. 

9. After step 6 is complete, indicate the circuit input and output points for 
TOKSCAN, by doing the following: 

a. Press the toolbar button which changes the mouse cursor to the 
"In/Out Points" mode (third button from the right). The mouse 
cursor should change, and display the words "In/Out Points" . 

b. For each of the four circuit input points (at the top left side of the 
image), press and hold the left mouse button to display a 
selection rectangle, and move the rectangle so that it is over the 
end point of one of the input signal lines. Then, release the 
button. TOKSCAN should flag the location with a red dot, and 
with the words "INP-A", "INP-8", "INP-C", and "INP-0". 

c. For the circuit output point (at the right side of the drawing, about 
half way down), press and hold the right mouse button to display 
a selection rectangle, and move the rectangle so that it is over 
the end point of the output signal line. Then, release the button. 
TOKSCAN should flag the location with a red dot, and with the 
words "OUT-A". 

- 195 -



d. Select the menu item "Image-Analysis". 

e. Select the menu item "Generate Schematic Equation" from the 
drop-down menu displayed when step d is completed. 

After completing steps 1 - 9, TOKSCAN should follow all of the connector lines 
from the indicated inputs to the indicated output, highlighting the lines in blue as 
it executes, and then it should display an equation at the bottom of the bitmap 
for the analyzed circuit. 

Performing "Pre-vectorization" and "Pre-thinning" 

Step 8 above usually takes a lot of processing time, and if an image must be 
processed repeatedly, it saves time to perform "pre-thinning" and "pre
vectorization", and then to load the results into memory along with the image 
when it is processed the next time. 

To perform "pre-thinning" on the schematic image "schematic1.bmp, for 
example, do the following: 

1. Select the FILE menu item, and then the OPEN menu item (from the drop
down menu). 

2. From the file-open dialog box, move to the TOKSCAN\DATA directory, 
and open the file "schematic1.bmp". 

3. Select the menu item "Image-Preprocessing", and the menu item 
"Binarization" from the drop-down menu. 

4. In the "Select Binarization Threshold Level" dialog, select a global 
threshold value of 80, and press the "Apply" button. After the image has 
been binarized, press the "Close" button. 

5. Select the menu item "Tools", and then "Thin Image" (from the drop-down 
menu). 

6. After the image has been thinned (when step 3 completes), select menu 
item "FILE", and then "Save Bitmap As" (from the drop-down menu). In the 
file-save dialog box which appears, enter a file name for the thinned 
image, and press OK to save it to the hard disk. Make note of the file 
name used. 

To perform "pre-vectorization" on this schematic image after completing step 6 
above, do the following: 

- 196 -



1. Select the menu item "Tools", and the item "Extract Shape Object 
Vectors" (from the drop-down menu). This step extracts the vectors 
and places them in memory. 

2. Select the menu item 'Tools", and the item "Reorganize Shape Vectors" 
(from the drop-down menu). This step reorganizes the vectors and saves 
them in the working database used by TOKSCAN. 

3. Select the menu item "FILE", and the item "Save Database File As" (from 
the drop-down menu). A file-save dialog box will appear, which allows 
you to assign a permanent file name for the vector database in a library 
of database files. The file is assigned a file type (or DOS extension) of 
.dbs. Enter the desired file name, and press okay to save the database. 
Make note of the file name. 

Loading And Performing Recognition On A "Pre-vectorized" And "Pre
thinned" Image 

After performing "pre-thinning" and "pre-vectorization", schematic1.bmp can now 
be processed more quickly by calling up the thinned image file and the database 
of vectors which were saved. Starting from the point where TOKSCAN is 
running, and no image is loaded, the following steps should be followed to 
perform recognition on schematic1.bmp, taking advantage of "pre-thinning" and 
"pre-vectorization". 

1. Select the FILE menu item, and then the OPEN menu item (from the drop
down menu). 

2. From the file-open dialog box, move to the TOKSCAN\DATA directory, 
and open the file "schematic1.bmp". 

3. Select the menu item "FILE", and item "Open User Parm File" (from the 
drop-down menu). 

4. From the file-open dialog which is displayed, move to the 
TOKSCAN\DATA directory, select the file "schematic1.upr", and press 
OK. This will open the pre-defined user parameter file built for this image. 
(Note: this step is actually performed automatically whenever an image is 
opened, and there is a file with the .upr extension and a matching first 
node in the same directory as the image file) . If the user parms are 
changed and it is necessary to save the changes back into the 
schematic1.upr file, select the menu item "FILE" and item "Save User 
Parm File" (from the drop-down menu), enter schematic1.upr as the file 
name, and press OK. 

- 197 -



5. Select the menu item "FILE", and item "Open Database File" (from the 
drop- down menu). 

6. From the file-open dialog, move to the TOKSCAN\DATA directory, select 
the file "schematic1.dbs", and press OK. This selects the database vector 
file from the library, and copies it to TOKSCAN's working database. 

7. Complete steps 7 - 9 from "Instructions for fully automatic recognition on 
schematic1. bmp" above. 

Steps 1 - 6 can be done very quickly, compared to the time required for the 
typical thinning and vectorization processes. 

Performing Library Analysis On schematic1.bmp 

Library Analysis consists of detecting the closed minimal polygons in an image, 
generating the tokens which describe the shape of the polygons, and saving the 
tokens in the token library for future recognition. To do this for the 
schematic1.bmp image, do the following: 

1. Complete steps 3 - 7 from "Instructions for fully automatic recognition on 
schematic1 .bmp" above. 

2. Select "Find Basic Shapes For Library Update" from the drop-down menu. 

3. After step 2 has completed, all detected closed minimal polygons are 
highlighted in the image in purple. 

4. Select a polygon for which the tokens should be saved in the token 
library. To do this, place the mouse cursor near the polygon, press and 
hold the left mouse button, move the mouse to create a selection 
rectangle, place the selection rectangle over the polygon, and release 
the left mouse button. This will cause the "Compound Shape Object 
Information" dialog box to open. 

5. Use the mouse to select the "Chain#" line of the desired polygon in the 
upper left listbox (multiple polygons will be selected if the selection 
rectangle from step 4 overlaps more than one polygon). 

6. In the "Add To Token Library With Shape Name" edit box, type the name 
which you would like to assign to the token list when it is saved in the 
token library. 

- 198 -



7. Press the "Add To Token Library With Shape Name" button. This saves 
the token list in the library. It can then be used in shape relationships to 
define a compound shape. 

Matched Sets Of Image Files And Supporting Files 

There are four test images provided in the TOKSCAN\DAT A directory which 
have been thoroughly tested for proper recognition with TOKSCAN. Each image 
file is accompanied by a vector database file, a user parameter file, and a 
thinned image file, as shown in the following list. 

C:\tokscan\data\adder.bmp 

C:\tokscan\data\adder.dbs 

C:\tokscan\data\adder.upr 
C:\tokscan\data\adderthin.bmp 

C:\tokscan\data\exercisescan.bmp 

C:\tokscan\data\exercisescan.dbs 

C:\tokscan\data\exercisescan.upr 
C:\tokscan\data\exercisescanthin.bmp 

C:\tokscan\data\multiplexer.bmp 

C:\tokscan\data\multiplexer.dbs 

C:\tokscan\data\multiplexer.upr 

C:\tokscan\data\multiplexerthin .bmp 

C:\tokscan\data\schematic1.bmp 
C:\tokscan\data\schematic1.dbs 
C:\tokscan\data\schematic1 .upr 
C :\tokscan\data\schematic1 thin. bmp 

Scanned image file for full adder 
schematic 
Vector database for full adder 
schematic 
User parm file for full adder schematic 
Thinned image file for full adder 
schematic 

Scanned image file for exercise 
schematic 
Vector database for exercise 
schematic 
User parm file for exercise schematic 
Thinned image file for exercise 
schematic 

Scanned image file for multiplexer 
schematic 
Vector database for multiplexer 
schematic 
User parm file for multiplexer 
schematic 
Thinned image file for multiplexer 
schematic 

Drawn image file for test schematic 
Vector database for test schematic 
User parm file for test schematic 
Thinned image file for test schematic 

There are additional image files which have not been tested with TOKSCAN that 
are included in directory TOKSCAN\EXTRA\EXTRAIMAGES. Successful 
recognition with these images will require testing and careful adjustment of the 
user parameter file. They may also require some modification to TOKSCAN: 
debugging has been carried out completely for the four sample images, but time 
constraints for the project did not allow complete debugging for c:tll of these 
additional images. With some additional debugging, TOKSCAN should 

- 199 -



successfully recognize most of the included extra images. REMEMBER: this is a 
prototype program which demonstrates that the techniques implemented will 
work: it has not yet been tested to the point of being ready for use against any 
desired schematic image. 

