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ABSTRACT 

Comparing programming languages is a common topic among programmers and software 

developers. With the recent changes in programming standards and continual upgrades in 

hardware design, many new programming languages are being developed, while existing 

ones are currently going through several enhancements in terms of design and 

implementation. In this research, we present a comparative study of four programming 

languages, C, Java, C#, and Jython, with respect to the following criteria: memory 

consumption, CPU utilization, and execution time. Each test was performed in a 

distributed system using TCP sockets with 1, 2, 4 and 8 clients, and on a symmetric 

multiprocessing system. 
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Chapter 1 

INTRODUCTION 

Many programming languages exist today, making it difficult for a programmer or 

developer to decide which language will work best for his or her specific project. Most of 

the time, the decision is based on the programmer’s advanced knowledge of a particular 

language, which may not always be the best for their specific problem. Other times, the 

decision depends merely on the popularity of a particular language. 

Several arguments have been made about how various algorithms perform with respect to 

speed, complexity, and efficiency while solving identical problems on identical hardware. 

It is equally important to learn how algorithms perform when written in different 

programming languages; by identifying the differences, a programmer can choose a 

programming language based on its strengths. 

In this study, programming languages C, C#, Java and Jython are compared by 

implementing the following algorithms: Bubble Sort, Quick Sort, Linear Search, and 

Binary Search, in three categories on identical hardware and operating system: (1) CPU 

utilization; (2) memory usage; and (3) execution time for client server communication 

using TCP socket. 
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The results of this research show that a programming language does have an effect on 

performance and other properties of execution. If one programming language 

implementation executes efficiently in one category, it might not perform similarly in 

other categories. The results of this study make it possible to determine the most 

appropriate language to solve a particular problem. The appropriateness is determined by 

statistical data and measurement analysis. 
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Chapter 2 

LITERATURE REVIEW 

This chapter summarizes recent articles and other publications focusing on programming 

language comparison. The work of Lutz Prechelt [Prechelt 00] and P Sestoft [Sestoft 10], 

as discussed in sections 2.1 and 2.4, are chosen as primary references as they also attempt 

to solve the same problem of comparing different programming languages. This section 

also includes the review of a few other research papers, as the authors present well-

structured analysis of the problem at hand. 

2.1 An Empirical Comparison 

The article by Lutz Prechelt, “An Empirical Comparison of C, C++, Java, Perl, Python, 

Rexx, and Tcl for a Search/String-Processing Program,” [Prechelt 00] presented the 

programming language comparison as implemented by different programmers. The study 

compared various properties such as run-time, memory constraints, and reliability. The 

research described by Prechelt also considered language efficiency. Our study compares 

efficiency of four languages, while Prechelt’s study focused on human factors including 

various programming styles. Also, due to the nature of the study, Prechelt did not use a 

Relative Complexity Metric, which is a representation of a program’s metrics, to 

statistically compare the programming languages. There are additional variations 

resulting from different programming styles and different frameworks. Prechelt used a 
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Relative Complexity Metric, by implementing the algorithms for comparison on a 

common hardware configuration. [Prechelt 00] 

2.2 A Comparison of C and Pascal 

Authors Alan R. Feurer and Narain H. Gehani , in [Feuer & Gehani82] “A Comparison of 

the Programming Languages C and Pascal,” considered the language constructs and 

design patterns of C and Pascal. The authors believe that Pascal programs tend to be more 

reliable than C because of Pascal’s richer set of data types, strong typing, readability and 

portability. In contrast, the authors also believe that C is much more flexible, and can be 

used effectively in more applications than Pascal, since the programmer has more control. 

The authors list all of the strengths and weakness of each language in much the same way 

as our research project. All of the features and data types of each language were 

considered with an in- depth look at the language aspects of C and Pascal. After 

describing the languages in detail, the authors listed which applications should be 

implemented in which language [Feuer & Gehani82]. Feurer and Narain’s study did not 

provide measurement data, or statistical analysis to give valid insight into the comparison 

of these two languages. This article is more a collection of programmer opinions rather 

than statistical fact [Feuer & Gehani82]. 

2.3 Nonprocedural Computer Language and Programmer Productivity 

Authors Harel & McLean in [Harel & McLean85] “The Effects of Using a 

Nonprocedural Computer Language on Programmer Productivity,” looked at the 
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differences of two programming languages, Focus, a non-procedural language, and 

Cobol, a procedural language. Harel & McLean studied a comparison of programmer’s 

productivity and execution time. Six “mid-sized” applications were developed by 

different programmers. Independent variables associated with this study are: 

1. Hardware. 

2. Programming mode. 

3. Organizational characteristics of the program development. 

4. Source languages. 

5. Types of applications. 

6. Programmer’s expertise. 

In addition, there are several dependent variables linked with these independent variables, 

the major one being time. Several run-time factors are also studied, such as total CPU 

time for compilation and execution, total number of source lines, and I/O operations. 

Each of these variables was measured and studied. Each measurement was statistically 

analyzed including simple averages and standard deviation. Once all of the data was 

processed, the authors gave their results, concluding that Cobol was faster and more 

efficient for the CPU, but that Focus was a more productive language from the 

perspective of the programmer. [Harel & McLean, 1985] 
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2.4 Numeric Performances in C, C# and Java 

Author Peter Sestoft in [Sestoft10] “Numeric Performances in C, C# and Java,” 

compared the performance of C, C# and Java on 4 trivial cases: matrix multiplication, 

division of intensive loops, polynomial evaluation, and distribution function. The tests 

revealed that execution speeds vary significantly among these three languages. The C 

language performed exceptionally well followed by C#, while Java’s performance was 

not satisfactory. Facts that qualify special consideration: [Sestoft10]. 

● “Considering Java’s bulky array depiction and the lack of precarious code, it is 

noteworthy how upright the Sun Hotspot-server and virtual machine executes. 

● Microsoft’s C#/.NET runtime normally performs fine, but there is ample scope for 

enhancement in the safe code for matrix multiplication. 

● The Mono C#/.NET runtime stayed consistent, and in Version 2.6 the overall 

performance is good.”[Sestoft10]. 

