
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2014

Comparative Study of C, Java, C# and Jython
Poonam Goyal

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2014 All Rights Reserved

Suggested Citation
Goyal, Poonam, "Comparative Study of C, Java, C# and Jython" (2014). UNF Graduate Theses and Dissertations. 535.
https://digitalcommons.unf.edu/etd/535

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

A COMPARATIVE STUDY OF C, JAVA, C# AND JYTHON

By

Poonam Goyal

A thesis submitted to the
School of Computing

In partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December, 2014

Copyright (@) 2014 by Poonam Goyal

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Poonam Goyal or designated representative.

ii

The thesis “Comparative Study of C, Java, C# and Jython” submitted by Poonam Goyal,
School of Computing student in partial fulfillment of the requirements for the degree of
Master of Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

Dr. Roger Eggen
Thesis Advisor and Committee Chairperson

Dr. Sanjay P. Ahuja

Dr. Ching-Hua Chuan

Accepted for the School of Computing:

Dr. Asai Asaithambi
Director of the School

Accepted for the College of Computing, Engineering, and Construction:

Dr. Mark A. Tumeo
Dean of the College

Accepted for the University:

Dr. John Kantner
Dean of the Graduate School

iii

ACKNOWLEDGEMENTS

I wish to thank my parents, Shakun Goyal and Raj kumar Goyal, for their unwavering

support during the many hours I dedicated to achieving this milestone in my life and

career. I highly appreciate the understanding and patience of my family for achieving one

of the greatest moments of my lifetime.

I thank my thesis director, Dr. Roger Eggen, for his expert advice, feedback and

suggestions. I also thank Dr. Sanjay Ahuja and Dr. Ching-Hua Chuan, who agreed to be

on my thesis committee and provided great feedback in this research process. Working

with these three distinguished UNF faculty members has been an honor and a privilege.

iv

CONTENTS

List of Tables ... viii

List of Figures ..x

Abstract .. xiii

Chapter 1: Introduction ...1

Chapter 2: Literature Review ...3

2.1 An Empirical Comparison ..3

2.2 A Comparison of C and Pascal ...4

2.3 Nonprocedural Computer Language and Programmer Productivity4

2.4 Numeric Performances in C, C# and Java ..6

2.5 A Performance Analysis of Java and C ..6

Chapter 3: Research Methodology ...8

3.1 Why C, C#, Java and Jython ..8

3.1.1 The C programming language ..8

3.1.2 The C# programming language ..8

3.1.3 The Java programming language ...9

3.1.4 The Jython programming language ..9

3.2 Algorithms Studied ...9

3.2.1 Sorting ..10

3.2.1.1 Bubble Sort ..10

3.2.1.2 Quick Sort ..10

v

3.2.2 Searching ..11

3.2.2.1 Linear Search ...11

3.3 Metrics and Statistical Analysis ...12

3.3.1 CPU Utilization ..12

3.3.2 Memory Usage ...13

3.3.3 Runtime in Distributed System using TCP Sockets13

3.4 The Host Environment ...14

3.4.1 Uranus ..14

3.4.2 Atlas ..14

Chapter 4: Results and Discussion: CPU Utilization ...15

4.1 Bubble Sort CPU Utilization for Integer and Float data17

4.2 Bubble Sort CPU Utilization for String data ..19

4.2.1 Quick Sort CPU Utilization for Integer and Float data20

4.2.2 Quick Sort CPU Utilization for String data. ...22

4.3 Linear Search ..23

4.3.1 Linear Search CPU Utilization for Integer, Float and String data23

4.4 Binary Search ...26

4.4.1 Binary Search CPU Utilization for Integer, Float and String data26

Chapter 5: Results and Disussion: Memory Usage ..28

5.1 Bubble Sort ...28

5.1.1 Evaluation of Bubble Sort ..29

5.2 Quick Sort ...34

5.2.1 Evaluation of Quick Sort ..34

vi

5.3 Linear Search ..38

5.3.1 Evaluation of Linear Search ...38

5.4 Binary Search ...42

5.4.1 Evaluation of Binary Search ...42

Chapter 6: Results and Discussion: Execution Time in a Distributed System Using
Tcp Sockets ...46

