
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2017

Security Analytics: Using Deep Learning to Detect
Cyber Attacks
Glenn M. Lambert II
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2017 All Rights Reserved

Suggested Citation
Lambert, Glenn M. II, "Security Analytics: Using Deep Learning to Detect Cyber Attacks" (2017). UNF Graduate Theses and
Dissertations. 728.
https://digitalcommons.unf.edu/etd/728

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71985426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

SECURITY ANALYTICS: USING
DEEP LEARNING TO DETECT CYBER ATTACKS

by

Glenn Monroe Lambert II

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computing and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

Spring, 2017

 ii

Copyright © 2016 by Glenn Monroe Lambert II

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Glenn Monroe Lambert II or designated representative.

 iii

This thesis titled “Security Analytics: Using Deep Learning to Detect Cyber Attacks”
submitted by Glenn Monroe Lambert II in partial fulfillment of the requirements for the
degree of Master of Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

Dr. Sherif A. Elfayoumy
Thesis Advisor and Committee Chairperson

Dr. Ching-Hua Chuan

Dr. Swapnoneel Roy

Accepted for the School of Computing:

 Dr. Sherif A. Elfayoumy
 Director, School of Computing

Accepted for the College of Computing, Engineering, and Construction:

Dr. Mark Tumeo
Dean of the College of Computing, Engineering, and Construction

Accepted for the University:

Dr. John Kantner
Dean of the Graduate School

 iv

This work is dedicated to my wonderful wife, Charlotte Atkinson, for all her support and

encouragement throughout this endeavor.

 v

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Dr. Sherif Elfayoumy, Director of the School

of Computing at the University of North Florida, for devoting a significant amount of his

time to this research effort. His expert guidance was paramount to keeping me focused to

the end.

I would also like to thank Clay Maddox, Assistant Director of Information Security at the

University of North Florida, and Geoffrey Whittaker, IT Security Engineer, for their

valuable security expertise and their time required for the enormous effort to obtain and

cleanse the security logs for this research.

I would also like to thank Glenn Ford, Senior Application Security Analyst at Availity for

lending his security expertise at a moment’s notice.

