
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2015

Use of IBM Collaborative Lifecycle Management
Solution to Demonstrate Traceability for Small,
Real-World Software Development Project
Lovelesh Chawla
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2015 All Rights Reserved

Suggested Citation
Chawla, Lovelesh, "Use of IBM Collaborative Lifecycle Management Solution to Demonstrate Traceability for Small, Real-World
Software Development Project" (2015). UNF Graduate Theses and Dissertations. 606.
https://digitalcommons.unf.edu/etd/606

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71998691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

USE OF IBM COLLABORATIVE LIFECYCLE MANAGEMENT SOLUTION TO

DEMONSTRATE TRACEABILITY FOR SMALL, REAL-WORLD SOFTWARE

DEVELOPMENT PROJECT

by

Lovelesh Chawla

A thesis submitted to the

School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computing and Information Sciences

UNIVERSITY OF NORTH FLORIDA

SCHOOL OF COMPUTING

November, 2015

ii

 Copyright (©) 2015 by Lovelesh Chawla

All rights reserved. Reproduction in whole or in part in any form requires the prior

written permission of Lovelesh Chawla or designated representative.

iii

The thesis “Use of IBM Collaborative Lifecycle Management Solution to Demonstrate

Traceability for Small, Real-World Software Development Project” submitted by

Lovelesh Chawla in partial fulfillment of the requirements for the degree of Master of

Science in Computing and Information Sciences has been

Approved by the thesis committee: Date

___________________________________ _____________________

Dr. Robert F. Roggio

Thesis Advisor and Committee Chairperson

___________________________________ _____________________

Dr. Lakshmi Goel

___________________________________ _____________________

Dr. Sherif A. Elfayoumy

Accepted for the School of Computing:

___________________________________ _____________________

Dr. Sherif A. Elfayoumy

Director of the School

Accepted for the College of Computing, Engineering, and Construction:

___________________________________ _____________________

Dr. Mark A. Tumeo

Dean of the College

Accepted for the University:

___________________________________ _____________________

Dr. John Kantner

Dean of the Graduate School

iv

ACKNOWLEDGEMENT

I would like to express my special appreciation to my advisor, Dr. Robert F. Roggio for

being a tremendous mentor for me. I would like to thank him for all his advice and inputs

throughout the realization of my thesis. His advice on this thesis and the suggestions to

improve materials presented were of great help. I would like to thank Dr. Sherif A.

Elfayoumy and Dr. Lakshmi Goel, for serving as my committee members even through

their busy schedules and for their valuable suggestions and advice that were tremendously

helpful to complete this thesis.

I am extremely grateful to Larry Snedden for installing and maintaining Rational Team

Concert, Rational Requirement Composer and Rational Quality Manager on School of

Computing server.

A special thanks to Mr. Jim Littleton for reviewing my thesis report and ensuring it is in

compliance with thesis document requirements. I am also thankful to Dr. Roger Eggen for

navigating me through the Graduate School and School of Computing processes.

Finally, I want to thank my wife Kelly for her patience, and support at all times.

v

CONTENTS

List of Figures .. viii

List of Tables .. x

Abstract…………………………………………………………………………………...xi

Chapter 1: Introduction ... 1

1.1 Traceability .. 1

1.2 Generalized Traceability Model .. 2

1.3 Examples Of Traceability .. 3

1.3.1 Tracing Requirements in the System Definition Domain 3

1.3.2 Tracing User Needs to Product Features ... 4

1.3.3 Tracing Features to Use Cases .. 5

1.3.4 Tracing Features to Supplementary Requirements ... 7

1.3.5 Tracing Requirements to Implementation ... 8

1.3.6 Tracing Use Cases to Use-Case Realizations .. 8

1.3.7 Tracing from the Use-Case Realization into Implementation 9

1.3.8 Tracing Supplementary Requirements into Implementation 9

1.3.9 Tracing from Requirements to Test ... 10

1.3.10 Tracing from Use Case to Test Case... 11

1.3.11 Tracing from Supplementary Requirements to Test Cases 14

1.4 Importance Of Traceability ... 14

Chapter 2: Background ... 16

2.1 History ... 16

vi

2.2 Different Frameworks and Classifications of Traceability Links 19

2.3 Different Approaches to the Generation of Traceability Links 23

2.3.1 Manual Generation of Traceability Links ... 24

2.3.2 Semi-automatic Generation of Traceability Links .. 25

2.3.3 Automatic Generation of Traceability Links ... 26

2.4 Different Approaches to the Representation,Recording, and Maintenance of

Traceability Links .. 30

2.4.1 Single Centralized Database Approach ... 31

2.4.2 Software Repositories .. 32

2.4.3 The Hypermedia Approach ... 33

2.4.4 The Mark-up Approach ... 34

2.4.5 The Event-based Approach ... 35

2.5 Different Ways of deploying Traceability Links ... 36

2.5.1 Traceability for Change Impact Analysis and Change Management 37

2.5.2 Traceability for Software Validation, Verification, Testing and Standards

Compliance .. 39

2.5.3 Traceability for Software Reuse .. 40

2.5.4 Traceability for Artifact Understanding .. 41

2.6 Need For Traceability…………………………………………………………….48

2.7 Traceability in the Research Project .. 43

Chapter 3: Methodology ... 44

3.1 Application Lifecycle Management .. 44

3.2 Collaborative Lifecycle Management ... 44

3.3 Project .. 46

3.4 Project Constraints ... 48

Chapter 4: Research Results ... 49

vii

4.1 Linking Project Areas in Rational Requirements Composer and Rational Team

Concert ... 50

4.1.1 Linking Rational Team Concert Work Items to the Requirements in Rational

Requirement Composer ... 52

4.2 Linking between Project Areas in Rational Requirements Composer and Rational

Quality Manager .. 57

4.2.1 Linking Test Cases in Rational Quality Manager to the Requirements in

Rational Requirements Composer ... 60

4.3 Linking between Project Areas in Rational Team Concert and Rational Quality

Manager ... 63

4.3.1 Linking Test Cases in Rational Quality Manager to Development Work Items

in Rational Team Concert .. 65

Chapter 5: Conclusions ... 78

5.1 Results ... 78

5.2 Future Research ... 83

References ……………………………………………………………………………….85

Vita……………………………………………………………………………………….95

viii

FIGURES

Figure 1. Simple Dependency Relationship ... 2

Figure 2. Generalized Traceability Hierarchy ... 3

Figure 3. Tracing from Requirements to Implementation ... 8

Figure 4. Tracing from the Use-Case Realization to Classes .. 9

Figure 5. Tracing from Supplementary Requirements to Implementation 10

Figure 6. Tracing Use Cases to Test Cases ... 11

Figure 7. Tracing Use Cases to Test Case Scenarios .. 11

Figure 8. Tracing Scenarios to Test Cases .. 13

Figure 9. DR 486 Form ... 47

Figure 10. Artifact linkage across Rational Requirements Composer, Rational Team

Concert, and Rational Quality Manager ... 49

Figure 11. COJ Value Adjustment Board Project (Requirements) overview page 50

Figure 12. Add button in the Associations section ... 50

Figure 13. Linking COJ Value Adjustment Board Project (Requirements) with COJ 51

Figure 14. Uses section of the project area overview page of "COJ Value Adjustment

Board Project" ... 52

Figure 15. Requirements for Deliverable 1... 53

Figure 16. Work Items section of COJ VAB Project (Change Management) 54

Figure 17. Overview section of Task .. 54

Figure 18. Links Tab ... 55

Figure 19. Link Related Track Requirement for new Work Item 55

Figure 20. Requirement Selection popup for Work Item in Rational Team Concert 56

ix

Figure 21. : Requirement linked to Work Item ... 57

Figure 22. COJ Value Adjustment Board Project (Requirements) overview page 58

Figure 23. Linking COJ Value Adjustment Board Project (Requirements) with COJ

Value Adjustment Board Project (Quality Management) 59

Figure 24. Provides section of the project area overview page of "COJ Value Adjustment

Board Project" ... 60

Figure 25. Rational Quality Manager Web UI for COJ VAB Project (Change

Management) .. 60

Figure 26. Summary section of test case .. 61

Figure 27. Requirement Links section .. 61

Figure 28. Linking Test Case in Rational Quality Manager to Requirement in Rational

Requirements Composer ... 62

Figure 29. Requirement Links Section of “Verify Petition Information” Test Case 63

Figure 30. Linking COJ Value Adjustment Board Project (Quality Management) with

COJ Value Adjustment Board Project (Change Management) 64

Figure 31. Uses section of the Project Area Overview page of "COJ Value Adjustment

Board Project" ... 65

Figure 32. Development Items Section of a Test Case ... 66

Figure 33. Development Items Selection Pop-up Window .. 67

Figure 34. Verification of added Work Item in Development Items Section of “Verify

Information” Test case .. 68

x

TABLES

Table 1. Traceability Matrix – User Needs to System Features ... 4

Table 2. System Features versus Use Cases ... 6

Table 3. System Features versus Supplementary Requirements .. 7

Table 4. Traceability Matrix for Use Case to Scenarios ... 12

Table 5. Traceability Matrix for Use Cases to Test Cases .. 13

Table 6. Project Resolution Results from CHAOS Research for years 2004 to 2012 43

 xi

ABSTRACT

The Standish Group Study of 1994 showed that 53 percent of software projects failed

outright and another 31 percent were challenged by extreme budget and/or time overrun.

Since then different responses to the high rate of software project failures have been

proposed. SEI’s CMMI, the ISO’s 9001:2000 for software development, and the IEEE’s

JSTD-016 are some examples of such responses. Traceability is the one common feature

that these software development standards impose.

Over the last decade, software and system engineering communities have been

researching subjects such as developing more sophisticated tooling, applying information

retrieval techniques capable of semi-automating the trace creation and maintenance

process, developing new trace query languages and visualization techniques that use trace

links, applying traceability in specific domains such as Model Driven Development,

product line systems and agile project environment. These efforts have not been in vain.

The 2012 CHAOS results show an increase in project success rate of 39% (delivered on

time, on budget, with required features and functions), and a decrease of 18% in the

number of failures (cancelled prior to completion or delivered and never used). Since

research has shown traceability can improve a project’s success rate, the main purpose of

this thesis is to demonstrate traceability for a small, real-world software development

project using IBM Collaborative Lifecycle Management.

 xii

The objective of this research was fulfilled since the case study of traceability was

described in detail as applied to the design and development of the Value Adjustment

Board Project (VAB) of City of Jacksonville using the scrum development approach

within the IBM Rational Collaborative Lifecycle Management Solution. The results may

benefit researchers and practitioners who are looking for evidence to use the IBM CLM

solution to trace artifacts in a small project.

 -1-

Chapter 1

 INTRODUCTION

1.1 Traceability

Traceability is defined as “the degree to which a relationship can be established between

two or more products of the development process, especially products having a

predecessor-successor or master-subordinate relationship to one another; for example, the

degree to which the requirements and design of a given software component match”

[IEEE90].

This definition focuses on establishing a relationship between two elements that leads to

a third element called “Traceability Relationship” [Leffingwell02]. "Is fulfilled by," "is

part of" and "is derived from," are some examples of traceability relationships. These

relationships may differ depending on the various elements that are linked (for instance, a

specific "validated by" relationship between X and Y establishes that Y is used to

validate X) [Leffingwell02].

In the context of this paper, the traceability relationship can be simply understood as a

basic "traced- to" and "traced-from" model (refer to Figure 1).

 -2-

Figure 1. Simple Dependency Relationship [Leffingwell02]

1.2 Generalized Traceability Model

Distinct projects inherently result in various kinds of requirements artifacts and in the

organizational structure of those artifacts. However, according to Leffingwell, there is a

particular model for traceability strategy that is essentially static and very widely used.

