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ABSTRACT 
 
 
 

Finding a way to automate the generation of test data is a crucial aspect of software 

testing.  Testing comprises 50% of all software development costs [Korel90].  Finding a 

way to automate testing would greatly reduce cost and labor involved in the task of 

software testing.  One of the ways to automate software testing is to automate the 

generation of test data inputs.  For example, in statement coverage, creating test cases 

that will cover all of the conditions required when testing that program would be costly 

and time-consuming if undertaken manually.  Therefore, a way must be found that allows 

the automation of creating test data inputs to satisfy all test requirements for a given test.   

 

One such way of automating test data generation is the use of genetic algorithms.  

Genetic algorithms use the creation of generations of test inputs, and then choose the  

most fit test inputs, or those test inputs that are most likely to satisfy the test requirement, 

as the test inputs that will be passed to the next generation of inputs.  In this way, the 

solution to the test requirement problem can be found in an evolutionary fashion.  Current 

research suggests that comparison of genetic algorithms with random test input 

generation produces varied results.  While results of these studies show promise for the 

future use of genetic algorithms as an answer to the issue of discovering test inputs that 

will satisfy branch coverage, what is needed is additional experimental research that will 

validate the performance of genetic algorithms in a test environment. 



x 

This thesis makes use of the EvoSuite plugin tool, which is a software plugin for the 

IntelliJ IDEA Integrated Development Environment that runs using a genetic algorithm 

as its main component.  The EvoSuite tool is run against 22 Java classes, and the 

EvoSuite tool will automatically generate unit tests and will also execute those unit tests 

while simultaneously measuring branch coverage of the unit tests against the Java classes 

under test. 

The results of this thesis’ experimental research are that, just as the literature indicates, 

the EvoSuite tool performed with varied results.  In particular, Fraser’s study of the 

EvoSuite tool as an Eclipse plugin was accurate in depicting how the EvoSuite tool 

would come to perform as an IntelliJ plugin, namely that the EvoSuite tool would 

perform poorly for a large number of classes tested. 
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Chapter 1 

INTRODUCTION 

This thesis examines current research that attempts to find a suitable method for 

generating test data for software tests that covers a large percent, i.e close to 100 percent, 

of branches in the source code when executed in the testing environment.  In other words, 

what is being studied is the concept of the coverage measure of branch coverage, and also 

a suitable option for generating test data that will achieve the fullest amount of coverage 

possible when executed in the testing environment.   

The problem of achieving high levels (close to 100 percent) of successful branch 

coverage is not a new problem [Korel90].  From the beginning of software development 

developers have faced the problem of making sure that a significant portion of their code 

is executed when it is tested.  From a developer’s point of view, it does not make sense to 

have a program that passes all of its tests if the tests are not executing a majority of the 

source code.  So arose the concept of branch coverage.  One of the criteria of branch 

coverage is the idea that every branch within the source code should be executed.  In 

other words, if there is an IF..ELSE statement, both the true and false branches should be 

executed in a testing environment to make sure that the code nested within those branches 

is not faulty and will not cause the program to behave incorrectly.
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At this point, it is important to discuss why this research will focus on branch coverage as 

opposed to focusing on the other two traditional coverage measures, path and statement 

coverage.  Path coverage deals with the execution of every possible path through the 

code.  Statement coverage deals with typical imperative statements in the code and 

whether each one has been executed, such as the simple statements of assertion, a goto, 

return, and call, as well as the selection and iteration statements such as if statements, for 

loops, and while loops.  It is important to note that branch coverage typically deals with 

whether IF statements have been executed, and so achieving branch coverage in an IF 

statement is in a way achieving a partial statement coverage.  The reason that this thesis 

focuses on branch coverage solely instead of the other two coverage measures is because 

there is a significant amount of available research on the issue of achieving branch 

coverage using test input generators [Alshraideh11, Fraser11, Fraser13, Fraser14, 

Gupta00, Khor04, Korel90, Mahajan12, Michael01, Pargas99, Rohil08].  Perhaps the 

most important reason, however, for studying branch coverage at the expense of the other 

two main coverage measures is that it has been shown mathematically that the number of 

paths through a non-trivial program is infinite [Chang01].  Because of this, it is infeasible 

to study path coverage alone.   

 

Along with this problem of achieving suitable branch coverage is the problem of 

generating test inputs that will execute all of the targets (branches) in a program’s source 

code.  Given this problem, there are several options for generating test inputs.  One 

method is to do the generation of these test inputs manually.  Another method for 

generating test inputs is to automate the process.  However, if one chooses automation of 
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test input generation, there two primary choices: random test input generation (e.g. 

pathwise test data generators and data specification generators), and the use of tools 

driven by a genetic algorithm.  Random test data generators and genetic algorithm tools 

are not necessarily the only two options available to developers in testing code, but they 

do represent two significant options as pertains to the available research. 

 

The reason this is an issue is that it has been shown (and will be shown in this thesis) in 

contemporary research that random test data generators are not suitable for automatically 

generating test data to achieve significant branch coverage [Michael01].  Branch 

coverage can be defined in this context as the ability to generate a sufficient number of 

test inputs that when run through software being tested, will execute every source code 

branch in the program at least once.  Branch coverage includes every true/false predicate 

that exists within the code.  

 

Automating the generation of test inputs for software tests has been shown in the research 

to be more efficient and more successful at producing quality test inputs that will achieve 

branch coverage than manually generated test inputs [Fraser13].  So the issue becomes 

centered on what is the best method for automating the generation of test inputs.  

Research suggests that random test generators can achieve branch coverage for simple 

programs.  Simple programs can be defined as those that contain an average of 30 lines of 

code and contain branches that are not complex, meaning, for example, they do not 

contain complicated nested conditional statements.  The important thing to note, 

however, is that the specific number of lines of code is not as significant as the 
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complexity of the conditional statements contained in the code.  Research also suggests, 

as programs grow more complex, random test input generators are less likely to be able to 

achieve high levels of branch coverage [Michael01]. 

 

According to Mahajan, C. Michael, Pargas, and Khor [Khor04, Mahajan12, Michael01, 

Pargas99], genetic algorithms are an answer to the problem of random test input 

generators.  A genetic algorithm is an algorithm that is modeled after the theory of natural 

selection and evolution.  They have increasingly been found within test data generation 

tools over the last twenty years.  According to Fraser, Khor, and Mahajan [Fraser14, 

Khor04, Mahajan12] the main problem is that current research shows that genetic 

algorithm test input generators are inconsistent.  Sometimes they perform remarkably 

well.  Other times, they leave something to be desired.  The current literature indicates 

genetic algorithm test input generators are pitted against randomized test input generators 

with the goal of proving that the genetic algorithm tools are superior.  However, results 

indicate that the goals are often not realized.  Chapter 2, Literature Search, addresses this 

issue in depth. 

 

Again, it is important to emphasize why branch coverage is being isolated in regards to 

the problem of test input generation at the expense of the other two primary coverage 

measures, namely path and statement coverage.  The amount of research literature 

available dealing with branch coverage and the problem of test input generation and 

automation is promising when it comes to the role that genetic algorithms play.  

Statement coverage is inherent in branch coverage, since branch coverage deals with  IF 
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statements, which are a part of statement coverage.  So providing branch coverage is in a 

way providing a measure of statement coverage, although not a complete 100% statement 

coverage measure.  This presents the tester with a dilemma.   For any non-trivial 

program, total path coverage will be impossible.  However, achieving a high degree of 

branch coverage is in a way achieving a partial path coverage.  So achieving a high 

degree of branch coverage can satisfy basic requirements for statement and path 

coverage, while also testing for the specifics of whether branch predicates will be 

covered.  This makes branch coverage a suitable focus for the software tester. 

