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SPATIAL AND AGE-DEPENDENT POPULATION
DYNAMICS MODEL WITH AN ADDITIONAL

STRUCTURE: CAN THERE BE A UNIQUE SOLUTION?

J. M. TCHUENCHE

Abstract. A simple age-dependent population dynamics model with an
additional structure or physiological variable is presented in its variational
formulation. Although the model is well-posed, the closed form solution with
space variable is difficult to obtain explicitly, we prove the uniqueness of its
solutions using the fundamental Green’s formula. The space variable is taken
into account in the extended model with the assumption that the coefficient
of diffusivity is unity.
AMS Subject Classification. 92D25, 35A05, 35A15.
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1. Introduction

Mathematical models for epidemics and population dynamics have been
evolving in complexity in the last century. This paper introduces and inves-
tigates an age-physiology structured population model, where the physiolog-
ical variable (or factor, also referred to as additional structure, g, say, which
could represent size, mass, caloric content or any other attribute that affects
the dynamics of individuals in the population (Tchuenche, 2007b)) is intro-
duced. We assume that the evolution of the population depends on some
external constraint, u ≤ ψ. Without this condition, the problem considered
herein would be a linear one with little or no mathematical interest. Thus,
the reason for this constraint is that, it transforms the classical problem of
proving the existence and uniqueness of a solution via the contraction map-
ping principle into a variational inequality (Tchuenche, 2007b). By defining
an appropriate operator, we prove the uniqueness of solution of the model
using both the Green’s formula (also known as Ostrograskii’s method) and
the contraction mapping principle.
Hernandez (1986) considered the existence of solutions of a population dy-
namics model with age dependence and diffusion. He introduced a birth
modulus which models the case in which individuals are more fertile at
younger ages, and derived a scheme to solve the approximating problem. To
this scheme, he applied the Schauder Fixed Point Theorem. Motivated by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/71990375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


34 J. M. TCHUENCHE

the fact that variational formulations have been among the least favoured
method of solutions to population dynamics problems, we decided to carry
out this analysis. Variational formulation of system (1) is rare or non exis-
tent, while the proof of uniqueness of solutions via Ostrograskii’s method of
similar problem is also rare. This paper deals with a population dynamics
problem with age-dependence, a, an additional structuring variable, g, and
a space variable x (for the extended case). The goal is to prove the unique-
ness of solutions to the resulting mathematical problem using the topological
fixed point theory. The results in this paper greatly extend a previous result
by Tchuenche (2005a).
The model framework, basic notations and hypotheses are respectively pro-
vided in Sections 1.1 and 1.2. The classical problem is transformed into
its variational equivalent and analyzed in Section 2. Conclusion follows in
Section 3.

1.1. Model Framework. Let u(t, a, g) represents the population density
of individuals at time t, aged a, with physiological variable g. The dynamics
of the population is described by a function u(t, a, g) such that for every
interval [a1, a2], and any open set Ω ⊂ R+, the integral∫ a2

a1

∫
Ω
u(t, a, g)dgda,

gives the number of individuals of age between ages a1 and a2 at time t with
physiological factor g ∈ Ω ⊂ R+. Such a population is ruled by the follow-
ing first order quasi-linear partial differential equation (Sinko and Streiffer,
1967; Tchuenche, 2005b), where the variable g can also be referred to as the
additional structure

(1)
∂u

∂t
+
∂u

∂a
+G(a)

∂u

∂g
+ µu = h(t, a, g),

with the initial and boundary conditions given respectively by:

u(0, a, g) = u0(a, g), u(t, 0, g) = B(t, g),

where the parameter g appearing in the renewal term probably describes how
such a factor might be distributed among newborns (Tchuenche, 2007b).
Note that the above model includes the demography (birth and death).
G(a) represents the rate of change of g, here assumed independent of g
itself for simplicity. Since it is well-known that pregnancy tends to heighten
mortality amongst women (Sowunmi, 1993), h(t, a, g) ≤ 0 may represent the
increase in death among females resulting from pregnancy. It is therefore
not out of place to assume subsequently and wherever necessary (mainly
for mathematical convenience) that this forcing term is a constant. t ∈
[0, T ], a ∈ [0, A], g ∈ Ω = [g, ḡ]. For the preliminaries, we use u(t, a, g) as
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a basis for elaboration, which enables us to extend the analysis to the case
where u = u(t, a, x, g) and the model equation now incorporates diffusion
to allow for spatial mobility of individuals, with x ∈ (0, L). Without the
additional structuring variable, the result of Garroni and Langlais (1982) is
obtained.