2.5 A Performance Analysis of Java and C 

Authors Ambika Pajjuri and Haseeb Ahmed in [Pajjuri00] “A Performance Analysis of 

Java and C,” compared the Java and C, two admired programming languages. The 

authors presented a performance assessment of varied algorithms written in C and Java 

on Windows and UNIX operating system environments. The metrics used in the study 

were memory usage, speed of execution, overhead and additional special features that 

distinguish these two programming languages. 
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Both programming languages were inspected on how their design selections impact 

performance over semantics and programming paradigms. The algorithms considered 

were those frequently used in embedded systems, and the MD5 (Message-digest) cipher. 

Outcomes illustrated that, overall, C delivered superior runtime performance over Java 

across both Linux and Windows platforms. [Pajjuri00] 
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Chapter 3 

RESEARCH METHODOLOGY 

In order to measure the effectiveness of this comparison, the research is divided into 

several components. The first of several major components of this research are the 

programming languages themselves. 

3.1 Why C, C#, Java and Jython 

3.1.1 The C programming language 

The C programming language is a robust language. As it combines the features of high-

level languages with the capabilities of low-level languages, it is appropriate for writing 

business packages, as well as system software and applications. It has been chosen for 

this study as it is the foundational language of many other programming languages. 

3.1.2 The C# programming language 

The C# programming language is a multi-paradigm, object-oriented programming 

language which facilitates inheritance, abstraction, polymorphism, and encapsulation. 

The objective of the language is to enhance a programmer’s productivity. It is growing in 

popularity due to its efficiency and ease of coding. The framework manages the 

execution of applications and Web services. In addition, it offers several other 

functionalities that include memory management and security enforcement. Like Java, C# 
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also has automatic garbage collection and has a similar syntax structure. In this study, we 

will examine Mono, which is an Open Source compiler for C#, which is used in order to 

provide consistency for the study. It has been chosen for this study for its syntactical 

similarity with Java and to explore how it compares to Java [Bates04]. 

3.1.3 The Java programming language 

The Java programming language has been chosen for this study since it is dynamic, 

object oriented, distributed, portable, multithreaded, and strongly typed. 

3.1.4 The Jython programming language 

The Jython programming language has been chosen for this study as it is a combination 

of Java and Python programming languages, implemented to generate Java byte code. 

Jython runs on any JVM (Java Virtual Machine) and thus we wanted to determine if it 

executes as fast as the popular Java. 

3.2 Algorithms Studied 

Each programming language performs different algorithms such as Bubble Sort, Quick 

Sort, Linear Search, and Binary Search using integer, float and string data types. The 

algorithm and language implementation, using a variety of data types, will yield 

appropriate performance characteristics of the languages for meaningful comparison. 
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3.2.1 Sorting 

Sorting is a technique for ordering a list of numbers in a particular sequence. In this 

research, we will be performing experiments on two types of sorting algorithms: Bubble 

Sort and Quick Sort. 

3.2.1.1 Bubble Sort 

Sorting activities for Bubble Sort: 

1. Make multiple passes over the list. In every pass: 

a. Compare adjacent elements in the list. 

b. Exchange the elements if they are out of order. 

c. Each pass moves the largest (or smallest) elements to the end of the list 

2. Repeating this process in several passes eventually sorts the array into ascending (or 

descending) order. 

Bubble sort is only suitable to sort an array with small data size. 

3.2.1.2 Quick Sort 

Quick Sort works on the technique of dividing the list in two parts based on values higher 

or lower than a randomly chosen pivot element, and then recursively quick sorts each of 

the sub lists. 

1. Choose an element randomly from the list that will work as the pivot element. 

2. Arrange the list in such a way that all the elements with values higher than the pivot 

come after the pivot, and similarly, all the elements having lower values than the 
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pivot come before the pivot, and elements equal to the pivot can be placed on either 

side of the pivot. This brings the pivot to its final sorted position. This process 

partitions the list into two parts where all elements less than the pivot are in one part, 

and all elements greater than the pivot are in the other part. 

3. Repeat Step 1 and 2 to each of the partitions. 

3.2.2 Searching 

Searching is a process of finding a particular item from a collection of items. Typically, 

the result of search is either true or false, which indicates whether the searched item was 

found. If the item was not found, a result of false is returned; if the item was found, its 

location is reported. There are two basic approaches: Linear search and Binary search. 

3.2.2.1 Linear Search 

The linear search algorithm looks down a list, one item at a time. 

3.2.2.2 Binary Search 

The binary search algorithm compares the desired item with the item in the middle of a 

sorted list. If the middle item is larger than the desired item, the first half is examined; 

otherwise the second half of the list is examined. The process is repeated on the half to be 

examined. 
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Each algorithm was written in all the four languages (C, Java, C# and Jython) using 

appropriate features of the given language. 

3.3 Metrics and Statistical Analysis 

From this study, it can be determined which programming language implementation was 

better than the rest for each of the algorithms when different data types are used. The 

results of the analysis provide programmers with useful information that helps them 

choose the best programming language for the implementation of the four different 

algorithms used in this study [Squared05]. 

Big O notation is the accepted measure for categorizing the performance of an algorithm. 

It depicts the performance of an algorithm when the amount of data increases. Along with 

CPU Utilization, Big O notation can also be used to determine the memory consumption 

of a particular algorithm. It also provides information about the rate of change of 

processing time of an algorithm as the amount of data increases [Bell09]. 

3.3.1 CPU Utilization 

CPU usage refers to the amount of work done by the processor. Observing CPU 

utilization reveals the workload of a given physical processor for real machines. CPU 

utilization is a fundamental performance measure, used to determine a computer’s 

efficiency. Computers do not accomplish tasks when the CPU is idle. 
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3.3.2 Memory Usage 

Memory usage specifies the amount of main memory used or referenced by a program 

while it is running. This includes all types of active memory regions, such as the code 

segment, that includes program instructions, initialized as well as uninitialized data 

segments, call stack, and heap memory. It also includes the memory needed to pull any 

added data structures like symbol tables, open files, shared libraries mapped to a current 

process, and debugging data structures that a program requires while executing. 

Larger programs use more memory. The programs themselves usually do not devote the 

largest portions to their own memory usage; rather, the structure introduced by the 

runtime environment consumes most of the memory. 

3.3.3 Runtime in Distributed System using TCP Sockets 

A distributed system consists of multiple independent computers connected by a network 

that is equipped with distributed system software. This software allows computers to 

coordinate their activities and share their resources of system software, hardware, and 

data. 