 vi

CONTENTS

List of Tables ... ix

List of Figures .. xi

List of Equations ... xii

Abstract .. xiii

Chapter 1: Introduction ...1

1.1 Overview ..1

1.2 Problem Statement ...4

Chapter 2: Background and Related Work ...5

2.1 Background ..5

2.1.1 Machine Learning ..6

2.1.2 Time Series ..9

2.2 Related Work ...11

2.2.1 Denial of Service and Brute force attacks ...11

2.2.2 Web Application Attacks ...12

2.2.3 Intrusion Detection Postmortem ..14

2.2.4 Training a Neural Network to Mimic a Firewall ...16

2.3 Shortcomings of existing solutions ..17

Chapter 3: Proposed Approach ...19

3.1 Overview ..19

3.2 Data Extraction and Transformation ..20

 vii

3.2.1. Data Collection ..21

3.2.2. Pre-Processing..22

3.2.1. Feature Selection ..23

3.3 Unsupervised Learning ..24

3.4 Supervised Learning ..25

3.5 Measurements and Evaluation ...25

Chapter 4: Initial Model and Preliminary Results ..28

4.1 System Architecture ...28

4.2 Data Collection ..30

4.3 Feature Selection ..32

4.4 Pre-Processing ...35

4.5 Unsupervised Learning Results ...37

4.6 Supervised Learning Results ...43

Chapter 5: Experiments and Results ...45

5.1 Overview ..45

5.2 Data Collection ..45

5.3 Pre-processing ..47

5.3.1 Normalization ..48

5.4 Unsupervised Learning Results ...49

5.4.1 Rule-based Clustering ..53

5.4.2 Feature Ranking ...55

5.4.3 Split-level Clustering ...57

5.5 Supervised Learning Results ...58

5.5.1 Neural Network Topology ...68

 viii

5.5.2 Additional observations ...75

5.5.3 Implementation considerations ..76

Chapter 6: Conclusion and Future Work ..78

References ..80

Vita ...83

 ix

TABLES

List of Tables

Table 1: Source Log Files ... 30

Table 2: Dataset Definitions ... 31

Table 3: Features used for Machine Learning .. 33

Table 4: Correlation Results for Features ... 34

Table 5: Time Slot Classification Results ... 41

Table 6: Deep Learning Results .. 44

Table 7: Deep Learning Confusion Matrixes .. 44

Table 8: Dataset Definitions ... 46

Table 9: Features used for Machine Learning .. 47

Table 10: Pre-processing Times.. 48

Table 11: PAM Clustering Results .. 50

Table 12: Medoids for Dataset 1 ... 51

Table 13: Medoids for Dataset 2 ... 52

Table 14: Medoids for Dataset 3 ... 53

Table 15: Rule-based Clustering Results .. 54

Table 16: PAM Feature Ranking .. 56

Table 17: Rule-based Feature Ranking ... 56

Table 18: Deep Learning Results using PAM Labeled Data .. 59

Table 19: Deep Learning Confusion Matrices for PAM Labeled Data 60

Table 20: Single Layer Topology Analysis PAM Labeling Using Dataset 1 61

Table 21: Single Layer Topology Analysis PAM Labeling Using Dataset 2 62

 x

Table 22: Single Layer Topology Analysis PAM Labeling Using Dataset 3 63

Table 23: Deep Learning Results Using Rule-based Labeled Data 64

Table 24: Confusion Matrices for Rule-based Labeled Data .. 65

Table 25: Single Layer Topology Analysis Rule-based Labeling Using Dataset 1 66

Table 26: Single Layer Topology Analysis Rule-based Labeling Using Dataset 2 67

Table 27: Single Layer Topology Analysis Rule-based Labeling Using Dataset 3 68

Table 28: Layer 1 Topology Analysis Split Level Using Dataset 2 70

Table 29: Layer 2 Topology Analysis Split Level Using Dataset 2 71

Table 30: Layer 1 Topology Analysis Split Level Using Dataset 3 72

Table 31: Layer 2 Topology Analysis Split Level Using Dataset 3 73

Table 32: Layer 3 Topology Analysis Split Level PAM Dataset 3 74

Table 33: Layer 2 Topology Analysis Split Level PAM Dataset 3 75

 xi

FIGURES

List of Figures

Figure 1: Neural Network Diagram .. 8

Figure 2: Sliding Window Model ... 10

Figure 3: Detection Rate Calculation .. 13

Figure 4: Process Flow Diagram... 19

Figure 5: Pre-processed dataset with sliding time window .. 22

Figure 6: Proposed Solution Architecture... 28

Figure 7: Verify Log File Import .. 29

Figure 8: Active User Distribution ... 32

Figure 9: IIS Log Entry Sample .. 34

Figure 10: DHCP Log Entry Sample .. 35

Figure 11: IPS Log Entry Sample ... 35

Figure 12: Splunk Transformation Query ... 36

Figure 13: Partial Dataset Image... 37

Figure 14: R Code to Calculate Cluster Scores .. 38

Figure 15: Clustering Confusion Matrixes ... 38

Figure 16: Cluster Scores .. 39

Figure 17: User Activity Distribution ... 40

Figure 18: HTTP POST Requests ... 42

Figure 19: MinMax Normalization ... 48

Figure 20: Effect of Normalization ... 49

Figure 21: Split-Level Clustering Process .. 57

 xii

EQUATIONS

List of Equa tions

Equation 1: Accuracy .. 26

Equation 2: Precision .. 26

Equation 3: Recall ... 26

 xiii

ABSTRACT
Abstract

Security attacks are becoming more prevalent as cyber attackers exploit system

vulnerabilities for financial gain. The resulting loss of revenue and reputation can have

deleterious effects on governments and businesses alike. Signature recognition and

anomaly detection are the most common security detection techniques in use today.

These techniques provide a strong defense. However, they fall short of detecting

complicated or sophisticated attacks. Recent literature suggests using security analytics to

differentiate between normal and malicious user activities.

