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ABSTRACT 

 

Many elasmobranchs are considered top predators with worldwide distribution, and in general 

these fish play an important role in the transfer of energy from the lower to the upper trophic 

levels within the marine ecosystem. Despite this, little research has been done regarding the rates 

of prey ingestion, digestion, and the processes of energy and nutrient absorption. Specifically 

understudied is enzymatic digestion within the intestinal brush border, which functions to break 

down macromolecules into smaller subunits for luminal absorption across the gastrointestinal 

epithelium. Given their carnivorous diet, the present study sought to expand knowledge on 

nutrient intake in elasmobranchs by focusing on the uptake of products of protein metabolism. To 

accomplish this, sequence encoding Peptide Transporter 1 (PepT1), a protein found within the 

brush border membrane (BBM) of higher vertebrates that is responsible for the translocation and 

absorption of small peptides released during digestion by luminal and membrane-bound 

proteases, was molecularly identified in the bonnethead shark (Sphyrna tiburo) using degenerate 

primers based on conserved portions of known PEPT1 sequences from other vertebrates. 

Sequence encoding Peptide Transporter 2 (PepT2) was also isolated from the S. tiburo scroll 

valve intestine using the same methodology. PepT1 was then localized using 

immunocytochemistry with rabbit polyclonal anti-rat PEPT1 in the esophagus, stomach, 

duodenum, scroll valve intestine, rectum, and pancreas.  Vesicle studies were used to identify the 

apparent affinity of the transporter, and to quantify the rate of uptake by its H+-dependent 

cotransporter properties, using 3H-glycylsarcosine as a model dipeptide. The results of this study 

provide insight into the rate and properties of food passage within S. tiburo, and can lead to 
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future work on topics such as physiological regulation of protein metabolism and absorption and 

how it may vary in elasmobranchs that exhibit different feeding strategies. 
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INTRODUCTION 

 

Sharks, skates and rays form a group of saltwater- and freshwater-dwelling fish called 

elasmobranchs. This group represents primitive vertebrates that evolved at least 400 million 

years ago, and are considered to be some of the first jawed vertebrates (Moy-Thomas 1938; 

Maisey 1980; Wilga et al. 2001). The jaw is made up of a series of homologous branchial arches 

as part of the visceral skeleton, which has acquired the function of biting (Moy-Thomas 1938). 

This morphological and functional development led to more complex feeding mechanisms and 

allowed for a shift in diet (Moy-Thomas 1938; Wilga et al. 2001). This ability to consume 

comparatively larger and more nutrient-valuable prey called for absorptive modifications within 

the gastrointestinal system (Holmgren 1999; Wilga et al. 2001). As seen in agnathans (jawless 

vertebrates) the gastrointestinal tract is made up of an esophagus and a gut tube (intestine) that 

leads to the cloaca. Comparatively however, the gnathostome (jawed vertebrate) GI tract such as 

that of elasmobranchs is more complex and consists of an esophagus, stomach, duodenum, 

spiral/scroll valve intestine, and colon (Fishbeck et al. 2008).  

 

The elasmobranch spiral/scroll valve intestine is a unique organ that increases surface area 

without increasing length by the infolding of the mucosa and submucosa. It is commonly thought 

that due to the presence of this organ elasmobranchs undergo slow food passage, which is often 

associated with a low rate of consumption, therefore limiting growth and reproductive rates. A 

study on juvenile lemon sharks examined digestive capability using an indirect method via an 

inert, naturally occurring marker in their food (Cortes and Gruber 1990). The authors found that 

lemon sharks are capable of absorbing energy with an average efficiency of about 80%, which is 
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similar to the absorption efficiency of a carnivorous teleost. However, the rate of digestion was 

prolonged in comparison, taking between 70 to 100 hours (Cortes and Gruber 1990). Feeding 

frequency has also been examined in various species of sharks, and it has been found that the rate 

of food passage varies among species (Bush 2002; Lowe 2001; Wetherbee et al. 2004).  Species 

such as the spiny dogfish are known to gorge themselves every 10 to 16 days (Wetherbee et al. 

2004). Conversely, the scalloped hammerhead feeds much more frequently ranging from every 

10 to 11 hours (Bush 2002; Lowe 2001). Moreover, although all elasmobranchs are carnivores, 

the diet across species can range from microscopic phytoplankton to large pelagic fish. A 

number of studies have used quantitative diet analysis to understand what elasmobranchs 

consume and different predator-prey interactions important to sharks (Bethea et al. 2007; Cortes 

et al. 2006; NMFS 1999).  Through such research and different technological advancements 

current research has been able to estimate species-specific metabolic rates for a number of 

elasmobranch species, and such information can be used to better grasp bioenergetics (Carlson et 

al. 2004). However most fish, including sharks, do not initially break down their food prior to 

ingestion into the gastrointestinal tract. Thus, it is important to go beyond diet itself, to 

understand the chemical means of digestion and absorption (Papastamatiou and Lowe 2004; 

Papastamatiou and Lowe 2005; Clements and Raubenheimer 2006; German 2011). For example, 

Jhaveri et al. (2015) examined digestive enzyme activity along the gut of the bonnethead shark 

(Sphyrna tiburo). This study specifically looked at what compounds the bonnethead shark could 

digest and applied this information to infer the digestive strategy within the hindguts of S. tiburo. 

