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Abstract 

According to the United States Department of Energy, fossil-fueled power plants 

account for 78% of stationary source CO2 emission in the United States and Canada.  

This has led electric utilities across the globe to research different alternatives for energy.  

Carbon sequestration has been identified as a bridge between fossil fuels and clean 

energy. 

This thesis will present research results regarding the transportation costs of CO2 

and the suitability of geology in the Florida Pan-Handle for sequestration infrastructure.  

The thesis will utilize various evaluation tools including GIS, numerical models, and 

optimization models.   

Analysis performed for this thesis and review of published literature produced 

estimated carbon storage capacities for two areas in and near the Florida Pan-Handle.  

These areas were labeled Disposal Area 1 and Disposal Area 3.  Disposal Area 1 was 

estimated to contain capacity for the storage of 5.58 gigatonnes of CO2.  Disposal Area 3 

was estimated to contain capacity for the storage of 2.02 gigatonnes of CO2.  

Transportation scenarios were analyzed over a 25 year period and the capacities above 

are sufficient to store the CO2 emissions from the Pan-Handle network of power plants 

for the study period. 

Four transportation routing scenarios were investigated using transportation costs 

from the Poiencot and Brown CO2 pipeline capital cost model.  The scenarios (models) 

consisted of the Right-Of-Way, Solo-Funded, Piece-Wise, and Authority models.  Each 

presents a different method for the overall funding of the Florida Pan-Handle CO2 

network and produced different total levelized and mean unit costs.  The cheapest 
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network on a mean unit cost basis was the network for Disposal Area 1 in the Authority 

Model, producing a mean unit cost of $0.64 per tonne of CO2.



 

1 
 

Chapter 1 

INTRODUCTION 
 

Greenhouse gases (GHGs) present in the atmosphere contribute to the trapping of 

radiant heat from the sun in the Earth’s atmosphere, also known as the greenhouse effect.  

Carbon dioxide (CO2) is the GHG of greatest interest because CO2 is the most prevalent 

GHG (DOE, 2010).  CO2 is released into the atmosphere from manmade and natural 

sources.  Manmade sources of CO2 are mainly emitted from the burning of various fossil 

fuels for power generation, transportation, and numerous industrial activities (DOE, 

2010).  Focus lately has been directed at reducing the CO2 emissions from power 

generation facilities.  One technology currently under research, development, and testing 

is carbon capture and storage (CCS), or carbon sequestration. 

Much of the technology and methods required for CCS has been used for over 30 

years by the oil industry for enhanced oil recovery (EOR) practices (Esposito et al, 2010).  

The CCS process involves capturing CO2 from the source, transporting the CO2 in a 

supercritical or fluid phase to a storage location, and injecting the supercritical or fluid 

CO2 into a saline aquifer, existing oil fields, depleted natural gas fields, or thin-

nonmineable coal seams (Benson & Cook, 2005).  The emission sources this thesis 

focuses upon are fossil fuel power plants which account for 78% of stationary source CO2 

emissions in the United States and Canada (DOE, 2011).  According to 2005 

Environmental Protection Agency (EPA) data, there are 136 large and small power plants 
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in Florida which are fueled by fossil fuels.  In total, Florida power plants accounted for 

143 million tonnes of CO2 emissions in 2007 (EPA, 2011). 

Saline aquifers contain a majority of the potential sequestration capacity in the 

Southeastern United States representing approximately 92% of the total (DOE, 2010).  

Oil and gas reservoirs do exist in Florida but are not considered in this thesis because 

they are found much deeper than suitable saline aquifers and their sequestration capacity 

is more limited.  Also, coal seam sequestration is not considered because there are limited 

opportunities in Florida (Pugh et al, 2008). The U.S. Department of Energy has identified 

possible formations for saline aquifer storage in Florida.  Some preliminary detailed work 

has been completed in evaluating these potential storage repository zones (Roberts-

Ashby, 2010).  Transportation of the CO2 is also an issue due to the great distances that 

can separate sources from their corresponding geologic sinks.  A transportation network 

is required to make any large deployment of CCS technology a reality in Florida.  The 

University of North Florida (UNF) has been investigating these issues in Florida since 

May 2010 using data collection, computer sequestration modeling, and transportation 

optimization modeling (Poiencot and Brown, 2011).  It should be noted that this report 

will focus on the transportation costs associated with CCS in Florida and does not include 

the costs for capture, compression, injection, storage or monitoring.   

The purpose of this paper is to assess the feasibility of CCS for the Florida Pan-

Handle by presenting the results of CCS transportation and storage research, including 

the development of a CO2 pipeline transportation model, a comparison of the 

Poiencot/Brown cost model to other published CO2 transportation cost models, cost 

analysis of different CO2 transportation network deployment scenarios using linear 
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optimization, storage zone characterization, and numerical simulation of CO2 

sequestration in a saline aquifer.  Florida is a state that is heavily dependent on fossil 

fuels for electricity generation with nearly 97% of generators in the state producing 

carbon emissions (EPA, 2011).  While CCS is not a permanent solution to the world’s 

GHG problems, the technology does provide a bridge between the world’s current 

reliance on fossil fuel generated electricity and that of diversified clean energy 

production.  This thesis is a step towards proving the preliminary feasibility of CCS in the 

Florida Pan-Handle. 

1.1  Technology Overview 
 

 Carbon capture and storage is a technological innovation whereby carbon dioxide 

off-gas is captured, separated from other gases, concentrated, compressed, and then 

injected into underground repositories. Here the carbon dioxide is sequestered or stored 

for hundreds to thousands of years, effectively reducing the carbon footprint of the 

industrial emitter. In 2005, 83% of Florida’s electrical energy was produced by fossil 

fuels while in 2010 the percentage was almost 89% (EIA, 2009). The continuing use of 

fossil fuels, in Florida, may depend upon finding suitable subsurface sequestration 

repositories in Florida and connecting them to an optimized network of pipelines and 

primary CO2 sources.  

According to the Intergovernmental Panel on Climate Change (IPCC), storage of 

CO2 in geologic formations includes four primary storage repository categories: saline 

aquifers, existing oil fields, depleted natural gas fields, and thin-nonmineable coal seams 

(Benson & Cook, 2005). The capacity of each of these repository categories to sequester 
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CO2 is an important planning variable to be considered during feasibility-level 

investigations of potential projects (Koide et al., 1992; Bradshaw et al., 2007). Deep 

saline aquifers appear to offer the highest potential capacity of the four primary options 

(Bachu et al., 1994; Van der Meer, 1995; Obdam et al., 2003; Herzog, 2009). In Florida, 

saline aquifers are the most likely storage option (DOE, 2010). According to the United 

States Department of Energy (DOE, 2010), the estimated capacity of oil/gas fields is 

relatively small by comparison (e.g., 100 times less) and their geographic distribution is 

rather limited. A typical CCS saline aquifer storage project will undergo several 

operational changes over time with the injected CO2 ultimately becoming completely 

dissolved in the aquifer fluid. The various operation phases include site characterization, 

initial active injection, post-injection, and long-term monitoring.  During the project 

lifecycle, there are significant changes in the state of injected CO2 with it starting as a 

free-phase, becoming residually-trapped, being dissolved, and ultimately being 

precipitated as a mineral.  The relative time scales for each process are different with 

residual trapping likely a decadal time scale, dissolution over hundreds of years, or more 

likely in saline waters, thousands of years and mineralization over even longer periods. 