The goal of this research is to develop a repeatable process to detect cyber attacks that is

fast, accurate, comprehensive, and scalable. A model was developed and evaluated using

several production log files provided by the University of North Florida Information

Technology Security department. This model uses security analytics to complement

existing security controls to detect suspicious user activity occurring in real time by

applying machine learning algorithms to multiple heterogeneous server-side log files.

The process is linearly scalable and comprehensive; as such it can be applied to any

enterprise environment. The process is composed of three steps. The first step is data

collection and transformation which involves identifying the source log files and

selecting a feature set from those files. The resulting feature set is then transformed into a

time series dataset using a sliding time window representation. Each instance of the

dataset is labeled as green, yellow, or red using three different unsupervised learning

 xiv

methods, one of which is Partitioning around Medoids (PAM). The final step uses Deep

Learning to train and evaluate the model that will be used for detecting abnormal or

suspicious activities. Experiments using datasets of varying sizes of time granularity

resulted in a very high accuracy and performance. The time required to train and test the

model was surprisingly fast even for large datasets. This is the first research paper that

develops a model to detect cyber attacks using security analytics; hence this research

builds a foundation on which to expand upon for future research in this subject area.

- 1 -

Chapter 1: Introduction

INTRODUCTION

1.1 Overview

Security attacks are becoming more prevalent as cyber attackers exploit system

vulnerabilities for financial gain. Theft of Intellectual Property and destruction of

infrastructure are additional motives resulting from industrial espionage and Nation State

actors, respectively [Sood13]. Nation State actors employ the most skilled attackers with

the ability to launch targeted and coordinated attacks. Sony, Stuxnet, and Anthem are

recent examples of targeted attacks.

The time from a security breach to detection is measured in days [Muncaster15]. Cyber

attackers are aware of existing security controls and are continually improving their

attacks. To make matters worse, cyber attackers have a wide range of tools available

which allow them to bypass traditional security mechanisms. Zero day exploits, Malware

Infection Frameworks (MIF), Rootkits, and Browser Exploit Packs (BEP) can be readily

purchased on an underground market. Attackers can also purchase personal information

and compromised domains in order to launch additional attacks [Sood13]. A security

breach is inevitable. Early detection and mitigation are the best defense to surviving an

attack.

- 2 -

Security professionals employ prevention and detection techniques to reduce the risk of a

security breach. In “Applying Data Mining Techniques to Intrusion Detection,” Ng. et al.

define a security breach as “any action the system owner deems unauthorized”

[Ng15]. Prevention techniques focus on making attacks more difficult. Some examples

of prevention techniques include: establishing a good security policy, applying recent

security updates, avoiding default configurations, and establishing an effective user

security education program [Garcia12]. All information security policies should adhere

to the three principles of the CIA triad which are Confidentiality, Integrity, and

Availability. Confidentiality is a set of rules that limits access to information. Integrity is

assurance that information is trustworthy and accurate. Availability refers to the ensuring

that all authorized users are able to access information systems.

Detection techniques fall into two categories, attack recognition or signature-based

detection, and anomaly-based detection. Traditional security solutions such as Firewalls,

Intrusion Detection Systems (IDS), and virus scanners use a signature-based approach.

The signature-based approach compares a hash of the payload to a database of known

malicious signatures [Razzaq14]. Signature based detection techniques monitor network

traffic for ongoing attacks but fall short of detecting zero-day attacks or a variant of an

existing attack, also known as a mimicry attack [Garcia12]. These techniques provide a

strong defense against known attacks. However, they are by no means a sufficient guard

against skilled attackers who use the latest attack methods and exploits. Hence, they can

easily bypass any security controls in place [Ye05, Sood13].

- 3 -

Anomaly detection detects abnormal events, including those that are not yet encountered.

In other words, anything abnormal is considered an attack [Ng15]. Anomaly detection

requires a model of normal system behavior. False positives can occur when normal

activities are detected to be irregular [Garcia12].