1.2. Some Hypotheses and Notations. Unless otherwise stated, the as-
sumptions listed in this section hold throughout the paper:

• µ ≥ 0 is the rate of mortality, characteristic of the species.
• h(t, a, g) is a monotone function, possibly zero, that takes into ac-
count possible external decrease of population (for a complete deriva-
tion of h see Tchuenche, 2005b). Herein, we assume h is a negative
constant. This enables us to carry out the estimate in Equation (12)
below.
• birth is described by the renewal equation

(2) B(t, g) = u(t, 0, g) =

∫ A

0
βu(t, a, g)da,

where β(> 0) represents the rate of fertility.
• the initial density of the population u0(a, g) > 0 is known.

We introduce the following notations:

(H1) w(t, a, g) ∈ C∞0 (Q) is a test function, which is continuously differ-
entiable with compact support, with Q := [0, T ] × [0, A] × Ω. A
natural assumption for w is that it is a smooth positive function,
which is uniformly bounded along with its first partial derivatives
(Meade and Milner, 1992).

(H2) Denote [0, A]× [0, T ] by Φ, and [0, A]×Ω := Φ0, Γ = [0, A]× [0, T ]×
[0, L].

(H3) Q× [0, L] := Q∗, u0 ∈ L1(Q).
(H4) 〈·, ·〉 represents the duality pairing between H−1(Q) and its dual

H1
0 (Q), while ‖ · ‖Q is the usual norm in Q.

(H5) Since β > 0, then either∫
Q

∫ ∞
0

βu0(a, x, g)dadx = u0(0, g) in H−1(Q),

or, ∫
Ω

∫ ∞
0

βu0(a, ·, g)dadg = u0(0, x) in H−1(Q).
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This problem can be solved in terms of variational inequalities as follows:
Find a function u such that:

u ≤ ψ,

ut + ua +G(a)ug + µu− h ≤ 0

(ut + ua +G(a)ug + µu− h)(u− ψ) = 0

 ; t > 0, 0 < a < A, g ∈ Ω,

u(0, a, g) = u0(a, g),

B(t, g) = u(t, 0, g) =

∫ A

0

βu(t, a, g)da,
(3)

where ψ is a regular function often referred to as the obstacle. Equation (3)
can be interpreted to mean that the population develops with a constraint
depending for instance on the environment (Friedman, 1988), i.e., u ≤ ψ.
A proof of existence of solutions of (1) can be found in (Tchuenche, 2007b).
Consequently, we assume that its variational counterpart (3) has a solution.
For a proof of (3) with h = 0, see Tchuenche (2005a).
Variational methods consist essentially of finding a functional whose varia-
tion yields the equation of interest, substituting the trial solution into the
functional, and by taking variation with respect to some adjustable param-
eters, determining these parameters and thereby the best approximate solu-
tion of the equation (with the given trial function). A weak solution of (1)
is a function u, such that: u is continuous on Q, and for the extended case,
u2 is differentiable with respect to the space variable x in the sense of dis-
tribution (Rektorys, 1980), a valid reason to account for the space variable
in the proof of the main Theorem.

2. Variational Formulation

We define the weak or mild generalized solution of equation (1) by multi-
plying it by a suitable test function w,

(4) 〈ut + ua +G(a)ug, w〉 = −〈µu+ h,w〉;w := w(t, a, g).

For all w ∈ H1
0 (Q), u is a distribution in L2(Q) (Rektorys, 1980), that is,

(5)
∫ ∞

0

∫ ∞
0

(ut · w + ua · w +Gug · w)dadt =

∫ ∞
0

∫ ∞
0

[−µu+ h] · wdadt.