During active operations, when liquid or supercritical CO2 is being injected into a 

repository, the CO2 will be highly mobile as a pure separate phase and concentrated 

aqueous phase (Bachu & Adams, 2003). Carbon dioxide is a highly compressible fluid 

compared to water and its density radically increases from 300 to 800 kg/m3 at pressure 

ranging from 10 to 25 MPa (Han & McPherson, 2009). Since liquid or supercritical CO2 

has a density less than the typical density of the saline repository fluid (Sharqawy et al., 

2010), it will be buoyant, tending to rise within the formation (MIT, 2010) until it 
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intercepts a competent confining unit (primary seal) where it may spread laterally until it 

will becomes trapped (Flett et al., 2005).  In some cases, depending upon formation dip, 

the supercritical CO2 may migrate updip along the confining unit.  The feasibility of any 

type of system will require the design and planning of a transportation system and 

suitable storage repositories. 
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Chapter 2 

STUDY AREA 

 The study area consists mainly of the Florida Pan-Handle, or western Florida.  A 

network comprises of sources and sinks.  This chapter identifies the sources for the 

proposed Florida Pan-Handle network, which are fossil fuel power plants.  Also 

identified are the sinks, which are the proposed CO2 disposal areas.  The CO2 will be 

stored in saline aquifers and the general geology of each area is discussed. 

2.1 Florida Emission Sources 
 

The first task in developing an optimal CO2 pipeline transportation network for 

Florida is to identify the location and magnitude of the largest sources of CO2 within the 

state. Florida has 136 primary sources of CO2 inventoried by the EPA. For the initial 

model development effort (Poiencot & Brown, 2011), the 40 largest sources of CO2 were 

identified and summarized. These 40 sources comprise over 90% of the 2005 total CO2 

emissions for Florida. Poiencot & Brown (2012) later updated these 40 sources with 2007 

CO2 emission data from DOE (2011).  The list of 40 sources is included in Appendix A.  

Because this thesis focuses on the pan-handle area of Florida, the list of sources was 

narrowed down to those in and around the Pan-Handle.  The 13 sources along with a map 

identification number, location in UTM 1983 (meters) horizontal grid coordinates, and 

the respective annual CO2 emissions for 2007 are listed in Table 1. Each of the 13 

sources is also shown on Figure 1 along with two potential CO2 repositories discussed 

later in this thesis.  Also note that the power plant ID numbering is consistent with the 
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original 40 sources from other publications (Poiencot and Brown, 2011; Poiencot & 

Brown 2012). 

Table 1.  Florida Pan-Handle CO2 Emission Sources 

Map ID Plant Name Northing Easting 

Annual CO2 
Emission 

(Mt) 
1 Crystal River 3204678.076 334313.2099 14.53 
3 St Johns River Power Park 3366685.069 447107.3266 9.38 
4 Seminole 3289401.62 438698.3555 8.95 
6 Crist 3398084.815 -97895.92908 6.62 
10 Northside Generating Station 3365145.497 446936.553 4.46 
13 Lansing Smith 3357948.163 47642.89122 3.44 
22 Deerhaven Generating Station 3292844.025 365772.0841 1.58 
26 Cedar Bay Generating Company LP 3365693.624 441618.5065 1.28 
32 S O Purdom 3341056.505 191654.8001 0.64 
33 Brandy Branch 3354692.44 408803.1779 0.63 
37 Arvah B Hopkins 3373808.201 173480.9335 0.52 
38 Scholz 3399359.3847 127519.0930 0.52 
39 Putnam 3277742.366 443310.436 0.50 

 

2.2 Geologic Storage Areas 
 
2.2.1 Storage Zone Characterization 
 

With the sources (supply nodes) identified, the CCS repository or demand 

locations are identified next. The locations of the various repositories were based upon 

the available geology, location of existing emission sources, and institutional concerns 

regarding possible CO2 releases (Lewicki et al, 2007). Based upon the existing research, 

Florida has ample potential CCS repositories including depleted oil/gas fields, unminable 

coal seams, and deep, saline aquifers (Cole, 1942; Chen, 1965; Babcock, 1969; Vernon, 

1970; Puri & Winston, 1974; Raymond & Copeland, 1988; Rupert, 1991; Yamamoto et 

al, 2009). Of the four primary disposal alternatives, saline aquifers present the best 

opportunity to store large quantities of CO2 safely (DOE, 2008; DOE, 2010).  
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Figure 1.  Study Area Location Map 
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Building upon the existing research, this thesis has chosen two separate saline 

aquifer CCS repository sites (see Figure 1) distributed throughout the Florida Pan-

Handle. Each of the 2 sites represents a portion of an identified CO2 disposal/repository 

site outlined in the “2010 Carbon Sequestration Atlas of the United States and Canada” 

(DOE, 2010). Each of these two sites is discussed herein.  Figure 2 presents the overall 

saline aquifer sequestration potential for the southeastern United States, as defined by 

DOE in the Carbon Atlas (DOE, 2010). 

The Florida panhandle contains ample potential capacity for carbon sequestration 

within the Upper Cretaceous Zone, specifically the Tuscaloosa Formation. This formation 

is present in several Gulf Coast states and is estimated to have a “low” estimate capacity  

 

Figure 2.  Southeastern United States Geologic Sequestration Potential (DOE, 2010) 

of at least 5 gigatonnes (Gt) according to the (DOE, 2010). Disposal Area 1 (DA1) 

consists of the western Pan-Handle.  Disposal Area 3 (DA3) is located off-shore of the 

Cedar Keys/Lawson 

Tuscaloosa 
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Pan-Handle in the Gulf of Mexico.  Not much data exists to characterize this region 

however; preliminary assessment was completed by Poiencot and Brown (2011 & 2012), 

where geologic information was extrapolated offshore under the assumption that similar 

geology exists from the peninsula of Florida to the extents of the Florida shelf.  

Characterization of DA3 will be carried over from the initial studies and included here as 

an offshore, low impact alternative.   

2.2.1.1  Selma Group 

 The Selma Group in the area of Cedar Keys, Florida is mainly white chalk with 

some chalky limestone (Cole, 1942).  Pugh et al. (2008) describe the Selma in the area of 

Bay County as comprising of marls, clay, limestones, and interbedded sands and identify 

the Selma Group as a primary seal for CCS activities in the Florida Pan-Handle. 

2.2.1.2  Eutaw Formation 

 In the area around Plant Scholtz (number 38 on Figure 1), the Eutaw Formation 

consists of hard, dark gray shales, some chalk and sands while in northern Jackson 

County, Florida the Eutaw contained much more sand and sandstone and the shale were 

micaceous (Cole, 1942).  The Eutaw is also identified in the Coastal Province of Alabama 

as genetically related in sedimentary cycle as the Tuscaloosa where the Eutaw consists 

mainly of estuarine, inner-shelf marine and open bay sands and fine clastics (Raymond & 

Copeland, 1988).  Pugh et al. (2008) identify the Eutaw formation as a candidate for CO2 

storage in the Florida Pan-Handle. 
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2.2.1.3  Tuscaloosa Group 

In the area of Cedar Keys, Florida the Tuscaloosa consists dominantly of red, 

light red, brown or mottled shales with interbedded sandstones while in northern Jackson 

County, Florida, the Tuscaloosa is dominantly sand and sandstone interbedded with 

shales (Cole, 1942; Rupert, 1991). The Tuscaloosa is generally sub-divided in the upper, 

middle, and lower members however as far as Gulf County, Florida, only the lower 

member exists (Rupert, 1991).  The general lithology in the area of Gulf, County consists 

of light-colored sands and interbedded calcareous and glauconitic sands and shales 