The Cyber Research Alliance (CRA) identified the application of Big Data Analytics to

cyber security as one of the top six priorities for future cyber security research and

development [Kott14]. Big Data Analytics (BDA) is the aggregating and correlating of a

broad range of heterogeneous data from multiple sources, and has the potential to detect

cyber threats within actionable time frames with minimal or no human intervention

[Kott14]. Security Analytics is the application of Big Data Analytics to cyber security.

Security Analytics is a new trend in the industry, and interest is expected to gain

momentum quickly. Finding appropriate algorithms required to locate hidden patterns in

huge amounts of data is just one of the several challenges that must be overcome.

Incomplete and noisy data are additional factors that must be considered. Finally, the

massive scale of enterprise security data available poses the greatest challenge to a

successful Security Analytics implementation [Kott14]. Security Analytics differs from

traditional approaches by separating what is normal from what is abnormal. In other

words, the focus is on the action or user activity instead of the payload content or

signature [Mahmood13].

- 4 -

1.2 Problem Statement

The goal of this research is to develop a repeatable process to detect cyber attacks that is

fast, accurate, and scalable. The process should evaluate multiple data sources in order to

gain a comprehensive picture of user activity across multiple systems. User activity

patterns undergo normal fluctuations throughout the day, and often those patterns differ

from patterns that occur on weekends. The model is expected to differentiate between

normal fluctuations and abnormal user activities. A deep learning algorithm is used to

train a neural network to detect suspicious user activities.

This research is very closely related to one class of digital forensics which focuses on

discovering evidence of criminal activity inadvertently left in log files on computer

systems by hackers [Garfinkel16]. This research differs from digital forensics in that it

focuses on finding malicious activity patterns and identifying criminal activity while it is

occurring.

- 5 -

Chapter 2: Background and Related Wor k

BACKGROUND AND RELATED WORK

2.1 Background

Most computer systems record events in log files [Abad03]. The type and structure of log

files vary widely by system and platform. For example, weblogs are produced by web

servers running Apache or Internet Information Server (IIS) among others. Operating

systems, firewalls, and Intrusion Detection Systems (IDS) record event information in log

files. Applications also record user activities in log files [Abad03]. Any activities

performed during a security breach will most likely result in log entries being recorded in

one or more log files. These attacks cannot be identified by a single log entry occurrence,

but instead, can be identified through a series of entries spanning several minutes

[Abad03]. The amount of data logged per system can be more than several thousand

events per minute. Additionally, these files are typically distributed across the network.

In order to process and analyze the log data, they must be integrated and stored in a

central location. Integrating highly heterogeneous data from multiple sources requires a

massive centralized data repository [Kott13]. Such a data repository should meet the

complexity requirements as defined by Big Data.

- 6 -

2.1.1 Machine Learning

Big Data is defined by three characteristics: volume, velocity, and variety. Volume is the

size of the data stored and is measured in terabytes, petabytes, or Exabytes. Velocity is

the rate at which data is generated. Variety refers to the types of data, such as structured,

semi-structured, or non-structured [Mahmood13]. Structured data is data that typically

reside in a database or data warehouse. Examples of unstructured data are documents,

images, text messages, and tweets. Log data is considered semi-structured. In some cases,

log data contains key-value pairs or is stored in CSV format. Adam Jacobs, in “The

Pathologies of Big Data,” defines Big Data as “data whose size forces us to look beyond

the tried-and-true methods that are prevalent at that time” [Jacobs09]. Big Data presents

new challenges to searching and processing of data. These new challenges require new

techniques and methods, such as data mining or Big Data analytics.

Big data analytics employs data mining techniques for extracting actionable insights from

data to make intelligent business decisions [Apte03]. Commonly, the first step in Big

Data analytics is Extract Transform Load (ETL) [Mahmood13]. This is a pre-processing

step that transforms data into a format that is compatible with data mining algorithms

[Mahmood13]. The processing or analysis step applies an algorithm, such as clustering,

to the transformed data. Finally, the results are displayed on a dashboard or in a report

[Apte03]. Data mining is defined as the application of machine learning methods to large

datasets [Alpaydin14].