Results demonstrated that gut content was concentrated more within the intestinal region 

(duodenum, spiral valve intestine, and colon), with greater concentrations within the spiral valve 

intestine in comparison to the duodenum and colon. They also found that pancreatic enzyme 
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activity was elevated in the duodenum and spiral valve, whereas brush border membrane (BBM) 

enzymatic activity peaked in the spiral valve and colon. However, microbial enzymes were 

highest on or within the colon. From such results, they inferred that the spiral valve intestine is 

the most active, absorptive section of the shark intestinal region. An additional/final conclusion 

was that the bonnethead shark has adapted a yield-maximizing digestive strategy, meaning that 

they consume relatively large meals infrequently and thus have enzymatic patterns as described 

above (Jhaveri et al. 2015).    

 

Although diet composition and general aspects of enzymatic digestion within the elasmobranch 

gut have been studied, studies regarding the breakdown of dietary macromolecules and their 

absorption across intestinal epithelium within the BBM are significantly lacking. 

Microscopically, the epithelial cells and microvilli that make up the BBM in the elasmobranch 

GI tract are remarkably similar to those of the mammalian and teleost gastrointestinal tracts 

(Crane 1978). Based on previous studies, it is known that the mammalian BBM increases surface 

area for nutritive absorption, and contains enzymes near transporters that facilitate the absorption 

of digested nutrients into the intestine (Schmitz et al. 1973; Hauser et al. 1980). However, in 

regards to elasmobranchs, little information is available about the functional properties of the 

components of the gastrointestinal tract. In one of the few studies on this topic, Crane (1979) 

demonstrated the presence of potential BBM D-glucose transporters within small dogfish 

(Scyliorhinus canicula) spiral valve intestine. That study showed that glucose uptake by S. 

canicula spiral valve BBM is stimulated by a Na+ gradient and inhibited by the monosaccharide 

α- methylglucoside, an alternative substrate for glucose transporters, or by phlorizin, a specific 

inhibitor of intestinal glucose transporters. Such information provides insight into the cellular 
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mechanisms of the elasmobranch intestine, and similarities to the teleost and mammalian 

digestive mechanisms.  

 

Sharks have a carnivorous diet, and therefore protein absorption is an important aspect to 

understand. However, in contrast to the modest research conducted on sugar uptake, there are no 

publications regarding the mechanisms by which peptides cross the epithelial cells of the 

spiral/scroll valve and other digestive organs. It is known that dietary proteins can be degraded 

into free amino acids within the digestive tract. However, a great deal of studies provide 

evidence that within the mammalian and teleost intestine, most dietary proteins are broken down 

into small peptides rather than being broken down to single amino acids (Shimakura et al. 2006). 

Thus intestinal peptide transport is an important aspect to understand and such knowledge will 

provide further insight into the ability of sharks to absorb amino acids or short peptides for 

energy usage, and also lead to further research on topics such as the physiological regulation of 

protein metabolism and absorption (Matthews, 1975; Daniel, 2004). 

 

Research has shown that peptide absorption is markedly influenced by an inwardly directed 

proton gradient, stimulated by an inside-negative membrane potential and inhibited by an inside-

positive membrane potential; implying that the transport of peptides across a membrane is 

associated with the transfer of positively charged ions (Leibach et al., 1996). Peptide transporter 

1 (PEPT1 or SLC15A1) and Peptide transporter 2 (PEPT2 or SLC15A2) are both a critical 

peptide transporters within the mammalian and teleost digestive and renal tracts that depend on 

this driving force. These transporters have also been identified as part of the major facilitator 

superfamily of 12 transmembrane domain transporter proteins. However, although these two 
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peptide transporters share similarities in function and structural characteristics, the distribution of 

PEPT1 and PEPT2 differ. PEPT1 has been successfully identified and described in a number of 

teleost and mammalian species within the gastrointestinal tract, rectum, gallbladder, pancreas, 

nuclei of smooth muscle cells, the liver, and throughout the renal tract (Leibach and Ganapathy 

1996; Verri et al. 2010). However, studies report that PEPT2 is predominately located in the 

kidney BBM, brain, gonads, lungs, gallbladder, and liver (Leibach and Ganapathy 1996; Saito et 

al. 1996). PEPT2 has not been detected in the mammalian or teleost intestinal tract. It is 

important to note that studies have also shown that PEPT2 possesses a higher affinity than 

PEPT1 for diverse dipeptides (Leibach and Ganapathy 1996). In 2003, Verri et al. confirmed the 

presence of PepT1 in fish by successfully cloning and functionally characterizing it within the 

Danio rerio intestinal BBM. Specifically, PEPT1 is a Na+- independent, H+ - dependent 

cotransporter protein present in the intestinal BBM that is responsible for the translocation and 

absorption of di- and tripeptides released during digestion by luminal and membrane- bound 

proteases. 

