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Summary 

 

Stochastic cooperative (STOCH-C) and non-cooperative (STOCH-NC) models have been 

developed for NMR analysis of the hetero-association of aromatic compounds in solution, in order 

to take into account all physically-meaningful association reactions of molecules in which there are 

no limitations on the lengths of the aggregates and complexes.  These algorithmical approaches are 

compared with previously published basic (BASE) and generalized (GEN) analytical statistical 

thermodynamical models of hetero-association of biologically-active aromatic molecules using the 

same sets of published NMR data measured under the same solution conditions (0.1М phosphate 

buffer, pD=7.1, T=298K).  It is shown that, within experimental errors, the BASE analytical model 

may be used to describe molecular systems characterized by relatively small contributions of 

hetero-association reactions, whereas the GEN model may be applied to hetero-association 

reactions of any aromatic compound with different self-association properties.  The STOCH-C 

computational algorithm enabled the effect on hetero-association of the interactions of molecules 

with different cooperativity parameters of self-association to be estimated for the first time and it is 

proposed that the algorithm for the stochastic models has great potential for detailed investigation 

and understanding of the interactions of aromatic molecules in solution. 
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1. Introduction 

 

Extensive use of aromatic compounds in clinical practice and in different biophysical studies 

at the molecular and cellular levels is due to their great biological and medical activity.  Many 

biologically-active aromatic compounds act via their complexation with nuclear DNA 1.  In addition 

it has been shown that the biological activity of aromatic compounds may be substantially changed 

when combinations of such drugs are used.  Thus it is known that caffeine alters the efficacy of a 

number of aromatic anticancer drugs, such as doxorubicin, novatrone, ellipticine and others 2-4 and 

affects the toxicity of a typical DNA intercalator, ethidium bromide 5.  For example, the use of 

novatrone in combination with other aromatic and non-aromatic antibiotics has been found to be a 

very effective therapy with different leukaemias 4.  The molecular mechanisms of such action 

include formation of hetero-complexes between the aromatic ligands and competition between the 

ligands for DNA binding sites 6-10.  It has been shown recently that the hetero-association of 

aromatic molecules may play a substantial role in modulating the biological activity of aromatic 

drugs under certain experimental conditions; for example, when the anticancer antibiotic 

daunomycin interacts with DNA in the presence of proflavine or ethidium bromide 10. 

Hetero-association of aromatic molecules is also responsible for an increase in the solubility 

of different antibiotics and vitamins in the presence of hydrotropic agents, such as caffeine and 

nicotinamide 11,12.  In such cases the contribution of hetero-complexes to the total dynamic 

equilibrium may predominate at the physiological ratio of the concentrations of the interacting 

molecular components in solution 12.  Hence, it may be concluded that chemico-physical 

investigations of the hetero-association of aromatic molecules in solution are important for 

understanding the mechanisms of action of different combinations of biologically-active 

compounds in cellular systems. 

Depending on the experimental method applied, different statistical-thermodynamical 

models have been used to analyze the hetero-association of aromatic compounds.  Dimer models 
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are mostly used to interpret spectrophotometric data, i.e. they take into account the formation of 

self-aggregates and hetero-association complexes with no more than two molecules in the stack.  

The dimer model is valid only when the concentrations and the equilibrium association constants of 

the interacting molecules are relatively small 6-8,13.  When comparatively large concentrations of 

molecules are used in the experiment, such as for NMR analysis, more general models are 

considered as they take into account both the indefinite self- and hetero-association of aromatic 

molecules in solution 14,15.  The assumptions used in NMR modeling of the association of aromatic 

molecules in solution are well established and their scope and limitations discussed in a review on 

the comparison of indefinite self-association models 13. 

Two generalized theoretical approaches have been used to analyze the hetero-association of 

aromatic molecules having different biological-medical and/or chemical- physical properties using 

NMR data:  the basic 15,16 and the generalized 17 models.  In these models the same reaction scheme 

has been used to describe the dynamic equilibrium of two aromatic components X and Y in solution: 
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, Ywhere X1 1 are monomeric concentrations of X and Y molecular components in solution, 

respectively; X , Xi k, Y , Y  are aggregates, containing i, k monomers of X and j, l monomers of Y; Kj l X, 

K , KY C are equilibrium constants of self- and hetero-association of the molecules; i,j,k,l ∈ 1.∞.  In 

the model in equation (1) the hetero-association complexes X Yi j have one hetero-stack, whereas 

X Y Xi j k etc have two hetero-stacks in the complex. 