The strategy is ‘hierarchical’ in that it begins with first stating the higher-level

requirements, followed by detailed requirements, implementation, and lastly testing of

the requirements (refer to Figure 2) [Leffingwell02].

The ‘static’ model described about reveals that requirements are traced within the

requirements domain, then further through the domains of implementation and testing.

According to Leffingwell, some extraneous artifacts produced in development activities

that can be traced are not shown in the figure. However, the basic types of traces that are

shown in the figure usually cover most needs [Leffingwell02]. The following section

covers examples based on this model and explains the importance of tracing using it.

 -3-

Figure 2. Generalized Traceability Hierarchy [Leffingwell02]

1.3 Examples of Traceability

1.3.1 Tracing Requirements in the System Definition Domain

Traces within this domain address traceability within the system or product definition

domain. It is also called “requirement to requirement” traceability because it links a

certain kind of requirement to another. For example, a feature requirement can be related

to a use case requirement [Leffingwell02].

 -4-

1.3.2 Tracing User Needs to Product Features

A system is usually developed to meet the needs of users and stakeholders, so it is crucial

to understand those needs and define features that meet those needs. This can be

achieved by continually relating the product features back to user needs. A simple table,

or traceability matrix, can be used to relate them (refer to Table 1).

Feature 1 Feature 2 …. Feature n

Need # 1 X

Need # 2 X X

Need … X X

Need # m X

Table 1. Traceability Matrix – User Needs to System Features [Leffingwell02]

"X" in the cell(s) indicates that an individual feature has been defined to support one or

more user needs. Since these needs are specified at the higher level of abstractions there

are usually far fewer needs identified than the number of system features that are defined

to implement those needs. Hence, this is usually a "one to many" mapping,

A traceability matrix can be examined for possible evidence of error such as:

1. If a row contains no X’s whatsoever, there is a chance that no feature has been

defined to meet a user need. Noting such a pattern is a clear indication that it

should be re-analyzed, and a feature may need to be defined to meet the need.

 -5-

2. Observing a lack of X’s in a column may indicate that an extraneous feature exists

which matches no particular user need, that the purpose of the feature may have

been misidentified, or that a particular feature is no longer used but remains in the

system unnecessarily.

Modern requirements management tools are able to automatically inspect the possible

conditions of error named above. [Leffingwell02]. Once the need-feature relationship is

mapped and confirmation is made that user needs and features are defined, understood

and met, the next stage of the hierarchical traceability model begins. Here, relationships

between features and use cases are identified.

1.3.3 Tracing Features to Use Cases

According to Leffingwell, tracing system features to the system's use cases and tracing

user needs to system features are of equal significance, because the use case reveals the

user’s perspective to implement a system [Leffingwell02].

As before, a simple matrix can be used to relate them for all systems; however, using

matrix can be tedious and complex for large systems. The system features are listed in the

row headers and use cases are listed in the column headers (refer to Table 2). Once the

rows (features) and columns (use cases) are defined, an (X) is marked in in the cell(s) to

represent the traceability. This is usually a set of "many to many" relationships. One or

 -6-

multiple use case may be created to implement a feature. But it is also possible that one

use case implements multiple features.

Use case 1 Use case 2 …. Use case n

Feature # 1 X X

Feature # 2 X X

Feature … X

Feature # m X X

Table 2. System Features versus Use Cases [Leffingwell02]

After all the known feature-to-use-case relationships are established the traceability

matrix can be examined for potential indications of error:

1. If a row does not have any Xs, it means a use case may be defined to include the

feature.

2. If a column does not have any Xs, it means a use case may not be required and

does not include any desired features.

Once the feature-use-case relationships are mapped and it is verified that the features and

use cases are correctly developed, a similar concept can be applied to the non-functional

requirements and their specification.

 -7-

1.3.4 Tracing Features to Supplementary Requirements

“Even though use cases include the majority of the definition of the system's functional

behavior, supplementary requirements also hold valuable system behavioral

requirements” [Leffingwell02]. These generally include the non-functional requirements

of the system such as usability, reliability, supportability, and so on. The vision

document may often contain these requirements or additional high-level requirements.

This can be shown using similar matrix (refer to Table 3).

 Supplementary

Req 1

Supplementary

Req 2
….

Supplementary

Req n

Feature or

System

Requirement

#1

X X

Feature or

System

Requirement

#2

 X X

Feature or

System

Requirement

#3

 X X

Table 3. System Features versus Supplementary Requirements [Leffingwell02]

 -8-

1.3.5 Tracing Requirements to Implementation

Following the tracing requirements in the system definition domain (requirement-to-

requirement traceability), are the implementation and test domains. The following section

covers different traceability models of requirements to implementation [Leffingwell02].

1.3.6 Tracing Use Cases to Use-Case Realizations

In this model use case (artifact of definition domain) is traced to use-case realization

(artifact of implementation domain) to map design and requirements (refer to Figure 3).

Figure 3. Tracing from Requirements to Implementation [Leffingwell02]

There is a one-to-one relation between a use case and its realization that simplifies the

traceability problem immensely and does not require a matrix for the analysis

[Leffingwell02].

 -9-

1.3.7 Tracing from the Use-Case Realization into Implementation

Traceability to code can be established after the development of the use-case realization

[Leffingwell02]. In this traceability relationship to implement the collaboration, a use-

case realization is followed to its components such as the classes/code, subsystems,

packages, etc. (refer to Figure 4).

Figure 4. Tracing from the Use-Case Realization to Classes [Leffingwell02]

Types of tools used in requirements, analysis, and design efforts are important factors in

achieving this traceability. In absence of the adequate tools this tractability can become

very difficult and can lead to hundreds of use cases and thousands of classes.

1.3.8 Tracing Supplementary Requirements into Implementation

Some users use user stories, lists, and other formats rather than use-case form to express

the requirements. It is important to trace non-functional requirements from

A B C

Use Case

Realization

Collaboration

Participating classes

 -10-

supplementary requirements into implementation to accomplish high traceability. In this

case, a single requirement, or a set of requirements are traced to collaborate in the

implementation. The collaboration is named and the tool tracks the links using some

special ways (refer to Figure 5). Specific code in classes can be traced from here that

realizes the collaboration. The mechanics of this can differ depending on the type of tool

used.

Figure 5. Tracing from Supplementary Requirements to Implementation [Leffingwell02]

1.3.9 Tracing from Requirements to Test

This is the last system domain used to trace requirements from the requirement domain to

the testing domain.

 -11-

1.3.10 Tracing from Use Case to Test Case

“One specific approach to comprehensive testing is to ensure that every use case is

‘tested by’ one or more test cases” [Heumann01]. This can be seen in the generalized

traceability hierarchy (refer to Figure 6).

Figure 6. Tracing Use Cases to Test Cases [Leffingwell02]

Usually this relationship is not a 1-to-1 transition as shown in the figure. It is a one-to-

many relationship, as an elaborated use case will have many scenarios to be tested for.

All these scenarios should trace back to their specific use case (refer to Figure 7).

Figure 7. Tracing Use Cases to Test Case Scenarios [Leffingwell02]

Use Case

traces to

System definition

System test

Test Cases

Use Case

Scenario 2

Scenario 3, etc

Scenario 1

 -12-

This traceability can also be described using a matrix. Each row is a scenario of a

particular use case (refer to Table 4). However, each scenario may require multiple test

cases (refer to Figure 8). The can be shown in the matrix form by adding one more

column to the matrix. So relationship among these artifacts can be shown by using a

couple one-to-many matrix (use case to scenario and scenario to test case)

Table 4. Traceability Matrix for Use Case to Scenarios [Leffingwell02]

 -13-

Figure 8. Tracing Scenarios to Test Cases [Leffingwell02]

Use Case Scenario Number …… Test Case Id

Use Case # 1 1 1.1

 2 2.1

 3 3.1

 4 4.1

 4 4.2

 4 4.3

 5 5.1

 6 6.1

 7 7.1

 7 7.2

 8 8.1

Use Case #2 1 1.1

Table 5. Traceability Matrix for Use Cases to Test Cases [Leffingwell02]

Use Case

Scenario 2

Test Case 1
Test Case 2 Test Case 3

 -14-

1.3.11 Tracing from Supplementary Requirements to Test Cases

The process to trace non-functional requirements to test cases is like the requirements-to-

implementation process explained above. In this traceability relationship, each

requirement is either separately traced to a scenario and a test case, or requirements are

grouped into "requirements packages" that uses the logic similar to a use case. The above

matrix can be used to show this relationship but the far most left column will change to

“specific requirement” or “requirements package”.

1.4 Importance of Traceability

Properly tracing requirements artifacts through initiation, design, implementation, and

testing phases significantly helps to implement successful software. According to Marco

Leon there are several advantages of tracing requirements, some of which are:

 An easier coverage analysis: All requirements can be traced back to higher level

requirements. Therefore, it can be validated that all requirements are fulfilled.

 A Better Design: Requirement tracing provides complete information to the

architect.

 Fewer Code Reworks: Through tracing, possible issues can be discovered and

addressed at an earlier stage.

 Improved Change Management: When a requirement is changed, the entire

“trace” can be reviewed for the potential impact to the application.

All of these benefits reduce the software development cycle [Leon00].

 -15-

Ecklund, Delcambre and Freiling focus on the importance of traceability in change

management. They state that “Traceability allows us to gauge the scope of a change with

respect to any level of a system’s evolving design by following the traceability links

forward from affected use cases to the level we are examining. Understanding the scope

of a change on any level enables us to make judicious decisions about how to change the

design at that level” [Ecklund96].

Domges and Paul focus on benefits of traceability in maintenance of a system. They state

that requirements traceability is essential to maintain a system efficiently. If traceability

is not implemented, it can drop the quality of the system. This may increase cost and time

to complete the project. During that time if important team members quit the project, it

can lead to loss of knowledge, which later can result in wrong decisions,

misunderstandings, and miscommunication [Domges08].

 -16-

Chapter 2

BACKGROUND

2.1 History

During the NATO Software Engineering Conference of 1968, the function of traceability

in solving many fundamental problems of the industry was first addressed [Peter69].

Three projects (each spanning one year) targeted methodology and focused on ensuring

that systems “contain explicit traces of the design process.” Conference critics positively

received these projects. Additionally, a particular paper focused on two issues: analyzing

the requirements for an effective methodology of computer system design, and

emphasizing the importance of developing systems to reflect their designs. [Randell68]

One of the pioneering surveys on future trends in software engineering focused heavily

on traceability [Barry86]. Traceability was implemented in projects that would depend on

tool support during early stages of development. In the 1980’s, national and global

standards for system development included the use of traceability. The DOD-STD-2167A

is an example of one such system [Dorfman90]. In the late 1990s published research

reflected a ‘branching out’ in the area of traceability.

 -17-

Expanding research at the beginning of the new millennium led to new discoveries in

model-driven development [Ismenia07] and automated traceability [Steven06]. In 1980s

new commercial tools to support traceability were introduced, and in 1990s and 2000s

significant development was observed in this area. However, in reality practice of

traceability is still not well documented. [Mader09].

In the recent years, different methods have been developed by the software and system

engineering societies to address distinct areas of traceability [Spanoudakis05].

Research into software traceability has been primarily focused on

 “The study and definition of different types of traceability relations” [Zisman03,

Dick02, Egyed02, Gotel95, Kaindl92, Leteiler02, Lindval96, Pohl96, Ramesh92,

Spanoudakis04]

 “Support for the generation of traceability relations” [Alexander02, Antoniol02,

Egyed02, Pinheiro96, Maletine03, Marcus03, Spanoudakis04]

 “Development of architectures, tools, and environments for the representation and

maintenance of traceability relations” [Cleland-Huang02, Cleland-Huang03,

Sherba03, Pinheiro96]

 “Empirical investigations into organizational practices regarding the

establishment and deployment of traceability relations in the software

development life cycle” [Arkley, Binachi00, Gotel94, Ramesh98, Ramesh01,

Strens96, Lindval96].