6.1 Bubble Sort (Integer) ..46

6.1.1 Evaluation of Bubble Sort (Integer) ...46

6.2 Bubble Sort (Float) ...52

6.2.1 Evaluation of Bubble Sort (Float) ..52

6.3 Bubble Sort (String) ...57

6.4 Quick Sort (Integer) ..62

6.4.1 Evaluation of Quick Sort (Integer) ...62

6.5 Quick Sort (Float) ...67

6.5.1 Evaluation of Quick Sort (Float) ..67

6.6 Quick Sort (String) ...72

6.6.1 Evaluation of Quick Sort (String) ..72

Chapter 7: CONCLUSION ...77

Chapter 8: Further Research ...81

References ..82

Vita ...84

vii

LIST OF TABLES

Table 1: Statistical Significance of CPU Utilization .. 16

Table 2: Statistical Significance of Memory Usage ... 29

Table 3: Result for Bubble Sort (Integer) ... 31

Table 4: Result for Bubble Sort (Float) .. 32

Table 5: Result for Bubble Sort (String) .. 33

Table 6: Result for Quick Sort (Integer) .. 35

Table 7: Result for Quick Sort (Float) ... 36

Table 8: Result for Quick Sort (String) .. 37

Table 9: Result for Linear Search (Integer) .. 39

Table 10: Result for Linear Search (Float) ... 40

Table 11: Result for Linear Search (String) ... 41

Table 12: Result for Binary Search (Integer) ... 43

Table 13: Result for Binary Search (Float) .. 44

Table 14: Result for Binary Search (String) ... 45

Table 15: ANOVA results for Bubble Sort (Integer 1 client) 48

Table 16: ANOVA results for Bubble Sort (Integer 2 clients) 49

Table 17: ANOVA results for Bubble Sort (Integer 4 clients) 50

Table 18: ANOVA results for Bubble Sort (Integer 8 clients) 51

Table 19: ANOVA results for Bubble Sort (Float 1 client) 53

Table 20: ANOVA results for Bubble Sort (Float 2 clients) 54

viii

Table 21: ANOVA results for Bubble Sort (Float 4 clients) 55

Table 22: ANOVA results for Bubble Sort (Float 8 clients) 56

Table 23: ANOVA results for Bubble Sort (String 1 client) 58

Table 24: ANOVA results for Bubble Sort (String 2 clients) 59

Table 25: ANOVA results for Bubble Sort (String 4 clients) 60

Table 26: ANOVA results for Bubble Sort (String 8 clients) 61

Table 27: ANOVA results for Quick Sort (Integer 1 client) 63

Table 28: ANOVA results for Quick Sort (Integer 2 clients) 64

Table 29: ANOVA results for Quick Sort (Integer 4 clients) 65

Table 30: ANOVA results for Quick Sort (Integer 8 clients) 66

Table 31: ANOVA results for Quick Sort (Float 1 client) ... 68

Table 32: ANOVA results for Quick Sort (Float 2 clients) 69

Table 33: ANOVA results for Quick Sort (Float 4 clients) 70

Table 34: ANOVA results for Quick Sort (Float 8 clients) 71

Table 35: ANOVA results for Quick Sort (String 1 client) 73

Table 36: ANOVA results for Quick Sort (String 2 clients) 74

Table 37: ANOVA results for Quick Sort (String 4 clients) 75

Table 38: ANOVA results for Quick Sort (String 8 clients) 76

Table 39: Top 2 programming language implementations for Integer data type 79

Table 40: Top 2 programming language implementations for Float data type 79

Table 41: Top 2 programming language implementations for String data type 80

ix

LIST OF FIGURES

Figure 1: CPU Utilization of Bubble Sort (Integer) .. 17

Figure 2: CPU Utilization of Bubble Sort (Float) ... 18

Figure 3: CPU Utilization of Bubble Sort (String) .. 19

Figure 4: CPU Utilization of Quick Sort (Integer) .. 20

Figure 5: CPU Utilization of Quick Sort (Float) ... 21

Figure 6: CPU Utilization of Quick Sort (String) .. 23

Figure 7: CPU Utilization of Linear Search (Integer) ... 24

Figure 8: CPU Utilization of Linear Search (Float) .. 25

Figure 9: CPU Utilization of Linear Search (String) ... 25

Figure 10: CPU Utilization of Binary Search (Integer) ... 26

Figure 11: CPU Utilization of Binary Search (Float) .. 27

Figure 12: CPU Utilization of Binary Search (String) .. 27

Figure 13: Memory Usage of Bubble Sort (Integer) ... 31

Figure 14: Memory Usage of Bubble Sort (Float) .. 32

Figure 15: Memory Usage of Bubble Sort (String) ... 33

Figure 16: Memory Usage of Quick Sort (Integer) ... 35

Figure 17: Memory Usage of Quick Sort (Float) .. 36

Figure 18: Memory Usage of Quick Sort (String) ... 37

Figure 19: Memory Usage of Linear Search (Integer) .. 39

Figure 20: Memory Usage of Linear Search (Float) ... 40

x

Figure 21: Memory Usage of Linear Search (String) .. 41

Figure 22: Memory Usage of Binary Search (Integer) .. 43

Figure 23: Memory Usage of Binary Search (Float) ... 44

Figure 24: Memory Usage of Binary Search (String) ... 45

Figure 25: Bubble Sort (Integer) Using Socket Communication for 1 Client 48

Figure 26: Bubble Sort (Integer) Using Socket Communication for 2 Clients 49

Figure 27: Bubble Sort (Integer) Using Socket Communication for 4 Clients 50

Figure 28: Bubble Sort (Integer) Using Socket Communication for 8 Clients 51

Figure 29: Bubble Sort (Float) Using Socket Communication for 1 Client 53

Figure 30: Bubble Sort (Float) Using Socket Communication for 2 Clients 54

Figure 31: Bubble Sort (Float) Using Socket Communication for 4 Clients 55

Figure 32: Bubble Sort (Float) Using Socket Communication for 8 Clients 56

Figure 33: Bubble Sort (String) Using Socket Communication for 1 Client 58

Figure 34: Bubble Sort (String) Using Socket Communication for 2 Clients 59

Figure 35: Bubble Sort (String) Using Socket Communication for 4 Clients 60

Figure 36: Bubble Sort (String) Using Socket Communication for 8 Clients 61

Figure 37: Quick Sort (Integer) Using Socket Communication for 1 Client 63

Figure 38: Quick Sort (Integer) Using Socket Communication for 2 Clients 64

Figure 39: Quick Sort (Integer) Using Socket Communication for 4 Clients 65

Figure 40: Quick Sort (Integer) Using Socket Communication for 8 Clients 66

Figure 41: Quick Sort (Float) Using Socket Communication for 1 Client 68

Figure 42: Quick Sort (Float) Using Socket Communication for 2 Clients 69

Figure 43: Quick Sort (Float) Using Socket Communication for 4 Clients 70

xi

Figure 44: Quick Sort (Float) Using Socket Communication for 8 Clients 71

Figure 45: Quick Sort (String) Using Socket Communication for 1 Client 73

Figure 46: Quick Sort (String) Using Socket Communication for 2 Clients 74

Figure 47: Quick Sort (String) Using Socket Communication for 4 Clients 75

Figure 48: Quick Sort (String) Using Socket Communication for 8 Clients 76

xii

ABSTRACT

Comparing programming languages is a common topic among programmers and software

developers. With the recent changes in programming standards and continual upgrades in

hardware design, many new programming languages are being developed, while existing

ones are currently going through several enhancements in terms of design and

implementation. In this research, we present a comparative study of four programming

languages, C, Java, C#, and Jython, with respect to the following criteria: memory

consumption, CPU utilization, and execution time. Each test was performed in a

distributed system using TCP sockets with 1, 2, 4 and 8 clients, and on a symmetric

multiprocessing system.

xiii

Chapter 1

INTRODUCTION

Many programming languages exist today, making it difficult for a programmer or

developer to decide which language will work best for his or her specific project. Most of

the time, the decision is based on the programmer’s advanced knowledge of a particular

language, which may not always be the best for their specific problem. Other times, the

decision depends merely on the popularity of a particular language.

Several arguments have been made about how various algorithms perform with respect to

speed, complexity, and efficiency while solving identical problems on identical hardware.

It is equally important to learn how algorithms perform when written in different

programming languages; by identifying the differences, a programmer can choose a

programming language based on its strengths.

In this study, programming languages C, C#, Java and Jython are compared by

implementing the following algorithms: Bubble Sort, Quick Sort, Linear Search, and

Binary Search, in three categories on identical hardware and operating system: (1) CPU

utilization; (2) memory usage; and (3) execution time for client server communication

using TCP socket.

- 1 -

The results of this research show that a programming language does have an effect on

performance and other properties of execution. If one programming language

implementation executes efficiently in one category, it might not perform similarly in

other categories. The results of this study make it possible to determine the most

appropriate language to solve a particular problem. The appropriateness is determined by

statistical data and measurement analysis.

- 2 -

Chapter 2

LITERATURE REVIEW

This chapter summarizes recent articles and other publications focusing on programming

language comparison. The work of Lutz Prechelt [Prechelt 00] and P Sestoft [Sestoft 10],

as discussed in sections 2.1 and 2.4, are chosen as primary references as they also attempt

to solve the same problem of comparing different programming languages. This section

also includes the review of a few other research papers, as the authors present well-

structured analysis of the problem at hand.

2.1 An Empirical Comparison

The article by Lutz Prechelt, “An Empirical Comparison of C, C++, Java, Perl, Python,

Rexx, and Tcl for a Search/String-Processing Program,” [Prechelt 00] presented the

programming language comparison as implemented by different programmers. The study

compared various properties such as run-time, memory constraints, and reliability. The

research described by Prechelt also considered language efficiency. Our study compares

efficiency of four languages, while Prechelt’s study focused on human factors including

various programming styles. Also, due to the nature of the study, Prechelt did not use a

Relative Complexity Metric, which is a representation of a program’s metrics, to

statistically compare the programming languages. There are additional variations

resulting from different programming styles and different frameworks. Prechelt used a

- 3 -

http://scholar.google.com/citations?user=qz1BCu8AAAAJ&hl=en&oi=sra

Relative Complexity Metric, by implementing the algorithms for comparison on a

common hardware configuration. [Prechelt 00]

2.2 A Comparison of C and Pascal

Authors Alan R. Feurer and Narain H. Gehani , in [Feuer & Gehani82] “A Comparison of

the Programming Languages C and Pascal,” considered the language constructs and

design patterns of C and Pascal. The authors believe that Pascal programs tend to be more

reliable than C because of Pascal’s richer set of data types, strong typing, readability and

portability. In contrast, the authors also believe that C is much more flexible, and can be

used effectively in more applications than Pascal, since the programmer has more control.

The authors list all of the strengths and weakness of each language in much the same way

as our research project. All of the features and data types of each language were

considered with an in- depth look at the language aspects of C and Pascal. After

describing the languages in detail, the authors listed which applications should be

implemented in which language [Feuer & Gehani82]. Feurer and Narain’s study did not

provide measurement data, or statistical analysis to give valid insight into the comparison

of these two languages. This article is more a collection of programmer opinions rather

than statistical fact [Feuer & Gehani82].

2.3 Nonprocedural Computer Language and Programmer Productivity

Authors Harel & McLean in [Harel & McLean85] “The Effects of Using a

Nonprocedural Computer Language on Programmer Productivity,” looked at the

- 4 -

differences of two programming languages, Focus, a non-procedural language, and

Cobol, a procedural language. Harel & McLean studied a comparison of programmer’s

productivity and execution time. Six “mid-sized” applications were developed by

different programmers. Independent variables associated with this study are:

1. Hardware.

2. Programming mode.

3. Organizational characteristics of the program development.

4. Source languages.

5. Types of applications.

6. Programmer’s expertise.

In addition, there are several dependent variables linked with these independent variables,

the major one being time. Several run-time factors are also studied, such as total CPU

time for compilation and execution, total number of source lines, and I/O operations.

Each of these variables was measured and studied. Each measurement was statistically

analyzed including simple averages and standard deviation. Once all of the data was

processed, the authors gave their results, concluding that Cobol was faster and more

efficient for the CPU, but that Focus was a more productive language from the

perspective of the programmer. [Harel & McLean, 1985]

- 5 -

2.4 Numeric Performances in C, C# and Java

Author Peter Sestoft in [Sestoft10] “Numeric Performances in C, C# and Java,”

compared the performance of C, C# and Java on 4 trivial cases: matrix multiplication,

division of intensive loops, polynomial evaluation, and distribution function. The tests

revealed that execution speeds vary significantly among these three languages. The C

language performed exceptionally well followed by C#, while Java’s performance was

not satisfactory. Facts that qualify special consideration: [Sestoft10].