The difference between the two approaches is due to the contributions to observed chemical shifts 

of the “edge effects” of aromatic molecules in the formation of hetero-complexes; edge effects are 

taken into consideration in the generalized (GEN) model and make it more advantageous than the 

basic (BASE) model for investigations of the hetero-association of aromatic molecules with 

relatively high hetero-association constants 17.  A limitation of both models is that formation of 



 5

hetero-complexes with no more than two hetero-stacks are taken into account in the dynamic 

equilibrium in solution.  However, it is found that the contributions to hetero-association reactions 

of more than two hetero-stacks to the total dynamic equilibrium may be essential for some 

combinations of biologically-active aromatic molecules 10,16 and, moreover, it may be predominant 

in the action of hydrotropic agents with aromatic molecules 12.  The appropriate analysis, which 

takes into account the probability of formation of hetero-complexes of aromatic molecules with 

more than two hetero-stacks, needs to be made. 

  Models of the hetero-association of aromatic molecules developed previously 14-17 also do 

not take into account the possible cooperativity effects of the self-association of X and Y 

components in solution.  Cooperativity effects in the self-association of aromatic molecules can be 

characterized by a cooperativity parameter σ and reactions may be cooperative (σ<1), non-

cooperative (σ~1) and anti-cooperative (σ>1) 13,18.  Investigations have shown that the magnitude of 

the cooperativity parameter for self-association of aromatic molecules ranges from 0.4 (acridine 

dyes 18) up to 1.9 (flavine-mononucleotide 12), i.e. σ values for self-association may have some 

effect on the calculated hetero-association parameters.  The importance of σ on the calculated 

values of the hetero-association parameters is not known and needs to be investigated. 

In this work stochastic non-cooperative (STOCH-NC) and cooperative (STOCH-C) models 

have been developed for NMR analysis of the hetero-association of two aromatic compounds, 

taking into account all physically meaningful association reactions of molecules in solution.  A 

comparison has been made of the scope and limitations of different models (BASE, GEN, STOCH) 

and their effect on the calculated parameters of hetero-association of biologically-active aromatic 

molecules.  The influence of cooperativity effects in the self-association of the interacting 

molecules on the parameters of hetero-association has also been discussed. 
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2. Stochastic Model 

 

2.1 Non-cooperative association model. 

The general case of the association of two aromatic compounds, X and Y, in aqueous 

solution considers formation of complexes having any possible distribution of homo- and hetero-

stacks according to a generalized hetero-association reaction: 

 , (2) k
CYX

nm ccc
KKK

bbbaaa XYXXYXXYX ΚΚΚ
212121

,, ⎯⎯⎯⎯ →←+

where a , b , ci i i are the numbers of single type molecules (the length) for the X or Y aggregate; m, n, 

k are the number of aggregates within every complex; KX, KY, KC, are the equilibrium constants of 

self-association of X and Y, and their hetero-association, respectively.  As only nearest neighbors 

are considered to affect the association of aromatic molecules 13-17, it is assumed that the 

magnitudes of the equilibrium constants KX, KY, KC are independent of the number of molecules in 

the aggregates and complexes.  Depending on the length of the aggregates a , b , ci i i, which in some 

cases may adopt zero values, reaction (2) summarizes formation of homo-stacks of components X 

and Y with association constants KX or KY, and a hetero-stack between these molecules 

characterized by constant, K . C

An I index, which can adopt two values X or Y: I∈(X,Y), is introduced.  All possible types of 

complexes in solution may be distributed in three groups: i) complexes of the X…Y type, flanked by 

an X molecule from one side, and Y molecule from the other side; ii) complexes of the X…X type, 

flanked by X molecules from both sides; and iii) complexes of the Y…Y type, flanked by Y 

molecules from both sides.  Hence it is possible to introduce a T index, which designates the type of 

complex and adopts values T∈(X…Y, X…X, Y…Y). 

