
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2017

Generating a Normalized Database Using Class
Normalization
Daniel Sushil Sudhindaran
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2017 All Rights Reserved

Suggested Citation
Sudhindaran, Daniel Sushil, "Generating a Normalized Database Using Class Normalization" (2017). UNF Graduate Theses and
Dissertations. 727.
https://digitalcommons.unf.edu/etd/727

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71985428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu


 

GENERATING A NORMALIZED DATABASE USING CLASS NORMALIZATION 
 
 
  

by 
 
 
  

Daniel Sudhindaran 
 
 
 
 
 

A thesis submitted to the  
School of Computing  

in partial fulfillment of the requirement for the degree of  
 
 
 

Master of Science in Computer and Information Sciences  
 
 
 
 
 

UNIVERSITY OF NORTH FLORIDA  
SCHOOL OF COMPUTING 

 
April, 2017 



ii 

Copyright (©) 2017 by Daniel Sudhindaran 
 

All rights reserved. Reproduction in whole or in part in any form requires the prior 
written permission of Daniel Sudhindaran or designated representatives. 
  



iii 

The thesis “Generating a Normalized Database Using Class Normalization” submitted by 
Daniel Sudhindaran in partial fulfillment of the requirements for the degree of Master of 
Science in Computer and Information Sciences has been  
 
Approved by the thesis committee: Date 

 
 
     _________________________________________ 
     Dr. Robert Roggio 
     Thesis Advisor and Committee Chairperson 

______________________ 
 
 

 
 
     ________________________________________ 
     Dr. Sherif Elfayoumy 

______________________ 
 

 
 
     ________________________________________ 
     Dr. Sandeep Reddivari 

______________________ 
 

 
 
Accepted for the School of Computing:  

 
 
     ________________________________________ 
     Dr. Sherif Elfayoumy 
     Director of the School 

______________________ 
 
 

 
 
Accepted for the College of Computing, Engineering, and Construction: 

 
 
     ________________________________________ 
     Dr. Mark Tumeo 
     Dean of the College 

______________________ 
 
 

 
 
Accepted for the University:  

 
 
     _________________________________________ 
     Dr. John Kantner 
     Director of the Graduate School 

______________________ 
 
 

 



iv 

ACKNOWLEDGMENTS 

 

I want to thank my family for all the support and love throughout my master’s program. I 

also thank my friends and co-workers for encouraging and motivating me to complete my 

thesis. A special thanks to Dr. Roggio for his vital support throughout the development of 

this thesis. 

  



v 

CONTENTS 

 
 
List of Tables    ................................................................................................................. vii 

List of Figures    ............................................................................................................... viii 

Abstract    ........................................................................................................................... ix 

Chapter 1:   Introduction    .................................................................................................. 1 

1.1   Importance of Relational Databases    .................................................................... 1 

1.2   Importance of Good Database Design    ................................................................. 2 

1.3   Database First Approach in Business Applications   .............................................. 3 

1.4   Code First Approach    ............................................................................................ 6 

1.5   Importance of Normalizing Classes    ..................................................................... 8 

Chapter 2:   Literature Review    ....................................................................................... 11 

Chapter 3:   Methodology    .............................................................................................. 18 

3.1   Overview    ............................................................................................................ 18 

3.2   Software Used    .................................................................................................... 20 

Chapter 4:   Results    ........................................................................................................ 21 

4.1   First Class Normal Form (1CNF)    ...................................................................... 21 

4.2   Second Class Normal Form (2CNF)    .................................................................. 27 

4.3   Third Class Normal Form (3CNF)    .................................................................... 30 

4.4   Fourth Class Normal Form (4CNF)    ................................................................... 34 

4.5   Fifth Class Normal Form (5CNF)    ...................................................................... 39 

Chapter 5:   Conclusion And Future Work    .................................................................... 44



vi 

5.1   Conclusion    ......................................................................................................... 44 

5.2   Future Work    ....................................................................................................... 45 

References    ...................................................................................................................... 50 

Appendix A: First Class Normal Form Validator Prototype    ......................................... 53 

Vita    ................................................................................................................................. 60 



vii 

TABLES 

 

Table 1: Order and Supply Classes ................................................................................... 10 

Table 2: Relational Database Paradigm Mapping to Object-Oriented Paradigm ............. 19 

Table 3: Contact Manager Application Data .................................................................... 23 

Table 4: Purchase Details.................................................................................................. 28 

Table 5: Ordering System ................................................................................................. 32 

Table 6: Employee Information ........................................................................................ 36 

Table 7: Agent Information .............................................................................................. 40 

  



viii 

FIGURES 

 
 
Figure 1: Code-First Approach ......................................................................................... 20 

Figure 2: First Class Normal Form Result ........................................................................ 27 

Figure 3: Second Class Normal Form Result ................................................................... 30 

Figure 4: Third Class Normal Form Result ...................................................................... 34 

Figure 5: Fourth Class Normal Form Result .................................................................... 38 

Figure 6: Fifth Class Normal Form Result ....................................................................... 43 

Figure 7: Console Output .................................................................................................. 47 

 

  



ix 

ABSTRACT 

 

Relational databases are the most popular databases used by enterprise applications to 

store persistent data to this day. It gives a lot of flexibility and efficiency. A process 

called database normalization helps make sure that the database is free from redundancies 

and update anomalies. In a Database-First approach to software development, the 

database is designed first, and then an Object-Relational Mapping (ORM) tool is used to 

generate the programming classes (data layer) to interact with the database. Finally, the 

business logic code is written to interact with the data layer to persist the business data to 

the database. However, in modern application development, a process called Code-First 

approach evolved where the domain classes and the business logic that interacts with the 

domain classes are written first. Then an Object Relational Mapping (ORM) tool is used 

to generate the database from the domain classes. In this approach, since database design 

is not a concern, software programmers may ignore the process of database normalization 

altogether. To help software programmers in this process, this thesis takes the theory 

behind the five database normal forms (1NF - 5NF) and proposes Five Class Normal 

Forms (1CNF - 5CNF) that software programmers may use to normalize their domain 

classes. This thesis demonstrates that when the Five Class Normal Forms are applied 

manually to a class by a programmer, the resulting database that is generated from the 

Code-First approach is also normalized according to the rules of relational theory.



- 1 - 

Chapter 1 

INTRODUCTION 

 

1.1 Importance of Relational Databases 

 

West and Fowler state that “the data model is the base that supports systems and 

business” [Fowler92]. Almost every business application has the need to store its data 

somewhere. This might involve user preferences information, contact information, 

business process results, financial information, etc. Most of this data needs to be stored 

permanently so that it can be queried and retrieved for use later. Business applications 

usually use a database as their storage medium to store their data.    

 

Among the different types of databases, relational databases are the most popular kind. 

Enterprise applications rely on relational databases because of the structure, performance 

and “queryable” nature that relational databases bring to the table. Also, relational 

databases provide data independence—the ability for application programs to grow 

independently even when there are changes to the data types and data structures in the 

database [Codd70]. Data independence is critical in a business application because any 

change or improvement to the application regarding data storage should not cause critical 

changes to the database. Since relational databases deal with relationships between 

related entities, a new feature added to a business application could very well be just 



- 2 - 

another table added to store the data related to the new feature without affecting the rest 

of the data ecosystem.  

 

1.2 Importance of Good Database Design 

 

Now that it has been established why business applications prefer relational database 

systems, it is important to discuss why a good database design is important particularly 

within a relational database. A good database design is crucial for a robust, scalable, and 

a high-performance application. Without optimized relationships in the database, the 

database will not perform as efficiently as possible.  

 

Normalization refers to the process of structuring data to minimize duplication and 

inconsistencies. Kent says that the normalization rules are specifically designed to 

prevent and even eliminate update anomalies and data inconsistencies found in databases 

[Kent83]. The underlying goal is to make certain that the same data is not stored in 

duplicate locations in a database. This ensures that when data is inserted, updated or 

deleted, it does not become inconsistent.  

 

To accomplish this goal, Edgar F. Codd, the inventor of the relational model, in 1970, 

introduced the concept of normalization, and what we now know as the First Normal 

Form (1NF). Codd later defined a Second Normal Form (2NF) and later, a Third Normal 

Form (3NF) in 1971. Codd and Raymond F. Boyce defined the Boyce-Codd Normal 

Form (BCNF) in 1974. Given these normal forms, a relational database table is often 



- 3 - 

described as “normalized” if it is in the Third Normal Form because most 3NF tables are 

free of insertion, update and deletion anomalies. Thus, this standard normalization to 3NF 

is paramount in building a good relational database [Codd70]. 