● “Considering Java’s bulky array depiction and the lack of precarious code, it is

noteworthy how upright the Sun Hotspot-server and virtual machine executes.

● Microsoft’s C#/.NET runtime normally performs fine, but there is ample scope for

enhancement in the safe code for matrix multiplication.

● The Mono C#/.NET runtime stayed consistent, and in Version 2.6 the overall

performance is good.”[Sestoft10].

2.5 A Performance Analysis of Java and C

Authors Ambika Pajjuri and Haseeb Ahmed in [Pajjuri00] “A Performance Analysis of

Java and C,” compared the Java and C, two admired programming languages. The

authors presented a performance assessment of varied algorithms written in C and Java

on Windows and UNIX operating system environments. The metrics used in the study

were memory usage, speed of execution, overhead and additional special features that

distinguish these two programming languages.

- 6 -

Both programming languages were inspected on how their design selections impact

performance over semantics and programming paradigms. The algorithms considered

were those frequently used in embedded systems, and the MD5 (Message-digest) cipher.

Outcomes illustrated that, overall, C delivered superior runtime performance over Java

across both Linux and Windows platforms. [Pajjuri00]

- 7 -

Chapter 3

RESEARCH METHODOLOGY

In order to measure the effectiveness of this comparison, the research is divided into

several components. The first of several major components of this research are the

programming languages themselves.

3.1 Why C, C#, Java and Jython

3.1.1 The C programming language

The C programming language is a robust language. As it combines the features of high-

level languages with the capabilities of low-level languages, it is appropriate for writing

business packages, as well as system software and applications. It has been chosen for

this study as it is the foundational language of many other programming languages.

3.1.2 The C# programming language

The C# programming language is a multi-paradigm, object-oriented programming

language which facilitates inheritance, abstraction, polymorphism, and encapsulation.

The objective of the language is to enhance a programmer’s productivity. It is growing in

popularity due to its efficiency and ease of coding. The framework manages the

execution of applications and Web services. In addition, it offers several other

functionalities that include memory management and security enforcement. Like Java, C#

- 8 -

also has automatic garbage collection and has a similar syntax structure. In this study, we

will examine Mono, which is an Open Source compiler for C#, which is used in order to

provide consistency for the study. It has been chosen for this study for its syntactical

similarity with Java and to explore how it compares to Java [Bates04].

3.1.3 The Java programming language

The Java programming language has been chosen for this study since it is dynamic,

object oriented, distributed, portable, multithreaded, and strongly typed.

3.1.4 The Jython programming language

The Jython programming language has been chosen for this study as it is a combination

of Java and Python programming languages, implemented to generate Java byte code.

Jython runs on any JVM (Java Virtual Machine) and thus we wanted to determine if it

executes as fast as the popular Java.

3.2 Algorithms Studied

Each programming language performs different algorithms such as Bubble Sort, Quick

Sort, Linear Search, and Binary Search using integer, float and string data types. The

algorithm and language implementation, using a variety of data types, will yield

appropriate performance characteristics of the languages for meaningful comparison.

- 9 -

3.2.1 Sorting

Sorting is a technique for ordering a list of numbers in a particular sequence. In this

research, we will be performing experiments on two types of sorting algorithms: Bubble

Sort and Quick Sort.

3.2.1.1 Bubble Sort

Sorting activities for Bubble Sort:

1. Make multiple passes over the list. In every pass:

a. Compare adjacent elements in the list.

b. Exchange the elements if they are out of order.

c. Each pass moves the largest (or smallest) elements to the end of the list

2. Repeating this process in several passes eventually sorts the array into ascending (or

descending) order.

Bubble sort is only suitable to sort an array with small data size.

3.2.1.2 Quick Sort

Quick Sort works on the technique of dividing the list in two parts based on values higher

or lower than a randomly chosen pivot element, and then recursively quick sorts each of

the sub lists.

1. Choose an element randomly from the list that will work as the pivot element.

2. Arrange the list in such a way that all the elements with values higher than the pivot

come after the pivot, and similarly, all the elements having lower values than the

- 10 -

pivot come before the pivot, and elements equal to the pivot can be placed on either

side of the pivot. This brings the pivot to its final sorted position. This process

partitions the list into two parts where all elements less than the pivot are in one part,

and all elements greater than the pivot are in the other part.

3. Repeat Step 1 and 2 to each of the partitions.

3.2.2 Searching

Searching is a process of finding a particular item from a collection of items. Typically,

the result of search is either true or false, which indicates whether the searched item was

found. If the item was not found, a result of false is returned; if the item was found, its

location is reported. There are two basic approaches: Linear search and Binary search.

3.2.2.1 Linear Search

The linear search algorithm looks down a list, one item at a time.

3.2.2.2 Binary Search

The binary search algorithm compares the desired item with the item in the middle of a

sorted list. If the middle item is larger than the desired item, the first half is examined;

otherwise the second half of the list is examined. The process is repeated on the half to be

examined.

- 11 -

Each algorithm was written in all the four languages (C, Java, C# and Jython) using

appropriate features of the given language.

3.3 Metrics and Statistical Analysis

From this study, it can be determined which programming language implementation was

better than the rest for each of the algorithms when different data types are used. The

results of the analysis provide programmers with useful information that helps them

choose the best programming language for the implementation of the four different

algorithms used in this study [Squared05].

Big O notation is the accepted measure for categorizing the performance of an algorithm.

It depicts the performance of an algorithm when the amount of data increases. Along with

CPU Utilization, Big O notation can also be used to determine the memory consumption

of a particular algorithm. It also provides information about the rate of change of

processing time of an algorithm as the amount of data increases [Bell09].

3.3.1 CPU Utilization

CPU usage refers to the amount of work done by the processor. Observing CPU

utilization reveals the workload of a given physical processor for real machines. CPU

utilization is a fundamental performance measure, used to determine a computer’s

efficiency. Computers do not accomplish tasks when the CPU is idle.

- 12 -

3.3.2 Memory Usage

Memory usage specifies the amount of main memory used or referenced by a program

while it is running. This includes all types of active memory regions, such as the code

segment, that includes program instructions, initialized as well as uninitialized data

segments, call stack, and heap memory. It also includes the memory needed to pull any

added data structures like symbol tables, open files, shared libraries mapped to a current

process, and debugging data structures that a program requires while executing.

Larger programs use more memory. The programs themselves usually do not devote the

largest portions to their own memory usage; rather, the structure introduced by the

runtime environment consumes most of the memory.

3.3.3 Runtime in Distributed System using TCP Sockets

A distributed system consists of multiple independent computers connected by a network

that is equipped with distributed system software. This software allows computers to

coordinate their activities and share their resources of system software, hardware, and

data.

In distributed programming, a problem is divided into many sub problems or tasks which

are distributed to different machines. Although the machines run independently, they still

have to interact with each other for the inputs and the results. This is contradictory to the

scenario in which the end-user assumes that there are different computers whose

- 13 -

locations and functionality is not transparent. Advantages of distributed systems include

enhanced reliability, availability and performance, local self-sufficiency, more economy,

and many others. In this study we will calculate the runtime in a Distributed System using

TCP Sockets [Berlin03].

3.4 The Host Environment

The programs for studying CPU utilization and memory usage were run on Atlas,

whereas client-server programs were run on Uranus. The specifications for the two

systems are described in the following subsections

3.4.1 Uranus

Uranus is a thirteen-node Beowulf cluster with Gigabit Ethernet network. All nodes are

made up of 2.83GHz Intel Xeon processor.

3.4.2 Atlas

Atlas is a shared memory multiprocessor machine. It has a Quad Quad-Core Intel Xeon

Processor with 64 threads running at 2.00 GHz along with 128 GB RAM.

- 14 -

Chapter 4

RESULTS AND DISCUSSION: CPU UTILIZATION

This chapter presents the results of our comparison study of the programming languages

C, Java, C# and Jython using the metrics of CPU utilization on the Bubble Sort, Quick

Sort, Linear Search and Binary Search algorithms. We used six different data sizes

10000, 20000, 40000, 60000, 80000 and 100000.