 

As there are consistencies seen in the distribution of PEPT1 and PEPT2 across vertebrates 

overall, we expect to find PepT1 to have the same range of expression in elasmobranchs, 

specifically in the spiral valve intestine and other GI organs. The purpose of this study was to 

molecularly identify the presence of PepT1 within the elasmobranch spiral valve intestine and to 

histologically assess the distribution of this transporter in all components of the GI tract and the 

pancreas. In addition, this study will report the uptake capabilities of the intestinal peptide 

transporter. For this particular study bonnethead sharks (Sphyrna tiburo) were used as the model 

species due to their abundance and availability.  
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METHODOLOGY  

Sample collection 

 

S. tiburo were collected from sites ranging from Charleston, South Carolina to Cape Canaveral, 

Florida (Fig. 1) using gillnet and longline fishing. Animals were euthanatized using IACUC- 

approved methodology, and the gastrointestinal tract was obtained by dissection (Fig. 2). Small 

portions of the scroll valve intestine were sampled and stored in RNAlater at -4˚C for use in 

molecular studies.  Samples (~2-3 mm) of the gastrointestinal tract and accessory organs 

(esophagus, stomach, pancreas, duodenum, scroll valve intestine, and rectum) were also obtained 

and fixed in 10% formalin in elasmobranch-modified saline for about 48 hrs., then rinsed and 

transferred to 70% ethanol for long-term storage until used for histology and 

immunocytochemistry. Last, whole intestines were obtained from some animals and stored at -

80˚C until used for vesicle experiments. 
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Fig. 1: Map of South Carolina, Georgia and Florida demonstrating sites where animals 

(representative of blue circles) were collected in the present study. Animals were collected 

mainly in coastal waters of Charleston, SC, Jacksonville, FL, and Cape Canaveral, FL. 
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                   Fig. 2: Morphological image of the bonnethead gastrointestinal tract. 
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Molecular Identification      

1. Isolation of S. tiburo pept1 and pept2 cDNA sequences 

To isolate total RNA, approximately 50 mg of scroll valve intestine was minced, placed in 750 

µL of Trizol reagent and homogenized. The homogenate was centrifuged for 1 minute at 12,000 

x g to pellet any remaining solid tissue, with 700 µl of the supernatant subsequently placed into a 

microcentrifuge tube. The Direct-Zol RNA Miniprep kit (Zymo Research, Irvine, CA) was then 

used for total RNA extraction. The concentration and purity of RNA was determined using a 

NanoDrop spectrophotometer and gel electrophoresis. Reverse transcription of 1 µg of total 

RNA into cDNA was conducted using Superscript III reverse transcriptase (Life Technologies) 

following the manufacturer’s instructions. 

 

For degenerate PCR, degenerate primers were designed based on conserved portions of known 

PEPT1 sequences from chicken (NM_204365.1), salmon (NM_001146692.1), eel (AB7762417), 

and zebrafish (NM_198064). Four combinations from the mentioned taxa were created, two 

different forward and two different reverse primers, to maximize the possibility of at least one 

combination annealing to bonnethead cDNA and amplifying a portion of pept1. PCR was 

performed using six different cycling parameters, to increase the range of annealing temperatures 

tested. Cycling parameters included: 95˚C for 2 min followed by initial annealing temperatures 

of 52.5, 53.3, 54.9, 57.2, 60.1 or 62.5 (a different starting temperature for each reaction) for 30 

sec and then 72 ˚C for 1 min. For the first 25 cycles, the annealing temperature was decreased 

each cycle by 0.5˚C, followed by 15 cycles (for 40 total) at an annealing temperature of 40 ˚C for 

all reactions. Following the PCR a 1% gel electrophoresis was run to determine the optimal 
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temperature and combination of primers, with products of the appropriate size isolated, cloned 

and sequenced as described below. 

The primers that yielded the largest product were 5’-GAGTTCTGYGARMGDTTCTCCTACT-

3’ as the forward primer and 5’-TGGTCAAANARDGYCCAGAACAT-3’ as the reverse primer. 

Products from PCR reactions using this primer combination were ligated into the pGEM-T 

vector (Promega) and used to transform competent Escherichia coli. Twenty-five µl of 

transformed cells were then plated on agar plates coated with isopropyl-beta-D-

thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) 

for blue-white screening and incubated at 37 ˚C overnight. White (positive) colonies were then 

selected, placed in 2 mL of LB broth and incubated overnight at 37˚C with shaking at 250 rpm. 