The upper limits of the integrals are ∞ instead of T , or A simply for conve-
nience (for more details on what follows, see Tchuenche, 2007b). Then,

I1 :=

∫ T

0

∫ A

0
ut · wdadt =

∫ A

0

(∫ T

0
ut · wdt

)
da,
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integration by parts yields:

(6) I1 =

∫ A

0
(wTuT − w0u0)da−

∫ T

0

∫ A

0
u · wtdtda,

I2 :=

∫ T

0

(∫ A

0
w · uada

)
dt = −

∫ T

0
u(t, 0, g)w(t, 0, g)dt

(7) −
∫ ∞

0

∫ ∞
0

u · wadadt,

and

(8) I3 :=

∫ ∞
0

∫ ∞
0

Gw · ugdadt.

Hence,

I =
3∑

n=1

In =

∫ ∞
0

∫ ∞
0

[Gwug − u(wa + wt)dadt

+

∫ ∞
0

(wTuT − w0u0)da−
∫ T

0
u(t, 0, g)w(t, 0, g)dt,(9)

where wa and wt are taken in the sense of distributions, and the change in the
order of integration can always be justified by the continuity of the integrals
(which are understood as functionals), or by Fubini’s Theorem (Pitt, 1963).
These integrals are functionals on the space

Θ := W 2,2([0, A]× Ω) ∩W 1,2([0, A]× Ω) ∩ C([0, A]× Ω).

By Sobolev’s imbedding Theorem,W 2,2(Q) is compactly imbedded in L∞(Q)
(Adams, 1975). Let L(u,w) be a bilinear form on L∞(Θ), then

L(u,w) :=

∫ ∞
0

∫ ∞
0

[Gw · ug − u(wt + wa)]dadt

+

∫ ∞
0

(w∞u∞ − w0u0)da− w(0, g)

+

∫ ∞
0

∫ ∞
0

(µu− h) · wdadt,(10)

and we have the following existence Lemma. The following assumption
would be of interest later.
(H6) u,w ∈ H1

0 (Q) and Lu ∈ H−1(Q).

Lemma 1. A weakly differentiable function u ∈ L1(Q) is a mild solution
of equation (4) in Q, if there exists a w ∈ Θ satisfying equation (5), such
that: ∀ u ∈ L1(Q) and any fixed w ∈W 1,2(Q), w 7→ 〈Lu,w〉 := L(u,w) is a
bounded linear functional on Θ.
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Proof. This problem more often than not is related to the a priori estimates
and without loss of generality, we assume that

(11)
∫ ∞

0
u(t, 0, g)dt = 1.

For mathematical tractability, assume also that the population has a con-
stant migration rate or additional death modulus from pregnancy h, we then
have

|L(u,w)|L∞(Θ) ≤ ‖Gw · ug − u(wt + wa)‖W 2,2(Q)

+ ‖(w∞u∞ − w0u0)‖W 1,2(Q) + sup
0≤a≤A

||w(t, a, g)||

+ |µ+ h|‖u‖W 2,2(Q)‖w‖W 2,2(Q),

≤ ‖Gw · ug − u(wt + wa)‖W 2,2(Q) + sup
0≤a≤A

||w(t, a, g)||+ C3

+ |µ+ h|‖u‖W 2,2(Q)‖w‖W 2,2(Q).(12)

By approximating arbitrary functions u,w and their derivatives inW 2,2(Q),
W 1,2(Q) and C2(Q) by functions in Θ, where ua, ut and ug can be made
arbitrarily small for t, a, g in their respective domains (see Daners, 1996 for
the argument leading to this hypothesis), with the fact that;
|G|‖ug‖ ≤ C1; ‖wt + wa‖ ≤ C2; ‖w∞u∞ − w0u0‖ = C3;
sup

0≤a≤A
|w(t, a, g)| ≤ C4; |µ+ h| ≤ C5, the right-hand side of (12) becomes:

|L(u,w)|L∞(Θ) ≤ C1‖w‖W 2,2(Q) + C2‖u‖W 2,2(Q) + C3,

+C4 + C5‖u‖W 2,2(Q)‖w‖W 2,2(Q),

≤ C6(‖u‖+ ‖w‖2) + C5‖u‖‖w‖,
≤ C7‖u‖‖w‖+ C5‖u‖‖w‖,
≤ C8‖u‖W 2,2(Q)‖w‖W 2,2(Q).

