
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2003

Comparison of JavaSpace and CORBA
Technologies
Anjani Kumar Jha

This Master's Project is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2003 All Rights Reserved

Suggested Citation
Jha, Anjani Kumar, "Comparison of JavaSpace and CORBA Technologies" (2003). UNF Graduate Theses and Dissertations. 328.
https://digitalcommons.unf.edu/etd/328

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71998711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

Comparison of JavaSpaces and CORBA Technologies

By

Anj ani Kumar Jha

A Professional Option Project submitted to the Department of Computer and Information
Sciences in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

December, 2003

The Professional Option Project "Comparison of JavaSpaces and CORBA
Technologies" submitted by Anjani Kumar Jha in partial fulfillment of the
requirements for the degree of Master of Science in Computer and Information
Sciences has been

Approved by:

Dr. Charles N. Winton
Graduate Director

Date

-11-

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

I wish to express my gratitude to Dr. Sanjay Ahuja for his invaluable guidance and

support throughout the project. Thanks are especially due to Dr. Bill Wilson of the

Mathematics department, for providing me with his invaluable guidance and time on

statistical methods to evaluate the test results. My lovely wife Rashmi and my little

daughter Aditi provided me their constant support and encouragement while I

pursued graduation. I also wish to thank my parents who motivate me every single

moment of my life. Additionally, I would like to thank all those people who have

helped me come up in life.

-111-

CONTENTS

ABSTRACT .. viiii

Chapter 1 ... 1

INTRODUCTION .. 1

Chapter 2 ... 4

JA V ASP ACES AND CORBA TECHNOLOGIES .. 4

2.1.1 J a vaS paces - ANew Distributed Computing Model 4

2.1.2 GigaS paces Platform ... 6

2.2.1 CORBA Technology ... 7

2.2.2 ORBACUS .. 10

Chapter 3 ... 11

PROJECT DESCRIPTION ... 11

il Overview ... 11

3.2 Hardware ... 12

3.3 Software .. 12

Chapter 4 ... 13

TESTING METHODOLOGY .. 13

tl Testing method .. 13

Chapter 5 ... 14

RESULTS ... 14

5.1 Testing ... 14

5.2 Speed-up ... 16

-IV-

Chapter 6 ... 19

STATISTICAL EVAL-UATION .. 19

hl Statistical Evaluation of test results .. 19

Chapter 7 ... 22

CONCLUSIONS ... 22

REFERENCES ... 24

VITA ... 25

-v-

FIGURES

Figure 1 .. 4

Figure 2 .. 9

Figure 3 .. 15

Figure 4 .. 16

Figure 5 .. 18

Figure 6 .. 18

Figure 7 .. 19

Figure 8 .. 20

Figure 9 .. 21

-Vl-

TABLES

Table 1 .. 14

Table 2 .. 15

Table 3 .. 17

Table 4 .. 17

-vn-

ABSTRACT

With computer industry increasingly moving towards network-centric systems,

particularly the Internet, competing technologies that help design and develop such

systems are fast emerging in the marketplace. The fundamental characteristics of a

networked environment are heterogeneity, partial failure, latency and difficulty of

"gluing together" multiple, independent processes into a robust, scalable application.

JavaSpaces, a shared memory paradigm, provides high-level coordination mechanism

for Java easing the burden of creating distributed systems. Large class of distributed

problems can be approached using Javaspaces' simple framework. JavaSpaces allows

processes to communicate even if each was wholly ignorant of the others. CORBA on

the other hand is a standard developed by OMG that allows communication between

objects written in different programming languages. It provides common message

passing mechanism for interchanging data and discovering services. The purpose of

this graduate project was to compare JavaSpaces and CORBA technologies by

developing an Insertion Sort and comparing their response times. Javaspaces

outpaced CORBA in terms of response time. These technologies make the

implementation of distributed algorithms reasonably fault tolerant and highly

scalable.