- 7 -

Machine learning is a subfield of artificial intelligence that allows a computer to learn

using sample data without being programmed to anticipate every possible situation

[Alpaydin14]. The two most common types of machine learning are supervised and

unsupervised learning. Supervised learning is used when a dataset of labeled instances is

available. Supervised learning is used to solve classification problems. The goal of

supervised learning is to train the computer to learn to predict a value or classify an input

instance accurately. Unsupervised learning is used when a labeled dataset is not available.

Clustering is an unsupervised learning technique which results in grouping similar

instances in clusters. Clustering is used to discover patterns in data. In some cases,

clustering is performed to classify an unlabeled dataset and using the resulting classified

dataset for supervised learning [Alpaydin14].

Artificial Neural Network (ANN), proposed fifty years ago, is a collection of supervised

learning models inspired by the human brain. A simple neural network or multi-layer

perceptron is composed of three layers; an input layer, a hidden layer, and an output

layer. Each layer is composed of neurons, which are interconnected to all the neurons in

the next layer. The network is trained by adjusting the weights of the neurons to minimize

the error between the output neuron and the desired result [Edwards15]. A neural network

(Figure 1) using a large number of hidden layers is referred to as a deep neural network

and training is referred to as deep learning.

- 8 -

Figure 1: Neural Network Diagram

In 2006, Geoffrey Hinton and Ruslan Salakhutdinov developed techniques using multiple

hidden layers. Pre-training was one such technique where the upper layers extract

features with a higher level of abstraction which is used by the lower layers for more

efficient classification. Unfortunately, since this technique requires billions of floating

point operations, it was not computationally feasible until recently. The recent advent of

technological advances in hardware caused a resurgence of interest due to the resulting

improvements to performance. For example, a researcher at the Switzerland-based Dalle

Molle Institute for Artificial Intelligence claims in one instance the training phase took

only three days using graphic processing units (GPUs) where using CPU’s would have

taken five months [Edwards15]. Deep learning works well with large datasets of labeled

data [Edwards15].

- 9 -

2.1.2 Time Series

A time series dataset consists of continuous sequences of values or events which are

typically collected at fixed time intervals. Real-time surveillance systems, internet traffic,

network sensors, and on-line data collection tools generate time series data which can be

mined for valuable insights. Time series datasets have several applications, such as stock

market analysis, sales forecasting, process and quality control, budgetary analysis,

scientific experiments, and medical treatments [Han06].

Massive amounts of data can be generated in a constantly changing environment with a

large number of data sources. This presents an additional challenge when working with

time series data. In addition to a multitude of data formats, high change rate, and the large

volumes of data collected, time may be reported inconsistently, or data may contain noise

which obscures the “truth” within the data. Correlating events across multiple sources

provides a comprehensive picture of the chain of events. Synchronizing or correlating the

events from multiple sources introduces additional complexity [Han06].

There are three well-known window models: landmark windows, sliding windows, and

decaying windows [Zhu03]. A widow can be time-based or count based. The

exponentially decaying window (or damped window) is a variant of the sliding window

where older events have a lower weight than more recent events [Zhu02]. Landmark

windows contain aggregated values computed between a landmark point in time and the

present. An example would be the average stock price of a company since its last

acquisition [Zhu03].

- 10 -

Sliding windows are commonly used to facilitate effective event stream processing.

Instead of sampling or performing computations on all of the data, only recent data is

used for making decisions, thus reducing the memory required for processing.

Aggregates are computed on the last N values and stored in the window (Figure 2). As

time progresses, newer items are added, and older items are removed. The window is

usually of a fixed size. Limiting the processing to recent data also prevents less relevant

data from influencing statistical calculations [Zhu03].

Figure 2: Sliding Window Model

The objectives of time series analysis are to forecast future values, explain how past

events can impact future events, or how two time series can interact with each other.

Trend analysis, similarity search, clustering, and classification are typical processes used

to accomplish these objectives. Trend analysis involves identifying a trend, cyclic

movement, seasonal variations, or irregular movements. Trends are depicted using a trend

line over a long interval of time. Typical methods used for identifying long-term trends

include the weighted average and least squares methods. Cyclic movements refer to the

long term oscillations around a trend line. Seasonal variations are changes that are

- 11 -

calendar based and typically recur, such as holidays. Irregular movements are random

chance events [Han06].