 -18-

Due to difficulty in generating precise and accurate traceability relationships

automatically, many modern projects do not implement effective traceability [Arkley,

Ramesh01]. A majority of the existing tools either forces the user to identify the

traceability relations manually [Huan02, Gotel95, Pohl96] or provide traceability

generation methods that do not establish precise and accurate relations ([Alexander02,

Antoniol02, Marcus03]). In the first case, the efforts to manually establish traceability

relations outweigh the expected benefits of traceability for large projects. This reduces

the possibilities of an organization to implement traceability, unless it is a regulatory

mandate. Lack of accurate and precise relations leads to ambiguous traceability between

artifacts and makes it of little use in the second case. Therefore, traceability methods are

not extensively used in the industry.

The following sections in this chapter will show a roadmap of research and practices in

software traceability by discussing:

 “Different frameworks and classifications of traceability relations”

 “Different approaches to the generation of traceability relations including manual,

semi-automatic and automatic approaches”

 “Different approaches to the representation, recording, and maintenance of

traceability relations that underpin the architectural design and implementation of

traceability tools and environments,”

 “Different ways of deploying traceability relations in the software development

process” [Spanoudakis05].

 -19-

2.2 Different Frameworks and Classifications of Traceability Links

“Traceability links can usually be divided into horizontal traceability or vertical

traceability” links [Lindval96]. The first links are between different models, and the

second links are between artifacts of the same model. According to Klaus Pohl there is

another way to categorize traceability relations into “18 different types of relations

organized in five different groups” [Pohl96]. These groups are:

 “Condition Link Group” - This group contains links between requirements and

their related restrictions.

 “Content Link Group” - This group contains links that show resemblance and

differences between requirements.

 “Documentation Link Group” - This group contains links between different kinds

of software documents and requirement.

 “Evolutionary Link Group” - This group contains replacement links between

requirements (“e.g. a requirement X has replaced a requirement Y in requirements

document”).

 “Abstraction Link Group” - This group contains abstract relations such as

generalization and refinement between requirements [Pohl96].

According to George Spanoudakis and Andrea Zisman various types of traceability links

proposed earlier can primarily be organized into eight categories: “dependency,

generalization/refinement, evolution, satisfaction, overlap, conflicting, rationalization,

and contribution relations” [Spanoudakis05]. These categories are explained below. The

 -20-

term artifact is commonly used in the explanation of these categories to show the

different traceable entities, and objects in software. “Examples of these elements are

stakeholders, requirements statements, design components (e.g. classes, states), code

statements, test data, etc.” [Spanoudakis05]. In this classification two artifacts a1 and a2,

may be linked by more than one type of link.

In a dependency relation, an artifact a1 depends on an artifact a2. If a1 changes these

changes must be reflected in a2. Ramesh and Jarke state that dependency relations exist

between various requirements, as well as between requirements and design elements.

According to them, dependency relations show hierarchies of artifacts and dependency

between them, and can be used to manage requirements [Ramesh01]. Von Knethen states

that dependency relations are used between “documentation entities (e.g. textual

requirements, use cases) and logical entities (e.g. function, tasks) to assist with fine-

grained impact analysis” [Knethen02, Paech02]. In contrast, Spanoudakis and Zisman say

“dependency relations are called requires-feature-in relations and associate parts of use

case specifications and customer requirements specifications” [Spanoudakis04, Kraus03].

The requires-feature-in relations mean that without the structural and functional features

of a requirement, specific part of a use case cannot be realized, “or that one requirement

depends on the existence of a feature required by another requirement” [Spanoudakis04,

Kraus03]. Maletic calls dependency relations as causal conformances that suggest

related software documents are produced in an order (e.g., test cases can only be

produced after use cases) [Maletic03]. However, Gotel and Finkelstein call dependency

relations developmental relations that provide requirement traceability through the

 -21-

development of artifacts that are created during the other phases of the software

development life cycle [Gotel95]. Dependency relations have also been used for

requirements [Alexander03, Pohl96], “scenarios, code, and model elements” [Egyed03],

“and to support the design and implementation of product lines” [Riebisch01].

A generalization/refinement relation can recognize complex component of a system and

break them down into simpler components, or combine components of a system to create

other components, or refine a component by another component. Pohl claims “these

relations are classified as abstraction links and represent abstractions between trace

requirements” [Pohl96]. Xu and Ramesh say that “generalization/refinement relations are

also used to support associations between business process, decision, and workflow

system objects” [Xu02]. Gotel claims that they are called containment relations, as these

relations combine requirement artifacts to form a composite artifact [Gotel95].

An evolution relation signifies the evolution of software artifacts. In this case an artifact

a1 evolves into an artifact a2. This occurs because a1 is replaced by a2 during the

development, maintenance, or evolution of the system. Pohl confirms that these types of

relations are called replace, formalize, and elaborate relations and should be used to

associate requirements [Pohl96]. In contrast, Pinheiro and Goguen call evolution relations

as replace and abandon relations. A replace relation shows that a requirement is

modified. An abandon relation shows that a requirement is unnecessary and is rejected

[Pinheiro96]. Maletic says that “evolution relations are called non-causal conformance

relations” and do not show a clear connection between artifacts [Maletic03]. Different

 -22-

version of the same document is an example of this relation. Gotel and Finkelstein

mention that evolution relations are called temporal relations. They show how an artifact

has evolved during its development [Gotel95]. Constantopoulos states that evolution

relations are used to “signify derivations between requirements, design, and code

artifacts” [Constantopoulous95].

In a satisfiability relation, an artifact a1 satisfies an artifact a2. “This means a1 meets the

expectation, needs, and desires of a2, or a1 complies with a condition represented by a2”

[Spanoudakis05]. As per Jarke and Ramesh, satisfiability relations connect requirements

and system components (e.g. design components) and guarantee that a system 'satisfies

all the requirements [Jarke01].

An overlap relation is between two artifacts a1 and a2, “which refer to a common feature

of the underlying system” [Spanoudakis05]. Spanoudakis conveys that “overlap relations

are used between requirement statements, use cases, and analysis object models”

[Spanoudakis04]. Pohl claims that an overlap relation links various documents such as

test case, comment, background information, and examples with requirements [Pohl96].

Von Knethen states that “overlap relations are called representation relations and connect

document that shows the same logical entity” [Knethen02]. Gotel mentions that “overlap

relations are called adopts relations (a subtype of connectivity relation) and are used to

associate requirement artifacts” [Gotel94].

 -23-

A conflict relation “signifies conflicts between two artifacts a1 and a2 (e.g., when two

requirements conflict with each other)” [Spanoudakis05]. As per Jarke and Ramesh,

conflict relations are used to show conflicts between artifacts and to provide information

that can be used to resolve the issues [Jarke01].

A rationalization relation is “used to represent and maintain the rationale behind the

creation and evolution of artifacts” [Spanoudakis05]. Jarke and Ramesh use

rationalization relations to capture the history of how artifacts are created [Jarke01].

Leteiler02 states, “rationalization relations are expressed between traceable specifications

(a software specification with different level of granularity such as document, model,

diagram, use case, etc.) and a rationale specification (a document containing assumptions

or alternatives to a traceable specification)” [Leteiler02].

A contribution relation is used to show connection between requirement artifacts and its

stakeholders. Gotel and Finkelstein proposed contribution relations initially to support

requirements pre-traceability. “Pre-traceability is the ability to relate a requirement

(called contribution) to the stakeholders that expressed and/or contributed to it (called

contributors)” [Gotel95].

2.3 Different Approaches to the Generation of Traceability Links

This section describes the different levels of automation used to generate traceability

links. It ranges from manual, to semi-automatic, and fully automatic generation. These

 -24-

approaches are compared on the basis of amount of effort required to establish the

traceability links, and the precision of these links.

2.3.1 Manual Generation of Traceability Links

In a manual process, a user manually identifies the artifacts to be traced. Traceability

matrix is the classic way of establishing manual traceability relation. Another manual

approach is by visualization and display tool components, in which the users identify and

relate different elements from different traceable displayed documents. Tools that use

such approaches of generation are Requirements Engineering Through Hypertext (reth)

[Kozlenkov02], IBM’s DOORS [TELEOLOGIC13], Integrated Chipware’s RTM

[RTM14] and Igatech’s RDT [RDT].

Although the manual approaches provide users with an option to visualize and navigate

through the generated traceability links, it is still a complicated effort, especially in the

case of big and complex artifacts. The accuracy of the traceability links created manually

depends on the user’s understanding of the semantics of the links. Since the involved

users can have different understanding, different discrepancies may occur while referring

to the links.

 -25-

2.3.2 Semi-Automatic Generation of Traceability Links

Semi- automatic approaches to generate traceability links have been introduced to

overcome the problems related to the manual generation of traceability links.

According to Pohl there are development tools that may be used to generate semi-

automatic traceability links. “This is a process-driven approach in which traceability links

are generated because of creating, deleting, and modifying a product” [Pohl96].

Pohl also states that the development tools must ensure [Pohl96]:

a. “The recording of execution, input and output of each action related to the

creation, deletion, and modification of a product in a trace repository”;

b. “Generation of dependency links between two dependent objects”, and

c. “Recording of the stakeholder performing the action and relationships between

the action being executed and previous actions”.

Cleland-Huang suggested “an event-based approach to generate traceability links

between requirements and performance models, and between non-functional

requirements and design and code artifacts” [Cleland-Huang02, Cleland-Huang03]. As

per Egyed, user defines traceability links during inception, elaboration and construction

of the system [Egyed02].

 -26-

These approaches may be recognized better than manual approaches; however, since user

defines traceability link in some of the approaches they can be still be inaccurate,

complex and time consuming.

2.3.3 Automatic Generation of Traceability Links

Some approaches have been proposed to remove user-defined relationships and automate

the creation of traceability links. “Some of these approaches use information retrieval

(IR) techniques” [Antoniol02, Hayes03, Marcus03], “others use traceability rules”

[Ramesh92, Spanoudakis04, Krause03], “special integrators” [Sherba03], and “inference

axioms” [Pinheiro00].

Antoniol, Hayes and Marcus proposed information retrieval techniques to create

traceability links [Antoniol02, Hayes03, Marcus03]. Antoniol explained “traceability link

between a requirement document and source code component” [Antoniol02]. This

method assumes that “the vocabulary of the source code identifier overlaps with various

items of the requirements documents as programmers usually choose names for their

program items from the application-domain knowledge” [Antoniol02]. This method

produces imprecise traceability links. Moreover, it only shows links between the artifacts

that address the common features of a system [Antoniol02].

Hayes proposed vector space information retrieval (IR) techniques to automate the

creation of traceability links [Hayes03]. This approach uses thesauruses or key-phrase list

 -27-

to expand the classical vector IR model technique. “The study has shown that the use of a

key-phrase list can improve the recall of the generated links (fewer missed links), but

decreases their precision (i.e., it generates more irrelevant links) compared to classical

vector IR techniques” [Hayes03].

Maletic proposed an approach “based on the use of Latent Semantic Indexing (LSI) to

generate traceability links between system documentation (e.g., manual, requirements,

design or test suites) and source code” [Maletic03]. This approach is independent of the

programming language of the source code or language used in the system document. It

considers synonymous terms by using “linear combinations of terms as dimensions of the

representation space” [Marcus03]. In this approach, system documents and source code

are pre-processed and a collection is created. “A traceability link between two documents

is established when the semantic similarity measure of these documents is greater than a

threshold” [Marcus03]. This approach has better recall and precision results compared to

the two mentioned earlier.