-Vlll-

Chapter 1

INTRODUCTION

Client/server and multi-tier models operating within a single business enterprise have

given way to an Internet/Web environment where services are provided by nodes

scattered over a far-flung network. Next generation of network interaction is

emerging that place unprecedented demands upon existing network technologies and

architectures. For example, participants in one network will need to directly access

and use the services provided by participants in another network. It is in this network

environment - one of mind-numbing complexity driven by geometric increases in

scale, rate of change, and multiplicity of participant interactions that technologies

such as J avaSpaces and CORBA present competing options for software architects

and distributed systems designers multiple and competing options and opportunities.

Distributed systems are hard to build. They require careful thinking about problems

that do not occur in local computation. The fundamental characteristics of a

networked environment such as partial failure, latency, and heterogeneity and the

difficulty of "gluing together" multiple, independent processes into a robust, scalable

application present the programmer with many challenges that don't arise when

designing and building desktop applications. JavaSpaces technology is a simple,

expressive, and powerful tool that eases the burden of creating distributed

applications. Processes are loosely coupled- coupled communicating and

synchronizing their activities using a persistent object store called a space, rather than

-1-

through direct communication. [Amold99]. Another technology that allows

communication between objects that are written in different programming languages

is Common Object Request Broker Architecture (CORBA). CORBA is an open,

vendor-independent architecture and infrastructure for distributed object technology.

CORBA standards define a common message passing mechanism for interchanging

data and discovering services. It is widely used today as the basis for many mission

critical software applications. Objects do not talk directly to each other, they always

use an object request broker (or ORB) to find out information and activating any

requested services. CORBA technology uses an Interface Definition Language (or

IDL) to specify the signatures of the messages and the types of the data different

objects can send and understand [CapeSc02]. These technologies introduce new

paradigm for developing distributed applications that are loosely coupled,

dynamically and naturally scalable and fault tolerant.

For evaluating JavaSpaces and CORBA technologies both quantitatively and non

quantitatively, we have chosen a distributed, parallel application that can help

understand the performance of the two technologies under various load conditions.

We have implemented a parallel application that sorts a large array of positive

integers of increasing sizes by partitioning the sort space into smaller components

(smaller arrays) and dropping each such smaller "job" into the shared memory space

and then each worker app which was free would pick up the job, do the sorting, drop

off the result back into the shared memory space, and then the main thread would put

back the individually sorted jobs into the proper overall order. On another dimension,

-2-

we also increase the number of workers or processors to measure the performance of

the applications developed in J avaSpaces and CORBA under these varying and

increasing load conditions. The hardware platforms for both implementations are

identical.

-3-

Chapter 2

JA V ASP ACES AND CORBA TECHNOLOGIES

2.1.1 J avaSpaces - ANew Distributed Computing Model

Building distributed applications with conventional network tools usually entails

passing messages between processes or invoking methods on remote objects. In

J avaSpaces applications, in contrast, processes don't communicate directly, but

instead coordinate their activities by exchanging objects through a space, or shared

memory [Artima02]. JavaSpaces is a specification developed by SUN Microsystems

that presents a model of interaction between (mostly) Java applications. Applications

seek to exchange information in an asynchronous but transactional-secure manner and

can use a space to coordinate the exchange.

wi!l~n~f
··::~.

. ~

~' ''"' ··\

Figure 1: Flow of Objects between JavaSpaces

-4-

Figure 1 depicts several applications (the Duke images) interacting with two spaces.

Each application can write objects (called Entries) to a space, read objects from a

space, and take objects from a space (take means read + delete). In addition,

applications may express interest in special entries arriving at a space by registering

for notifications. The J avaSpaces API is very simple and elegant, and it provides

software developers with a simple and effective tool to solve coordination problems

in distributed systems, especially areas like parallel processing and distributed

persistence. The developer can design the solution as a flow of objects rather than a

traditional request/reply message based scenario. Combined with the fact that

JavaSpaces is a Jini service, thus inheriting the dynamic nature of Jini, JavaSpaces is

a killer model for programming highly dynamic distributed applications.