(Rupert, 1991).  Raymond and Copeland state in the Coastal Plain Province of Alabama, 

the Tuscaloosa Group comprises mainly fossilferous, nearshore, marine clastics 

(Raymond & Copeland, 1988).  In eastern-most Alabama, the formation is typically 

poorly sorted kaolinitic, arkosic sand and gravel interbedded yellowish-orange to reddish-

green mottled kaolinitc clay. Thickness of the Tuscaloosa Formation ranges anywhere 

from 100 to 400 meters (Raymond & Copeland, 1988). The United States Department of 

Energy describes the proposed storage reservoir at Southern Company Plant Daniel in 

Mississippi as a “massive sandstone that is a thick, regionally extensive, porous and 

permeable coastal to deltaic-marine sandstone at the base of the lower Tuscaloosa” 

(DOE, 2010). According to the report, the Lower Tuscaloosa in this area is overlain by a 

thick section of 90 to 140 meters of shales and mudrocks that were deposited as sea level 

rose during a marine transgression.  This deposit of shales and mudrocks is identified as 

the middle Tuscaloosa.  Carbon sequestration activities utilizing the Lower Tuscaloosa 

for storage may utilize the Middle Tuscaloosa as a potentially effective seal (Pugh et al. 
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2008).  This thesis will focus on a combination of the Eutaw Formation and Upper 

Tuscaloosa for CO2 storage. 

2.2.1.4  Cedar Keys/Lawson 

The offshore repository (DA3) would inject CO2 into the Cedar Keys/Lawson 

Dolomite formations. The USDOE estimates that the entire Cedar Keys/Lawson 

Dolomite formations capable of storing CO2 have a “low” estimate capacity of 

approximately 11 Gt (DOE, 2010). For initial studies, the capacity of DA3 was estimated 

by the area-weighted share of the total estimated low capacity or 1 Gt. According to Chen 

(1965), the Cedar Keys Formation is widely spread across peninsular Florida and spreads 

into the Pan-Handle. In Brevard County, Florida, the top of the Cedar Keys Formation 

ranges from approximately 670 meters NGVD to 914 meters NGVD below land surface. 

The formation consists of dolomite and evaporates with a minor amount of limestone. 

Gypsum commonly fills pore spaces within the dolomite beds and occurs as thin irregular 

streaks or seams in the dolomite. The Lawson Formation is generally found at the base of 

the Cedar Keys Formation. The Lawson is comprised mainly of pure, clean, very light 

brown and fine crystalline dolomite and/or chalky dolomitic limestone (Chen, 1965). 
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Chapter 3 

STORAGE CAPACITY 

Important in assessing the feasibility of CCS for the Florida Pan-Handle is 

determining the available storage capacity of the proposed storage areas.  Methods 

outlined by USDOE (2010) and Roberts-Ashby (2010) utilize existing oil and gas 

geophysical explorations to populate the storage equation used by the National Energy 

Technology Laboratory.  This chapter outlines the process for estimating the storage 

capacity. 

3.1 Storage Capacity Estimation 

In conjunction with technical staff from Southern Company, the research effort 

compiled a series of pertinent geophysical and lithological logs for the purposes of 

developing a geological model to aid with estimating repository capacity.  Wells were 

chosen if they had a bulk density, borehole compensated sonic, or dual induction 

geophysical logs.  These logs provide a relatively simple method to determine the 

porosity of the formations in question based upon published standards.  In order to 

determine the capacity of the formation, the volumetric equation for capacity estimation 

for saline formations was used.  This formula is defined in National Energy Technology 

Laboratory (NETL) Carbon Sequestration Atlas for the United States and Canada (DOE, 

2010) as follows:   

                   (1)  

 GCO2 - Carbon mass capable of being stored (kg); 

 A - Geographic area of the Disposal Area (m2); 
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 hg- Gross thickness of the injection formation (m); 

  tot- Average porosity of the injection formation; 

  – Density that the CO2 would be at given the pressure and temperature of the 

formation (kg/m3); and, 

 E – Storage efficiency factor (Typically 1 to 4%). 

ArcGIS coverages obtained from NETL depicted the general areas of suitable 

saline aquifer formations for CCS across the United States.   ArcGIS polygons were 

created around each area of interest in Florida and used to determine the geographic area 

of each of the proposed repository/disposal sites. The area of Disposal Area 1 (DA1) was 

created from a much larger coverage which spanned most of Alabama, Mississippi and 

the Florida Pan-handle, as shown previously in Figure 2.  The overall coverage was 

edited to only include the portions that existed within the boundary of Florida.  Disposal 

Area 3 (DA3) is an offshore area that is believed to share geologic characteristics with 

the Florida peninsula, as previously mentioned in this report.  The polygon size for DA3 

was arbitrarily selected.  The original estimate for capacity for this site was 

approximately 1 Gt (Poiencot & Brown, 2011).  For this thesis, a revised capacity 

estimate was determined for DA1 by using the ArcGIS polygon, storage zone thickness 

estimates, estimated porosities, estimated storage efficiencies, and assuming in-place CO2 

densities.  The capacity estimate for DA3 was determined from data provided by the 

USDOE (2010), Roberts-Ashby (2010), and Poiencot and Brown (2012). 

Well logs used in conjunction with existing cross section and lithologic data were 

needed to determine the depths of the repository/disposal zone.   This information was 
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required to determine an overall cross-section for DA1, as well as the total thickness of 

the various storage zones but also in formations, such as the Tuscaloosa, was required to 

determine the percentage of the formation that was available for sequestration given that 

much of the Tuscaloosa contains shale stringers.  This analysis was accomplished by 

matching up the limited lithological well logs available to corresponding geophysical 

well logs.  It should be noted that storage zone thickness shown on tables in this report 

generally indicates “total” sandstone stringer zone thicknesses rather than one continuous 

geologic zone.  Corresponding figures report the total formation thickness including both 

shale and sandstone.  Each well log interpretation is presented in detail in Appendix B. 

3.1.1  Average Porosity 

In order to calculate the average porosity of the injection formations, geophysical 

logs and the corresponding Schlumberger conversion graphs were used, similar to the 

methods used by Roberts-Ashby (2010).  An average porosity value was obtained for 

each well and an average of these values was calculated in order to determine the average 

porosity of the injection formations.  Tables listing the well log data and corresponding 

porosity values are included in Appendix C.  Temperature and pressure data from the 

well logs were used when available or given a conservative estimate when not available. 

3.1.2  Storage Efficiency 

Storage efficiency relates to the ratio of available storage in a disposal area and 

the amount of storage area occupied by injected CO2.  Supercritical CO2 is less viscous 

and less dense than the brine found in saline aquifers.  Subsequently the injected CO2 

does not displace resident brine in a plug-flow fashion (Okwen, 2009).  Instead the CO2 

migrates to the top of the brine as it is injected, forming a layer of CO2 at the top of the 
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confined formation (Nordbotten et al, 2006).  It is important to calculate the storage 

efficiency to obtain accurate estimates of sequestration capacity within saline aquifers.  

Okwen et al. (2009) developed an analytical solution to determining the storage 

efficiency of saline storage reservoirs.  The Okwen model focuses on initial active 

injection times when the primary trapping mechanisms for CO2 are stratigraphic and 

structural trapping, or when the CO2 is most mobile.  Okwen et al. (2009) identify the 

importance of CO2 buoyancy to storage efficiency, defined as epsilon (ϵ) below, and use 

the dimensionless group as defined below. 