Overnight incubations were transferred into capped tubes and centrifuged at high speed for about 

30 sec. The supernatant was poured out and the pellet then resuspended in 600 µl of sterile water 

The Zyppy Plasmid Miniprep Kit (Zymo Research) was then used to isolate plasmid DNA from 

for sequencing preparation. Selected plasmids were then sequenced by Genewiz, and sequences 

were analyzed using the CLC Main Workbench 7 software (CLCbio, Qiagen). Although the 

target cDNA was pept1, the methods described above yielded clones positive for both pept1 and 

pept2 sequences, likely due to high sequence similarity; therefore full length cDNA sequences 

were obtained for both genes using rapid amplification of cDNA ends (RACE).   

To obtain the remaining 3’ and 5’ coding sequence as well as the 5’ and 3’ untranslated regions 

of pept1 and pept2, the FirstChoice RLM-RACE kit (Life Technologies) was used. Total RNA 

from scroll valve intestine was extracted as described above, and 5’ and 3’ RACE-ready cDNA 

was then generated following the manufacturer’s instructions. 5’ and 3’ RACE PCR products 

were then obtained using nested PCR reactions that included kit-specific primers and species-
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specific primers (Table 1) for pept1 and pept2 designed using the cDNA fragments isolated as 

described above.  RACE products were then cloned and sequenced as described above, and 

sequences were assembled using CLC Main Workbench 7. 
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 outer inner 

pept1 RACE 5’ CCAAGCCAGGAGTCAGCAATGATT CGTGGTAAACGGCTGTAGCGAGA 

pept1 RACE 3’ CTTTGGAGTCCCAGCTGCTCTGAT TTCATGGACTGGGCTTCAGAGAA 

pept2 RACE 5’ ACGATGGACAGCACAATGATGGTT CGTGGTAGATGGCAGTGGAAAGAT 

pept2 RACE 3’ CAGGAAGTTTGCTCTCGACCATCA CAATCGGTGGAAACATCGCAGAA 

 

Table 1: Bonnethead species-specific primers used to obtain the remaining 5’ and 3’ coding 

sequence and untranslated regions using inner and outer RACE PCR reactions. Primers were 

designed based on cDNA fragments isolated from the bonnethead shark.  
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2. Sequence and phylogenetic analyses 

BLAST analysis was used to confirm the identity of the presumed S. tiburo PepT1 and PepT2 

protein sequences (http://www.ncbi.nlm.nih.gov/BLAST). S. tiburo sequences were then aligned 

with other elasmobranchs, teleost, and higher vertebrates using the Clustal W algorithm in CLC 

Main Workbench for analysis of gene homology (Figures 3 and 4). Potential transmembrane 

domains for both pept1 and pept2 were defined using TMprep computational resources 

(http://www.bioinformatics.utep.edu/BIMER/tools/transmembrane.html). For phylogenetic 

analysis, both S. tiburo protein sequences were aligned with PEPT1 and PEPT2 sequences from 

diverse vertebrate taxa using the Clustal W algorithm in MEGA version 6 (Tamura et al. 2013); 

phylogenetic relationships were then determined using the Neighbor-Joining method with 2000 

iterations to generate a bootstrap consensus tree (Figure 5). 

 

Histology 

Fixed tissue samples were processed for routine paraffin histology as described by Gelsleichter 

et al. (2003). Once embedded in paraffin, samples were sectioned (5 µm) using a rotary 

microtome and mounted on poly-L-lysine-coated slides. They were then stained with Harris 

hematoxylin and eosin to examine general cellular architecture.  

 

Immunocytochemistry 

Gastrointestinal tract and accessory organ samples were fixed and sectioned as described above. 

Immunocytochemistry was then performed to examine the cellular location of PEPT1 using a 

rabbit polyclonal anti-rat PEPT1 (SLC15a1, Millipore, Berlin, Germany) and the Vector 

ImmPRESS anti-rabbit kit (Vector Laboratories, Burlingame, CA). Tissue sections were 

http://www.ncbi.nlm.nih.gov/BLAST
http://www.bioinformatics.utep.edu/BIMER/tools/transmembrane.html
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incubated in a limonene-based solvent for deparaffinization, rehydrated by submerging in a 

descending series of graded alcohol concentrations (100%- 95%), and then rinsed for 10 minutes 

in a running tap water bath. Sections were then incubated in an antigen retrieval solution (10 mM 

sodium citrate, pH 6.0) at 95˚C for 20 minutes to expose any epitopes of the target antigen that 

may have been masked by the fixation process. Sections were then removed from the bath and 

brought to room temperature. They were then rinsed in reverse osmosis (RO) water, followed by 

phosphate buffered saline (PBS), and then blocked for nonspecific reactivity with primary 

antibodies by overnight incubation in 2% normal goat serum in PBS (Vector laboratories) at 4˚C . 

After blocking, slides were washed with PBS and endogenous peroxidase activity was then 

quenched by incubation in a 1:1 mixture of 3% hydrogen peroxide and methanol for 15 minutes. 