The JavaSpaces API consists of four main method types:

Write()- writes an entry to a space.

Read() - reads an entry from a space.

Take() - reads an entry and deletes it from a space.

·Notify()- registers interest in entries arriving at a space.

In addition, the API enables JavaSpaces clients (applications) to provide optimization

hints to the Space implementation (the method snapshot()).

This minimal set of APis reduces the learning curve of developers and encourages

them to adopt the technology quickly. JavaSpaces enable full use of transactions,

leveraging the default semantic of Jini Distributed Transactions model. This enables

-5-

developers to build transactional-secure distributed applications using JavaSpaces as

a coordination mechanism. The APis themselves provide non-blocking versions,

where a read() or take() operation may take a maximum timeout to wait before

returning to the caller. This is very important for applications that cannot permit

themselves to block for a long time or in the case that the space itself is in some kind

of a deadlock. J a vaS paces also make extensive use of Jini leases, as it mandates that

entries in the space be leased and thus, expire at a certain time unless renewed by a

client. This prevents out-of-date entries, and saves the need for manual cleanup

administration work [Amold99].

2.1.2 GigaSpaces Platform

GigaSpaces Technologies has built an industrial-strength JavaSpaces implementation.

This implementation is called "the GigaSpaces platform", or "GigaSpaces" in short.

We selected GigaSpaces because it is freely available for evaluation. GigaSpaces is a

100% conforming and a 100% pure Java implementation of the JavaSpaces

specification. Moreover, GigaSpaces blends naturally with Suns' implementation of

the Jini API.

The application accesses the space API through a space proxy, which is embedded in

the application JVM. This proxy is usually obtained by a lookup in a directory

service, like a Jini Lookup service or a JNDI name space. The space proxy

communicates with the server-side part of the space, which holds most of the logic

-6-

and data of the space. The space itself may be an in-memory space or a persistent

space. An in-memory space holds all its data in virtual memory. This results in fast

access. However, memory spaces are bounded by the amount of virtual memory in

the system, and are vulnerable to server crashes. A persistent space uses a DBMS

back end to persist its data, while still caching some of the data in memory. Persistent

spaces do not lose data as a result of server reboots/crashes and can hold a large

amount of data. The server-side part of the space is shared among all applications that

refer to the same logical space. This is how different applications can share and

exchange information through the space. A GigaSpaces Container is a service that

can contain and manage several spaces in one JVM. Spaces in the same container

share resources in order to reduce resource consumption. The container is also

responsible of registering spaces to directory services in the environment. A

GigaSpaces Server can launch several services, like HTTP Service, Transaction

Service, Lookup Service and GigaSpaces Container is one physical JVM. This is a

single point of configuration for launching several services in a single physical

process [Giga02].

2.2.1 CORBA Technology

The Common Object Request Broker Architecture (CORBA) is a standard for

transparent communication between applications objects. [OMG03] Object

Management Group (OMG) developed the CORBA standards, which is a non-profit

industry consortium. It allows a distributed, heterogeneous collection of objects to

-7-

inter-operate. Part of CORBA standard is the Interface Definition Language (IDL),

which is an implementation-independent language for describing the interface of

remote objects. Corba offers greater portability in that it isn't tied to one language,

and as such, can integrate with legacy systems of the past written in older languages,

as well as future languages that include support for CORBA.