L(u,w) is thus a bilinear form on L∞(Θ), which is bounded (Kinderleherer
and Stampacchia, 1980). �

The constants C1-C8 are positive, and depend on the parameters of the
equation. Without any ambiguity, and without any need of discussing the
technicality of incorporating the space variable x into the population density
(which leads to a model with diffusion basically to avoid overcrowding), we
are now well equipped to move on to the extended case. With the space
variable, system (1) takes the form (13) given below.
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3. Existence and Uniqueness of Solution in H−1(Q)

Problem Setting. Let g = (g1, g2, · · · , gn) and replace Ω by Ωn := [g
1
, ḡ1]×

· · · × [g
n
, ḡn]. Consider the following population dynamics problem P1 with

spatial variable x and diffusion. For this case, take h = 0 and the constant of
diffusivity to be unity (κ = 1) for convenience. Compatibility of the initial
and boundary data is assumed, since for κ > 1, the boundary conditions
imply that ux = 0 on the boundary ∂D (homogeneous Neumann condition).
Now, we are well-equipped to define the extended model (by including the
space variable).
Find u ∈ Q∗, such that:

ut + ua +
n∑

l=1

Gl(a)ugl + κuxx + µu = 0,

u(0, a, x, g) = u0(a, x, g),

u(t, 0, x, g) =

∫
Ω

∫ ∞
0

βu(t, a, x, g)dadg on [0, T ]× Ωn,(13)

with Dirichlet conditions or non negative distributions u(t, a, 0, g) = 0 =
u(t, a, L, g), representing a close environment. The diffusion term here allows
for movements of individuals in an out of the closed region. Note that we

shall use the L2-norm because
∂

∂t

(∫ L

0

1

2
u2dx

)
= −

∫ L

0
(ux)2dx ≤ 0, which

implies that the L2−norm of u is decreasing and therefore bounded by its
initial value (see Morton and Meyers, 1996). By a solution of (13), we mean
a function u(t, a, x, g) in Q which is non-negative and satisfy system (13).
Existence and uniqueness is guaranteed if ux is continuous in Q. But it is
important to note that (13) may not be globally solvable in general (Meade
and Milner, 1992), except when ux is uniformly Lipschitz continuous in x and
uniformly bounded. When the initial data is not strictly positive, solutions
exist only in a weak sense, and in this case, we have compactly supported
population (Meade and Milner, 1992). Denote [0, L] by D and let Cc be the
space of continuous and weakly sequentially compact maps, then:

Theorem 1. Let un(t, a, x, g) be a Cauchy sequence, then, equation (13) has
a unique solution if,

∃ un(t, a, x, g)→ u(t, a, x, g) in Cc(D;L2((0, T );H−1(Q∗))).

Consequently, (4) has a unique solution.

In order to prove this Theorem, and to apply the penalization technique
thereafter, we need an extension of Ostrogradski formula (Langlais, 1980)
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also known as Green’ or Divergence Formula. The proof shall come after
the following.

Lemma 2. Let u(t, a, g) ∈ L2(D;H1
0 (Q∗)) such that ut + ua +Gug belongs

to L2(D;H−1(Q∗)), then

(i) For all t0 in (0, T ) and a0 in (0, A), u has a trace at t = t0 belonging
to L2(Φ0), and at a = a0 belonging to L2((0, T )× Ωn) and at g = g̃
belonging to L2(Φ).

(ii) The following Ostrogradskii formula holds

∫
Φ×Ω
〈ut + ua +

n∑
1

Glugl , u〉dtdadg

=
1

2

{∫
(0,A)×Ω

u2(T, a, g)dadg +

∫
(0,A)×Ω

u2(t, A, g)dtdg

+
n∑
1

∫
[0,A]×Ωn

Gl(a)u2
l (t, a, ḡ)dtda

}

− 1

2

{∫
(0,A)×Ωn

u2(0, a, g)dadg +

∫
(0,A)×Ωn

u2(t, 0, g)dtdg

+

n∑
1

∫
[0,T ]×Ωn

(Gl(a)u2(t, a, g)dtda

}
,(14)

where (g, ḡ) ⊂ Ωn, g := inf gl; ḡ = sup gl, 1 ≤ l ≤ n.
Similar proof to what follows with u = u(t, a, x) has been given by Garroni
and Langlais (1982) and ours in essence follows the same pattern, but does
not overlap.