 

Another question that can be asked is this:  What is the best way to achieve branch 

coverage?  Research suggests that using an automated tool for test input generation that is 

driven by a genetic algorithm can be an ideal solution to the problem of generating 

coverage measures, specifically branch coverage [Pargas99, Michael01, Khor04].  

However, current research is varied as to the performance of genetic algorithms versus 

random test input generators.  Herein lies the problem.  What is needed is additional 

experimental research to validate the performance of a genetic algorithm in achieving 

branch coverage for Java classes.  This paper attempts to address this problem by offering 

additional experimental research.
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Chapter 2 
 

LITERATURE REVIEW 

 

2.1 Pargas’ study 

 

In Pargas’ study, a test input generator named GenerateData was developed which 

contained a level of intelligence that allowed it, using the fitness function of the genetic 

algorithm, to determine which test cases came near to covering the target branch.  The 

fitness function is an integral component of the genetic algorithm.  Simply stated, it is a 

function that allows the genetic algorithm to determine how close it has come to 

achieving the desired goal.  These test cases that came closest to covering the target 

branch were deemed more fit.  The intelligence of GenerateData was generated from the 

control dependence graph of the given program.  A control dependence graph utilizes the 

control-flow graph of a program to determine dependencies within the code.  A visual 

representation of a program’s control dependence graph can be seen below [Pargas99]. 

 

Here’s an example below of a simple program (See Figure 1) and its control dependence 

graph (see Figure 2).
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                                       Figure 1: Simple Program 

 

 
 

                                    Figure 2: Dependence Graph 

 

The GenerateData tool was more likely to use mutation than recombination to produce 

new generations of test inputs. Mutation is a process genetic algorithms use to maintain 
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diversity in the population of test inputs.  Mutation occurs when one test input is altered 

from its initial state [Rohil08].  Recombination is a method genetic algorithms employ to 

create new generations of inputs, by taking elements of two parent test inputs and 

modifying them to create what are termed child test inputs.  This can occur in the form of 

adding, deleting, or modifying constructors or methods in the test input [Rohil08].  The 

reason that mutation is used so frequently in GenerateData is so that the new populations 

of test inputs produced by GenerateData will be diverse.  Mutation occurs in 

GenerateData by taking input variables of test cases and replacing them with values that 

are randomly generated.  GenerateData functioned by using a nested while loop to iterate 

until either the target test requirement was satisfied or the loop timed out [Pargas99]. 

 

An implementation of GenerateData called TGen was tested against a random test input 

generator called Random.  While Pargas tested TGen on six programs, branch coverage 

was only used as a metric for one program, Tritype c., which contained 61 lines of code.   

It took TGen an average of 132 iterations to achieve 100% branch coverage on the 

Tritype.c program, while it took the Random tool an average of 1100 iterations to achieve 

100% branch coverage.  For this program, the genetic algorithm tool TGen was deemed 

more efficient.  (Tritype.c was a program in which triangle type had to be determined 

from the lengths of the triangle sides given.  It is important to note that TGen was written 

in programming language C). 
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2.2 C. Michael’s study 

 

C. Michael discussed the GADGET tool.  GADGET stands for Genetic Algorithm Data 

Generation Tool.  GADGET, like Pargas’ tool GenerateData, contains a level of 

intelligence within the algorithm.  GADGET is able to identify the proximity of test 

inputs to achieving coverage for a given branch.  All of this information is collected by 

the algorithm as it executes against the program under test.  The GADGET tool keeps 

track of which conditions haven’t been covered, and generates test inputs that will likely 

cover those target branches [Michael01]. 

 

One of the limitations of the GADGET tool was that it took a period of time from twenty 

minutes to several hours to execute the program b737 using a Sun Sparc-10 workstation. 

(Program b737 contained 75 conditional statements and 2,046 lines of code [Michael01]). 

This long execution time can be viewed as a limitation of the tool because it means that it 

will be more expensive to operate GADGET than it will be to generate test inputs by 

hand.  However, because of the difficulty of creating test inputs by hand, GADGET is 

seen as a valuable tool, despite the cost incurred [Michael01]. 

 

GADGET was pitted against a random test input generator by testing the two on the 

following programs:  binary search, bubble sort, number of days between two dates, 

Euclidean GCD, insertion sort, median computation, quadratic formula, Warshall’s 

algorithm, and classification of a triangle.  All of the programs tested contained 

approximately 30 lines of code and contained simple decisions with no complex decision 
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making such as commonly found in nested conditional statements.  This made all of the 

programs under test roughly the same in terms of complexity.  In every one of these 

programs tested, the GADGET tool performed superior to the random test input generator 

[Michael01]. 

 

In a second study, the GADGET tool was used on b737, which was a real-world C 

program with 69 decision points, 75 conditions, and 2,046 lines of code (excluding 

comments).  This program was created using a CASE tool.  The best runs of the 

GADGET tool reached a performance level of 93% branch coverage, while test 

generation by random means only achieved 55% coverage.  The conditions contained in 

the b737 program fall into four categories.  The first group contains conditions that were 

never covered by GADGET.  The second group contains conditions that were covered by 

GADGET, but only while GADGET was trying to cover another condition, i.e. 

GADGET covered these conditions by luck.  The third group contains conditions that 

were meant to be covered by GADGET.  The fourth group contains conditions that were 

covered by the randomly seeded inputs that made up the initial population of inputs used 

by GADGET.  The GADGET tool failed to cover Boolean variable conditions, meaning 

that when evaluated the condition could only have a value of true or false.  The 

GADGET tool also failed to cover several nested conditions.  This can be seen as another 

limitation of the GADGET tool, as GADGET had difficulty with nested conditions and 

Boolean variables [Michael01]. 
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It is clear from C. Michael’s study that the GADGET tool performed well on both simple 

programs and larger programs with more lines of code and more branches.  However, the 

GADGET tool did have some limitations, namely that it didn’t cover Boolean variable 

conditions or nested conditions well.  One of the reasons why GADGET performed well 

is that it often covered one branch while it was actually trying to cover another, different 

branch.  This is known as serendipitous coverage [Michael01]. 

 

Suppose you are trying to reach the True branch of the condition labeled c.  The GA will 

only use inputs that can reach c to start with.  Unfit test inputs won’t reproduce, so only 

fit test inputs who can reach c will be produced.  So each time a new input reaches c, it 

will take the FALSE branch (until the True branch can be satisfied).  So therefore 

condition d is reached each time a new input tries to satisfy c, and d may have new 

branches that may be exercised.  The result is that while the GA was trying to reach the 

True branch of c, it discovered new branches of condition d, and the test input may end 

up satisfying one of those branches even though it was looking for an input to satisfy the 

True branch of condition c all along (see Figure 3) [Michael01]. 
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Figure 3: Branch Graph 

 

2.3 Khor’s Study 

 

Khor proposed using an automated test input generator that implemented a genetic 

algorithm, and he called this tool Genet.  Genet, like Pargas’ and C. Michael’s tools, 

contained a level of intelligence that allowed it to keep track of uncovered branches in the 

program under test.  Genet contains a decision table that, as each test input executes, 

keeps track of all of the uncovered branches in the given program.  If, at the end of the 

execution of all test inputs, there are still uncovered branches in the given program and 

the maximum number of generations has not been reached, the genetic algorithm driving 

the Genet tool proceeds to the development of Concepts (see Figure 4) [Khor04]. 
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                        Figure 4: Example of Concepts in the Program 

 

Concepts are created by the genetic algorithm in Genet as a way to group together test 

inputs that are more likely to cover the target branches in the program under test.  After 

Concepts are created, each chromosome is given a score.  A chromosome is defined as a 

test input in Khor’s study [Khor04].  This score is derived from how many times a 

chromosome can be found in the winning Concept.  The winning Concept is the group of 

test inputs that are most likely to cover the target branch.  Chromosomes that have the 

best score are therefore the chromosomes that are most likely to cover the target branch.  