CORBA applications are composed of objects, individual units of running software

that combine functionality and data. There could be many instances of an object of a

single type or only one instance. For each object type, we define an interface in OMG

IDL. The interface is the syntax part of the contract that the server object offers to the

clients that invoke it. Any client that wants to invoke an operation on the object must

use this IDL interface to specify the operation it wants to perform, and to marshal the

arguments that it sends. When the invocation reaches the target object, the same

interface definition is used there to unmarshal the arguments so that the object can

perform the requested operation with them. The interface definition is then used to

marshal the results for their trip back, and to unmarshal them when they reach their

destination. The IDL interface definition is independent of programming language,

but maps to all of the popular programming languages via OMG standards: OMG has

standardized mappings from IDL to several popular languages like C++, Java,

COBOL, Python, etc. This separation of interface from implementation, enabled by

OMG IDL, is the essence of CORBA - how it enables interoperability, with all of the

transparencies we have mentioned. The interface to each object is defined very

strictly. In contrast, the implementation of an object- its running code, and its data -

-8-

is hidden from the rest of the system (that is, encapsulated) behind a boundary that the

client may not cross. Clients access objects only through their advertised interface,

invoking only those operations that the object exposes through its IDL interface, with

only those parameters (input and output) that are included in the invocation.

Client Object
Implementation

II.

IDL IDL
Stub Skeleton

~,

Request

Object Request Broker

Figure 2: A request passing from client to object implementation

Figure 2 shows how everything fits together, at least within a single process: Compile

the IDL into client stubs and object skeletons, and write the object and a client for it.

Stubs and skeletons serve as proxies for clients and servers, respectively [OMG03].

Because IDL defines interfaces so strictly, the stub on the client side has no trouble

meshing perfectly with the skeleton on the server side, even if the two are compiled

into different programming languages, or even running on different ORBs from

different vendors. In order to invoke the remote object instance, the client first obtains

its object reference using Trader service or naming service. The client knows the type

of object it's invoking and the client stub and object skeleton are generated from the

-9-

same IDL. Although the ORB can tell from the object reference that the target object

is remote, the client can not.

2.2.2 ORBACUS

Orbacus is a mature CORBA product that has been deployed around the world in

mission critical systems in the telecommunications, finance, government, defense,

aerospace and transportation industries. Orbacus is 'CORBA 2.5 compliant' and is

designed for rapid development, deployment and support in the language of our

choice C++ or Java; its small footprint allows it to be easily embedded into memory

constrained applications [Orbacus03]. We chose ORBACUS for CORBA evaluation,

as it is freely available for evaluation is an industry grade CORBA product.

-10-

Chapter 3

PROJECT DESCRIPTION

3.1 Overview

In this project, we implemented a distributed, parallel Insertion sort application

because in our view such an algorithm significantly exercises the CPU

computationally. The Insertion sort algorithm has a complexity of 0 (n2
). In the worst

case scenario the algorithm may have demands for computing powers that can be

truly met through a distributed and parallel application. Our application sorts a very

large array of positive integers by partitioning the sort space into smaller components

(smaller arrays) and dropping each such smaller "job" into the shared memory space

and then each worker application which was free picked up the job, perform the

sorting work, drop off the result back into the shared memory space, and then the

main thread put back the individually sorted jobs into the proper overall order. The

performance was measured by increasing the number of processor/worker or server as

well as increasing the problem size by increasing the size of the array that needed

sorting. We have also decided in our implementation to run one worker/server per

node. Implementing the same application using J avaSpaces and CORBA allowed

comparison of performance, ease of development, ease of maintenance, and

portability across platforms between the two technologies.

-11-

3.2 Hardware

The hardware for this project consists of a cluster of homogeneous workstations all

running RedHat Linux v7 .2. The machines are all Intel based PCs consisting of single

500 MHz processors connected by 100 megabit fast Ethernet.

3.3 Software

The software for the project consists of Java™ 2 Runtime environment, Standard

Edition version 1.3.1. We used Java language for coding for the entire application to

keep variables in performance evaluation to a minimum. We used GigaSpaces3.0 an

implementation of J avaSpaces and ORBACUS4.1.2 an implementation of CORBA.