 

1.3 Database First Approach in Business Applications 

 

One of the techniques used in building business applications is the use of Database 

Driven Design or “Database First” approach. In such a database driven design, the 

business requirements are translated into entities and their relationships among these 

business entities. Thus the database schema is clearly developed first to support the 

business model. After a database schema is established, a programming technique known 

as “Object Relational Mapping” (ORM) 1 is used to translate the database schema into a 

form such that programming objects can understand them and interact with them. To put 

ORM into perspective, it is important to note that there are two ways in which the 

programming language can interact with the database. The first way is for the 

programming language to issue database commands directly from the business logic layer 

of the application to the database. This is done by issuing commands to the database in a 

native language such as SQL to which the database can react.   Programming in this way 

can quickly become tedious and lead to a maintainability nightmare. Imagine a contact 

manager application wanting to insert, update, delete and select a contact from an 

                                                 
1 Object-relational mapping (ORM) technique involves extracting metadata information 
about a database schema and storing them in an XML or JSON format. This metadata 
information can later be used by ORM tools to generate programming entities (classes) 
and their relationships in essence creating a virtual object database with which t an 
object-oriented program can interact. 



- 4 - 

existing database. The SQL commands that the programming language might need to 

issue to the database might be:    

Selection: 

SELECT ContactID, FirstName, LastName, Email, PhoneNumber  
FROM Contact 
WHERE LastName = ‘Marley’ AND FirstName = ‘Bob’ 

Insertion:  

INSERT INTO Contact (FirstName, LastName, Email, PhoneNumber) 
VALUES (‘Bob’, ‘Marley’, ‘bob@marley.com’, ‘904-234-5556’) 

Deletion: 

DELETE FROM Contact 
WHERE LastName = ‘Marley’ AND FirstName = ‘Bob’ 

Update: 

UPDATE Contact 
SET FirstName = ‘Bobby’, 
PhoneNumber = ‘904-222-2222’ 
WHERE LastName = ‘Marley’ AND FirstName = ‘Bob’ 

Now if a couple of new attributes need to be added to the contact manager application in 

addition to the attributes ContactID, FirstName, LastName, Email, and PhoneNumber, 

such as MiddleName and BusinessPhoneNumber, all of the SQL commands above may 

potentially need to be changed. For a simple application such as a contact manager 

application, this might not seem as too difficult. However, for an enterprise application 

that can have hundreds of tables and fields, this will be a very tedious and error-prone 

process. That is why enterprise application programmers prefer a second way of 

communicating with the database using a programming technique known as Object 

Relational Mapping (ORM).  

 



- 5 - 

1.3.1 Object Relational Mapping (ORM) 

 

ORM is a technique in which the metadata such as table names, column names, 

relationships (sometimes called foreign keys), indexes and more are extracted out of a 

database and stored in an XML or JSON file [Torres17]. This created metadata is then 

fed to a tool which understands both the type of database used as well as the type of 

programming language used. This tool (usually built in-house or third party) generates 

object-oriented programming classes2 for the database tables, columns, relationships and 

more so that data can be persisted from creating, reading, updating, and deleting 

application code to the database. This generation of programming classes from the 

database schema is possible due to the relationship between a relational database schema 

and an object oriented programming class. In object-oriented programming, a class is a 

blueprint to create objects. Objects are instances of a class, and they have attributes that 

define the state of that object. If an analogy was drawn between databases and 

programming classes, database tables could be compared to classes, columns to class 

attributes, and rows (which contain data in a database) to instances of objects.  

 

With this analogy in mind, ORM techniques evolved in the recent years which gave birth 

to a model called “Database First” approach. This technique enables business 

applications to just re-generate the programming classes (domain classes) whenever a 

                                                 
2 For the remainder of the thesis prospectus, any reference to “class” is always to be 
understood as referring to object-oriented programming class 



- 6 - 

new field or table needs to be added to the database so that a tedious change to all SQL 

statements issued from the application code to the database is not necessary.  

 

There are additional methods that are generated by the ORM tool as part of each 

generated domain class to insert, update, delete and select data from the database. These 

methods know how to issue SQL statements to insert, update, delete and select records 

from the database based on the state of the domain classes. For example, if a Contact 

record (row in a Contact relation that contains attribute values for each contact) from the 

previous example needs to be inserted into the database, all that the business logic of the 

application needs to do is to instantiate a new Contact domain class (which was generated 

by the ORM tool), set the properties of that class to the desired values, and call the Insert 

method on the Contact class. The Insert method in the Contact class will issue an insert 

SQL statement with the correct field names (mapped from attribute names) and values so 

that the attribute values from the Contact class can be persisted to the right columns in the 

database. In this approach, however, when the database schema is being built, developers 

must ensure the database is normalized by applying the different normal forms (1NF - 

5NF) of database design. Normalization of a relational database is used to ensure there is 

no redundancy or update/insert/delete anomalies in the data.  

 

1.4 Code First Approach  

 

In modern application development, instead of using a database-first approach that was 

just discussed, a popular technique is to build business applications using the Code First 



- 7 - 

approach. In a Code First approach, the programming classes constituting the 

business/application domain are created first. Then a tool such as Entity Framework (EF) 

(a third party Microsoft framework) is used to generate the database from the classes. 

This is the reverse process of database-first approach where an ORM tool generates the 

programming classes using metadata extracted from the database schema. The EF is the 

ORM tool discussed in the next paragraph. 

 

In the Code-First approach, programmers might be designing code and realize they need 

an entity object such as Order or Supplier. So the programmers would simply define such 

a class in their code that contains the desired attributes not being overly concerned about 

where or how this entity object is going to be stored/persisted. This gives much flexibility 

to the programmers because they can just focus on the business logic and how the 

programming objects interact with other objects and not worry about how they are 

persisted eventually to a database. So the database schema is not the primary concern. 

When the programmers decide which database (for example, relational, object-oriented 

database, etc.) to use, later on, they can always select an ORM tool that will generate the 

desired database from the entity classes that they have already developed. Noteworthy, 

there are many third party ORM tools available that know how to generate the desired 

database from the programmers’ programming language of choice.  

The steps by which the ORM tools generate a database from programming classes is 

given below: 



- 8 - 

1. Extract metadata information such as class names, attribute names, 

attribute type names, relationships between classes, etc. from the entity 

classes.  

2. Store this metadata information either in memory or a file such as an XML 

or JSON file.  

3. Using the metadata file and the built-in logic to issue the right database 

statements (example: desired SQL statements), a database is generated by 

the ORM tool that maps directly with the entity classes. 

 

Since the database generated is controlled by the domain classes in this approach, care 

needs to be taken to still make certain that the database generated from the code is 

normalized. To do that, the classes which generate the database also need to be 

normalized in some way to ensure the database generated from the class is also 

normalized. We call this Class Normalization.  

 

1.5 Importance of Normalizing Classes 

 

Note that the discussion is about developing “Class Normal Forms” (CNF) that have 

rules and definitions that may be applied to programming classes. We call this process 

Class Normalization. The normalized programming classes can then be used to generate 

the database using the Code-First approach. This approach is restricted to programming 

using the Code-First approach. 



- 9 - 

The goal of this thesis, then, is to use both the theory behind the five normal forms in 

database design and the theory behind object-oriented design to come up with effective 

Class Normalization.  At the conclusion of the thesis research, development of the five 

class normal forms (1CNF - 5 CNF) will be produced. It is asserted that if the five class 

normal forms or rules are taken into account when developing the domain entity 

programming classes, then the database tables generated from those classes using an 

ORM tool (such as Microsoft's Entity Framework) will also be normalized. 

 

Why is this important? In object-oriented programming, classes are abstractions created 

to fulfill a need and to represent a real world object and its associated properties. These 

are then used to solve a problem. Usually, this might be okay. However, when using tools 

such as the Code-First approach to generate a database from classes, these classes must 

follow specific rules to support the generation of an efficient, normalized database. For 

example, a class that is used to generate a table cannot have repetitive attributes that 

describe the same attributes, as this would violate one of the primary precepts of database 

normalization.  

 

In the article published by Merunka, [Merunka13], he provides an example of a class 

model that doesn’t follow any normalization rules.  

 
ORDER SUPPLY 

supplier firstname supplier firstname 

supplier surname supplier surname 

client firstname client firstname 



- 10 - 

client address client address 

order date supply date 

payment mode payment mode 

first product name first product name 

first product price first product price 

second product name second product name 

second product price second product price 

... ... 

Table 1: Order and Supply Classes 

 

Clearly, if the database tables “Order” and “Supply” are generated from these attributes 

in these two programming classes, the result would result in a violation of the criteria in 

satisfying 1NF, which excludes variable repeating fields and groups [Kent83]. Such a 

condition must be avoided at all cost. C. J. Date, a luminary in database, explains that 

since databases often stay in a production environment for decades after they are initially 

developed, it is critical to have a careful design to avoid subtle errors and various 

processing problems over the course of the database Bad design could have a widespread 

negative impact [Date12]. 

 

Given this statement of exactly what this thesis will be addressing coupled with some key 

definitions and concepts, and before the methodology of this thesis is presented, it is 

essential to consider a literature review that addresses these important issues



- 11 - 

Chapter 2 

LITERATURE REVIEW 

 

Database designers have used normalization rules for years as a de facto standard for 

designing a good database. However, object-oriented programmers took a different 

approach to designing object-oriented systems. Instead of using normal forms and rules 

as seen in relational database theory, design patterns evolved as the clear winner in 

designing object-oriented systems. Many researchers have tried to bring normalization 

rules to object-oriented programming so that there is a single way to design object-

oriented systems [Ambler03]. However, no attempts have been successful in persuading 

the object-oriented programming community from using normalization techniques 

instead of design patterns. The different approaches taken by researchers in the field of 

using normalization techniques to object-oriented programming is discussed in this 

literature review. 