These chromosomes are designated the most fit within the available gene pool.  These 

chromosomes that are deemed the most fit are placed into a new pool.  Mutation and 

recombination are applied to the test inputs in this new pool, and a new generation of test 

inputs are created from this pool of the most fit test inputs from the previous generation 

(see Tables 1 and 2) [Khor04]. 
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Table 1: Concepts for Initial Generation 

 

 

Table 2: Concepts for Final Populations 

 

The performance of Genet was compared with Randy, a tool that randomly generated test 

inputs.  They were pitted against each other in the testing of two different programs.  The 

first program tested was called Clip, which contained 11 branches.  Randy performed 

more efficiently because it required less computation.  The second program tested was 

Tax.  Tax contained 17 branches.  Genet performed more efficiently against Tax because 

it covered nested predicates more efficiently and required fewer tests [Khor04].  Khor 

found that the complexity of the program under test was not a good indicator as to 
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whether Genet would perform better than the random test input generator.  This research 

demonstrates the varied nature of results when it comes to the performance of genetic 

algorithms against random test input generation tools. 

 

2.4 Fraser’s Study 

 

Fraser studied the issue of whether automatically generating test data will actually result 

in test cases that uncover more faults than with manual test generation in three different 

research papers [Fraser11, Fraser13, Fraser14].  The context for his experiments was in 

using the EvoSuite tool, which is an Eclipse plugin.  The EvoSuite was used on Java 

classes seeded with faults, to address the following questions:  How does an automated 

test generation tool impact branch coverage, and how does the automated test generation 

tool impact the tester’s ability to find faults in the code? 

 

To begin with, in Fraser’s paper “Does automated white-box test generation really help 

software testers?” he examined how EvoSuite automatically produces JUnit test suites 

for a given Java class.  EvoSuite supports branch coverage criteria, and it employs a 

genetic algorithm to generate candidate test suites using a fitness function [Fraser13].  It 

was determined that classes chosen to test should be non-trivial; in other words, they 

should contain no fewer than 100 lines of code.  Classes also should not have I/O 

dependencies [Fraser13]. 
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The subjects of the experiment were told to either generate their test cases manually in 

Eclipse or to use the EvoSuite plugin [Fraser13].  The results of the experiment shows 

that the EvoSuite tool accounted for a minimum branch coverage of 80%, compared to 

35.71% branch coverage generated by manual testing [Fraser13].  However, in regards to 

finding faults, there was no scenario where the use of EvoSuite resulted in an increased 

ability to detect faults [Fraser13]. 

 

The problem here is that automating test generation using a genetic algorithm was shown 

to result in more effective coverage than a manual tester, however results did not indicate 

an ability to outperform manual testing when it came to finding faults in the code.  

Therefore, one must ask the question:  Is the automation of test data really resulting in a 

better testing environment? 

 

Fraser discussed in his paper “EvoSuite: Automatic Test Suite Generation for Object-

Oriented Software”, how EvoSuite generates whole suites of test inputs.  This generation 

of whole test suites goes against the standard white-box testing procedure of generating 

test inputs for individual coverage goals.  Whole test suite generation eliminates some of 

the faults that can be found with individual test input generation, namely that the search 

of the algorithm will not be negatively affected by the “order, difficulty, or infeasibility 

of the individual coverage goals” [Fraser11]. 

 

In practice, many coverage goals of a program under test are either infeasible, or some 

goals are more difficult to cover than other goals.  In a situation such as these, testers may 
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be either lucky or unlucky when generating test inputs to cover those goals.  For this 

reason, EvoSuite tries to eliminate “luck” by utilizing whole test suite generation 

[Fraser11]. 

 

Each EvoSuite test suite is made up of individual test cases.  Crossover may be applied to 

these test cases by recombination and mutation.  Recombination occurs when test cases 

are swapped based on a crossover position that is randomly chosen, which eliminates the 

usual difficulties experienced when crossover is done on method sequences.  Method 

sequences can be defined at the natural progression of method calls within a program 

[Fraser11].  Mutation, which occurs when individual statements and parameters are 

added, deleted, or changed, can result in the addition of new test cases or the mutation of 

individual ones [Fraser11]. 

 

When determining the fitness of individual test cases, EvoSuite looks at each individual 

branch and determines a branch distance, which is the distance of how far each test case 

is from whether a branch will have a value of true or false.  If a value of 55 will cause a 

branch to evaluate to true, and an input x==15, then the branch distance is |55-15| = 40 

for the branch to evaluate to true.  A fitness value of zero implies all branches in the Unit 

Under Test (UUT) are covered [Fraser11]. 

 

EvoSuite generates test suites for one class at a time, trying to maximize branch coverage 

for each class under test.  EvoSuite has no restrictions when it comes to types of arrays, 

objects, or datatypes that it handles.  EvoSuite also handles the string class in a unique 
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way, by allowing the EvoSuite search to evolve strings so that requirements on strings are 

satisfied.  It does this by using its own helper methods in place of typical calls to string 

comparison methods [Fraser11]. 

 

EvoSuite detects faults in the programs that it tests by seeding mutants into the program   

(mutants can be defined here as artificial defects) [Fraser11].  If these mutants are 

detected by the test case (this happens if an assertion fails in the code) then these 

assertions are used by EvoSuite to develop a set of assertions that will likely detect all 

faults in the unit under test (UUT).  However, if a mutant is not detected, then this means 

that a new test case must be created, and new tests run until the mutant is detected.  The 

theory is that by developing a set of assertions that can detect all mutants seeded into the 

program, such a set of assertions may detect, potentially, any faults that may occur in the 

program under test [Fraser11]. 

 

In Fraser’s paper “A Large Scale Evaluation of Automated Unit Test Generation Using 

EvoSuite”, Fraser discusses that EvoSuite can only achieve optimal levels of branch 

coverage on particular classes.  EvoSuite utilizes a built in security manager that will 

detect any negative dependencies on the environment.  These include interactions the 

program under test may have with files, databases, and networks.  The security manager 

will also detect dangerous code and will prohibit EvoSuite from achieving high coverage 

levels [Fraser14]. 
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Fraser ran an experiment where he selected 100 random SourceForge Java projects, as 

well as the ten most popular Java programs on SourceForge.  He called this test bed 

SF110.  It contained 23,886 classes, 6.6 million lines of code, and required approx. 995 

days to execute the code under test.  Fraser found that the average branch coverage per 

project was 67%, where the project with the lowest average coverage amongst its classes 

was still 20% (See Figure 5). 

 

 

Figure 5: Fraser’s Results for SF110 

 

In Fraser’s study, large groups of classes achieved dismal coverage (10% or less) and 

large groups of simpler classes achieved high coverage (90% or greater).  Classes within 

the lowest coverage intervals (10%, 20%, and 30%) tended to contain large numbers of 

branches (more than 70).  Most classes fell within either the 10% or fewer coverage 

interval, or the 90% or greater coverage interval [Fraser14]. 