Similarity search finds sequences that differ slightly from a given sequence. Additionally,

similarity search can match partial sequences or the whole sequence. An example would

be to find a similar performing stock.

Clustering partitions time series data into groups based on similarity or a distance

measure. Classification builds a model based on the time series in order to predict the

label of an unlabeled time series.

2.2 Related Work

Many scholarly articles have been published on the topic of detecting intrusions using

data mining techniques or machine intelligence [Buczak16]. The following sections are

critical evaluations of recent research efforts on this topic.

2.2.1 Denial of Service and Brute force attacks

In “Applying Data Mining Techniques to Intrusion Detection,” Ng, et al. proposed an off-

line solution to detect Denial of Service (DoS) and brute force password attacks [Ng15].

Their solution implements both anomaly detection and signature recognition methods.

They maintain an attack signature database as well as a normal signature database. A

Clustering algorithm is used on pre-processed log data to identify multiple occurrences of

- 12 -

similar log messages. Their tool searches the signature databases using log patterns

detected while processing the log data. When the clustering algorithm detects an unusual

number of event occurrences, the signature is compared to the normal log database and is

ignored if found. If the signature is found in the existing attack signature database, then

an alert is generated. However, if the signature is not found in either signature database,

then it is presented to the user for manual classification. The initial log data was obtained

from one host running the Ubuntu operating system. Attack log data was obtained by

performing ICMP flood and brute force attacks against the host. A set of normal and

attack patterns obtained from the initial data collection were stored in the signature

database. They identified creating a real-time intrusion detection system as potential

future work.

The primary shortcoming of the solution developed by Ng, et al. is that it depends on a

single client log file source from one platform (Ubuntu). Additionally, it does not

differentiate between events that have occurred recently or far in the past. Since their

solution maintains a database of all normal activity patterns; it can only be implemented

as an off-line solution. As such, it is not linearly scalable, and cannot detect suspicious

user activity in real-time at an enterprise scale.

2.2.2 Web Application Attacks

Razzaq, et al. proposed a solution [Razzaq14] for detecting web application attacks by

analyzing HTTP requests. The proposed solution was deployed as a web proxy that

evaluates all network traffic before it is delivered to the web server. Even though the

- 13 -

solution only analyzes the HTTP protocol, they claim it could be expanded to other

protocols. Additionally, their solution only examines portions of the headers and payload

of user requests. They developed an ontology model (OWL) to build rules to analyze the

user request to detect web application attacks, such as SQL Injection, DNS Cache

poisoning attack, and HTTP response splitting attacks. These rules are applied to all user

requests by analyzing portions of the HTTP traffic before being processed by the web

server. Test attack vectors consisted of SQL Injection Cross Site Scripting (XSS) attacks

using an open source tool called Web Goat to simulate the attack vectors. The solution

detected web application attacks with an average detection rate of 86%. The detection

rate (Figure 3) is calculated using the total number of attack records (TA) and the number

of false negatives (FN). A false negative is an attack vector that is classified as normal.

The performance results of the proposed system were a maximum throughput of 1400

requests per second with a maximum response time of 374 ms.

Figure 3: Detection Rate Calculation

The most significant shortcoming with Razzaq’s proposed solution [Razzaq14] is that all

user traffic does not flow across a single web proxy. As a result, this solution is capable

of evaluating only a small portion of user activity which would inevitably result in a

security breach going unnoticed. Secondly, the solution only evaluates HTTP network

traffic and is not linearly scalable due to the delay in evaluating every single user request

before forwarding the request to its destination. Since most enterprise networks use

- 14 -

Secure Sockets Layer (SSL) to encrypt the network traffic in motion, the network packets

will be unreadable unless the processing occurs at an SSL termination endpoint where the

traffic is decrypted. These types of issues can be easily overcome by evaluating log files

created by various computer systems.