-12-

4.1 Testing method

Chapter4

TESTING METHODOLOGY

Performance testing was implemented by recording the response time of each sort

work performed using JavaSpaces and Corba applications. We increased the number

of workers from one worker to multiple workers deployed to perform the same sort

work. Later we doubled the size of the data for sorting. With this increased size of

work, we again recorded the response time to sort this work using one worker and

then changing the number of worker from one to two, four and then eight.

In case of Corba, the same methodologies described in the above paragraph was

employed however in this case we were using servers that were performing sort work

and passing the results back to the client which will then measure the response time

and display the sorted data and response time. We plotted several graphs and recorded

our inferences.

In addition we have also used statistical methods to evaluate our response time data

and used the model to conclude our results from a statistical approach.

-13-

Chapter 5

RESULTS

5.1 Testing

We ran a series of executions for both the architectures by changing parameters for

each run. We used 8K, 16K, 32K and 64K integers, which were randomly generated

and used 1, 2, 4 and 8 workers/servers. The data are distributed so as each server has

access to same amount of data. The servers do all the work while the client only

distributes and collects data. All the executions were ran under similar conditions for

both the technologies. We ran our measurements when the load on the network and

servers was at a minimum.

The table below summarizes the observed data:

JavaSpaces
Number of workers

(Response time in ms)

Input Ts(P=1) Tp(P=2) Tp(P=4) Tp(P=8)

SIZe

8K 4636 3726 3451 3573

16K 10744 6701 4898 4465

32K 34223 17529 10459 7488

64K 128508 47488 20003 12056

Table 1: Response time for JavaSpaces

-14-

CORBA
Number of servers

(Response time in ms)

Input Ts(P=1) Tp(P=2) Tp(P=4) Tp(P=8)

SIZe

8K 7947 6438 5941 6399

16K 14747 8839 7395 7263

32K 39599 18816 11097 9282

64K 139199 66365 35280 20119

Table 2: Response time for CORBA

Note:

Ts: Response time when one worker was deployed to perform sort work

Tp: Response time when more than 1 worker was deployed to perform sort work

140000 e 12oooo
:;:; 100000
~ 80000
§ 60000
~ 40000
~ 20000

0

JavaSpaces Response

8K 16K 32K 64K

Sort Data Size

Figure 3: J avaSpaces Response with varying processors and varying data size

-15-

We also plotted graphs representing the measured response times with the data from

Table 1 and Table 2.

The above graph (Figure 3) is a plot of response time with increasing sort work and

number ofworkers for JavaSpaces implementation.

CORBA Response

160000

Q)
140000

E 120000
i= 100000
Q)
(/) 80000 c
0 60000 c.
(/)

40000 Q)

0:: 20000
0

8K 16K 32K 64K

Sort Data Size

Figure 4: Corba response with varying processors and varying data size

The above figure is a plot of response time with increasing sort work and number of

servers for Corba implementation.

5.2 Speed-up

For any parallel process, Speed-up is an important measured. It is defined as a ratio of

time taken to process the same amount of work sequentially to time taken to process

it in parallel. We have calculated and plotted graphs for speed-up in the following

section.

-16-

The tables below show the speed-up for the observed data:

JavaSpaces
Number ofworkers

Input size P=1 P=2 P=4 P=8

8K 1 1.2441 1.3433 1.2975

16K 1 1.6034 2.1935 2.4066

32K 1 1.9524 3.2721 4.5702

64K 1 2.7061 6.4245 10.6594

Table 3: Speed-up for JavaSpaces

CORBA
Number of servers

Input size P=1 P=2 P=4 P=8

8K 1 1.2344 1.3377 1.2419

16K 1 1.6684 1.9943 2.0303

32K 1 2.1046 3.5684 4.2664

64K 1 2.0975 3.9456 6.9188

Table 4:Speed-up for CORBA

-17-

12

10

a. 8
::J

I

"C 6 Q)
Q)