Consider an arbitrary complex, containing L molecules of X and Y type and the number of 

hetero-stacks between X and Y molecules in this complex is h (h ≤ L – 1).  Hence the lengths (l) of 

the aggregates of one type of molecule, which form the complex, are equal to li, where i∈(1…h+1) 

is the number of an aggregate within the complex. 
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Taking into consideration the assumptions of the distinctive features of the association of 

aromatic molecules in solution 13 , analytical expressions for the total concentration CI and chemical 

shift δI of I-type molecules in the fast exchange condition of the NMR experiment can be written in 

terms of the I index in the following form: 

  (3) 
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concentrations and chemical shifts due to self-association reactions 13,18;  I , I0 1 are the initial and 

monomeric concentrations of I-type molecules in solution, respectively;  δ , δmI dI are the proton 

chemical shifts of an I-type molecule in the monomer and dimer form, respectively; 

( ) ( )[ ]hhf 11
2
1

−+=  is a unity/zero function, separating even and odd values of h. 

Using the mass conservation law and the additivity model for proton chemical shifts in the 

fast-exchange condition on the NMR timescale 13,18, the concentration  and the chemical shift 

 of I-type molecules in T-type complexes, presented in eqns. (3), may be determined as: 
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where  is the number of I-type molecules in a T-type complex with a distribution of the lengths 

of the aggregates l

T
IN

1…lh+1;   is the concentration of the T-type complex with the same 

distribution of lengths of the aggregates. 

T
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where  is the concentration of I-type aggregate with length l;  is the number of I-

type aggregates in the T-type complex. 
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The value of  in equations (4) represents the chemical shift of I-type molecules in a T-

type complex with a distribution of lengths of aggregates l

T
ID

…l1 h+1 and is determined as the 

difference between the total chemical shift of the I-type molecules in isolated aggregates and that 

with extra shielding in hetero-stacks: 
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where δCI is a chemical shift of I-type molecule in the hetero-stack. 

Equation (6) can be reduced to the following expression: 
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The system of equations (3) is now completely determined.  In the non-cooperative 

theoretical approach considered above there are no limitations on the lengths of aggregates and 

complexes and equations (3) take into account all physically possible formation reactions of hetero-

complexes with all possible combination of aggregates of the interacting molecules in solution.  

Model (3) is based on the same physical assumptions which have already been used in previous 

models of molecular self-association 13,18 and hetero-association 14-17 and does not introduce any 

extra limitations to the dynamic equilibrium summarized in equation (2).  

 

2.2 Cooperative association model. 

Introduction of the self-association cooperativity parameter (σ) primarily results in changes 

to the expression for calculation of the concentration of aggregates with numbers of single-type 

molecules l > 1 13,18: 
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In summary, the cooperative stochastic model of hetero-association of aromatic molecules is 

represented by eqns.(3)-(7) together with expression (9). 
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2.3 Computational algorithm. 

Investigation of equations (3) indicates that derivation of analytical expressions suitable for 

computation of the association parameters is practically impossible due to the great complexity of 

the necessary mathematical manipulations.  A thorough theoretical analysis of the hetero-

association of two aromatic components with formation of no more than two hetero-stacks in the 

mixed complex was made previously for the GEN model 17.  Analysis of such a relatively simple 

case shows that rather complicated mathematical manipulations are needed to calculate the hetero-

association parameters KX, KY, KC and δC from the concentration dependence of the proton chemical 

shifts.  Hence, the theoretical approach summarized in equation (3), based on functional-analytical 

modeling of the experimentally-observed chemical shifts, requires the development of a special 

computational algorithm in order to apply this model to analyze the NMR data for the hetero-

association of aromatic molecules. 

It is convenient to present the algorithm of the stochastic model in the form of two 

subprograms: the first one calculates the concentrations of compound X or Y in solution (Fig.1), the 

second calculates the chemical shift of the corresponding proton of the X or Y compound (Fig.2).  In 

order to embody the stochastic algorithm it is simply necessary to replace the references on the 

corresponding computational subprograms in the program code of the standard algorithm of data 

processing in the analytical models by the references to these procedures.  Hence, the computational 

procedure in both the analytical and algorithmical approaches of the modeling of the hetero-

association of aromatic molecules can be carried out using the same calculation strategy, described 

elsewhere 15-17. 