Modifying And Testing The YACC Parser 

The directory TOKSCAN\YACC contains the source code necessary to test the 
YACC parser separately from TOKSCAN, using a small driver program named 
driver.c. A Visual C++ project has been set up in this directory to build the test 
parser with the test driver. The project workspace file is named "workpj.mdp". 

To modify the YACC parser rule set, and recreate the test parser, do the 
following: 

1. Open file TOKSCAN\YACC\test.y, and modify the YACC rules as needed. 
Then save the changed file. 

2. Install FLEX/BISON, using the directions provided with the download, and 
run the testy file through it to produce C source code for the parser 
(called test_tab.c). Update the existing test_tab.c provided in the 
TOKSCAN\YACC directory with the new version, and build the workpj 
project from within Visual C++. 

3. A test input file with tokens that have the same format used by TOKSCAN 
is provided in the TOKSCAN\YACC directory, named "testinp.dat". To 
execute the test parser built in step 2, open a DOS window, and enter 
the command: 

workpj < testinp.dat > testout.txt 

This will execute the parser using the test input file, and will produce a 
text output file with the results of the parse called "testout. txt". The proper 
results for the current version of the parser are provided in the existing file 
TOKSCAN\YACC\testout. txt. 

4. After the test version of the parser has been tested, it must be added to 
the link library which is included in the TOKSCAN project. To accomplish 
this, do the following: 

a. Rename the parser c source code file from test_tab.c to 
yaccparser.c, and copy it to the TOKSCAN\YACCLIB directory, 
overlaying the existing yaccparser.c file. 

- 200 -



b. Rebuild the TOKSCAN project. The yacclib.lib library will 
automatically be rebuilt as a part of the overall project build, and 
the parser will be link edited into TOKSCAN. 

Modifying And Testing The TOKSCAN Project 

TOKSCAN can be modified using Visual C++, version 4.0 through 4.2 
(Enterprise 

Edition). It was developed using version 4.2. To load the project, open the 
workspace file TOKSCAN\imagelib.mdp. See the comments at the beginning of 
part 2 of this manual for more information. 

Introduction To The Class Structure In TOKSCAN 

After the project workspace file (TOKSCAN\imagelib.mdp) has been opened in 
Visual C++, all of the user-defined C++ classes can be seen in the class "tree 
view' window. Visual C++ provides fast access to the source definitions of each 
class, and of each member variable and member function through the use of this 
tree view. The user can expand the view by double-clicking the mouse on an 
entry. Double-clicking the mouse on an entity inside of a class causes the 
source code to be opened at the location where the entity is defined. 

The TOKSCAN project was originally generated using Microsoft's "App Wizard", 
and the original set of classes generated by that tool were retained in the final 
structure. Numerous other classes have been added, with many 
interrelationships between the classes. 

Visual C++ has a class browser utility which helps the user understand the 
structure of the program, and find where clqsses are referenced. It is a good idea 
for a new user to review the browser file provided in the Zip Disk 
(TOKSCAN\DEBUG\imagelib.bsc). The following page contains a list of the 
user-defined classes in the project, with a brief explanation of the function of 
each. 

Classes G,enerated By The Microsoft "App Wizard" (Heavily Modified) 

Clmagelib Main application class 

- 201 -



CMainFrame 

CCinputBitmapDoc 
CCinputBitmapView 

CChildFrame 
CAboutDig 

CBinarize 

CChainStartCount 

CCompoundlmageCoordldx 

CCompoundl mageObject 

CCompoundShapeDialog 

CConnectionMatrix 

CDAOChainStartSet 

CDAOVectorChainSet 

ClmageObject 

circularregion 

CkFiiiFilter 

Main frame window class (of MDI interface); 
user defined program initialization is done 
here 

Document class which holds all image data 
View class which controls display of Doc class 
data 
Child window class for MDI interface 
"About" dialog box class 

User-Defined Classes 

Dialog box class which controls image 
binarization 

DAO (Microsoft Data Access Object) class 
which gets a count of the number of vector 
chains saved in the working database 

Manages a hash table of keys which index a 
set of CCompoundlmageObject objects 

Compound Shape Object implementation 

Dialog box class which drives the "Compound 
Shape Object Information" dialog box 

Implements the connection matrix used to 
analyze the connections between schematic 
components 

DAO class which retrieves vector information 
from the database 

DAO class which retrieves vector information 
from the database 

Simple shape object implementation 

Supports "circular searches" in the image 
bitmap around a specific set of coordinates 

Dialog box class which controls noise 
reduction 

- 202 -



CLineSmoothParms 

CProcesslog 

CProfileDB 

CProgressDig 

CShapelinearReiDialog 

CShapeMap 

CShapeNumEntryDialog 

CShapeObjectDialog 

CShape TokenlibDialog 

CTokenlibData 

CTraverseVectorChain 

CUserParm4 

CUserParms 

Dialog box class which supports the line 
smoothing parameters which are set by the 
user 

Dialog box class which supports the process 
log, which is used for debugging 

DAO class which supports the retrieval of user 
parameter information from the working 
database 

Dialog box class which supports the progress 
bars that indicate time remaining on long 
running tasks 

Dialog box class which supports the "Basic 
Shape Linear Relationships In Compound 
Shape" dialog 

Supports a hash table which references a 
collection of CCompoundlmageObject 
instances 

Dialog box class which supports the "Shape 
Selection Data" dialog 

Dialog box class which supports the "Chain 
Shape Object" dialog 

Dialog box class which supports the "Shape 
Token Library Update" dialog 

Supports the retrieval and update of token 
library information in memory, and file i/o 

Supports traversals through a set of vectors 
contained in a shape object 

Dialog box class which supports the "Shape 
Object Parameters" dialog 

Dialog box class which supports the 
"Curvature And Junction Margin Of Error'' 
dialog 

- 203 -



CUserParms2 

CUserParms3 

CUserParms5 

Image Vectors 

mathfunctions 

Dialog box class which supports the 
"Perimeter Values" dialog 

Dialog box class which supports the "Closed 
Polygon Search Parameters" dialog 

Dialog box class which supports the "Token 
Edits" dialog 

Supports the "thick line" vectorization process 

Provides necessary mathematical functions 
such as distance measurement, arccosines, 
etc. 

NOTE ON RUNNING THE TEST IMAGES ON DIFFERENT PC'S 

In some cases, the test images will not process correctly when this program is 
transferred to another PC system. The problem has to do with the Window's 
color palette, which varies from system to system, and which causes the test 
bitmaps to display with slightly different intensities in some cases. If this problem 
occurs in a new installation, it may help to load the test bitmap, then load an 
image color file which has been provided in the ZIP disk in the DATA directory. 
This will reset the grayscale intensity values to those originally used to test the 
image. 

There are three image color files provided, one for each of the three scanned 
test images (schematic1.bmp should not have this problem), with names 
adder.cif, exercisescan.cif, and multiplexer. cit. To apply the color information file 
to adder.bmp, for example, open adder.bmp, then from the FILE menu, select 
OPEN IMAGE COLOR FILE. When the file dialog box opens, select adder.cif as 
the file to load. This will reset the bitmap display, and image recognition can then 
be performed. The changed image can also be saved as a new bitmap. 

NOTE ABOUT DATA FILE PATHS 

If you use a drive/directory other than c:\tokscan for the installation, make sure 
that you change the path name in file imaglib.dat to match the directory used. 
This file is located in the RELEASE, DEBUG, and TOKSCAN directories on the 
Zip disk. 

- 204 -



VITA 

James A. (Jim) Giles has a Bachelor of Arts degree from the 

University of South Florida in Mathematics, and expects to 

receive a Master of Science degree in Computer and 

Information Sciences from the University of North Florida, 

August, 1997. Dr. YapS. Chua of the University of North 

Florida is serving as Jim's thesis advisor. 

Jim has a background in business data processing in the 

life insurance and transportation industries, and on-going 

interests in mathematics, engineering, image processing, 

and computer networks. 

- 205 -



Closed Polygon Search Parameters Dialog 

Image Analysis Parameters - Closed Polygon Search Parameters 

The parameters in this dialog box have to do with the detection of closed minimal 
polygons. See section 2.15 for a detailed explanation of each parameter. 

- 166 -



Shape Object Parameters Dialog 

Image Analysis Parameters - Shape Object Parameters 

Maximi,Jm [e~g~ O!V~ctors Wh~h AieAut~malicafty Flemoved:From ComJ)OUnd Shap·e Obje~ts'sed~u~e ann significant Length: - ; .. . . ~ . ·-; . . 