Proof. By applying Ostrogradskii’s formula with Gl(a) as a constant, that
is, Gl(a) = Gl 6= 0, the left-hand side of equation (14) becomes∫

Φ×Ωn

〈ut + ua +
n∑

l=1

Glugl , u〉dtdadg =

=

∫
Φ×Ωn

uutdtdadg +

∫
Φ×Ωn

uuadadtdg +
n∑
1

∫
Φ×Ωn

Gluugdgdtda,

=
1

2

∫
(0,A)×Ωn

u2(t, a, g)

∣∣∣∣∣
T

0

dadg +
1

2

∫
(0,T )×Ωn

u2(t, a, g)

∣∣∣∣∣
A

0

dtdg
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+
1

2

n∑
1

Gl

∫
Ωn

u2(t, a, g)

∣∣∣∣∣
ḡ

g

dtda,

=
1

2

{∫
(0,A)×Ωn

u2(T, a, g)dadg +

∫
(0,T )×Ωn

u2(t, A, g)dtda

+
∑∫

Ωn

Glu
2(t, a, ḡ)dtda

}
−1

2

{∫
(0,A)×Ωn

u2(0, a, g)dadg +

∫
(0,T )×Ωn

u2(t, 0, g)dtda

+
∑∫

Ωn

Glu
2(t, a, g)dtda

}
.(15)

�

We are now well equipped to prove our main result.

Proof. (Theorem 1) Without loss of reality, let l = 1. In this case, the under-
lying set for the variable g is Ω. In order to have a well-defined representation
of L(u,w), we have to choose a suitable linear operator A, together with the
associated function spaces. When the thermal diffusivity in the classical
diffusion equation is unity, we have ut = uxx, which without loss of reality
implies that equation (13) can be written as

(16) 2ut + ua +G
∑

ugl + µh = h.

where for mathematical convenience, we made the crude assumption that
Gl(a) := Gl, a constant. Here, we suggest that A is of the form

(17) Au := −ut − ua −Gug − µu,

D(A) = {u ∈ Q : ∃ 2ut + uA +Gug ∈ Q, u satisfies equation (1)}.
The operator A is accretive, a condition closely related to the contraction
mapping principle, which enables us to prove uniqueness of solutions of (13)
when h 6= 0. From hypothesis H5, we have:∫

Ω

∫ A

0
βudadg = u(t, 0, x, ·) ∈ L2((0, T );H−1(Q∗)),

or ∫
Q∗

∫ A

0
βudadx = u(t, 0, ·, g) ∈ L2((0, T );H−1(Q∗)),

and
u(0, a, ·, g) = u0(a, ·, g) in L2(D).
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Also, from Lemma 2 above, let u1, u2 ∈ X be any two solutions of (13),
then

〈Au1 −Au2, u1 − u2〉 =

= −〈(2u1 − u2)t + (u1 − u2)a +G(u1 − u2)g

+µ(u1 − u2)− (h1 − h2), u1 − u2〉

≤ −
∫ A

0
‖u1(T, a, x, g)− u2(T, a, x, g)‖2H−1(Γ)dadg

−1

2

∫ T

0
‖u1(t, A, x, g)− u2(t, A, x, g)‖2H−1(Γ)dtdg

−G
2

∫
Ω
‖u1(t, a, x, ḡ)− u2(t, a, x, ḡ)‖2H−1(Γ)dadt

+
µ

2

∫
(0,T )×Γ

‖[u1(t, a, x, g)− u2(t, a, x, g)]‖2H−1(Γ)dadg

+(h1 − h2)

∫
Γ
|[u1(t, a, x, g)− u2(t, a, x, g)]‖H−1(Γ)

≤ −(h2 − h1 +
G+ 3 + µ

2
)

∫
Γ
‖[u1(t, a, ·, g)− u2(t, a, x, g)]‖2H−1(Γ)

= −c‖u1 − u2‖2Q ≤ 0;(18)

g ∈ Ωn and c is a constant depending only on the parameters of the equation
t, a, x and g.
Furthermore, using Hypothesis (H6), if un is a sequence of weak solutions
such that un → u ∈ H1

0 (Q∗), then Aun → Au weakly in H−1(Q∗), and thus
A is continuous on a finite dimensional subspace of H1

0 (Q∗), with u0 ∈ D(A)
in (17). From (18), we note that the spatial structure and the parameter h
probably add to the dynamics of the model. We now apply the contraction
mapping principle to prove the uniqueness of a weak solution of equation
(1) via the penalization method (Adams, 1975).
Consider

(19) λu−Au = h, λ > 0, h > 0,

then,

(20) 2ut + ua +G(a)ug + (λ+ µ)u = h.

