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Abstract 

A method is described for finding the least squares 

solution of the overdetermined linear system that arises in 

the photogrammetric problem of bundle adjustment of aerial 

photographs. Because of the sparse, blocked structure of 

the coefficient matrix of the linear system, the proposed 

method is based on sparse QR factorization using Givens 

rotations. A reordering of the rows and columns of the 

matrix greatly reduces the fill-in during the factorization. 

Rules which predict the fill-in for this ordering are proven 

based upon the block structure of the matrix. These rules 

eliminate the need for the usual symbolic factorization in 

most cases. A subroutine library that implements the 

proposed method is listed. Timings and populations of a 

range of test problems are given. 
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Section 1 - Introduction 

This paper describes a method for finding the least 

squares solution of a large} sparse} overdetermined system 

of linear equations that arise while performing bundle 

adjustment on a set of aerial photographs. This method 

takes advantage of the sparsity and block structure of the 

system of equations to reduce the computer time and memory 

requirements for the solution. The method stores and 

calculates only with those elements of the matrix that are 

potentially non-zero at some point during the calculations. 

The block structure of the matrix allows the locations of 

those non-zero elements that arise in the matrix 

calculations ("fill-in elements") to be predicted a priori. 

The data structure used during the solution provides storage 

locations for these fill-in elements as well as the non-zero 

elements of the original matrix. The ordering of the rows 

of the matrix is carefully chosen to minimize the number of 

these fill-in elements} reducing both the storage 

requirements and the number of calculations to be performed. 

Photogrammetry is the science of obtaining reliable 

measurements from photographs or other imagery of the real 

world. Bundle adjustment is a mathematical technique 

developed by photogrammetrists for accurately projecting 
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information from multiple aerial photographs onto an 

existing map. It involves setting up a large system of 

nonlinear equations and solving this system iteratively 

using Newton's method. The large, sparse, overdetermined 

system of linear equations that is the subject of this paper 

arises as the linearized system of equations that must be 

solved at each iteration of the Newton's method solution. 

Aerial photographs, measurements made on them, and 

bundle adjustment are described in Section 2. Particular 

attention is given to certain measured points called control 

points and tie points that are used to locate the 

photographs in space. The interrelationships of the photos, 

control points, and tie points give a block structure to the 

system of linear equations to be solved. These 

interrelationships and the resulting sparse block matrix 

structure are explored in Section 3. 

The least squares solution of an overdetermined linear 

system is reviewed briefly in Section 4. The normal 

equations and QR factorization approaches to solving this 

linear least squares problem (LLSP) are described. QR 

factorization using Givens rotations is the technique used 

to solve the linear system in this paper. Section 5 

describes Givens rotations and explains their beneficial 

properties in preserving the sparsity of a matrix during 

factorization. The subroutine library GIVENS2 that 

implements these ideas in FORTRAN is also described in 
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Section 5 with the data structures that allow these 

subroutines to store and calculate only with the non-zero 

entries of the matrix. 

Section 6 applies the properties of Givens rotations to 

factorization of the bundle adjustment matrix to predict 

where fill-in will occur and prescribe a row ordering that 

will reduce this fill-in. Section 7 contains some 

concluding remarks and timings of test runs of the software. 

The method developed in this paper is briefly compared with 

other methods from the recent literature. 
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Section 2 - Bundle Adjustment 

Figure 1 shows an aerial photograph that is typical of 

those taken for many natural resource mapping purposes such 

as wetland mapping. This photo is a "vertical" photograph, 

i.e., one whose axis is intended to be vertical and is 

usually not tilted more than three degrees. Figure 2 shows 

the same area in an oblique photograph. Features of 

interest are delineated on such a photo (or on a sheet of 

mylar overlaying the photo) by a skilled photo interpreter 

who examines overlapping pairs of photos on a stereoscopic 

viewing instrument. The delineated features are then 

digitized into a computer as a series of x-y coordinates 

using a digitizing table. These measurements are in an 

essentially arbitrary two-dimensioned coordinate system. 

The mathematical challenge of photogrammetry lies in 

projecting these measurements accurately onto a map. 

The position of a feature on a map may be specified in 

terms of its State Plane coordinates and its elevation above 

sea level. State Plane coordinates are a set of cartesian 

coordinates that are defined for a region of a state that is 

small enough that the error in the location of a given point 

due to the curvature.Df the earth is less than one part in 

ten thousand. Florida, for example, is divided 
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Figure 1 - Vertical Aerial Photograph 
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Figure 2 - Oblique Aerial Photograph -
Includes Area of Figure 1 

6 



into three state Plane zones. separated along county 

boundaries. The state plane coordinates and elevation above 

sea level provide a three-dimensional, real-world cartesian 

coordinate system for such purposes as resource mapping or 

specifying the location of an aircraft at the moment an 

aerial photograph was taken. 

Each aerial photograph includes a set of fiducial marks 

that allow points in the photo to be referenced to a set of 

axes fixed in the camera that took the photo. In figures 1 

and 2 these fiducial marks are the small crosses on the 

points that project into the center of each edge of the 

photo. These fiducial marks define a set of x-y 

"photo coordinates" with their origin at the center of the 

photo and coordinate axes passing through the fiducial marks 

as in Figure 3. The origin of the photo coordinate system 

represents the principal point, the point at the center of 

the photo where the axis of the camera intersects the focal 

plane. The focal point of the camera lies on the camera 

axis a precisely known distance above the principal point. 

The fiducial marks allow measurements made on an aerial 

photo to be transformed to the photo coordinate system, 

which is fixed with respect to the focal point, axis, and 

focal plane of the camera. The equations of perspective 

projection then allow measured points on the photo to be 

projected onto a map based on six coordinates that fix the 

location and orientation of the camera at the moment the 
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Coordinates 
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photograph was taken4 These six coordinates are called the 

"elements of exterior orientation}" or "photo elements}" and 

consist of the three real world x-y-z coordinates of the 

focal point of the camera and three angles that specify the 

orientation of the camera axis with respect to the 

real-world coordinate system. The perspective equations 

that project from photo coordinates to real coordinates are 

called the equations of col linearity. There are two 

collinearity equations for each photo point projected. 

Their derivation is based on the fact that the image point 

and the real-world object point are collinear with the focal 

point. They are developed} for example, in Wolf} 1983} 

Appendix C. They are} of course} nonlinear equations. 

The col linearity equations can be used to project photo 

data onto a map provided the six photo elements are known 

for the photo. These unknown elements are found using 

several points on the photo whose locations are accurately 

known on both the photo and the existing map. These points 

are called control points, and are usually road 

intersections that show clearly in the photo and are plotted 

accurately on the map. Figure 4 shows the geometry of 

control points. The system of col linearity equations for 

the control points is formed and solved for the unknown 

elements of exterior orientation. This method of finding 

the photo elements is called "space resection by 

collinearity." 
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Figure 4 Diagram of Projection of Photo points onto Map 
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Since there are six unknown elements of exterior 

orientation for each photo, at least three control points 

are required for each photo, giving a system of six 

nonlinear equations in six unknowns. Usually four or more 

control points are used, resulting in an overdetermined 

system of equations in which inaccurate control points can 

be detected by the increased residuals. As the equations 

are nonlinear, they are solved iteratively using Newton's 

method. The linearized system of equations that must be 

solved at each iteration of the Newton's method solution is 

solved in the least squares sense as explained in Section 4. 

See Wolf, 1983, or Burnside, 1985, for a derivation of the 

linearized equations. 

An aerial photography mission usually involves several 

closely-spaced, parallel flight lines with photos taken at 

short distances along each flight line. This produces a 

large block of overlapping photos. Each photo overlaps its 

neighbor by sixty percent or more. This overlap allows 

stereoscopic viewing of adjacent photos for greatly enhanced 

accuracy of photo interpretation. (Features are delineated 

on only one of each stereo pair of photographs - usually 

every other photo along the flight path.) The overlap of 

adjacent photos also improves the geometric control of the 

projection process by allowing tie points. Tie points are 

points whosa locations are known accurately on two or more 

overlapping photos but not on the existing map. They allow 
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the computer program that finds the unknown elements of 

exterior orientation to bring the adjacent photos into 

better alignment with one another by minimizing the 

displacement of tie points on adjacent photos. 

The generalization of space resection by col linearity 

to multiple photos using tie points is called bundle 

adjustment. It is the process by which the computer can 

bring multiple photos into optimal alignment with the 

existing map (using control points) and with one another 

(using tie points). The unknown x and y map coordinates for 

each tie point are additional unknowns of the "bundled" 

problem. Each tie point results in two additional 

col linearity equations for each photo in which it appears, 

the same as for control points. Figure 5 shows a small 

bundle of four photos with a typical distribution of control 

and tie points. This bundle of four photos and its 

coefficient matrix will be used as an example throughout 

this paper. 
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Section 3 - The Structure of the Coefficient Matrix 

As explained in the previous section, the unknown photo 

elements and tie point coordinates for a bundle of photos 

are found by solving a system of nonlinear equations (Wolf, 

1983; Burnside, 1985). This system has two nonlinearity 

equations for each occurrence of a tie point or control 

point in a photo. This system of nonlinear equations is 

solved iteratively using Newton's method. At each iteration 

of the Newton's method solution, a system of linear 

("linearized") equations must be solved. The solution to 

this linear system is the vector of corrections to the 

solution found during the previous iteration. 

This linearized system will in general have different 

values for the elements of its coefficient matrix (and right 

hand side vector) at each iteration, but the zero-nonzero 

structure of the coefficient matrix will remain the same 

through all iterations. The interrelationships of the 

photos, control points, and tie points cause the coefficient 

matrix to take on a regular block structure. For large 

bundles of photos, the coefficient matrix is quite sparse, 

that is, it has a very low percentage of nonzero elements. 

For example, for a bundle of thirty three photos, the matrix 

has only about 2~% of its elements nonzero. 
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The sparsity of the coefficient matrix is the feature 

that, more than any other, determines the choices made in 

designing the software to solve the bundle adjustment 

problem. This is because of the great potential for 

speeding up the solution process by using software that 

stores and calculates only with the small percentage of 

matrix elements that are nonzero. Not only is sparse 

software much faster for a given size of matrix, its 

asymptotic behavior as the size of the matrix increases is 

much better. Dense QR factorization has asymptotic behavior 

proportional to the n 3 (stewart, 1973, p237). While no such 

simple limit is known for sparse QR factorization, it tends 

to be not much worse than proportional to n for large 

problems. 

In addition to those elements of the matrix that are 

originally nonzero, other elements will become nonzero 

during the process of the calculations. These are called 

fill-in elements. The number of fill-in elements that 

occurs depends critically upon the design of the software 

used and upon the order in which the rows and columns of the 

coefficient matrix are processed. The total number of 

original elements plus fill-in elements is called the 

population of the matrix. For a large bundle, efficient 

software and a carefully chosen ordering of the rows of the 

matrix can hold the population to less than six percent. 

Less efficient software or a poor row ordering can cause so 
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much fill-in as to convert the matrix to a dense matrix -

one in which there are too few zero elements to be 

exploited. 

Figure 6 shows the zero-nonzero structure of the 

coefficient matrix for the bundle of four photos in Figure 

5. This matrix will be used as a continuing example in this 

and the following sections. 

The system of linear equations for one iteration has 

the form: 

Ax = b 

where A is the m x n coefficient matrix, x is the n-vector 

of unknown photo elements and tie point coordinates, and b 

is the right-hand-side (RHS) n-vector. This system will 

include two equations for each occurrence of a control point 

in a photo, and two equations for each occurrence of a tie 

point in a photo. The control point equations and the tie 

point equations will have a different structure. In Figure 

6 the control point equations are above the horizontal line, 

the tie point equations are below. The x-vector includes 

two different types of variables, photo elements and tie 

point coordinates, whose coefficients in the equations have 

different structures. In Figure 6 the coefficients of the 

photo elements are to the left of the vertical line, the 

coefficients of the tie point coordinates are to the right. 
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Each photo must include a minimum of four control/tie 

points unless it includes only tie points, in which case it 

must have at least five. So each photo generates a minimum 

of eight or ten lines of matrix A. In addition there is a 

minimum requirement of at least four control points per 

bundle. For example our bundle of four photos could have 

been done using only one control point for each outside 

corner of the entire bundle. This is one reason for 

requiring more points when only tie points are used. 