'.• 

: Lines. · ·-

The parameters in this dialog box have to do with the processing of the various 
shape objects which are created during the recognition process. See section 
2.15 for a detailed explanation of each parameter. 

- 167 -



Processing Log Dialog 

Processmg log 
.. '~-

-.· .. 
R'' v~cto; char; Log · 

.. ~:.Shape Object Log 

The Processing Log dialog differs from the other user parameter dialogs, in that 
the user sets values which control the display of a processing log which 
monitors the image recognition process. In the lower left corner, the user can 
select the kinds of messages which should be included in the log from any of 
three categories: 

Vector Chain Log - lists the vectors which describe the simple shape objects 
selected by the shape determination log filter. 

Shape Object Log - lists information about compound shape objects selected by 
the shape determination log filter. 

Basic Shape Determination Log - lists processing information during the 
detection of closed minimal polygons. 

- 168 -



The processing log is used for debugging purposes to gather detailed 
information about the program execution when an image is not recognized 
properly. 

Simple and compound shape objects can be selected for log information by 
entering their identifying chain number in one of two ways: 1) They may be 
entered manually by pressing the "Shape Determination Log Filter" button, and 
typing in the proper chain numbers. 2) Objects in the image may be selected 
directly from the image by using the mouse. When an object is selected, a dialog 
box opens which provides recognition information about the object, including its 
identifying chain number. The user can either type in the displayed chain 
number (#1 above), or double click on the chain number displayed in the object 
information dialog to have it automatically inserted into the list of object numbers 
for which log information is being collected. To select an object with the mouse, 
the mouse cursor should be placed near the desired object, and the left mouse 
button should be held down, while moving the mouse toward the object. A 
selection rectangle will be drawn in the window, and any objects which fall within 
that rectangle will be selected and displayed in the dialog box. 

There are two different dialog boxes which may be displayed when an object is 
selected, one for simple shape objects, and the other for compound shape 
objects. The simple shape object dialog is displayed when an object is selected 
before Library Analysis or Image Recognition is run. The compound shape 
object dialog is displayed when an object is selected after Library Analysis or 
Image Recognition is run. 

These two dialog boxes are shown and described later in this manual. 

- 169 -



Processing Log Dialog 

Shape Selection Oala f3 

~ . 

01 82 

This dialog box is displayed when the "Shape Determination Log Filter" button is 
pressed in the Process Log dialog box. It allows the entry of identifying chain 
numbers for shape objects in order to display program execution information 
about the objects in the process log. The list may be updated manually using this 
dialog, or entries may be added by direct selection from the image, as described 
above in the "Process Log Dialog" information. 

- 170 -



Token Edits Dialog 

·:. :·~:- - ....... ,•-:: . .··. - -. ~; ~· -.. -. . . _-. -~ : .. ·..:. ' . -~.: ~ . -·· ~,- ·. · . .... _ ~- \ . __ - - -
: 'P fM1.1Itiple UiFTCURV£'s.Dr RIGHJCUR\I£'s Shoold_H&v~ Nearl.l' Ihe Same Length[+: 'Plus/Minus Percent"x Longest Curve] , ·. 
,. • _"- • • • -. - . ~ ' . .!.-' • • ~ - . - .. -· •• • : :--· -.. • - - ' •• ' • ""' - • ' ~ • 

The parameters in this dialog box have to do with distinguishing between valid 
component shapes and invalid shapes formed from crossed signal connector 
lines. See section 2.15 for a detailed explanation of each parameter. 

- 171 -



i:r-. TOKSCAN - Token-Based Schematic Analysis: l!lliiEJ 

loke""Libracy Men\,1 

The EDIT TOKEN LIBRARY selection displays a dialog box which allows 
descriptive token lists to be added or updated in the token library. The dialog box 
is documented on the following page. 

- 17 2 -



Shape Token Library Update Dialog 

Shape Token library Update 

~ . ·' 

~ ,. ··;, ... 

-:' 

,_·. 

"' . .-

To'AddA Token Toe The O.neri S!we T ok~ L~l select AT ~eri Frtm The tJston The leJt,ArdPres$ ''>". ToA~veA 
.. TQkenFrexn TheDlrentlisLSelecl~ Token From The ListOn TheRiglt,ArdPres$"<". . · -' 

LEFT CURVE 
STRAIGHTLINE 

· CORNER 
.. SMALLPERIM RIGHTCURVE 
· SMALLPERIM-LEFT CURVE 

... SMALLPERIM)TRAIGHTLINE 

·u The~~ Are M~leVaid T okei).Lists ForA ~iven Shap3.Name (E~k):lng 
·. , .. Pemua!ioos Of M Emtllg Ll$!1..Press "Stait'New .List" l o End T~ ~ert . 

• T ~en Lisi:Ard Start A Ne\'1 One. . . . 

This dialog box is used to update the shape token library with new token lists. 
Lists may be added or removed, by following the directions shown in the dialog 
box. Token lists may also be added to the library by using the "Compound Shape 
Object Information" Dialog, which is described later in this manual. 

- 17 3 -



Basic Shape Linear Relationships In Compound Shape Dialog 

8as1c Shape Lineal Aelahonsh1ps In Compound Shape 
;!. •,. 

· ~c:~N.aoe'oi~st.~pe: JAND!it\TE 
• '· .. • . ~. -r. 

C~Shc4ie N<rne · 1~[-iles 
r.; . -::- •·· ,., •• -

ORGATE 
, NOT!i6.TE 
· ·. NANDGATE 
l NORGME 
~ XOR!i6.TE 

UNES2 
LINES! 
LINES2 
LINES2 
LINES2 

NONE 
NONE 
NONE 
NONE 
SMALLCIRCLEAPPEND 

ORSHIIPtBASE 
NOTSHAPEBASE 
ANDSHAPEBASE 
ORSHIIPtBASE 
ORSHIIPtBASE 

NONE 
SMALLCIRCLEAPPEND 
SMALLCIRCLEA??END 
SMALLCIRCLEAPPEND 
NONE 

LINES! 
LINE S! 
LINES! 
LINES1 
LINES! 

This dialog is displayed by pressing the "Shape Relationships" button in the 
"Shape Token Library Update" dialog box. It allows the user to specify the 
relationship between the simple shapes which make up the more complex 
schematic component. As an example of how this is used, look at the first line of 
data shown above in the dialog box. 

The compound shape, named "ANDGATE" is a schematic component, and when 
a successful match is made with an AND logic gate in a schematic image, the 
component will be labeled as an "ANDGATE". Reading from left to right, the data 
line which describes the ANDGATE may be interpreted as follows: the 
ANDGATE has 2 input lines, no input appendage, it uses the AND base shape, 
it has no output appendage, and it has one output line. All of these simple 
shapes are arranged in the linear order given by reading left to right. 

A new compound shape can be added by entering a name in the "Name Of 
Compound Shape" edit control, and then selecting appropriate entries from each 
of the "drop-down combo-boxes" below it, and pressing the ADD button. Deletes 

- 174 -



may be done by selecting an existing entry, and pressing the DELETE button. 
Note that if a new shape is added, corresponding "hard coding" will have to be 
added to the source code in the current version of TOKSCAN to generate new 
token types for the parser, so that the new shape is included in the resulting 
equation. See Appendix B for more information about hard coding. 

- 175 -



1. Main Application Window - Menu Selections Continued 

View Menu 

A. Toolbar 

Selecting this item toggles the appearance of the toolbar, making it appear or 
disappear from the window. 

B. Status Bar 

Selecting this item toggles the appearance of the status bar at the bottom of the 
window, making it appear or disappear. 

i~. l OKS CAN - Token-Based Schemahc Anal.vs•s R~ f3 

Help Menu 

Selecting About TOKSCAN displays a dialog box with information about the 
program. 

- 176 -



2. Document Window - Menu Selections 

f~_ TOKSCAN -Token-Based Schematic Analysis I!J(i] £i 

A. Save Bitmap As 

A file-save dialog box is displayed which allows the displayed bitmap to be 
saved in Windows BMP file format. 

B. Load Shape Object Vectors From DB 

Vectors which describe the currently displayed image, which were previously 
created by TOKSCAN and saved in the database, are loaded into memory for 
processing. This function is provided in order to avoid having to perform 
vectorization every time an image is loaded for recognition . A file-open dialog 
box is displayed, so the user can select a "pre-thinned" binary image for 
processing. The original image must have already been thinned, and the result 
saved in the file which is opened at this point. 

- 177 -



C. Save Shape Object Vectors In Db 

Vectors which describe the currently displayed image, which have just been 
created by the vectorization process, and which currently reside in memory, are 
saved in the database. They may be reloaded into memory, as described in B. 