Consider an arbitrary molecular complex containing L molecules (length of the complex) 

and any number of hetero-stacks ranging from 0 (a self-associate) up to the maximum possible 

value of L-1 (with alternation of X and Y molecules in the complex).  Let a molecule of compound 

X correspond to unity and a Y molecule to zero.  It follows that the given complex can be presented 
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in the form of a binary number C with L bits (a variable Complex in Figs.1,2).  Testing every bit in 

C in a cycle for the state of 0 or 1 (cycle using i variable in Figs.1,2) enables the concentration of 

the complex C to be calculated by means of multiplication of the stack formation constant (KX for 

homo-stack “11”; KY for homo-stack “00”; KC for hetero-stack “01” or “10”) on the monomeric 

concentration of the bit (x1 for “1”, y1 for “0”; for example, a unity in the site “...01...” results in the 

coefficient KC·x1) (see blocks 14-17 in Fig.1). 

Calculation of the chemical shift depends on the neighboring bits, i.e. the contribution given 

by the two neighboring molecules: ΔδC from a hetero-stack or ΔδS from a homo-stack.  Sequential 

summation of these contributions enables the chemical shift of the current complex and its 

concentration (see blocks 14-17 in Fig.2) to be determined.  Cycling all numbers from 0 to 2L-1 is 

equivalent to generating all possible complexes having length L (cycle using variable Complex in 

Figs.1,2).  Finally, an outer cycle starting from the monomeric form 1 up to the initially given 

maximum length of the complex N fully completes the generating procedure (cycle using variable l 

in Figs.1,2). 

Summation of the concentrations of the complexes inside the cycles (blocks 23,24 in Fig.1) 

results in the overall concentration being equivalent to the mass conservation law in the analytical 

models 15-17.  Sequential summation of the multiplications of the concentration of the generated 

complex C on its chemical shift (block 23 in Fig.2) enables the overall chemical shift to be obtained 

for either X (as in Fig.2) or Y.  It follows that the physical meaning of the stochastic algorithm is 

quite straightforward: expressions (3) were obtained in an analytical form for the analytical models, 

whereas a similar procedure is provided algorithmically in the stochastic model, using a set of 

program cycles, describing the law of mass action, the mass conservation law and the additive 

model for chemical shift 13,18. 

It should be noted that cycling over all possible complexes in the stochastic model results in 

a pair of equivalent complexes (e.g. XiYjXk≡XkYjXi) as in the analytical models 17.  Hence, if the 

current complex C and a reversed complex C-1 are consistent with C ≤ C-1, it means that the C 
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complex is generated for the first time and should be included in the calculations; otherwise the C 

complex is ignored.  This condition is embodied in block 4 of the general algorithm (see Figs.1,2) 

and reflects the role of the coefficient 1/2 in the basic model 16 and the revised summation in the 

generalized model 17. 

It is significant that the stochastic algorithm provides a programmed access to every 

generated complex, enabling any conditions to be applied to the method of calculation of 

concentrations and the chemical shift and hence to subsequent expansion of reaction schemes (1) or 

(2) without any limitations.  An example of the advantage of the stochastic approach is the 

introduction of the cooperativity parameter (σ) into the computational scheme of the hetero-

association analysis. 

As a result of the programmed access to every generated complex it is possible to determine 

the number of aggregates of X or Y type and, consequently, to calculate the resultant cooperativity 

coefficient for the current complex (block 22 and variable Koeff in Figs.1,2).  After that, the 

calculated coefficient is used as a multiplier for the concentrations (blocks 23,24 in Fig.1) and 

chemical shifts (block 23 in Fig.2) of the complex.  It is evident that when σX=σY=1 the stochastic 

cooperative algorithm gives similar results to those for the non-cooperative model. 

 

3. Discussion 

3.1 Analysis of the hetero-association parameters calculated using different non-cooperative 

models. 