The col linearity equations express the relationship 

between the photo coordinates of a point and the real-world 

coordinates of that point. The relationship depends on the 

six orientation elements of the photo in which the point 

appears, but it does not depend on the orientation elements 

of any other photo. Consequently the photo elements for a 

particular photo appear with nonzero coefficients only in 

the equations of points that appear in that particular 

photo. The photo elements for that photo appear with zero 

coefficients in all other equations. Thus the coefficient 

matrix will have a block of nonzero coefficients six 

elements wide for each photo. The block appears in each 

pair of rows corresponding to a control or tie point in that 

photo. In Figure 6, the six wide block for the control 

points of the second photo in the bundle is labeled B 1 • The 

six wide block for the tie points of the second photo is 

labelled B 2• In all the other rows the matrix has zero 
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values in these six columns since the photo elements for the 

second photo do not enter into the equations for points in 

any other photo. 

For the tie points} the collinearity equations involve 

not only the six unknown photo elements} but also the two 

x-y coordinates of the tie point. These two tie point 

coordinates appear as unknowns in two col linearity equations 

in each photo in which the tie point appears. (The photo 

coordinates of the point also appear in the linearity 

equations for each control point) but they are known values 

and are included in the constant on the right-hand-side.) 

Thus each tie point requires two equations that include a 

two element by two element block of coefficients for the 

unknown tie point coordinates. These 2x2 tie point blocks 

appear to the right of the vertical line and below the 

horizontal line in Figure 6. The three 2x2 blocks for the 

second photo in the bundle are labelled B3 } B4 } and Bs. Note 

that each 2x2 block also appears in at least one other photo 

since each tie point must necessarily appear in at least two 

photos. These two columns are zero in all other rows that 

do not involve this tie point. 

The vertical line in Figure 6 that separates the photo 

element blocks from the tie point blocks divides the matrix 

into two regions that differ not only in the size and shape 

of their blocks but also in the way these blocks relate to 

one another. To the left of the line} the photo element 
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blocks for each photo are all disjoint from one other in the 

sense that not one of them intrudes into the rows or columns 

used by the blocks for another photo. To the right of this 

line each tie point block is guaranteed to have a 

corresponding block in the same columns of the rows used by 

at least one other photo. This dichotomy of structure will 

have a profound effect upon the factorization process in the 

least squares solution of the system of linearized 

equations. The fill-in elements that appear when the 

elements to the left of the vertical line are processed will 

take on a surprisingly simple and regular block structure. 

To the right of this line we shall be reduced to proving 

min-max rules that merely put bounds on the fill-in in each 

row, without specifying its structure between these limits. 

20 



Section 4 - The Linear Least Squares Problem 

The system of equations for one iteration of the 

Newton's method solution has the form: 

A x = b 

where A is the m x n block structured coefficient matrix 

described in Section 3, x is the n-vector of unknown photo 

elements and tie point coordinates, and b is the m-element 

constant RHS vector. Since m is in general larger than n, 

this system has more equations than unknowns and there will 

in general be no vector x that satisfies all the equations. 

Thus we must seek a best-fit solution in the least squares 

sense, that is we seek the vector x for which the square of 

the two norm of the residual: 

II A x - b 1122 

is a minimum. That an overdetermined linear system has such 

a solution and that it is unique when the matrix A is of 

full rank is shown, for example, in Stewart, 1973, Chapter 

5, or Hager, 1988, Chapter 5. These texts (and Ortega, 

1987) are good references on the matrix theory described 

briefly in the following paragraphs. 

Various methods exist for finding the least squares 

solution of an overdetermined linear system. One method 

that is of great theoretical importance is the use of 
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Cholesky decomposition on the system of normal equations. 

The normal equations are formed by multiplying the original 

system by the transpose of its coefficient matrix: 

ATAx = ATb 

This produces an n x n square system of equations that will 

have a unique solution whenever A is of full rank. This 

solution is in fact the least squares solution of the 

original overdetermined system. 

The coefficient matrix ATA of the system of normal 

equations is square, symmetric, and positive definite, and 

can be expressed in the form: 

ATA = LLT 

where L is a unique n x n lower triangular matrix with 

positive diagonal elements. This factorization can be found 

using the Cholesky decomposition, a specialized form of 

Gaussian elimination for symmetric matrices. The upper 

triangular matrix LT, which is unique for a fixed ordering 

of the columns of A, will be called the unique Cholesky 

factor in this paper. 

This factorization allows the overdetermined linear 

system to be solved by successively solving two triangular 

systems. We have 

A TAx = LL TX = A Tb = b" 

or, letting y = L-1b" 

L'Sc = L-1b" = y. 

The second equality is equivalent to 
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Ly = b* 

This is a lower triangular system which can be solved by 

forward substitution. Then the upper triangular system 

LTx = y 

can be solved by backsubstitution. 

The normal equations method is unfortunately unstable, 

resulting in an inaccurate solution vector x unless the 

coefficient matrix is extremely well conditioned (G.W. 

stewart, 1973, pp 225-230). It usually requires auxiliary 

calculations to detect an ill-conditioned matrix and 

iteratively refine the solution vector. Nevertheless, it 

has been used extensively in the sparse matrix setting. See 

Duff, Erisman, and Reid, 1986 and George and Liu, 1981 for 

an overview. 

The method used to find the least squares solution in 

this paper involves the QR factorization of the matrix A 

itself. This method is extremely stable, resulting in an 

accurate solution vector even when the coefficient matrix is 

quite ill-conditioned (G.W.Stewart, 1973, p237). This is 

true regardless of the order of the rows or columns of the 

matrix. This fact will allow us to reorder the rows and 

columns of the coefficient matrix to preserve the sparsity 

of the matrix during factorization. (George and Heath, 

1980.) QR factorization involves expressing A as: 

A = QR 
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where Q is an m x n matrix having orthogonal columns and R 

is an n x n upper triangular matrix. In fact, except for 

the possible multiplication of some rows by -1, R is the 

unique Cholesky factor of ATA. 

The orthogonal matrix Q is not found explicitly in 

performing the QR factorization of A. Instead, a sequence 

of orthogonal matrices Ql' Q2' , Q p such that 

Q p
T = Q Q/Q/ 

is found, so that 

Qp Qp-l' •• Ql A = Q-IQR = R 

This sequence of orthogonal matrices is chosen to 

introduce zero elements below the diagonal of A, and applied 

to the coefficient matrix A where it is stored in the 

computers memory} so that A is gradually replaced by R. 

This sequence of orthogonal matrices is applied 

simultaneously to the RHS vector b to give 

The Qi matrices are not stored , but are simply 

discarded after being applied to both sides of the matrix 

equation. 

The triangular system 

R x = y 

that results can be quickly solved by back substitution. 

The residual vector 

r = Ax - b 
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can then be calculated provided a copy of the original 

matrix A has been retained. If only the 2-norm of the 

residual is needed, it can be found from 

II y" 2 = "Ax - b II 2 

and A need not be stored. 

The orthogonal matrices Qi are chosen to introduce 

zeroes below the diagonal of the matrix A. Two popular 

choices for these orthogonal matrices are Householder 

reflections and Givens rotations. A Householder reflection 

replaces all the subdiagonal elements of a particular column 

of A with zeroes at once. A Givens rotation replaces a 

single subdiagonal element with zero. Householder 

reflections are inherently much faster than Givens rotations 

(Bjorck, 1976, Hager, 1988) and are the appropriate method 

when the coefficient matrix A is dense. But, for sparse 

matrices, the Householder reflections produce an 

unacceptable amount of fill-in (George and Heath, 1980). 

Givens rotations, on the other hand, are well suited for use 

with sparse matrices because they can be used to zero out 

individual elements selectively and they cause only a 

moderate amount of fill-in while doing so (Duff, 1974i Gill 

and Murray, 1976). This ability to preserve sparsity more 

than overcomes the difference in speed for large matrices. 
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Section 5 - Givens Rotations and the GIVENS2 Library 

A Givens rotation is a sparse matrix that differs from 

the identity matrix by the addition of a matrix of rank 2 

and has this form: 

1 
1 

1 
k c s 

1 

1 
i -s c 

1 

1 
1 

k i 

where c 2 + S2 = 1 (Hager, 1988). A Givens rotation is an 

orthogonal matrix which, when it multiplies a vector x, 

rotates the kthand ithcomponents of x through the angle 

e = sin- 1 (s) = cos- 1 (c) 
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and leaves the remaining components of x unchanged. A 

Givens rotation can be chosen to reduce the subdiagonal 

element a ik of the matrix A to zero by taking 

c = a kk /(ak~ + ai~)~ and s = aik /(akk2 + aik2)~ where a kk is 

the diagonal element of A in the same column as a ik . The 

usual scheme for transforming A to upper triangular form 

using Givens rotations is to work down each column in turn, 

starting with the first column, using the diagonal element 

in that column as the pivot element in zeroing out each 

subdiagonal target element. 

Zeroing out all the subdiagonal elements in a single 

column is referred to as a major step; zeroing out a single 

subdiagonal element using a single Givens rotation is 

referred to as a minor step. Other variations are possible. 

For example, one can zero out all the elements of a single 

row that lie to the left of the diagonal as the major step, 

using the diagonal element in a different column as the 

pivot at each minor step. Or one can do variable row 

pivoting, i.e. interchange the pivot row with the sparsest 

row having a leading nonzero before each minor step (Duff, 

1974). Incidentally, some authors define the Givens 

rotation with the submatrix: 

so that it is symmetrical and G- 1 = GT = G (Gill and Murray, 

1976). There is also a "fast" Givens rotation that doesn't 
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require taking a square root, but it is much more 

complicated and not much faster (Hager, 1988; Gentleman, 

1973; George and Heath, 1980, p78). 

When a Givens rotation Gik multiplies a matrix A it 

leaves all the rows except the kthand ithrows unchanged. 

These two rows are replaced by a linear combination of their 

previous values where the coefficients of the linear 

combination are c and s. That is: 

and 

a i j = sa k j + c a i j • 

So each element in the pivot row is replaced by a linear 

combination of itself and the corresponding element in the 

target row; each element in the target row is replaced by a 

linear combination of itself and the corresponding element 

in the pivot row. This is the secret of the Givens 

rotations I ability to preserve sparsity. For at each minor 

step in the factorization each element of A is replaced with 

a linear combination of only two elements of A. So if both 

of these elements are zero, they will remain zero. Since A 

is sparse, this will be the usual case, and vast areas of A 

will remain zero. 

This also explains why the pivot element is always the 

diagonal element and all elements to the left of the target 

element in the two rows involved are zeroed-out before a 

particular element is selected as the target. With this 
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convention, there will be no fill-in.to the left of the 

target element in either row and the previously annihilated 

elements will remain annihilated. 

Unfortunately, if either a kj or a ij is nonzero before 

the multiplication, both will be nonzero after the 

multiplication and there will be some fill-in. In fact the 

target row and pivot row both become nonzero wherever either 

was nonzero. This is called the "local Givens rule" for 

fill-in (Coleman, Edenbrandt, and Gilbert, 1983). It is 

usually expressed by saying that the set of subscripts of 

nonzero elements of the target row and pivot row become the 

union of their former sets at each minor step. 

Any fill-in elements which appear below the diagonal 

will be zeroed out by some later pivot element before the 

factorization is complete. For this reason, fill-in 

elements below the diagonal are sometimes called transient 

or intermediate fill-in. 

The local Givens rule allows the location of fill-in 

elements to be predicted, but usually only by a very 

laborious process. Say there was a nonzero element, aij' 

When some earlier element in row i is annihilated, aij will 

cause fill-in in column j of the pivot row. That fill-in 

element will then cause fill-in in some other target row, 

which will cause fill-in in some later pivot row, etc., etc. 