D. Open Database File 

TOKSCAN is capable of maintaining a library of database files, each of which 
contains the vectorization output for one image which has been processed by 
the program. When images are reprocessed, the appropriate database of 
vectors may be opened and transferred into memory, and recognition may be 
performed without having to perform vectorization again. A file-open dialog is 
displayed, which allows the user to select a .dbs file from the library. 

E. Save Database File As 

After vectorization has been completed on an image, the user can save the 
resulting database file into the library of vectorization files (described in D). A 
file-save dialog is displayed, which allows the user to save the database in the 
library with a .dbs file type. 

F. Open Token Library File 

TOKSCAN is capable of maintaining a library of token files. The token library for 
a specific image or group of images is saved in a single file, but TOKSCAN can 
handle multiple distinct token libraries in separate files. A file-open dialog is 
displayed which allows the user to open a token library file of type .tok. 

G. Save Token Library File As 

A token library may be saved in a single file, which may be added to a library of 
token files, each of which is a separate token library. The user may choose an 
appropriate token library for use with a specific image or group of images, as 
described in F. A file-save dialog is displayed which allows the user to save the 
token file in the library with a .tok file type. 

H. Open User Parm File 

TOKSCAN is capable of maintaining a library of user parameter files. Each 
parameter file contains one complete set of user parameters, which control the 
recognition process. Using this feature, the user can automatically set all of the 
user-adjustable parameters at one time to values which are appropriate for a 

- 178 -



particular image. A file-open dialog is displayed, which allows the user to open 
a user parameter file of type .upr. 

I. Save User Parm File 

After the user sets the processing parameters for a particular image, they may 
be saved permanently in a user parameter file. This file can be opened later for 
use with any desired image. When it is opened, all of the adjustable parameters 
are set according to the values saved in it. TOKSCAN can save and open 
multiple user parm files from a library, so that a distinct parm file can be 
maintained for each image. A file-save dialog is displayed, which allows the user 
to save the parm file with file type .upr. 

J. Exit 

The application is closed. 

- 179-



2. Document Window - Menu Selections Continued 

f}_ TOKSCAN - Token-Based Schematic Analysis R l!U:J 
~ file 

~. . ~ ~. ·'.., :~) " li :_- ai;}~_ri~i~~- ~- -- ~ .. ·c -: ~: 
L · · '- ·. N?_ise Real.{ction . _, . t==~=====!.;;=~ ....... -l;;;;.;..;:_...__.:;..;,_;....:.~..:.......;..;.....-...-

:· , ¢:qomln E!_y: · .' -· ~ 

i ·' Z~o~ Out By: ---_- · _-. -~ · 
· Rciiate Image. Right 8{ . ~ 
, RotateJmage LeftBy: ·.- . 1-------. 

A. Binarization 

A dialog box is displayed which allows the user to select a binarization global 
threshold value in the range 0 - 255, where 0 is pure black, 255 is pure white, 
and every other value is a shade of gray in between_ From the dialog box, the 
user can apply binarization to the image using the selected grayscale value. 

B. Noise Reduction 

A dialog box is displayed which allows the user to select a threshold value for 
the noise reduction operation, and to apply noise reduction to the image. A 
"window size" can also be selected, which specifies the number of pixels which 
surround a pixel of interest that are used to calculate an average grayscale 
value for the pixel of interest. The average value is compared with the selected 

- 180 -



threshold value, and the color of the pixel of interest is set to either pure white or 
pure black accordingly. 

C. Zoom In By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "zoom percentage values". After a 
percentage value is selected, the displayed image is magnified by the selected 
percentage, and the total size of the bitmap is increased by that percentage. 

D. Zoom Out By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "zoom percentage values". After a 
percentage value is selected, the displayed image is compressed by the 
selected percentage, and the total size of the bitmap is decreased by that 
percentage. 

E. Rotate Image Right By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "rotation degree values". After a degree value 
is selected, the displayed image is rotated clockwise by the selected number of 
degrees. 

F. Rotate Image Left By 

When this menu item is selected, another menu is displayed which gives the 
user the option of several different "rotation degree values" . After a degree value 
is selected, the displayed image is rotated counterclockwise by the selected 
number of degrees. 

- 181 -



Select Binarization Threshold Level Dialog 

This dialog box is used to control the binarization process. The slider is used to 
set the global threshold to a value in the range 0 - 255, and it is applied to the 
image by pressing the APPLY button. 

Apply Noise Reduction Filter Dialog 

- . 

Apply Noise Reduction Fille1 

This dialog box is used to control the noise reduction process. The sliders are 
used to set a "window'' size (of data around a pixel of interest), and a global 
threshold value that is compared with the average grayscale intensity in the 
window. The effects of the settings may be observed by pressing the PREVIEW 
button. Each time PREVIEW is pressed, the image reverts to its original state 

182 -



before noise reduction is applied again. When the APPLY button is pressed, the 
last noise reduction performed is applied to the image for the duration of 
processing. 

- 183 -



2. Document Window - Menu Selections Continued 

f}_ TOKSCAN- Token-Based Schematic Analysis -t1!11!1Et 

'( 

NOTE: The USER-PARMS and TOKEN-LIBRARY menu items have exactly 
the same functionality as the corresponding menu items in the main 
application window, which have already been discussed. They are not 
presented again in this section. 

A. Find Basic Shapes For Library Update 

Making this selection causes TOKSCAN to perform image recognition on the 
displayed image up to the point of detecting closed minimal polygons, and 
generating the shape tokens which describe the polygons_ If the image has 
already been thinned, and if vectorization has already been performed, the 
program will go immediately into polygon detection; otherwise it will perform 
thinning and vectorization as needed. It is possible to "pre-thin" and "pre-

- 184 -



vectorize" an image, and save the results on disk. Then, the thinned image and 
the accompanying set of vectors can be reloaded at a later time, and image 
recognition can be performed without having to go through thinning and 
vectorization again. In the second section of this manual, instructions are given 
for processing the images provided with the software. Specific directions are 
provided for "pre-thinning" and "pre-vectorization". 

B. Find And Process Basic Shapes 

Making this selection causes TOKSCAN to perform full image recognition on the 
displayed image. Components are located and labeled, and connecting signal 
lines and circular line connectors are located. After this function completes 
execution, the image is ready for the user to specify circuit input and output 
points, and to request generation of the equation. 

C. Generate Schematic Equation 

The user makes this selection after full image recognition has been completed, 
and after all circuit input and output points have been identified (manually) . 
TOKSCAN follows all connecting signal lines from input to final output, and 
generates one or more logic equations which describe the recognized circuit. 

- 185 -



2. Document Window - Menu Selections Continued 

·.;==..::=:=:::::=~::::::±::::=::!:..:.:::::::=::::::!::=...:=±::::::t::::::!::=:::::::~:::! , E~tr<!Ct Shape Object V~ctors · 
' · Dr<~;w Shape Objectyectors · 
' ··.·Reorganize Shap~ Vec_tors 
· . Draw Comecting Lines . 

: . _.8~set BitQli:!P .. ~- "'- : _ · · 
Load Thinned .Bitmap Fror:n File 

NOTE: The VIEW and HELP menu items have exactly the same functionality 
as the corresponding menu items in the main application window, which 
have already been discussed. They are not presented again in this section. 

A. Thin Image 

Making this selection causes TOKSCAN to perform thinning on the displayed 
image. 

B. Extract Shape Object Vectors 

Making this selection causes TOKSCAN to perform vectorization on the 
displayed image, and save the resulting vectors in the database. 

- 186 -



C. Draw Shape Object Vectors 

Making this selection causes TOKSCAN to draw all of the shape object vectors 
which were placed in simple shape objects as a result of the vectorization 
process. 

D. Reorganize Shape Vectors 

Making this selection causes TOKSCAN to reorganize the vector chains created 
during vectorization into a more usable form where gaps between end points 
are eliminated, and where the vectors in neighboring chains are given the same 
direction. 

E. Draw Connecting Lines 

Making this selection causes TOKSCAN to draw the recognized signal 
connector lines. 

F. Reset Bitmap 

Making this selection causes TOKSCAN to refresh the currently displayed 
bitmap image from the file on the hard disk. 

G. Load Thinned Bitmap From File 

Images may be "pre-thinned" and "pre-vectorized", in order to save processing 
time when they are called up for testing multiple times. In order to accomplish 
this, it is necessary to perform thinning on the original image, and then to save 
the thinned image as a separate file. When this selection is made, a file-open 
dialog is displayed which allows the user to select a "pre-thinned" image to load 
for image recognition. The next section provides instructions for working with 
"pre-thinned" and "pre-vectorized" images. 