Sections were then rinsed again in two separate baths of PBS. Sections were then incubated 

overnight in primary antibody diluted 1/1000 in a PBS solution containing 0.1% gelatin and 

0.1% sodium azide (G-PBS). Negative control sections were incubated in diluent only.  

Following incubation, sections were rinsed in a PBS bath containing 0.05% TWEEN-20 (PBS-

T), followed by two additional PBS rinses. Afterwards, slides were incubated for approximately 

30 minutes with secondary antibody, anti-rabbit Ig. Following this incubation, sections were 

rinsed in three separate PBS baths and then incubated in the chromogen 3.3’-diaminobenzidine 

(DAB), using the ImmPACT DAB Peroxidase (HRP) substrate kit. Slides were rinsed in tap 

water and then counterstained in 2% methyl green (Vector laboratories) for 15-60 minutes at 

37˚C. Afterwards, they were rinsed briefly in tap water, dehydrated in an ascending series of 

graded alcohols (95%-100%), cleared using limonene-based solvent, and then mounted using 

Cytoseal 60 (Thermo Scientific, Fair Lawn, NJ). Microscopy was then used to examine the 

distribution of immunoreactive PEPT1 in the bonnethead digestive system.  
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Vesicle experiments 

1. Preparation of Brush Border Membrane Vesicles:  

Whole intestines stored at -80˚C were thawed on ice in PBS. Subsamples of intestine were then 

cut and scraped using a razor blade to free epithelial cells into 60 mL of a 300 mM mannitol, 20 

mM Tris HCl, 50 mM EGTA, 1 mM PMSF buffer adjusted to pH 7.0 (buffer 1). For Brush 

Border Membrane Vesicle (BBMV) purification, an experimental design used on Mozambique 

tilapia (Oreochromis mossambicus) intestine (Thamotharan et al. 1996) was implemented on S. 

tiburo. Similar methodology was used by Crane et al. (1979), showing that elasmobranch BBMV 

can be isolated using this approach. The expanded technique has two additional washing steps 

for discarding stored cytoplasmic digestive enzymes (Thamotharan et al. 1996). Purified BBMV 

were then used for transport measurements.  

2. Transport measurements  

 Transport experiments were conducted using the scroll intestine BBMV and the Millipore 

filtration technique (Thamotharan et al. 1996). [3H] Glycylsarcosine (Moravek Biochemicals, 

Brea, California 92821) (Gly-Sar) was used in 120 min uptake experiments by mixing 20 µL of 

membrane suspension with 180 µL of radiolabelled incubation medium. Composition of 

incubation medium varied with the nature of each experiment. Effect of pH on uptake of 

radiolabeled Gly-Sar in intestinal BBMV was examined using incubation media made up of 150 

mM KCl and 20 mM HEPES adjusted to a pH of 7.5 or a pH of 8.5, and a third medium 

contained 150 mM KCl and 20 mM MES adjusted to pH 5.5. Measurements were taken at 

intervals of 0.25, 1, 2, 5, 10, 60, and 120 min.  

Kinetics of [3H] Gly-Sar influx at 1 min was then examined using media composed of 150 mM 

KCl, 20 mM HEPES at concentrations of 1, 2.5, 5, 10, and 25 mM Gly-Sar.  
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In these two separate experiments, uptake of [3H] Gly-Sar was terminated by injecting 20 µL of 

the reaction into 2 mL of a stop solution (composed of same solution as the incubation medium 

without the radiolabelled dipeptide). The solution was then filtered using a Millipore filter (0.65 

µm pore diameter) and washed with an additional 3 mL of stop solution. Filters were then placed 

in 3 mL of Beckman Volume scintillation cocktail and counted using a Beckman LS-6100 

scintillation spectrometer. The average of each set of replicates was determined and graphed in 

SigmaPlot10.0. A one-way ANOVA was then ran to statistically test the significance between 

the mean values of GlySar uptake among the given ion gradients where the overshoot is present.  
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RESULTS 

Sequence analysis  

The bonnethead pept1 cDNA was 4,055 bp, with an ORF of 2,157 bp encoding a putative protein 

of 718 aa. The sequence also included 455 bp of 5’ untranslated region (UTR) sequence and 

1,443 bp of 3’UTR sequence with a polyadenosine mRNA tail. Hydropathy analysis predicts 12 

potential transmembrane domains (TMD) with an extracellular loop between TMD IX and X 

(Fig. 3).When compared to previously characterized PEPT1 sequences from other vertebrates 

using BLAST, the predicted bonnethead sequence shows high sequence identity, ranging from 

60 to 67.3 percent.  

The pept2 cDNA was also isolated from the bonnethead shark intestine. The sequence was 2,549 

bp, with an ORF of 2,169 bp encoding a putative protein of 722 aa. The sequence included 91 bp 

of 5’ UTR sequence and 289 bp of 3’UTR sequence with a polyadenosine mRNA tail. 

