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Abstract. The aim of this paper is to present aggregation methods of individual preferences 

scores by means of distance measures. Three groups of distance measures are discussed: measures 
which use preference distributions for all pairs of objects (e.g. Kemeny’s measure, Bogart’s meas-
ure), distance measures based on ranking data (e.g. Spearman distance, Podani distance) and dis-
tance measures using permissible transformations to ordinal scale (GDM2 distance). Adequate 
distance formulas are presented and the aggregation of individual preference by using separate 
distance measures was carried out with the use of the R program. 
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I. INTRODUCTION 
 
The problem of preferences rank aggregation is the problem of computing  

a “consensus” ranking, given individual ranking preferences of several judges. 
Many aggregation methods have been proposed in the literature. They are 
mainly the methods developed within the theory of social choice. The article 
presents preference aggregation by using distance measures for ranking data. 
Due to the fact that the majority of these measures are not typical for ordinal 
data (see: Walesiak (2011)) it was checked if allowed mathematical transforma-
tions for ordinal data influence aggregation results. 
 
 

II. INDIVIDUAL PREFERENCES 
 
Let denote  mi xxxX ,,,,1   is the set of m objects, and 

 nhN  , ,,1   is the set of respondents (consumers) evaluating preferences. 

Personal preferences of the h-th respondent  nh ,,2,1   are represented by  

a binary relation ,jhi xPx  which means that the object ix  is at least as preferred 

by the person h as the object .jx  
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In order to organize the set of objects due to preferences we can apply 
a strong relation of preferences ( ji xx  ), a weak relation ( ji xx    ) and an indif-

ference ( ji xx  ). If there is a function that allows us to measure objects on an 

ordinal scale, than the mentioned relations can be presented as follows (see: Bąk 
(2004)): 

– )()( jiji xuxuxx  , 

– )()(  jiji xuxuxx  , 

– )()( jiji xuxuxx  , 

where u is the function of utility which orders objects according to the con-
sumers’ preferences. In the preferences study the differences between the values 
of the utility function of each consumer are not significant, so allowed mathe-
matical transformations for the observation are only strictly monotone increasing 
functions, which do not change the permissible relations for ordinal scale, i.e. 
equality, inequality, majority and minority. 
 
 

III. THE CLASSIFICATION OF PREFERENCE AGGREGATION 
METHODS 

 
The classification of preference aggregation methods can be made on the ba-

sis of two criteria. The first one determines which type of information about the 
individual preferences is used. According to this criterion there are two types of 
methods: 

– binary methods – using only preferences decompositions for all pairs of 
objects (e.g. obtained by pairwise comparisons), 

– non-binary methods – using fuller information about the preferences rela-
tionship (e.g. based on preferences rankings). 

The second criterion of classification determines how the aggregation is 
done. According to this criterion, we can distinguish three groups of methods: 

– the central tendency measures – despite being most common, they are not 
always appropriate. Preferences are measured on an ordinal scale, but when we 
use these methods it is often assumed that consumer preferences are measured at 
least on an interval scale; 

– the methods developed within the theory of social choice – it is possible to 
list the methods associated with the majority rule (the Copeland’s method , the 
Toda’s method), a group of methods associated with the Borda’s rule, Condorcet 
method, the method of optimal prediction et al. (see: Lissowski (2000)); 

– methods based on measurement of distances between individual prefer-
ence relations. 
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IV. PREFERENCE AGGREGATION BY USING THE DISTANCE 
MEASURES 

 
The idea of individual preferences aggregation with the use of the distance 

measures is to find such a relation of preference from all permutations of the 
orderings, for which the sum of distances from all individual preference order-
ings is the smallest, i.e.:  
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where: ),( 1RRd h  – the distance between the preference relation of the h-th  

respondent ( hR ) and 1R ; Q – the set of all possible preference orderings of m  

objects. 
Since the median is the value which minimizes the sum of the distances 

from the variables, therefore 1R  defines the median of preference orderings. 
The second method of aggregation preference orderings is choosing such a rela-

tion that minimizes the sum of squared distances from individual orderings, i.e.: 
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2R  is called the mean of individual orderings, because the mean minimizes the 

sum of square distances from the variables. 
 
 

V. CHOSEN DISTANCE MEASURES FOR PREFERENCE  
AGGREGATION 

 
Distance measures that can be applied for ordered preferences can be  

divided into two types – distance measures that use only binary relations be-
tween preferences (that show if respondent has chosen ix  over ,jx  jx  over ix  

or his choice is indifferent) and distance measures that use ranks as the input. 
Kemeny’s distance measure is the most important binary distance measure 

for preference data (Kemeny et al. (1962)): 
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where: mji ,,2,1,   – object number; nhg ,,2,1,   – respondent number; 
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Kemeny’s distance is a metric and due to its form is sometimes called „city 

block distance”. 
Bogart has proposed another important distance measure for ordered prefer-

ences that is sometimes called “Euclidean” (Bogart (1973)): 
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where: A  – square root of the sum of the squared elements from the A matrix; 

 )( )( hg RR AA  – matrix of preference evaluation for g-th (h-th) respondent with 

elements: 
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There are many different distance measures for ordered rank data – most 

important are: Spearman’s distance (also known as Spearman footrule distance) 
and  – Kendall distance (see: Pihur et al. (2009)). 

Spearman footrule distance is expressed by the following equation: 
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where: )( i

g xr  ( )( i
h xr ) – rank of i-th object for g-th (h-th) respondent. 