For a given w ∈ L2(Φ;H1
0 (Q∗)), let S be an application of L2(Q∗;H1

0 (Q∗))
into itself with Sw denoting the solution of the regularized equation below,
with ε > 0 as the regularization parameter. We now show that limit as
ε → 0 of the solution of (19) exists. This technique is referred to as the
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penalization method.∫
Q∗
〈2ut + ua +

∑
Gug, v〉dtdadg +

∫
Q∗

[
(λ+ µ)uv +

1

ε
(u− ψ)v

]
dtdadg

=

∫
Q∗
hv dtdadg(21)

u(0, a, ·, g) = u0(a, ·, g), u(t, 0, ·, g) = B(t, ·, g).

Since h is a constant, with v := v(t, a, x, g), the right hand side of (21) equals
hv(x), a function of x only. Let w1 and w2 ∈ L2(Q∗;H1

0 (Q∗)), be any two
solutions of (20). Then, by freshman computations, we have∫

Q∗
〈[2∂t + ∂a +

∑
G∂g](Sw1 − Sw2), Sw1 − Sw2〉dtdadg

+

∫
Q∗

(λ+ µ)(Sw1 − Sw2)2dtdadg

+
1

ε

∫
Q∗

([Sw1 − ψ)− (Sw2 − ψ)] · [Sw1 − Sw2]dtdadg

= h(w1(x)− w2(x)).(22)

The last term on the left hand side is zero, since

[Sw1 − Sw2](0, a, ·, g) = 0, [Sw1 − Sw2](t, 0, ·, g) =

∫
Ω

∫ A
0
µ(w1 −w2)dadg.

Using (16), it is now easy to complete the proof of the Theorem.∫
Φ×Ω
〈(2∂t + ∂a +

∑
G∂g)(Sw1 − Sw2)), Sw1 − Sw2〉dtdadg =

=

∫
[0,A]×Ω

[Sw1 − Sw2]2(T, a, ·, g)dadg+

+
1

2

∫
[0,A]×Ω

[Sw1 − Sw2]2(t, A, ·, g)dtdg

+
1

2

∑
G

∫
Ω

[Sw1 − Sw2]2(t, a, ·, ḡ)dtda

− 1

2

∫
[0,A]×Ω

[∫
Ω

∫ A

0
µ(w1 − w2)dadg

]2

dtdg.(23)
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Substituting (22) into (21), we obtain∫
Q∗

(λ+ µ)(Sw1 − Sw2)2dtdadg − h[w1(x)− w2(x)] ≤

≤ c̃

2

∫
Q∗

(w1 − w2)2dtdadg ≥ 0,(24)

where c̃ = λ + µ. Since µ < 1, the analysis above suggests that for the
result to hold, we should choose λ such that λ + µ � 1. From (18) and
(24), equality holds iff u1 = u2, and w1 = w2, respectively. Hence, the result
follows. �

4. Conclusion

Motivated by the fact that variational formulations have been among
the least favoured method of solutions to population dynamics problems, a
deterministic age-physiological strucutrured population dynamics problem
is transformed into its variational form and analyzed. It is assumed that
the evolution of the population depends on some external constraint. By
defining an appropriate operator, we prove the uniqueness of solutions of
the model using both the Green’s formula (also known as Ostrograskii’s
method) and the contraction mapping principle.

There are some litiations to this study. One of them being the fact that
the space variable is one-dimensional, which may limit its applicability since
in reality, the notion of space is multi-dimensional. A potential but not
easy extension of this study is the case where the rate of change G(a) of
the physiological varable g, is not a constant. Also, the non-linear model
where this rate depends on age and g itself (G(a, g)) may be mathematically
enticing.

Acknowledgement. Thanks to the reviewer for constructive comments.
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