CPU usage refers to the amount of work done by the computer’s processor. Let us say

process X starts at time a, and finishes at time b. The total time that Process X takes from

start to finish is b-a. Of this time, let us say p is the time spent on Process X (between a

and b), and q is the idle time (between a and b). Then p + q = b − a. Using these

quantities, we may define CPU utilization as follows:

CPU Utilization for Process X = (Time spent on Process X) / (Time spent on Process

X + Idle Time) = p / (p + q), or p / (b − a), expressed as a percentage.

Note: CPU Utilization with the C programming language was almost negligible when

compared to the other programming languages studied.

- 15 -

Statistical Significance

In order to test the statistical significance of the results obtained from the algorithms, a

paired t test was performed. The significance level chosen was 0.05. The null hypothesis

states that the CPU Utilization obtained from the algorithm using one programming

language is not significantly smaller than the CPU Utilization obtained from the other

programming language. The alternative hypothesis is that the CPU Utilization obtained

from the algorithm using one programming language is significantly smaller than the

other programming language.

Table 1 below shows the results of the T-test. The p-value is less than 0.05 for C & Java,

C# & Jython, Jython & C and Java & Jython but not for Java & C#. Therefore, we cannot

reject the null hypothesis for Java & C#. As can be seen, the p-value is less than 0.05 in

all tests except Java and C# demonstrating that the differences in CPU Utilization are

statistically significant. Figures 1 to 12 depicts the CPU Usage of C, Java, C# and Jython.

Statistical Significance Test

Comparison p-value Statistical Significance

C & Java 0.000003 Yes

Java & C# 0.499597 No

C# & Jython 0.000084 Yes

Jython & C 0.000001 Yes

Java & Jython 0.000002 Yes

C& C# 0.000001 Yes

Table 1: Statistical Significance of CPU Utilization

- 16 -

4.1 Bubble Sort CPU Utilization for Integer and Float data

Figure 1 shows the CPU Utilization of bubble sort on integer data, and under

implementation of C, Java, C# and Jython. C proved to be the leader and Java came in

second. This may be because C performs better than Java in low-level numeric

computation.

Figure 1: CPU Utilization of Bubble Sort (Integer)

Figure 2 shows that when float data is used. C still proves to be the leader in CPU

utilization and Java comes in second.

- 17 -

Figure 2: CPU Utilization of Bubble Sort (Float)

In C, program statements are compiled into a lower number of machine instructions. On

the other hand, Java program statements, when interpreted by a Java virtual machine, are

compiled to a larger volume of byte code that involves more machine instructions, as

compared to the statically-compiled programming language, C.

C# runs great on Linux, and Mono as a platform has advanced quite nicely. C# employs

less CPU as compared to Jython, and more CPU than C and Java. CPU usage by Jython

was the highest, among the other three programming languages. However, the algorithm

is completely CPU bound; therefore, Bubble Sort directly measures the performance of

the Jython byte code interpreter. Therefore it is slower than executing the equivalent

native code. Whenever a long running CPU bound loop is written in Jython, a

considerable performance loss is expected.

- 18 -

4.2 Bubble Sort CPU Utilization for String data

Figure 3 shows the CPU Utilization of bubble sort on String data sorting with C, Java, C#

and Jython. C was the leader once again with the lowest CPU usage, and Jython was

second.

Figure 3: CPU Utilization of Bubble Sort (String)

In the case of the Jython programming language, processor usage is less when compared

to developer time. C# and Java were third and fourth respectively. C# runs well on Linux,

and Mono as a platform has advanced quite nicely. It employs less CPU as compared to

Java. C performs much better than Java in low-level numeric computations. In C,

program statements are compiled into a smaller number of machine instructions. Whereas

in Java, program statements, when interpreted by a Java virtual machine, are compiled to

- 19 -

a larger number of byte codes that involves a larger volume of machine instructions, as

compared to the statically compiled programming language C. Just like C, Java’s byte

codes are also compiled into machine instructions at runtime. String operations are slow,

as Java uses immutable, UTF-16 encoded string objects, which requires significant

memory, operations, and CPU resources.

4.2.1 Quick Sort CPU Utilization for Integer and Float data

Figures 4 depict that the programming language that required the greatest CPU usage was

C#, which makes it the most complex solution for this algorithm. C was once again first

with the least CPU usage value.

Figure 4: CPU Utilization of Quick Sort (Integer)

- 20 -

Figure 5 shows that C performs much better than Java in low-level numeric

computations. In C, program statements are compiled into a smaller number of machine

instructions, whereas in Java, program statements, when interpreted by a Java virtual

machine, are compiled to a larger number of byte codes that involve more machine

instructions.

Figure 5: CPU Utilization of Quick Sort (Float)

Java’s byte codes are compiled into machine instructions only at runtime. Jython CPU

usage was less than Java and C#. Jython is essentially Python written in Java. Java

libraries can be used while still coding in Python. Though Jython suffers from some

performance penalties too, it is usually of negligible consequence for a project. The

advantage of Jython is that CPU usage is economical as compared to developer time.

- 21 -

4.2.2 Quick Sort CPU Utilization for String data.

Figure 6 shows that for Quick Sort using string data, C was the leader once again with the

lowest CPU usage, and Jython was second. In the case of Jython, processor usage is less

when compared to developer time. C# and Java were third and fourth respectively. C#

runs well on Linux, and Mono as a platform is mature. It employs less CPU as compared

to Java. C performs much better than Java in low-level numeric computations. In C,

program statements are compiled into a smaller number of machine instructions, whereas

in Java, program statements, when interpreted by a Java virtual machine, are compiled to

a larger number of byte codes that involve many more machine instructions as compared

to the statically-compiled programming language C. Similar to C, Java’s byte codes are

also compiled into machine instructions at runtime. String operations are, to a small

degree, slow as Java uses immutable, UTF-16 encoded string objects. This suggests it

needs a lot of memory, operation, and CPU. A few operations are a lot more complicated

than with ASCII (C).

- 22 -

Figure 6: CPU Utilization of Quick Sort (String)

4.3 Linear Search

4.3.1 Linear Search CPU Utilization for Integer, Float and String data

As shown in figures 7, 8, and 9 for linear search with integer, float and string, C was once

again first in terms of lowest CPU usage. Jython was second, owing to the fact that it is a

combination of Java and Python. Java libraries can be used while still coding in Python.

Though Jython suffers from some performance penalties, it is usually of negligible

consequence for a project. The benefit is that CPU usage is economical as compared to

developer time. C# and Java were third and fourth respectively. However, the CPU usage

of Java is higher than a statically-compiled programming language like C and similar to

- 23 -

Just-in-Time compiled languages like C#, because of its similar syntax structure. But

Mono as a platform works quite well for C# in terms of CPU usage.

Figure 7: CPU Utilization of Linear Search (Integer)

- 24 -

Figure 8: CPU Utilization of Linear Search (Float)

Figure 9: CPU Utilization of Linear Search (String)

- 25 -

4.4 Binary Search

4.4.1 Binary Search CPU Utilization for Integer, Float and String data

As evident from figures 10, 11, and 12 for CPU utilization for binary search, C was the

leader with almost negligible CPU usage as compared to the other three programming

languages (C#, Java, and Jython). In second place was C#, which runs nicely on Mono.

C# utilized less CPU as compared to Java, and used more CPU than C and Jython. It

appears that, for this case, Mono was not mature enough to contend against a seasoned

veteran programing language like Java. The CPU usage of Jython was less than Java and

C#, since Jython is Python written in Java. Java libraries can be used, but still are coded

in Python. The performance penalties associated with Jython are of typically very little to

no consequence for a project.

Figure 10: CPU Utilization of Binary Search (Integer)

- 26 -

Figure 11: CPU Utilization of Binary Search (Float)

Figure 12: CPU Utilization of Binary Search (String)

- 27 -

Chapter 5

RESULTS AND DISUSSION: MEMORY USAGE

In this chapter, we will compare the memory usage for Bubble Sort, Quick Sort, Linear

Search and Binary Search when implemented using C, Java, C# and Jython.