In distributed programming, a problem is divided into many sub problems or tasks which 

are distributed to different machines. Although the machines run independently, they still 

have to interact with each other for the inputs and the results. This is contradictory to the 

scenario in which the end-user assumes that there are different computers whose 
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locations and functionality is not transparent. Advantages of distributed systems include 

enhanced reliability, availability and performance, local self-sufficiency, more economy, 

and many others. In this study we will calculate the runtime in a Distributed System using 

TCP Sockets [Berlin03]. 

3.4 The Host Environment 

The programs for studying CPU utilization and memory usage were run on Atlas, 

whereas client-server programs were run on Uranus. The specifications for the two 

systems are described in the following subsections 

3.4.1 Uranus 

Uranus is a thirteen-node Beowulf cluster with Gigabit Ethernet network. All nodes are 

made up of 2.83GHz Intel Xeon processor. 

3.4.2 Atlas 

Atlas is a shared memory multiprocessor machine. It has a Quad Quad-Core Intel Xeon 

Processor with 64 threads running at 2.00 GHz along with 128 GB RAM. 
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Chapter 4 

RESULTS AND DISCUSSION: CPU UTILIZATION 

This chapter presents the results of our comparison study of the programming languages 

C, Java, C# and Jython using the metrics of CPU utilization on the Bubble Sort, Quick 

Sort, Linear Search and Binary Search algorithms. We used six different data sizes 

10000, 20000, 40000, 60000, 80000 and 100000. 

CPU usage refers to the amount of work done by the computer’s processor. Let us say 

process X starts at time a, and finishes at time b. The total time that Process X takes from 

start to finish is b-a. Of this time, let us say p is the time spent on Process X (between a 

and b), and q is the idle time (between a and b). Then p + q = b − a. Using these 

quantities, we may define CPU utilization as follows: 

CPU Utilization for Process X = (Time spent on Process X) / (Time spent on Process 

X + Idle Time) = p / (p + q), or p / (b − a), expressed as a percentage. 

Note: CPU Utilization with the C programming language was almost negligible when 

compared to the other programming languages studied. 
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Statistical Significance 

In order to test the statistical significance of the results obtained from the algorithms, a 

paired t test was performed. The significance level chosen was 0.05. The null hypothesis 

states that the CPU Utilization obtained from the algorithm using one programming 

language is not significantly smaller than the CPU Utilization obtained from the other 

programming language. The alternative hypothesis is that the CPU Utilization obtained 

from the algorithm using one programming language is significantly smaller than the 

other programming language. 

Table 1 below shows the results of the T-test. The p-value is less than 0.05 for C & Java, 

C# & Jython, Jython & C and Java & Jython but not for Java & C#. Therefore, we cannot 

reject the null hypothesis for Java & C#. As can be seen, the p-value is less than 0.05 in 

all tests except Java and C# demonstrating that the differences in CPU Utilization are 

statistically significant. Figures 1 to 12 depicts the CPU Usage of C, Java, C# and Jython. 

Statistical Significance Test 

Comparison p-value Statistical Significance 

C & Java 0.000003 Yes 

Java & C# 0.499597 No 

C# & Jython 0.000084 Yes 

Jython & C 0.000001 Yes 

Java & Jython 0.000002 Yes 

C& C# 0.000001 Yes 

Table 1: Statistical Significance of CPU Utilization 
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4.1 Bubble Sort CPU Utilization for Integer and Float data 

Figure 1 shows the CPU Utilization of bubble sort on integer data, and under 

implementation of C, Java, C# and Jython. C proved to be the leader and Java came in 

second. This may be because C performs better than Java in low-level numeric 

computation. 

 

Figure 1: CPU Utilization of Bubble Sort (Integer) 

Figure 2 shows that when float data is used. C still proves to be the leader in CPU 

utilization and Java comes in second. 
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Figure 2: CPU Utilization of Bubble Sort (Float) 

In C, program statements are compiled into a lower number of machine instructions. On 

the other hand, Java program statements, when interpreted by a Java virtual machine, are 

compiled to a larger volume of byte code that involves more machine instructions, as 

compared to the statically-compiled programming language, C. 

C# runs great on Linux, and Mono as a platform has advanced quite nicely. C# employs 

less CPU as compared to Jython, and more CPU than C and Java. CPU usage by Jython 

was the highest, among the other three programming languages. However, the algorithm 

is completely CPU bound; therefore, Bubble Sort directly measures the performance of 

the Jython byte code interpreter. Therefore it is slower than executing the equivalent 

native code. Whenever a long running CPU bound loop is written in Jython, a 

considerable performance loss is expected. 
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4.2 Bubble Sort CPU Utilization for String data 

Figure 3 shows the CPU Utilization of bubble sort on String data sorting with C, Java, C# 

and Jython. C was the leader once again with the lowest CPU usage, and Jython was 

second. 

 

Figure 3: CPU Utilization of Bubble Sort (String) 

In the case of the Jython programming language, processor usage is less when compared 

to developer time. C# and Java were third and fourth respectively. C# runs well on Linux, 

and Mono as a platform has advanced quite nicely. It employs less CPU as compared to 

Java. C performs much better than Java in low-level numeric computations. In C, 

program statements are compiled into a smaller number of machine instructions. Whereas 

in Java, program statements, when interpreted by a Java virtual machine, are compiled to 
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a larger number of byte codes that involves a larger volume of machine instructions, as 

compared to the statically compiled programming language C. Just like C, Java’s byte 

codes are also compiled into machine instructions at runtime. String operations are slow, 

as Java uses immutable, UTF-16 encoded string objects, which requires significant 

memory, operations, and CPU resources. 

4.2.1 Quick Sort CPU Utilization for Integer and Float data 

Figures 4 depict that the programming language that required the greatest CPU usage was 

C#, which makes it the most complex solution for this algorithm. C was once again first 

with the least CPU usage value. 

 

Figure 4: CPU Utilization of Quick Sort (Integer) 
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Figure 5 shows that C performs much better than Java in low-level numeric 

computations. In C, program statements are compiled into a smaller number of machine 

instructions, whereas in Java, program statements, when interpreted by a Java virtual 

machine, are compiled to a larger number of byte codes that involve more machine 

instructions. 