 

In an article by Lee [Lee95], Lee deals with normalization of the object-oriented data 

model. He first explains the concept of object-functional dependency which is an 

integrated version of both functional dependency and multivalued dependency used in the 

normalization of relations [Lee95]. Based on the notion of object-functional dependency, 

he later defines his version of the Object Normal Form. The author only provides one 

Object Normal Form which he thinks sufficiently eliminates update anomalies in an 

object-oriented data model. His version of the Object Normal Form is given below:



- 12 - 

“i) Create a referenced class if one does not exist.  
 ii) Introduce an object reference if one does not exist.  

iii) Move decomposed attributes to the referenced class. Rename the 
attributes if necessary.” [Lee95] 

 

The basic goal of that work is to eliminate update anomalies in an object-oriented data 

model. Since relational theory already has a process called normalization to eliminate 

insert, delete, and update anomalies, the author borrowed that concept, modified it to fit 

the object-oriented data model, and provided steps for what he calls Object 

Normalization. This approach is similar to the approach of this thesis where the theory 

behind relational normal forms is taken and a modified version called Class Normal 

Forms is provided that can be applied to programming classes in a Code-First 

development approach.  

 

The idea to take the theory behind data normalization and to try to apply it to classes has 

also been explored and well documented by Scott Ambler in his book [Ambler03].  

Ambler agrees that the rules of data normalization can indeed be applied to object 

schemas. However, he warns that the rules of data normalization cannot be applied to 

object schemas directly due to the impedance mismatch between the two different 

systems - databases and programming objects [Ambler03]. However, there is still enough 

similarity between the two systems that basic concepts of database normalization can be 

applied to object-oriented design. Therefore, after a reasonable level of modifications, 

data normalization rules, or at least the theory behind them, can be applied to objects and 

classes. Ambler’s explains that Class Normalization is the process of reorganizing the 

structure of an object schema to minimize the coupling between classes while still 



- 13 - 

increasing the cohesion between them.  Ambler also gives definitions for Object Normal 

Forms (ONF) in his book. The three Object Normal Form definitions found in his book 

are as follows:  

“First object normal form (1ONF): A class is in first object normal form 
(1ONF) when specific behavior required by an attribute that is actually a 
collection of similar attributes is encapsulated within its own class. 
 
Second object normal form (2ONF) : A class is in second object normal 
form (2ONF) when it is in first object normal form (1ONF) and when 
“shared” behavior required by more than one instance of the class is 
encapsulated within its own class(es)  
 
Third object normal form (3ONF) : A class is in third object normal 
form (3ONF) when it is in second object normal form and when it 
encapsulates only one set of cohesive behavior” [Ambler03]. 

As seen above, Ambler’s goal regarding Class Normalization is to increase the cohesion 

and decrease coupling between the classes. So the author deals with both the attributes of 

a class as well as its behavior in his normalization rules. Although Ambler provides the 

definition of Class Normalization as well as the first three Object Normal Form 

definitions, the goal behind them is different than what might be expected from this 

thesis. This thesis deals with Class Normalization rules that can be applied to classes so 

that a normalized database can be generated by using a Code-First approach. Also, the 

normalization rules that the Ambler provides are more for data professionals who are not 

familiar with Object-Oriented design patterns. The techniques of Class Normalization, 

according to Ambler, are important for data professionals because it helps them 

understand basic object design techniques in a manner that is easily digestible. Although 

the Class Normalization rules that Ambler provides cannot be used directly in this thesis,  

 



- 14 - 

there is still plenty of background provided in the book [Ambler03] that can be used to 

create our own Class Normalization rules for the purpose of this thesis. 

 

In a paper that talks about Normalization of Object Oriented Design, authors Mehdi et al 

[Lodhi03] attempt to use the theory behind the five normal forms of database design to 

solve object-oriented design issues. They believe that the object-oriented approach is 

usually ad-hoc in nature based heavily on the skills of the programmer because there is 

no formal approach to designing objects. In their work, Mehdi et al outline a 

normalization mechanism in which the application of normal forms completely removes 

data redundancy issues as well as functional dependency issues in the object-oriented 

system. In this paper, the high-level concepts behind relational normal forms (1NF - 

5NF) such as decomposition, functional dependency, transitive dependency, and 

multivalued dependency are applied to object-oriented design. Although an attempt is 

made to normalize objects in this fashion, no formal object/class normal form definitions 

are provided at the end of the paper.  

 

Like relational databases, XML databases can contain redundant information as well [El-

Sofany09]. El-Sofany explores the possibility of using a modified version of the relational 

normalization process to normalize XML databases to remove data redundancy and update 

anomalies. Their goal is to apply the concept of relational database normalization to XML 

schemas. Like we see here, the normalization process found in relational theory can be 

used in other domains where data redundancy and update anomalies can occur. This thesis  

 



- 15 - 

takes this concept further and tries to take the normalization techniques found in relational 

theory and apply them to programming classes.  

 

Bura explains that there are three models in the database system such as the conceptual 

model, the logical model and the physical model [Bura12]. Database normalization is 

usually done at the logical level (e.g., Relational Database Schema). Bura and his 

colleagues have explored the possibility of applying normalization at the conceptual level 

(e.g., Entity-Relationship (ER) model) so that even before the design gets to the logical 

level, the database schema is already normalized. The authors state the definition of the 

different normal forms and propose their own custom algorithm (which is based on the 

normal form definition) with examples to prove that normalization can happen at the 

conceptual level of database design. This is useful because similar to how the authors 

here propose applying normalization even at the conceptual level to arrive at a relational 

schema down the stream that is already normalized, this thesis proposes applying 

normalization at the programming class level so that a database that is generated from 

those classes (using Code-First approach) is guaranteed to be normalized. This thesis will 

take a similar approach taken by these authors in the sense that the thesis will: 

1. State the definition of the different relational normal forms 

2. Propose new rules derived from relational normal forms but pertaining more 

towards object-oriented paradigm 

3. Prove that the rules derived at Step 2 work by providing examples  

 



- 16 - 

Normalization techniques, as we know, are typically used to normalize the relational data 

model. In the article “Normalization Rules of the Object-Oriented Data Model,” Merunka 

[Merunka13] dives deep into the idea of using normalization techniques to normalize the 

object-oriented data model. Unlike other authors who try to apply normalization rules to 

attributes as well as behavior of an object, Merunka clearly explains his normalization 

rules do not apply to the behavior of a class (i.e. methods of a class) and that they only 

apply to the data properties of an object. Based on this precondition, the article lays out 

the following normalization rules for the object-oriented data model: 

“First Normal Form Rule: A class is in the first object normal form 
(1ONF) when its objects do not contain group of repetitive attributes. 
Repetitive attributes must be extracted into objects of a new class. The 
group of repetitive attributes is then replaced by the link at the collection 
of the new objects. An object schema is in 1ONF when all of its classes 
are in 1ONF. 
 
Second Normal Form Rule: A class is in the second object normal form 
(2ONF) when it is in 1ONF and when its objects do not contain attribute 
or group of attributes, which are shared with another object. Shared 
attributes must be extracted into new objects of a new class, and in all 
objects, where they appeared, must be replaced by the link to the object of 
the new class. An object schema is in 2ONF when all of its classes are in 
2ONF. 
Third Normal Form Rule: A class is in the third object normal form 
(3ONF) when it is in 2ONF and when its objects do not contain attribute 
or group of attributes which have the independent interpretation in the 
modeled system. These attributes must be extracted into objects of a new 
class and in objects where they appeared, must be replaced by the link to 
this new object. An object schema is in 3ONF when all of its classes are in 
3ONF. 
 
Fourth Normal Form Rule:  A class is in the fourth object normal form 
(4ONF) when it is in 3ONF and when there is no other class in the system, 
which defines the same attributes. These attributes must be extracted from 
classes, where they are duplicated, and affected classes must be connected 
using class inheritance in order to exclude data definition duplicates. If 
there is no existing class to be reused as an inheritance superclass, a new  
 



- 17 - 

superclass must be added into the system. An object schema is in 4ONF 
when all of its classes are in 4ONF” [Merunka13]. 
 

Merunka and his colleagues approach Object Normalization from a pure data model and 

storage perspective. That is why they do not concern themselves with accounting for 

behavior of objects. This is extremely useful for us because we approach Class 

Normalization the same way by not accounting for behavior/methods of objects because 

we only deal with data objects.  

 

Although the authors have laid out Object Normal Form definitions from 1ONF through 

4ONF, their intent behind those rules are very different. Their goal is to apply their 

normalization rules to Object-Oriented data models so that the programming objects that 

are normalized in this fashion can be eventually stored in an object-oriented database. 