The usual method of locating the fill-in is to do a 

symbolic factorization. This is a process in which one goes
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through an entire .. factorization, keeping track of wher

every nonzero element appears, but disregarding the actual 

values 'of the elements. The object of the symbolic 

factorization is to set up a data structure with a storage 

location for every nonzero element a ij that will appear 

during the factorization. This data structure can then be 

used to store the matrix elements during the real 

factorization that follows. Since each iteration uses a 

coefficient matrix with the same sparsity pattern, this data 

structure can be used repeatedly, saving time. 

It is the fact that the data structure can be used 

repeatedly that justifies separating the symbolic 

factorization from the real factorization. The symbolic 

factorization must set up a large data structure that must 

necessarily allow new elements to be added at random. It 

typically takes longer than a single iteration of the real 

factorization, and doing it only once results in significant 

time saving. 

In this paper, we do even better. We shall show that, 

with some rare exceptions, most bundle adjustment problems 

produce a coefficient matrix whose rows can be reordered so 

that the fill-in can be predicted a priori. This allows the 

fill-in elements to be added without going through the 

laborious copy-up, copy-down process of the symbolic 

factorization. In the following section, we show how that 

can be done. 
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The GIVENS2 subroutine library implements in FORTRAN 

the algorithms described so far in this paper. It includes 

subroutines for performing the symbolic and real QR 

factorizations on a sparse matrix using Givens rotations. 

It also includes subroutines for solving the resulting 

triangular system by backsubstitution and for calculating 

the residual vector using a copy of the original matrix. 

The subroutine SROTG which calculates the constants of the 

required Givens rotation is a standard LINPACK routine. 

(Dongarra, Bunch, Moler, and stewart, 1979.) 

Since the data structure used to store the nonzero 

elements of the coefficient matrix is not a simple array, 

the GIVENS2 library also provides subroutines for storing, 

retrieving, and modifying elements of the matrix. Other 

subroutines efficiently locate the next item in a particular 

row or column of the matrix. 

Two different data structures are used in the GIVENS2 

library. The equation building and symbolic factorization 

phases use a linked list data structure (Duff, Erisman, and 

Reid, 1986; Schendel, 1989). The linked list is then read 

into a static sequential list for the real factorization and 

backsubstitution phases (George and Heath, 1980; Gill and 

Murray, 1976). The linked list is used again in the 

calculation of the residual since it retains a copy of the 

original matrix. 
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The linked list data structure is used during the 

symbolic factorization because it allows new elements to be 

added to the matrix at random. This results in a data 

structure that includes every nonzero element of the matrix, 

but stores them in a very disorderly manner in memory. This 

linked list is then used to set up a sequential list that 

allows the data to be accessed very efficiently during 

subsequent calculations. The linked list can accept rows of 

a matrix in any order, while the sequential list necessarily 

puts the rows into their proper order. 

The linked list data structure consists of the 

following variables: 

W - a real array that contains the list of values of 

the elements of the matrix A 

JW - an integer array that contains the column number J 

of each entry in W 

ISTART - an integer array whose Ithentry contains the 

array subscript in W of the first nonzero element of 

row i of A 

NEXT - an integer array that contains the array 

subscript in W of the next element of A in row order 

LAST - an integer variable that contains the integer 

subscript in W of the final element in A 

For example, suppose for a particular small matrix A, 

the fifth row of A contained the three nonzero elements 

a s ,2=37.65, a s ,s=10.21, a s ,9=O.765 
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these might be stored in the linked list as follows: 

W(75)=37.65, JW(75)=2, NEXT(75)=81 

W(81)=10.21, JW(81)=5, NEXT(81)=99 

W(99)=O.765, JW(9)=9, NEXT(99)=O 

ISTART(5)=75, LAST=376 

To locate the elements of row 5 of A we would proceed 

as follows. The fifth element in the array ISTART is 75, 

which indicates that the first nonzero element of the fifth 

row of A is stored as W(75), the seventy fifth element of W. 

The value of W(75) is 37.65 and that of JW(75) is 2, so we 

know the first nonzero element in this row is a s ,2=36.75. 

NEXT(75) is 81 so we know the second nonzero element in the 

row is stored as W(81). W(81) is 10.21 and JW(81) is 5 so 

we know that the next nonzero element is a s ,s=10.21. 

Similarly, the third element, a s ,9=O.765, is stored at 

W(99). Now NEXT(99) is zero so we know there are no further 

nonzero elements in row 5 of matrix A. 

Suppose a fourth nonzero element is to be added to row 

5 of this matrix, say 

a s ,7=18.03. 

The data structure allows us to add the new element at the 

end of the list and still follow the "thread" of NEXT 

pointers to reconstruct the row from the beginning when 

needed. In our example, LAST=376 so we know that 376 

elements of Wand JW have been used and that the 377th entry 

is available for use. To install the new element, we set 
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LAST=LAST+l=377/ W(LAST)=lB.03 AND JW(LAST)=7. The seventh 

element in the row must logically follow the fifth entry/ 

which is stored as W(Bl) and precedes the ninth entry/ which 

is stored as W(99). So to fix the pointers/ we must now set 

NEXT(Bl)=377/ NEXT(LAST)=NEXT(377)=99. The entire row is now 

stored as: 

W(7S)=37.6S/ JW(7S)=2/ 

W(81)=10.21/ JW(Bl)=5/ 

W(99)=O.76S/ JW(9)=9/ 

NEXT(7S)=Bl 

NEXT(Bl)=377 

NEXT(99)=O 

W(377)=lB.03/ JW(377)=7/ NEXT(377)=99 

ISTART(S)=7S/ LAST=377 

and the thread of the next pOinters can again be followed to 

recreate the entire row. 

Suppose we need to locate a particular element aij of 

the matrix A. There is only one way to do it - start at 

ISTART(I) and follow the thread. The subroutine FINDITEM 

below illustrates how to do this. (This listing is not a 

complete subroutine. The dimension statements are not shown 

in this illustration. See Appendix B for the complete 

listing.) 
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SUBROUTINE FINDITEl1 (I, J, ELEI1ENT,FOUND, LOC) 
C 
C THIS SUBROUTINE LOCATES AN ELEl1ENT A(I,J) OF A MATRIX A 
C THAT IS STORED IN A ROW-ORIENTED LINKED LIST. 
C 

C 

FOUND = . FALSE. 
ELEHENT = O. 0 
IF (LOC .GE. 0) THEN 

L = ISTART(I) 
IF (LOC .GT. 0) L = LOC 
LPREV = 0 

1000 IF (JW(L) .EQ. J) THEN 
FOUND = • TRUE. 
ELEHENT = W(L) 
LOC = L 
GO TO 9999 

ENDIF 
IF (JW(L) .GT. J) THEN 

LOC = LPREV 
GO TO 9999 

ENDIF 
LPREV = L 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

ENDIF 
LOC = -L 

ENDIF 

C RETURN TO CALLER 
C 

9999 RETURN 
END 
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Notice that FINDITEM returns the logical variable FOUND 

to tell the caller whether the needed element existed. It 

also returns the location (in Wand JW) where the element 

was found as the value of the variable LOC. If the element 

was not found, LOC is set to the location of the item that 

would precede it in row order. This is so the item can be 

quickly added if need be without following the thread again. 

The following listing of subroutine ADDITEM illustrates this 

use of LOC. (Again, this is not a complete listing of the 

subroutine. See Appendix B for the complete listing.) If 

ADDITEM is called with LOC=O, ADDITEM follows the thread for 

the row to find the correct location to insert a ij . If a 

nonzero value of LOC is provided, ADDITEM inserts a ij after 

that location. 

Note that another piece of information is returned in 

LOC. If the last existing nonzero element in the row has 

been passed in the search for aij' LOC is set negative to 

signal that the end of the row has been reached. 
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SUBROUTINE ADDITEH (I, J, ELEHENT, LOC) 

C 
C THIS SUBROUTINE ADDS AN ELEMENT A(I,J) TO A MATRIX A 
C THAT IS STORED IN A ROW-ORIENTED LINKED LIST. 
C 
C START SEARCH AT BEGINNING OF THIS ROW 
C OR LATER IF A LATER LOCATION IS PROVIDED 
C 

L = ISTART(I) 
IF (LOC .NE. 0) L = ABS(LOC) 

C 
C DONE IF ITEH ALREADY EXISTS 
C 

1000 IF (JW(L) .EQ. J) GO TO 9999 
C 
C ADD ITEH IF A LATER ELEHENT IN THE ROW IS REACHED 
C 

C 

IF (JW(L) .GT. J) THEN 
LAST = LAST + 1 
JW(LAST) = J 
W(LAST) = ELEHENT 
NEXT(LAST) = L 

ENDIF 

LOC = LAST 
NEXT(LPREV) = LAST 
GO TO 9999 

C FOLLOW THE THREAD IF THIS IS NOT THE END OF THE ROW 
C 

C 

LPREV = L 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

ENDIF 

C ADD ITEH TO END OF ROW IF END IS REACHED 
C 

C 

LAST = LAST + 1 
JW(LAST) = J 
W(LAST) = ELEHENT 
NEXT(LAST) = 0 
NEXT(LPREV) = LAST 
LOC = -LAST 
GO TO 9999 

C RETURN TO CALLER 
C 

9999 RETURN 
END 
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The sequential list is similar to the linked list, but 

simpler. 

V - a real array that contains the list of values of 

the elements of A 

JV - an integer array that contains the column number J 

of each entry on V 

LOCI - an integer array whose Ith entry contains the 

array subscript in V of the first nonzero element in 

row i of A 

Elements of the matrix A are stored sequentially, in 

row order, within V. LOCI(I) tells the starting location of 

the ithrow of A, so LOCI(I+l)-l is the ending location of 

the ithrow. An (M+l)st element of LOCI is provided so this 

trick will work for the mthor last row of A. No LAST 

variable is needed. 

Notice that the sequential list includes all those 

matrix elements that appear at some point during the 

symbolic factorization, with no indication which should be 

used with what pivot row or target row. This is inferred 

from the following simple rule. At each minor step during 

the real factorization, process all those columns which have 

an entry in both the target and pivot rows. Since the 

target row and pivot row took on the structure of their 

union after each minor step of the symbolic factorization, 

this will include all the elements changed during,:this minor 

step. Any pivot row elements or target row elements that 
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are skipped over in this process appeared later in the 

symbolic factorization and shouldn't be changed during this 

minor step. 

It may happen that the target row and pivot row have 

later acquired an entry in the same column, but if so they 

will be zero initially. So, processing them at this minor 

step will leave them zero and no error occurs. 

The pivot row will generally start at a later column 

than the target row. So the search for corresponding 

elements is most efficient if done by scanning the pivot row 

sequentially from left to right and checking the target row 

to see if the corresponding element exists. Since the pivot 

row contains the union of all its target rows, a pivot row 

will in general go further to the right than the target row. 

Thus it is important for the software to end the minor step 

immediately when the end of the target row is reached. This 

is why the subroutines flag the end of a row by setting LOC 

negative. 

The simplicity of performing QR factorization using 

Givens rotations can be appreciated by glancing over the 

subroutine GIVENS in Appendix A. This is a dense matrix 

implementation of QR factorization using Givens rotations. 

The listing of the factorization subroutine takes less than 

a page. The much larger GIVENS2 subroutine library in 

Appendix B performs the same calculations in the sparse 

matrix setting. Appendix Cis a listing of the subroutine 
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LEAST that organizes the QR factorization by calling the 

subroutines of the GIVENS2 library. 

The major subroutines of the GIVENS2 library are 

SYMBOL, which performs the symbolic factorization using the 

linked list data structure, and FACTOR, which performs the 

real factorization using the sequential list. Subroutine 

BACKSOLVE solves the resulting triangular system using 

backsubstitution. Subroutine RESIDUAL calculates the 

residual vector using the copy of the original matrix that 

is retained in the linked list. The library also includes 

various subroutines to add, locate, or modify matrix 

elements in each data structure. The functions of these are 

explained in the numerous comments included in their 

listings. 
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Section 6 - Predicting the Fill-in 

In this section we look at the fill-in caused by Givens 

rotations in detail, describing several rules about how this 

fill-in happens and how it can be minimized and predicted. 