The experimental concentration and temperature dependences of proton chemical shifts, 

obtained under similar solution conditions for all systems studied (T=298K, 0.1 mol/l Na-phosphate 

buffer, pH 7.1) 9,10,15-17,19,20, have been used to calculate the hetero-association parameters of 

aromatic molecules using the basic (BASE) 15,16, generalized (GEN) 17 and stochastic non-

cooperative (STOCH-NC) and cooperative (STOCH-C) models in this work.  A detailed description 

of the conditions of the NMR measurements and computational procedure for determining the 
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hetero-association parameters of aromatic molecules is given in ref. 15 and the results of the 

calculations of equilibrium hetero-association constants are summarized in Table 1 for different 

aromatic systems. 

It is seen from Table 1 that the equilibrium constants (KC) for hetero-association of aromatic 

ligands calculated using the basic model (BASE) are greater than KC (GEN) values for all the 

molecular systems studied. This is obviously due to the different assumptions used in the two 

theoretical approaches; i.e. it was concluded previously 17 that the main reason for the lower value 

of KC calculated using the GEN model compared with the BASE model results from inclusion of 

"edge effects" in the GEN model.  Introduction of edge effects (i.e. the dependence of the chemical 

shift on the position of the molecule within an aggregate or hetero-complex) results in lowering the 

average contribution of hetero-association reactions to the overall dynamic equilibrium and so to a 

decrease in the K  value 17
C .  Hence, the difference in the calculated parameters using the BASE and 

GEN models depends on the relative contribution of hetero-association reactions to the overall 

dynamic equilibrium in solution. 

In order to estimate the contribution of hetero-association reactions to the overall dynamic 

equilibrium in solution, it is reasonable to introduce a numerical characteristic of the hetero-

association factor, i.e. the relative weight (f ) of the hetero-association parameter, K , as follows: C C

CYX

C
C KKK

K
f

++
= . (10) 

Values of f  (%) are summarized in Table 2 using KC C values of the BASE model.  Values of 

fC vary from 1 to 78% indicating a range from a very small contribution of hetero-association to the 

equilibrium (f ~1%) to a very large contribution (fC C~78%). 

It is also possible by equation (11) to calculate the relative difference, ε, of the hetero-

association constants between the basic and generalized (BASE/GEN), basic and non-cooperative 

stochastic (BASE/STOCH-NC), generalized and non-cooperative stochastic (GEN/STOCH-NC) 

models:  
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Using data in Table 1 the calculated values of ε as a function of fC are summarized in Table 2 and 

those for the relative difference of the calculated parameters between the BASE and GEN models 

presented in Fig.3.  It is shown in Fig.3 that the variation in ε depends substantially on the 

magnitude of the hetero-association constant and, on average, increases proportionally to KC.  The 

deviation of ε between the BASE and GEN models is not greater than ∼30% for relatively small 

contributions of the hetero-association to the overall dynamic equilibrium (fC≤1/3), e.g. for hetero-

association of aromatic drugs with caffeine (“ligand+CAF”).  On the other hand an increase of the 

hetero-association factor fC results in much greater values of ε, being the most pronounced for 

hetero-complexes of aromatic drugs with daunomycin (“ligand+DAU”) (see Table 2).  Hence it 

may be concluded that utilization of the basic model of hetero-association is most likely to be 

correct for descriptions of the mixed solutions of aromatic molecules characterized by relatively 

small contributions of the hetero-association reactions (fC≤1/3), when compared to those for 

relatively large contributions (f > ca.0.4). C

It is worth noting that the difference between the results of calculations using the BASE and 

GEN models depends not only on the magnitudes of the equilibrium hetero-association constants 

but also on the magnitudes of the equilibrium constants of the self-association of the interacting 

molecules X and Y.  In particular, the NOV+CAF and AO+CAF systems are characterized by 

relatively low values of the hetero-association factor fC<6% (Table 2), whereas the relative 

difference between the hetero-association constants, derived from the BASE and GEN models, 

reaches rather high values (∼20%) for systems with a hetero-association factor fC≤1/3.  The latter 

may be due to the influence of edge effects in the aggregates of NOV and AO molecules forming 

hetero-complexes with CAF, because NOV and AO are characterized by the highest magnitudes of 

equilibrium self-association constants for all the molecular systems studied (see Table 1). 
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It is interesting to note that the average differences in the calculated parameter, ε %, between 

the basic and stochastic models appear to be similar to those differences using the BASE and GEN 

models (Table 2).  However, if we exclude molecular systems with high values of fC (i.e. PF+DAU, 