However, the goal of Class Normalization in this thesis is a little different in the sense that 

the normalization rules for classes that will be produced are intended to be used with 

programming classes that carry domain data that will eventually be stored in a relational 

database, and not an object-oriented database. Therefore, Class Normalization rules focus 

more on normalizing a class so that a table generated from the class in a relational database 

sense will be fully normalized. Also, the object normal definitions given by Merunka are 

more at a higher level than what one might expect. The definitions are not broken down 

into basic rules/steps thus giving room for ambiguity. In this thesis, it is proposed to give 

very basic rules that can be easily understood and applied to programming classes.  

 



- 18 - 

Chapter 3 

METHODOLOGY 

 

3.1 Overview 

 

The goal of this thesis is to generate a relationally normalized database that is free from 

data redundancies and update anomalies using the Code-First approach of software 

design. This is done by taking the theory behind relational normal forms, creating class 

normal forms from them, and applying the class normal forms manually to programming 

classes. After applying the class normal forms to the programming classes, a tool such as 

Entity Framework is used to generate a database from the normalized classes. After the 

database is generated, it can be tested to see whether it is normalized. If it is, then the 

goal of this thesis is met.  

 

To achieve this goal, the following steps will be followed for each of the five database 

normal forms in relational database theory: 

1. State the rules of the database normal form 

a. This step will state the definition of one of the five normal forms in 

relational database theory. This step will also explain the rules/theory 

behind the normal form.  

2. Provide class normal form rules based on the database normal form



- 19 - 

a. This step will take the rules behind the database normal form in step 1 and 

provide similar rules that can be applied to programming classes. This can 

be accomplished using the following simple mapping chart between 

relational database paradigm and object-oriented paradigm. 

 

Relational Database Paradigm Object-Oriented Programming 

Paradigm 

Table Class 

Column Property or attribute of a class 

Row Object (instance of a class) 

Foreign key between tables Relationship between objects 

Table 2: Relational Database Paradigm Mapping to Object-Oriented Paradigm 

 

3. Apply the class normal form to an example 

a. This step will provide an example of how a programming class will look 

like before and after applying the class normal form provided in step 3 

4. Generate the database and test 

a. This step will use the Entity Framework tool to generate a database from 

the example normalized programming classes given in step 3.  

b. A screenshot of the generated database output will be provided. The goal 

is to show that the generated database is normalized.  

 

 

 



- 20 - 

3.2 Software Used 

 

To fulfill the steps stated in the previous section, the following software is used for the 

purpose of this thesis: 

● Microsoft® SQL Server 2014 and Management Studio 

○ SQL Server is the database store and Management Studio is used to 

manage the server and create database diagrams.  

● Microsoft® Visual Studio Professional 2015 

○ Visual Studio is the development IDE used to create the programming 

classes.  

● Microsoft® Windows 10 Home Edition 

○ Windows 10 is the operating system upon which other software programs 

run. 

● Microsoft® Entity Framework 6.1.3 

○ Entity Framework library is installed as a NuGet package into Visual 

Studio for the purpose of generating the database from domain 

programming classes. A simple representation of the working of Entity 

Framework’s Code-First approach is given below: 

 

 

Figure 1: Code-First Approach



- 21 - 

Chapter 4 

RESULTS 

 

Using the methodology proposed in Chapter 3, here are the Five Class Normal Forms 

based on the theory behind the Five Database Normal Forms: 

 

4.1 First Class Normal Form (1CNF) 

 

The First Class Normal Form rules are explained below. 

 

4.1.1 Rules of First Normal Form 

 

According to Stephens in [Stephens09], the rules behind the first normal form are as 

follows:  

1. Each column must have a unique name 

2. Each column must have a single data type 

3. No two rows can contain identical values 

4. Each column must contain a single value 

5. Columns cannot contain repeating groups



- 22 - 

4.1.2 First Class Normal Form Rules Based on First Relational Normal Form 

 

1. Each property of a class must have a unique name 

 This is default behavior because any object-oriented language disallows 

properties with the same name within a class 

2. Each property must have a single data type 

 This 1NF rule insists that a property cannot have more than one data type. 

To satisfy this in object-oriented programming, the type of a property 

cannot be a collection of basic data types such as int, boolean, string, 

decimal, etc. (Example: Array<string> PhoneNumbers is not allowed). 

The only exception to this rule occurs in the instance where the collection 

type of the property is actually a type of an object within the entity model. 

3. No two objects can have identical values 

 This does not come naturally to object-oriented programmers because 

there is no existing language constraint in object-oriented programming to 

prevent two objects from having the exact same values. In cases when 

objects are cloned from an existing object, you now certainly have two 

objects with the same values. However, if entity objects are to be persisted 

to the database, care should be taken by the programmer to prevent this 

scenario. Otherwise, a database error will be thrown when the object is 

persisted to the database.   

4. Each property must contain a single value 



- 23 - 

 For this to be true, the property can only have valid SQL data types such 

as int, decimal, date etc. The type of the property cannot be any kind of 

array or collection type. The only exception to this rule occurs in the 

instance where the collection type of the property is actually a type of an 

object within the entity model.  

5. Properties cannot contain repeating groups 

 This means that different properties in a class cannot represent the same 

thing. For example, if there is a requirement to store multiple authors for a 

book, multiple properties called Author1, Author2 and Author3 cannot be 

part of the same class. This will violate the First Class Normal Form. It is 

better to split this into a class called “Author” and have a property called 

“Authors” which is a collection of related Author objects.  

 

4.1.3 Example 

 

Assume a contact manager application to store the following data is being built: 

 

Name Name Name Phone Numbers Address 

Daniel Sushil Sudhindaran 9041234321, 
6548765678 

1234 Falls Dr, 
Jacksonville, FL 32267 

Table 3: Contact Manager Application Data 

 



- 24 - 

The code below shows a valid C# class that could be used to store this data before any 

Class Normal Form rules are applied: 

    public class Contact 

    { 

        public string Name1  { get; set; } 

 

        public string Name2 { get; set; } 

 

        public string Name3 { get; set; } 

 

        public List<string> PhoneNumbers { get; set; } 

 

        public string Address { get; set; } 

    } 

This class is not in First Normal Form because it violates rules 3, 4 and 5 of the First 

Class Normal Form as explained below: 

 

Violation of rule 3: There is no unique identifier for this class. Since there is no unique 

identifier or a property that guarantees uniqueness, two objects could have the exact same 

values.  Rule 3 of the First Class Normal form doesn’t allow this.  

 

Application of First Class Normal Form: Add a property to uniquely identify each 

instance of the class. A unique integer value could be set to this property at runtime to 

guarantee uniqueness of the object.  

    public class Contact 

    { 

        public int ContactID { get; set; } 

 

        public string Name1 { get; set; } 

 

        public string Name2 { get; set; } 

 

        public string Name3 { get; set; } 

 

        public List<string> PhoneNumbers { get; set; } 

 

        public string Address { get; set; } 

    } 



- 25 - 

Violation of rule 4: The PhoneNumbers property does not contain a single value. It 

contains a list of strings. According to rule d of First Class Normal form, collections 

cannot be used as valid values for a property unless the type of the property is another 

object or a collection of objects within the entity model (objects that have a table in the 

database). 

 

Application of First Class Normal Form: Create a new class called PhoneNumber and 

have a property called List<PhoneNumber> in the Contact class. The PhoneNumber 

object can now be a related collection of Contact object. 

     public class Contact 

    { 

        public int ContactID { get; set; } 

 

        public string Name1 { get; set; } 

 

        public string Name2 { get; set; } 

 

        public string Name3 { get; set; } 

 

        public List<PhoneNumber> PhoneNumbers { get; set; } 

 

        public string Address { get; set; } 

    } 

 

    public class PhoneNumber 

    { 

        public int PhoneNumberID { get; set; } 

 

        public Contact Contact { get; set; } 

 

        public string Number { get; set; } 

    } 

 

Violation of rule 5: The class Contact contains the repeating groups Name1, Name2 and 

Name3 that mean the same thing. Name1, Name2 and Name3 cannot be differentiated 

between one another and is ambiguous.  

 



- 26 - 

Application of First Class Normal Form: Name the three properties appropriately such as 

FirstName, MiddleName and LastName. This makes the intent of each property 

extremely clear and prevents ambiguity.  

 

This is the final version of the class after applying the First Class Normal Form rules. 

   public class Contact 

    { 

        public int ContactID { get; set; } 

 

        public string FirstName { get; set; } 

 

        public string MiddleName { get; set; } 

 

        public string LastName { get; set; } 

 

        public List<PhoneNumber> PhoneNumbers { get; set; } 

 

        public string Address { get; set; } 

    } 

 

    public class PhoneNumber 

    { 

        public int PhoneNumberID { get; set; } 

 

        public Contact Contact { get; set; } 

 

        public string Number { get; set; } 

    } 

 

4.1.4 The Generated Output 

 

Using Entity Framework's Code-First approach, the database that is generated from the 

Contact and PhoneNumber classes are shown below: 



- 27 - 

 

Figure 2: First Class Normal Form Result 

 

The above two tables that are generated from the classes Contact and PhoneNumber are 

in the First Normal Form of relational database design.  