      
         

 

     
           (2) 

Δ  – difference in density of injected CO2 and native brine (kg/m3) 

g – gravitational acceleration constant (m/s2) 

k – intrinsic permeability 

λb – brine mobility equal to the relative permeability of the brine divided by the 

viscosity of the brine, kr,b/µb 

B – thickness of aquifer 

Qwell – injection rate of CO2 

Once importance of CO2 buoyancy ( ) is quantified, the storage efficiency calculation 

can continue.  The following efficiency equations are presented by Okwen et al. (2009) 

and each is used depending on the value of   for the proposed storage area. 

        
 

 
 ;  0 ≤   < 0.5     (3) 
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         λ       
;  0.5 ≤   ≤ 50 (4) 

 SR – residual brine saturation following displacement of brine by CO2 

 λ – ratio of CO2 mobility to brine mobility, λCO2/λb 

 ϵ - storage efficiency 

The calculated   value for DA1 was approximately 0.95, meaning buoyancy would in 

fact affect the CO2 plume.  Table 2 presents the parameters and calculated values of  ϵ, 

for DA1, for varying values of residual brine saturation (SR).  The residual brine 

saturation is not a readily definable term, therefore in following the methods of Okwen et 

al. (2009), a range of values was used.  The calculation is presented in further detail in 

Appendix D. 

Table 2.  Storage Efficiency Parameters 

 
Sr = 0 Sr = 0.15 Sr = 0.30 Sr = 0.45 

λc 12496.88 12496.88 12496.88 12496.88 

λb 1361.90 1361.90 1361.90 1361.90 
λ 9.18 9.18 9.18 9.18 
ϵ 0.10 0.08 0.07 0.05 

 

As mentioned previously, storage efficiency values typically range from 1 to 4% (NETL, 

2007).  The results of the above analysis show efficiency values of 5 to 10%.  While 

higher than the commonly accepted values, they are not unreasonable due to the presence 

of the shale stringers within the proposed storage zones.  These shale stringers could 

cause the injected CO2 to stack in different zones and utilize more of the available storage 

space.  It is also worth noting that other published studies have produced values within 
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range and sometimes higher for storage efficiencies (Van der Meer, 1995; Okwen et al, 

2009).  The efficiencies and their interaction with the shale stringers within DA1 were 

analyzed using numerical modeling, which is discussed later in this chapter.   

3.1.3  Storage Capacity 

Disposal Area 1 had an abundance of high quality well logs to choose from.  In 

the end thirteen wells were chosen for this thesis, seven for a west to east cross section 

and six for a north to south cross section.  Figure 3 is a location map of the borings used 

in this study and presents the cross-section paths.  The cross-sections are presented in 

Figure 4 and Figure 5.  The scale on the cross-sections is exaggerated for clarity, showing 

the vertical axis in meters and the horizontal axis in kilometers.  While formation dip may 

appear steep in the figures, the maximum dip calculated between two well logs for the 

Tuscaloosa formation was 1.46%. 

Disposal Area 3 was considered as an alternative to DA1 because of its location 

offshore in the Gulf of Mexico.  Unfortunately the offshore location also provided a lack 

of available data on the geology of that area.  This was addressed by using information 

gathered for the Florida Peninsula and reviewing literature on the geology off the coast of 

Florida that was closest to this repository, then estimating the capacity based off of this 

information.  This method will not give a highly accurate estimate of the true capacity of 

DA3, but it is the best estimate obtainable with the information available.  The estimated 

geologic sequestration capacities for each of the two Florida Pan-handle areas are shown 

on Table 3.  The capacities for DA1 with varying storage efficiencies are presented in 

Table 4.  
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Table 3.  Geologic Sequestration Capacities for the Florida Pan-Handle 

Disposal 
Area 

Area (m2) Thickness 
(m)1 

Porosity Density 
(kg/m3) 

Capacity at 
1% E (Gt) 

Capacity at 4% 
E (Gt) 

DA1 8.39 X 109 104.0 0.18 842.75 1.40 5.58 
DA3 7.47 X 109 162.5 0.23 725.0 2.02 8.09 

Note 1:  Thickness represent combined thickness of sandstone stringer zones. 

Table 4.  Geologic Sequestration Capacities for Disposal Area 1 with Varying 
Storage Efficiencies 

Disposal 
Area 

Capacity at 
ϵ = .01 (Gt) 

Capacity at 
ϵ = .04 (Gt) 

Capacity at 
ϵ = .05 (Gt) 

Capacity at 
ϵ = .07 (Gt) 

Capacity at 
ϵ = .08 (Gt) 

Capacity at 
ϵ = .10 (Gt) 

DA1 1.40 5.58 7.00 9.80 11.21 14.01 

 

3.2  Numerical Modeling 

 In an effort to analyze the effect of the shale stringers present in DA1 and further 

validate storage efficiency values, numerical modeling was performed.  The software 

package used to conduct the analysis was UTCHEM-9.0.  Research completed by 

University of Texas produced UTCHEM, a 3-D, multicomponent, multiphase, 

compositional model of chemical flooding processes which accounts for complex phase 

behavior, chemical and physical transformations and heterogeneous porous media 

properties, and uses advanced concepts in high-order numerical accuracy and dispersion 

control and vector and parallel processing (University of Texas, 2000, p. 1-1).  The code 

was originally designed for simulating enhanced oil recovery but has since also been used 

to simulate multi-phase flow in aquifers at contaminated sites.  Therefore, it is an ideal 

code to use for CCS simulations (Brown, 2011).  The UTCHEM code provides the ability 

to model the migratory behavior of the CO2 plume over time under different storage 

efficiency factors, assess the effects of shale stringers, and estimate the surface area of the 

CO2 plume. 
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Figure 3.  Sample Borings and Cross-Section Location Map 
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Figure 4.  Disposal Area 1 West-East Cross-Section 

 

Figure 5.  Disposal Area 1 North-South Cross-Section 
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 Brown (2011) provided a model which was originally created to provide analysis 

in the creation of graphical planning envelopes for estimating the surface footprint of 

CO2 injected into saline aquifers.  A robust 3-dimensional finite difference model was 

created in UTCHEM and different injection scenarios were analyzed.  The Brown (2011) 

model provided a “type-aquifer” to use as the foundation and revised for analysis of 

DA1.  The model simulated a storage zone 100 meters thick and 500 meters long.  Details 

of the original and revised models are provided in Appendix E.   

The purpose for modeling DA1 was to analyze the effect of the shale stringers 

present in the Eutaw and Tuscaloosa formations in the Florida Pan-Handle.  Porosity, 

temperature, pressure, and intrinsic permeability values were changed to match the data 

for DA1.  The stringers were modeled by changing the permeability of particular layers 

of cells within the storage reservoir.  Eight simulations in total were performed with 

varying percentages of shale versus sand.  Four variations of shale percentage were 

applied to the model; 0, 25, 50, and 75%.  For each variation of shale content, two values 

of hydraulic conductivity for the sandstone were used, 5 and 50 milidarcys (mD), in order 

to cover the commonly accepted range of hydraulic conductivities for sand/sandstone 

(Fetter, 2001).  One value of hydraulic conductivity, 0.01 mD, was used for shale (Fetter, 

2001).  Each model run simulated a 180 day injection period and produced a 3-

dimensional contour depicting the distribution of injected CO2 within the aquifer. 