We then apply these rules to the QR factorization of the 

bun4le adjustment problem. We derive a set of rules for 

ordering the rows of the matrix so as to minimize the 

fill-in. We then show how this ordering of the rows allows 

the fill-in to be predicted a-priori, eliminating the need 

for the time-consuming symbolic factorization. 

The most fundamental rule in performing QR 

factorization using Givens rotations is to process the most 

complex rows and columns last (Bjorck, 1976; Duff, 1974). 

The pivot and target rows take on the union of one another 

many times during the symbolic factorization. If fill-in 

starts too early in the process it will grow explosively 

before the factorization is complete. So the most complex 

rows must be held out until the end, keeping the fill-in to 

a minimum as much as possible. 

As for reordering the columns, the order in figure 6 

where the photo element blocks are to the left, the tie 

point blocks to the right, is already a workable solution. 

The problem of choosing an optimal ordering for the columns 
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to make the bandwidth of the tie point blocks as narrow as 

possible is well known to be NP-complete (Duff, Erisman, and 

Reid, 1986, p127.) Except for putting the tie point blocks 

to the right, we shall take the order in which the columns 

occur for granted and look for a row ordering that reduces 

the fill-in as much as possible for that column order. 

Another fundamental observation is that} since any 

nonzero elements initially present in a pivot row will be 

reproduced in every target row it processes} it is very 

helpful to provide pivot rows that are all zero initially. 

Another} more subtle idea, that takes this a big step 

further is to provide pivot rows that include some nonzero 

elements they would otherwise process as target elements. 

This reduces the population even further by moving some 

initial nonzero elements into locations where fill-in would 

inevitably occur anyway. 

We have already observed that fill-in never occurs to 

the left of the target element. This implies that if} at a 

certain stage of the factorization, row i has its first 

nonzero subdiagonal element in column j} then during the 

rest of the factorization no fill-in will ever appear in row 

i before column j. This is because no earlier pivot element 

than aij will be used on row i since it has no nonzero 

elements before column j to be annihilated} and row j will 

be zero to the left of a ij when that pivot is used. This 

places an earliest-column bound on the fill-in in row i. 
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A similar rule can be proven for the latest-column 

bound on the fill-in in a row i provided that the pivot row 

is initially all zero. If the pivot row is initially all 

zero} then the latest column that can be filled-in in row i 

is just the maximum of the latest column of any nonzero 

element in the target rows up to and including row i. This 

is because a nonzero element could only occur in column j of 

row i if it was there initially or was in the pivot row when 

row i was processed. It could only be in the pivot row if 

it appeared during the processing of some earlier target 

row} since the pivot row was initially zero. 

Our final observation requires some new terminology. 

It is the statement that Givens rotations preserve row/pivot 

disjoint submatrices. 

Recall that a submatrix of a matrix A is a matrix made 

up of those elements of A that lie in the intersections of a 

specified subset of the rows and columns of A. One can 

think of creating the submatrix by deleting all but certain 

rows and columns of A. The submatrix is what's left. Two 

submatrices, Al and A2 are said to be disjoint if they have 

no element in the same row or column of A. In other words, 

when deleting rows or columns of A to find Al , all of A2 is 

deleted, and vice versa. We observed in Section 3 that the 

photo element blocks in the matrix of Figure 6 are disjoint 

in this sense, while the tie point blocks are not. 
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Two submatric.es Al and A2 of A are row disjoint if they 

have no element in the same row of A. They might have 

elements in the same column or columns of A. Two 

submatrices are pivot disjoint with respect to a certain 

pivot if that pivot column contains only elements of Al or 

A2 but not both. 

Two submatrices Al and A2 are row/pivot disjoint with 

respect to a certain pivot akkif the two submatrices are 

row disjoint} they are pivot disjoint with respect to a kk } 

and if a kk can annihilate elements of Al (say) then there are 

no elements of A2 in the pivot row k (or vice versa). 

Figure 7 shows two submatrices that are row/pivot disjoint. 

The original elements of these two matrices have solid 

outlines, the areas with dashed outlines are regions where 

fill-in for each might occur. Note that being row/pivot 

disjoint is more than being pivot disjoint and row disjoint 

since it requires that the elements of each submatrix not 

intrude into the pivot row(s) of the other submatrix. 

The reason we are interested in row/pivot disjoint 

submatrices is that if a submatrix is row/pivot disjoint 

with respect to a certain set of pivot elements from the 

rest of A} then processing with those pivots will leave it 

that way. That is, processing elements of a submatrix Al 

will only produce fill-in among the elements of AI' 
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If we ~an order the rows. of A so that the rows for each 

photo form a submatrix that is row/pivot disjoint from the 

rows of all other photos (And we can.), then we can predict 

very closely where the fill-in will occur for each photo. 

To see that Givens rotations preserve a row/pivot 

disjoint submatrix, consider a four-element submatrix A1 

consisting of a pivot element a kk , a target element a ik ' 

and two elements in the same column j of the pivot and 

target rows, akjand a ij Suppose this four-element 

submatrix Al is row/pivot disjoint from all other 

submatrices of A. From this we know that the pivot row k, 

the target row i, and the pivot column k contain no nonzero 

elements outside of the four elements of AI' So when a kk is 

used as a pivot to annihilate a ik , no fill-in will occur 

outside of the four elements of Al since both the pivot row 

and target row are all zero outside of AI' The pivot element 

akkwill not be used to annihilate any target element 

outside of A1 since the pivot column is all zero outside of 

AI' So any fill-in caused by the pivot element of Al is 

confined to the four elements of A1 • Now consider a 

submatrix A2 of A which is row/pivot disjoint from the rest 

of A with respect to a certain set of pivot elements. A2 

and its pivot rowCs) consist of the union of all such four-

element submatrices for that set of pivots. So any fill-in 

caused by these pivots is confined to the row/pivot disjoint 
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submatrix A2 and the intersection of the columns of A2 with 

its pivot row(s). 

The remainder of this section of the paper will 

describe in detail where the fill-in occurs during the QR 

factorization of the bundle adjustment matrix. There are 

two distinct phases to the factorization that produce quite 

different patterns of fill-in. The use of the photo element 

pivot rows that annihilate the Bl and B2 blocks (see Figure 

6) for each photo produce fill-in in neat, orderly blocks. 

The use of the tie point pivots is less orderly. After we 

have seen where the fill-in occurs, we shall list some rules 

for reducing the size of these regions and for combining 

some of them with the initial blocks. 

Figure 8 shows the nonzero blocks for a typical aerial 

photo. We shall use this diagram to examine the fill-in 

that will result from the action of the photo element pivots 

for this photo. These pivots are the diagonal elements in 

the rows kl through k2 that will be used to annihilate the 

photo element coefficients in blocks Bl and B 2. Let us 

suppose that no initial elements for any other photo lie in 

these pivot rows, so the blocks for this photo are row/pivot 

disjoint from the initial blocks for all other photos in 

this bundle. 
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We can see immediately that the fill-in that we1re 

looking for can only happen within the pivot rows and the 

rows and columns that contain the initial blocks Bl thru Bs' 

By considering the order in which the pivot rows process the 

target rows, we can refine this further. We can show that 

the regions outlined but not shaded in Figure 8 will not be 

filled in. 

The pivot rows kl through k2 are initially all zero, so 

when the first pivot row kv processes the Bl block it will 

get filled-in in columns kl through k2' but will be entirely 

zero outside these columns. This will remain true as this 

pivot row processes each target row in block B1 • So the 

dotted regions to the right of block Bl will not be 

filled-in by pivot row k 1 • When pivot row kl processes row 

i 3 , the first row of blocks B2 and B3 , this pivot row will be 

filled-in in columns js through j6 by the nonzero elements 

in block B3 • When this pivot row processes target row i4 it 

will be filled-in in columns jl through j2 by the nonzero 

elements in block B4. The pivot row has already been 

filled-in in the columns of block B3 , so these columns will 

be filled-in in each target row until there are no more 

target elements for pivot row kl to process. This is the 

copy-up, copy-down phenomenon at work. Each tie point block 

will cause a "tail" of filled-in elements that continues 

downward from the tie point block to the last row of this 
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photo where there are·no more.nonzero eLements in column kl 

to be processed by pivot row k 1 • 

The next major step begins with pivot row k 1+l} still 

all zero} processing target rows of B1 • The action of this 

pivot row is similar to that of pivot row kl1 except that it 

will not be fill-in to the left of column k 1+l since column 

kl is already annihilated. This pivot row also will be 

filled-in by the tie point blocks when it reaches them. 

Similarly for the remaining pivot rows k 1+2 through k 2. 

So the only fill-in that occurs in annihilating blocks 

Bl and B2 is of three types. A triangular block consisting 

of elements k through k2 in each pivot row k results from 

the nonzero elements of blocks Bl and B2 themselves. A 

rectangular block where the pivot rows intersect the columns 

of the tie point blocks results from the nonzero elements of 

the tie point blocks. And a rectangular "tail" below each 

tie point block to the end of the photo results from the 

marking of the pivot rows by the tie point blocks. 

The situation after all Bl and B2 blocks have been 

annihilated is shown in Figure 9 for the four-photo bundle. 

The regions above the diagonal marked region 1 and region 3 

contain fill-in blocks. Regions 2 and 4 are entirely zero. 

Region 5 contains original tie point blocks with fill-in 

"tails" below each block to the end of its photo. The 

nonzero elements in this region, original or fill-in} must 
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now be zeroed out using .the all-zero rows of. region 4 as 

pivot rows. 

Let k* be the column number of the first tie point 

coordinate. Then row k* is the first pivot row in region 4. 

Bounds on the fill-in in each row in regions 4 and 5 

due to annihilating the nonzero elements in region 5 can now 

be inferred from the distribution of these nonzero elements 

and our knowledge of the behavior of Givens rotations. 

For each row in region 5, we know that no fill-in will 

occur to the left of the earliest column that is already 

nonzero in row i. Further, since the pivot rows are 

initially all zero, we know that no fill-in will occur to 

the right of the latest column that is nonzero in any target 

row up to and including row i. 

Let fi be the column number of the first nonzero entry 

in each row i of region 5. Let Ii be the maximum of the 

column number of the last nonzero entry in each row for rows 

k* through i. 

Then the fill-in in row i is confined to the columns fi 

through Ii for each row i in region 5. The nonzero elements 

that are already present in region 5 that determine the 

starting and ending column numbers fi and Ii will be either 

the original 2 x 2 tie point blocks or the two-column 

"tails" of fill-in below them that appeared earlier during 

the annihilation of photo element blocks. The fill-in that 

appears during the use of the tie point pivots will tend to 
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be horizontal rows of nonzero elements .. that connect the 

vertical columns of earlier fill-in. Note that these rows 

are not necessarily all filled-in. We have shown that 

fill-in cannot occur outside Ii and fil not that it must 

occur everywhere between these limits. 

These bounds on the fill-in in each target row place 

bounds on the fill-in in each pivot row in region 4. For 

each pivot row k, let tk = max {Ii! fi ~ k ~ Ii J iLk}. 

Then the fill-in in pivot row k will be confined to columns 

k through tkl since the fill-in cannot occur to the left of 

the pivot, and pivot a kk will not be used to operate on any 

row for which Ii is greater than t k. 

Having explained in detail the effects of both photo 

element pivots and tie point pivots, we can now understand 

how the fill-in occurs during the entire factorization. 

This will enable us to include the fill-in in the data 

structure for the coefficient matrix without having to do 

the laborious symbolic factorization. We can also use this 

knowledge to reorder the rows of the coefficient matrix to 

reduce the fill-in. 

Figure 10 shows the coefficient matrix for the 

four-photo bundle of Figure 5, complete with all fill-in 

elements that occur during the complete factorization. 

Figure 10 can be compared with Figure 6, which shows the 

coefficient matrix for this bundle ,before any fill-in 

occurs. A careful examination of this figure confirms that 
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the fill-in locations for the entire. matrix-can be inferred 

a priori from the locations of the initial nonzero blocks. 