 



 
 

- 20 - 

Fraser was troubled that so many of his classes under test achieved such low coverage 

scores.  One hypothesized answer that he gave as to why this may occur is that EvoSuite 

has a built in security manager that will not allow dangerous code to execute. The 

security manager also will not let programs properly test and execute if there are 

environmental dependencies (network, files, databases) that interact with the program 

under test in a dangerous manner.  To support this hypothesis, Fraser found that for his 

experimental research, when classes raised no exceptions, EvoSuite performed well, 

achieving an average branch coverage of 84%.  For classes that did raise exceptions, and 

where some level of permission was needed, EvoSuite performed much poorer.  Fraser 

also hypothesized that since EvoSuite is not built to handle multithreaded code, in 

instances where the program code spawns threads, EvoSuite will not perform well 

[Fraser14]. 

 

2.5 Mahajan’s Study 

 

Mahajan’s study focused on comparing the performance of a genetic algorithm-driven 

test generation tool with the performance of a random test data generation tool on classic 

problems such as the quadratic equation roots classification problem, triangle 

classification problem, the date difference problem etc.  Mahajan ran his genetic 

algorithm tool on the problems listed above to find out the number of generations that 

were required to achieve 100% coverage.  Study findings were varied.  For some 

programs run with the two tools, the GA tool achieved a greater percentage of coverage 

in fewer generations.  For other programs, the results of the two tools were similar.  Yet 

for other programs, the random test generator performed more efficiently, with greater 
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coverage percentage than the GA tool (see Table 3).  So it is difficult to draw strong 

conclusions from Mahajan’s study [Mahajan12]. 

 

 

Table 3: Mahajan’s Results 
 
 
 

2.6  Rohil’s study 

 

Rohil’s study examined the performance of a genetic algorithm based software tool called 

gp against a random tool used to generate test cases during the generation of object 

oriented test cases.  The classes that were tested in the experiment included NodeList, 

NodeIterator, ParserUtils, IteratorImpl, SimpleNodeIterator, and others that were taken 

from an open source project called HTMLParser.  The results of the percentage of 

coverage achieved by the two approaches are captured in Figure 6 [Rohil08]. 
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                     Figure 6: Rohil’s Results 

 

Rohil’s study, unfortunately, did not contain a description of the classes that were tested 

in terms of lines of code and complexity (number of branches); as a result, it is difficult to 

make solid conclusions when it comes to whether the genetic algorithm tool gp that he 

tested performed well on smaller, less complex classes or if it performed well on larger, 

more complex classes.  However, Rohil’s study is relevant to this thesis research because 

it illustrates variation in the performance of his gp tool when compared against the 

performance of the random tool.  By looking at Figure 6, it is clear that the performance 

of the two tools was almost the same for the ParserUtils class; however, there was a 

significant gap in the performance on the SimpleNodeIterator class.  For this class the gp 

tool performed noticeably better than the random tool.  This, in effect, is the reason that 

Rohil’s study is relevant to this thesis research, because it does show variability in the 
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performance of the genetic algorithm tool, and the prediction of variability in the 

performance of genetic algorithm tools is the foundation of this thesis. 

 

2.7 Branch Coverage 

 

Branch coverage is a concept that falls under the white-box testing strategy known as 

code coverage.  Branch coverage is the idea that testers strive to execute most of a 

program’s branches at least once during testing.  This includes TRUE/FALSE decisions 

for IF…ELSE statements, Loops, etc.  For example, consider the following code block: 

 

IF (X>Y){ 
               System.out.println (“Hello!”) 

}ELSE { 
               System.out.println(“Goodbye!”) 

}; 
 
 
 

In this case, a test case (5,4), where X=5 and Y=4, would execute the first part of the 

IF…ELSE statement, and the result would be that the word “Hello!” would be printed.  

However, this also means that only 50% of the IF…ELSE statement would be executed, 

leaving the other part of the branch untested.  This could potentially be dangerous for the 

state of the program, given that the ELSE branch of the statement could contain 

something that when executed, could cause the program to abnormally terminate.  So it is 

important to ensure that when running tests, that all of the branches are executed at least 

once.  So in this case, two cases would be needed to run the program correctly:  (5,4) and 

(4,6)  [Software15].
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Chapter 3 
 

METHODOLOGY 

 

Khor, C. Michael, Fraser, and Mahajan all present studies which show that genetic 

algorithms can perform as well as, and in some cases better than, random test case 

generators when it comes to code coverage, specifically branch coverage [Fraser11, 

Fraser13, Fraser14, Khor04, Mahajan12, Michael01].  Most of the research has been 

focused on comparing genetic algorithms to randomized test input generators for testing 

branch coverage.  Further, most of the available research is undertaken from the 

perspective of showing that genetic algorithms are superior to randomized test data 

generation [Khor04, Mahajan12, Michael01, Pargas99].  But in attempting to unify the 

results of all this research into a single “state of the art” assertion, there is uncertainty. 

 

Showing the superiority of genetic algorithms to randomized test input generation was 

the goal of Khor’s research.  The aim of Khor’s research was to use Genet, an automated 

test input generator, to develop test cases that were more likely to cover target branches 

within the program under test.  Basically, Genet identified target branches within the 

code and then set aside test cases that were more likely to cover these branches, and 

developed new populations of test cases from these original test cases that were likely to 

cover the target branch.  It used a genetic algorithm to do this. 
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However, in Khor’s research, the results were varied.  In one trial run, the genetic 

algorithm tool performed less efficiently than the randomized test case generator, and in 

another test run the genetic algorithm tool performed more efficiently.  The goal of 

Mahajan’s study was similar.  A genetic algorithm test case generator was implemented 

to demonstrate that genetic algorithms could provide a greater degree of branch coverage 

than random test case generators.  However, Mahajan’s study backs up Khor’s results by 

showing that in certain test runs, the random test case generator performed equally as 

well as, or in one case more ideal than, the genetic algorithm tool in regards to percentage 

of coverage achieved and total number of generations required to achieve the results.   

  

3.1 Background on the Experimental Environment and Unit Testing 
 
 
 
EvoSuite is a software tool that can be utilized as a plugin for the IntelliJ IDEA 

Integrated Development Environment.  EvoSuite utilizes a genetic algorithm, internally, 

to produce test suites to achieve branch coverage [Fraser13].  EvoSuite automates the 

production of JUnit test suites for a specified Java class.  JUnit is a unit testing 

framework for Java that allows the user to write repeatable unit tests.  EvoSuite can be 

implemented in the IntelliJ IDEA Integrated Development Environment (IDE) as a plug-

in.  To begin with, an integrated development environment is a software application that 

allows computer programmers to write, build, and debug source code.  An IDE usually 

contains a source code editor, debugger, and build automation tools.  A plugin is 

additional functionality, such as a software tool, that can be installed into an IDE that will 

function seamless as an integrated part of the IDE, but that does not initially come with 
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the software.  In the IntelliJ IDE, there is a plug-in repository within the IDE that allows 

users to search for plugins and then install them (See Figure 7). 

 

 

Figure 7: EvoSuite Plugin Repository 

 

Figure 7 shows the IntelliJ plugin repository.  It is from this screen that users can select 

different plugins to install.  Clearly, the EvoSuite plugin has been selected from the 

menu. 
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Once the EvoSuite plugin has been installed, EvoSuite can be easily run against a Java 

class by right clicking on the SRC icon in the lefthand tool bar, and clicking “Run 

EvoSuite” (See Figure 8). 