Spanoudakis and Zisman proposed to use XML-base traceability rules to automatically

create traceability links “between requirements statements, use cases, and analysis

object” [Spanoudakis04, Zisman02]. “The documents to be traced are represented in

XML and the generated links are represented as hyperlinks and expressed as an extension

of Xlink” [DeRose01]. This approach has been evaluated in case studies for software-

intensive TV systems and for a university course management system. The studies show

 -28-

promising recall and precision levels ranging from 50% to 95%. These results back the

automatic approach to automatically generate traceability links.

Ramesh proposed another approach to automatically generate traceability links between

requirements and design artifacts in the Remap project. This approach is based on “trace

rules and supports arbitrary chaining of rules in which the conclusion part of a rule can

become part of the condition part of another rule” [Ramesh92]. Mohan has proposed an

extension of Remap to establish traceability between customer requirements and design

artifacts [Mohan02].

Based on relationship chaining Sherba explained an approach to generate new traceability

links [Sherba03]. This approach uses special integrators that can detect and generate

traceability links between software artifacts and other previously defined links. “The

newly identified relations can be generated based on indirect and transitivity

dependencies, complex dependencies containing more than one source or destination

elements being related, or matching of pre-defined conditions between artifacts and/or

links” [Sherba03]. User picks a specific chain of relation type when multiple chaining

options are possible for some documents.

In Traceability of Object Oriented Requirement (TOOR), traceability links are defined

and derived in terms of axioms. The tool uses these axioms to identify traceability links

between requirements, design, and code specifications [Pinheiro96]. These axioms also

enable users to define traceability links manually.

 -29-

Most of these developed approaches (e.g. [Antoniol02, Hayes03, Marcus03]) have been

implemented as prototypes and cannot completely automate the traceability links

generation. They still have unacceptable precision levels and cannot support traceability

for a big project. The approaches described by Gougen and Spanoudakis are “easy to use

once a complete set of traceability relation generation rules and axioms have been

identified” [Pinheiro96, Spanoudakis04]. But to establish those rules is not always easy.

Huergen Rilling, Rene Witte and Yonggang Zhang proposed an ontological approach to

establish traceability links between software artifacts. Instead of using simple IR, they

developed a Text Mining system for analyzing documents and a source code parser for

the analysis of source code. The results from the source code and documents analysis are

used to link the two software artifacts [Rilling07].

Cleland-Huang and colleagues have published several studies on IR-based trace recovery.

They introduced probabilistic trace recovery using a PIN-based retrieval model,

implemented in the tool Poirot. Their work focused on improving the accuracy of the tool

by adding enhancements such as: “applying a thesaurus to deal with synonymy,

extraction of key phrases, and using a project glossary to weigh the most important terms

higher” [Cleland-Huang10].

Very recent work on IR-based trace recovery has gone beyond the traditional models for

information retrieval [Borg13]. Several of these models are described below.

 -30-

Hayes combined several IR models with a voting scheme mainly the probabilistic topic

model Latent Dirachlet Allocation (LDA) [Hayes07]. Parvathy proposed use of

Correlated Topic Model (CTM) [Parvathy08], and Gethers suggested use of Relational

Topic Model (RTM) [Gethers11]. Abadi recommended the use of Probabilistic Latent

Semantic Indexing (PLSI) that utilized two concepts based on information theory,

Sufficient Dimensionality Reduction (SDR) and Jensen-Shannon Divergence (JS)

[Abadi08].

In contrast, Capobianco proposed representing NL artifacts as B-splines and calculating

similarities as distances between them on the Cartesian plane [Capobianco09]. Sultanov

and Huffman Hayes implemented use of swarm technique to trace recovery. In this

approach a non-centralized group of non-intelligent self-organized agents perform work

which when combined, enables conclusions to be drawn [Sultanov10].

2.4 Different Approaches to the Representation, Recording, and Maintenance of

Traceability Links

There are different architectural approaches to support the representation, recording and

maintenance of traceability links in various tools and environments. These approaches

can be differentiated into five categories based on “the level of integration between the

artifacts and traceability relations, and the representation framework used to store the

artifacts and relations” [Spanoudakis05]:

a. “The single centralized database approach”

b. “The software repository approach”

 -31-

c. “The hypermedia approach”

d. “The mark-up approach”

e. “The event-based approach”

Different features and benefits of the above approaches to achieve traceability are

discussed in the following sections.

2.4.1 Single Centralized Database Approach

The artifacts and the traceability link generated between them are both saved in a

centralized database in this approach. Most of the requirement management applications

that support traceability such as DOORS and RTM advocate this approach

[TELEOLOGIC13, RTM14]. Usually, these applications save the traceability links

between artifacts “in an underlying relational database” [Jarke01]. But, there are some

tools such as TOOR that uses object-oriented database technology.

The underlying database provides user an advantage to efficiently query the traceability

links. However, with this approach when an artifact is not created in the tool that

manages the links, it is hard to generate and maintain traceability links between artifacts.

Some applications such as IBM’s DOORS and RTM do provide artifact importing and

exporting capabilities to alleviate this problem, however, importing and exporting is

usually only possible for artifacts made by applications of the same company or by

applications that work on a same framework. For example DOORS provides import and

 -32-

export capabilities for artifacts that are created and managed by most of the popular

CASE applications [TELEOLOGIC]. Nevertheless, import and export facilities are not

effective in maintaining traceability links between evolving artifacts that are managed by

different tools.

2.4.2 Software Repositories

Another approach is to use a centralized software repository and record traceability links

along with the artifacts that they relate [Constantopoulos95, Pohl96]. The software

repositories approach is different from the single database approach in a way that they are

more flexible for defining schemas to store a variety of software artifacts and traceability

link between them.

“The Software Information Base (SIB) is an experimental repository system that can

support the definition of complex semantic structures for holding information about

artifacts and traceability links at an infinite number of classification layers”

[Constantopoulos95]. SIB is based on the data model of the conceptual modeling

language TELOS. “It also allows the definition of arbitrary additional types of

traceability relations, and provides an API through which it may be connected as an

information server to external tools” [Constantopoulos95].

PRO-ART also uses the software repository approach [Pohl96]. PRO-ART is based on a

process-centered approach. It integrates tools that are used to create, delete and modify an

 -33-

artifact. These tools realize these actions and generate traceability links as a by-product

when a user executes these actions. For instance, “when a developer creates a textual

rationale for an object class, PRO-ART automatically creates a rationalization link

between the class and the textual annotation” [Spanoudakis05]. In PRO-ART, the text

editor may create the text providing the rationale, which is different from the tool that

created the linked class. The huge advantage of process-centric approach is that it enables

user to achieve traceability during the software development processes [Dogmes98].

However, in the beginning the software repository approach needs rigorous tool

integration. This may not be possible in distributed software development settings.

2.4.3 The Hypermedia Approach

The hypermedia approach is based on open hypermedia architecture. It is proposed as a

solution to maintain traceability links between evolving artifacts without integrating the

relevant tools around a software repository. [Whitehead97].

Using this approach Sherba has developed a traceability management tool, called TraceM

[Sherba03]. “TraceM is a research prototype system that supports the recording,

maintenance, and traversal of links between software artifacts that are constructed by

heterogeneous tools” [Sherba03]. TraceM stores traceability links independent of the

artifacts that they relate. In TraceM a traceability link can use metadata to define an n-ary

relation between artifacts, or their parts. These metadata specify:

a. “The types of the artifacts associated by a link

 -34-

b. The external tools that create these artifacts

c. Transformers that can be used to transform artifacts into the common

representation framework of TraceM

d. Integrators that can be used to automatically discover and create the traceability

links” [Sherba03].

Metadata can also specify the different stakeholders interested in a project. To completely

utilize TraceM services, external tools that are used to create artifacts have to be

integrated with TraceM. This integration can be accomplished using standard techniques

available in open hypermedia environments. TraceM can also be used to only document

and view links when non-integrated external tools are used to create artifacts [Sherba03].

2.4.4 The Mark-Up Approach

The use of markup language is proposed to achieve traceability in widely distributed and

heterogeneous software engineering settings. In this approach the traceability links are

saved independent of the artifacts that they relate.

“Gotel and Finkelstein have developed a toolkit that can be used to create and maintain

contribution relations. This toolkit uses a combination of HTML and descriptive mark up

representations to store different types of contribution relations between artifact’s as

hyperlinks” [Gotel95]. Maletic has also developed a tool that saves traceability links as

different types of "hyperlinks" [Maletic03].

 -35-

“STAR-Track is a web-based requirements tracing tool that uses tagging mechanisms to

represent traceability links” [Song98]. The tags in STAR-Track show artifacts or links

between these artifacts. Every tag includes a title and an artifact identifier.

In the rule-based tracer Spanoudakis, et al. described that both artifacts and traceability

links that relate them are represented in XML [Spanoudakis04]. However, traceability

artifacts are stored separately from their traceability links and XLink elements are used to

mark the parts of the artifacts these links relate [DeRose01]. This system can also convert

textual artifacts from their initial format into XML. One main advantage of the rule-based

tracer is that it does not need any kind of tool integration. However, it provides limited

support to maintain traceability links of evolving artifacts [Spanoudakis05]. This is

because the modified artifacts need to be re-transformed into XML to ensure traceability

link remains valid after the changes.

2.4.5 The Event-Based Approach

In all above approaches (excluding the centralized software repository approach), it is

difficult to maintain the traceability links between evolving artifacts. To solve this

problem, Cleland-Huang “developed an event-based traceability (EBT) server to

document and maintain traceability links between requirements documents and other

software artifacts” [Cleland-Huang02]. EBT is based on a registry system where the

requirement documents can register their dependencies to other artifacts, and the system

monitors the artifacts after the registration of dependencies. It informs all dependent

 -36-

requirements when an artifact is changed. After the dependency relations are recognized

this system makes it easier to maintain them. However, the system does not recognize

those relations.

 Centralized database and the software repository approach have better performance and

data management facilities than even-based and mark-up approaches. But, the latter are

more interoperable.

2.5 Different Ways of deploying Traceability Links

Traceability links may be used to support different development and maintenance

activities in the development life cycle of a software system including:

a. “Change impact analysis and management” [Cleland-Huang02]

b. “System verification, validation, testing and standards compliance analysis”

[Jarke01]

c. “The reuse of software artifacts” [Paech02]

d. “Software artifacts understanding” [Antoniol02, Marcus03, Ramesh92, Jarke01].

The following sections describe how traceability may support the above activities and

explain different traceability links that can be used for that.

 -37-

2.5.1 Traceability for Change Impact Analysis and Change Management

One of the main reasons to achieve traceability between different artifacts is the ability to

use the traceability links for:

a. Change Impact Analysis - Establish the impact of potential changes to the system.

b. Change Management - Decide whether these changes should be introduced.

The easiest way to analyze the impact a change in an artifact will cause (e.g. a use case)

is by identifying of all the other artifacts that will be affected by the change (e.g. source

code and test case). Basic querying abilities must exist in a system for simple change

impact analysis [Spanoudakis05]. Many of the current traceability tools and

environments provide ability to query and retrieve traceability links between particular

types of artifacts. However, some systems can require more complex way of change

impact analysis. Some of these ways are:

a. The distributions of impacted artifacts into various groups due to the specific

effect caused by the change;

b. The identification of any side-effect because of the change;

c. The estimation of the cost due to the change.

These capabilities require arranging different traceability links into trace-paths. These

trace-paths can show how changes in an artifact may impact artifacts that are not directly

linked. Structures of traceability links may be established by “evaluating regular

expressions” [Pinheiro96], “deductive rules” [Jarke01], or “traceability rules”

 -38-

[Spanoudakis04]. Few research models such as TOOR [Pinheiro96], PRO-ART [Pohl96],

and the rule-based tracer [Spanoudakis04] support similar structure capabilities.