In region 1, above the diagonal in the photo element 

region, the only fill-in is the 6 x 6 upper triangular block 

that includes the pivot elements. In region 2, below the 

diagonal in the photo element region, there is no fill-in at 

all. In region 3, to the right of region 1, the only 

fill-in is the 6 x 2 rectangular block where the pivot rows 

for each of the four photos intersect the columns of the tie 

point blocks for that same photo. The triangular Region 4, 

initially all zero, that provides the pivot rows for 

annihilating the tie point blocks is entirely filled-in in 

this small bundle. In reality this fill-in is of finite 

bandwidth and, for much larger bundles, will form a band to 

the right of the diagonal in region 4, with a jagged right 

hand edge. In region 5 the fill-in is the vertical "tails" 

of fill-in below each tie point block and the horizontal 

rows of fill-in between them. These "rows" are rather 

abbreviated for this small bundle. In larger bundles the 

two types of fill-in in region 5 show quite distinctly. We 

now list some rules which will help to reduce the fill-in 

described here. 

The way the equations are set up for bundle adjustment 

assures that the Bl and B2 blocks for a particular photo are 

in separate rows and columns from those blocks for any other 

photo. Thus the pivot elements for that photo are in 
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separate rows and columns from the pivot elements for any 

other photo. But it can happen that some elements of the Bl 

block for a particular photo fall in the pivot rows of the 

previous photo and the photos will not be row/pivot 

disjoint. This might happen, for example, if the first 

photo in the bundle lacked control points. Then the control 

point equations for the second photo would begin in row one, 

which is a pivot row for the B2 block of the first photo. 

A judicious choice of the six rows of th~ matrix that 

make up the photo element pivot rows for each photo can 

guarantee that the photos are all mutually row/pivot 

disjoint. The required rule is simple: choose each group of 

six rows to be the first six control point equations for 

that photo; if a photo has less than three control points, 

use as many of its tie point equations as needed instead. 

This rule cannot fail since the rules of bundle adjustment 

require each photo to have at least four control/tie points 

so each photo will have at least eight equations. 

This rule also results in a reduction of the population 

of the matrix since six rows of the Bl and/or B2 blocks will 

be combined with the 6 x 6 triangular fill-in block on the 

diagonal in the pivot rows. If tie point equations must be 

used the saving is even better since some 2 x 2 tie point 

blocks will be combined with the 6 x 2 fill-in blocks they 

cause in the pivot rows. Note that tie point equations must 

not be used before the available control point ~quations for 
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the photo are exhausted to get this effect artificially. 

This would cause unnecessary fill-in in the remaining 

control point equations for that photo. 

The remaining control point equations for the entire 

bundle should be placed together in the rows immediately 

below the photo element pivot rows described above. These 

rows are the first of the tie point pivot rows and putting 

control points first here will help to push the remaining 

tie point blocks below the diagonal~ This is necessary to 

insure that the tie point pivot rows are initially all zero 

as in the derivation above. 

Figure 11 illustrates this improved row ordering for 

the four-photo bundle. The horizontal lines in Figure 11 

divide the matrix into the three regions described above. 

In the upper region are the photo element pivot rows. These 

are formed by using first the control point equations for 

the photo and then, if there are not enough of these, using 

the tie point equations for the same photo. The middle 

region contains all the remaining control point equations. 

Notice that, for this bundle, this causes region 4 to be 

initially all zero. The lower region contains all the 

remaining tie point equation~~ 
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It may not ,be possible to keep the tie point blocks 

below the diagonal and out of region 4. Recall that a 

bundle can be done with as few as four control points and 

many tie points. This is the source of those rare 

exceptions where the fill-in may not be so nice, although 

even this case may not be too bad. Each tie point block 

would cause a two-element-wide streak of fill-in down 

through region 5 until cut off by the fi limit. Generally, 

when three or more control points are used in each photo 

this case will not happen. Our software does not try to add 

this type of fill-in a priori, but simply stops adding a 

priori fill-in and sets the flag for the symbolic 

factorization instead. 

After the remaining control point equations come all 

the remaining tie point equations. These should be placed 

in order according to the following rules to reduce the 

fill-in prescribed by the fi to Ii limits described above: 

1) put the photos in increasing order by their last 

(furthest to the right) tie point number 

2) within each photo, put the tie point equations for 

"new" tie points in increasing order by the tie point 

number, followed by 

3) the tie point equations for the "old" tie points in 

decreasing order according to the tie point number. 
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Here a "new" tie point is one that hasn't appeared in a 

photo before, and an "old" tie point is one that has. This 

ordering of the tie point equations is used in Figure 11. 

These rules will give the filled-in blocks for each 

photo a stair step appearance with the "new" tie point 

blocks going down and to the right followed by the "old" tie 

point blocks going down and to the left. Each photo will be 

offset a little to the right by the number of "new" tie 

point blocks it has. These rules will insure that the 

filled-in rows within each photo strictly increase in length 

and that the rows that go further to the right are later 

(further down) in the matrix. In strict accordance with the 

principle of saving the worst for last, this ordering of the 

tie point equations will insure that the lengths of the 

filled-in rows increase as slowly as possible for this 

ordering of the columns. 

These rules also simplify predicting the fill-in in the 

tie point pivot rows in region 4. We described earlier how 

the right-hand limit of the fill-in in each pivot row can be 

found as the maximum Ii for all those rows on which the 

pivot row is used. With the target rows ordered according 

to our rules, the fill-in in each target row is a subset of 

the fill-in in the last row of each photo. That row is 

nonzero from the first tie point block for that photo to the 

last tie point block for that photo. Thus the fill-in in 

each pivot row can be found by examining the list of tie 
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point numbers for each photo. This can be done as each 

pivot row is formed, regardless of whether the complete set 

of target rows has yet been formed. 

The working of these rules can be observed in Figure 12 

that shows the original blocks and fill-in for a thirty 

three photo bundle. Figure 13 shows the same matrix with 

lines drawn between the different regions of the matrix for 

clarity. Figure 14 shows this matrix with the fill-in as 

predicted a priori. Notice that in Figure 14 the software 

has marked all nonzero elements as original, not fill-in, 

since they are provided by the calling program. 
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Below are titles of figures on following pages: 

Figure 12 - Fill-in for the Coefficient Matrix 
for 33 Photo Bundle 

Figure 13 - Fill-in for the Coefficient Matrix 
for 33 Photo Bundle With Clarifying Lines Added 

Figure 14 - Fill-in for the Coefficient Matrix 
for 33 Photo Bundle as Predicted A Priori 

Note: Solid Squares Represent Original Block Elements. 
Open Squares Represent Fill-in Elements. 
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Section 7 - Conclusion 

To review briefly, the method of solving the LLSP of 

bundle adjustment developed in this paper is based upon 

sparse QR factorization using Givens rotations. The GIVENS2 

subroutine library performs the required factorization. A 

row ordering for the bundle adjustment matrix is prescribed 

that significantly reduces the amount of fill-in and the 

time required for the factorization. Based upon this 

improved row ordering, a set of rules are provided for 

predicting where the fill-in will occur. For most bundle 

adjustment problems, these rules allow the time-consuming 

symbolic factorization step to be eliminated. 

Figure 15 is a table showing the CPU times for bundle 

adjustment problems of various sizes. The column headed 

"dense factorization" lists timings using the LINPACK 

routines SQRDC and SQRSL. (Dongarra, Bunch, Moler, and 

Stewart, 1979; Coleman and Van Loan, 1988.) Figure 16 shows 

the populations for these test problems. 

In the following paragraphs, the method developed in 

this paper is briefly contrasted with other LLSP solution 

methods from the recent literature. Opportunities for 

future research are noted where appropriate. 
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Factorization Timings in CPU Seconds 

Dense Symbolic Sparse Sparse wi 
Problem After Estimated 

Size Symbolic Fi ll-in 
Done 

One Only One One 
Iteration Once Iteration Iteration 

4 Photos 0.15 0.16 0.15 0.17 
62x36 

15 photos 5.47 1. 09 0.89 0.91 
260x124 

33 Photos 59.85 5.68 4.16 4.39 
576x304 

73 Photos 311.15 7.29 6.22 7.73 
974x554 

113 Photos 1163.89 16.16 14.33 15.61 
1478x870 

Figure 15 - Table of Timings of Test Runs 
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Number of Non-zero Elements 

Problem 
Size Original Fill-in Total Estimated 

4 Photos 428 342 770 770 
62x36 (19.18%) (15.32%) (34.50%) (34.50%) 
=2236 

15 photos 1748 1522 3270 3331 
260x124 (5.42%) (4.72%) (10.14%) (10.33%) 
=32240 

33 Photos 4008 6223 10231 11007 
576x304 (2.29%) (3.55%) (5.84%) (6.28%) 
=175104 

73 Photos 6480 3966 10446 13334 
974x554 (1.20%) (0.73%) (1. 94%) (2.47%) 
=539596 

• 

113 Photos 9916 6688 16604 19932 
1478x870 (0.77%) (0.52%) (1. 29%) (1. 55%) 
=1285860 

Figure 16 - Table of Populations of Test Runs 
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The method of solving the LLSP of bundle adjustment 

which is favored by photogrammetrists is recursive 

partitioning of the normal equations (Slama, 1980; Burnside, 

1985; and Mikhail, 1976). In this method, the normal 

equations are formed and their coefficient matrix is 

partitioned into submatrices based upon the structure of the 

bundle, i.e. what control and tie points appear in what 

photographs. These submatrices are then partitioned based 

upon their structure and the process is repeated until most 

of the nonzeroes of the original matrix have been isolated 

in many small submatrices. The resulting small matrix 

equations are solved by dense Gaussian elimination. A 

direct comparison of recursive partitioning with the method 

of this paper is an important avenue of further research. 

A method which is much-discussed in the recent 

literature of numerical analysis (see Schreiber and Van 

Loan, 1989, and Bischof and Van Loan, 1987, for example) is 

called the WY representation. This is a QR factorization 

using Householder reflections in which the product of 

Householder reflections Q is expressed as Q = I + WyT where 

Wand Yare each m x n. This method is rich in matrix 

matrix multiplications and so is of interest mainly in the 

parallel architecture realm where these operations are 

performed very quickly. 
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A block reflector is a generalization of a Householder 

reflection which can zero out elements of multiple columns 

of a matrix at once. Each block reflector differs from the 

identity matrix by a matrix of rank more than one. Block 

reflectors were first proposed by Br¢nlund and Johnsen in 

1974 and have recently been rediscovered by the numerical 

analysis community in the search for efficient QR 

factorization algorithms for parallel computers. (Schreiber 

and Parlett, 1988.) Although at least one author has tried 

to apply block reflectors to sparse factorization (Kaufman, 

1987) the algorithm proposed is limited to very 

well-conditioned matrices. The technology of block 

reflectors can be expected to improve rapidly in the next 

few years. 

In the past decade several authors have looked at 

minimizing the fill-in in orthogonal factorization of a 

general, sparse matrix. The paper "Predicting the Fi 11 for 

Sparse Orthogonal Factorization" by Coleman, Edenbrant, and 

Gilbert, (1983), is of fundamental importance. The authors 

use the theory of bipartite graphs and the local Givens rule 

to draw some important conclusions about fill-in. The 

bipartite graph of an m x n matrix A consists of two sets of 

vertices V = {Vl' .•• , v m} and W ={w l ' ••• , wn} with an edge 

connecting Vi and Wj whenever a ij is not equal to zero. The 

major difficulty in the LLSP is that while the Cholesky 

factor is unique regardless of the row ordering, the amount 

70 



of intermediate fill-in can vary tremendously for. different 

orderings of the rows. The paper, "Row Ordering Schemes for 

Sparse Givens Transformations: I. Bipartite Graph Model" by 

George, Liu, and Ng (1984), looks at this question in 

detail. 

Growing out of the effort to predict fill-in for QR 

factorization have been a series of papers which propose 

algorithms based on the knowledge of where the fill-in will 

occur. In 1980, George and Heath proposed using the methods 

for predicting the structure of the Cholesky factor when it 

is formed by Gaussian elimination on the normal equations to 

set up a data structure which would then be used during QR 

factorization using Givens rotations. They avoided the 

problem of predicting the intermediate fill-in by working 

with only one row at a time, storing that row in a dense 

vector and zeroing out the row as the major step. In 1986, 

Liu proposed a generalization of the George and Heath method 

to variable pivoting. Liu not only chooses the target and 

pivot rows dynamically, but maintains several upper 

triangular matrices into which rows can be merged. The 

final Cholesky factor results from merging these smaller 

triangular matrices. He calls this method the "general row 

merging scheme." 