 

4.2 Second Class Normal Form (2CNF) 

 

The Second Class Normal Form rules are explained below. 

 

4.2.1 Rules of Second Normal Form 

 

According to Stephens in [Stephens09], the rules of the second normal form are as 

follows. A table is in 2NF if: 

1. It is in 1NF 

2. All of the non-key fields depend on all of the key fields.  

 

 



- 28 - 

4.2.2 Second Class Normal Form Rules Based on Second Relational Normal Form 

 

A class is in 2CNF if: 

1. It is in 1CNF 

 This rule insists that for a class to be in 2CNF, it needs to satisfy all the 

rules of 1CNF first.  

2. All non-primary properties of a class are related to all primary properties of the 

class.  

 A primary property here means that it is used to uniquely identify an 

object. A class may have one or more primary properties where all of the 

primary properties are needed before the object can be uniquely identified 

from the rest of the objects. If one of the primary properties does not exist, 

then duplicate objects will exist in the system. Therefore, this class normal 

form states that any other non-primary property is a class should directly 

relate to all of the primary properties of the class.  

 

4.2.3 Example 

 

Assume we have to store the following purchase details information: 

 

Customer ID Store ID Store Location 

1 1 Jacksonville 

2 1 Tampa 

Table 4: Purchase Details 



- 29 - 

The Customer ID and the Store ID are both used to uniquely identify the purchase, which 

makes them the primary fields. Now examine a valid C# class that could be used to store 

this data before any Class Normal Form rules are applied: 

    public class Order 

    { 

        public int CustomerID { get; set; } 

 

        public int StoreID { get; set; } 

 

        public int StoreLocation { get; set; } 

    } 

This class is not in Second Normal Form because it violates rule 2 of the Second Class 

Normal Form as detailed below: 

 

Violation of rule 2: The Second Class Normal Form states that, in a class, all the non-

primary properties of the class should directly be related to the primary properties of the 

class. However, the StoreLocation property is only related to the StoreID and not 

necessarily related to the CustomerID. Therefore, this class violates rule b.  

 

Application of Second Class Normal Form: The StoreLocation property is not completely 

related to both CustomerID and StoreID. So it does not really belong in the Purchase 

class. Having a new class called Store that contains the StoreID (primary property) and 

StoreLocation (that depends on the StoreID) and having a link back to the Purchase class 

will satisfy the Second Class Normal Form: 

    public class Purchase 

    { 

        public int CustomerID { get; set; } 

 

        public Store Store { get; set; } 

    } 

 

    public class Store 

    { 



- 30 - 

        public int StoreID { get; set; } 

 

        public string StoreLocation { get; set; } 

    } 

 

4.2.4 The Generated Output 

 

Using Entity Framework's Code-First approach, the database that is generated from the 

Purchase and Order classes are shown below: 

 

 

Figure 3: Second Class Normal Form Result 

 

The above two tables that are generated from the classes Purchase and Store are in the 

Second Normal Form of relational database design.  

 

4.3 Third Class Normal Form (3CNF) 

 

The Third Class Normal Form rules are explained below. 

 

 



- 31 - 

4.3.1 Rules of Third Normal Form 

 

According to Stephens in [Stephens09], the rules of the third normal form are as follows:  

A table is in 3NF if: 

1. It is in 2NF 

2. It contains no transitive dependency. 

 In simple terms, if column A is dependent on column B and column B is 

dependent on column C, then C is transitively dependent on column A 

through B. This is called transitive dependency. In other words, all of the 

columns in a table need to be directly dependent on the primary columns 

of a table, and there cannot be any transitive dependencies.  

 

4.3.2 Third Class Normal Form Rules Based on Third Relational Normal Form 

 

1. A class is in 3CNF if it is in 2CNF 

 This rule insists that for a class to be in 3CNF, it needs to satisfy all the 

rules of 2CNF first.  

2. Classes should have one, and only one, responsibility. In other words, classes 

should contain properties that store information about one, and only one entity in 

the real world.  

 This rule is taken from the well-known object-oriented design pattern 

called “Single Responsibility Principle” (SRP) [Martin09]. This principle 

focuses more on the responsibility (or reason to change) of a class and 



- 32 - 

implies that a class should not have more than one responsibility. If a class 

is used to store information regarding more than one responsibility, it 

should be split up into two or more classes where each class can then have 

a single responsibility (or a single reason to change the class). In other 

words, classes should store information about only one entity. This means 

that all of the properties of a class should contain direct information about 

only one entity. 

 

4.3.3 Example 

 

Assume an ordering system is to be built that needs to store the following data: 

 

Customer 

ID 
Store 

ID 
Order 

Number 
Customer 

Phone Number 
Store 

Location 

1 1 34567 904-121-1245 Jacksonville 

2 1 7588 766-234-1234 Tampa 

Table 5: Ordering System 

 

Now examine a valid C# class that could be used to store this data before any Class 

Normal Form rules are applied: 

    public class Order 

    { 

        public int CustomerID { get; set; } 

 

        public int StoreID { get; set; } 

 

        public int OrderNumber { get; set; } 

 

        public int CustomePhoneNumber { get; set; } 



- 33 - 

        public int StoreLocation { get; set; } 

    } 

This class is not in Third Normal Form because it violates rule 2 of the Third Class 

Normal Form.  

 

Violation of rule 2: The Third Class Normal Form states that a class should not have 

more than one responsibility. However, the class Order in the above example is trying to 

store the customer information, the order information as well as the store information, all 

in the same class. In other words, there are three reasons to change this class: 

● When the customer information changes 

● When the store information changes 

● When the order information changes 

According to the Third Class Normal Form, there should be only one reason to change 

the class.  

 

Application of Third Class Normal Form: Since the Order class has three responsibilities, 

it needs to be split into three different classes - one to store customer information, one to 

store order information and one to store information. The following three smaller classes 

satisfy the Third Class Normal Form: 

    public class Customer 

    { 

        public int CustomerID { get; set; } 

 

        public int CustomerPhoneNumber { get; set; } 

    } 

 

    public class Store 

    { 

        public int StoreID { get; set; } 

        public string StoreLocation { get; set; } 

    } 



- 34 - 

    public class Order 

    { 

        public int OrderNumber { get; set; } 

 

        public int CustomerID { get; set; } 

 

        public int StoreID { get; set; } 

    } 

 

4.3.4 The Generated Output 

 

Using Entity Framework's Code-First approach, the database that is generated from the 

Customer, Store and Order classes are shown below: 

 

 

Figure 4: Third Class Normal Form Result 

 

The above three tables that are generated from the classes Order, Store and Customer are 

in the Third Normal Form of relational database design.  

 

4.4 Fourth Class Normal Form (4CNF) 

 

The Fourth Class Normal Form rules are explained below. 

 



- 35 - 

4.4.1 Rules of Fourth Normal Form 

 

According to Kent in [Kent83], the rules of the fourth normal form are as follows:  

A record is in 4NF if: 

1. It is in 3NF 

2. It does not contain two or more independent multi-valued facts about an entity 

a. In simple words, a record should not contain two or more many-to-many 

relationships in it. 

 

4.4.2 Fourth Class Normal Form Rules Based on Fourth Relational Normal Form 

 

The following are the rules of the Fourth Class Normal Form: 

1. A class is in 4CNF if it is in 3CNF 

 This rule insists that for a class to be in 4CNF, it needs to satisfy all the 

rules of 3CNF first.  

2. An entity class A cannot store multiple values of another entity class B without 

creating a bridge class that stores the relationship between A and B (i.e. AB). The 

class A may then have a property to hold values of the bridge class AB to 

represent the multiple values of entity B within entity class A.  

4.4.3 Example 

 

Assume we have to store information regarding an employee's skill and language: 

 



- 36 - 

Employee 

ID 
Skill Language 

1 Programming, Singing, 
Writing 

French, English, 
Spanish 

2 Running, Writing, Driving English, Dutch, 
French 

Table 6: Employee Information 

 

Now look at a valid C# class that could be used to store this data before any Class 

Normal Form rules are applied: 

    public class Employee 

    { 

        public int EmployeeID { get; set; } 

 

        public List<Skill> Skills { get; set; } 

 

        public List<Language> Languages { get; set; } 

    } 

 

    public class Skill 

    { 

        public int SkillID { get; set; } 

 

        public string SkillName { get; set; } 

    } 

 

    public class Language 

    { 

        public int LanguageID { get; set; } 

 

        public string LanguageName { get; set; } 

    } 

The class Employee is not in Fourth Normal Form because it violates rule 2 of the Fourth 

Class Normal Form. 

 

Violation of rule 2: The Fourth Class Normal Form does not allow for multi-valued entity 

properties such as Skills and Languages to be direct properties of a class.  