 

 

Figure 8: EvoSuite Running 

 

Figure 8 depicts the view that users have at the bottom of the IntelliJ IDE main screen 

when EvoSuite is run.  This display pane will also inform users when EvoSuite has 

completed running. 
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EvoSuite will automatically generate unit tests for that particular Java class in the IntelliJ 

IDEA IDE, and will subsequently run those unit tests and measure the percentage of 

branch coverage achieved by the EvoSuite plug-in [Fraser13]. 

 

IntelliJ IDEA was developed by JetBrains.  JetBrains is an international software 

development company based in Prague, Czech Republic.  They offer many IDEs not only 

for Java but also for Ruby, PHP, Python, etc.   One of the key features of IntelliJ IDEA is 

to allow users to install plug-ins via its plug-in repository.  It also supports the use of 

JUnit (See Figure 9). 
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                                Figure 9:  IntelliJ IDE Main Screen 
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Figure 9 depicts the main IntelliJ IDE workbench screen.  What is seen in Figure 9 is the 

left hand side of the workbench, which is a pane which allows users to right click on the 

“src” folder.  When this is done, a drop down menu will be displayed that will allow the 

user to select “Run EvoSuite” for that particular group of classes. 

 

3.2 What is a Unit Test 

 

When testing usually the smallest part of an application for which a program developer is 

responsible, the process is termed unit testing.  A unit can be defined as the smallest 

portion of the program that can be tested.  A unit test is a test performed on a unit to see if 

it is functioning as desired.  Unit testing is often a precursor to measuring branch 

coverage.  Branch coverage is usually measured as a metric against the execution of a 

unit test, i.e., when unit tests are run, what percentage of the branches in the unit were 

executed during the unit test. 

 

3.3 Experimental Design 
 
 
 
Fraser’s studies, as elaborated on within this paper’s literature review, presented much 

useful information on the EvoSuite tool.  EvoSuite is used within this thesis’ 

experimental research.  Twenty-two Java classes will be selected from several Java 

programs of varying size (in terms of LOC), complexity (in terms of number of branches) 

and purpose.  These classes come from programs selected from www.planet-source-

code.com, SourceForge, and a data structures class from the University of North Florida.  

The main criteria used when looking for the target classes is size (classes should be non-

http://www.planet-source-code.com/
http://www.planet-source-code.com/
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trivial, which according to Fraser is more than 100 lines of code); complex (Fraser 

defines more than 70 branches as being complex); and should come from a variety of 

different programs in terms of function.  The classes selected for this study come from a 

Java program dealing with parsing data from input files, creating objects, and inserting 

those objects into queues; a Java Monopoly board game; a Java program for making 

music beats; a Java program for a virtual notice board; a Java program used to create 

menus; and a Java Checkers game. 

 

The goal of this research is to test EvoSuite on a variety of classes, report the results in 

terms of tables and graphs, and compare the performance of the EvoSuite tool as used in 

the IntelliJ IDEA with the performance of Fraser’s EvoSuite Eclipse plugin.  While the 

scope of Fraser’s research is beyond the scope of this thesis, this author is confident that 

it will be possible to draw parallels between the performance of Fraser’s Eclipse plugin 

and the performance of the IntelliJ plugin used in this thesis. 

 

The main contribution of this thesis research is to test out the EvoSuite tool as an IntelliJ 

IDEA plugin.  Fraser’s paper concentrated on the use of EvoSuite as a plugin for Eclipse, 

but nothing has been written about the use the IntelliJ plugin.  Also, another contribution 

of this thesis is the observance of the performance of EvoSuite when the IntelliJ plugin 

paramenters are adjusted.  In IntelliJ, the EvoSuite plugin will be tested with three sets of 

parameters: the default parameters, in which there is one core, the memory per core is 

2,000 MB, and the time per class is three minutes;  a parameter setting where two cores 

are used, there is 5,000 MB per core in memory, and the time per class is five minutes; 
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and finally, the parameter setting where four cores is used, there is 10,000 MB memory 

per core, and the time per class is seven minutes.  The performance of EvoSuite on the 

twenty-two selected classes with these three parameter settings will be observed, results 

will be documented, and conclusions will be drawn in relation to the performance of 

Fraser’s EvoSuite research. 

 

3.4 How does a Genetic Algorithm Generate Unit Test Cases 

 

The Genetic Algorithm used in EvoSuite must be able to generate test programs, in this 

case unit test cases to be run and measured for code coverage.  Rohil’s study provides 

some insight into how this works.  The EvoSuite tool is built with a Genetic Algorithm.  

Genetic Algorithms are influence by the broader concept of Genetic Programming, which 

itself is built around the concept of hierarchically organized trees [Rohil08].  This 

requires the use of specialized genetic operators for crossover and mutation. (See 

Glossary for definitions)  The trees used in this type of programming, which is the 

foundation of the EvoSuite tool, require that such trees must contain data that tells the 

tool not only the methods (including target and parameter objects) that the tool must call 

but also the order that those methods should be called in [Rohil08].    

 

When chromosomes (individual test inputs generated by the genetic algorithm) are being 

constructed, genes are utilized to encode each component of each statement in the code 

[Rohil08].   The way this works is that each gene is assigned a corresponding number.  

When these genes are decoded, the integer values of the genes are used to identify the 
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methods and objects used for the method call [Rohil08].  All of the genes constitute a 

chromosome, which in genetic programming will make up the tree structure as the 

different nodes of the tree. 

 

For example, consider the following code from Rohil’s paper. The following is a test 

cluster of two classes:  the Host class and the Connection class.  Figure 10 shows a tree 

representation of the following code snippet [Rohil08]: 

 

class Host 
{ 
   public Host(Connection con); 
   public void connect(); 
   public void configure(Connection con); 
   public Connection getConnection(); 
   public boolean testPort(Connection con); 
   public void disconnect(); 
} 
 
 
 

The following is the code for the class Connection: 
 
 
 
class Connection 
{ 
   public Connection (int port); 
   public int getPort(); 
} 
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Figure 10: Genetic Programming Tree Representation of a Chromosome 
 
 
 

The following is an illustration of a test input that is produced from the Genetic 

Programming representation of the chromosome [Rohil08]: 

 

Connection conn1=new Connection(0x10); 
Connection conn2=new Connection(0x20); 
Host host=new Host(conn1); 
host.configure(conn2); 
host.testPort(conn2);   
 
 
 

The explanation for the above tree representation of a chromosome and the corresponding 

code for the test case is that in genetic programming, methods and constructors in a class 

constitute genes in a chromosome.  A chromosome can be made up of many genes, that 

is, many methods and constructors.  This is how a chromosome is encoded from a 

programming language.  Methods and constructors can take in variables as arguments in 

the method or constructor.  In the above code, the conn1 object takes in 0X10 as the 

argument for the Connection constructor, and so forth.  The same goes for the methods 
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host.configure, which takes in conn2 as an argument.  These methods and constructors 

make up the genes in the chromosome being encoded [Rohil08]. 

 

For mutation, when a genetic value is altered from its original state, the gene pool will be 

updated with new gene values.  It is because of these new gene values being entered into 

the gene pool that the genetic algorithm is able to achieve better solutions than were 

possible previously [Rohil08].  For each component of the test case statement, three 

mutation modifiers are defined.  These three mutation modifiers work on the basic 

building block of the chromosome.  They are as follows: create a new building block, 

modify an existing building block, or delete a building block.  For example, these three 

modifiers can be applied to a constructor to create, modify, or delete a constructor in the 

Java class, or they can be applied to methods to add, modify, or delete methods.  This is 

how new generations of test case inputs are created. 
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Chapter 4 
 

RESULTS 

 

EvoSuite was used as an IntelliJ plugin and run against twenty-two Java classes from a 

variety of programs.  These twenty-two classes contained varying levels of complexity 

(number of branches) and size (LOC).  The twenty-two classes were tested under three 

different parameter settings within the EvoSuite IntelliJ plugin: the first parameter setting 

was the default setting, in which one core was used, 2,000 MB per core were used, and 

three minutes per class; the second parameter setting, in which two cores, 5,000 MB of 

memory per core, and five minutes per class was used; and the third parameter setting, in 

which four cores, 10,000 MB of memory per core, and seven minutes per class was used.  