In a later paper with Alan George entitled "Householder 

Reflections .Versus Givens Rotations in Sparse Orthogonal 

Decomposition" (George and Liu, 1987) he describes how his 
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general row merging scheme results in small, essentially 

dense submatrices upon which Householder reflections can be 

used effectively. This allows the superior speed of 

Householder reflections to be applied to a sparse matrix 

problem. A detailed comparison of the method of George and 

Liu with that developed in this paper is another promising 

area for further research. 
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APPENDIX A - Dense Givens Routine 

SUBROUTINE GIVENS (A,nA,H,N,B) 
C THIS SUBROUTINE REPLACES THE H BY N nATRIX A 
C WITH ITS UPPER TRIANGULAR QR FACTOR USING GIVENS ROTATIONS. 
C 

REAL A(nA,l),B(l) 
C 
C CHOOSE THE COLUHN TO BE ZEROED OUT 
C 

C 

DO 5000 K = 1,N 
KPl = K + 1 

C CHOOSE THE ELEHENT TO BE ZEROED OUT 
C 

C 

DO 4000 I = KPl,H 
Rl = A(K,K) 
R2 = A(I,K) 

C CALCULATE THE GIVENS ROTATION NEEDED AND APPLY 
C 

C 

CALL SROTG (Rl,R2,C,S) 
A(K,K) = Rl 
A(CK) = 0.0 

C APPLY THIS ROTATION TO REHAINING COLUHNS 
C 

DO 3000 J = KPl,N 
TEMP = C * A(K,J) + S * A(I,J) 
A(I,J) = C * A(I,J) - S * A(K,J) 
A(K,J) = TEl1P 

3000 CONTINUE 
C 
C APPLY THIS ROTATION TO THE RHS VECTOR 
C 

C 

TEMP = C * B(K) + S * B(I) 
B(I) = C * B(I) - S * B(K) 
B(K) = TEMP 

C GO BACK FOR NEXT ELEHENT IN THIS COLUHN 
C 
4000 CONTINUE 

C 
C GO BACK FOR NEXT COLUHN 
C 
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5000 CONTINUE 
C RETURN TO CALLER 
C 

C 

C 

RETURN 
END 

C THIS SUBROUTINE SOLVES A TRIANGULAR SYSTEH OF LINEAR EQUATIONS 
C BY ROW-oRIENTED BACKSUBSTITUTION 
C 

C 

C 

C 

C 

REAL A(HA,l),B(l),X(l) 

X(N) = B(N) / A(N,N) 
Nl'l1=N-1 

DO 2000 IB = l,NH1 
I = N - IB 
IP1 = I + 1 
TEl'IP = B(I) 

DO 1000 J = IP1,N 
TEl'IP = TEl'IP - A(I/J) * X(J) 

1000 CONTINUE 

XCI) = TEMP / A(I,I) 
2000 CONTINUE 

C 
C RETURN TO CALLER 
C 

C 

C 

RETURN 
END 

C THIS SUBROUTINE CALCULATES THE RESIDUAL VECTOR OF A LINEAR SYSTEH. 
C 

C 

C 

C 

DO 2000 I = 1/H 
R(I) = B(I) 

DO 1000 J = 1, N 
R(I) = R(I) - A(I,J) * X(J) 

1000 CONTINUE 

2000 CONTINUE 
C 
C RETURN TO CALLER 
C 

RETURN 
END 
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APPENDIX B - GIVENS2 Sparse Hatrix Library 

C GIVENS2 - THE SJRWHD SPARSE HATRIX PACKAGE 
C 
C THIS PACKAGE OF SUBROUTINES CALCULATES THE LEAST SQUARES SOLUTION 
C OF AN OVERDETERHINED SYSTEH OF LINEAR EQUATIONS BY ORTHOGONAL 
C TRIANGULARIZATION USING GIVENS ROTATIONS. 
C 
C ONLY THOSE ELEMENTS OF THE HATRIX WHICH ARE NONZERO(OR POTENTIALLY 
C NONZERO) ARE STORED. TWO DIFFERENT DATA STRUCTURES ARE USED. THE 
C EQUATION BUILDING AND SYHBOLIC FACTORIZATION PHASES USE A LINKED 
C LIST DATA STRUCTURE. THE LINKED LIST IS THEN READ INTO A 
C SEQUENTIAL LIST FOR USE IN THE FACTORIZATION AND BACKSUBSTITUTION 
C PHASES. 
C 
C PROGRAH AUTHOR: 
C JOSEPH W. WOODARD PROGRAtlHERjANALYST 
C ST. JOHNS RIVER WATER HANAGEHENT DISTRICT 
C PALATKA, FL 32178 904-329-4280 
C 

SUBROUTINE ADDROW (I,JLIST,VLIST,NVALS,HARK,LAST1) 
C 
C THIS SUBROUTINE ADDS THE NONZERO ELEMENTS OF A SINGLE ROW OF 
C HATRIX A TO A ROW-ORIENTED LINKED LIST OF NONZERO ELEHENTS. 
C THE DATA STRUCTURE CREATED IS AS FOLLOWS: 
C 
C W CONTAINS THE LIST OF VALUES OF A 
C JW CONTAINS THE COLUHN NUI1BER J FOR EACH ENTRY IN W 
C ISTART CONTAINS THE ARRAY SUBSCRIPT IN W OF THE FIRST 
C NONZERO ELEMENT OF ROW I OF A 
C NEXT CONTAINS THE ARRAY SUBSCRIPT OF THE NEXT 
C ELEMENT IN ROW ORDER 
C LAST CONTAINS THE ARRAY SUBSCRIPT OF THE FINAL ELEMENT 
C (LAST HOST BE SET TO ZERO BY THE CALLER BEFORE 
C THE INITIAL CALL TO ADDROW FOR THE LIST) 
C 
C THE ROW TO BE ADDED I S DEFINED BY: 
C 
C I I S THE ROW NUHBER. ROWS NEED NOT BE ADDED IN SEQUENCE. 
C JLIST IS THE LIST OF COLUHN SUBSCRIPTS FOR THIS ROW. 
C THESE SUBSCRIPTS HOST (!) BE IN ASCENDING ORDER. 
C VLIST IS THE LIST OF VALUES A(I,J) CORRESPONDING TO JLIST. 
C NVALS IS THE NUHBER OF VALUES IN VLIST. 
C HARK IS A LOGICAL VARIABLE WHICH CONTROLS UPDATING OF 
C THE COLUHN NUHBERS IN THE LINKED LIST. 
C HARK = . TRUE. USE JLIST TO SET COLUHN NUHBERS. 
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C 
C 
C 

C 

C 

HARK = • FALSE. DON'T. COLUHN NUl1BERS FROH A 
PREVIOUS CALL WILL BE USED. 

REAL VLIST(l) 
INTEGER JLIST(l) 
LOGICAL HARK 
INCLUDE 'INCLUDE1.F77' 

IF (NVALS .GT. 0) THEN 
LAST = LAST1 
ISTART(I) = LAST + 1 
K = NVALS - 1 
DO 1000 J = 1,K 
LAST = LAST + 1 
W(LAST) = VLIST(J) 
IF (HARK) THEN 

JW(LAST) = JLIST(J) 
NEXT(LAST) = LAST + 1 

ENDIF 
1000 CONTINUE 

LAST = LAST + 1 
W(LAST) = VLIST(NVALS) 
IF (HARK) THEN 

ENDIF 

JW(LAST) = JLIST(NVALS) 
NEXT (LAST) = 0 

LASTl = LAST 
ENDIF 

C RETURN TO CALLER 
C 

C 

C 

RETURN 
END 

SUBROUTINE SYHBOL (Hl,Nl,LAST1) 

C THIS SUBROUTINE PERFORHS A SYHBOLIC FACTORIZATION ON A 
C HATRIX A WHICH IS STORED IN A ROW-oRIENTED LINKED LIST. 
C 

C 
C 

LOGICAL FOUNDAKK,FOUNDAIK,FOUNDAKJ,FOUNDAIJ 
INCLUDE 'INCLUDE1.F77' 

C SET ARRAY SIZE IN COHHON BLOCK 
C 

C 

H = Hl 
N = Nl 
LAST = LAST1 

C CHOOSE THE COLUHN TO BE ZEROED OUT 
C 

DO 5000 K = 1,N 
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C 
C HARK THE DIAGONAL ELEMENT 
C 

LOCAKK = 0 
CALL FINDITEl1 (K, K, AKK, FOUNDAKK, LOCAKK) 
IF (. NOT. FOUNDAKK) THEN 

AKK = 0 
CALL ADDITEl1 (K, K, AKK, LOCAKK) 

ENDIF 
C 
C CHOOSE THE ELEl1ENT TO BE ZEROED OUT 
C 

C 

I = K 
1000 CALL LINKI (I,K,ITARGET,AIK,FOUNDAIK,LOCAIK) 

IF (FOUNDAIK) THEN 
I :: ITARGET 

C APPLY THIS ROTATION TO REl1AINING COLUMNS 
C 

C 

J = K 
LOCAKJ = 0 
LOCAIJ = 0 

2000 CALL LINKJ (K,J,JPIVOT,AKJ,FOUNDAKJ,LOCAKJ) 
IF (FOUNDAKJ) THEN 

J = JPIVOT 
CALL FINDITEl1 (I,J,AIJ,FOUNDAIJ,LOCAIJ) 
IF (.NOT. FOUNDAIJ) THEN 

AIJ = 0.0 
CALL ADDITEl1 (I,J,AIJ,LOCAIJ) 

END IF 
GO TO 2000 

END IF 
J = K 
LOCAKJ = 0 
LOCAIJ = a 

3000 CALL LINKJ (I,J,JTARGET,AIJ,FOUNDAIJ,LOCAIJ) 
IF (FOUNDAIJ) THEN 

J = JTARGET 
CALL FINDITEl1 (K, J, AKJ, FOUNDAKJ, LOCAKJ) 
IF (.NOT. FOUNDAKJ) THEN 

AKJ = 0.0 
CALL ADDITEl1 (K, J, AKJ, LOCAKJ) 

END IF 
GO TO 3000 

ENDIF 

C GO BACK FOR NEXT ELEHENT IN THI S COLUHN 
C 

C 

GO TO 1000 
ENDIF 

C GO BACK FOR NEXT COLUHN 
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C 
5000 CONTINUE 

C 
C RETURN TO CALLER 
C 

C 

C 

LASTl = LAST 
RETURN 
END 

SUBROUTINE FINDITEH (I I J I ELEMENT I FOUND I LOC) 

C THIS SUBROUTINE LOCATES AN ELEMENT A(I/J) OF A MATRIX A 
C WHICH IS STORED IN A ROW-ORIENTED LINKED LIST. 
C 
C THE LOCATION WHERE A(CJ) WAS FOUND IS RETURNED IN LOC. 
C IF A(I/J) IS NOT FOUND I LOC IS SET TO EITHER ZERO OR, 
C THE LOCATION OF THE LAST NONZERO ELEHENT WHOSE COLUMN NUHBER 
C IS LESS THAN J I IF ANY SUCH ELEMENT EXISTS. 
C IF J IS GREATER THAN THE COLUMN NUHBER OF ALL NONZERO 
C ENTRIES IN ROW I OF AI LOC IS SET TO THE NEGATIVE OF THE 
C LAST STORAGE LOCATION FOR ROW I. 
C 
C THE VALUE OF LOC IS USED TO Il1PROVE THE SPEED OF LOCATING 
C THE NEXT NONZERO ELEMENT IN THE ROW ON THE NEXT CALL TO THIS 
C SUBROUTINE. THE USER HUST BE CAREFUL TO SET LOC TO ZERO HII1SELF 
C BEFORE ANY CALL TO THIS ROUTINE WHICH IS NOT INTENDED TO 
C LOCATE A SUCCEEDING ELEMENT IN THE SAI1E ROW. 
C 

C 

LOG I CAL FOUND 
INCLUDE 'INCLUDE1.F77' 