 

Figure 5: CPU Utilization of Quick Sort (Float) 

Java’s byte codes are compiled into machine instructions only at runtime. Jython CPU 

usage was less than Java and C#. Jython is essentially Python written in Java. Java 

libraries can be used while still coding in Python. Though Jython suffers from some 

performance penalties too, it is usually of negligible consequence for a project. The 

advantage of Jython is that CPU usage is economical as compared to developer time. 
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4.2.2 Quick Sort CPU Utilization for String data. 

Figure 6 shows that for Quick Sort using string data, C was the leader once again with the 

lowest CPU usage, and Jython was second. In the case of Jython, processor usage is less 

when compared to developer time. C# and Java were third and fourth respectively. C# 

runs well on Linux, and Mono as a platform is mature. It employs less CPU as compared 

to Java. C performs much better than Java in low-level numeric computations. In C, 

program statements are compiled into a smaller number of machine instructions, whereas 

in Java, program statements, when interpreted by a Java virtual machine, are compiled to 

a larger number of byte codes that involve many more machine instructions as compared 

to the statically-compiled programming language C. Similar to C, Java’s byte codes are 

also compiled into machine instructions at runtime. String operations are, to a small 

degree, slow as Java uses immutable, UTF-16 encoded string objects. This suggests it 

needs a lot of memory, operation, and CPU. A few operations are a lot more complicated 

than with ASCII (C). 
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Figure 6: CPU Utilization of Quick Sort (String) 

4.3 Linear Search 

4.3.1 Linear Search CPU Utilization for Integer, Float and String data 

As shown in figures 7, 8, and 9 for linear search with integer, float and string, C was once 

again first in terms of lowest CPU usage. Jython was second, owing to the fact that it is a 

combination of Java and Python. Java libraries can be used while still coding in Python. 

Though Jython suffers from some performance penalties, it is usually of negligible 

consequence for a project. The benefit is that CPU usage is economical as compared to 

developer time. C# and Java were third and fourth respectively. However, the CPU usage 

of Java is higher than a statically-compiled programming language like C and similar to 
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Just-in-Time compiled languages like C#, because of its similar syntax structure. But 

Mono as a platform works quite well for C# in terms of CPU usage. 

 

Figure 7: CPU Utilization of Linear Search (Integer) 
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Figure 8: CPU Utilization of Linear Search (Float) 

 

Figure 9: CPU Utilization of Linear Search (String) 
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4.4 Binary Search 

4.4.1 Binary Search CPU Utilization for Integer, Float and String data 

As evident from figures 10, 11, and 12 for CPU utilization for binary search, C was the 

leader with almost negligible CPU usage as compared to the other three programming 

languages (C#, Java, and Jython). In second place was C#, which runs nicely on Mono. 

C# utilized less CPU as compared to Java, and used more CPU than C and Jython. It 

appears that, for this case, Mono was not mature enough to contend against a seasoned 

veteran programing language like Java. The CPU usage of Jython was less than Java and 

C#, since Jython is Python written in Java. Java libraries can be used, but still are coded 

in Python. The performance penalties associated with Jython are of typically very little to 

no consequence for a project. 

 

Figure 10: CPU Utilization of Binary Search (Integer) 
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Figure 11: CPU Utilization of Binary Search (Float) 

 

Figure 12: CPU Utilization of Binary Search (String) 
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Chapter 5 

RESULTS AND DISUSSION: MEMORY USAGE 

In this chapter, we will compare the memory usage for Bubble Sort, Quick Sort, Linear 

Search and Binary Search when implemented using C, Java, C# and Jython. 

Memory Usage refers to the amount of memory used by a process. Let us say process X 

uses q bytes of memory. The total available memory is r using these quantities; we may 

define Memory Usage as follows: 

Memory Usage for process X = 
availablememory  Total

X Processby  usedMemory 
 = 

r
q  

Memory Usage for process X = (Memory used by Process X) / (Total memory 

available) = q / r, expressed as a percentage. Total memory available = 128 GB = 

1.374e+11 bytes 

5.1 Bubble Sort 

Statistical Significance 

In order to test the statistical significance of the results obtained from the algorithms, a 

paired t test was performed. The significance level chosen was 0.05. The null hypothesis 

states that the Memory Usage obtained from the algorithm using one programming 
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language is not significantly smaller than the Memory usage obtained from the other 

programming langue. The alternative hypothesis is that the Memory usage obtained from 

the algorithm using one programming language is significantly smaller than the other 

programming langue. 

Table 2 below shows the results of the T-test. The p-value is less than 0.05 for C & Java, 

C# & Jython, Jython & C, Java & C#., Java & Jython and Java & C#. Therefore, we 

reject the null hypothesis in all cases. As can be seen, the p-value is less than 0.05 in all 

tests demonstrating that the differences in Memory usage are statistically significant. 

Figure 13 to 24 depicts the Memory Usage of C, Java, C# and Jython. 

Statistical Significance Test 

Comparison p-value Statistical Significance 

C & Java 0.000009 Yes 

Java & C# 0.004026 Yes 

C# & Jython 0.000001 Yes 

Jython & C 0.000001 Yes 

Java & Jython 0.000636 Yes 

C& C# 0.002268 Yes 

Table 2: Statistical Significance of Memory Usage 

5.1.1 Evaluation of Bubble Sort 

Figures 13 through 15 show the memory usage of Bubble Sort (integer, float, and string) 

and tables 3, 4, and 5 depict the data collected from the algorithms. C was first, with low 

memory consumption, and Jython was second. There was a slight relative increase in 
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Jython’s memory usage with increasing data size. Because it is constructing byte code, it 

is spending significant resources in translation rather than in execution. Third was C#, 

again with a value close to Java, since their processing styles are similar. Java was the 

programming language that used the greatest amount of memory, because Java programs 

use automatic garbage collection, and objects are larger in Java since all objects are 

allocated on the heap, each having a virtual table including support for synchronization 

primitives. 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00043 0.00360 0.00085 0.00185 

20000 0.00046 0.00630 0.00320 0.00185 

40000 0.00053 0.01250 0.00450 0.00185 

60000 0.00059 0.01680 0.00660 0.00185 

80000 0.00064 0.02550 0.00930 0.00185 

100000 0.00070 0.03100 0.01130 0.00185 

Table 3: Result for Bubble Sort (Integer) 

 

Figure 13: Memory Usage of Bubble Sort (Integer) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00047 0.00440 0.00155 0.00187 