2.2.3 Intrusion Detection Postmortem

Garcia, et al. proposed an off-line solution [Garcia12] to mine client log files to identify

the source of a security breach. Given a security incident has already been detected, and a

set of client log files, their system will attempt to locate the exploit in one of the log files.

Postmortem intrusion detection is primarily used to discover how an intruder gained

access to a system, what subsystems were accessed, and what information was

compromised. The solution assumes that a security breach has already occurred and

bypassed the Intrusion Detection System or any other security controls in place. This

solution uses a combination of anomaly detection and a classification technique called

KHMM which utilizes a Hidden Markov Model (HMM) and k-means clustering. The

main idea around their work is that an attack would result in a sequence of system calls

being logged that would not normally appear in normal activity. Normal log data is used

to create a normal behavior profile. First, the log files are shrunk by replacing repetitive

sequences with a meta-symbol. The log files are then pre-processed using a sliding

window containing one hundred elements, stepping through the log file one hundred

elements at a time. The last step builds the normal activity model from vector sequences

in each window. The resulting model is used for detection. The KHMM process is

composed of three steps. First, the preprocessed input is clustered using K-means. Then

- 15 -

the sliding window approach is used to create an HMM for each window. The last step

uses an anomaly detection to compare each window with the average HMM from the

previous step. If two or more consecutive abnormal windows are detected, they are

marked for verification by a security analyst. The training and validation sets were

composed of 32 log files from three Unix based systems (REL4, Fedora 8, and Ubuntu

9.04). The attack logs were synthetically generated using “buffer overflow” and “user to

root” attacks. Experiments resulted in an average detection rate of 81.99% and false

positive rate of 4.6%.

A major shortcoming of the solution proposed by Garcia et al. is that it does not detect

intrusions; instead, it attempts to locate abnormal activity in a collection of client log files

after a security breach has already been deemed to have occurred. Secondly, their

solution can be only implemented in an off-line manner because it is not linearly scalable.

This is primarily due to the fact that their solution evaluates every single user action.

Scalability can be achieved by using aggregates over time of all user activity. Their

solution implements a sliding window that is based on the number of events from an

individual user and slides over the user session in increments equal to the size of the

window. This method allows for a user sequence to cross window boundaries. Hence this

presents a likely possibility that an attack sequence will be overlooked. This issue can be

resolved by sliding the window using smaller increments.

Lastly, their solution is not effective because it only considers one log source type which

records individual user commands. This solution may lend itself to a low false positive

rate; however, if all user activity is not captured in the log, then it is highly probable that

- 16 -

a security breach will go unnoticed. In order to overcome this problem, multiple server

source log files must be evaluated to get a complete picture of overall user activity.

2.2.4 Training a Neural Network to Mimic a Firewall

Valentan and Maly, in “Network firewall using artificial neural networks,” train a multi-

layer perceptron (MLP) artificial neural network to learn the rules of a firewall from the

network traffic using the back propagation method [Valentan13]. The network consisted

of 3 output neurons (ALLOW, REJECT, DENY), 49 input neurons, and 13 hidden

neurons. The input neurons were mapped to the binary representation of IP (32 bit), port

(16 bit), and protocol (1 bit). If the activation function (sigmoid) did not fire any of the

output neurons, the network assumed the network packet was malicious and dropped it.

The accuracy of the neural network on the testing set was 99.79%. A training dataset was

generated before each epoch. The network used a cross-validation method for training.

The generated dataset was split into two distinct sets (80% for training, and 20% for

testing), the former for training, and the latter for testing. Network packets were created

by randomly selecting a rule from the firewall table, and then randomly generating a

network packet to match that rule. The training dataset consisted of a ratio of 4:1 DENY

to ALLOW network packets. For testing, the dataset consisted of an equal ratio of DENY

and ALLOW packets. The table of rules contains the associated action of ALLOW,

REJECT, or DENY. The neural network is given the correct action during the training

phase. The difference between the REJECT and DENY action is that DENY results in the

packet being dropped with no response being sent to the source resulting in a “connection

timed out” error. In the case of a REJECT action, the packet is prohibited from being sent

- 17 -

further. However, an ICMP destination unreachable response is communicated back to

the source. Evaluation of the performance of the neural network was performed by

comparing the total false positives and false negatives to the total number of packets

evaluated. False positives were defined as malicious packets that were allowed. False

negatives were normal packets that were blocked.