Memory Usage refers to the amount of memory used by a process. Let us say process X

uses q bytes of memory. The total available memory is r using these quantities; we may

define Memory Usage as follows:

Memory Usage for process X =
availablememory Total

X Processby usedMemory
 =

r
q

Memory Usage for process X = (Memory used by Process X) / (Total memory

available) = q / r, expressed as a percentage. Total memory available = 128 GB =

1.374e+11 bytes

5.1 Bubble Sort

Statistical Significance

In order to test the statistical significance of the results obtained from the algorithms, a

paired t test was performed. The significance level chosen was 0.05. The null hypothesis

states that the Memory Usage obtained from the algorithm using one programming

- 28 -

language is not significantly smaller than the Memory usage obtained from the other

programming langue. The alternative hypothesis is that the Memory usage obtained from

the algorithm using one programming language is significantly smaller than the other

programming langue.

Table 2 below shows the results of the T-test. The p-value is less than 0.05 for C & Java,

C# & Jython, Jython & C, Java & C#., Java & Jython and Java & C#. Therefore, we

reject the null hypothesis in all cases. As can be seen, the p-value is less than 0.05 in all

tests demonstrating that the differences in Memory usage are statistically significant.

Figure 13 to 24 depicts the Memory Usage of C, Java, C# and Jython.

Statistical Significance Test

Comparison p-value Statistical Significance

C & Java 0.000009 Yes

Java & C# 0.004026 Yes

C# & Jython 0.000001 Yes

Jython & C 0.000001 Yes

Java & Jython 0.000636 Yes

C& C# 0.002268 Yes

Table 2: Statistical Significance of Memory Usage

5.1.1 Evaluation of Bubble Sort

Figures 13 through 15 show the memory usage of Bubble Sort (integer, float, and string)

and tables 3, 4, and 5 depict the data collected from the algorithms. C was first, with low

memory consumption, and Jython was second. There was a slight relative increase in

- 29 -

Jython’s memory usage with increasing data size. Because it is constructing byte code, it

is spending significant resources in translation rather than in execution. Third was C#,

again with a value close to Java, since their processing styles are similar. Java was the

programming language that used the greatest amount of memory, because Java programs

use automatic garbage collection, and objects are larger in Java since all objects are

allocated on the heap, each having a virtual table including support for synchronization

primitives.

- 30 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00043 0.00360 0.00085 0.00185

20000 0.00046 0.00630 0.00320 0.00185

40000 0.00053 0.01250 0.00450 0.00185

60000 0.00059 0.01680 0.00660 0.00185

80000 0.00064 0.02550 0.00930 0.00185

100000 0.00070 0.03100 0.01130 0.00185

Table 3: Result for Bubble Sort (Integer)

Figure 13: Memory Usage of Bubble Sort (Integer)

- 31 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00047 0.00440 0.00155 0.00187

20000 0.00050 0.00800 0.00261 0.00187

40000 0.00057 0.01580 0.00279 0.00188

60000 0.00062 0.02040 0.00296 0.00188

80000 0.00068 0.02970 0.00325 0.00188

100000 0.00074 0.03540 0.00349 0.00188

Table 4: Result for Bubble Sort (Float)

Figure 14: Memory Usage of Bubble Sort (Float)

- 32 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00073 0.00319 0.00109 0.00188

20000 0.00103 0.00594 0.00370 0.00188

40000 0.00161 0.01090 0.00600 0.00188

60000 0.00219 0.01660 0.00939 0.00188

80000 0.00277 0.02129 0.01134 0.00188

100000 0.00335 0.02690 0.01311 0.00189

Table 5: Result for Bubble Sort (String)

Figure 15: Memory Usage of Bubble Sort (String)

- 33 -

5.2 Quick Sort

5.2.1 Evaluation of Quick Sort

Tables 6, 7, and 8 depict the data collected from the algorithm and Figures 16 through 18

depict that the memory usage of C is less, as compared to the other programming

languages. Java has the highest memory usage. Whereas Jython was again second, there

was a slight increase in Jython’s memory usage with increasing data size, because of the

construction of byte code. It is spending all the resources in translation rather than

execution. Third was C#, although Java and C# were actually quite similar. But C#/Mono

won on memory usage over Java. Mono also has automatic garbage collection

functionality like Java, it removes unused objects from the heap. This increases

programmer productivity; however, if thousands of objects are created, additional work

of the garbage collector will be required, resulting in more memory consumption,

slowing the application. Java’s implementation was the last.

- 34 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00043 0.00360 0.00055 0.00185

20000 0.00047 0.00630 0.00261 0.00185

40000 0.00053 0.01250 0.00270 0.00185

60000 0.00058 0.01680 0.00279 0.00185

80000 0.00064 0.02450 0.00297 0.00185

100000 0.00070 0.03060 0.00308 0.00185

Table 6: Result for Quick Sort (Integer)

Figure 16: Memory Usage of Quick Sort (Integer)

- 35 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00047 0.00490 0.00085 0.00186

20000 0.00050 0.00900 0.00421 0.00186

40000 0.00057 0.01770 0.00451 0.00186

60000 0.00062 0.02550 0.00650 0.00186

80000 0.00068 0.03500 0.00850 0.00187

100000 0.00074 0.04400 0.00980 0.00187

Table 7: Result for Quick Sort (Float)

Figure 17: Memory Usage of Quick Sort (Float)

- 36 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00073 0.00140 0.00099 0.00187

20000 0.00103 0.00660 0.00450 0.00187

40000 0.00160 0.00990 0.00680 0.00187

60000 0.00219 0.01700 0.00900 0.00188

80000 0.00278 0.02200 0.01000 0.00188

100000 0.00336 0.03100 0.01234 0.00188

Table 8: Result for Quick Sort (String)

Figure 18: Memory Usage of Quick Sort (String)

- 37 -

5.3 Linear Search

5.3.1 Evaluation of Linear Search

Tables 9, 10, and 11 depict the data collected from the algorithms, and Figures 19

through 21 shows that the result of this algorithm was, as expected. C implementation of

the algorithm was the leader with the lowest memory consumption. Jython, being stable

at its second position for the same reason, showed a slight increase in memory usage with

increasing data size, because of its constructing byte code, and because it is spending all

its resources in translation rather than in execution. C#/Mono was third, since in Mono

each object has an overhead of 8 bytes that comprises 4 bytes for the sync block and 4

bytes for the type. Every time an object is allocated, a garbage collector is finding space

for the object. In case of unavailability of space, the garbage collector will look for and

delete unreferenced objects. In the event there is an additional object allocation, then the

garbage collector is required to release the objects. The memory consumption of Java is

the highest, placing last of the four programming languages.

- 38 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00043 0.00223 0.00054 0.00181

20000 0.00046 0.00355 0.00183 0.00181

40000 0.00053 0.00591 0.00210 0.00182

60000 0.00057 0.00794 0.00228 0.00182

80000 0.00062 0.01030 0.00253 0.00182

100000 0.00069 0.01460 0.00283 0.00182

Table 9: Result for Linear Search (Integer)

Figure 19: Memory Usage of Linear Search (Integer)

- 39 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00047 0.00270 0.00080 0.00183

20000 0.00050 0.00640 0.00210 0.00183

40000 0.00056 0.01030 0.00350 0.00184

60000 0.00062 0.01368 0.00550 0.00184

80000 0.00068 0.01600 0.00650 0.00184

100000 0.00074 0.01848 0.00850 0.00184

Table 10: Result for Linear Search (Float)

Figure 20: Memory Usage of Linear Search (Float)

- 40 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00070 0.00177 0.00090 0.00184

20000 0.00100 0.00363 0.00230 0.00184

40000 0.00150 0.00634 0.00470 0.00184

60000 0.00210 0.00872 0.00680 0.00184

80000 0.00270 0.01040 0.00840 0.00184

100000 0.00330 0.01410 0.01060 0.00184

Table 11: Result for Linear Search (String)

Figure 21: Memory Usage of Linear Search (String)

- 41 -

5.4 Binary Search

5.4.1 Evaluation of Binary Search

Tables 12, 13 and 14 depict the data collected from the algorithm. Figures 22 through 24

shows that the most efficient language for this algorithm was the compiled programming

language C which had the lowest memory usage. In second place came Jython, whose

memory was nearly consistent. Third and fourth were C# and Java respectively. C# runs

nicely on the UNIX operating system, since Mono as a platform is mature. It utilizes less

memory as compared to Java. In this case, Mono is not only mature enough to compete

with the Java, in some cases, it can even supersede it. Java posted the highest memory

usage because Java programs use automatic garbage collection, and objects are larger in

java, as all objects in Java are allocated on a heap, and have a virtual table along with the

support for synchronization primitives.