FOUND = • FALSE. 
ELEMENT = 0.0 
IF (LOC .GE. 0) THEN 

L = I START (I ) 
IF (LOC .GT. 0) L = LOC 
LPREV = 0 

1000 IF (JW(L) .EQ. J) THEN 
FOUND = . TRUE. 
ELEMENT = W(L) 
LOC = L 
GO TO 9999 

END IF 
IF (JW(L) .GT. J) THEN 

LOC = LPREV 
GO TO 9999 

END IF 
LPREV = L 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

ENDIF 
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C 

LOC = -L 
ENDIF 

C RETURN TO CALLER 
C 

C 

C 

9999 RETURN 
END 

C THIS SUBROUTINE CALCULATES THE RESIDUAL R = B - A * X 
C OF THE OVERDETERHINED LINEAR SYSTEH A * X = B WHERE THE 
C MATRIX A IS STORED IN A ROW-ORIENTED LINKED LIST. 
C 
C THE LINKED LIST DATA STRUCTURE IS USED BECAUSE IT RETAINS 
C A COPY OF THE ORIGINAL INPUT MATRIX. ONLY THOSE ELEMENTS 
C WHICH ARE STORED SEQUENTIALLY ARE USED IN THE CALCULATION, 
C SINCE THE FILL-IN ELEMENTS ARE ALL ZERO. 
C 
C NSEQ MUST CONTAIN THE NU11BER OF ELEMENTS OF W WHICH ARE 
C STORED SEQUENTIALLY, I.E. THE NUHBER OF ELEMENTS W CONTAINED 
C BEFORE SYl1BOL WAS CALLED TO ADD THE FILL-IN ELEMENTS. 
C 

C 
C 

REAL B(l),X(l),R(l) 
LOG I CAL FOUND 
INCLUDE 'INCLUDE1.F77' 

DO 2000 I = 1,11 
R(I) = B(I) 
J = 0 
LOC = 0 

1000 CALL LINKJ (I,J,JELEHENT,ELEHENT,FOUND,LOC) 
IF (FOUND) THEN 

END IF 

IF (LOC .LE. NSEQ) THEN 
R (I) = R ( I ) - ELEl1ENT * X (JELEl1ENT) 

ENDIF 
J = JELEl1ENT 
GO TO 1000 

2000 CONTINUE 
C 
C . RETURN TO CALLER 
C 

C 

C 

9999 RETURN 
END 

C THIS SUBROUTINE ADDS AN ELEl1ENT A(I,J) TO A MATRIX A 
C WHICH IS STORED IN A ROW-ORIENTED LINKED LIST. 
C THE LOCATION WHERE A(CJ) WAS STORED IS RETURNED IN LOC. 
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C IF ACI,J) IS THE LAST NONZERO ELEMENT IN ROW I, LOC IS SET 
C TO THE NEGATIVE OF ITS LOCATION. 
C 
C THE VALUE OF LOC IS USED TO IHPROVE THE SPEED OF ADDING AN 
C ITEl1 WHEN A PREVIOUS CALL TO FINDITEl1 HAS INDICATED THE ITEl1 
CIS NOT PRESENT. THE USER MUST BE CAREFUL TO SET LOC TO ZERO 
C BEFORE ANY CALL TO THIS ROUTINE WHERE THIS IS NOT THE CASE. 
C 

LOGICAL FOUND 
INCLUDE 'INCLUDE1.F77' 

C 
C START SEARCH AT BEGINNING OF THIS ROW 
C OR LATER IF A LATER LOCATION IS PROVIDED 
C 

L = I START (I ) 
IF (LOC .NE. 0) L = ABS(LOC) 

C 
C DONE IF ITEl'l ALREADY EXISTS 
C 

1000 IF (JW(L) .EQ. J) GO TO 9999 
C 
C ADD ITEl1 IF A LATER ELEI1ENT IN THE ROW IS REACHED 
C 

C 

IF (JW(L) .GT. J) THEN 
LAST = LAST + 1 

ENDIF 

IF (LAST .GT. NDATASIZE) GO TO 9000 
JW(LAST) = J 
W(LAST) = ELEl1ENT 
NEXT (LAST) = L 
LOC = LAST 
NEXT(LPREV) = LAST 
GO TO 9999 

C FOLLOW THE THREAD IF THIS IS NOT THE END OF THE ROW 
C 

C 

LPREV = L 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

END IF 

C ADD ITEl'l TO END OF ROW IF END IS REACHED 
C 

LAST = LAST + 1 
IF (LAST .GT. NDATASIZE) GO TO 9000 
.JW(LAST) = J 
W(LAST) = ELEl1ENT 
NEXT (LAST) ::: 0 
NEXT(LPREV) = LAST 
LOC = -LAST 
GO TO 9999 
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C 
C HANDLE OUT OF ROOH ERROR 
C 

9000 WRITE (1,9010) 
WRITE (14,9010) 

9010 FORHAT (//, 'STORAGE FOR LINKED LIST EXCEEDED',/, 
& 'SEE YOUR PROGRAHHER TO INCREASE THIS (ADDITEH)') 

C 
C RETURN TO CALLER 
C 

C 

C 

9999 RETURN 
END 

C THIS SUBROUTINE RETURNS THAT ELEHENT A CIELEHENT , J) IN COLUHN J 
C WHICH FOLLOWS ELEHENT A(I,J) IN COLUHN ORDER. 
C HATRIX A IS STORED IN A ROW-ORIENTED LINKED LIST. 
C THE LOCATION WHERE A(IELEHENT,J) WAS FOUND IS RETURNED IN LOC. 
C IF A(IELEHENT,J) IS NOT FOUND, LOC IS SET TO ZERO. 
C 

C 

LOG I CAL FOUND 
INCLUDE 'INCLUDE1.F77' 

FOUND = .FALSE. 
IELEHENT = 0 
ELEHENT = o. 0 
LOC = 0 
!P1 = I + 1 
DO 2000 K = IP1,H 
L = ISTART(K) 

1000 IF (JW(L) .GT. J) GO TO 2000 
IF (JW(L) .EQ. J) THEN 

FOUND = • TRUE. 
IELEHENT = K 
ELEMENT = W(L) 
LOC = L 
GO TO 9999 

ENDIF 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

ENDIF 
2000 CONTINUE 

C 
C RETURN TO CALLER 
C 

C 

9999 RETURN 
END 
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SUBROUTINE LINKJ (I,J,JELEl1ENT,ELEHENT,FOUND,LOC) 
C 
C THIS SUBROUTINE RETURNS THAT ELEl1ENT A(I, JELEHENT) IN ROW I 
C WHICH FOLLOWS ELEl1ENT A(I,J) IN ROW ORDER. 
C HATRIX A IS STORED AS A ROW-ORIENTED LINKED LIST. 
C THE LoeAT ION WHERE A (I, JELEHENT) WAS FOUND I S RETURNED IN Loe. 
C IF A(I,JELEl1ENT) IS NOT FOUND, LOC IS SET TO ZERO. 
C 
C THE VALUE OF LOC IS USED TO Il1PROVE THE SPEED OF LOCATING 
C THE NEXT NONZERO ELEHENT IN THE ROW ON THE NEXT CALL TO THI S 
C SUBROUTINE. THE USER HUST BE CAREFUL TO SET Loe TO ZERO HIHSELF 
C BEFORE ANY CALL TO THIS ROUTINE WHICH IS NOT INTENDED TO 
C LOCATE A SUCCEEDING ELEHENT IN THE SAHE ROW. 
C 

C 

LOGICAL FOUND 
INCLUDE 'INCLUDE1.F77' 

FOUND = .FALSE. 
JELEHENT = a 
ELEl1ENT = o. a 
IF (Loe .EQ. 0) THEN 

L = I START (I ) 
1000 IF (JW(L) .GT. J) THEN 

FOUND = . TRUE. 
JELEHENT = JW (L) 
ELEl1ENT = W(L) 
LOC = L 
GO TO 9999 

ENDIF 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

ENDIF 
Loe = a 
GO TO 9999 

END IF 
IF (Loe .GT. 0) THEN 

L = Loe 
IF (NEXT(L) .EQ. 0) THEN 

Loe = 0 

END IF 

ELSE 
GO TO 9999 

L = NEXT(L) 
FOUND = . TRUE. 
JELEHENT = JW(L) 
ELEHENT = W(L) 
LOC = L 
GO TO 9999 

END IF 
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C 
C RETURN TO CALLER 
C 

C 

C 

9999 RETURN 
END 

SUBROUTINE SEQUENCE (NSEQ) 

C THIS SUBROUTINE SCANS THE LINKED LIST AND CREATES A SEQUENTIAL 
C LIST. 
C 
C THE DATA STRUCTURE CREATED IS AS FOLLOWS: 
C 
C V CONTAINS THE LIST OF VALUES OF A 
C JV CONTAINS THE COLUMN NUl'1BER J FOR EACH ENTRY IN V 
C KV CONTAINS AN INTEGER WHICH INDICATES WHETHER THIS 
C ELEl1ENT IS A FILL-IN ELEl1ENT: 
C KV(L) = 1 IF LOCATION IS ORIGINAL 
C KV(L) = 2 IF LOCATION IS FILL-IN 
C LOCI CONTAINS THE LOCATION IN V OF THE FIRST 
C NONZERO ELEMENT OF ROW I OF A 
C 
C NSEQ HUST CONTAIN THE NUl'1BER OF ELEMENTS OF W WHICH ARE 
C STORED SEQUENTIALLY, I.E. THE NUl'1BER OF ELEMENTS W CONTAINED 
C BEFORE SYMBOL WAS CALLED TO ADD THE FILL-IN ELEMENTS. 
C 

C 
C 

INCLUDE 'INCLUDE1.F77' 

C CYCLE THROUGH ARRAY BY ROWS 
C 

ICURR = 0 
DO 5000 I = l,H 
LOCI (I) = ICURR + 1 
L = ISTART(I) 

1000 ICURR = ICURR + 1 
V(ICURR) = W(L) 
JV(ICURR) = JW(L) 
KV(ICURR) = 1 
IF (L .GT. NSEQ) KV(ICURR) = 2 
IF (NEXT(L) .NE. 0) THEN 

L = NEXT(L) 
GO TO 1000 

ENDIF 
5000 CONTINUE 

LOCI(H+l) = ICURR + 1 
C 
C RETURN TO CALLER 
C 

RETURN 
END 
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C 
SUBROUTINE FACTOR (B) 

C 
C THIS SUBROUTINE REPLACES THE H BY N HATRIX A 
C WITH ITS UPPER TRIANGULAR QR FACTOR USING GIVENS ROTATIONS. 
C THE MATRIX IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST. 
C 

C 
C 

REAL B(l) 
LOGICAL FOUND 
INCLUDE 'INCLUDE1.F77' 

C CHOOSE THE COLUMN TO BE ZEROED OUT 
C 

C 

DO 5000 K = 1,N 
LOCAKK = 0 
CALL FIND (K,K,AKK,FOUND,LOCAKK) 
IF (.NOT. FOUND) GO TO 9000 

C CHOOSE THE ELEI1ENT TO BE ZEROED OUT 
C 

C 

I = K 
1000 CALL NEXTI (I,K,IELEI1ENT,AIK,FOUND,LOCAIK) 

IF (FOUND) THEN 
I = IELEHENT 

C CALCULATE THE GIVENS ROTATION NEEDED AND APPLY 
C 

C 

CALL SROTG (AKK,AIK,C,S) 
V (LOCAKK) = AKK 

C APPLY THIS ROTATION TO REMAINING COLUMNS 
C 

C 

LOCAIJ = 0 
I BEG IN = LOCAKK + 1 
lEND = LOCI(K + 1) - 1 
DO 2000 LOCAKJ = IBEGIN, lEND 
J = JV(LOCAKJ) 
CALL FIND (I,J,AIJ,FOUND,LOCAIJ) 
IF (LOCAIJ .LT. 0) GO TO 3000 
IF (FOUND) THEN 

AKJ = V(LOCAKJ) 
TEHP = C '" AKJ + S '" AIJ 
AIJ = C '" AIJ - S '" AKJ 
V(LOCAIJ) = AIJ 
AKJ = TEHP 
V (LOCAKJ) = AKJ 

ENDIF 
2000 CONTINUE 

C APPLY THIS ROTATION TO THE RHS VECTOR 
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C 
3000 TEnP = C * B(K) + S * B(I) 

B(I) = C * B(I) - S * B(K) 
B(K) = TEl1P 

C 
C GO BACK FOR NEXT ELEl1ENT IN THIS COLU11N 
C 

C 

GO TO 1000 
ENDIF 

C GO BACK FOR NEXT COLU11N 
C 

5000 CONTINUE 
C 
C DONE 
C 

GO TO 9999 
C 
C UNEXPECTED STORAGE FAILURE IS A FATAL ERROR 
C 

9000 WRITE (1,9010) K,K 
9010 FORHAT (II, 'UNEXPECTED STORAGE FAILURE (FACTOR)',/, 

& 'FINDING PIVOT ELEl1ENT AT K = ',110,' K = ',110) 
STOP 

C 
C RETURN TO CALLER 
C 

C 

C 

9999 RETURN 
END 

SUBROUTINE BACKSOLVE (B,X) 

C THIS SUBROUTINE SOLVES A TRIANGULAR SYSTEl1 BY BACKSUBSTlTUTION. 
C THE TRIANGULAR HATRIX IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST. 