- 37 - 

Application of Fourth Class Normal Form: The following steps need to be taken to 

conform the Employee class to the Fourth Class Normal Form: 

● Create a class called EmployeeSkill to store the relationship between Employee 

and Skill 

● Create a class called EmployeeLanguage to store the relationship between 

Employee and Language 

● Replace the type of Skills property in Employee class from List<Skill> to 

List<EmployeeSkill> 

● Replace the type of Languages property in Employee class from List<Language> 

to List<EmployeeLanguage> 

 The following smaller classes satisfy the Fourth Class Normal Form: 

    public class Employee 

    { 

        public int EmployeeID { get; set; } 

 

        public List<EmployeeSkill> Skills { get; set; } 

 

        public List<EmployeeLanguage> Languages { get; set; } 

    } 

 

    public class EmployeeSkill 

    { 

        public int SkillID { get; set; } 

 

        public int EmployeeID { get; set; } 

    } 

 

    public class EmployeeLanguage 

    { 

        public int LanguageID { get; set; } 

 

        public int EmployeeID { get; set; } 

    } 

 

    public class Skill 

    { 

        public int SkillID { get; set; } 

 

        public string SkillName { get; set; } 

    } 

 



- 38 - 

    public class Language 

    { 

        public int LanguageID { get; set; } 

 

        public string LanguageName { get; set; } 

    } 

 

4.4.4 The Generated Output 

 

 Using Entity Framework's Code-First approach, the database that is generated 

from the Employee, EmployeeSkill, EmployeeLanguage, Skill and Language classes are 

shown below: 

 

 

Figure 5: Fourth Class Normal Form Result 

 

The above five tables that are generated from the classes Employee, EmployeeSkill, 

EmployeeLanguage, Skill and Language are in the Fourth Normal Form of relational 

database design.  

 



- 39 - 

4.5 Fifth Class Normal Form (5CNF) 

 

The Fifth Class Normal Form rules are explained below. 

 

4.5.1 Rules of Fifth Normal Form 

 

According to Stephens in [Stephens09], the rules behind the fifth normal form are as 

follows:  

A table is in 5NF if: 

1. It is in 4NF 

2. It contains no related multi-valued dependencies 

a. If a table has related multi-valued dependencies, each multi-valued 

dependency should be separated out into its own table. The individual 

tables still need to maintain their relationships with each other. 

 

4.5.2 Fifth Class Normal Form Rules Based on Fifth Relational Normal Form 

 

A class is in 5CNF if: 

1. It is in 4CNF 

 This rule insists that for a class to be in 5CNF, it needs to satisfy all the 

rules of 4CNF first.  

2. It contains no related multi-valued properties within it.  



- 40 - 

 Assume class A has two multi-valued properties P1 and P2 where P1 and 

P2 are related to each other. For class A to be in 5CNF, the following 

steps need to be taken: 

i. The multivalued properties P1 and P2 need to be separated out into 

their own classes B and C. 

ii. New classes that store the relationship information between classes 

A and B, A and C, and B and C needs to be introduced (such as 

AB, AC, BC).  

 

4.5.3 Example 

 

Assume we have to store information regarding agents, companies and phones. Agents 

work for companies and companies sell phones. We need to keep track of which agents 

sell which phones for which companies: 

 

Agent Company Phone 

Bob Apple, Samsung iPhone 6S, Samsung Galaxy S7 

Richard Microsoft, Apple iPhone 7, Microsoft Lumina 950 

Table 7: Agent Information 

 

Below is a valid C# class that could be used to store this data before any Class Normal 

Form rules are applied: 

    public class Agent 

    { 



- 41 - 

        public int AgentID { get; set; } 

 

        public List<Company> Companies { get; set; } 

 

        public List<Phone> Phones { get; set; } 

    } 

 

    public class Company 

    { 

        public int CompanyID { get; set; } 

 

        public string CompanyName { get; set; } 

    } 

 

    public class Phone 

    { 

        public int PhoneID { get; set; } 

 

        public string PhoneName { get; set; } 

    } 

The class Agent is not in Fifth Normal Form because it violates rule 2 of the Fifth Class 

Normal Form as shown below: 

 

Violation of rule 2: The Fifth Class Normal Form does not allow for related multi-valued 

entity properties such as Companies and Phones to be direct properties of a class.  

 

Application of Fifth Class Normal Form: The following steps need to be taken to 

conform the Agent class to the Fifth Class Normal Form: 

● Create a class called AgentCompany to store the relationship between Agent and 

Company so we know which Agent works for which Company.  

● Create a class called AgentPhone to store the relationship between Agent and 

Phone so we know which Agent sells which Phones. 

● Create a class called PhoneCompany to store the relationship between Phone and 

Company so we know which company sells which phone.  

 The following smaller classes satisfy the Fifth Class Normal Form: 



- 42 - 

    public class Agent 

    { 

        public int AgentID { get; set; } 

 

        public string AgentName { get; set; } 

    } 

 

    public class AgentCompany 

    { 

        public int AgentID { get; set; } 

 

        public int CompanyID { get; set; } 

    } 

 

    public class AgentPhone 

    { 

        public int AgentID { get; set; } 

 

        public int PhoneID { get; set; } 

    } 

    public class CompanyPhone 

    { 

        public int CompanyID { get; set; } 

 

        public int PhoneID { get; set; } 

    } 

 

    public class Company 

    { 

        public int CompanyID { get; set; } 

 

        public string CompanyName { get; set; } 

    } 

 

    public class Phone 

    { 

        public int PhoneID { get; set; } 

 

        public string PhoneName { get; set; } 

    } 

 

4.5.4 The Generated Output 

 

Using Entity Framework's Code-First approach, the database that is generated from the 

Agent, Company, Phone, AgentCompany, AgentPhone, and CompanyPhone classes are 

shown below: 

 



- 43 - 

 

Figure 6: Fifth Class Normal Form Result 

 

The above six tables that are generated from the classes Agent, Company, Phone, 

AgentCompany, AgentPhone, and CompanyPhone are in the Fifth Normal Form of 

relational database design.  

 

It has been demonstrated in this chapter that Class Normal Forms can be successfully 

derived from the theory behind Database Normal Forms. It has also been demonstrated 

with detailed examples that the Five Class Normal Forms, when applied correctly to 

programming classes, results in a relational database that is completely normalized.  

 



- 44 - 

Chapter 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

 

The Class Normal Forms provided in this thesis are carefully taken from well-known 

theories behind database normal forms. Class Normalization in a Code-First approach is 

important because database normalization is important in a relational database design. 

The whole point of this thesis is to aid developers from an object-oriented development 

background to use Class Normalization as a technique to make sure their relational 

databases are normalized.  

 

Database normalization is an extremely critical process in the development of a business 

application that relies on a relational database. However, since the introduction of the 

Code-First approach, database normalization could be missed completely by 

programmers because the focus has shifted from developing the database first to 

developing the code first. Since database normalization is an afterthought in the Code-

First approach, it can lead to redundancies and update anomalies in the database system if 

normalization is not accounted for. If a database is not designed correctly, it could cost 

businesses hundreds to thousands of man hours to fix problems when issues arise. Also, if 

database normalization is not taken into account, it could lead to redundant data being 

stored in the database. This can increase the size of the overall database which in turn 



- 45 - 

increases the storage costs for a business. Therefore, Class Normalization using the Class 

Normal Forms proposed in this thesis needs to be incorporated into the software 

development process of enterprise organizations. Just by including a process such as 

Class Normalization into their software development, enterprises can save a lot of money 

in the long run.  

 

5.2 Future Work 

 

This thesis has proposed Five Class Normal Forms in the form of rules to be applied to a 

programming class during software development. These rules can be understood by a 

software programmer and the programmer could manually follow these rules to make 

sure a programming class is normalized. However, these rules could potentially be 

translated into programmatic rules and could be fed into a software system. This software 

system could then be used to validate a software solution to see if any entity 

programming classes within the software solution violate any of the Class Normalization 

rules discussed in this thesis. This type of a software program, once developed, could be 

used as part of the software build and deployment process of an enterprise. That way, an 

enterprise can make sure that their database is completely normalized.  

 

A sample prototype program on how this can potentially be implemented is appended to 

Appendix A of this thesis. The program validates the most common cases of violations of 

the First Class Normal Form (1CNF) and outputs the error/warning messages found. The 

program points out exactly which programming entity class has errors and also gives 



- 46 - 

suggestions on how to fix the errors. This program does not modify the entity classes 

automatically. Modifying a programming class automatically can cause various issues for 

a programmer because the classes that are newly modified/created by the automated 

program can cause new compilation errors due to how they may fit into the rest of the 

solution. That is why several plugins and helper tools validate a program and let the 

programmer know about any errors or warnings so that the programmer could surgically 

fix the errors. This works much like how compilers for several programming languages 

work. Compilers will cite the errors in syntax, but the repair needs to be done by the 

programmer.  

 

The example validation program provided in the Appendix serves as an example of how 

an automated system could be developed to validate all the five Class Normal Forms 

(1CNF – 5CNF) for a given set of entity programming classes.  