One model simulation from Brown (2011) was replicated to portray an 

exaggerated case of how supercritical CO2 is expected to behave in a sand aquifer with a 

very high, 5,000 mD, hydraulic conductivity.  Figure 6 presents the results from this case.  

Notice how the CO2, shown in variations of green, immediately migrates to the top of the 
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aquifer and begins to spread in a thin layer along the top.  The higher concentrations are 

near the top of the formation. 

 

Figure 6.  CO2 Plume at 5,000mD Hydraulic Conductivity (Brown, 2011) 

The expectation for DA1, was that the shale stringers would succeed in trapping 

the CO2 in “stacked” layers, improving the storage efficiency.  Also included in the 

process, the estimated percentage of shale contained in DA1 was calculated from the 

geologic characterizations.  DA1 was estimated to have approximately 56% shale.  All 

model results are provided in Appendix E, while the 0% and 50% shale simulations are 

presented and discussed below.  The results from the 0% simulations provide comparison 

between shale stringers and no shale stringers for DA1. 
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 Figure 7 and Figure 8 present the results from the simulations with 0% shale and 

5 and 50 mD hydraulic conductivity, respectively.  Notice the CO2 behavior is similar to 

that of Figure 6; however the CO2 migration is not as rapid.  After 180 days, plenty of 

CO2 remains around the injection point, but much has migrated to the top of the aquifer.  

Figure 9 and 10 present the results from the simulations with 50% shale and 5 and 50mD 

hydraulic conductivity, respectively.  In these figures the contrast in hydraulic 

conductivity between the sand and shale is apparent.  The CO2 indeed is trapped in 

“stacked” layers. 

 

Figure 7.  CO2 Plume Injected into Aquifer with 0% Shale at 5mD 
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Figure 8.  CO2 Plume Injected into Aquifer with 0% Shale at 50mD 

 

Figure 9.  CO2 Plume Injected into Aquifer with 50% Shale at 5mD 
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Figure 10.  CO2 Plumes Injected into Aquifer with 50% Shale at 50mD 

Of note is the difference in CO2 migration from simply changing the hydraulic 

conductivity of the sand.  In Figure 7 and Figure 8, there is a noticeable difference in the 

plume shape between 5mD and 50mD.  The addition of the shale stringers, changes the 

behavior of the CO2 even more.  The CO2, in these simulations remains in the areas of 

sand and slowly works its way through the shale.  From a qualitative perspective, the 

aquifers modeled in Figure 9 and Figure 10 appear to be more efficient at trapping CO2 

than those without the shale.  The CO2 does migrate horizontally as in any other 

simulation however this lateral movement is achieved in multiple layers of the repository 

as opposed to the CO2 collecting near the surface.  Higher concentrations of the 

supercritical CO2 remain distributed throughout the aquifer.  Judging by the results of the 

numerical modeling, higher values of storage efficiency may be warranted.  The Okwen 

et al. (2009) model, discussed earlier, produced efficiencies ranging between 5 and 10%.  
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The lower end of the Okwen range is applicable to DA1 but 10% or larger seems too high 

considering the model results and based upon the other literature estimates.  To remain 

conservative while including results from the numerical modeling, a storage efficiency 

value of 4% was used for DA1 while analyzing transportation scenarios. 
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Chapter 4 

CARBON DIOXIDE TRANSPORTATION ANALYSIS 
 

Once the CO2 sources and sinks were indentified, a pipeline network model was 

developed.  Poiencot and Brown (2011) developed a feasibility-level pipeline cost model 

as the first step in developing the network model and later applied the cost estimates to 

different pipeline routing scenarios (Poiencot & Brown 2011; Poiencot & Brown 2012).   

4.1 Transportation Costs 

Poiencot and Brown (2011) reviewed a number of different cost models from 

sources such as Heddle et al. (2003), McCoy (2008), Bakken & Von Streng Velken 

(2008), and Zhang et al. (2006).  These sources were chosen because they focused solely 

on the transport portion of CCS. Heddle et al. developed a simple linear model that 

includes capital cost and annual operation and maintenance (O&M) costs (Heddle et al., 

2003).  McCoy (2008) developed a model that provides for regional cost differences as 

well as further resolution of cost factors such as pipe materials, labor, real estate, 

permitting, design and construction management. Total capital cost of a pipeline is made 

up of four key categories; material cost, labor cost, right-of-way (ROW) cost and 

miscellaneous cost (Liu & Gallagher, 2010).  After reviewing the literature, Poiencot and 

Brown (2011) chose the McCoy (2008) cost model to adapt for their study. The specific 

details of the model development are presented in Poiencot and Brown (2011) while the 

equation and parameters are included below. 
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    (5) 

Where ωm, ωL, ωRE, and ωMS are cost adjustment coefficients to convert April 2004 costs 

to March 2010 costs and are ωm = 1.18, ωL = 1.15, ωRE = 1.05, and ωMS = 1.26; βm, βL, 

βRE, and βMS are cost coefficients for materials, labor, real estate, and miscellaneous (e.g., 

design, permitting, construction management) in 2004 dollars and are βm = 1,534.62, βL = 

30,690.22, βRE = 8,912.51, and βMS = 33,265.96; L is the least-cost pipeline route length 

in kilometers; D is the pipeline diameter in meters and is a function of flow rate (see 

Poiencot & Brown, 2011); CF is a capital cost factor of 0.067574 assuming a 5% 

discount rate used to annualize the initial pipeline capital construction cost; ε2 is CO2 

mass flow rate in tonnes per year; α is a factor to adjust costs for underwater construction, 

it is 1.75 for underwater projects and 1.0 for land pipeline projects; a6m, a6L, a6RE, and 

a6MS are model pipeline length power exponents for materials, labor, real estate, and 

miscellaneous and are a6m = 0.901, a6L  = 0.82, a6RE = 1.049, and a6MS = 0.783; and, a7m, 

a7L, a7RE, and a7MS are model pipeline diameter power exponents for materials, labor, 

real estate, and miscellaneous and are a7m = 1.59, a7L = 0.94, a7RE = 0.403, and a7MS  = 

0.791.  The new cost model for Florida is intended for use as a planning tool to be used in 

feasibility-level studies.  It is applicable for use in Florida or other in other areas of 

similar flat topography. 

For this thesis, the Poiencot and Brown model was validated against the 

previously referenced pipeline transportation models.  UNF also conducted further 

validation against other recent CCS transportation models published by Liu and 

Gallagher (2010), McCollum and Ogden (2006), Ogden et al. (2004) and Parker (2004).  
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Liu & Gallagher (2010) provide an engineering-economic assessment for CO2 pipeline 

transportation in China, utilizing methods outlined by McCollum and Ogden (2006). 

McCollum and Ogden (2006) took an average of a number of published cost models 

including Heddle et al. (2003), Ogden et al. (2004), and Parker (2004), after applying 

common bases to those models. A comparison of various model estimates from 

McCollum and Ogden (2006) is recreated in Figure 11 and includes the McCoy (2008), 

Poiencot and Brown (2011) and Liu and Gallagher (2010) cost models. The years for 

each model correspond to the costs used in each model.  As shown in Figure 11, the 

Poiencot and Brown (2011) model falls within range of the previously published cost 

models.  