C 

C 
C 

C 

REAL B(lL X(l) 
LOG I CAL FOUND 
INCLUDE 'INCLUDE1.F77' 

LOC = a 
CALL FIND (N,N,ANN,FOUND,LOC) 
IF (ANN .EQ. 0.0) GO TO 9100 
X(N) = B(N) / ANN 

C CHOOSE NEXT ROW 
C 

Nl11 = N - 1 
DO 2000 IB = l,NH1 
I = N - IB 
TEl1P = B(l) 
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LOC = 0 
CALL FIND (I/I/AII/FOUND/LOC) 
IF (All .EQ. 0.0) GO TO 9100 
IBEGIN = LOC + 1 
lEND = LOCI(I + 1) - 1 
DO 1000 L = IBEGIN/IEND 
J = JV(L) 
TEMP = TEMP - Vel) * X(J) 

1000 CONTINUE 
XCI) = TEMP I All 

2000 CONTINUE 
C 
C DONE 
C 

GO TO 9999 
C 
C FATAL ERROR 
C 

9100 WRITE (1 / 9110) I 
9110 FORMAT ('ZERO DIAGONAL ELEHENT (BACKSOLVE), III 

& 'I = '/110) 
STOP 

C 
C RETURN TO CALLER 
C 

C 

9999 RETURN 
END 

SUBROUT INE FIND (I I J I ELEHENT I FOUND I LOC) 
C 
C THIS SUBROUTINE RETURNS AN ELEMENT A(I/J) OF A MATRIX A 
C WHICH IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST. 
C 
C THE LOCATION WHERE A ( I I J) WAS FOUND I S RETURNED IN LOC. 
C IF A(I/J) IS NOT FOUND I LOC IS SET TO EITHER ZERO OR 
C THE LOCATION OF THE LAST NONZERO ELEMENT WHOSE COLUMN NUMBER 
C IS LESS THAN J 1 IF ANY SUCH ELEMENT EXISTS. 
C IF J IS GREATER THAN THE COLUMN NUMBER OF ALL NONZERO 
C ENTRIES IN ROW I OF AI LOC IS SET TO -1. 
C 
C THE VALUE OF LOC IS USED TO IMPROVE THE SPEED OF LOCATING 
C THE NEXT NONZERO ELEl'IENT IN THE ROW ON THE NEXT CALL TO THIS 
C SUBROUTINE. THE USER HUST BE CAREFUL TO SET LOC TO ZERO HIHSELF 
C BEFORE ANY CALL TO THIS ROUTINE WHICH IS NOT INTENDED TO 
C LOCATE A SUCCEEDING ELEMENT IN THE SAME ROW. 
C 

C 

LOGI CAL FOUND 
INCLUDE 'INCLUDE1.F77' 

FOUND = . FALSE. 
ELEl'IENT = 0.0 
IF (LOC .GE. 0) THEN 
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C 

IBEGIN = LOCI (I) 
IF (LOC .GT. 0) IBEGIN = LOC 
lEND = LOCI(I+1) - 1 
LPREV = 0 
DO 1000 L = IBEGIN,IEND 
IF (JV(L) .EQ. J) THEN 

ENDIF 

FOUND = . TRUE. 
ELEMENT = VeL) 
LOC = L 
GO TO 9999 

IF (JV(L) .GT. J) THEN 
LOC = LPREV 
GO TO 9999 

ENDIF 
LPREV = L 

1000 CONTINUE 
LOC = -1 

END IF 

C RETURN TO CALLER 
C 

C 

C 

9999 RETURN 
END 

SUBROUTINE NEXTI (I, J, IELEl'IENT, ELEl'IENT, FOUND, LOC) 

C THIS SUBROUTINE RETURNS THAT ELEMENT A(IELEl'IENT,J) IN COLUMN J 
C WHICH FOLLOWS ELEMENT A(I}J) IN COLUMN ORDER. 
C nATRIX A IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST. 
C THE LOCATION WHERE A(IELEMENT,J) WAS FOUND IS RETURNED IN LOC. 
C IF A(IELEMENT,J) IS NOT FOUND, LOC IS SET TO ZERO. 
C 

C 

LOGICAL FOUND 
INCLUDE 'INCLUDE1.F77' 

FOUND = . FALSE. 
IELEI1ENT = 0 
ELEMENT = 0.0 
LOC = 0 
IP1 = I + 1 
DO 2000 K = IP1,H 
IBEGIN = LOCI(K) 
lEND = LOCI(K+1) - 1 
DO 1000 L = IBEGIN,IEND 
IF (JV(L) .EQ. J) THEN 

FOUND = . TRUE. 
IELEHENT = K 
ELEHENT = VeL) 
LOC = L 
GO TO 9999 

END IF 
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C 

IF (JV(L) .GT. J) GO TO 2000 
1000 CONTINUE 
2000 CONTINUE 

C RETURN TO CALLER 
C 

9999 RETURN 
END 

THE FOLLOWING IS THE CONTENTS OF THE INCLUDE FILE INCLUDE1 
THAT SETS THE DIHENSIONS OF THE ARRAYS FOR THE LINKED LIST 
AND SEQUENTIAL LIST: 

PARAMETER NROWSIZE = 10000 
PARAMETER NDATASIZE = 400000 
REAL V(NDATASIZE),W(NDATASIZE) 
INTEGER JV(NDATASIZE),KV(NDATASIZE),LOCI(NROWSIZE) 
INTEGER JW(NDATASIZE),ISTART(NROWSIZE),NEXT(NDATASIZE) 
COnnON /Sn1COn/ n,N,V,JV,KV,LOCI,W,JW, ISTART,NEXT,LAST 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

APPENDIX C - LEAST Subroutine 

SUBROUTINE LEAST (IROW,JARRAY,ARRAY,NVALS,M,N,BI,X,R,DUMP,ISYM) 

THIS SUBROUTINE CALLS GIVENS2 ROUTINES TO GET THE LEAST SQUARES 
SOLUTION OF AN OVERDETERMINED SYSTEM OF LINEAR EQUATIONS. 
EACH EQUATION OF THE SYSTEM IS PASSED TO THIS ROUTINE IN 
A SEPARATE CALL. A FINAL CALL WITH IROW SET TO ZERO 
GENERATES THE SOLUTION. 

THE CHOICE OF DOING A SYMBOLIC FACTORIZATION IS CONTROLLED 
BY THE PARAMETER I SYH AS FOLLOWS: 

ISYM = 1 

ISYM = 2 

ISYH = 3 

DO SYMBOLIC FACTORIZATION TO ADD THE NEEDED 
FILL-IN LOCATIONS TO THE LINKED LIST AFTER 
THE SEQUENTIAL DATA PROVIDED BY THE CALLER. 

DO NOT PERFORM THE SYMBOLIC FACTORIZATION. 
THE LINKED LIST ALREADY CONTAINS THE NEEDED 
FILL-IN. 

DO NOT PERFORM THE SYMBOLIC FACTORIZATION. 
ALL FILL-IN ELEMENTS WHICH WILL BE NEEDED ARE 
INCLUDED IN THE SEQUENTIAL DATA PROVIDED 
BY THE CALLER. 

THE PARAl1ETER l'IARK CONTROLS WHETHER THE ARRAYS JW AND NEXT 
WHICH DESCRIBE THE NONZERO STRUCTURE OF THE ROW SHOULD BE 
UPDATED. FOR A FIRST ITERATION, WITH OR WITHOUT THE 
SYMBOLIC FACTOR I ZATION, THESE ARRAYS MUST BE SET. FOR A 
SECOND OR LATER ITERATION THE STRUCTURE IS THE SAME AS THE 
FIRST ITERATION SO THEIR PREVIOUS VALUES CAN BE USED. 

HARK = . TRUE. JW AND NEXT ARRAYS ARE UPDATED 

MARK = .FALSE. JW AND NEXT ARRAYS ARE LEFT AS IS 

AUTHOR: 
JOSEPH W. WOODARD PROGRAMMER/ANALYST 
ST. JOHNS RIVER WATER HANAGEMENT DISTRICT 
PALATKA, FL 32178 904-329-4280 

SAVE 
PARAl1ETER NROWSIZE = 10000 
PARAl1ETER NDATASIZE = 800000 
REAL ARRAY(l),X(l),R(l) 
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C 

INTEGER JARRAY(l) 
REAL B1(NROWSIZE)JB2(NROWSIZE) 
LOGICAL DUHP,FOUND,HARK,FIRST 
DATA LAST /0/ 
DATA FIRST /.TRUE./ 

C CHECK DIHENSIONS OF PROBLEM AGAINST ARRAY SIZE 
C 

IF (H .GT. NROWSIZE) GO TO 9200 
IF (IROW .GT. ° . AND. LAST + NVALS .GT. NDATASIZE) GO TO 9200 

C 
C ADD NONZERO ENTRIES FOR THIS ROW TO LINKED LIST 
C 

C 

IF (IROW .GT. 0) THEN 

ENDIF 

IF (ISYH .EQ. 1) HARK = .TRUE. 
IF (ISYH .EQ. 2) HARK = . FALSE. 
IF (ISYH .EQ. 3) HARK = . TRUE. 
CALL ADDROW (IROW, JARRAY, ARRAY, NVALS, HARK) LAST) 
B1(IROW) = BI 
B2 (IROW) = BI 
IER = ° 

C SOLVE SYSTEH 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

IF (IROW .EQ. 0) THEN 

PERFORM SYHBOLIC FACTORIZATION, IF REQUESTED, 
TO ADD NEEDED STORAGE LOCATIONS TO LINKED LIST 

NSEQ = LAST 
IF (ISYH .EQ. 1) THEN 

CALL SYHBOL (H,N,LAST) 
END IF 
IF (ISYH .EQ. 2) THEN 

LAST = NPREV 
END IF 

COPY CONTENTS OF LINKED LIST TO SEQUENTIAL LIST 

CALL SEQUENCE (NSEQ) 

PERFORM QR FACTORIZATION 

CALL FACTOR (B1) 

BACKSOLVE 

CALL BACK SOLVE (B1,X) 

CALCULATE THE RESIDUAL OF THE SYSTEM 
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C 
C 
C 

C 

ENDIF 

CALL RESIDUAL (NSEQ,X,B2,R) 

REINITIALIZE FOR THE NEXT SOLUTION 

FIRST = . FALSE. 
NPREV = LAST 
LAST = 0 

GO TO 9999 

C ERROR HANDLING SECTION 
C 

9200 WRITE (1,9210) M,N 
9210 FORMAT ('DIMENSIONED ARRAY SIZE EXCEEDED (SUBROUTINE LEAST) ',I, 

& 'SEE YOUR PROGRAHHER TO INCREASE THIS' ,I, 
& 'M = ',110,' N = ',110) 

STOP 
C 
C RETURN TO CALLER 
C 

9999 RETURN 
END 
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