This is one of the main differences in the research presented within this paper and the 

research presented in Fraser’s study, namely that Fraser used EvoSuite as an Eclipse 

plugin.  There is nothing in the available research on EvoSuite that offers any suggestions 

as to how EvoSuite will perform in the IntelliJ IDEA Integrated Development 

Environment.  Fraser’s research mentioned nothing about the parameters found in the 

IntelliJ EvoSuite plugin, which is another reason that this thesis paper’s research is a 

unique contribution. 

 

The results of this thesis experiment show the variation in the performance of the 

EvoSuite tool, which supports the thesis of this paper, namely that the performance of 

genetic algorithm tools can vary in a test environment.  For more than half of the classes
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tested with the EvoSuite tool, EvoSuite achieved a branch coverage percentage of less 

than 10%, which is in line with the findings of Fraser in his research.  Adjusting the 

parameters of the EvoSuite tool as an IntelliJ plugin resulted in, for the most part, an 

increase in the number of seconds required for EvoSuite’s search to complete.  In other 

words, as the number of cores, MB per core, and minutes per class increased, then the 

number of seconds required to complete EvoSuite’s search increased as well, although 

this is not a definitive statement.  The same cannot be said for the number of generations 

completed across the three test runs.  As the parameters increased, the number of 

generations did not necessarily increase at the same proportion.  EvoSuite achieved the 

best branch coverage on the Queue and Property classes.  The Property class contained 

71 branches and the Queue class contained 93 branches.  This level of complexity falls in 

the middle, in terms of levels of complexity of the classes tested.  The class with the 

highest number of branches contained 227 branches, while the smallest class, in terms of 

complexity, contained 15 branches.  EvoSuite performed very poorly on the two most 

complex classes, achieving just 0% and 3% coverage on the two classes with 227 

branches and 219 branches, respectively.  There were several classes that contained less 

than 50 branches and which EvoSuite performed poorly, achieving less than 10% 

coverage.  As a result, it is clear that there is variability in the performance of EvoSuite as 

a genetic algorithm tool, and therefore the thesis of this paper is supported; however, the 

experimental research performed in this thesis also validates the findings of Fraser, who 

found that EvoSuite performed poorly on a large number of classes tested in his research. 
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4.1 Test run 1:  

  

Table 4 shows the results for test run 1.  Test run 1 was performed with one core, 2,000 

MB per core, and three minutes allotted for each class.  In test run 1, EvoSuite performed 

poorly on the most complex classes, while it performed best on classes with middle-of-

the-pack complexity.  EvoSuite also performed poorly on classes with complexity at the 

lower end of the spectrum.  
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Name of Class 

Seconds 
needed 
for 
search to 
complete 

 
Generations 
created 

 
Lines  
of 
Code 

 
Number 
of 
Branches 

 
Branches 
Covered 

 
Coverage 
percentage 

Gameboard 685 15720 432 227 1 0 
ImageMover 140 1144 56 32 15 47 
Movement 103 904 51 25 7 28 
AssetMaintDialog 284 4729 214 90 1 1 
Player 703 689 292 170 105 62 
TradeDialog 104 1194 109 32 1 3 
OwnedControl 103 1236 96 38 1 3 
Property 232 912 96 71 63 89 
PropertyInfoDialog 241 4205 139 69 1 1 
Casa 41 391 36 15 9 60 
Damas 32 645 93 18 2 11 
Tabuleiro 211 24 230 216 90 42 
Beatbox 261 1565 290 77 16 21 
Menubuilder 154 1634 238 219 6 3 
Queue 289 1196 110 93 87 94 
Edit_Chief_Acct 111 659 183 35 2 6 
Edit_Faculty_Acct 112 535 183 35 2 6 
Edit_Offic_Acct 111 751 183 35 2 6 
Notice_Board 164 3511 207 46 2 4 
Update_Chief_Not 140 1013 257 45 2 4 
Update_Facul_Not 140 980 257 45 2 4 
Update_Offic_Not 140 920 257 45 2 4 

Table 4: Test Run 1 

 

4.2 Test run 2: 
 
 
 
Table 5 shows the results for test run 2.  Test run 2 was performed with two cores, 5,000 

MB per core, and five minutes allotted for each class. In test run 2, the number of seconds 

required for EvoSuite to complete its search increased from test run 1, as did the number 

of generations created by EvoSuite, in comparison to test run 1.  In test run 2, EvoSuite 
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performed poorly on the most complex classes, while it performed best on classes with 

middle-of-the-pack complexity.  EvoSuite also performed poorly on classes with 

complexity at the lower end of the spectrum.  

 

Table 5: Test Run 2 

 
 
 
 

 
 
Name of Class 

Seconds 
needed 
for 
search to 
complete 

 
Generations 
created 

 
Lines 
of 
Code 

 
Number 
of 
Branches 

 
Branches 
Covered 

 
Coverage 
percentage 

Gameboard 1311 19860 432 227 1 0 
ImageMover 241 362 56 32 15 47 
Movement 176 491 51 25 7 28 
AssetMaintDialog 699 13121 214 90 1 1 
Player 1340 2169 292 170 112 66 
TradeDialog 175 950 109 32 1 3 
OwnedControl 175 1196 96 38 1 3 
Property 488 601 96 71 67 94 
PropertyInfoDialog 515 6028 139 69 1 1 
Casa 132 893 36 15 9 60 
Damas 115 3001 93 18 2 11 
Tabuleiro 253 18 230 216 92 43 
Beatbox 307 2188 290 77 16 21 
Menubuilder 157 841 238 219 6 3 
Queue 96 307 110 93 86 92 
Edit_Chief_Acct 190 767 183 35 2 6 
Edit_Faculty_Acct 191 1000 183 35 2 6 
Edit_Offic_Acct 190 789 183 35 2 6 
Notice_Board 296 3797 207 46 2 4 
Update_Chief_Not 250 1283 257 45 2 4 
Update_Facul_Not 250 1438 257 45 2 4 
Update_Offic_Not 250 1313 257 45 2 4 
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4.3. Test Run 3 

 

Table 6 shows the results for test run 3.  Test run 3 was performed with four cores, 

10,000 MB per core, and seven minutes allotted for each class.  In test run 3, the seconds 

needed for EvoSuite to complete its search increased, for the most part.  However, in 

general, the number of generations created decreased from test run 2.  In test run 3, 

EvoSuite performed poorly on the most complex classes, while it performed best on 

classes with middle-of-the-pack complexity.  EvoSuite also performed poorly on classes 

with complexity at the lower end of the spectrum.   
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Table 6: Test Run 3 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Name of Class 

Seconds 
needed 
for 
search to 
complete 

 
Generations 
created 

 
Lines 
of 
Code 

 
Number 
of 
Branches 

 
Branches 
Covered 

 
Coverage 
percentage 

Gameboard 2316 7426 432 227 1 0 
ImageMover 375 1668 56 32 13 41 
Movement 38 0 51 25 5 20 
AssetMaintDialog 856 3152 214 90 1 1 
Player 2360 447 292 170 104 61 
TradeDialog 261 2550 109 32 1 3 
OwnedControl 265 2114 96 38 1 3 
Property 924 1759 96 71 67 94 
PropertyInfoDialog 995 9811 139 69 1 1 
Casa 186 1097 36 15 9 60 
Damas 187 2631 93 18 2 11 
Tabuleiro 191 7 230 216 66 31 
Beatbox 61 179 290 77 13 17 
Menubuilder 66 602 238 219 6 3 
Queue 66 192 110 93 86 92 
Edit_Chief_Acct 297 923 183 35 2 6 
Edit_Faculty_Acct 313 489 183 35 1 3 
Edit_Offic_Acct 292 148 183 35 2 6 
Notice_Board 502 3214 207 46 2 4 
Update_Chief_Not 374 482 257 45 2 4 
Update_Facul_Not 369 47 257 45 2 4 
Update_Offic_Not 369 298 257 45 2 4 
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4.4 Test run 1 branch coverage 

 

Figure 11 shows the branch coverage for test run 1.  