a. 4 en
2

0

8

7

6
g. 5
I

-g 4
Q)

a. 3 en
2

1

0

8K

8K

JavaSpaces Speed-Up

16K 32K 64K

Sort Data Size

Figure 5: JavaSpaces speed-up

CORBA Speed-Up

16K 32K 64K

Sort Data Size

Figure 6: Corba speed-up

-+---- P=1

-{II- P=2

t;--- P=4

~P=8

-+---- P=1

--fill- P=2

.\-- P=4

--X- P=8

Comparing figure 5 and 6, we derive that we have a better speed-up when processing

large amount of sort data. We also observe that we have better speed-up in

JavaSpaces.

-18-

Chapter 6

STATISTICAL EVALUATION

6.1 Statistical Evaluation of test results

Tests of Between-Subjects Effects

Dependent Variable· TIME

Type Ill Sum
Source of Squares df Mean Square F Sig.
Corrected Model 3.296E+11a 31 1.063E+10 8100.789 .000
Intercept 1.641E+11 1 1.641E+11 125044.6 .000
SIZE 1.459E+11 3 4.864E+10 37064.778 .000
WORKERS 7.306E+10 3 2.435E+10 18556.775 .000
CODE 2245965270 1 2245965270 1711.341 .000
SIZE * WORKERS 1.062E+11 9 1.180E+10 8993.766 .000
SIZE* CODE 1680591464 3 560197154.6 426.849 .000
WORKERS * CODE 65116429.0 3 21705476.34 16.539 .000
SIZE * WORKERS *

360117425 9 CODE 40013047.18 30.488 .000

Error 377971359 288 1312400.554
Total 4.941E+11 320
Corrected Total 3.300E+11 319

a. R Squared = .999 (Adjusted R Squared = .999)

Figure 7: Tests ofBetween-Subjects Effects

Figure 7 represents tests of between subject effects. The last column represents

statistical significance. This table shows that all the terms and all the interactions are

statistically significant. That is, the probability that the differences found are due to

chance alone are listed as .000 (rounded to three decimals they all are zero)

[Mario99].

-19-

To determine the nature of these interactions, means plots are given where each pair

of means is compared at the 0.05 level (That is, that differences are due to chance

only 5% of the time).

From Figure 8 below, we observe that for each data size, CORBA takes significantly

longer than J avaSpaces. The difference is the same for all data sizes.

WORKERS: 1.00 P=1
160000

140000

120000

100000

Q) 80000
E
F 60000
Q)
(/)
c

CODE 0 40000 0.
(/)
Q)

0::: 20000 CORBA
c
Ill
Q)

JavaSpaces 2 0
8K 16K 32K 64K

Input Data Size

Figure 8: Mean response time for P=l for JavaSpaces and CORBA

From Figure 9 below, we observe when we employed two workers, Corba is

significantly higher in response time than JavaSpaces for all but input data size of

32K, where there is no significant difference. The difference is higher in data size

64K.

-20-

We have similar observation as above when we have four workers. CORBA is

significantly higher in response time than JavaSpaces in all data sizes except 32K,

where there is no difference. The difference is higher in data size of 64K.

WORKERS: 2 P=2
70000

60000

50000

40000

Q)

E 30000
F
Q)
If)
c 20000 0
c. CODE
If)
Q)

0:: 10000 CORBA c
ro
Q)

::2: 0 JavaSpace

8 16 32 64

Input Data Size

Figure 9: Mean response time for P=2 for JavaSpaces and CORBA

For eight workers CORBA is significantly higher in response time for all data sizes.

The difference is higher in data sets of 64K.