 

Figure 11.  CO2 Pipeline Capital Cost Model Comparison 
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various models use historical natural gas pipeline costs, which for the scale considered 

here were last constructed in the 1990s, to develop their respective cost equations.  The 

models do well in predicting the capital costs for pipelines constructed in the past but 

falter when predicting the costs for more recent CO2 pipelines (Essandou-Yeddu & 

Gulen, 2009).  To remedy this situation, Essandou-Yeddu and Gulen (2009) provide a 

method for utilizing cost escalation factors for each of the models.  Figure 11 compares 

all reviewed cost models before escalation factors were applied.  In this case, the 

Poiencot and Brown (2011) model falls within the upper limits of the cost range provided 

by the other published cost models.   Using the methods prescribed by Essandou-Yeddu 

and Gulen (2009) in conjunction with published cost factors from Lewis (2010), the 

estimated costs from each of the published models was escalated to March 2010 costs. 

The results including the cost escalation factors are displayed in Figure 12. Once the 

costs were escalated, the Poiencot and Brown (2011) model costs resulted in estimates 

fourth lowest of all the models but near the middle of the cost range, indicating the model 

is suitable for feasibility-level studies in Florida. 

Another important factor in the transportation cost analysis is the O&M costs for 

the pipeline network.  Pipeline O&M costs can include depreciation, amortization, 

financial, maintenance, materials, fuel, power, labor, administration and miscellaneous 

(Liu & Gallagher, 2010).  Poiencot & Brown, through literature review, developed a 

reasonable mean O&M cost of 0.0088 $/tonne CO2/kilometer.  Further analysis showed 

differing methods in the estimation of O&M for a CO2 pipeline.  Ogden (2006) and Liu 

and Gallagher (2010) estimate O&M as a percentage of the total capital cost of the 

pipeline, 4% and 3% respectively.  Heddle et al. (2003) and McCoy (2008) apply a value 
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of $3,100 per kilometer and $3,250 per kilometer of pipe respectively.  Parker (2004) and 

McCollum and Ogden (2006) did not calculate O&M values.  To compare the O&M 

values, all dollar amounts were escalated to March 2010 dollars using the Essandou-

Yeddu and Gulen (2009) composite escalation factors as described earlier.  Figure 13 

displays a comparison of the different O&M values for each model in 2010 dollars.  The 

results from this comparison are similar to the capital cost comparisons in that, Liu and 

Gallagher (2010) provide a low estimate, Ogden (2006) a high estimate and the Poiencot 

and Brown (2011) values are somewhere in the middle.  The differences in the estimates 

lie in the methods used to calculate the O&M values.  The Heddle (2003) and McCoy 

(2008) values rely only on length of pipe.  The Ogden (2006) and Liu and Gallagher 

(2010) estimations rely on capital cost and therefore are affected by the same factors as 

capital costs, i.e. diameter, length, etc.   The Poiencot and Brown (2011) estimates are 

based on capacity and length, making the values similar to the Ogden (2006) and Liu and 

Gallagher (2010) estimates and within range of the two models.  Notice the behavior of 

the Poiencot and Brown (2011) estimate is more linear as opposed to the other models.  

Another deficiency identified in this thesis is the fact that the original Poiencot and 

Brown (2011) estimate relied only on pipeline length, not taking into account pipe 

diameter or capacity.  Ogden (2004) and Liu and Gallagher (2010) estimate pipeline 

O&M costs as a percentage of the capital cost, 4% and 3% respectively.  Poiencot and 

Brown (2012) later proposed to calculate O&M as 6% of the capital cost.  Figure 14 

presents a revised O&M cost comparison. 
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Figure 12.  CO2 Capital Cost Model Comparison – Escalated Costs 

 

Figure 13.  Operation and Maintenance Cost Model Comparison 
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Figure 14.  Revised Operation and Maintenance Cost Model Comparison 
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constrained by geography, real estate limitations, institutional concerns or practical 

engineering considerations regarding pipeline ROW selection (Poiencot & Brown, 2011).  

Later, this method was updated to a more “real-world” scenario using interstate and 

highway right-of-way (ROW) paths (Poiencot & Brown 2012).  The measured distances 

and pipeline sizes for these networks were used to calculate the capital and O&M costs 

for the network and a least-cost transport optimization model was run using Microsoft 

Excel SolverTM.  This model is discussed below. The basic model equation and model 

constraints are included herein: 

[                
     

           ] (6)  

Where X is the annual CO2 pipeline transportation cost ($/tonne CO2) from CO2 supply 

node Si (from i = 1 to 13) to demand node or repository Dj (from j = 1 to 2) at Time Year 

k (from k = 1 to 25 years) and Fijk is the CO2 flow through that pathway in tonnes 

CO2/year during Year k. 

[                               
             ]  Summed from 1:26 

each Year 
(7)  

[                               
                         ] (8)  

[                               
   ] (9)  

4.2.2  Regional Networks 

The purpose of this thesis is to focus on the Florida Pan-Handle.  The preliminary 

research discussed earlier, was applied in more detail to DA1 and DA3 with a more 

regional emphasis.  A statewide “authority model” was also used in this report in order to 
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compare the changes in costs due to the revised O&M estimation and demonstrate the 

effectiveness of DA1 and DA3 as statewide repositories.  All pipeline networks will 

follow major highway and interstate right-of-ways (ROW). 

4.2.2.1  The Right-of-Way Model 

Figure 15 displays an example of the Right-of-Way Model.  This model assumes 

that all of the proposed disposal areas are permitted and operational at once.  Each source 

is connected to each disposal area and the associated unit costs for each path are 

calculated.  The transport optimization model developed by Poiencot and Brown (2011) 

was then used to determine the least-cost path for transporting CO2 from each source to 

each disposal area over a 25 year period and calculate the associated levelized costs. 

Transport Optimization was performed for the Right-of-Way Model over a 25 

year period in one year increments.  The optimization model determined the cheapest 

route to transport and store CO2 from each source.  As storage areas filled, flow was 

rerouted along the next cheapest route.  Figure 16 presents the results of the transport 

optimization in spider diagram format.  According to the analysis, there is plenty of 

capacity for the 25 year study period.  DA1 and DA3 still have 83% and 82% capacity 

remaining respectively after 25 years.  The total levelized cost for the regional network 

was $5.44 per tonne per year. 
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Figure 15.  Right-Of-Way Model Collection Network 
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Figure 16.  Right-Of-Way Model Results 
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4.2.2.2  The Solo-Funded Model 

The Solo-funded model is an “every-man-for-himself” approach where each plant 

will fund its own pipeline to the disposal area. This model differs from the Right-of-Way 

Model in that transport optimization was not performed.  Instead a simple comparison of 

unit costs to the other models was analyzed.  Also different from the Right-of-Way 

Model, only one disposal area is available for storage.  While not a realistic approach to 

developing a regional network, this model is significant because it can provide 

preliminary cost estimates for different phases of network construction when very few 

plants will be connected to the regional network. Table 5 presents the unit costs for the 

Solo-Funded Model for each disposal area, along with the mean unit cost for each 

disposal area.  Disposal Area 1 provided the lowest mean unit cost of $12.24 per tonne 

per year.  The total levelized cost for DA1 was $5.66 per tonne per year. 

4.2.2.3  The Piece-wise Model 

The Piece-wise Model is a cost sharing model based upon the ROW distances 

used in the Right-of-Way Model.  This model assumes only one disposal area is available 

to store CO2.  Power plants which fall into the top 25 will fund the network while the 

smaller plants, 25 through 40, will simply pay to connect to the system.  The unit costs 

for each source were calculated for each disposal area and compared to the other models.  