 

The inputs and outputs of the validation program to validate the First Class Normal Form 

are provided below:   

Input entity programming class: 

namespace ClassNormalization.Sample 

{ 

    public class Contact 

    { 

        public string Name1 { get; set; } 

        public string Name2 { get; set; } 

        public string Name3 { get; set; } 

        public string[] PhoneNumbers { get; set; } 



- 47 - 

        public string Address { get; set; } 

    } 

} 

 

 

Figure 7: Console Output 

 

The sample program provided concludes its diagnostics at validating the First Class 

Normal form because validating additional Class Normal Forms (2CNF – 5CNF) is 

challenging and is beyond the scope of the thesis.  

For example, here is a sample class that violates 2CNF:  

    public class Order 

    { 

        public int CustomerID { get; set; } 

 

        public int StoreID { get; set; } 

 

        public int StoreLocation { get; set; } 

    } 



- 48 - 

From the above program, it can be seen that 2CNF is violated because the StoreLocation 

property belongs in the Store entity class and does not belong in the Order entity. Any 

software programmer can easily make that determination by looking at the class and split 

the Order class as seen below:  

    public class Order 

    { 

        public int CustomerID { get; set; } 

 

        public Store Store { get; set; } 

    } 

 

    public class Store 

    { 

        public int StoreID { get; set; } 

 

        public string StoreLocation { get; set; } 

    } 

However, a program cannot automatically detect a violation of 2CNF unless the program 

has additional information that may include the following: 

 Complete knowledge of the domain of the solution. 

 Metadata on the semantic meaning of different entity classes in the solution. 

 The exact usage data of the classes/attributes in the domain and the entire 

software solution. 

Additional information to detect 2CNF and above might be needed based on the 

implementation of the solution. It can be done. However, it will have to be its own thesis 

with a thorough research on all possible solutions and implementation details.  

 

Although it may seem feasible, building a software system sufficiently sophisticated to 

understand the Class Normal Form rules (2CNF – 5CNF), their semantic meaning, and 

validating an entity class would be a major undertaking indeed. Complexities associated 



- 49 - 

with diagnosing and repairing such software (understanding the application domain, 

related semantics and more) may be some of the reasons why such software is not 

currently available.  

 



- 50 - 

REFERENCES 

 

Print Publications: 

[Ambler97] 
Ambler S., Building Object Applications That Work: Your Step-By-Step Handbook 

for Developing Robust Systems with Object Technology, New York: Cambridge 
University, 1997. 

 
[Ambler03] 
Ambler, S., Agile Database Techniques: Effective Strategies for the Agile Software 

Developer, Wiley, 2003. 
 
[Booch94] 
Booch, G., Object-Oriented Analysis and Design with Applications, Redwood City, 

Calif: Benjamin/Cummings Pub. Co, 1994. 
 
[Bura12] 
Bura, D. and R. K. Singh, "Implementing Constraints in Entity-Relationship Models for 

Enhancing Normalization," IUP Journal of Information Technology 8, 2 (June 2012), 
pp 46-57. 

 
[Coad92] 
Coad, P., "Object-Oriented Patterns," Communications of the ACM 35, 9 (September 

1992), pp 152-159. 
 
[Codd70] 
Codd, E. F., “A relational model for large shared data banks,” Communications of the 

ACM 13, 6, (June 1970), pp 377-387 
 
[Date12] 
Date, C. J., Database Design and Relational Theory: Normal Forms and All That Jazz, 

O'Reilly Media, 2012. 
 
[El-Sofany09] 
El-Sofany, H. and S. Abou El-Seoud, "Schema Design and Normalization Algorithm for 

XML Databases Model,” International Journal of Emerging Technologies in Learning 
4, 2 (May 2009), pp 11-21.



- 51 - 

[Fowler92] 
Fowler J. and M. West, “Developing High Quality Data Models,” The European Process 

Industries STEP Technical Liaison Executive (EPISTLE), 1992.  
 
[Gamma95] 
Gamma, E., Design Patterns: Elements of Reusable Object-Oriented Software, Reading, 

Mass: Addison-Wesley, 1995. 
  
[Gorman90] 
Gorman, K. and J. Choobineh, "The Object-Oriented Entity-Relationship Model 

(OOERM)," Journal of Management Information Systems 7, 3 (October 1990), pp 
41-65 

  
[Kent83] 
Kent, W., "A simple guide to five normal forms in relational database theory," 

Communications of the ACM 26, 2 (February 1983), pp 120-125. 
  
[Lee95] 
Lee, B. S., "Normalization in OODB design," SIGMOD Record 24, 3 (September 1995),    

pp 23-27. 
  
[Lerman12] 
Lerman, J. and R. Miller, Programming Entity Framework: Code First, O'Reilly Media, 

2012. 
  
[Liles12] 
Liles, D. and T. Rayburn, Entity Framework 4.1: Expert's Cookbook, Birmingham, UK: 

Packt Publishing, 2012. 
 
[Martin09] 
Martin, R., Clean Code: A Handbook of Agile Software Craftsmanship, Pearson 

Education, Inc, 2009.  
  
[Merunka13] 
Merunka, V. and J. Tůma, “Normalization Rules of the Object-Oriented Data Model,” 

In Proceedings of the International Workshop on Enterprises & Organizational 
Modeling and Simulation, 2009 

  
[Nien-Lin09] 
Nien-Lin, H., K Jong-Yih and L. Ching-Chiuan, "Object-Oriented Design: A Goal 

Driven And Pattern-Based Approach," Software & Systems Modeling 8, 1 (February 
2009), pp 67-84. 

  
[Stephens09] 
Stephens, R., Beginning Database Design Solutions, Indianapolis, IN: Wrox, 2009. 
 



- 52 - 

[Torres17] 
Torres A, Galante R, Pimenta M, Martins A., “Twenty years of object-relational 

mapping: A survey on patterns, solutions, and their implications on application 
design,” Information and Software Technology, 82 (February, 2017), pp 1-18. 

 



- 53 - 

APPENDIX A 

First Class Normal Form Validator Prototype 

 

using ClassNormalizationRules; 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

 

namespace ClassNormalFormValidator 

{ 

    public class Program 

    { 

        public static void Main(string[] args) 

        { 

            Console.WriteLine("Enter the directory that contains your 

entity classes:"); 

            string dirPath = Console.ReadLine(); 

 

            ClassNormalFormsValidator validator = new 

ClassNormalFormsValidator(); 

 

            try 

            { 

                List<string> loadErrors = validator.Load(dirPath); 

 

                if(loadErrors.Count > 0) 

                { 

                    Console.WriteLine("Error encountered during 

compilation of the source code:"); 

 

                    foreach (string error in loadErrors) 

                    { 

                        Console.WriteLine(error); 

                    } 

                } 

                else 

                { 

                    List<ValidationResult> validationResults = 

validator.GetValidationResults(); 

 

                    if (validationResults.Count > 0) 

                    { 

                        Console.WriteLine("\r\nPlease fix the following 

Class Normal Form issues:");



- 54 - 

                        foreach (ValidationResult result in 

validationResults) 

                        { 

                            Console.WriteLine("\r\n"); 

                            Console.WriteLine(result.Level == 

ValidationLevel.Waning ? "Warning" : "Error" + ": " + 

result.Violation); 

                            Console.WriteLine("How to fix the issue: " 

+ result.HowToFix); 

                            Console.WriteLine("------------------------

--------"); 

                        } 

 

                        End(); 

                    } 

                    else 

                    { 

                        Console.WriteLine("No errors found!");                        

End(); 

                    } 

                } 

 

            } 

 

            catch (Exception e) 

            { 

                Console.WriteLine(e.Message); 

                End(); 

            } 

        } 

 

        private static void End() 

        { 

            Console.WriteLine("\r\n"); 

            Console.WriteLine("Press Enter to quit"); 

            Console.ReadLine(); 

        } 

    } 

} 

 

 

using Microsoft.CSharp; 

using System; 

using System.CodeDom.Compiler; 

using System.Collections.Generic; 

using System.IO; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

 

namespace ClassNormalizationRules 

{ 

    public class ClassNormalFormsValidator 

    { 

        private List<Type> _types = new List<Type>(); 

 

        public List<string> Load(string dirPath) 



- 55 - 

        { 

            List<string> sources = new List<string>(); 

            List<string> errors = new List<string>(); 

 

            foreach (string file in Directory.GetFiles(dirPath, 

"*.cs")) 

            { 

                sources.Add(File.ReadAllText(file)); 

            } 

 

            CompilerParameters parameters = new CompilerParameters(); 

            parameters.GenerateExecutable = false; 

            parameters.GenerateInMemory = true; 

 

            parameters.ReferencedAssemblies.Add("mscorlib.dll"); 

            parameters.ReferencedAssemblies.Add("System.dll"); 

 

            var provider = new CSharpCodeProvider(); 

            var results = 

provider.CompileAssemblyFromSource(parameters, sources.ToArray()); 

 

            if (results.Errors.HasErrors) 

            { 

                foreach(CompilerError error in results.Errors) 

                { 

                    errors.Add(string.Format("Compilation Error at: {0} 

with Text: {1}", error.Line, error.ErrorText)); 