H. Refresh Identified Objects 

Making this selection causes TOKSCAN to perform image recognition on the 

- 187 -



Chain Shape Object Information Dialog 

Chain Shape Object lnf01mation 

-- -.• !" 

_.:., 

\'. 
- ~-- - .. 'CHt.IN 11· 0051 . - -- . .. . . . . - o- . • - . - ... .. . - - .. - ... .- - .. . • .., ...... - . . 

SHAPE KEY: 0355 0100 0 0352 0106 2 
Curve II 000001 : Length: 00007 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Sta~t: 0355.0100 End: 0352,0106 

· Curve II 000002: Length: 00013 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0352.0106 End: 0345,0117 
Curve II 000003: Length: 00013 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0345,0117 End: 0333,0123 
Curve II 000004: Length: 00012 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0333,0123 End: 0321,0125 
Curve II 000005: Length: 00005 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0321,0125 End: 0316,0124 

CHAIN II: 0060 
· SHAPE KEY: 0318 0075 0 0331 0076 2 
Curve II 000001: Length: 00013 II Deg Rt Curvature: 00000 II Deg Left Curvature 00000 Start: 0318,0075 End: 0331,0076 
Curve II 000002: Length: 00013 II Deg Rt Curvature: 00022 II Deg Left Curvature 00000 Start: 0331 ,0076 End: 0343,0082 
Curve II 000003: Length: 00010 II Deg Rt Curvature 00018 II Deg Left Cwvature 00000 Start: 0343,0082 End 0350,0089 

. Curve II 000004: Length: 00012 II Deg Rt Curvature: 00020 II Deg Left Curvature 00000 Stait: 0350,0089 End 0355,0100 

This dialog is displayed when an image has been opened, and either 
vectorization has been performed, or the database of vectors from a previous 
vectorization has been loaded into memory. The user has used the mouse to 
select a shape object by placing the mouse cursor near the desired object(s), 
holding down the left button, and moving the mouse over the object( s) so that the 
visual selection rectangle overlaps the object(s). The user has then released the 
left mouse button, and the above dialog is displayed. The information displayed 
is as follows: 1) Chain number: the internal identification number used for all 
simple and compound shape objects. 2) Shape key: another internal key used to 
access both kinds of shape objects. 3) The vector chain coordinates which are 
contained in the selected shape. 

If the user double-clicks the mouse on the "Chain#" line in the listbox, two things 
happen: 1) The shape which is described by the displayed vectors is highlighted 
in red in the displayed bitmap. 2) The chain number is added to the list of 
process log selection entries, so that debugging information can be displayed for 
the object in the process log. 

- 188 -



Compound Shape Object Information Dialog 

Compound Shape Object Information £1 

·r ~ .. 

,. 
~: . 

_,; 

Start(x,y) End(x,y) Length 
163,029 161.042 013 
161,042 162,049 007 
162,049 161.068 019 
161,068 162,075 007 
162,075 164,079 004 

. 164,079 176,077 012 
. 176,077 185,068 013 
185,068 190,055 014 
190,055 188.047 008 

' 188,047 183,037 011 
183,037 173,030 012 
173,030 163,029 010 

Shape Name: 
Compound Shape Name: 
Input Appendage N m/Chain 
Output Appendage Nm/Chain 

RtCIV Left Crv 
000 086 
000 016 
011 000 
000 011 
000 018 
000 072 
000 035 
000 023 
000 035 
000 012 
000 028 
000 029 

1 
!. 
i··,. 

Chain Numbers And Connection Comdnates Of Input Connecting Lines: 
NONE 

·:. Chain Number And Connection Comdinates Of Output Connecting Line: 
NONE 
Token lriormation: 
STRPJGHTLINE: 163.29 ·164.79 Length: 50 

BASE SHAPE 
ANDSHAPEBASE 
NONE 
NONE 
NONE 

This dialog is displayed when an image has been opened, and either Library 
Analysis or Image Recognition has been performed. The user has used the 

- 189 -



mouse to select a shape object by placing the mouse cursor near the desired 
object(s), holding down the left button, and moving the mouse over the object(s) 
so that the visual selection rectangle overlaps the object(s). The user has then 
released the left mouse button, and the above dialog is displayed. The 
information displayed is as follows: Top-left listbox: 1) Chain number: the 
internal identification number used for all simple and compound shape objects. 
2) The vector chain coordinates which are contained in the selected shape. Top
right listbox: The shape tokens which were generated to describe the object. 
Bottom listbox: Information stored in the compound shape object. 

NOTE: when the listbox is first opened, only the information in the top left listbox 
is shown. If the user selects the chain number of the desired object with the 
mouse, the other listboxes are filled in with information about the selected object. 
If the user selected more than one object from the image, then the top-left listbox 
will contain information about each selected object. 

If the user double-clicks the mouse on the "Chain#" line in the listbox, two things 
happen: 1) The shape which is described by the displayed vectors is highlighted 
in green in the displayed bitmap. 2) The chain number is added to the list of 
process log selection entries, so that debugging information can be displayed for 
the object in the process log. 

- 190 -



Zip Disk Installation Instructions 

The Zip disk which is available as a part of this project contains all source files, 
the executable file, all necessary supporting data files, and a set of test image 
files which can be successfully processed by TOKSCAN. 

To install the program, it is only necessary to copy the entire directory structure 
(TOKSCAN and all sub-directories) to the hard disk, and optionally, to create a 
Windows 95 or Windows NT Shortcut icon which points to the executable file. 
The debug version of the executable has path name 
TOKSCAN\DEBUG\tokscan.exe, and the release version has path name 
TOKSCAN\RELEASE\tokscan.exe. If the shortcut is not created, start 
TOKSCAN by opening the Windows Explorer, going to directory 
TOKSCAN\RELEASE or TOKSCAN\DEBUG, and double-clicking the mouse on 
file tokscan.exe. When copying files and directories, use the Windows Explorer 
CUT/PASTE operations, so as to preserve long file names. 

To create a Windows 95 shortcut, specify that the program should start in the 
TOKSCAN\Release (release version) or TOKSCAN\Debug (debug version) 
directory. The target should be TOKSCAN\RELEASE\TOKSCAN.EXE (release 
version) or TOKSCAN\DEBUG\TOKSCAN.EXE (debug version). 

When setting up Visual C++ (version 4.0 or 4.2- Enterprise Edition) to compile 
and test this program, make sure that the database installation option is selected 
(to install database components). Also, install the DAO (Data Access Object) 
Software Development Kit (SDK). The DAO SDK should be installed even if 
Visual C++ is not installed. The project file which should be opened from within 
Visual C++ is TOKSCAN\imagelib.mdp. 

If there are any problems executing the program, it may be necessary to install 
the DAO SDK redistribution package from Microsoft (included in the Zip disk, in 
directory TOKSCAN\EXTRA\DAOUPGRADE), and/or Microsoft Access. The 
database used by TOKSCAN is a Microsoft Access file. 

If the directories are copied to a hard drive other than C:, two changes will be 
necessary in the project make file . Start Visual C++, and open the project 
workspace - TOKSCAN\imagelib.mdp. Select menu BUILD, and item 
SETTINGS. When the project settings dialog box opens, select imagelib- Wln32 
Debug from the list on the left side of the dialog box. Select the LINK folder on 
the right side of the dialog box. Change the drive specification in the 
"ObjecULibrary modules" edit control to the correct drive. Next, select imagelib -
Win32 Release from the list on the left side of the dialog box. Select the LINK 
folder on the right side of the dialog box. Change the drive specification here to 
match what was done for the debug link. Press OK, and close the project 

- 191 -



workspace in order to write the changes to the project workspace file. 

In order to run debug sessions from Microsoft Developer Studio, select the 
DEBUG folder from the project settings dialog box, and make sure that the 
"Working Directory" is set to the TOKSCAN directory. 

The DEBUG version of the program (built by setting the current configuration to 
DEBUG in the Microsoft Developer Studio) must be run under Windows 95, 
because it uses a profile file (imagelib.ini) which works properly only under 
Windows 95. The RELEASE version of the program (built by setting the current 
configuration to RELEASE) will run properly either under Windows NT or 
Windows 95. 

Directory For Zip Disk Files 

The following is a list of the directories and some of the files on the Zip disk, with 
explanations. (Hard disk C: is assumed here). 