-21-

Chapter 7

CONCLUSIONS

JavaSpaces consistently outperformed CORBA in terms of response time on both the

parameters - size of the problem and number of processors deployed to work as

workers/servers. We can conclude from the observed data that distributed parallel

algorithm of master-worker pattern may be able to perform more efficiently when

developed using JavaSpaces platform. CORBA is language neutral and thousands of

sites rely on CORBA for enterprise, Internet, and other computing. Both CORBA and

JavaSpaces architectures provide tremendous benefits in terms of fault-tolerance and

scalability. In terms of ease of use and implementation of the two technologies,

implementation of J avaSpaces was easier than CORBA. GigaSpaces platform already

provides most of the implementation details and from an application programmer's

perspective, there are only five commands to learn. We did face some challenges in

implementing J avaSpaces due to its increased security considerations that is in-built

within the J avaSpaces and its underlying Jini technologies and GigaS paces platform.

J avaSpaces does have the limitation that it can be only implemented on Java platform

supporting Jini architecture. In comparison, implementation of CORBA platform is

harder due to much detailed standards that developers must adhere.

In statistical analysis, the model we employed provided better insight and we

observed that all the terms and all the interactions are statistically significant between

the response times of the technologies.

-22-

The work carried in this project can be extended and evaluated in the fields of on

demand computing also known as Grid computing. This study can also be extended in

evaluating service-oriented architectures where these technologies are the underlying

technology infrastructure.

-23-

REFERENCES

[Arnold99]
Freeman, E., Hupfer, S., Ken Arnold, "JavaSpaces Principles, Patterns, and
Practice", Addison Wesley, 1999, pp. 4-16.

[CapeSc02]
An introduction to implementing Web Services using CORBA servers
http:/ /www.capescience.com/resources/

[Artima02]
Designing Distributed Systems
http://www.artima.com/jini/

[Giga02]
GigaSpaces Platform -White Paper
http://www. gigaspaces.com/ download!GigaSpaces WhitePaper. pdf

[OMG03]
OMG CORBA/IIOP specifications
http://www .omg. org/technolo gy/ documents/formal/

[Orbacus03]
White Paper- Orbacus October 2003
http://www .orbacus. com/ support/new site/pd:f/Orbacus WP. pdf

[Mario99]
Triola, Mario F., "Essentials of Statistics", Addison Wesley, 1999, pp. 4-16.

-24-

VITA

Anjani K. Jha has a Bachelor of Engineering degree from Birla Institute of

Technology, India in Computer Science, 1991 and expects to receive his Master of

Science in Computer and Information Sciences from the University of North Florida

in December 2003. Dr. Sanjay Ahuja of University of North Florida is serving as

Anjani's project Director. Anjani is currently employed as a Principal Consultant at

Keane, Inc. and works at its client site, CSX Technology for the past six years. Prior

to that Anjani worked in India as a Systems Analyst in Visakhaptanam Steel Plant.

Anjani has over 12 years of industry experience in Information Sciences.

Anjani has diverse interests that include Data Base design and Administration,

distributed systems design and development, project management. Anjani is married

and lives with his wife and their three-year-old daughter in Jacksonville.

-25-

	UNF Digital Commons
	2003

	Comparison of JavaSpace and CORBA Technologies
	Anjani Kumar Jha
	Suggested Citation

	Title Page
	Contents
	Figures
	Tables
	Chapter 1
	INTRODUCTION

	Chapter 2
	JAVASPACES AND CORBA TECHNOLOGIES
	2.1.1 JavaSpaces - A New Distributed Computing Model
	2.1.2 GigaSpaces Platform
	2.2.1 CORBA Technology
	2.2.2 ORBACUS

	Chapter 3
	PROJECT DESCRIPTION
	3.1 Overview
	3.2 Hardware
	3.3 Software

	Chapter 4
	TESTING METHODOLOGY
	4.1 Testing method

	Chapter 5
	RESULTS
	5.1 Testing
	5.2 Speed-up

	Chapter 6
	STATISTICAL EVALUATION
	6.1 Statistical Evaluation of test results

	Chapter 7
	CONCLUSIONS

	REFERENCES
	VITA