- 42 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00043 0.00144 0.00054 0.00174

20000 0.00043 0.00265 0.00127 0.00174

40000 0.00046 0.00434 0.00152 0.00176

60000 0.00053 0.00675 0.00170 0.00177

80000 0.00056 0.00918 0.00195 0.00178

100000 0.00061 0.01042 0.00224 0.00180

Table 12: Result for Binary Search (Integer)

Figure 22: Memory Usage of Binary Search (Integer)

- 43 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00044 0.00191 0.00054 0.00175

20000 0.00046 0.00328 0.00164 0.00175

40000 0.00053 0.00628 0.00292 0.00177

60000 0.00057 0.00913 0.00359 0.00178

80000 0.00062 0.01355 0.00432 0.00179

100000 0.00065 0.01594 0.00617 0.00181

Table 13: Result for Binary Search (Float)

Figure 23: Memory Usage of Binary Search (Float)

- 44 -

Data Size C(%) Java(%) C#(%) Jython(%)

10000 0.00066 0.00155 0.00069 0.00176

20000 0.00085 0.00271 0.00182 0.00176

40000 0.00143 0.00540 0.00328 0.00178

60000 0.00194 0.00790 0.00556 0.00179

80000 0.00253 0.00920 0.00699 0.00180

100000 0.00299 0.01210 0.00844 0.00182

Table 14: Result for Binary Search (String)

Figure 24: Memory Usage of Binary Search (String)

- 45 -

Chapter 6

RESULTS AND DISCUSSION:
EXECUTION TIME IN A DISTRIBUTED SYSTEM USING TCP SOCKETS

First, the data to be sorted was generated on the server side by specifying the data size

and number of clients from the command prompt, and then the server waited for the

clients to connect. Once all the clients were connected, the server generated the data and

sent data to the client. Once the data was sent to the clients, the timer started, and then

stopped only after receiving the sorted data from all the clients. The server is the master

and the clients are the workers in this usage.

Let us say the timer is started at X millisecond and is stopped at Y milliseconds. Using

these quantities, we may define Run time as follows:

Difference (Z) = end time (Y) – start time(X)

6.1 Bubble Sort (Integer)

6.1.1 Evaluation of Bubble Sort (Integer)

Tables 15 through 18 depict the data obtained from the algorithm and also the result of

ANOVA tests.

ANOVA provides a statistical test of whether or not the means of several groups are

equal, and therefore generalizes the t-test to more than two groups.

- 46 -

http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Student%27s_t-test%23Independent_two-sample_t-test

Figures 25 through 28 show that Java emerged as the leader, and proved to be the least

complex solution. Its elapsed time was the lowest with the increasing data size. Second

was C#, but its values were close to Java since its execution structure is similar. The

performances of C# and Java were very close, with Java having a slight edge. Java

comprises built-in socket libraries, eliminating the requirement of third party socket

operations. Third was the C implementation. Jython was the slowest since it is an

interpreted programming language with slow execution speed. Jython’s start-up time is

slow, but the ease of programming makes Jython desirable. Since Jython is interpreted, it

is not designed to be used for CPU bound applications.

- 47 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 314 296 250 13782

20000 1331 884 960 55778

40000 5453 3259 3805 223309

60000 10371 7316 8570 501795

80000 22096 12991 15235 926146

100000 34689 20356 23815 137193

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.015

Table 15: ANOVA results for Bubble Sort (Integer 1 client)

Figure 25: Bubble Sort (Integer) Using Socket Communication for 1 Client

- 48 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 157 124 125 7063

20000 665 461 480 27897

40000 2726 1729 1902 111460

60000 5185 2862 4285 250299

80000 10934 6594 7617 447302

100000 17143 11078 11907 697992

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0081

Table 16: ANOVA results for Bubble Sort (Integer 2 clients)

Figure 26: Bubble Sort (Integer) Using Socket Communication for 2 Clients

- 49 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 78 47 62 3567

20000 332 212 240 13798

40000 1363 784 951 55478

60000 2592 1792 2145 126329

80000 5295 3343 3808 224919

100000 6308 5286 5954 351484

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0081

Table 17: ANOVA results for Bubble Sort (Integer 4 clients)

Figure 27: Bubble Sort (Integer) Using Socket Communication for 4 Clients

- 50 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 39 27 31 1738

20000 166 101 120 6927

40000 681 407 475 27917

60000 1296 941 1073 62331

80000 2221 1713 1904 11088

100000 3538 2638 2987 175994

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0078

Table 18: ANOVA results for Bubble Sort (Integer 8 clients)

Figure 28: Bubble Sort (Integer) Using Socket Communication for 8 Clients

- 51 -

6.2 Bubble Sort (Float)

6.2.1 Evaluation of Bubble Sort (Float)

Table 19 through 22 depicts the data obtained from the algorithm and the result of

ANOVA tests. Figures 29 through 32 shows the results for this algorithm were as

expected. Java implementation was again the leader with the lowest elapsed time. Java

and C# performed similarly for the reasons stated above. C implementation of the

algorithm placed third. Jython had the expected result of being last, owing to its low

execution speed and start up time.

- 52 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 649 356 405 14903

20000 1455 1104 1235 58365

40000 5951 3750 4920 226813

60000 13557 8297 11045 504345

80000 24144 14670 19570 928930

100000 37821 22771 30550 1391903

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0078

Table 19: ANOVA results for Bubble Sort (Float 1 client)

Figure 29: Bubble Sort (Float) Using Socket Communication for 1 Client

- 53 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 171 178 202 8486

20000 717 552 617 29470

40000 2911 1875 2460 115502

60000 6626 4148 5523 264337

80000 11907 7335 9785 448589

100000 18742 11385 15275 700861

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0073

Table 20: ANOVA results for Bubble Sort (Float 2 clients)

Figure 30: Bubble Sort (Float) Using Socket Communication for 2 Clients

- 54 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 85 88 101 4305

20000 351 276 309 16512

40000 1378 938 1230 60033

60000 3214 2074 2762 128439

80000 5408 3667 4893 226374

100000 10108 5692 7638 354626

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0073

Table 21: ANOVA results for Bubble Sort (Float 4 clients)

Figure 31: Bubble Sort (Float) Using Socket Communication for 4 Clients

- 55 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 54 44 51 1973

20000 179 138 155 7485

40000 743 468 615 33331

60000 1618 1037 1381 64683

80000 2914 1833 2442 113572

100000 6219 2846 3819 176629

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0067

Table 22: ANOVA results for Bubble Sort (Float 8 clients)

Figure 32: Bubble Sort (Float) Using Socket Communication for 8 Clients

- 56 -

6.3 Bubble Sort (String)

6.3.1 Evaluation of Bubble Sort (String)

Table 23 through 26 depicts the data obtained from the algorithm and the result of

ANOVA tests. Figures 33 through 36 shows that, for this algorithm, the C

implementation produced the best results, followed very closely by Java. String

operations are slow in Java, because Java uses immutable, UTF-16 encoded string

objects. This means that surplus memory is required, since a larger memory usage

enhances the chances that parts of the program will be swapped out to disk. Moreover,

swap file usage slows the speed. Finally, certain operations are more complex as

compared to those with ASCII. C# implementation was slower than C and Java, but faster

than Jython.

- 57 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 614 1212 5310 13755

20000 2667 3613 20845 55409

40000 10896 14822 91913 221621

60000 24968 33277 216167 498060

80000 45510 57680 405606 924298

100000 72911 91337 681704 1349687

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.034

Table 23: ANOVA results for Bubble Sort (String 1 client)

Figure 33: Bubble Sort (String) Using Socket Communication for 1 Client

- 58 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 442 606 2650 6996

20000 1333 1806 10423 27586

40000 5448 7411 45957 112813

60000 12484 16638 108083 24882

80000 22750 28840 202803 442803

100000 36455 45668 340852 693216

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.11

Table 24: ANOVA results for Bubble Sort (String 2 clients)

Figure 34: Bubble Sort (String) Using Socket Communication for 2 Clients

- 59 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 230 310 1325 3491

20000 668 922 5213 13762

40000 2854 3735 22979 55245

60000 6321 8413 54041 125246

80000 11432 15420 101401 223168

100000 18288 23856 170426 349441

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.037

Table 25: ANOVA results for Bubble Sort (String 4 clients)

Figure 35: Bubble Sort (String) Using Socket Communication for 4 Clients

- 60 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 110 152 663 1740

20000 334 456 2607 7002

40000 1362 1852 11489 27653

60000 3121 4159 27020 62131

80000 5689 7210 50700 110846

100000 9114 11417 85213 173358

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.036

Table 26: ANOVA results for Bubble Sort (String 8 clients)

Figure 36: Bubble Sort (String) Using Socket Communication for 8 Clients

- 61 -

6.4 Quick Sort (Integer)

6.4.1 Evaluation of Quick Sort (Integer)

Table 27 through 30 depicts the data obtained from the algorithm and the result of

ANOVA tests. Figures 37 to 40 show that C was the leader and proved to be the fastest

solution. One of the surprising results is that C# was second, thus beating Java. Fourth

was Jython.