Directories: 

C:\tokscan 
subdirectories 
C:\tokscan\data 
supporting files 
C:\tokscan\Debug 
C:\tokscan\Extra 
Install 
C:\tokscan\Extra\DAOUpgrade 
C:\tokscan\Extra\Extralmages 
C:\tokscan\FiexBison 
C:\tokscan\FiexBison\BISON124 
C:\tokscan\FiexBison\FLEX24 7 
C:\tokscan\FiexBison\FiexBisonTest 
C:\tokscan\Release 
C:\tokscan\res 
C:\tokscan\YACC 
C:\tokscan\Y ACC\Debug 
C:\tokscan\yacclib 
C:\tokscan\yacclib\Debug 
C:\tokscan\yacclib\Release 

Selected Files 

C:\tokscan\imagelib.mak 
C:\tokscan\imagelib.mdp 
C:\tokscan\imaglib.dat 

- 192 -

Contains all source files and 

Contains test image files and 

Build directory with obj files (debug) 
Extra untested image files, and DAO 

DAO Redistribution Files 
Extra untested image files 
FLEX and BISON port to Windows 95 
BISON port to Windows 95 
FLEX port to Windows 95 
FLEX and BISON test files 
Build directory with obj files (release) 
Windows resource files for project 
YACC parser test files for project 
Build directory for YACC parser test 
YACC parser source and .lib files 
Build directory for YACC .lib (debug) 
Build directory for YACC .lib (release) 

Project make file 
Project workspace file 
Run file which points to directory with 
data 



C:\tokscan\data\adder.bmp 

C:\tokscan\data\adder.dbs 

C:\tokscan\data\adder.upr 
C:\tokscan\data\adderthin.bmp 

C:\tokscan\data\exercisescan.bmp 

C:\tokscan\data\exercisescan.dbs 

C:\tokscan\data\exercisescan.upr 

C:\tokscan\data\exercisescanthin.bmp 

C:\tokscan\data\imagdata.mdb 

C: \toksca n\data \imagetok.dat 

C:\tokscan\data\multiplexer.bmp 

C:\tokscan\data\multiplexer.dbs 

C:\tokscan\data\multiplexer.upr 

C:\tokscan\data\multiplexerthin.bmp 

C:\tokscan\data\schematic1.bmp 
C:\tokscan\data\schematic1.dbs 
C:\tokscan\data\schematic1.upr 
C:\tokscan\data\schematic1 thin. bmp 

C:\tokscan\Debug\tokscan.exe 

C:\tokscan\Debug\imaglib.dat 

C:\tokscan\Release\tokscan.exe 

C:\tokscan\Release\imaglib.dat 

C:\tokscan\Y ACC\driver.c 
C:\tokscan\YACC\Test.y 
C:\tokscan\YACC\testinp.dat 
C:\tokscan\Y ACC\test_tab.c 
C:\tokscan\YACC\test_tab.h 

C:\tokscan\Y ACC\workpj. mak 
C:\tokscan\Y ACC\workpj. mdp 

C:\tokscan\yacclib\AIIoca.c 

- 193 -

Scanned image file for full adder 
schematic 
Vector database for full adder 
schematic 
User parm file for full adder schematic 
Thinned image file for full adder 
schematic 

Scanned image file for exercise 
schematic 
Vector database for exercise 
schematic 
User parm file for exercise schematic 

Thinned image file for exercise 
schematic 

Database work file used by TOKSCAN 

Token library file 

Scanned image file for multiplexer 
schematic 
Vector database for multiplexer 
schematic 
User parm file for multiplexer 
schematic 
Thinned image file for multiplexer 
schematic 

Drawn image file for test schematic 
Vector database for test schematic 
User parm file for test schematic 
Thinned image file for test schematic 

Debug executable 

Run file which points to data directory 

Release executable 

Run file which points to data directory 

Source for YACC parser test driver 
YACC input source (rules) 
YACC parser test input file 
Test output C source from YACC 
Test output C header source from 
YACC 
YACC parser test make file 
YACC parser test project file 

Memory allocation source (from 
FLEXBISON) 



C:\tokscan\yacclib\yaccparser.c 

C:\tokscan\yacclib\Debug\yacclib.lib 
C:\tokscan\yacclib\Release\yacclib.lib 

YACC parser source (created from 
test_tab.c) 

YACC parser link library (debug) 
YACC parser link library (release) 

Performing Full Image Processing On An Image 

TOKSCAN can perform image recognition in two different modes. In the fully 
automatic mode, an image file is opened, binarization is done, and then 
TOKSCAN is requested to perform recognition. It automatically goes through the 
complete process of thinning, vectorization, determination of minimal closed 
polygons, determination of schematic components, determination of connecting 
signal lines, and location of circular signal line connectors. The user then 
identifies circuit inputs and outputs, and requests equation generation. 

In the manual mode, the user can "pre-vectorize" and "pre-thin" an image, and 
save the 

results in files which can later be opened along with the image, in order to avoid 
performing vectorization and thinning again. This is useful when testing is being 
performed on an image, and it is necessary to perform library analysis or 
recognition multiple times on the same image. 

In this section, we will illustrate the fully automatic mode by providing specific 
instructions for the test input image "schematic1.bmp". The same instructions 
apply for all other test images provided with the program. 

Instructions for fully automatic recognition on "schematic1.bmp" 

1. Start the TOKSCAN program. 

2. Verify that the token library file has been located and opened by doing the 
following: 

a. Select menu item "Token-Library". 
b. Select "Edit Token Library" from the drop-down menu. 
c. Press the "Shape Relationships" button in the "Shape Token 

Library Update" dialog box which is opened after step b is 
completed. 

d. Verify that there are six entries in the listbox displayed in the 
"Basic Shape Linear Relationships In Compound Shape" 
dialog box which is opened after step cis completed. If there is 
no data in the listbox, then check that the starting directory in the 
shortcut is C:\TOKSCAN\RELEASE (assuming drive C:), or that 

- 194 -



the program was started using Windows Explorer, as described 
above. 

3. Select the FILE menu item, and then the OPEN menu item (from the drop
down menu). 

4. From the file-open dialog box, move to the TOKSCAN\DATA directory, 
and open the file "schematic1.bmp". If a message box is displayed 
indicating that there is no user profile file for the selected image, then 
the starting directory for TOKSCAN is not set correctly. (It should be 
C:\TOKSCAN\RELEASE, assuming that the C: drive is used). 

5. Select the menu item "Image-Preprocessing", and the menu item 
"Binarization" from the drop-down menu. 

6. In the "Select Binarization Threshold Level" dialog, select a global 
threshold value of 80, and press the "Apply" button. After the image has 
been binarized, press the "Close" button. 

7. Select the menu item "Image-Analysis". 

8. Select the menu item "Find And Process Basic Shapes" from the drop
down menu displayed after completing step 5. 

9. After step 6 is complete, indicate the circuit input and output points for 
TOKSCAN, by doing the following: 

a. Press the toolbar button which changes the mouse cursor to the 
"In/Out Points" mode (third button from the right). The mouse 
cursor should change, and display the words "In/Out Points" . 

b. For each of the four circuit input points (at the top left side of the 
image), press and hold the left mouse button to display a 
selection rectangle, and move the rectangle so that it is over the 
end point of one of the input signal lines. Then, release the 
button. TOKSCAN should flag the location with a red dot, and 
with the words "INP-A", "INP-8", "INP-C", and "INP-0". 

c. For the circuit output point (at the right side of the drawing, about 
half way down), press and hold the right mouse button to display 
a selection rectangle, and move the rectangle so that it is over 
the end point of the output signal line. Then, release the button. 
TOKSCAN should flag the location with a red dot, and with the 
words "OUT-A". 

- 195 -



d. Select the menu item "Image-Analysis". 

e. Select the menu item "Generate Schematic Equation" from the 
drop-down menu displayed when step d is completed. 

After completing steps 1 - 9, TOKSCAN should follow all of the connector lines 
from the indicated inputs to the indicated output, highlighting the lines in blue as 
it executes, and then it should display an equation at the bottom of the bitmap 
for the analyzed circuit. 

Performing "Pre-vectorization" and "Pre-thinning" 

Step 8 above usually takes a lot of processing time, and if an image must be 
processed repeatedly, it saves time to perform "pre-thinning" and "pre
vectorization", and then to load the results into memory along with the image 
when it is processed the next time. 

To perform "pre-thinning" on the schematic image "schematic1.bmp, for 
example, do the following: 

1. Select the FILE menu item, and then the OPEN menu item (from the drop
down menu). 

2. From the file-open dialog box, move to the TOKSCAN\DATA directory, 
and open the file "schematic1.bmp". 

3. Select the menu item "Image-Preprocessing", and the menu item 
"Binarization" from the drop-down menu. 

4. In the "Select Binarization Threshold Level" dialog, select a global 
threshold value of 80, and press the "Apply" button. After the image has 
been binarized, press the "Close" button. 

5. Select the menu item "Tools", and then "Thin Image" (from the drop-down 
menu). 

6. After the image has been thinned (when step 3 completes), select menu 
item "FILE", and then "Save Bitmap As" (from the drop-down menu). In the 
file-save dialog box which appears, enter a file name for the thinned 
image, and press OK to save it to the hard disk. Make note of the file 
name used. 