EB+DAU and PI+DAU), which are probably stabilized by intermolecular H-bonds 10,16, then the 

value of ε (BASE/STOCH-NC) of 18.7% is approximately 1.3 times smaller than ε (BASE/GEN) 

of 24.7% for the hetero-complexes studied.  Such an effect obviously results from the process of 

averaging in the STOCH-NC model, which uses cycling over all possible molecular associations in 

the mixed solution.  

It is seen from Table 2 that, with respect to the STOCH-NC model, the GEN model gives 

more consistent results than the basic model.  Comparison of the calculated values of the hetero-

association constants using the GEN and STOCH-NC methods indicates that the magnitude of their 

relative difference, ε, has no systematic correlation with fC values and is no greater than ∼30% 

(Table 2), which approximately corresponds to the standard error of the determination of 

equilibrium association constants from NMR experiments (Table 1).  These results indicate that 

there is only a relatively small contribution of hetero-complexes with more than two hetero-stacks 

in the dynamic equilibrium in solution for all the molecular systems studied.  The difference 

between the hetero-association constants for “ligand-CAF” systems, characterized by low hetero-

association factors (fC≤1/3), does not exceed 20%, which confirms the assumptions made previously 

9,15,19 that the effect of hetero-complexes of type XYX when KX>>KY and the effect of hetero-

complexes with a number of hetero-stacks more than two are insignificant in mixed solutions of 

these aromatic molecules.  However, a relatively high value of fC in “dye-DAU” systems (Table 2) 

results in an increase in the difference between the GEN and STOCH-NC models up to ∼30%. 

 

3.2  Effect of the self-association cooperativity parameter (σ) on the hetero-association 

parameters of aromatic molecules. 
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Aromatic drugs studied in this work are characterized by different cooperativity parameters, 

σ 13,18, and may be classified as cooperative, non-cooperative and anti-cooperative as presented in 

Table 3.  The cooperativity parameters of self-association of aromatic drugs are included in the 

calculations of KC using the cooperative stochastic model (STOCH-C) and the results are 

summarized in Table 1.  The relative differences of the hetero-association constants between non-

cooperative and cooperative stochastic models, ε (STOCH-NC / STOCH-C), calculated from data 

on aromatic molecules in Tables 1 and 3 are presented in Table 2.  Analysis of the results indicates 

that there is little correlation between the hetero-association factor fC and the relative deviation of 

the hetero-association constants, ε, for the systems studied.  The maximum value of ε is less than 

30% and the mean deviation only ca. 7% giving support to the idea that the cooperativity factors of 

the self-association of aromatic molecules have little effect on the calculated hetero-association 

parameters.  However, some conclusions may be drawn with respect to the observed correlations 

between the cooperativity parameters, σ, of the self-association of aromatic molecules and the 

deviations of the hetero-association parameters. 

The molecular systems of hetero-association in Table 2 may be grouped using different 

combinations of cooperativity modes of the interacting molecules, according to the classification of 

aromatic drugs given in Table 3.  Four different combinations of cooperativity modes may be 

considered for the different molecular systems investigated in mixed solutions: cooperative/non-

cooperative; non-cooperative/anti-cooperative; cooperative/anti-cooperative; and non-

cooperative/non-cooperative.  The results have been arranged in Table 4 in terms of the decrease in 

the mean value of the relative difference of the hetero-association constants, ε (STOCH-NC / 

STOCH-C)%. 