However, many of the industrial traceability tools generate appropriate scripts to

estimates these compositions. Moreover, it does not provide significant cost estimation of

executing and integrating requested changes. This is because the “few cost estimation

models that have been developed for this purpose cannot provide very precise cost

predictions” [Lavazza00].

Certain systems may execute a simulation model to assess impact of a potential change.

The EBT system is capable of analyzing “the effect of requirement changes onto the

performance of software systems by using dependency relations between requirements

and performance simulation models” [Cleland-Huang02].

Certainly, the semantics, granularity and accuracy of traceability links determine the

accuracy of both simple and complex forms of impact analysis. Even though the links

that are generated by identifying references to common entities in different software

artifact may support the impact of a change on an artifact. It still cannot establish or

measure this impact with certainty. Examples of such artifact links are “the overlap

relations between requirements and object-oriented analysis models” identified by

Spanoudakis, et al. [Spanoudakis04], or “between source code artifacts and manual pages

or requirements identified by information retrieval techniques” by Antoniol and Marcus

[Antoniol02, Marcus03]. However, traceability link with a rich semantic content (e.g. the

dependency relations [Jarke01]) can provide more accurate impact analysis results.

 -39-

Studies have shown the need of traceability link with rich semantics to measure accurate

impact analysis [Bianchi00, Lindval96]. Empirical research has also shown that

granularity of artifacts that are linked defines accuracy of impact predictions. Bianchi

reported that “fine-grain links that relate specific artifacts/parts within broad models and

documentation result in more accurate results” [Bianchi00]. Different case studies in

software industry have also shown that software engineers do not trust the automatically

generated traceability links due to doubts about the accuracy of these links [Lindval96].

2.5.2 Traceability for Software Validation, Verification, Testing and Standards

Compliance

Traceability links can provide various methods to analyze and ensure that “a system

implements the requirements provided by the various stakeholders involved (validation),

verify that it satisfies certain properties and its specification (verification), test its sole

elements and the system as a whole, and evaluates that it meets existing standards”

[Spanoudakis05].

“Pre-traceability contribution relations, for instance, may be used to identify stakeholders

and involve them in requirement validation activities” [Gotel95]. Similarly, traceability

links may be used to ensure that test cases exist to verify every requirement. “The results

of this preliminary verification analysis typically provide input to software inspection and

auditing procedures” [Paech02].

 -40-

Traceability links can also be used to assess the consistency of different models of a

system [Eastbrook98]. For example, Spanoudakis presents an approach to convey overlap

relations that holds common feature. He suggests rewriting formal requirement

specifications to check their consistency using theorem proving [Spanoudakis99]. Fiutem

and Antoniol used “string-matching algorithms to extract design models from the source

code of a system” [Fiutem98]. After extracting they discover overlap relationship

between these models and the initial design model that was developed before

implementation. Later these relationships are used “to verify the consistency of the

implementation with the original design” [Fiutem98].

2.5.3 Traceability for Software Reuse

Traceability links have been widely used to identify reusable artifacts in the software

development life-cycle [Antoniol02, Constantopoulos95, Paech02]. Using these links the

artifacts at different levels of abstraction (e.g. source code, design or requirement

artifacts) can be identified and reused through different scenarios.

“Constantopoulos used dependency traceability relations, called correspondence relations

to associate requirements specifications with design models, and design models with

source code in the Software Information Base” [Constantopoulos95]. Following these

relations in an application, software engineers can find concrete reusable artifacts at low

levels of abstraction (design and source code artifacts). Dick and NASA have suggested

similar approaches [Dick02, NASA]. In NASA, “reusable design elements are identified

 -41-

through satisfiability, refinement or overlap relations that connect them with events, pre-

conditions, and post-conditions in use case models” [NASA]. Antoniol has also

recommended use of traceability links between source code artifacts (e.g. functions in

code libraries) and manual pages to enable software engineers to reuse these artifacts in

specific contexts [Antoniol02].

2.5.4 Traceability for Artifact Understanding

Tractability links can also be used to understand the reason behind the creation of the

involved artifacts or the relationship between them. Understanding these reasons can be

very useful in scenarios where the people who need to access and maintain the artifacts

are not the ones who created them, a common phenomenon in software maintenance. For

instance “objective of enabling code comprehension has driven the development of

approaches that can trace components of programs generated by deductive synthesis (e.g.

variable names, function calls) onto the specifications from which they were derived”

[Cleland-Huang03].

Similarly, rationalization relations can be used to explain about the form of requirement

and design artifacts [Pohl96, Ramesh92, Jarke01]. “PRO-ART and REMAP are examples

of the traceability environments that support the recording of such relations” [Ramesh92].

This model can be used to represent the issues that were recognized during the

construction of the artifacts.

 -42-

In summary, this chapter provided an overview of the research and practical work

completed in the field of software system traceability. This chapter showed importance of

establishing traceability in the software development life cycle. Even though the current

methods have made important improvements to different aspects of traceability it is still a

difficult task. Looking at the current state of research and available tools traceability is

not extensively used in the industry [Spanoudakis05]. After looking at the roadmap of

research and practical work in software system traceability the next section provides an

overview of the need for traceability in the software project and tools used in my research

project.

2.6 Need for Traceability

Research has shown that insufficient traceability is one of the leading causes of software

project failures and budget overruns [Domges08]. As a result, considerable research has

been undertaken on this topic recently and many organizations are endeavoring to

improve their traceability practices [Kannenberg09]. The results of these efforts can be

seen in Standish Group’s 2013 CHAOS manifesto [CHAOS13]. “The 2012 CHAOS

results show an increase in project success rate of 39% compared to a success rate of 37%

in 2010 (delivered on time, on budget, with required features and functions); and

decrease in number of failures of 18% in comparison to 21% in 2010 (cancelled prior to

completion or delivered and never used)” (refer to Table 6) [CHAOS13].

 -43-

 Successful Failed Challenged

2004 29% 18% 53%

2006 35% 19% 46%

2008 32% 24% 44%

2010 37 % 21% 42%

2012 39 % 18% 43%

Table 6. Project Resolution Results from CHAOS Research for years 2004 to 2012

[CHAOS13]

Kannenberg, et al. suggests that the software engineering industry accepts the importance

of traceability but principles of traceability are still not well understood in many

organizations [Kannenberg09].

2.7 Traceability in the Research Project

Given the past history of traceability as addressed by many researchers over recent years,

coupled with genuine acknowledged need for traceability in the production of modern

application data systems, this research will address traceability for small, real-world

software development projects within a modern application development framework

using a commonly-accepted development methodology.

Specifically, traceability will be applied to the design and development of the Value

Adjustment Board Project (VAB) of City of Jacksonville as needed by the Duval County

property appraiser’s office. Using the Scrum development approach within Rational

Team Concert (RTC), traceability will be demonstrated throughout life-cycle activities.

 -44-

Chapter 3

METHODOLOGY

3.1 Application Lifecycle Management

“Application lifecycle management (ALM) is the marriage of business management to

software engineering made possible by tools that facilitate and integrate requirements

management, architecture, coding, testing, tracking, and release management”

[Johnson11]. By the end of the 1970’s, researchers like Yourdon, Orr, Dijkstra, and

DeMarco began discussing and creating functionally strong software applications,

strengthening the field in sound new ways [Wood 10].

Yourdan utilized Date Flow Diagrams (DFDs), providing a process-oriented method that

proved extremely useful for data capture, and was thus used by many in the field for

years to come. From here, Software Engineering (CASE) tools emerged from varied

methodologies that began to support traceability [Wood10].

3.2 Collaborative Lifecycle Management

“Collaborative Lifecycle Management (CLM) is an integrated Application Lifecycle

Management solution by IBM that integrates different products based on JazzTM

 -45-

framework” [Gothe08]. It connects the artifacts of analysts with artifacts of developers

and testers. “JazzTM is built on architectural principles that represent a key departure from

approaches taken in the past. Together, these approaches allow teams to surf the

collaborative Web to seamlessly access teams, processes and artifacts” [Jazz12]. “CLM

links among the products support traceability, web-like navigation, review, commenting,

and status tracking across various project repositories” [Gothe08]. According to Babcock,

CLM consists of three main applications: “IBM Rational Requirements Composer, IBM

Rational Team Concert, and IBM Rational Quality Manager” [Babcock12].

Rational Requirement Composer (RRC) is an application used to define and manage

requirements for any size of project. “Project teams can manage their requirements, write

good use cases, improve traceability, strengthen collaboration, reduce project risk, and

increase quality” [Gothe08].

Rational Team Concert (RTC) is a Rational product on the JazzTM team collaboration

platform. It was initially released on 2008. RTC provides various abilities to integrate

work of team members with different roles:

a. Seamlessly integrates different tasks through the software life cycle;

b. Provides better team collaboration to develop more effective applications;

c. Generates and maintain traceability links to automate the bookkeeping [Gothe08].

 -46-

Rational Quality Manager (RQM) is another application on JazzTM team collaboration

platform. RQM is a complete test management system that provides testers to plan,

construct and execute tests in RQM. [Gothe08].

3.3 Project

Using the Scrum development approach within IBM tools on Jazz framework - RRC,

RTC and RQM - this research presents a case study in traceability as applied to the

design and development of the Value Adjustment Board Project (VAB) of City of

Jacksonville as needed by the Duval County Property Appraiser's Office.

“The Value Adjustment Board reviews appeals from decisions made by the Duval

County Property Appraiser. VAB jurisdiction includes appeals of property value

assessments, exemption denials, agricultural (greenbelt) classification denials, and

portability appeals, among others” [VAB14]. The current appeal process is done

manually by submitting the DR-486 form to the Clerk of the VAB at the Property

Appraiser Office in person or in mail along with the filing fee.

 -47-

Figure 9. DR 486 Form

This research will use the CLM framework to take the small team project from needs to

features, features to use cases, use cases to design documents and design documents to

 -48-

test cases. The research will demonstrate the support environment for tracking and

ensuring consistency in the above flow.

3.4 Project Constraints

The project was part of the graduate Software Engineering I and II courses at the

University of North Florida, so it was completed under the following constraints:

 The project has five team members – one business analyst, two developers and two

testers to implement within a school year.

 The team uses Scrum and Unified Processing methodologies to manage the project.

 The team work is confined to a regular, repeatable work cycle, known as a sprint

 The team submits a deliverable (working product along with the documentation

requested in the class) after each sprint

 The goal of the project is to create two web applications to expedite the VAB appeal

process.

 Application uses Microsoft SQL Server for database, Visual Studio 2012 for the

integrated development environment (IDE) and C# for the programming language.

 -49-

Chapter 4

RESEARCH RESULTS

The artifact linkages shown in Figure 10 were used on the VAB project for COJ to

achieve traceability. Rational Team Concert (RTC) implements requirements from

Rational Requirements Composer (RRC) and creates a linkage among them. Similarly,

Rational Quality Manager (RQM) validates the requirements in Rational Requirements

Composer and forms a linkage between the two project areas. In the end, Rational

Quality Manager tests work items in Rational Team Concert and creates a linkage

between these two project areas.

Figure 10. Artifact Linkage across Rational Requirements Composer, Rational Team

Concert, and Rational Quality Manager [DEV10]

 -50-

4.1 Linking Project Areas in Rational Requirements Composer and Rational Team

Concert

The first step to link project areas as shown in Figure 10 is to link Rational Requirement

Composer (RRC) and Rational Team Concert (RTC). For this, “COJ Value Adjustment

Board Project (Requirements)” project area in RRC and “COJ Value Adjustment Board

Project (Change Management)” in RTC were linked by taking the following steps.

1. Log on to the server administration interface of Rational Requirements Composer

server as an Admin group member (user with administrative privileges).