To perform "pre-vectorization" on this schematic image after completing step 6 
above, do the following: 

- 196 -



1. Select the menu item "Tools", and the item "Extract Shape Object 
Vectors" (from the drop-down menu). This step extracts the vectors 
and places them in memory. 

2. Select the menu item 'Tools", and the item "Reorganize Shape Vectors" 
(from the drop-down menu). This step reorganizes the vectors and saves 
them in the working database used by TOKSCAN. 

3. Select the menu item "FILE", and the item "Save Database File As" (from 
the drop-down menu). A file-save dialog box will appear, which allows 
you to assign a permanent file name for the vector database in a library 
of database files. The file is assigned a file type (or DOS extension) of 
.dbs. Enter the desired file name, and press okay to save the database. 
Make note of the file name. 

Loading And Performing Recognition On A "Pre-vectorized" And "Pre
thinned" Image 

After performing "pre-thinning" and "pre-vectorization", schematic1.bmp can now 
be processed more quickly by calling up the thinned image file and the database 
of vectors which were saved. Starting from the point where TOKSCAN is 
running, and no image is loaded, the following steps should be followed to 
perform recognition on schematic1.bmp, taking advantage of "pre-thinning" and 
"pre-vectorization". 

1. Select the FILE menu item, and then the OPEN menu item (from the drop
down menu). 

2. From the file-open dialog box, move to the TOKSCAN\DATA directory, 
and open the file "schematic1.bmp". 

3. Select the menu item "FILE", and item "Open User Parm File" (from the 
drop-down menu). 

4. From the file-open dialog which is displayed, move to the 
TOKSCAN\DATA directory, select the file "schematic1.upr", and press 
OK. This will open the pre-defined user parameter file built for this image. 
(Note: this step is actually performed automatically whenever an image is 
opened, and there is a file with the .upr extension and a matching first 
node in the same directory as the image file) . If the user parms are 
changed and it is necessary to save the changes back into the 
schematic1.upr file, select the menu item "FILE" and item "Save User 
Parm File" (from the drop-down menu), enter schematic1.upr as the file 
name, and press OK. 

- 197 -



5. Select the menu item "FILE", and item "Open Database File" (from the 
drop- down menu). 

6. From the file-open dialog, move to the TOKSCAN\DATA directory, select 
the file "schematic1.dbs", and press OK. This selects the database vector 
file from the library, and copies it to TOKSCAN's working database. 

7. Complete steps 7 - 9 from "Instructions for fully automatic recognition on 
schematic1. bmp" above. 

Steps 1 - 6 can be done very quickly, compared to the time required for the 
typical thinning and vectorization processes. 

Performing Library Analysis On schematic1.bmp 

Library Analysis consists of detecting the closed minimal polygons in an image, 
generating the tokens which describe the shape of the polygons, and saving the 
tokens in the token library for future recognition. To do this for the 
schematic1.bmp image, do the following: 

1. Complete steps 3 - 7 from "Instructions for fully automatic recognition on 
schematic1 .bmp" above. 

2. Select "Find Basic Shapes For Library Update" from the drop-down menu. 

3. After step 2 has completed, all detected closed minimal polygons are 
highlighted in the image in purple. 

4. Select a polygon for which the tokens should be saved in the token 
library. To do this, place the mouse cursor near the polygon, press and 
hold the left mouse button, move the mouse to create a selection 
rectangle, place the selection rectangle over the polygon, and release 
the left mouse button. This will cause the "Compound Shape Object 
Information" dialog box to open. 

5. Use the mouse to select the "Chain#" line of the desired polygon in the 
upper left listbox (multiple polygons will be selected if the selection 
rectangle from step 4 overlaps more than one polygon). 

6. In the "Add To Token Library With Shape Name" edit box, type the name 
which you would like to assign to the token list when it is saved in the 
token library. 

- 198 -



7. Press the "Add To Token Library With Shape Name" button. This saves 
the token list in the library. It can then be used in shape relationships to 
define a compound shape. 

Matched Sets Of Image Files And Supporting Files 

There are four test images provided in the TOKSCAN\DAT A directory which 
have been thoroughly tested for proper recognition with TOKSCAN. Each image 
file is accompanied by a vector database file, a user parameter file, and a 
thinned image file, as shown in the following list. 

C:\tokscan\data\adder.bmp 

C:\tokscan\data\adder.dbs 

C:\tokscan\data\adder.upr 
C:\tokscan\data\adderthin.bmp 

C:\tokscan\data\exercisescan.bmp 

C:\tokscan\data\exercisescan.dbs 

C:\tokscan\data\exercisescan.upr 
C:\tokscan\data\exercisescanthin.bmp 

C:\tokscan\data\multiplexer.bmp 

C:\tokscan\data\multiplexer.dbs 

C:\tokscan\data\multiplexer.upr 

C:\tokscan\data\multiplexerthin .bmp 

C:\tokscan\data\schematic1.bmp 
C:\tokscan\data\schematic1.dbs 
C:\tokscan\data\schematic1 .upr 
C :\tokscan\data\schematic1 thin. bmp 

Scanned image file for full adder 
schematic 
Vector database for full adder 
schematic 
User parm file for full adder schematic 
Thinned image file for full adder 
schematic 

Scanned image file for exercise 
schematic 
Vector database for exercise 
schematic 
User parm file for exercise schematic 
Thinned image file for exercise 
schematic 

Scanned image file for multiplexer 
schematic 
Vector database for multiplexer 
schematic 
User parm file for multiplexer 
schematic 
Thinned image file for multiplexer 
schematic 

Drawn image file for test schematic 
Vector database for test schematic 
User parm file for test schematic 
Thinned image file for test schematic 

There are additional image files which have not been tested with TOKSCAN that 
are included in directory TOKSCAN\EXTRA\EXTRAIMAGES. Successful 
recognition with these images will require testing and careful adjustment of the 
user parameter file. They may also require some modification to TOKSCAN: 
debugging has been carried out completely for the four sample images, but time 
constraints for the project did not allow complete debugging for c:tll of these 
additional images. With some additional debugging, TOKSCAN should 

- 199 -



successfully recognize most of the included extra images. REMEMBER: this is a 
prototype program which demonstrates that the techniques implemented will 
work: it has not yet been tested to the point of being ready for use against any 
desired schematic image. 

Modifying And Testing The YACC Parser 

The directory TOKSCAN\YACC contains the source code necessary to test the 
YACC parser separately from TOKSCAN, using a small driver program named 
driver.c. A Visual C++ project has been set up in this directory to build the test 
parser with the test driver. The project workspace file is named "workpj.mdp". 

To modify the YACC parser rule set, and recreate the test parser, do the 
following: 

1. Open file TOKSCAN\YACC\test.y, and modify the YACC rules as needed. 
Then save the changed file. 

2. Install FLEX/BISON, using the directions provided with the download, and 
run the testy file through it to produce C source code for the parser 
(called test_tab.c). Update the existing test_tab.c provided in the 
TOKSCAN\YACC directory with the new version, and build the workpj 
project from within Visual C++. 

3. A test input file with tokens that have the same format used by TOKSCAN 
is provided in the TOKSCAN\YACC directory, named "testinp.dat". To 
execute the test parser built in step 2, open a DOS window, and enter 
the command: 

workpj < testinp.dat > testout.txt 

This will execute the parser using the test input file, and will produce a 
text output file with the results of the parse called "testout. txt". The proper 
results for the current version of the parser are provided in the existing file 
TOKSCAN\YACC\testout. txt. 

4. After the test version of the parser has been tested, it must be added to 
the link library which is included in the TOKSCAN project. To accomplish 
this, do the following: 

a. Rename the parser c source code file from test_tab.c to 
yaccparser.c, and copy it to the TOKSCAN\YACCLIB directory, 
overlaying the existing yaccparser.c file. 

- 200 -



b. Rebuild the TOKSCAN project. The yacclib.lib library will 
automatically be rebuilt as a part of the overall project build, and 
the parser will be link edited into TOKSCAN. 

Modifying And Testing The TOKSCAN Project 

TOKSCAN can be modified using Visual C++, version 4.0 through 4.2 
(Enterprise 

Edition). It was developed using version 4.2. To load the project, open the 
workspace file TOKSCAN\imagelib.mdp. See the comments at the beginning of 
part 2 of this manual for more information. 