Hydropathy analysis predicts 13 potential TMD with an extracellular loop between TMD X and 

XI (Fig. 4). When compared to previously characterized PEPT2 sequences from other species 

using BLAST, the predicted bonnethead sequence shows high sequence identity, ranging from 

61.8 to 66 percent. 

Percent identity between the two isolated intestinal peptide transporters was only 51%. Also, the 

phylogenetic reconstruction of the vertebrate peptide transporter proteins assigned the two 

isolated bonnethead shark peptide sequences to separate clades and within the PEPT1 and 

PEPT2 branches of the phylogenetic tree, which also demonstrated early divergence of the 

elasmobranch protein sequences from those of the teleost and mammalian groups (Fig. 5). 
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Fig. 3: Bonnethead PepT1 aligned with PEPT1 proteins from diverse vertebrate taxa: 

Callorchinchus milii, Anguilla japonica, Xenopus tropicalis, Gallus gallus, Rattus norvegicus, 

and Homo sapiens. Darker shading indicates decreasing sequence conservation across taxa. Line 

region with roman numerals indicates predicted TMDs. 
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Fig. 4: Bonnethead PepT2 aligned with PEPT2 proteins from diverse vertebrate taxa: 

Callorchinchus milii, Danio rerio, Xenopus laevis, Gallus gallus, Rattus norvegicus, and Homo 

sapiens. Darker shading indicates decreasing sequence conservation across taxa. Lined region 

with roman numerals indicates predicted TMDs. 
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Fig. 5: Phylogenetic analysis of bonnethead PepT1 (Slc15a1) and PepT2 (Slc15a2). 

Relationships were inferred using the Neighbor-Joining method in Mega4 (Tamura et al. 2007).  

PepT1 sequences include Callorhinchus milii (XP_007904487.1), Meleagris gallopavo 

(NP_001290095.1), Gallus gallus (NP_989696.1), Rattus norvegicus (NP_ 476462.1), Mus 
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musculus (NP_444309.2), Bos taurus  (NP_001092848.1), Homo sapiens (NP_005064.1) 

Latimeria chalumnae (XP_005992366.1) Anguilla japonica (BAM67012.1), Xenopus tropicalis 

(XP_002935692.2), Cyprinus carpio (AEX13747.1), Epinephelus aeneus (AFP33141.1), 

Larimichthys crocea (NP_001290295.1), Danio rerio (NP_932330.1), and Salmo salar 

(NP_001140154.1). PepT2 sequences include Mus musculus (NP_067276.2), Homo sapiens 

(NP_066568.3), Gallus gallus (AGZ02797.1), Danio rerio (NP_001034917.1), Xenopus laevis 

(NP_001080398.1), Larimichthys crocea (KKF11892.1), Oryzias latipes (XP_004081581.1), 

Cyprinus carpio (ADM48102.1), Latimeria chalumnae (XP_006004055.1), Sus scrofa 

(NP_001090983.1), Rattus norvegicus (NP_113860.2), Meleagris gallopavo (XP_010712188.1), 

and Callorhinchus milii (XP_007907469.1). The tree is rooted using the PepT2 sequence from 

Ciona intestinalis (XP_002121251.1).  Numbers at branch points indicate the percentage of 2000 

bootstrap replicates supporting the division. 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

Localization 

The GI and accessory organs consisted of simple columnar epithelium supported by a smooth 

muscle mucosa and submucosa (Fig. 6a). Specifically within the stomach, the epithelial cells 

were shown to extend into gastric pits lined by the mucous cells (Fig. 6a). Within the intestinal 

region, the duodenum and scroll valve, the epithelial cells were organized into villous forms and 

contained a thick layer of microvilli making up the brush border membrane (Fig. 6a). Moreover, 

the rectum of the bonnethead shark was found to contain a large amount of goblet cells, and the 

epithelium made up colonic crypts (Fig. 6a). Last, the pancreas contained acini, which are ovoid-

elliptical clusters of acinar cells (Fig. 6a).      

Immunohistochemistry was conducted on all components of the bonnethead gastrointestinal 

system from 10 individuals and PepT1 was detected in multiple areas. Staining of such organs 

reveals the epithelium of the esophagus, stomach, duodenum, scroll valve intestine, rectum and 

pancreatic acinar cells as distinctly immunopositive, implying the presence of PepT1. However, 

staining of the stomach and scroll valve intestine is much more intense than that of the other 

gastrointestinal organs (Fig. 6c). Moderate immunopositive staining was detected within the 

duodenum, rectum, and pancreatic acinar cells in comparison to staining within the stomach and 

scroll valve intestine (Fig. 6c). There was also minimal immunopositive staining observed within 

the esophagus, as minor distinct differences were observed between the control and non-control 

slides (Fig. 6b & 6c).     
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Fig. 6: Cross sections of GI organs using H&E staining methods demonstrate the histological 

architecture of the organs (column a). Cross sections of negative immunohistochemistry analyses 

in all components of the GI tract (column b). Cross sections of positive immunohistochemistry 

analyses in all the components of the GI tract. Arrows represent positive staining of PepT1 