20000 0.00050 0.00800 0.00261 0.00187 

40000 0.00057 0.01580 0.00279 0.00188 

60000 0.00062 0.02040 0.00296 0.00188 

80000 0.00068 0.02970 0.00325 0.00188 

100000 0.00074 0.03540 0.00349 0.00188 

Table 4: Result for Bubble Sort (Float) 

 

Figure 14: Memory Usage of Bubble Sort (Float) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00073 0.00319 0.00109 0.00188 

20000 0.00103 0.00594 0.00370 0.00188 

40000 0.00161 0.01090 0.00600 0.00188 

60000 0.00219 0.01660 0.00939 0.00188 

80000 0.00277 0.02129 0.01134 0.00188 

100000 0.00335 0.02690 0.01311 0.00189 

Table 5: Result for Bubble Sort (String) 

 

Figure 15: Memory Usage of Bubble Sort (String) 
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5.2 Quick Sort 

5.2.1 Evaluation of Quick Sort 

Tables 6, 7, and 8 depict the data collected from the algorithm and Figures 16 through 18 

depict that the memory usage of C is less, as compared to the other programming 

languages. Java has the highest memory usage. Whereas Jython was again second, there 

was a slight increase in Jython’s memory usage with increasing data size, because of the 

construction of byte code. It is spending all the resources in translation rather than 

execution. Third was C#, although Java and C# were actually quite similar. But C#/Mono 

won on memory usage over Java. Mono also has automatic garbage collection 

functionality like Java, it removes unused objects from the heap. This increases 

programmer productivity; however, if thousands of objects are created, additional work 

of the garbage collector will be required, resulting in more memory consumption, 

slowing the application. Java’s implementation was the last. 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00043 0.00360 0.00055 0.00185 

20000 0.00047 0.00630 0.00261 0.00185 

40000 0.00053 0.01250 0.00270 0.00185 

60000 0.00058 0.01680 0.00279 0.00185 

80000 0.00064 0.02450 0.00297 0.00185 

100000 0.00070 0.03060 0.00308 0.00185 

Table 6: Result for Quick Sort (Integer) 

 

Figure 16: Memory Usage of Quick Sort (Integer) 

- 35 - 



Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00047 0.00490 0.00085 0.00186 

20000 0.00050 0.00900 0.00421 0.00186 

40000 0.00057 0.01770 0.00451 0.00186 

60000 0.00062 0.02550 0.00650 0.00186 

80000 0.00068 0.03500 0.00850 0.00187 

100000 0.00074 0.04400 0.00980 0.00187 

Table 7: Result for Quick Sort (Float) 

 

Figure 17: Memory Usage of Quick Sort (Float) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00073 0.00140 0.00099 0.00187 

20000 0.00103 0.00660 0.00450 0.00187 

40000 0.00160 0.00990 0.00680 0.00187 

60000 0.00219 0.01700 0.00900 0.00188 

80000 0.00278 0.02200 0.01000 0.00188 

100000 0.00336 0.03100 0.01234 0.00188 

Table 8: Result for Quick Sort (String) 

 

Figure 18: Memory Usage of Quick Sort (String) 
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5.3 Linear Search 

5.3.1 Evaluation of Linear Search 

Tables 9, 10, and 11 depict the data collected from the algorithms, and Figures 19 

through 21 shows that the result of this algorithm was, as expected. C implementation of 

the algorithm was the leader with the lowest memory consumption. Jython, being stable 

at its second position for the same reason, showed a slight increase in memory usage with 

increasing data size, because of its constructing byte code, and because it is spending all 

its resources in translation rather than in execution. C#/Mono was third, since in Mono 

each object has an overhead of 8 bytes that comprises 4 bytes for the sync block and 4 

bytes for the type. Every time an object is allocated, a garbage collector is finding space 

for the object. In case of unavailability of space, the garbage collector will look for and 

delete unreferenced objects. In the event there is an additional object allocation, then the 

garbage collector is required to release the objects. The memory consumption of Java is 

the highest, placing last of the four programming languages. 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00043 0.00223 0.00054 0.00181 

20000 0.00046 0.00355 0.00183 0.00181 

40000 0.00053 0.00591 0.00210 0.00182 

60000 0.00057 0.00794 0.00228 0.00182 

80000 0.00062 0.01030 0.00253 0.00182 

100000 0.00069 0.01460 0.00283 0.00182 

Table 9: Result for Linear Search (Integer) 

 

Figure 19: Memory Usage of Linear Search (Integer) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00047 0.00270 0.00080 0.00183 

20000 0.00050 0.00640 0.00210 0.00183 

40000 0.00056 0.01030 0.00350 0.00184 

60000 0.00062 0.01368 0.00550 0.00184 

80000 0.00068 0.01600 0.00650 0.00184 

100000 0.00074 0.01848 0.00850 0.00184 

Table 10: Result for Linear Search (Float) 

 

Figure 20: Memory Usage of Linear Search (Float) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00070 0.00177 0.00090 0.00184 

20000 0.00100 0.00363 0.00230 0.00184 

40000 0.00150 0.00634 0.00470 0.00184 

60000 0.00210 0.00872 0.00680 0.00184 

80000 0.00270 0.01040 0.00840 0.00184 

100000 0.00330 0.01410 0.01060 0.00184 

Table 11: Result for Linear Search (String) 

 

Figure 21: Memory Usage of Linear Search (String) 
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5.4 Binary Search 

5.4.1 Evaluation of Binary Search 

Tables 12, 13 and 14 depict the data collected from the algorithm. Figures 22 through 24 

shows that the most efficient language for this algorithm was the compiled programming 

language C which had the lowest memory usage. In second place came Jython, whose 

memory was nearly consistent. Third and fourth were C# and Java respectively. C# runs 

nicely on the UNIX operating system, since Mono as a platform is mature. It utilizes less 

memory as compared to Java. In this case, Mono is not only mature enough to compete 

with the Java, in some cases, it can even supersede it. Java posted the highest memory 

usage because Java programs use automatic garbage collection, and objects are larger in 

java, as all objects in Java are allocated on a heap, and have a virtual table along with the 

support for synchronization primitives. 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00043 0.00144 0.00054 0.00174 

20000 0.00043 0.00265 0.00127 0.00174 

40000 0.00046 0.00434 0.00152 0.00176 

60000 0.00053 0.00675 0.00170 0.00177 

80000 0.00056 0.00918 0.00195 0.00178 

100000 0.00061 0.01042 0.00224 0.00180 

Table 12: Result for Binary Search (Integer) 