- 62 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 5 99 10 568

20000 7 137 20 1362

40000 16 165 42 2572

60000 24 190 53 3881

80000 32 209 69 4927

100000 41 212 99 5999

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001

Table 27: ANOVA results for Quick Sort (Integer 1 client)

Figure 37: Quick Sort (Integer) Using Socket Communication for 1 Client

- 63 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 4 46 7 284

20000 6 68 16 681

40000 14 85 25 1286

60000 22 95 34 1945

80000 30 105 41 2463

100000 38 110 62 2999

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001

Table 28: ANOVA results for Quick Sort (Integer 2 clients)

Figure 38: Quick Sort (Integer) Using Socket Communication for 2 Clients

- 64 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 3 23 5 142

20000 7 34 14 345

40000 12 43 20 645

60000 14 48 25 973

80000 24 58 30 1232

100000 33 68 40 1519

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001

Table 29: ANOVA results for Quick Sort (Integer 4 clients)

Figure 39: Quick Sort (Integer) Using Socket Communication for 4 Clients

- 65 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 2.5 17 4 75

20000 5 20 12 173

40000 6 24 15 322

60000 9 27 20 487

80000 14 34 25 616

100000 21 46 30 750

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001

Table 30: ANOVA results for Quick Sort (Integer 8 clients)

Figure 40: Quick Sort (Integer) Using Socket Communication for 8 Clients

- 66 -

6.5 Quick Sort (Float)

6.5.1 Evaluation of Quick Sort (Float)

Table 31 through 34 depicts the data obtained from the algorithm and the result of

ANOVA tests. Figures 41 to 44 show that in this algorithm, C was the language that

produced the fastest solution. Jython posted the slowest time since it is an interpreted

programming language with low execution speed. In third place was Java, which runs on

the virtual machine. This not only makes programming simpler but also more portable;

however, the downside of this method is performance loss, in comparison to the compiled

code in C, which is mainly noticeable at calculations comprising floating-point numbers.

C# was second, but performed nearly as well as C.

- 67 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 10 218 15 1218

20000 18 262 30 2363

40000 39 290 51 5268

60000 57 349 72 9559

80000 77 358 100 13287

100000 99 403 130 16481

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003

Table 31: ANOVA results for Quick Sort (Float 1 client)

Figure 41: Quick Sort (Float) Using Socket Communication for 1 Client

- 68 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 7 109 10 610

20000 12 131 28 1282

40000 20 145 35 2786

60000 30 170 40 4875

80000 41 189 50 6645

100000 52 202 65 8356

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003

Table 32: ANOVA results for Quick Sort (Float 2 clients)

Figure 42: Quick Sort (Float) Using Socket Communication for 2 Clients

- 69 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 5 55 8 305

20000 9 66 18 591

40000 15 78 24 1317

60000 28 90 32 2389

80000 35 99 38 3322

100000 41 110 46 4120

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003

Table 33: ANOVA results for Quick Sort (Float 4 clients)

Figure 43: Quick Sort (Float) Using Socket Communication for 4 Clients

- 70 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 3 28 6 167

20000 6 33 10 319

40000 9 39 16 659

60000 16 45 23 1234

80000 24 51 29 1664

100000 35 57 38 2120

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003

Table 34: ANOVA results for Quick Sort (Float 8 clients)

Figure 44: Quick Sort (Float) Using Socket Communication for 8 Clients

- 71 -

6.6 Quick Sort (String)

6.6.1 Evaluation of Quick Sort (String)

Table 35 through 38 depicts the data obtained from the algorithm and the result of

ANOVA tests. Figures 45 through 48 shows that C# was the leader for character being

the fastest. String types in both Java and C# exhibit a similar behaviour with slight

differences in their execution speed. Second was Java, which was expected to be slower

for strings since string operations are immutable in Java. Therefore, it requires extra

memory and memory access. Third was C. Therefore, while the allocations/freeing are a

slow process, if the data size of the input files were smaller, C would have performed

much better than Java. Fourth was, again, Jython.

- 72 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 9 11 7 741

20000 24 19 10 173

40000 64 25 22 313

60000 111 32 24 457

80000 181 44 26 657

100000 269 85 28 804

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0009

Table 35: ANOVA results for Quick Sort (String 1 client)

Figure 45: Quick Sort (String) Using Socket Communication for 1 Client

- 73 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 13 44 23 371

20000 67 69 30 689

40000 131 88 75 1209

60000 553 109 93 1819

80000 762 148 102 2789

100000 1513 222 150 3213

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0009

Table 36: ANOVA results for Quick Sort (String 2 clients)

Figure 46: Quick Sort (String) Using Socket Communication for 2 Clients

- 74 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 12 24 10 130

20000 26 36 15 346

40000 75 45 36 605

60000 291 55 52 909

80000 392 78 56 1313

100000 583 160 62 1607

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0009

Table 37: ANOVA results for Quick Sort (String 4 clients)

Figure 47: Quick Sort (String) Using Socket Communication for 4 Clients

- 75 -

Data Size C(ms) Java(ms) C#(ms) Jython(ms)

10000 9 11 7 71

20000 24 19 10 173

40000 64 25 22 313

60000 111 32 24 457

80000 181 44 26 657

100000 269 85 28 804

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0006

Table 38: ANOVA results for Quick Sort (String 8 clients)

Figure 48: Quick Sort (String) Using Socket Communication for 8 Clients

- 76 -

Chapter 7

CONCLUSION

The main purpose of this research was to provide a comparison of the performance of

different programming languages, when used to implement several classical algorithms

and measurement criteria on a common platform. In this study, all of the results are based

on measurement values taken from the three categories: CPU Utilization, Memory Usage

and Run time in a distributed system using TCP sockets.

Some languages performed as anticipated and others performed with some unexpected

outcomes. The research provided a well-defined perspective of how each language

performed based on the memory consumption, CPU utilization, and runtime for client-

server communication using socket API of different languages (C, C#, Java and Jython),

on algorithms (Bubble Sort, Quick Sort, Linear Search and Binary Search), for data types

(Integer, Float, String). The overall best performers in case of memory usage and CPU

usage were C and Jython, undoubtedly with C being the leader. In the case of computing

CPU utilization in Bubble Sort, Jython was fourth, which was quite obvious since

interpreted languages like Jython do not perform efficiently in a completely CPU bound

algorithm.

In the case of computing runtime in a Distributed System using TCP Sockets for Bubble

Sort, Java and C# performed almost equally. The third best performer among the four

programming languages here was C. Fourth was Jython, as expected, which proved that a

- 77 -

simple language structure in terms of coding could have complex scores in this area. For

Bubble Sort using string data types, C was the best performer due to Java’s slow speed of

string operations.

For Quick Sort, C was the fastest solution. Second and third were C# and Java,

respectively. Java has more tools accessibility across all the platforms, although there are

many tools accessible for .NET on Windows platforms, increasing acceptance of C#.

Jython is last for a language recommendation for network communication, based solely

on the measurements evaluated. In addition, in the case of Quick Sort using string data

type, C# and Java were first and second respectively, with C being in the third position.

Fourth was again Jython, which was quite expected.

To presume that Jython is not suitable for an application because of the fact that it is

excessively slow is not correct. There are not many applications these days for which

execution speed is such a huge concern. In the event of a bottleneck in the code, we can

simply move that area of code to Java as necessary. As programmer/developer, we have

to be concerned with the speed of development rather than the rate of execution, and in

this scenario, Jython is quick.

After reviewing these results, it is obvious that programming languages on a common

platform using similar coding styles does have an impact in the performance of different

algorithms. The main goal of this study was to illustrate these differences, which is quite

evident from the measurements obtained from the calculations.