2. Navigate to the project overview page of the “COJ Value Adjustment Board

Project (Requirements)” (refer to Figure 11) and click the Add button in the

Associations section (refer to Figure 12).

Figure 11. COJ Value Adjustment Board Project (Requirements) Overview Page

Figure 12. Add Button in the Associations Section

 -51-

3. Under the Applications select “/ccm”, under Associations select “Uses –

Requirements Change Requests”, and under Artifact Containers select “COJ

Value Adjustment Board Project (Change Management)” (refer to Figure 13).

Figure 13. Linking COJ Value Adjustment Board Project (Requirements) with COJ

Value Adjustment Board Project (Change Management)

The linkage between” COJ VAB Project (Requirements)” and “COJ VAB Project

(Change Management)” can be verified by the link created in the “uses” section of the

 -52-

project area overview page of "COJ Value Adjustment Board Project" in Rational

Requirement Composer (refer to Figure 14).

Figure 14. Uses Section of the Project Area Overview Page of "COJ Value Adjustment

Board Project"

After establishing project linkage, the next step is to link the artifacts.

A requirement in Rational Requirements Composer and a work item in Rational Team

Concert are used to establish the link between Rational Requirements Composer and

Rational Team Concert.

4.1.1 Linking Rational Team Concert Work Items to the Requirements in Rational

Requirement Composer

Requirements are defined in Rational Requirement Composer under “COJ VAB Project

(Requirement)” for each sprint; that is, the complete project divided into time-boxed

efforts each of a specific duration.

The following requirements from the COJ VAB are now shown in Figure 15 are part of

the Deliverable 1; that is, documentation (use cases in this case) required at the end of

 -53-

sprint 1 (refer to Figure 15)

1. Submit Petition

2. Withdraw Petition

3. View Petition

4. Update Petition

Figure 15. Requirements for Deliverable 1

The following steps create a Work Item (fundamental mechanism to track and coordinate

development tasks and workflows in Rational Team Concert) that was created and shown

in Figure 15. These steps are used to link each work item of the “COJ VAB Project

(Change Management)” with a requirement in “COJ VAB Project (Requirement)”:

1. Using the Rational Team Concert web UI, navigate to the work Items section of

the COJ VAB Project (Change Management) (refer to Figure 16).

 -54-

Figure 16. Work Items Section of COJ VAB Project (Change Management)

2. Choose a Work Item from the available work items such as Task, Defect, Story

etc.

3. Fill the Task information in the overview section (refer to Figure 17).

Figure 17. Overview Section of Task

4. Click on the links tab and choose “Implements Requirement” from the different

links dropdown (refer to Figure 18).

 -55-

Figure 18. Links Tab

5. Choose COJ Value Adjustment Board Project (Requirements) under the location

of artifact and pick link to existing requirement (refer to Figure 19).

Figure 19. Link Related Track Requirement for new Work Item

 -56-

6. Next step is to choose a requirement from the above requirements (refer to Figure

20).

Figure 20. Requirement Selection Popup for Work Item in Rational Team Concert

The newly added link between the work item and requirement can be verified after

selecting OK in the links section (refer to Figure 21).

 -57-

Figure 21. Requirement linked to Work Item

These steps were repeatedly followed to link all the requirements from COJ VAB Project

(Requirements) in RRC to work items from COJ VAB Project (Change Management) in

RTC and thus creating traceability between requirements of the project and tasks of the

project.

4.2 Linking between Project Areas in Rational Requirements Composer and Rational

Quality Manager

In the previous section the relationship between RRC and RTC was established. This

section shows how the link between the COJ VAB Project (Requirements) in RRC and

COJ Value Adjustment Board Project (Quality Management) in Rational Quality

Manager was created.

1. Log on to the server administration interface of Rational Requirements Composer

 -58-

server as an Admin group member (user with administrative privileges).

2. Navigate to the project overview page of the COJ Value Adjustment Board

Project (Requirements) and click the Add button in the Associations section (refer

to Figure 22).

Figure 22. COJ Value Adjustment Board Project (Requirements) Overview Page

3. Under Applications select “/qm”, under Associations select “Provides –

Requirements” and under Artifact Containers select COJ Value Adjustment Board

Project (Quality Management) (refer to Figure 23).

 -59-

Figure 23. Linking COJ Value Adjustment Board Project (Requirements) with COJ

Value Adjustment Board Project (Quality Management)

The linkage between “COJ VAB Project (Requirements)” and “COJ VAB Project

(Quality Management)” can be verified by the link created in the “provides” section of

the project area overview page of COJ Value Adjustment Board Project in Rational

Requirement Composer (refer to Figure 24).

 -60-

Figure 24. Provides Section of the Project Area Overview Page of "COJ Value

Adjustment Board Project"

4.2.1 Linking Test Cases in Rational Quality Manager to the Requirements in Rational

Requirements Composer

A requirement in COJ Value Adjustment Board Project (Requirements) is linked with a

test case in COJ Value Adjustment Board Project (Quality Management)

The following steps were performed to link a requirement with a test case:

1. Using the Rational Quality Manager web UI a test case was created in COJ VAB

Project (Quality Management) (refer to Figure 25).

Figure 25. Rational Quality Manager Web UI for COJ VAB Project (Change

Management)

 -61-

2. All the details for the test case were filled in the summary section (refer to Figure

26).

Figure 26. Summary Section of Test Case

3. A link to a requirement was added by going to the “Requirement Links” section

of the test case and clicking the “Add new link” button (refer to Figure 27).

Figure 27. Requirement Links Section

 -62-

4. Chose the requirement “View Petition” to link to the test case and click “Ok”

button (refer to Figure 28).

Figure 28. Linking Test Case in Rational Quality Manager to Requirement in Rational

Requirements Composer

The linkage between the test case “Verify Petition Information” and “View Petition” can

be verified on the “Requirement Links” Section (refer to Figure 29).

 -63-

Figure 29. Requirement Links Section of “Verify Petition Information” Test Case

These steps were used to create a linkage between a test case and its associated

requirement for each of the test cases in the “COJ VAB Project (Quality Management)”

project. After linking all the test cases with the requirements, “COJ VAB Project (Quality

Management)” in Rational Quality management is linked with “COJ VAB Project

(Requirements)” Rational Requirement Management.

4.3 Linking between Project Areas in Rational Team Concert and Rational Quality

Manager

After linking the requirements in RRC to test cases in RQM, the last part of completing

traceability is linking the test artifacts in Rational Quality Manager to the development

artifacts in Rational Team Concert.

 -64-

This section shows how the link between the COJ VAB Project (Change Management) in

RRC and COJ Value Adjustment Board Project (Quality Management) in Rational

Quality Manager was created.

1. Log on to the server administration interface of Rational Quality Management

Composer server as an Admin group member (user with administrative

privileges).

2. Navigate to the project overview page of the “COJ Value Adjustment Board

Project (Quality Management)” and click the Add button in the Associations

section.

3. Under the Applications select “/qm”, under Associations select “Provides –

Requirements” and under Artifact Containers select “COJ Value Adjustment

Board Project (Quality Management)” (refer to Figure 30).

Figure 30. Linking COJ Value Adjustment Board Project (Quality Management) with

COJ Value Adjustment Board Project (Change Management)

 -65-

The linkage between “COJ VAB Project (Quality Management)” and “COJ VAB Project

(Change Management)” can be verified by link created in the “uses” section of the

project area overview page of "COJ Value Adjustment Board Project" in Rational

Requirement Composer (refer to Figure 31).

Figure 31. Uses Section of the Project Area Overview Page of "COJ Value Adjustment

Board Project"

After establishing project linkage, the next step is to link the artifacts.

A test case in Rational Quality Management and a work item in Rational Team Concert

establish the link type between Rational Quality Management and Rational Team

Concert.

4.3.1 Linking Test Cases in Rational Quality Manager to Development Work Items in

Rational Team Concert

A test case in COJ Value Adjustment Board Project (Quality Management) is linked with

a work item in COJ Value Adjustment Board Project (Change Management).

 -66-

The following steps are used to link a work item with a test case:

1. To link the artifacts, go to the Development Items section of the test case (refer to

Figure 32).

Figure 32. Development Items Section of a Test Case

2. Click the Add button (refer to Figure 32). The Plan Item pop-up will show with

“COJ Value Adjustment Board Project (Change Management)” Project area

selected by default (refer to Figure 33).

 -67-

Figure 33. Development Items Selection Pop-up Window

3. Search the work item by choosing type of the work item, and enter the text to

search.

4. Choose the work item from the search result, click OK and the selected plan item

will be added to the test case.

The chosen work item that is added can be verified in the “Development Items” section

of the test case (refer to Figure 34).

 -68-

Figure 34. Verification of added Work Item in Development Items Section of “Verify

Information” Test Case

These steps were repeated to add the linkage between a test case and associated work

items. After linking all the test cases with the work items, “COJ VAB Project (Quality

Management)” in Rational Quality management is linked with “COJ VAB Project

(Change Management)” Rational Team Concert.

This section completes the artifact linkages that were shown earlier in this section in

Figure 10.

 -69-

Chapter 5

CONCLUSION

5.1 Results

This research presented a case study of traceability in Collaborative Lifecycle

Management Framework as applied to the design and development of the Value

Adjustment Board Project (VAB) of City of Jacksonville. First-year graduate software

engineering students implemented the project using Scrum and Unified Process

development methods.

According to Babcock, “CLM is an integrated Application Lifecycle Management

solution comprising of three main products: IBM Rational Requirements Composer

(RRC), IBM Rational Team Concert (RTC), and IBM Rational Quality Manager (RQM)”

[Babcock12]. Therefore, the research methodology proposed the use of RRC to define

requirements and RTC to create work items to implement those requirements and create a

linkage among them. The thesis also proposed the use of RQM to create test cases to

validate the requirements in RRC and form a linkage between the two project areas.

Finally, the thesis recommended linkage of work items in RTC to test cases in RQM and

establish traceability of the requirements in the VAB project.

 -70-

The results of the research list detailed steps along with screenshots to link the project

area in RRC “COJ Value Adjustment Board Project (Requirements)” with the “COJ

Value Adjustment Board Project (Change Management)” project area in RTC. This was

followed by creating work items in “COJ Value Adjustment Board Project (Change

Management)” for each requirement in the “COJ Value Adjustment Board Project

(Requirements)”. Thus the first proposition of research methodology to link RRC to RTC

is validated.

Also presented among the results of this research is the approach used to link the project

area in RRC “COJ Value Adjustment Board Project (Requirements)” with the “COJ

Value Adjustment Board Project (Quality Management)” project area in RQM. The

research also showed how to create a test case for each requirement in the COJ Value

Adjustment Board Project (Requirements) and hence verify the second proposition of

research methodology to link RRC to RQM.

Finally the research methodology presented detailed steps to link the “COJ Value

Adjustment Board Project (Quality Management)” with the “COJ Value Adjustment

Board Project (Change Management)” and subsequently link the work items and test

cases between them. Thus, these results confirm the last guiding proposition defined in

the research methodology to link RTC with RQM.

 -71-

Even though these results confirm all propositions in the research methodology, the

project was implemented in an academic environment, which added the following

constraints:

 Small scope project –The Software Engineering I course focused on establishing

requirements and the Software Engineering II course focused on coding, testing

and delivering the software. Since there was only one semester to code, test and

deliver the software, the scope of this project was kept small and comprised less

than 10 use cases. Huang says that “the number of traceability links to be

identified grows exponentially with the size and complexity of the software

system” [Cleland-Huang02]. Thus using the CLM framework for larger and more

complex projects could not be illustrated.

 Time Constraints – Most of the graduate students had full time jobs and were

taking other courses. This limited project time outside the Software Engineering

class, which met twice weekly. Our group meetings were generally organized

around this course to accommodate the varied and full schedules of our members.