(column c). All sections were observed at 400x. 
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Function  

 Figure 7 illustrates the effects of a pH gradient on the time course of 1mM [3H] Glycylsarcosine 

uptake by the bonnethead scroll valve BBMV. This time course was characterized by an 

overshoot at 1 minute that was highest when the pH inside was 7.5 and the pH outside was 5.5 

(Fig. 7). No overshoots were seen when the outside pH was 7.5 or 8.5. Overshoots in the 

presence of proton gradient suggest that the transmembrane concentration gradient of hydrogen 

ions provides the driving force for the uptake of peptides by the scroll valve brush border 

membrane vesicles.  

Influxes (1 min uptakes) of [3H] Gly-Sar into the scroll valve BBMVs were measured over a 

concentration range of 1- 25mM [3H] Gly-Sar in the presence of an inwardly-directed proton 

gradient (inside pH 7.5 and outside pH 5.5). Influxes for this concentration range were used in 

the Michaelis-Menten kinetics equation (Joi ={(Jmax * [S])/(Km + [S])}), where Joi is peptide 

influx, Jmax is maximal influx, Km is the Gly-Sar concentration at ½ Jmax, and S is Gly-Sar 

concentration. This analysis yielded Michaelis- Menten values for a saturable, low- affinity 

system with a Km = 6.18 ±1.66 mM and a Jmax = 6077.86 ± 632.57 pmol/ mg protein per 1 min 

(n=3).   
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Fig. 7: Time course experiment testing the effect of pH on 1 mM 3H-Glycylsarcosine 

uptake. Vesicles were preloaded with 150 mM KCl, 20 mM HEPES at pH 7.5, and 

incubated in various pH levels (5.5, 7.5, 8.5). Experiments were conducted three times 

with three replicates each.  Symbols are mean ± SE. 
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Fig. 8: Kinetics experiment testing the effect of Glycylsarcosine concentration. Vesicles 

were preloaded with 150 mM KCl, 20 mM HEPES at pH 7.5, and incubated in 150 mM 

KCl, 20 mM MES at pH 5.5 solutions with various concentrations of 3H-Glycylsarcosine 

(1 mM, 2.5 mM, 5 mM, 10 mM, 25 mM). Experiments were conducted three times with 

five replicates each Symbols are mean ± SE. 
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DISCUSSION  

 

Multiple aspects of this study, including the molecular identification, immunohistochemistry, 

and BBMV experiments support the identification of cDNAs encoding two individual and 

functional S. tiburo peptide transporters of the PTR family. The two encoded proteins, 

designated as PepT1 and PepT2, represent the products of orthologous genes in other vertebrate 

species. When compared to other known members of the PTR family in vertebrates, the 

predicted bonnethead PepT1 and PepT2 share significantly higher overall identity to other 

known PEPT1 and PEPT2 sequences, respectively, and are assigned to the expected 

monophyletic groups of the reconstructed phylogenetic tree. The analysis of domains also 

reveals that the bonnethead PepT1, like other vertebrate PEPT1 proteins, includes 12 TMDs and 

the overall major area of difference lies within the large extracellular loop between TMDs 9 and 

10. However, unlike PEPT2 in other vertebrates, the bonnethead PepT2 sequence consists of 13 

predicted TMDs rather than 12, and the overall major area of difference lies within the large 

extracellular loop between TMDs 10 and 11 instead of between TMDs 9 and 10. However, TMD 

1 is very weak with a score of 524; therefore it is possible that this TMD is not a major structural 

component and that there are in fact 12 TMDs with an extracellular loop between TMDs 9 and 

10 as seen in other vertebrate PEPT2 proteins. This idea is further suported by a lysine present 

half way down what would be TMD 7, which will later be discussed in detail.   

PepT1 in the bonnethead shark was localized primarily in the epithelial cells of multiple 

gastrointestinal organs. The presence of this transporter within the stomach, duodenum, scroll 

valve intestine, and rectum gives insight into the absorptive qualities of such organs. With PepT1 

present in the epithelial linning of such organs, it can be concluded that in each of these organs 
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there is some level of absorption of dietary peptides as they digest their prey throughout the 

entire gastrointestinal tract. Also, the minimal expression of PepT1 within the esophagus 

provides further support that elasmobranchs typically engulf their prey whole and therefore there 

is minimal need for peptide absorption in the esophagus, with initial break down instead 

occuring within the elasmobranch stomach. The elasmobranch stomach is the first organ used for 

major digestion through the release of hydrochloric acid (HCl), which converts the inactive 

zymogen pepsinogen into the active protease enzyme pepsin, initiating the digestion and 

absorption of protiens (Papastamatiou & Lowe 2005, Papastamatiou 2007). Within the stomach 

the prey is processed into chyme, an acidic fluid consisting of gastric juices and partly digested 

food, and then passed into the intestine (Camilleri et al. 1986). Once chyme enters the shark 

spiral/scroll valve intestine, it has been found that pancreatic enzyme activity largely decrease 

moving down the gut while brush border enzyme activities peak, suggesting that the spiral/ scroll 

valve intestine is the primary site of absorption (Jhaveri et al. 2015). Therefore, supporting that 

the intensity of PepT1 expression within the stomach and scroll valve intestine epithelial lining is 

likely correlated with the importance of absorption of dietary peptides within these organs. 