 

Figure 22: Memory Usage of Binary Search (Integer) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00044 0.00191 0.00054 0.00175 

20000 0.00046 0.00328 0.00164 0.00175 

40000 0.00053 0.00628 0.00292 0.00177 

60000 0.00057 0.00913 0.00359 0.00178 

80000 0.00062 0.01355 0.00432 0.00179 

100000 0.00065 0.01594 0.00617 0.00181 

Table 13: Result for Binary Search (Float) 

 

Figure 23: Memory Usage of Binary Search (Float) 
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Data Size C(%) Java(%) C#(%) Jython(%) 

10000 0.00066 0.00155 0.00069 0.00176 

20000 0.00085 0.00271 0.00182 0.00176 

40000 0.00143 0.00540 0.00328 0.00178 

60000 0.00194 0.00790 0.00556 0.00179 

80000 0.00253 0.00920 0.00699 0.00180 

100000 0.00299 0.01210 0.00844 0.00182 

Table 14: Result for Binary Search (String) 

 

Figure 24: Memory Usage of Binary Search (String) 
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Chapter 6 

RESULTS AND DISCUSSION: 
EXECUTION TIME IN A DISTRIBUTED SYSTEM USING TCP SOCKETS 

First, the data to be sorted was generated on the server side by specifying the data size 

and number of clients from the command prompt, and then the server waited for the 

clients to connect. Once all the clients were connected, the server generated the data and 

sent data to the client. Once the data was sent to the clients, the timer started, and then 

stopped only after receiving the sorted data from all the clients. The server is the master 

and the clients are the workers in this usage. 

Let us say the timer is started at X millisecond and is stopped at Y milliseconds. Using 

these quantities, we may define Run time as follows: 

Difference (Z) = end time (Y) – start time(X) 

6.1 Bubble Sort (Integer) 

6.1.1 Evaluation of Bubble Sort (Integer) 

Tables 15 through 18 depict the data obtained from the algorithm and also the result of 

ANOVA tests. 

ANOVA provides a statistical test of whether or not the means of several groups are 

equal, and therefore generalizes the t-test to more than two groups. 
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Figures 25 through 28 show that Java emerged as the leader, and proved to be the least 

complex solution. Its elapsed time was the lowest with the increasing data size. Second 

was C#, but its values were close to Java since its execution structure is similar. The 

performances of C# and Java were very close, with Java having a slight edge. Java 

comprises built-in socket libraries, eliminating the requirement of third party socket 

operations. Third was the C implementation. Jython was the slowest since it is an 

interpreted programming language with slow execution speed. Jython’s start-up time is 

slow, but the ease of programming makes Jython desirable. Since Jython is interpreted, it 

is not designed to be used for CPU bound applications. 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 314 296 250 13782 

20000 1331 884 960 55778 

40000 5453 3259 3805 223309 

60000 10371 7316 8570 501795 

80000 22096 12991 15235 926146 

100000 34689 20356 23815 137193 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.015 

Table 15: ANOVA results for Bubble Sort (Integer 1 client) 

 

Figure 25: Bubble Sort (Integer) Using Socket Communication for 1 Client 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 157 124 125 7063 

20000 665 461 480 27897 

40000 2726 1729 1902 111460 

60000 5185 2862 4285 250299 

80000 10934 6594 7617 447302 

100000 17143 11078 11907 697992 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0081 

Table 16: ANOVA results for Bubble Sort (Integer 2 clients) 

 

Figure 26: Bubble Sort (Integer) Using Socket Communication for 2 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 78 47 62 3567 

20000 332 212 240 13798 

40000 1363 784 951 55478 

60000 2592 1792 2145 126329 

80000 5295 3343 3808 224919 

100000 6308 5286 5954 351484 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0081 

Table 17: ANOVA results for Bubble Sort (Integer 4 clients) 

 

Figure 27: Bubble Sort (Integer) Using Socket Communication for 4 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 39 27 31 1738 

20000 166 101 120 6927 

40000 681 407 475 27917 

60000 1296 941 1073 62331 

80000 2221 1713 1904 11088 

100000 3538 2638 2987 175994 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0078 

Table 18: ANOVA results for Bubble Sort (Integer 8 clients) 

 

Figure 28: Bubble Sort (Integer) Using Socket Communication for 8 Clients 
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6.2 Bubble Sort (Float) 

6.2.1 Evaluation of Bubble Sort (Float) 

Table 19 through 22 depicts the data obtained from the algorithm and the result of 

ANOVA tests. Figures 29 through 32 shows the results for this algorithm were as 

expected. Java implementation was again the leader with the lowest elapsed time. Java 

and C# performed similarly for the reasons stated above. C implementation of the 

algorithm placed third. Jython had the expected result of being last, owing to its low 

execution speed and start up time. 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 649 356 405 14903 

20000 1455 1104 1235 58365 

40000 5951 3750 4920 226813 

60000 13557 8297 11045 504345 

80000 24144 14670 19570 928930 

100000 37821 22771 30550 1391903 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0078 

Table 19: ANOVA results for Bubble Sort (Float 1 client) 

 

Figure 29: Bubble Sort (Float) Using Socket Communication for 1 Client 

- 53 - 



Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 171 178 202 8486 

20000 717 552 617 29470 

40000 2911 1875 2460 115502 

60000 6626 4148 5523 264337 

80000 11907 7335 9785 448589 

100000 18742 11385 15275 700861 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0073 

Table 20: ANOVA results for Bubble Sort (Float 2 clients) 

 

Figure 30: Bubble Sort (Float) Using Socket Communication for 2 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 85 88 101 4305 

20000 351 276 309 16512 

40000 1378 938 1230 60033 

60000 3214 2074 2762 128439 

80000 5408 3667 4893 226374 

100000 10108 5692 7638 354626 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0073 

Table 21: ANOVA results for Bubble Sort (Float 4 clients) 

 

Figure 31: Bubble Sort (Float) Using Socket Communication for 4 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 54 44 51 1973 

20000 179 138 155 7485 

40000 743 468 615 33331 

60000 1618 1037 1381 64683 

80000 2914 1833 2442 113572 

100000 6219 2846 3819 176629 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0067 

Table 22: ANOVA results for Bubble Sort (Float 8 clients) 