But getting team members who frequently work full time was very difficult to

manage.

 Learning Curve – Learning IBM’s CLM tool alongside software engineering

principles and practices slowed down the learning for software engineering

students. The CLM tool is indeed very powerful. Unfortunately, with

considerable power comes considerable complexity. Thus many of the features of

the CLM tool were not used fully and certainly not to capacity.

 -72-

 Restricted Access – The CLM solution can be accessed by different stakeholders

who can view and add artifacts that are produced during the software

development cycle. To keep the process simple, the group decided to limit access

to the team Project Manager when it came to adding artifacts. Because the Project

Manager is not an artifact owner, some of the artifacts or their traceability

relationships with other artifacts in retrospect might not have been added. This is

uncommon in the software engineering industry and may have contributed to

missing traceability links.

The results of this project also reveal some drawbacks of the programs in CLM

framework

 Manual Traceability Link Detection – As shown in the research results RRC,

RTC and RQM can add traces to link different artifacts among the tools.

However, the user has to identify these traceability links between artifacts. The

programs in CLM framework do not identify or add traceability links between the

artifacts automatically. This can lead to an incomplete traced software project

when a user does not identify the link between artifacts.

 Untraced Artifacts – None of the three programs in CLM warns the user of a

missed or invalidated requirement if the user did not add a traceability link

between a requirement and test case, or a requirement and programming task.

This can also lead to an incomplete traced software project.

 Non-intuitive User Interface – The three programs in CLM framework are packed

with features. The abundance of these features may make the user interface of

 -73-

these programs non-intuitive. A user may get lost and may not understand how to

trace different artifacts.

 No Query on Trace Links – “Trace links are created to empower trace users to

perform various software engineering tasks more effectively. From the technical

perspective the user interaction layer must provide tools and infrastructure to

leverage available traces, and enable project stakeholders to realize the full

benefits of available trace data” [Cleland-Huang14]. None of these tools provides

a feature to query and give results of all the traceability links and associated

artifacts in a software project. If these results existed they would assist the user

with change impact analysis and management, which is a driving factor of

traceability.

Despite these drawbacks, results show the IBM CLM tools are user friendly and provide

a vast range of relationship options to link requirements to development artifacts and test

cases. Results also verify the seamless integration of all three programs (RRC, RTC and

RQM) in the CLM framework. Ultimately, these programs provide graphical

representations of traces between requirements with programming tasks and between

requirements with test cases to ensure all requirements were included and tested in the

final deliverable. Thus these programs establish complete traceability of the project and

increase the project success rates as shown by Project Resolution Results from CHAOS

research (refer to Table 6). Traceability also added benefits in the areas of project

management, process visibility, verification and validation, and maintenance

[Kannenberg09].

 -74-

In summary, this research provides significant evidence that the Rational Requirements

Composer, Rational Quality Manager, and Rational Team Concert tools in CLM solution

may be successfully used to achieve requirements traceability for a small project and

ensure project members may easily understand a particular requirement’s relation to other

aspects of the project. Thus, the research goals of this thesis were successfully achieved

and can benefit researchers and practitioners looking for evidence to use the IBM CLM

solution to trace artifacts in a small project.

5.2 Future Research

Future research may include the addition of an automated build process to the traceability

procedure. Builds may be linked with change sets which include work items completed in

the build that trace back to requirements and test cases. These change set links would

provide a traceability roadmap for each build.

Additional methods to verify the accuracy and completeness of the mapped traceability

links among work items need to be further researched. At the moment, none of the

Rational tools can be configured improve their accuracy and completeness of traceability

on a project.

 -75-

REFERENCES

Print Publications:

[Abadi08]

Abadi A., M. Nisenson, and M. Simionovici, “A traceability technique for

specifications”, Proceedings of the 16th international conference on program

comprehension, pp 24-30, 2008

[Alexander02]

Alexander, I., “Towards Automatic Traceability in Industrial Practice”, Proceedings of

the 1st International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE 2002), Edinburgh, UK, September 2002

[Alexander03]

Alexander, I., "SemiAutomatic Tracing of Requirement Versions to Use Cases –

Experience and Challenges”, Proceedings of the 2nd International Workshop on

Traceability in Emerging Forms of Software Engineering (TEFSE 2003), Canada,

October 2003.

[Antoniol02]

Antoniol, G., G. Canfora, G. Casazza, A. De Lucia and E. Merlo, “Recovering

Traceability Links between Code and Documentation”, IEEE Transactions on

Software Engineering, 28(10), 970-983, October 2002.

[Arkley]

Arkley, P., P. Mason and S. Riddle, “Position Paper: Enabling Traceability”, Proceedings

of 1st International Workshop on Traceability in Emerging Forms of Software

Engineering, Scotland, 2002.

[Bianchi00]

Bianchi, A., A. R. Fasolino, G. Vissagio, “An Exploratory Case Study of the

Maintenance Effectiveness of Traceability Models” Proceedings of 8th

International Workshop on Program Comprehension (IWPC'00), 149-159,

Limerick, Ireland, June 2000

 -76-

[Borg13]

Borg, M., P. Runeson and A. Ardo, “Recovering from a decade: a systematic mapping of

information retrieval approaches to software traceability”, Springer Science +

Business Media, New York, 2013.

[Capobianco09]

Capobianco G., A. De Lucia, R. Oliveto, A. Panichella and S. Panichella, “Traceability

recovery using numerical analysis”, Proceedings of the 16th working conference

on reverse engineering, pp 195-204, 2009

[Cleland-Huang02]

Cleland-Huang, J., C. Chang and J. Wise, “Supporting Event Based Traceability through

High-Level Recognition of Change Events”, Proceedings of IEEE COMPSAC

Conference, 2002.

[Cleland-Huang03]

Cleland-Huang, J. and D. Schmelzer, “Dynamic Tracing Non-Functional Requirements

through Design patter Invariants”, Proceedings of the 2nd International Workshop

on Traceability in Emerging Forms of Software Engineering (TEFSE 2003),

2003.

[Cleland-Huang10]

Cleland-Huang, J., X. Zou and R. Settimi, “Improving automated requirements trace

retrieval: A study of term-based enhancement methods”, Empir Software Eng

15(2), pp 119–146, 2010.

[Cleland-Huang14]

Cleland-Huang J., O. Gotel J. Huffman Hayes, P. Mader, and A. Zisman, “Software

traceability: Trends and future directions”, Proceedings of the 36th International

Conference on Software Engineering (ICSE), Hyderabad, India, 2014.

[Constantopoulos95]

Constantopoulos, P., M. Jarke, Y. Mylopoulos and Y. Vassiliou, “The Software

Information Base: A Server for Reuse”, VLDB Journal, 1995.

[Dick02]

Dick, J., “Rich Traceability”, Proceedings of the 1st International Workshop on

Traceability for emerging forms of Software Engineering (TEFSE’02),

September, 2002.

[Dogmes98]

Dogmes, R. and K. Pohl, “Adopting Traceability Environments to Project-Specific

Needs”, Communications of the ACM, 1998.

 -77-

[Domges08]

Domges, R. and P. Klaus, “Adapting traceability environments to project-specific needs”,

Communications of the Acm, 2008.

[Dorfman90]

Dorfman, M., “System and Software Requirements Engineering”, IEEE Computer

Society Press Tutorial, 1990.

[Eastbrook98]

Easterbrook, S., J. Callahan and V. Wiels, “V & V through Inconsistency Tracking and

Analysis”, Proceedings of the 9th International Workshop on Software

Specification and Design, 1998.

[Ecklund96]

Ecklund, E. F., L. M. Delcambre and M. J. Freiling, “Change cases: use cases that

identify future requirements”, Proceedings of OOPSLA '96, 1996.

[Egyed02]

Egyed, A. and P. Gruenbacher, “Automatic Requirements Traceability: Beyond the

Record and Replay paradigm”, Proceedings of the 17th IEEE International

Conference on Automated Software Engineering (ASE), Edinburgh, United

Kingdom, September, 2002.

[Egyed03]

Egyed, A., “A Scenario-Driven Approach to Trace Dependency Analysis”, IEEE

Transactions on Software Engineering, Vol. 9, No. 2, February, 2003.

[Fiutem98]

Fiutem, R. and G. Antoniol, “Identifying Design-Code Inconsistencies in Object-

Oriented Software: a Case Study”, Proceedings of International Conference on

Software Maintenance, Maryland, March, 1998.

[Gethers11]

Gethers M., B. Dit, S. Klock and D. Poshyvanyk, “Traceclipse: an eclipse plug-in for

traceability link recovery and management”, Proceedings of the 6th International

Workshop on Traceability in Emerging Forms of Software Engineering, pp 24-30,

ACM, Waikiki, HI, 2011

[Gotel94]

Gotel, O. and A. Finkelstein, “An Analysis of the Requirements Traceability Problem”,

Proceedings of the 1st International Conference in Requirements Engineering,

Colorado Springs, 1994.

 -78-

[Gotel95]

Gotel, O. and A. Finkelstein, “Contribution Structures”, Proceedings of 2nd International

Symposium on Requirements Engineering, (RE '95), March 27-29, England.

[Hayes03]

Hayes, J. H., A. Dekhtyar and J. Osborne, “Improving Requirements Tracing via

Information Retrieval”, Proceedings of the 11th IEEE International Requirements

Engineering Conference, 2003.

[Hayes07]

Hayes, H., A. Dekhtyar, S. Sundaram, A. Holbrook and S. Vadlamudi, “Requirements

Tracing on target (RETRO): improving software maintenance through traceability

recovery”, 2007.

[IEEE90]

IEEE Computer Society, 610.12-1990 IEEE Standard Glossary of Software Engineering

Terminology, 1990.

[Ismenia07]

Ismenia, G. and A. Goknil, “Survey of Traceability Approaches in Model-Driven

Engineering”, EDOC '07 Proceedings of the 11th IEEE International Enterprise

Distributed Object Computing Conference, 2007.

[Jarke01]

Jarke, M. and B. Ramesh, “Towards Reference Models for Requirements Traceability”,

IEEE Transactions in Software Engineering, 2001.

[Kaindl92]

Kaindl, H., “The Missing Link in Requirements Engineering”, Software Engineering

Notes, 1992.

[Knethen02]

Knethen, A. V., “Automatic Change Support Based on a Trace Model”, Proceedings of

the 1st International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE’02), Edinburgh, September 2002.

[Kozlenkov02]

Kozlenkov, A. and A. Zisman, “Are their Design Specifications Consistent with our

Requirements?”, Proceedings of IEEE Joint International Requirements

Engineering Conference, September 2002.

[Krause03]

Krause, P., G. Spanoudakis, E. Perez-Minana and A. Zisman, “Tracing Software

Requirements Artefacts”, Proceedings of the 2003 International Conference on

Software Engineering Research and Practice (SERP'03), June 2003.

 -79-

[Lavazza00]

Lavazza, L. and G. Valetto, “Requirements-based Estimation of Change Costs”,

Empirical Software Engineering - An International Journal, 5(3), November 2000

[Leffingwell02]

Leffingwell, D. and D. Widrig, The Role of Requirements Traceability in System

Development, 2002.

[Leteiler02]

Letelier, P., “A Framework for Requirements Traceability in UML-based Projects”,

Proceedings of the 1st International Workshop on Traceability for Emerging

Forms of Software Engineering, Edinburgh, UK, September 2002.

[Lindval96]

Lindval, M. and K. Sandahl, “Practical Implications of Traceability”, Software Practice

and Experience, 1996.

[Mader09]

Mäder, P., O. Gotel and I. Philippow, “Getting Back to Basics: Promoting the Use of a

Traceability Information Model in Practice”, Traceability in Emerging Forms of

Software Engineering, 2009.