Unfortunately, the localization of PepT2 was not explored in this study as it was not expected 

that the pept2 sequence would be isolated. However, the differential distribution of these two 

peptide transporters has been explored in a number of vertebrates, and PEPT1 is characterized as 

mainly the intestinal peptide transport system (Winckler et al. 1999; Verri et al. 2003; Shimakura 

et al. 2006) with PEPT2 characterized as the renal peptide transporter (Leibach and Ganapathy 

1996; Saito et al. 1996). However, both transporters are also important in other organs and parts 

of the body. For instance, both PEPT1 and PEPT2 are found within the renal proximal tubules. It 

is thought that this organ may play a significant role in conserving peptide-bound amino acid and 
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amino nitrogen via the peptide transport process, which may otherwise be lost in urine. 

Therefore, the presence of both PEPT1 and PEPT2 maximizes the amount of peptides conserved 

before leaving the body (Schlagheck and Webb1984; Matthews 1991; Seal and Parker 1991; 

Gardner 1994). With this in mind, unlike the teleost and mammalian intestine, the presence of 

both pept1 and pept2 mRNA within the bonnethead scroll valve intestine may be critical for 

absorbing the necessary amount of peptides needed to carry out life. The scroll valve intestine 

has been described as the most active and absorptive section of the shark intestinal system 

(Jhaveri et al. 2015) due to its unique structure that conserves space within the body cavity by 

the infolding of the mucosa and submucosa in a spiral or scroll-like fashion. It may be necessary 

for elasmobranchs, which are known to consume large meals, to hold those meals for an 

extended period of time in the stomach (Wetherbee et al. 1987; Holmgren and Nilsson 1999; 

Papastamatiou 2007) and to have multiple active peptide transporters within the intestine. This 

arrangement may maximize the amount of peptides absorbed before leaving the body, enabling 

these large cartilaginous fish to abosorb the nutrients nessesary to carry out life.  

The funtional aspects of mammalian peptide transporters have been well-examined in the past 

decade, using BBMV techniques, which have allowed detailed characterization of the kinetics 

and ion- dependent properies of such transporters. The functional results from this study provide 

new insight into the mechanism and driving force for dipeptide transport in a shark scroll valve 

intestine. These data show that the uptake of [3H]Gly-Sar in S. tiburo was stimulated by a proton 

gradient, in the absence of sodium. This is further supported by the presence of a lysine amino 

acid half way down TMD 7, specifically at amino acid 294 or PepT1 (Fig. 3) and at amino acid 

297 of PepT2 (Fig. 4). Meredith (2009) found that the mutation of this residue to anything other 

than a positively-charged residue (such as arginine or lysine) abolishes the stimulation of 
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transport by a proton electrochemical gradient. This author identified that the loss of this 

positively charged residue is linked to the stoichiometry (1proton: 1 dipeptide) of a proton 

coupled transport system. Therefore, rather than a true channel being formed, to allow peptide 

transit, there is a small slipage of ion during the conformational change which occurs and 

prevents the translocation of the peptide to the other side of the membrane (Meredith 2009).  

Gly-Sar uptake by intestinal BBMV in the bonnethead shark appears to be mediated by a low- 

affinity, high-capacity type carrier system. This low-affinity carrier system exhibited consistent 

quantitative Km kinetic constant binding values with those of substrate binding from mammalian 

and teleost studies ranging from 0.2-10 mM (Thamotharan et al. 1996; Daniel et al. 1991; 

Skopicki et al. 1991). 

In conclusion, the identification of  both pept1 and pept2 mRNA within the bonnethead scroll 

valve intestine provides a new understanding of the elasmobranch gastrointestinal system, and 

gives insight into the absorptive capabilities of this unique organ. With this information along 

with the distribution and functional qualities of the PepT1 protein, we can conclude that the 

scroll valve intestine, stomach, duodenum, and rectum all appear to play significant roles in 

peptide absorption. It is important to continue to research such topics within elasmobranchs, 

because the speed of a physiological response and rate at which digestion occurs determine 

whether the response is relevant to daily variations in an individual animal’s foraging behavior, 

growth and development, and evolutionary potential. There is an overall interest in sharks, and to 

better grasp their ecological role it is important to understand what they are eating, digesting, and 

excreting back into the environment in order to better predict how sharks function within their 

environment and implement appropriate management strategies.  
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