This model is significant because it provides a preliminary cost sharing scenario 

applicable to the planning of a regional network.   
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Table 6 presents the unit costs for the Piece-wise Model for each disposal area, 

along with the mean unit cost for each.  Disposal Area 1 provides the network with the 

lowest mean unit cost of $1.11 per tonne per year.  The total levelized cost for DA1 was 

$1.15 per tonne per year. 

Table 5.  Solo-Funded Model Unit Costs 

Map ID Plant Name 

2007 Annual 
CO2 Emissions 

(Mt) 
DA1 Total Unit 
Cost/tonne CO2 

DA3 Total Unit 
Cost/tonne CO2 

1 Crystal River 14.530 $              4.24 $        3.43 

3 St Johns River Power Park 9.384 $              4.99 $        6.01 

4 Seminole 8.948 $              4.67 $        5.33 

6 Crist 6.621 $              1.05 $      10.77 

10 Northside Generating Station 4.459 $              7.40 $        8.92 

13 Lansing Smith 3.436 $              3.09 $      14.14 

22 Deerhaven Generating Station 1.582 $            13.38 $      14.64 

26 Cedar Bay Generating Company LP 1.284 $            15.47 $      18.67 

32 S O Purdom 0.638 $            15.95 $      36.38 

33 Brandy Branch 0.630 $            24.84 $      31.70 

37 Arvah B Hopkins 0.525 $            16.66 $      43.69 

38 Scholz 0.519 $            13.90 $      46.56 

39 Putnam 0.495 $            33.54 $      38.21 

Mean Total Unit Cost ($/tonne CO2) $            12.24 $      21.42 

Total Levelized Cost ($/tonne CO2) $              5.66 $        8.86 
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Table 6.  Piece-Wise Model Unit Costs 

Map ID Plant Name 

2007 Annual 
CO2 

Emissions 
(Mt) 

DA1 Total Unit 
Cost/tonne CO2 

DA3 Total Unit 
Cost/tonne CO2 

1 Crystal River 14.530 $              1.30 $              0.74 

3 St Johns River Power Park 9.384 $              0.04 $              1.25 

4 Seminole 8.948 $              2.13 $              1.76 

6 Crist 6.621 $              1.00 $              2.17 

10 Northside Generating Station 4.459 $              0.95 $              0.77 

13 Lansing Smith 3.436 $              1.72 $              4.62 

22 Deerhaven Generating Station 1.582 $              1.61 $              1.20 

26 Cedar Bay Generating Company LP 1.284 $              0.04 $              0.04 

32 S O Purdom 0.638 $              2.69 $              2.77 

33 Brandy Branch 0.630 $              0.28 $              0.29 

37 Arvah B Hopkins 0.525 $              0.84 $              0.86 

38 Scholz 0.519 $              0.40 $              0.41 

39 Putnam 0.495 $              1.43 $              1.47 

Mean Total Unit Cost ($/tonne CO2) $              1.11 $              1.41 

Total Levelized Cost ($/tonne CO2) $              1.15 $              1.45 

 

4.2.2.4  The Authority Model 

The Authority Model operates as an authority run statewide network.  This 

authority would completely fund the construction and operation of a statewide network 

connecting all of the top 40 power plants to a single disposal area.  The capital costs and 

O&M costs for the entire network would be financed and charged to each user on a cost 

per tonne basis.  This model differs from the Right-of-Way, Solo-Funded, and Piece-wise 

Models because the unit costs are based on the percentage of CO2 each plant is supplying 
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the system.  The purpose of analyzing the Authority scenario is to compare the costs from 

Poiencot and Brown (2012) with the new costs incorporating the revised O&M 

calculation.  Disposal Areas 1 and 3 were used for the comparison to Poiencot and Brown 

(2012).  Smaller Regional Authority Models were also created and analyzed for the 

Florida Pan-Handle.  Figure 17 and Figure 18 display the Regional Authority Model 

networks for DA1 and DA3 respectively.  Table 7 presents the unit costs for the regional 

DA1 and DA3 networks.   

Table 8 compares the unit costs for the statewide DA1 and DA3 networks with 

those from Poiencot and Brown (2012).  The unit costs increased from Poiencot & Brown 

by 6.4% for DA1 and 6.0% for DA3.  Figure 19 is a scatter plot comparing the O&M 

costs from each study.  While the O&M unit costs using the new calculation are typically 

lower than previously estimated, the trend lines are similar to those in Figure 14.   
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Figure 17.  Authority Model: Disposal Area 1 Collection Network 
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Figure 18.  Authority Model: Disposal Area 3 Collection Network 
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Table 7.  Authority Model Unit Costs 

Map ID Plant Name 

DA1 Total Unit 
Annual Cost/tonne 

CO2 

DA3 Total Unit 
Annual 

Cost/tonne CO2 

1 Crystal River $        2.27 $        2.62 

3 St Johns River Power Park $        1.47 $        1.69 

4 Seminole $        1.40 $        1.62 

6 Crist $        1.03 $        1.20 

10 Northside Generating Station $        0.70 $        0.80 

13 Lansing Smith $        0.54 $        0.62 

22 Deerhaven Generating Station $        0.25 $        0.29 

26 Cedar Bay Generating Company LP $        0.20 $        0.23 

32 S O Purdom $        0.10 $        0.12 

33 Brandy Branch $        0.10 $        0.11 

37 Arvah B Hopkins $        0.08 $        0.09 

38 Scholz $        0.08 $        0.09 

39 Putnam $        0.08 $        0.09 

Mean Total Unit Cost ($/tonne CO2) $        0.64 $        0.74 
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Table 8.  Authority Model Unit Cost Comparison 

Map 
ID Plant Name 

Poiencot & Brown (2011) Poiencot & Brown (2012) 

DA1 Total 
Unit Annual 
Cost/tonne 

CO2 

DA3 Total 
Unit Annual 
Cost/tonne 

CO2 

DA1 Total 
Unit Annual 
Cost/tonne 

CO2 

DA3 Total 
Unit 

Annual 
Cost/tonne 

CO2 

1 Crystal River $        1.35 $        1.44 $        2.26 $        2.40 

3 St Johns River Power Park $        0.87 $        0.93 $        1.46 $        1.55 

4 Seminole $        0.83 $        0.89 $        1.39 $        1.48 

6 Crist $        0.62 $        0.66 $        1.03 $        1.09 

10 Northside Generating Station $        0.42 $        0.44 $        0.69 $        0.74 

13 Lansing Smith $        0.32 $        0.34 $        0.53 $        0.57 

22 Deerhaven Generating Station $        0.15 $        0.16 $        0.25 $        0.26 

26 
Cedar Bay Generating 
Company LP $        0.12 $        0.13 $        0.20 $        0.21 

32 S O Purdom $        0.06 $        0.06 $        0.10 $        0.11 

33 Brandy Branch $        0.06 $        0.06 $        0.10 $        0.10 

37 Arvah B Hopkins $        0.05 $        0.05 $        0.08 $        0.09 

38 Scholz $        0.05 $        0.05 $        0.08 $        0.09 

39 Putnam $        0.05 $        0.05 $        0.08 $        0.08 

Mean Total Unit Cost ($/tonne CO2) $        0.38 $        0.40 $        0.64 $        0.67 
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Figure 19.  Operation and Maintenance Scatter Plot 
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Chapter 5 

DISCUSSION AND CONCLUSION 
 

This thesis has presented the results of storage capacity estimation and 

transportation cost analysis for CCS activities in the Florida Pan-Handle.  Chapter 5 

discusses the results presented and makes conclusions regarding the preliminary 

feasibility of transporting and geologically sequestering carbon emissions in the Florida 

Pan-Handle. 