Introduction of a cooperativity parameter in the cooperative model of self-association results 

in multiplication of the concentration of the i-th aggregate by the cooperativity parameter 13,18 and 

so expressions for concentrations of hetero-complexes also contain components multiplied by the 

cooperativity parameters of the interacting molecules.  Hence, one may expect the largest 
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differences in hetero-association parameters between non-cooperative and cooperative stochastic 

models for the molecular systems “Non-coop./Anti-coop.” and “Coop./Non-coop.”.  It is seen from 

Table 4 that the highest mean value of deviation is observed for “Coop./Non-coop.” hetero-

association (15.8%) and the lowest one relates to “Non-coop./Non-coop.” hetero-association (1.3%) 

which is consistent with the assumption presented above.  The molecular systems “Non-coop./Anti-

coop.” and  “Coop./Anti-coop.” have similar deviations within experimental error (Table 4), which 

indicate that the effect of “compensation” of the calculated hetero-association parameters will take 

place for “Coop./Anti-coop.” systems and the absence or practically very small deviation for non-

cooperative hetero-association. 

 

3.3 Conclusions. 

1. Stochastic non-cooperative (STOCH-NC) and cooperative (STOCH-C) models have been 

developed for analysis of the hetero-association reactions of aromatic molecules using NMR 

data.  The proposed approaches have no limitations on the types of associations of aromatic 

molecules in solution and may be considered as the most general models (within the limitations 

of the NMR experiment). 

2. A comparative analysis of the indefinite non-cooperative models of hetero-association of 

aromatic molecules: basic (BASE) 15,16, generalized (GEN) 17 and stochastic (STOCH-NC) has 

shown: 

(i) The BASE analytical model is mainly valid to describe molecular systems characterized 

by relatively low contributions of hetero-association reactions (hetero-association factor 

fC≤1/3); 

(ii) The GEN analytical model gives results in agreement with the STOCH-NC algorithmic 

model within the error limits of ≤ 30% for all the systems studied.  It is concluded that 

GEN model of hetero-association of aromatic molecules may be applied to any aromatic 

compounds with different self-association properties. 
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3. The computational algorithm of the stochastic model (STOCH-C) enabled the hetero-

association parameters to be calculated for the first time by taking into account the 

cooperativity factor (σ) of the self-association of aromatic molecules and to estimate its effect 

on the multi-component equilibrium in solution. 

4. It has been found that differences between the calculated parameters using the STOCH-NC and 

STOCH-C models are not greater than ∼30% for all the molecular systems investigated and the 

differences depend substantially on the type of cooperativity of the self-association of the 

interacting molecules.  

The proposed algorithm of the stochastic model has a great potential for detailed investigations of 

the interactions of aromatic molecules in solution because it is not limited to reaction scheme (2). 
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Table 1. Parameters of hetero-association of aromatic molecules X and Y calculated using the basic 

(BASE), generalized (GEN), stochastic non-cooperative (STOCH-NC) and cooperative (STOCH-

C) models from NMR spectroscopic data a,b,c

KCX+Y KX KY BASE ref. GEN ref. STOCH/NC STOCH/C 
PF+CAF 700±70 160±17 9 129±27 121±26 137±26 
AO+CAF 4600±600 264±21 9 224±45 270±54 368±70 
EB+CAF 305±14 62±4 9 57±11 56±11 57±11 
PI+CAF 63±6 28±5 9 27±5 27±5 27±5 

DAU+CAF 720±130 72±4 9 62±12 55±11 51±10 
NOV+CAF 28000±8000 324±40 19 280±56 313±60 320±65 
AMD+CAF 1440±160 

11.8±0.3

246±48 9 226±45 245±50 260±50 
PF+DAU 700±70 2080±150 16 1180±230 1000±200 1055±210 
AO+DAU 4600±600 2910±520 16 1864±373 2024±400 2240±450 
EB+DAU 305±14 3580±580 10 1740±348 1564±310 1480±300 
PI+DAU 63±6 720±80 10 454±91 406±81 385±75 

EMB+DAU 276±17 660±100 20 430±86 586±117 556±110 
EDC+DAU 19±3 

720±130

320±65 20 245±49 290±60 265±55 
PF+EB 700±70 305±14 690±50 17 520±50 17 500±50 550±110 
PI+EB 63±6 305±14 126±9 15 102±15 93±18 94±18 

 
a) 500 MHz NMR measurements made for solutions in 0.1М phosphate buffer, pD=7.1, T=298K 