Spearman’s footrule distance can take its values from the interval  10;  by 

normalization. To obtain such values equation (5) has to be divided by .2/2m  
 – Kendall distance (Kendall (1938)) is based on the number of inversions 

occurring in the analysed preference relation in comparison with other prefer-
ence relation. The  – Kendall distance is expressed as follows: 
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Like the Spearman footrule distance,  – Kendall distance can take its value 

values from the interval  1 ;0  after normalization of equation (6) by dividing it 
by .2/)1( mm  

To aggregate individual preference data also another distance measures can 
be applied that are usually used to calculate distances between objects described 
by ordinal variables. As different individuals (respondents) can carry out the 
same evaluations of some analyzed objects, only distance measure which allows 
to analyze tied preferences can be applied. 

One of such distance measures is the Podani distance (Podani (1999)). The 
distance between two relations of preferences is expressed as follows: 
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where: git  ( hit ) – number of respondents that have assigned the same rank as the 

g-th (h-th) respondent for i-th object (including respondent g (h)); max.it  ( min.it ) – 

number of respondents that have assigned maximum (minimum) rank for i-th 
object; iR  – spread for ranked values for i-th object.  

GDM2 (General Distance Measure) proposed by Walesiak (1993) is a dis-
tance measure that takes into account available relations for ordinal variables. 
GDM2 distance measure for ordered preference data is defined as follows:  
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 lihigi xxx  ,  – preference evaluation for i-th objects and g-th (h-th, l-th)  

respondent, 
nlhg  , ,1,,   – respondent number, 

mi  , ,1   – object number. 

 
 

VI. EXAMPLE 
 
Rank aggregation was made for two data sets: LCD brands data and sports 

data. LCD brands data contains eight different LCD brands – Samsung (Sa), LG 
(LG), Maxdata (Ma), Philips (Phi), BenQ (Ben), NEC (NE), Neovo (Neo), 
Hyundai (Hyu). 28 PC experts and dealers were asked to rank 8 LCD display 
brands according to their preferences on a 8-point scale: 1 – the highest preferred 
brand, 8 – the least preferred brand. 

In sports data 130 students at the University of Illinois were asked to rank 
seven sports according to their preference in participating: Baseball (Bas), Foot-
ball (Foo), Basketball (Bab), Tennis (Ten), Cycling (Cyc), Swimming (Swi), 
Jogging (Jog) (see: Marden (1995)). 

Both data sets were applied in the experimental evaluation of four different 
distances for ordinal data in order to check the stability of the distances in rank 

data aggregation when dealing raw data, data after transformations ( 2xy   and 

xy  ). The results of evaluations are shown in Table 1. 
When comparing two different data sets and four distances (see Table 1) one 

can notice that in the case of LCD brands data almost all distances applied 
reached almost the same final ranking results (there are some slight changes in 
the case of  -Kendall distance) regardless of the transformation applied. In the 
case of sports data the changes between the  -Kendall distance and other dis-
tance measures are more obvious than in the case of LCD brand data sets. 
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Table 1. Comparison of results for two different data sets and four different distance types 

LCD brands Sports Dis-
tance 

Transfor- 
mation Sa LG Ma Phi Ben NE Neo Hyu Bas Foo Bab Ten Cyc Swi Jog 

xy   1 3 7 2 4 5 8 6 2 1 3 4 5 7 6 
2xy   1 3 7 2 4 5 8 6 2 1 3 4 5 7 6 1d  

xy   1 3 7 2 4 5 8 6 2 1 3 4 5 7 6 

xy   1 3 8 2 4 5 7 6 1 6 4 5 2 3 7 
2xy   1 3 8 2 4 5 7 6 1 6 4 5 2 3 7 2d  

xy   1 3 8 2 4 5 7 6 1 6 4 5 2 3 7 

xy   1 3 8 2 4 5 7 6 1 6 4 5 2 3 7 
2xy   1 3 8 2 4 5 7 6 1 6 4 5 2 3 7 

3d  

xy   1 3 8 2 4 5 7 6 1 6 4 5 2 3 7 

xy   1 3 8 2 5 4 7 6 1 6 4 5 3 2 7 
2xy   1 3 8 2 5 4 7 6 1 6 4 5 3 2 7 

4d  

xy   1 3 8 2 5 4 7 6 1 6 4 5 3 2 7 

where: 1d   -Kendall distance; 2d  Spearman footrule distance; 3d  Podani distance;  

4d  GDM2 distance (GDM distance for ordinal variables). 

Source: author’s eleboration with application of R software. 
 

 
 

VII. CONCLUSIONS 
 
Combining the ranked preferences of many experts is an old and deep prob-

lem that has gained renewed importance in many applications. The use of dis-
tance measures for preferences aggregation is an alternative to methods devel-
oped within the theory of social choice. Although there are no typical distance 
measures for ordinary data (expect for GDM2) it was shown that for distance 
measures for rank data strictly monotone increasing functions permissible for 
ordinal scale do not influence aggregation results. 
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MIARY ODLEGŁOŚCI W AGREGACJI DANYCH PREFERENCJI  
 
Celem artykułu jest zaprezentowanie metod agregacji indywidualnych ocen preferencji za 

pomocą wybranych miar odległości. Omówiono trzy grupy miar odległości: miary wykorzystujące 
rozkłady preferencji dla wszystkich par obiektów (np. miara Kemeny’ego, miara Bogarta), miary 
odległości bazujące na rangach (np. odległość Spearman’a, odległość Podaniego) oraz miary 
odległości wykorzystujące dopuszczalne relacje na skali porządkowej (odległość GDM2). Przed-
stawiono odpowiednie formuły odległości oraz omówiono ich zalety i wady. Agregacji preferencji 
za pomocą poszczególnych miar odległości dokonano z wykorzystaniem programu R. 