                } 

 

                return errors; 

            } 

 

            var assembly = results.CompiledAssembly; 

            var assemblyTypes = assembly.GetTypes(); 

 

            foreach (Type type in assemblyTypes) 

            { 

                _types.Add(type); 

            } 

 

            return errors; 

        } 

 

        public List<ValidationResult> GetValidationResults() 

        { 

            var validators = GetValidators(); 

 

            var results = new List<ValidationResult>(); 

 

            if(_types.Count == 0) 

            { 

                return results; 

            } 

 

            foreach(Type type in _types) 

            { 



- 56 - 

                foreach (IClassNormalFormValidator validator in 

validators) 

                { 

                    

results.AddRange(validator.GetValidationResults(type)); 

                } 

            } 

 

            return results; 

        } 

 

        private List<IClassNormalFormValidator> GetValidators() 

        { 

            var validators = new List<IClassNormalFormValidator>(); 

 

            validators.Add(new FirstClassNormalFormValidator()); 

 

            return validators; 

        } 

    } 

} 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Reflection; 

using System.Text; 

using System.Threading.Tasks; 

 

namespace ClassNormalizationRules 

{ 

    public class FirstClassNormalFormValidator : 

IClassNormalFormValidator 

    { 

        private Type _type; 

        private List<ValidationResult> _results; 

 

        public List<ValidationResult> GetValidationResults(Type type) 

        { 

            _type = type; 

            _results = new List<ValidationResult>(); 

 

            ValidateIdentifier(); 

            ValidateSingleValue(); 

            ValidateRepeatingGroups(); 

 

            return _results; 

        } 

 

        private void ValidateIdentifier() 

        { 

            PropertyInfo[] properties = _type.GetProperties(); 

            bool idFound = false; 

 

            foreach(PropertyInfo property in properties) 

            { 



- 57 - 

                // try to find a property with {ClassName}ID, ignpring 

case 

                if(string.Compare(property.Name, _type.Name + "id", 

true) == 0) 

                { 

                    idFound = true; 

                } 

            } 

 

            if (!idFound) 

            { 

                _results.Add(new ValidationResult { 

                    Violation = "(" + _type.Name + ".cs) Violation of 

1CNF: No two object can have identical values.", 

                    HowToFix = 

@"Please add an identifier property to your class in the format 

{ClassName}ID and make  

sure a unique value is always assigned to this property before saving 

an instance of this class to the database.", 

                    Level = ValidationLevel.Error 

                }); 

            } 

        } 

 

        private void ValidateSingleValue() 

        { 

            PropertyInfo[] properties = _type.GetProperties(); 

 

            foreach (PropertyInfo property in properties) 

            { 

                if (property.PropertyType.IsArray) 

                { 

                    Type elementType = 

property.PropertyType.GetElementType(); 

 

                    if(elementType.IsPrimitive || 

elementType.Name.ToLower() == "string") 

                    { 

                        _results.Add(new ValidationResult 

                        { 

                            Violation =  

"(" + _type.Name + @".cs) Violation of 1CNF: Each property must contain 

a single value unless  

it is a collection of a type that is part of the entity model.", 

                            HowToFix = string.Format( 

@"The property type of the property '{0}' is an array of either a 

primitive  

type or a string. To fix it, please create a new class that for the 

property '{0}'  

to store the values for '{0}' and link it back to the class '{1}'", 

property.Name, _type.Name), 

                            Level = ValidationLevel.Error 

                        }); 

                    } 

                } 

            } 

        } 



- 58 - 

        private void ValidateRepeatingGroups() 

        { 

            PropertyInfo[] properties = _type.GetProperties(); 

            List<string> numberedProperties = new List<string>(); 

 

            string numberedProperty = null; 

 

            foreach (PropertyInfo property in properties) 

            { 

                if (property.Name.EndsWith("1")) 

                { 

                    numberedProperty = property.Name.Substring(0, 

property.Name.Length - 1); 

                    break; 

                } 

            } 

 

            if(numberedProperty != null) 

            { 

                foreach (PropertyInfo property in properties) 

                { 

                    string prop = property.Name.Substring(0, 

property.Name.Length - 1); 

 

                    if (prop == numberedProperty) 

                    { 

                        numberedProperties.Add(property.Name); 

                    } 

                } 

            } 

 

            if (numberedProperties.Count > 1) 

            { 

                string numberedPropertiesString = string.Join(", ", 

numberedProperties.ToArray()); 

 

                _results.Add(new ValidationResult 

                { 

                    Violation = "(" + _type.Name + ".cs) Violation of 

1CNF: Properties cannot contain repeating groups.", 

                    HowToFix = string.Format( 

@"The properties '{0}' are considered repeating groups.  

Please give each of those properties some contextual names.", 

numberedPropertiesString), 

                    Level = ValidationLevel.Error 

                }); 

            } 

        } 

    } 

} 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 



- 59 - 

namespace ClassNormalizationRules 

{ 

    interface IClassNormalFormValidator 

    { 

        /// <summary> 

        /// Validates all rules related to this class normal form 

        /// </summary> 

        /// <returns>A list of error/</returns> 

        List<ValidationResult> GetValidationResults(Type type); 

    } 

} 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

 

namespace ClassNormalizationRules 

{ 

    public enum ValidationLevel 

    { 

        Error, 

        Waning 

    } 

} 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

 

namespace ClassNormalizationRules 

{ 

    public class ValidationResult 

    { 

        public string Violation { get; set; } 

 

        public string HowToFix { get; set; } 

 

        public ValidationLevel Level { get; set; } 

    } 

} 

 



VITA 

Daniel Sudhindaran has Bachelor of Science degree from the University of North Florida 

in Computer Science, 2007 and expects to receive a Master of Science in Computer and 

Information Sciences from the University of North Florida, April 2017. Dr. Robert 

Roggio of the University of North Florida is serving as Daniel’s thesis advisor. Daniel is 

currently employed as a Product Architect at Beeline and has been with the company for 

ten years. 

Daniel has an on-going interest in innovation and startups. Daniel co-founded two 

companies – TradeSumo and Zwytch. TradeSumo is an online bartering marketplace 

where people can swap their unused stuff for free. Zwytch is an online car buying 

platform that helps users chat real-time with multiple dealers around them and negotiate a 

complete car deal before going to the dealership. Daniel has extensive programming 

experience in C#, .NET, JavaScript, SQL, HTML and CSS. Daniel’s academic work has 

included the use of Java and C programming languages as well.  

- 60 -


	UNF Digital Commons
	2017

	Generating a Normalized Database Using Class Normalization
	Daniel Sushil Sudhindaran
	Suggested Citation


	Title Page
	Acknowledgements
	Contents
	Tables
	Figures
	Abstract
	Chapter 1: Introduction
	1.1 Importance of Relational Databases
	1.2 Importance of Good Database Design
	1.3 Database First Approach in Business Applications
	1.3.1 Object Relational Mapping (ORM)

	1.4 Code First Approach
	1.5 Importance of Normalizing Classes
	Table 1: Order and Supply Classes


	Chapter 2: Literature Review
	Chapter 3: Methodology
	3.1 Overview
	Table 2: Relational Database Paradigm Mapping to Object-Oriented Paradigm

	3.2 Software Used
	Figure 1: Code-First Approach


	Chapter 4: Results
	4.1 First Class Normal Form (1CNF)
	4.1.1 Rules of First Normal Form
	4.1.2 First Class Normal Form Rules Based on First Relational Normal Form
	4.1.3 Example
	Table 3: Contact Manager Application Data

	4.1.4 The Generated Output
	Figure 2: First Class Normal Form Result


	4.2 Second Class Normal Form (2CNF)
	4.2.1 Rules of Second Normal Form
	4.2.2 Second Class Normal Form Rules Based on Second Relational Normal Form
	4.2.3 Example
	Table 4: Purchase Details

	4.2.4 The Generated Output
	Figure 3: Second Class Normal Form Result


	4.3 Third Class Normal Form (3CNF)
	4.3.1 Rules of Third Normal Form
	4.3.2 Third Class Normal Form Rules Based on Third Relational Normal Form
	4.3.3 Example
	Table 5: Ordering System

	4.3.4 The Generated Output
	Figure 4: Third Class Normal Form Result


	4.4 Fourth Class Normal Form (4CNF)
	4.4.1 Rules of Fourth Normal Form
	4.4.2 Fourth Class Normal Form Rules Based on Fourth Relational Normal Form
	4.4.3 Example
	Table 6: Employee Information

	4.4.4 The Generated Output
	Figure 5: Fourth Class Normal Form Result


	4.5 Fifth Class Normal Form
	4.5.1 Rules of Fifth Normal Form
	4.5.2 Fifth Class Normal Form Rules Based on Fifth Relational Normal Form
	4.5.3 Example
	Table 7: Agent Information

	4.5.4 The Generated Output
	Figure 6: Fifth Class Normal Form Result



	Chapter 5: Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work
	Figure 7: Console Output


	References
	Appendix A: First Class Normal Form Validator Prototype
	Vita