 

 
 

Figure 11: Test Run 1 
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4.5 Test run 2 branch coverage 

 

Figure 12 shows the branch coverage for test run 2. 

 

 

Figure 12: Test Run 2 
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4.6 Test run 3 branch coverage 

 

Figure 13 shows the branch coverage for test run 3.  

 

 

Figure 13: Test Run 3 
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4.7 Number of Branches 

 

Figure 14 shows the number of branches for each class. 

 

 

Figure 14:  Number of Branches 
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4.8 Lines of Code 

 

Figure 15 shows the lines of code for each class. 

 

 

Figure 15: Lines of Code 

 

4.9 Summary of Coverage 

 

Table 7 lists a summary of the coverages for EvoSuite across all three test runs.  Table 7 

also includes data on lines of code and number of branches. 
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Name of class 

 
Lines of 

Code 

 
Number of 
Branches 

 
Test Run 1 
Coverage 

% 

 
Test Run 2 
Coverage 

% 

 
Test Run 3 
Coverage 

% 
Gameboard 432 227 0 0 0 
ImageMover 56 32 47 47 41 
Movement 51 25 28 28 20 

AssetMainDialog 214 90 1 1 1 
Player 292 170 62 66 61 

TradeDialog 109 32 3 3 3 
OwnedControl 96 38 3 3 3 

Property 96 71 89 94 94 
PropertyInfoDialog 139 69 1 1 1 

Casa 36 15 60 60 60 
Damas 93 18 11 11 11 

Tabuleiro 230 216 42 43 31 
Beatbox 290 77 21 21 17 

MenuBuilder 238 219 3 3 3 
Queue 110 93 94 92 92 

Edit_Chief_Acct 183 35 6 6 6 
Edit_Faculty_Acct 183 35 6 6 3 
Edit_Office_Acct 183 35 6 6 6 

NoticeBoard 207 46 4 4 4 
Update_Chief_Not 257 45 4 4 4 

Update_Faculty_Not 257 45 4 4 4 
Update_Office_Not 257 45 4 4 4 

Table 7:  Coverage Results for All Three Test Runs 

 

It is clear from the results of this study (see Table 7) that EvoSuite performed well in a 

couple of instances, but performed poorly in several other instances.  In fact, in half of 

the classes tested, EvoSuite achieved 10% or less coverage.  Many of these classes in 

which EvoSuite performed poorly contained significant LOC/Branches.  This is in line 

with the results that Fraser found in his study, namely that EvoSuite performed poorly for 

a high number of classes that he tested. 
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One thing to note is that many of the classes with significant lines of code had low branch 

coverage scores.  Of the last seven classes tested, all had LOC equal to or greater than 

183, but had fewer numbers of branches than some of the other classes.  These classes 

had low branch coverage scores.  The Property class, on the other hand, had 71 branches, 

96 LOC, and scored coverage of 89, 94, and 94 % across three test runs.  The Property 

class was close to Fraser’s threshold of 100 lines of code or more for constituting a non-

trivial class.  The Queue class had 110 LOC, 93 branches, and a coverage score of 94, 92, 

and 92% across three test runs.  Then there is the Gameboard class, which had 432 LOC, 

227 branches, and achieved a coverage score of 0%.  Overall, EvoSuite achieved very 

low branch coverage levels for the most complex classes (200+ branches), while it 

performed at its best on classes with middle-of-the-road complexity (50-100 branches).  

 

It is also important to note that across test runs, as the amount of time allotted for each 

class increased in the parameter settings, the number of generations created by the 

EvoSuite tool did not necessarily increase proportionally.  For the Gameboard class, from 

test run 2 to test run 3, the number of seconds it took for the search to complete almost 

doubled, however, the number of generations produced by EvoSuite decreased 

dramatically, even though EvoSuite was running on double the amount of cores and had 

two additional minutes per class allotted on test run 3. 

 

4.10 Addressing the Outliers 
 
 
 
One of the hypothesized reasons that Fraser gave for why EvoSuite might have  

performed so poorly in his study (and which rings true for these thesis findings as well) is 
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that EvoSuite has a built-in security manager that allows it to prevent certain classes from 

executing if the code in those classes is deemed unsafe.  This is particularly relevant for 

cases in which the environment of the program under test (external files, networks, 

databases) cause the security manager inside of EvoSuite to prevent the tool from 

achieving a high level of branch coverage.  Another reason that Fraser hypothesized 

might be responsible for EvoSuite performing so poorly in his study is that EvoSuite is 

not built to handle multi-threaded code.  If there are places in the classes under test where 

code is spawning threads, EvoSuite will not perform well in terms of achieving high 

levels of branch coverage.
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Chapter 5 
 

CONCLUSIONS 

 

Fraser’s study introduced the genetic algorithm tool EvoSuite.  This thesis made use of 

the EvoSuite tool to perform experimental research on Java classes.  There were two 

reasons for using the EvoSuite tool in this author’s thesis research.  The most obvious one 

is that it was the only genetic algorithm tool found during a thorough web search for 

genetic algorithm tools that offered the option of measuring branch coverage of test 

inputs.  The second reason is that Fraser’s research, cited in this thesis, made use of 

EvoSuite, so there was already a research precedent set for using the tool.  The EvoSuite 

tool automatically generated unit tests for the Java classes that were used for his studies, 

and then ran those unit tests and measured the level of branch coverage achieved during 

the tests.   

 

Fraser’s research focused on running EvoSuite as an Eclipse plugin and measuring the 

levels of branch coverage achieved.  In one of his studies, his test bed was called SF110 

and consisted of 110 Java programs from SourceForge, including the ten most popular 

Java programs at the time of his research.  His test bed included 23,886 classes, 6.6 

million lines of code, and required 995 days to run.  At the end of his study, he found that 

most of the classes tested fell into one of two coverage intervals:  either 10% and less, or 

90% and more.  He found that a significant number of classes that he tested achieved low 

branch coverage levels, and that EvoSuite performed poorly on these classes.  He also
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found that there were a significant number of classes in which EvoSuite performed well, 

with over 90% branch coverage achieved, but that these classes were usually simpler in 

regards to the number of conditional statements contained in the class.  For example, 

classes in the 10, 20, and 30% coverage intervals contained 70 or more branches, while 

those classes in the 90% coverage interval contained much fewer branches. 