9,10,15-17,19,20; 

b) Abbreviations used: PF – proflavine, AO – acridine orange, EB – ethidium bromide, PI – 

propidium iodide, CAF – caffeine, DAU – daunomycin, NOV - novatrone, AMD – actinomycin D, 

EMB – ethidium monoazide, EDC – ethidium diazide. 

c) The experimental results are all taken from the literature where the differences between the 

experimental and predicted chemical shifts (cs) are calculated in terms of the discrepancy function 

(the sum of the square of the differences between calculated and measured cs in titration experiment 

comprising at least 15 dilution steps).  The value of the discrepancy function for all systems studied 

and all models applied was not greater than ca. 10-5. This corresponds to an average deviation 

between experimental and predicted cs per data point of ca. 0.0002ppm which is comparable to the 

experimental error in measurements of chemical shifts.  
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Table 2 Relative differences ε % of the hetero-association constants, calculated using different 

models as a function of the hetero-association factor, fC

 
ε, % 

System fC, % 
BASE-GEN BASE-

STOCH/NC
GEN-

STOCH/NC 
STOCH/NC-

STOCH/C 
PF+CAF 18.4 24.0 32.2 6.6 11.7 
AO+CAF 5.4 17.9 2.2 17.0 26.6 
EB+CAF 16.4 8.8 10.7 1.8 1.8 
PI+CAF 27.2 3.7 3.7 0.0 0.0 

DAU+CAF 9.0 16.1 30.9 12.7 7.8 
NOV+CAF 1.1 15.7 3.5 10.5 2.2 
AMD+CAF 14.7 8.8 0.4 7.8 5.8 

PF+DAU 59.4 76.3 108.0 18.0 5.2 
AO+DAU 35.4 56.1 43.8 7.9 9.6 
EB+DAU 77.7 105.7 128.9 11.3 5.7 
PI+DAU 47.9 58.6 77.3 11.8 5.5 

EMB+DAU 39.9 53.5 12.6 26.6 5.4 
EDC+DAU 30.2 30.6 10.3 15.5 9.4 

PF+EB 40.7 32.7 38.0 4.0 9.1 
EB+PI 25.5 23.5 35.5 9.7 1.1 

Mean 35.5 35.9 10.8 7.1 
 
 
 

Table 3 Cooperativity parameter (σ) for the self-association of different drugs in 0.1М phosphate 

buffer, pD=7.1 

 

Non-cooperative Cooperative Anti-cooperative 
Drug σ ref. Drug σ ref. Drug σ ref.

EB 
PI 

EMB 
EDC 
NOV 
CAF 

0.89±0.06 18

0.98±0.05 15

0.96±0.08 21

0.97±0.04 21

0.98±0.04 19

1.08±0.02 9

PF 
AO 

0.42±0.06 18

0.45±0.05 18
DAU 
AMD 

1.34±0.06 22

1.49±0.10 18



 23

 
Table 4 Relative differences ε % of the hetero-association constants with respect to the mode of 

cooperativity of the interacting molecules 

 
Coop./Non-coop., 

ε  % 
Non-coop./Anti-coop. ,

ε  % 
Coop/Anti-coop. , 

ε  % 
Non-coop/Non-coop,

ε  % 
PF+CAF 11.7 EB+DAU 5.7 PF+DAU 5.2 EB+CAF 1.8 
AO+CAF 26.6 PI+DAU 5.5 AO+DAU 9.6 PI+CAF 0.0 
PF+EB 9.1 EMB+DAU 5.4 EB+PI 1.1 

EDC+DAU 9.4 NOV+CAF 2.2 
CAF+DAU 7.8  
CAF+AMD 5.8 

 
 

Mean ∼15.8  ∼6.6  ∼7.4  1.3 
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FIGURE LEGENDS 
 
 
 
Fig.1 Algorithm for calculating the overall concentration of compounds X and Y 
 
 
 
 
Fig. 2. Algorithm for calculating the weighted average proton chemical shift of compound X and Y 
 
 
 
 
Fig. 3. Dependence on the hetero-association factor fC, % of the relative differences of the hetero-

association constants, ε (BASE-GEN), %, calculated using the basic and generalized models: • – 

DAU+ligand; ○ – CAF+ligand; ♦ – PF+EB, EB+PI. 
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