Introduction To The Class Structure In TOKSCAN 

After the project workspace file (TOKSCAN\imagelib.mdp) has been opened in 
Visual C++, all of the user-defined C++ classes can be seen in the class "tree 
view' window. Visual C++ provides fast access to the source definitions of each 
class, and of each member variable and member function through the use of this 
tree view. The user can expand the view by double-clicking the mouse on an 
entry. Double-clicking the mouse on an entity inside of a class causes the 
source code to be opened at the location where the entity is defined. 

The TOKSCAN project was originally generated using Microsoft's "App Wizard", 
and the original set of classes generated by that tool were retained in the final 
structure. Numerous other classes have been added, with many 
interrelationships between the classes. 

Visual C++ has a class browser utility which helps the user understand the 
structure of the program, and find where clqsses are referenced. It is a good idea 
for a new user to review the browser file provided in the Zip Disk 
(TOKSCAN\DEBUG\imagelib.bsc). The following page contains a list of the 
user-defined classes in the project, with a brief explanation of the function of 
each. 

Classes G,enerated By The Microsoft "App Wizard" (Heavily Modified) 

Clmagelib Main application class 

- 201 -



CMainFrame 

CCinputBitmapDoc 
CCinputBitmapView 

CChildFrame 
CAboutDig 

CBinarize 

CChainStartCount 

CCompoundlmageCoordldx 

CCompoundl mageObject 

CCompoundShapeDialog 

CConnectionMatrix 

CDAOChainStartSet 

CDAOVectorChainSet 

ClmageObject 

circularregion 

CkFiiiFilter 

Main frame window class (of MDI interface); 
user defined program initialization is done 
here 

Document class which holds all image data 
View class which controls display of Doc class 
data 
Child window class for MDI interface 
"About" dialog box class 

User-Defined Classes 

Dialog box class which controls image 
binarization 

DAO (Microsoft Data Access Object) class 
which gets a count of the number of vector 
chains saved in the working database 

Manages a hash table of keys which index a 
set of CCompoundlmageObject objects 

Compound Shape Object implementation 

Dialog box class which drives the "Compound 
Shape Object Information" dialog box 

Implements the connection matrix used to 
analyze the connections between schematic 
components 

DAO class which retrieves vector information 
from the database 

DAO class which retrieves vector information 
from the database 

Simple shape object implementation 

Supports "circular searches" in the image 
bitmap around a specific set of coordinates 

Dialog box class which controls noise 
reduction 

- 202 -



CLineSmoothParms 

CProcesslog 

CProfileDB 

CProgressDig 

CShapelinearReiDialog 

CShapeMap 

CShapeNumEntryDialog 

CShapeObjectDialog 

CShape TokenlibDialog 

CTokenlibData 

CTraverseVectorChain 

CUserParm4 

CUserParms 

Dialog box class which supports the line 
smoothing parameters which are set by the 
user 

Dialog box class which supports the process 
log, which is used for debugging 

DAO class which supports the retrieval of user 
parameter information from the working 
database 

Dialog box class which supports the progress 
bars that indicate time remaining on long 
running tasks 

Dialog box class which supports the "Basic 
Shape Linear Relationships In Compound 
Shape" dialog 

Supports a hash table which references a 
collection of CCompoundlmageObject 
instances 

Dialog box class which supports the "Shape 
Selection Data" dialog 

Dialog box class which supports the "Chain 
Shape Object" dialog 

Dialog box class which supports the "Shape 
Token Library Update" dialog 

Supports the retrieval and update of token 
library information in memory, and file i/o 

Supports traversals through a set of vectors 
contained in a shape object 

Dialog box class which supports the "Shape 
Object Parameters" dialog 

Dialog box class which supports the 
"Curvature And Junction Margin Of Error'' 
dialog 

- 203 -



CUserParms2 

CUserParms3 

CUserParms5 

Image Vectors 

mathfunctions 

Dialog box class which supports the 
"Perimeter Values" dialog 

Dialog box class which supports the "Closed 
Polygon Search Parameters" dialog 

Dialog box class which supports the "Token 
Edits" dialog 

Supports the "thick line" vectorization process 

Provides necessary mathematical functions 
such as distance measurement, arccosines, 
etc. 

NOTE ON RUNNING THE TEST IMAGES ON DIFFERENT PC'S 

In some cases, the test images will not process correctly when this program is 
transferred to another PC system. The problem has to do with the Window's 
color palette, which varies from system to system, and which causes the test 
bitmaps to display with slightly different intensities in some cases. If this problem 
occurs in a new installation, it may help to load the test bitmap, then load an 
image color file which has been provided in the ZIP disk in the DATA directory. 
This will reset the grayscale intensity values to those originally used to test the 
image. 

There are three image color files provided, one for each of the three scanned 
test images (schematic1.bmp should not have this problem), with names 
adder.cif, exercisescan.cif, and multiplexer. cit. To apply the color information file 
to adder.bmp, for example, open adder.bmp, then from the FILE menu, select 
OPEN IMAGE COLOR FILE. When the file dialog box opens, select adder.cif as 
the file to load. This will reset the bitmap display, and image recognition can then 
be performed. The changed image can also be saved as a new bitmap. 

NOTE ABOUT DATA FILE PATHS 

If you use a drive/directory other than c:\tokscan for the installation, make sure 
that you change the path name in file imaglib.dat to match the directory used. 
This file is located in the RELEASE, DEBUG, and TOKSCAN directories on the 
Zip disk. 

- 204 -



VITA 

James A. (Jim) Giles has a Bachelor of Arts degree from the 

University of South Florida in Mathematics, and expects to 

receive a Master of Science degree in Computer and 

Information Sciences from the University of North Florida, 

August, 1997. Dr. YapS. Chua of the University of North 

Florida is serving as Jim's thesis advisor. 

Jim has a background in business data processing in the 

life insurance and transportation industries, and on-going 

interests in mathematics, engineering, image processing, 

and computer networks. 

- 205 -


	UNF Digital Commons
	1997

	Analysis of Digital Logic Schematics Using Image Recognition
	James A. Giles
	Suggested Citation


	Title Page
	ACKNOWLEDGMENT
	CONTENTS
	List of Figures
	ABSTRACT
	Chapter 1 INTRODUCTION
	1.1 The Image Recognition Process
	1.2 A Survey Of Recognition Techniques And Applications
	1.2.1 Traditional Approaches
	1.2.1.1 Data Capture
	1.2.1.2 Pre-Processing
	1.2.1.3 Feature Extraction
	1.2.1.4 Recognition

	1.2.2 Neural Network Techniques
	1.2.3 Applications


	CHAPTER 2 THE DESIGN OF THE RECOGNITION PROGRAM
	2.1 "Thick Line" Vectorization And Corner Detection
	2.2 Detection Of Curvature
	2.3 Representation Of Digital Schematics As A CollectionOf Related Shape Objects
	2.4 Representation Of Schematic Components As A Set Of Related Simple Shapes
	2.5 Representation Of Simple Shapes As Token Lists
	2.6 Storage Of Shape Relationships And Token Lists In AToken Library
	2.7 Detection Of Closed Polygons- The Foundation For Schematic Analysis
	2.8 Component Identification: The Detection Of Base Shapes, Appendage Shapes, And Input/Output ConnectionsIn Schematic Components
	2.9 Isolation Of Schematic Components From Connector Lines
	2.10 Determination Of Electrical Connections BetweenConnector Lines Using Circular Connection Symbols
	2.11 Schematic Component Connection Analysis
	2.12 Construction Of A Token List For Equation GenerationBased On The Connection Analysis
	2.13 Construction Of A YACC-Generated Parser To Analyze Equation Token Lists
	2.14 Connection Line-Following Techniques, EquationDetermination, And Output
	2.15 User-Adjustable Parameters For The Recognition Process

	CHAPTER 3 NOTES ON THE IMPLEMENTATION USING THEMICROSOFT FOUNDATION CLASSES AND A YACC-GENERATED PARSER
	3.1 The Development Environment
	3 .1.1 Automatic Generation Of Skeleton Code And UserInterface Resources
	3.1.2 Visual Class Tree View With Fast Access To Member Functions And Class Definitions
	3.1.3 High Quality Debugger With Convenient VisualFeatures

	3.2 The Microsoft Foundation Classes
	3.2.1 Effective Encapsulation Of The Windows API
	3.2.2 Template Classes Which Support Dynamic Arrays,Lists, And Maps
	3.2.3 Effective Memory Management And Support For LargeCollections Of Objects
	3.2.4 Problems Encountered During Development

	3.3 Development Of The Parser

	CHAPTER 4 EXPERIMENTAL RECOGNITION RESULTS
	CHAPTER 5 CONCLUSION AND SUGGESTIONS FOR FURTHER DEVELOPMENT
	REFERENCES
	APPENDIX A Source Code Listings
	APPENDIX B User Manual For The TOKSCAN Program
	VITA