- 78 -

Tables 39, 40 and 41 show the top 2 programming language implementations in Bubble

Sort, Quick Sort, Linear Search, and Binary search in terms of CPU Utilization, Memory

Usage and Run time in distributed system using TCP sockets (for 1,2,4 and 8 client) for

Integer, float and String data types.

Comparison of Programming languages C, Java, C# AND Jython on Integer data

Criteria

Algorithm CPU Utilization Memory Usage Run Time using TCP
Sockets

Bubble Sort C and Java C and Jython Java and C#

Quick Sort C and Jython C and Jython C and C#

Linear Search C and Jython C and Jython N/A

Binary Search C and Jython C and Jython N/A

Table 39: Top 2 programming language implementations for Integer data type

Comparison of Programming languages C, Java, C# AND Jython on Float data

Criteria

Algorithm CPU Utilization Memory Usage Run Time using TCP
Sockets

Bubble Sort C and Java C and Jython Java and C#

Quick Sort C and Jython C and Jython C and C#

Linear Search C and Jython C and Jython N/A

Binary Search C and Jython C and Jython N/A

Table 40: Top 2 programming language implementations for Float data type

- 79 -

Comparison of Programming languages C, Java, C# AND Jython on String data

Criteria

Algorithm CPU Utilization Memory Usage Run Time using TCP
Sockets

Bubble Sort C and C# C and Jython C and Java

Quick Sort C and Jython C and Jython C# and Java

Linear Search C and Jython C and Jython N/A

Binary Search C and Jython C and Jython N/A

Table 41: Top 2 programming language implementations for String data type

- 80 -

Chapter 8

FURTHER RESEARCH

Further writings and experimentation on this subject could include comparing

programming languages across platforms using this study’s approach. Perhaps a

developer could compare C# results obtained using the same categories in a Microsoft

environment to those obtained here in the LINUX, and see how the programming

language behaves differently.

- 81 -

REFERENCES

Print Publications

[Bates04]
Bates, B. (2004), “C# as a First Language: A Comparison with C++”.Journal of Computing

Sciences in Colleges, volume 19 issue 3, January 2004, page 89-95.

[Berlin03]
Berlin, K, J. Huan, M. Jacob, G. Kochhar, J. Prins, B. Pugh, P. Sadayappan, J.Spacco, C. Tseng,

“Evaluating the Impact of Programming Language Features on the Performance of Parallel
Applications on Cluster Architectures”, Proc. LCPC 2003.

[Feurer82]
Alan R. Feurer and Narain H. Gehani, “A Comparison of the Programming Languages C and

Pascal”, Bell Laboratories, Murray Hdl, New Jersey 07974, 1982.

[Gillespie12]
Gillespie, Tarleton “The Relevance of Algorithms”, forthcoming, in Media Technologies,

Tarleton Gillespie, ed. P. Boczkowski, & K. Foot. Cambridge, MA: MIT Press 2012.

[Harel85]
Elie C. Harel and Ephraim R. McLean “The Effects of Using a Nonprocedural Computer

Language on Programmer Productivity, “Journal MIS Quarterly Volume 9 Issue 2, June
1985, Pages 109-120.

[Pajjuri00]
A Pajjuri ., “A Performance Analysis of Java and C“, Feb 15, 2000.

[Prechelt05]
Prechelt, L. (2005), “An Empirical Comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for

a Search/String-Processing Program”. Technical Report 2005.

[Sestoft10]
Peter Sestoft (sestoft@itu.dk), “Numeric performance in C, C# and Java”, IT University of

Copenhagen Denmark Version 0.9.1 of 2010-02-19.

- 82 -

http://link.springer.com/search?facet-author=%22Konstantin+Berlin%22
http://link.springer.com/search?facet-author=%22Jun+Huan%22
http://link.springer.com/search?facet-author=%22Mary+Jacob%22
http://link.springer.com/search?facet-author=%22Garima+Kochhar%22
http://link.springer.com/search?facet-author=%22Jan+Prins%22
http://link.springer.com/search?facet-author=%22Bill+Pugh%22
http://link.springer.com/search?facet-author=%22P.+Sadayappan%22
http://link.springer.com/search?facet-author=%22Jaime+Spacco%22
http://link.springer.com/search?facet-author=%22Chau-Wen+Tseng%22
http://dl.acm.org/author_page.cfm?id=81487651013&coll=DL&dl=ACM&trk=0&cfid=451058588&cftoken=53721200
http://dl.acm.org/author_page.cfm?id=81409591889&coll=DL&dl=ACM&trk=0&cfid=451058588&cftoken=53721200
mailto:sestoft@itu.dk)

Electronic sources

[Bell09]
Rob Bell 2009, “A Beginner’s Guide to Big O Notation”http://rob-bell.net/2009/06/a-beginners-

guide-to-big-o-notation, last accessed October 22,2014.

[Squared05]
M Squared Technologies (2005), RSM Downloads. Resource Standard Software Source Code

Metrics For C, C++, C#, Java and Visual BASIC.
http://www.msquaredtechnologies.com/m2rsm_demo.php (2005, July 2).

- 83 -

VITA

Poonam Goyal received the Bachelor of Engineering degree in Information Technology

from Rajeev Gandhi Proudyogiki Vishwavidyalaya, India. She expects to receive a

Master of Science in Computer and Information Science from the University of North

Florida in December 2014. During 2012 – 2013, she served as the Vice President of

Upsilon Pi Epsilon (UPE) chapter at University of North Florida, which is an

ACM/IEEE-CS International Honor Society for the Computing and Information

disciplines. Her research interests are in the area of programming languages.

- 84 -

	UNF Digital Commons
	2014

	Comparative Study of C, Java, C# and Jython
	Poonam Goyal
	Suggested Citation

	Title - A Comparative Study of C, Java, C# and Jython
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abstract
	Chapter 1. Introduction
	Chapter 2. Literature Review
	2.1 An Empirical Comparison
	2.2 A Comparison of C and Pascal
	2.3 Nonprocedural Computer Language and Programmer Productivity
	2.4 Numeric Performances in C, C# and Java
	2.5 A Performance Analysis of Java and C

	Chapter 3. Research Methodology
	3.1 Why C, C#, Java and Jython
	3.1.1 The C programming language
	3.1.2 The C# programming language
	3.1.3 The Java programming language
	3.1.4 The Jython programming language

	3.2 Algorithms Studied
	3.2.1 Sorting
	3.2.1.1 Bubble Sort
	3.2.1.2 Quick Sort

	3.2.2 Searching
	3.2.2.1 Linear Search
	3.2.2.2 Binary Search

	3.3 Metrics and Statistical Analysis
	3.3.1 CPU Utilization
	3.3.2 Memory Usage
	3.3.3 Runtime in Distributed System using TCP Sockets

	3.4 The Host Environment
	3.4.1 Uranus
	3.4.2 Atlas

	Chapter 4. Results and Discussion: CPU Utilization
	4.1 Bubble Sort CPU Utilization for Integer and Float data
	4.2 Bubble Sort CPU Utilization for String data
	4.2.1 Quick Sort CPU Utilization for Integer and Float data
	4.2.2 Quick Sort CPU Utilization for String data.

	4.3 Linear Search
	4.3.1 Linear Search CPU Utilization for Integer, Float and String data

	4.4 Binary Search
	4.4.1 Binary Search CPU Utilization for Integer, Float and String data

	Chapter 5. Results and Discussion: Memory Usage
	5.1 Bubble Sort
	5.1.1 Evaluation of Bubble Sort

	5.2 Quick Sort
	5.2.1 Evaluation of Quick Sort

	5.3 Linear Search
	5.3.1 Evaluation of Linear Search

	5.4 Binary Search
	5.4.1 Evaluation of Binary Search

	Chapter 6. Results and Discussion: Execution Time in a Distributed System Using TCP Sockets
	6.1 Bubble Sort (Integer)
	6.1.1 Evaluation of Bubble Sort (Integer)

	6.2 Bubble Sort (Float)
	6.2.1 Evaluation of Bubble Sort (Float)

	6.3 Bubble Sort (String)
	6.3.1 Evaluation of Bubble Sort (String)

	6.4 Quick Sort (Integer)
	6.4.1 Evaluation of Quick Sort (Integer)

	6.5 Quick Sort (Float)
	6.5.1 Evaluation of Quick Sort (Float)

	6.6 Quick Sort (String)
	6.6.1 Evaluation of Quick Sort (String)

	Chapter 7. Conclusion
	Chapter 8. Further Research
	References