[Maletic03]

Maletic, J.I., E. V. Munson, A. Marcus and T. N. Nguyen, “Using a Hypertext Model for

Traceability Link Conformance Analysis”, Proceedings of the 2nd International

Workshop on Traceability for Emerging Forms of Software Engineering

(TEFSE’03), 2003.

[Marcus03]

Marcus, A. and J. I. Maletic, “Recovering Documentation-to-Source-Code Traceability

Links using Latent Semantic Indexing”, Proceedings of 25th International

Conference Software Engineering, 2003.

[Mohan02]

Mohan, K. and B. Ramesh, “Managing variability with Traceability in product and

Service Families”, Proceedings of the 35th Hawaii International Conference on

System Sciences, IEEE, 2002.

[Paech02]

Paech, B., A.V. Knethen, F. Kiedaisch and F. Houdek, “Systematic Requirements

Recycling through Abstraction and Traceability”, Proceedings of the IEEE

International Requirements Engineering Conference, Germany, September 2002.

 -80-

[Parvathy08]

Parvathy A., B. Vasudevan and R. Balakrishnan, “A comparative study of document

correlation techniques for traceability analysis”, Proceedings of the 10th

international conference on enterprise information systems, information systems

analysis and specification, pp 64-69, 2008

[Pinheiro96]

Pinheiro, F. and J. Goguen, “An Object-Oriented Tool for Tracing Requirements”,

Proceedings of the Second International Conference, IEEE, Colorado Springs,

1996.

[Pinheiro00]

Pinheiro, F., “Formal and Informal Aspects of Requirements Tracing”, Proceedings of

3rd Workshop on Requirements Engineering, Rio de Janeiro, Brazil, 2000

[Pohl96]

Pohl, K., “Enabling Requirements Pre-Traceability”, Proceedings of the 2nd IEEE

International, Conference on Requirements Engineering, Colorado Springs, 1996.

[Ramesh92]

Ramesh, B. and V. Dhar, “Supporting Systems Development Using Knowledge Captured

During Requirements Engineering”, IEEE Transactions in Software Engineering,

1992.

[Ramesh98]

Ramesh, B., “Factors Influencing Requirements Traceability Practice”, Communications

of the ACM, Vol 41, No 12, 1998.

[Ramesh01]

Ramesh, B. and M. Jarke, “Reference Models for Requirements Traceability”, IEEE

Transactions, 2001.

[Randell68]

Randell, B., “Software Engineering In 1968”, Computing Laboratory University of New

Castle upon Tyne, 1968.

[Riebisch01]

Riebisch, M. and I. Philippow, “Evolution of Product Lines Using Traceability”,

OOPSLA 2001 Workshop on Engineering Complex Object-Oriented Systems for

Evolution, Germany, October 2001.

[Rilling07]

Rilling, J., R. Witte and Y. Zhang, “Automatic Traceability Recovery: An Ontological

Approach”, International Symposium on Grand Challenges in Traceability

(GCT'07), Center of Excellence in Traceability, Lexington, Kentucky, USA,

March 22-23, 2007.

 -81-

[Sherba03]

Sherba, S. A., K. M. Anderson and M. Faisal, “A Framework for mapping Traceability

Relationships”,Proceedings of the 2nd International Workshop on Traceability for

Emerging forms of Software Engineering (TEFSE 2003), Montreal, 2003.

[Song98]

Song, X., B. Hasling, G. Mangla and B. Sherman, “Lessons Learned from Building a

Web-Based Requirements Tracing System”, Proceedings of 3rd International

Conference on Requirements Engineering, 1998

[Spanoudakis99]

Spanoudakis, G., A. Finkelstein and D. Till, “Overlaps in Requirements Engineering”,

Automated Software Engineering Journal, 1999.

[Spanoudakis04]

Spanoudakis, G., A. Zisman, E. Perez-Minana and P. Krause, “Rule-Based Generation of

Requirements Traceability Relations”, Journal of Systems and Software, 2004.

[Spanoudakis05]

Spanoudakis, G. and A. Zisman, “Software Traceability: A Roadmap”, 2005.

[Steven06]

Steven, C. H. and J. Luoma, “Acceptance and Commitment Therapy: Model, Process and

outcomes.” Behavior Research and Therapy, 2006.

[Strens96]

Strens, M. and R. Sugden, “Change Analysis: A Step towards Meeting the Challenge of

Changing Requirements”, Proceedings of the IEEE Symposium and Workshop on

Engineering of Computer- Based Systems, Fredrichshafen, 1996.

[Sultanov10]

Sultanov H. and H. Hayes, “Application of swarm techniques to requirements

engineering: Requirements tracing”, Proceedings of the 18th international

requirements engineering conference, pp 211-220, 2010

Transactions in Software Engineering, 2001.

[Whitehead97]

Whitehead, E., “An Architectural Model for Application Integration in Open Hypermedia

Environments”, Proceeding of the 8th ACM Conference on Hypertext, 1-12, April

1997

[Xu02]

Xu, P. and B. Ramesh, “Supporting Workflow management Systems with Traceability”,

Proceedings of the 35th Hawaii International Conference on System Sciences,

IEEE, 2002.

 -82-

[Zisman02]

Zisman, A., G. Spanoudakis, E. Perez-Minana and P. Krause, “Towards a Traceability

Approach for Product Families Requirements”, Proceedings of 3rd ICSE

Workshop on Software Product Lines, May 2002

[Zisman03]

Cysneiros, G., A. Zisman and G. Spanoudakis, “A Traceability Approach for i* and

UML Models”, Proceedings of 2nd International Workshop on Software

Engineering for Large-Scale Multi-Agent Systems - ICSE 2003, May, 2003.

Electronic Sources:

[Babcock12]

Babcock, C., “IBM Preps Team Concert, A Collaborative Development Tool”,

http://www.informationweek.com/ibm-preps-team-concert-a-collaborative-

d/206905042, 2012, last accessed January 15, 2014.

[Barry86]

Boehm, B. W., “A spiral model of software development and enhancement”,

http://dl.acm.org/citation.cfm?id=12948, 1986, last accessed January 8, 2014.

[CHAOS13]

The Standish Group, “CHAOS MANIFESTO 2013”,

http://www.versionone.com/assets/img/files/CHAOSManifesto2013.pdf, 2013, last

accessed March 15, 2015.

[DeRose01]

DeRose, S., E. Maler and D. Orchard, “XML Linking Language (XLink)”,

http://www.w3.org/TR/2000/REC-xlink-20010627, 2001, last accessed January 15,

2014.

[Gothe08]

Göthe, M., C. Pampina, P. Monson, N. Khurram, K. Patel, B. Smith and N. Yuce,

“Collaborative Application Lifecycle Management with IBM Rational Products”,

http://www.redbooks.ibm.com/abstracts/sg247622.html, December 23, 2008, last

accessed January 10, 2014.

[Jazz12]

Jazz Inc, “About Jazz Platform”,

https://jazz.net/story/about/about-jazz-platform.jsp, 2012, last accessed February

12, 2014.

 -83-

[Kannenberg09]

Kannenberg A. and H. Saiedian, “Why Software Requirement Traceability Remains a

Challenge”, http://www.crosstalkonline.org/storage/issue-

archives/2009/200907/200907-Kannenberg.pdf, 2009, last accessed March 15,

2015.

[Peter69]

Naur, P. and B. Randell, “Software Engineering Report on a conference sponsored by the

NATO Science Committee”,

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF, 1969, last

accessed January 8, 2014.

[RTM14]

Integrated Chipware RTM <Reference>, www.chipware.com, last accessed January 15,

2014

[TELEOLOGIC13]

Teleologic DOORS <Reference>, www.teleologic.com/products/doors, last accessed

December 23, 2013

[VAB14]

Value Adjustment Board <Reference>, http://www.coj.net/departments/regulatory-

boards-and-commissions/value-adjustment-board.aspx, last accessed January 10,

2014.

[Wood10]

Wood, M., “The Evolution of ALM,” Projectmanagement.com,

http://www.projectmanagement.com/articles/255472/The-Evolution-of-ALM,

2010, last accessed January 15, 2014.

 -84-

VITA

Lovelesh Chawla is currently working as a Senior Software Engineer at CSX in

Jacksonville, Florida. He has more than 6 years of experience in IT industry primarily in

C# .NET applications. He holds a Bachelor of Sciences degree from Michigan State

University, in Computer Science and Engineering and expects to receive a Master of

Science in Computer and Information Sciences from the University of North Florida,

May 2015.

Lovelesh is fluent in Hindi, English and Punjabi. He is always ready to learn and adapt new

tools and technologies. He is originally from India and currently lives with his wife Kelly

in Jacksonville, Florida.

	UNF Digital Commons
	2015

	Use of IBM Collaborative Lifecycle Management Solution to Demonstrate Traceability for Small, Real-World Software Development Project
	Lovelesh Chawla
	Suggested Citation

	Title - Use of IBM Collaborative Lifecycle Management Solution to Demonstrate Traceability for Small, Real-World Software Development Project
	Acknowledgement
	Contents
	Figures
	Tables
	Abstract
	Chapter 1. Introduction
	1.1 Traceability
	1.2 Generalized Traceability Model
	1.3 Examples of Traceability
	1.3.1 Tracing Requirements in the System Definition Domain
	1.3.2 Tracing User Needs to Product Features
	1.3.3 Tracing Features to Use Cases
	1.3.4 Tracing Features to Supplementary Requirements
	1.3.5 Tracing Requirements to Implementation
	1.3.6 Tracing Use Cases to Use-Case Realizations
	1.3.7 Tracing from the Use-Case Realization into Implementation
	1.3.8 Tracing Supplementary Requirements into Implementation
	1.3.9 Tracing from Requirements to Test
	1.3.10 Tracing from Use Case to Test Case
	1.3.11 Tracing from Supplementary Requirements to Test Cases

	1.4 Importance of Traceability

	Chapter 2. Background
	2.1 History
	2.2 Different Frameworks and Classifications of Traceability Links
	2.3 Different Approaches to the Generation of Traceability Links
	2.3.1 Manual Generation of Traceability Links
	2.3.2 Semi-Automatic Generation of Traceability Links
	2.3.3 Automatic Generation of Traceability Links

	2.4 Different Approaches to the Representation, Recording, and Maintenance ofTraceability Links
	2.4.1 Single Centralized Database Approach
	2.4.2 Software Repositories
	2.4.3 The Hypermedia Approach
	2.4.4 The Mark-Up Approach
	2.4.5 The Event-Based Approach

	2.5 Different Ways of deploying Traceability Links
	2.5.1 Traceability for Change Impact Analysis and Change Management
	2.5.2 Traceability for Software Validation, Verification, Testing and StandardsCompliance
	2.5.3 Traceability for Software Reuse
	2.5.4 Traceability for Artifact Understanding

	2.6 Need for Traceability
	2.7 Traceability in the Research Project

	Chapter 3. Methodology
	3.1 Application Lifecycle Management
	3.2 Collaborative Lifecycle Management
	3.3 Project
	3.4 Project Constraints

	Chapter 4. Research Results
	4.1 Linking Project Areas in Rational Requirements Composer and Rational TeamConcert
	4.1.1 Linking Rational Team Concert Work Items to the Requirements in RationalRequirement Composer

	4.2 Linking between Project Areas in Rational Requirements Composer and RationalQuality Manager
	4.2.1 Linking Test Cases in Rational Quality Manager to the Requirements in RationalRequirements Composer

	4.3 Linking between Project Areas in Rational Team Concert and Rational QualityManager
	4.3.1 Linking Test Cases in Rational Quality Manager to Development Work Items inRational Team Concert

	Chapter 5. Conclusion
	5.1 Results
	5.2 Future Research

	References