5.1 Discussion 

Previously published information from DOE and research efforts by Roberts-

Ashby (2010) has shown the potential for CCS in Florida.  This thesis attempted to 

present the feasibility of potential storage zones in the Florida Pan-Handle and a pipeline 

network to transport CO2 from sources in and around the Pan-Handle to the proposed 

storage sites.  The results show the potential costs to be in the realm of other published 

investigations around the world.  From a transport perspective, the quickest and most 

efficient solution may be the authority model.  Because of the large initial capital cost to 

construct such a network, even a regional network, a toll road type authority would need 

to provide initial funding to connect as many sources as possible to help offset that initial 

cost.   

 DOE presented an initial estimate as to the amount of storage capacity available 

in Florida.  This thesis confirms not only the validity of the initial estimates but also that 

they may be conservative.  Again, the results presented here are preliminary and are 

based on oil and gas exploratory drilling logs.  Some of the logs are old and difficult to 
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read.  Also these logs were not originally used for the purpose of geologic sequestration 

so the parameters needed to characterize a CO2 storage area were not necessarily 

collected.  A more accurate analysis of the proposed storage areas would need to be 

completed including new borings taking measurements meant specifically for carbon 

sequestration, such as accurate readings of native brine temperature and salinity.  The 

majority of the reviewed logs for this thesis only included data on the drilling mud as 

opposed to the native brine.  This holds especially true in the case of Disposal Area 3, 

where no well logging geophysics have been performed.  While DA3 was a more 

expensive option from a transportation perspective, it remains a low-impact location.  

Low-impact in that development of DA3 would be free of land acquisition, property 

rights, and human impacts in the event of a release.  The relative ease of acquiring ROW, 

zoning, permits, etc could be offset with DA3 and is another area which would benefit 

from further investigation.     

The development of carbon sequestration in the Florida Pan-Handle, or anywhere, 

will depend greatly on economics, regulation, and demand.  The main incentive pushing 

the R&D efforts of utilities across the country is the proposals presented in the 110th 

Congress to lower CO2 emissions to 1990 levels by 2030 (Esposito et al., 2010).  The 

ultimate decision on the feasibility of CCS or enhanced oil recovery technology will 

depend on the number of coal plants needing either of these technologies.  The 

commercial deployment of CCS/EOR will require coal-fired utilities and other CO2 

emitters to develop a business model for how CCS/EOR operations will be managed 

(Esposito et al., 2010).  Many factors will play into the development of a business model 

including the criteria presented within this report along with regulatory framework, 
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availability of risk mitigation, and the desire to be vertically integrated (Esposito et al., 

2010).  The size of the system or population of sources would decide between saline 

aquifer storage and EOR.  A larger number of sources would justify a regional network 

with aquifer storage while a smaller population of sources would be more suitable for 

EOR.   

Jay Field, is one of the few oil fields in Florida that could potentially be a 

candidate for EOR; however more investigation is needed for those fields.  The depth at 

which Jay Field is found produces uncertainty regarding the injection of CO2 and the 

overall cost of drilling new wells if that is required.   

Another factor in the feasibility of CCS is the shift from coal to natural gas and 

renewable energy sources.  Using natural gas as a fossil fuel in power plants or using 

renewable sources results in lower emissions overall.  Electric utilities may find that 

retooling their technology could be more cost effective. 

5.2 Conclusion 

The potential to implement a regional CO2 sequestration infrastructure exists in 

Florida, warranting further analysis.  This report presented a preliminary look at the 

transportation and storage capability in Florida.  Areas of this study will require further 

investigations including a full-fledged feasibility study, as well as planning, permitting, 

and socioeconomic considerations in order to reach a definitive answer. 
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Appendix A 
Carbon Dioxide Emission Sources
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40 Largest Sources of CO2 Emissions in Florida (2007) 

Map ID Plant/Facility Name Northing Easting 

Annual CO2 

Emissions 

(tonnes) 

1 Crystal River 3204678.1 334313.21 14,530,258 

2 Big Bend 3075217.2 361725.59 9,498,430 

3 St Johns River Power Park 3366685.1 447107.33 9,384,220 

4 Seminole 3289401.6 438698.36 8,947,766 

5 Martin 2992447.2 543356.54 8,023,112 

6 Crist 3398084.8 -97895.929 6,621,180 

7 Stanton Energy Center 3150786.7 483497.41 5,890,437 

8 Manatee 3054258.7 367211.87 5,205,981 

9 Sanford 3190513.2 468238.35 4,767,698 

10 Northside Generating Station 3365145.5 446936.55 4,459,034 

11 Fort Myers 2953081.9 422095.77 3,765,060 

12 Turkey Point 2813351.3 567289.72 3,447,477 

13 Lansing Smith 3357948.2 47642.891 3,435,570 

14 C D McIntosh Jr 3106509.9 409058.51 3,135,822 

15 H  L  Culbreath Bayside 3087736.7 359949.38 3,033,718 

16 Hines Energy Complex 3074087.8 414350.29 3,010,012 

17 Anclote 3118924.3 324414.88 2,800,194 

18 Lauderdale 2883472.1 580187.57 2,218,068 

19 Port Everglades 2885457.2 587476.5 2,202,415 

20 Indiantown Cogeneration LP 2990880.9 548162.48 1,856,566 

21 Polk 3067530.7 402444.71 1,853,968 

22 Deerhaven Generating Station 3292844 365772.08 1,581,549 

23 Cape Canaveral 3149224.6 523083.25 1,470,463 
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24 P L Bartow 3082867.6 342353.21 1,425,979 

25 Riviera 2960791.1 594173.51 1,369,759 

26 Cedar Bay Generating Company LP 3365693.6 441618.51 1,283,795 

27 Curtis H Stanton Energy Center 3151285.1 483605.77 1,031,593 

28 Osprey Energy Center 3103281.6 420562.98 910,493 

29 Central Power & Lime 3162445.1 360123.38 766,241 

30 Wheelabrator North Broward 2907830 584050.88 715,719 

31 Wheelabrator South Broward 2883538.3 580157.15 707,480 

32 S O Purdom 3341056.5 191654.8 638,142 

33 Brandy Branch 3354692.4 408803.18 629,567 

34 Shady Hills Generating Station 3138790.3 347216.72 603,715 

35 Cane Island 3127936.4 447728 596,860 

36 Intercession City 3126436.6 446191.23 541,897 

37 Arvah B Hopkins 3373808.2 173480.93 524,922 

38 Scholz 3399359.4 127519.09 519,116 

39 Putnam 3277742.4 443310.44 495,412 

40 Miami Dade County Resource Recovery Fac 2857602.5 564510.41 456,887 
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Appendix B 
Geophysical Logs and Interpretations
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Appendix C 
Schlumberger Porosity Graphs
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Appendix D 
Storage Efficiency Calculations
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Appendix E 
UTCHEM-9.0 Florida Pan-Handle Model
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Model Run #1: 5mD Sandstone with No Shale 

 

Model Run #2: 50mD Sandstone with No Shale 

 

Model Run #3: 5mD Sandstone with 25% Shale 

 

Model Run #4: 50mD Sandstone with 25% Shale 

 

Model Run #5: 5mD Sandstone with 50% Shale 
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Model Run #6: 50mD Sandstone with 50% Shale 

 

Model Run #7: 5mD Sandstone with 75% Shale 

 

Model Run #8: 50mD Sandstone with 75% Shale 
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