 

Figure 32: Bubble Sort (Float) Using Socket Communication for 8 Clients 
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6.3 Bubble Sort (String) 

6.3.1 Evaluation of Bubble Sort (String) 

Table 23 through 26 depicts the data obtained from the algorithm and the result of 

ANOVA tests. Figures 33 through 36 shows that, for this algorithm, the C 

implementation produced the best results, followed very closely by Java. String 

operations are slow in Java, because Java uses immutable, UTF-16 encoded string 

objects. This means that surplus memory is required, since a larger memory usage 

enhances the chances that parts of the program will be swapped out to disk. Moreover, 

swap file usage slows the speed. Finally, certain operations are more complex as 

compared to those with ASCII. C# implementation was slower than C and Java, but faster 

than Jython. 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 614 1212 5310 13755 

20000 2667 3613 20845 55409 

40000 10896 14822 91913 221621 

60000 24968 33277 216167 498060 

80000 45510 57680 405606 924298 

100000 72911 91337 681704 1349687 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.034 

Table 23: ANOVA results for Bubble Sort (String 1 client) 

 

Figure 33: Bubble Sort (String) Using Socket Communication for 1 Client 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 442 606 2650 6996 

20000 1333 1806 10423 27586 

40000 5448 7411 45957 112813 

60000 12484 16638 108083 24882 

80000 22750 28840 202803 442803 

100000 36455 45668 340852 693216 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.11 

Table 24: ANOVA results for Bubble Sort (String 2 clients) 

 

Figure 34: Bubble Sort (String) Using Socket Communication for 2 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 230 310 1325 3491 

20000 668 922 5213 13762 

40000 2854 3735 22979 55245 

60000 6321 8413 54041 125246 

80000 11432 15420 101401 223168 

100000 18288 23856 170426 349441 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.037 

Table 25: ANOVA results for Bubble Sort (String 4 clients) 

 

Figure 35: Bubble Sort (String) Using Socket Communication for 4 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 110 152 663 1740 

20000 334 456 2607 7002 

40000 1362 1852 11489 27653 

60000 3121 4159 27020 62131 

80000 5689 7210 50700 110846 

100000 9114 11417 85213 173358 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.036 

Table 26: ANOVA results for Bubble Sort (String 8 clients) 

 

Figure 36: Bubble Sort (String) Using Socket Communication for 8 Clients 
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6.4 Quick Sort (Integer) 

6.4.1 Evaluation of Quick Sort (Integer) 

Table 27 through 30 depicts the data obtained from the algorithm and the result of 

ANOVA tests. Figures 37 to 40 show that C was the leader and proved to be the fastest 

solution. One of the surprising results is that C# was second, thus beating Java. Fourth 

was Jython. 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 5 99 10 568 

20000 7 137 20 1362 

40000 16 165 42 2572 

60000 24 190 53 3881 

80000 32 209 69 4927 

100000 41 212 99 5999 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001 

Table 27: ANOVA results for Quick Sort (Integer 1 client) 

 

Figure 37: Quick Sort (Integer) Using Socket Communication for 1 Client 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 4 46 7 284 

20000 6 68 16 681 

40000 14 85 25 1286 

60000 22 95 34 1945 

80000 30 105 41 2463 

100000 38 110 62 2999 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001 

Table 28: ANOVA results for Quick Sort (Integer 2 clients) 

 

Figure 38: Quick Sort (Integer) Using Socket Communication for 2 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 3 23 5 142 

20000 7 34 14 345 

40000 12 43 20 645 

60000 14 48 25 973 

80000 24 58 30 1232 

100000 33 68 40 1519 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001 

Table 29: ANOVA results for Quick Sort (Integer 4 clients) 

 

Figure 39: Quick Sort (Integer) Using Socket Communication for 4 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 2.5 17 4 75 

20000 5 20 12 173 

40000 6 24 15 322 

60000 9 27 20 487 

80000 14 34 25 616 

100000 21 46 30 750 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is less than .0001 

Table 30: ANOVA results for Quick Sort (Integer 8 clients) 

 

Figure 40: Quick Sort (Integer) Using Socket Communication for 8 Clients 

- 66 - 



6.5 Quick Sort (Float) 

6.5.1 Evaluation of Quick Sort (Float) 

Table 31 through 34 depicts the data obtained from the algorithm and the result of 

ANOVA tests. Figures 41 to 44 show that in this algorithm, C was the language that 

produced the fastest solution. Jython posted the slowest time since it is an interpreted 

programming language with low execution speed. In third place was Java, which runs on 

the virtual machine. This not only makes programming simpler but also more portable; 

however, the downside of this method is performance loss, in comparison to the compiled 

code in C, which is mainly noticeable at calculations comprising floating-point numbers. 

C# was second, but performed nearly as well as C. 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 10 218 15 1218 

20000 18 262 30 2363 

40000 39 290 51 5268 

60000 57 349 72 9559 

80000 77 358 100 13287 

100000 99 403 130 16481 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003 

Table 31: ANOVA results for Quick Sort (Float 1 client) 

 

Figure 41: Quick Sort (Float) Using Socket Communication for 1 Client 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 7 109 10 610 

20000 12 131 28 1282 

40000 20 145 35 2786 

60000 30 170 40 4875 

80000 41 189 50 6645 

100000 52 202 65 8356 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003 

Table 32: ANOVA results for Quick Sort (Float 2 clients) 

 

Figure 42: Quick Sort (Float) Using Socket Communication for 2 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 5 55 8 305 

20000 9 66 18 591 

40000 15 78 24 1317 

60000 28 90 32 2389 

80000 35 99 38 3322 

100000 41 110 46 4120 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003 

Table 33: ANOVA results for Quick Sort (Float 4 clients) 

 

Figure 43: Quick Sort (Float) Using Socket Communication for 4 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 3 28 6 167 

20000 6 33 10 319 

40000 9 39 16 659 

60000 16 45 23 1234 

80000 24 51 29 1664 

100000 35 57 38 2120 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0003 

Table 34: ANOVA results for Quick Sort (Float 8 clients) 

 

Figure 44: Quick Sort (Float) Using Socket Communication for 8 Clients 
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6.6 Quick Sort (String) 

6.6.1 Evaluation of Quick Sort (String) 

Table 35 through 38 depicts the data obtained from the algorithm and the result of 