 

Fraser hypothesized that the poor performance of EvoSuite on classes in his study that 

had high numbers of branches was due to the internal, built-in security manager found in 

EvoSuite.  He suggested that this built-in security manager was detecting unsafe code and 

was prohibiting that code from executing.  He found that in classes where no exceptions 

were raised, the EvoSuite tool performed well, achieving over 85% branch coverage, but 

that in classes where permissions had to be granted, the EvoSuite tool performed less 

efficiently in terms of the number of branches covered.  Another reason that Fraser 

hypothesized was that since EvoSuite cannot handle multi-threaded code, there must have 

been some places in the classes under test where threads were being spawned, as this 

would negatively affect the performance of EvoSuite in terms of providing high levels of 

branch coverage. 

 

This thesis sought to use EvoSuite not as an Eclipse plugin, but as an IntelliJ IDEA 

plugin.  In this way, this thesis research paper makes a unique contribution to the field, 

because no one has published any literature on the use of the EvoSuite plugin for IntelliJ.  

The experimental design of this thesis sought to test EvoSuite against twenty-two classes, 

obtained from various Java programs from SourceForge, PlanetSourceCode, and a data 
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structures class from the University of North Florida.  These twenty-two classes to be 

tested had varying levels of complexity in terms of branches contained in each class, as 

well as various sizes in terms of LOC.  The default parameters in the IntelliJ EvoSuite 

plugin would be tested in three ways:  the default parameters would be used for test run 

one, and then for test runs two and three, the parameters would be altered to observe any 

noticeable effect on performance. 

 

This study found that the EvoSuite tool performed as expected, in a varying degree of 

efficiency.  For some of the large, complex classes such as the Gameboard class (432 

LOC, 227 branches) the EvoSuite tool performed extremely poor, covering only one 

branch out of 227 for all three test runs.  For this reason it achieved a 0% level of branch 

coverage.  However, for the Player class (292 LOC, 170 branches) the EvoSuite tool 

achieved 62%, 66%, and 61% for all three test runs, numbers which Fraser regards as 

being decent.  There were several classes which achieved coverage levels of less than 

10% across all three test runs, which is noticeably similar to the performance in Fraser’s 

study.  There were far fewer classes which achieved a high level of performance across 

all three test runs.  The two that performed very well were the Property class (96 LOC, 71 

branches) which achieved coverage levels of 89%, 94%, and 94% across all three test 

runs; and the Queue class (110 LOC, 93 branches) which achieved coverage levels of 

94%, 92%, and 92%.  In this way, the IntelliJ EvoSuite plugin mirrored the performance 

of the Eclipse plugin in Fraser’s study, albeit on a much smaller scale.  It’s also important 

to note that the adjustment of the parameters in the IntelliJ plugin had little to no effect on 

the level of branch coverage achieved for any given class. Exceptions are when EvoSuite 
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IntelliJ plugin achieved 94% coverage on the first test run on the Queue class, and 92% 

coverage on the second and third test runs.  The Beatbox class had a coverage score of 

21% on the first and second test runs, and a score of 17% on the third run.  One of the 

biggest drops amongst runs was the Tabuleiro class, which had a coverage score of 42% 

on the first run, 43% on the second run, and 31% on the third run.  This is interesting 

because on the third test run, the parameters were extended from one core to four cores, 

from 2,000 MB per core to 10,000 MB per core, and a class time from three minutes to 

seven minutes.  It’s interesting that this actually resulted in poorer performance for the 

tool.   

 

It is also important to note that across test runs, as the amount of time allotted for each 

class increased in the parameter settings, the number of generations created by the 

EvoSuite tool did not necessarily increase proportionally.  For the Gameboard class, from 

test run 2 to test run 3, the number of seconds it took for the search to complete almost 

doubled, however, the number of generations produced by EvoSuite decreased 

dramatically, even though EvoSuite was running on double the amount of cores and had 

two additional minutes per class allotted on test run 3. 

 

It is also important to note that the alteration of the parameters for the IntelliJ EvoSuite 

plugin to not significantly affect the performance of the tool.  For most classes, the 

amount of branch coverage achieved across the three test runs, each with different 

parameters, stayed consistently the same.  In a couple of instances, the branch coverage 
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level actually dropped on the second and third runs, even though the parameters for those 

runs had been adjusted in such a way so that performance would improve. 

 

We can conclude, therefore, that the performance of EvoSuite is varied, with a strong 

tendency towards poorer performance in the program tested.  There are instances where 

EvoSuite performed well.  However, Fraser’s study was verified by the performance of 

the EvoSuite tool within the IntelliJ IDE as a plugin.  This thesis made a unique 

contribution by studying the EvoSuite tool as an IntelliJ plugin.  Additional research may 

be needed to further verify results.  Therefore, based on the literature reviewed in this 

thesis, as well as the experimental research performed by this author using the EvoSuite 

tool, this author concludes that not only is the EvoSuite tool not a reliable tool to use for 

generating test data for branch coverage, but that genetic algorithm-based test data 

generators as a whole are too varied in their performance to be considered a reliable 

option for generating test data for the objective of achieving branch coverage. 

 

5.1 Future Research 
 
 
 
It is clear that genetic algorithms can be useful, however, given the research data 

collected and the experimental research performed in this paper using EvoSuite, it 

becomes clear that genetic algorithm-based test generation tools are not a perfect solution 

to the problem of achieving branch coverage.  This author recommends further research.  

Particularly, this author recommends testing the EvoSuite tool using the command line.  

All of the available literature from Fraser on his use of the EvoSuite tool focuses on the 

EvoSuite Eclipse plugin, and this thesis paper used the IntelliJ plugin.  However, nothing 
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has been written about the use of EvoSuite from the command line.  Perhaps eliminating 

a GUI and communicating directly with the computer’s operating system will affect how 

EvoSuite performs.  In fact, EvoSuite was designed with the command line in mind.  This 

author also recommends more in-depth research into how EvoSuite’s built-in security 

manager affects the performance of the EvoSuite tool.  Specifically, how exactly does the 

security manager determine which code is harmful to execute?  What is the exact way in 

which the operating environment can affect EvoSuite’s performance?  Is there any way to 

overcome the problem of the security manager not allowing EvoSuite to achieve high 

branch coverage? Further research is needed to answer these questions.  The author also 

recommends further research using a comparison of randomized test data generation tools 

against EvoSuite, which this thesis did not do.  This author also suggests exploring 

related methodologies for solving problems, including evolutionary programming and 

gene expression programming, as solutions to the issue of achieving branch coverage.  

Finally, this author suggests using other forms of genetic algorithm-based test input 

generators not employed in this paper.  This includes running tests with partitioned (or 

multiple population) GAs to study the performance of a genetic algorithm that has many 

smaller populations in for each generation of tests, instead of just one large population
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APPENDIX A 
 

Glossary 
 
 
 

Child The test input that is created as a result of 
recombination or mutation 

Chromosome An individual test input that’s a part of a 
genetic algorithm population.  For 
example, a test input that is designed to 
cover a true branch nested deep within the 
code 

Crossover The act of exchanging genes between 
parents to produce a new offspring 

Fitness Function An indicator of how fit a parent test input is 
for creating a new offspring.  This is 
usually measured in terms of whether an 
input can come close to covering a target 
branch 

Genes The individual components of a test input 
that are used during recombination 

Genetic Algorithm An algorithm that functions using the basic 
science of natural selection, including 
recombination, mutation, crossover, etc. 

Mutation The act of taking an element from a parent 
test input and changing it so that it 
produces a new child offspring that is not 
identical in genetic makeup to the parent 
test input 

Parent A test input that is chosen for 
recombination 

Population of Chromosomes A group of test inputs that may be initially 
seeded via random methods or may be 
generated by the genetic algorithm 

Recombination The act of taking elements from two parent 
test inputs and combining them to create a 
child offspring test input. 
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