ANOVA tests. Figures 45 through 48 shows that C# was the leader for character being 

the fastest. String types in both Java and C# exhibit a similar behaviour with slight 

differences in their execution speed. Second was Java, which was expected to be slower 

for strings since string operations are immutable in Java. Therefore, it requires extra 

memory and memory access. Third was C. Therefore, while the allocations/freeing are a 

slow process, if the data size of the input files were smaller, C would have performed 

much better than Java. Fourth was, again, Jython. 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 9 11 7 741 

20000 24 19 10 173 

40000 64 25 22 313 

60000 111 32 24 457 

80000 181 44 26 657 

100000 269 85 28 804 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0009 

Table 35: ANOVA results for Quick Sort (String 1 client) 

 

Figure 45: Quick Sort (String) Using Socket Communication for 1 Client 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 13 44 23 371 

20000 67 69 30 689 

40000 131 88 75 1209 

60000 553 109 93 1819 

80000 762 148 102 2789 

100000 1513 222 150 3213 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0009 

Table 36: ANOVA results for Quick Sort (String 2 clients) 

 

Figure 46: Quick Sort (String) Using Socket Communication for 2 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 12 24 10 130 

20000 26 36 15 346 

40000 75 45 36 605 

60000 291 55 52 909 

80000 392 78 56 1313 

100000 583 160 62 1607 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0009 

Table 37: ANOVA results for Quick Sort (String 4 clients) 

 

Figure 47: Quick Sort (String) Using Socket Communication for 4 Clients 
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Data Size C(ms) Java(ms) C#(ms) Jython(ms) 

10000 9 11 7 71 

20000 24 19 10 173 

40000 64 25 22 313 

60000 111 32 24 457 

80000 181 44 26 657 

100000 269 85 28 804 

ANOVA: Results: The probability of this result, assuming the null hypothesis, is 0.0006 

Table 38: ANOVA results for Quick Sort (String 8 clients) 

 

Figure 48: Quick Sort (String) Using Socket Communication for 8 Clients 
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Chapter 7 

CONCLUSION 

The main purpose of this research was to provide a comparison of the performance of 

different programming languages, when used to implement several classical algorithms 

and measurement criteria on a common platform. In this study, all of the results are based 

on measurement values taken from the three categories: CPU Utilization, Memory Usage 

and Run time in a distributed system using TCP sockets. 

Some languages performed as anticipated and others performed with some unexpected 

outcomes. The research provided a well-defined perspective of how each language 

performed based on the memory consumption, CPU utilization, and runtime for client-

server communication using socket API of different languages (C, C#, Java and Jython), 

on algorithms (Bubble Sort, Quick Sort, Linear Search and Binary Search), for data types 

(Integer, Float, String). The overall best performers in case of memory usage and CPU 

usage were C and Jython, undoubtedly with C being the leader. In the case of computing 

CPU utilization in Bubble Sort, Jython was fourth, which was quite obvious since 

interpreted languages like Jython do not perform efficiently in a completely CPU bound 

algorithm. 

In the case of computing runtime in a Distributed System using TCP Sockets for Bubble 

Sort, Java and C# performed almost equally. The third best performer among the four 

programming languages here was C. Fourth was Jython, as expected, which proved that a 

- 77 - 



simple language structure in terms of coding could have complex scores in this area. For 

Bubble Sort using string data types, C was the best performer due to Java’s slow speed of 

string operations. 

For Quick Sort, C was the fastest solution. Second and third were C# and Java, 

respectively. Java has more tools accessibility across all the platforms, although there are 

many tools accessible for .NET on Windows platforms, increasing acceptance of C#. 

Jython is last for a language recommendation for network communication, based solely 

on the measurements evaluated. In addition, in the case of Quick Sort using string data 

type, C# and Java were first and second respectively, with C being in the third position. 

Fourth was again Jython, which was quite expected. 

To presume that Jython is not suitable for an application because of the fact that it is 

excessively slow is not correct. There are not many applications these days for which 

execution speed is such a huge concern. In the event of a bottleneck in the code, we can 

simply move that area of code to Java as necessary. As programmer/developer, we have 

to be concerned with the speed of development rather than the rate of execution, and in 

this scenario, Jython is quick. 

After reviewing these results, it is obvious that programming languages on a common 

platform using similar coding styles does have an impact in the performance of different 

algorithms. The main goal of this study was to illustrate these differences, which is quite 

evident from the measurements obtained from the calculations. 
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Tables 39, 40 and 41 show the top 2 programming language implementations in Bubble 

Sort, Quick Sort, Linear Search, and Binary search in terms of CPU Utilization, Memory 

Usage and Run time in distributed system using TCP sockets (for 1,2,4 and 8 client) for 

Integer, float and String data types. 

Comparison of Programming languages C, Java, C# AND Jython on Integer data 

 
Criteria 

Algorithm CPU Utilization Memory Usage Run Time using TCP 
Sockets 

Bubble Sort C and Java C and Jython Java and C# 

Quick Sort C and Jython C and Jython C and C# 

Linear Search C and Jython C and Jython N/A 

Binary Search C and Jython C and Jython N/A 

Table 39: Top 2 programming language implementations for Integer data type 

Comparison of Programming languages C, Java, C# AND Jython on Float data 

 
Criteria 

Algorithm CPU Utilization Memory Usage Run Time using TCP 
Sockets 

Bubble Sort C and Java C and Jython Java and C# 

Quick Sort C and Jython C and Jython C and C# 

Linear Search C and Jython C and Jython N/A 

Binary Search C and Jython C and Jython N/A 

Table 40: Top 2 programming language implementations for Float data type 
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Comparison of Programming languages C, Java, C# AND Jython on String data 

 
Criteria 

Algorithm CPU Utilization Memory Usage Run Time using TCP 
Sockets 

Bubble Sort C and C# C and Jython C and Java 

Quick Sort C and Jython C and Jython C# and Java 

Linear Search C and Jython C and Jython N/A 

Binary Search C and Jython C and Jython N/A 

Table 41: Top 2 programming language implementations for String data type 
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Chapter 8 

FURTHER RESEARCH 

Further writings and experimentation on this subject could include comparing 

programming languages across platforms using this study’s approach. Perhaps a 

developer could compare C# results obtained using the same categories in a Microsoft 

environment to those obtained here in the LINUX, and see how the programming 

language behaves differently. 
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