Training a neural network to learn the rules of a firewall is not an effective method of

detecting or deterring intruders. The success of their solution is dependent on how

effective the rules are at blocking malicious traffic. Commercial firewall and intrusion

detection software is a better alternative for hardening the network security posture. A

neural network can supplement a commercial intrusion detection system, but must be

non-intrusive, and cannot impede normal operations.

2.3 Shortcomings of existing solutions

The most prevalent shortcoming of all the solutions reviewed is that they only detect and

prevent individual attacks and not coordinated distributed attacks [Abad03]. Many

attacks are not identified by a single log source but instead discovered when correlating

information from multiple log files [Abad03]. If the attack does not result in an event

being logged in the log file that is being monitored, then the attack cannot be detected

using existing approaches.

Scalability is another major factor in evaluating the effectiveness of a solution. In the

world of Big Data, the amount of information being stored and searched can easily grow

- 18 -

to several gigabytes very quickly [Garcia12]. Hence, a solution that does not scale

linearly can result in slow detection response times or total system failure.

Additionally, a solution that evaluates raw network traffic to detect intrusions will result

in overhead that will eventually inhibit the traffic being delivered to its destination

promptly. Intrusion Detection Systems and Firewalls serve as protection controls to

harden the security of the network. These systems should be complemented by

implementing detection systems that are less intrusive.

- 19 -

Chapter 3: Proposed Approach

PROPOSED APPROACH

3.1 Overview

This research introduces the concept of a time slot. A time slot represents a small window

in time which contains aggregate feature counts for that time interval. The time slot ts

slides over a fixed window of time tw.

The proposed approach consists of five major steps (Figure 4) with the output from each

step serving as the input to the subsequent step in the process. The first step in the

process, Data Collection, involves identifying and extracting log files from production

systems.

Figure 4: Process Flow Diagram

- 20 -

Data pre-processing is required to transform the data into a format usable by machine

learning algorithms. Feature Selection is the process of identifying and selecting relevant

features from the pre-processed dataset. Unsupervised learning is used to identify and

learn patterns of user activity. This can be accomplished using clustering techniques.

Feature selection and unsupervised learning only need to occur for training purposes. In

the Supervised Learning step, the model is trained and evaluated using a classification

technique using the labeled dataset from the previous step. After the model produces

acceptable results, the model is trained and can be used in production phase to detect

abnormal user activity.

In this research, a log entry (or instance) is referred to as an event. The term “source” is

used to refer to an instance of a log file. The term “index” is used to refer to loading and

parsing a log file using a search tool. The term “source type” is used to refer to a

collection of log files of the same type. For example, the source type Neptune refers to

the collection of log files from the Microsoft Internet Information servers used to service

requests to the Microsoft Exchange servers. Microsoft Exchange is a Windows based

email system.

3.2 Data Extraction and Transformation

This step is composed of three sub-tasks that collectively produce the required datasets

for machine learning to occur. The data collection sub-task is the process of identifying,

extracting, and integrating log data from the source systems into a single repository. Pre-

processing is required to reduce the size of the dataset and transform it into a sliding

- 21 -

window representation. Feature selection, the process of identifying a set of features from

the data to be used in machine learning, is only performed for initial training and

evaluation of the model.

3.2.1. Data Collection

A familiarity with all available log source types is necessary for the purposes of detecting

cyber attacks. Interviewing security professionals to identify a list of available source

types is the first step in data collection. The available sources typically differ among

organizations depending on their network architecture. However, possible source types

may include email usage activity, firewall data, wireless access point (WAP) data,

browser activity, physical facility access data, and Security Information and Event

Management (SIEM) data [Mahmood13]. Web application log files are also prime

candidates for consumption. Integrating these sources into a single repository allows us to

build a comprehensive picture of user activity across multiple systems. Such a repository

will allow us to gain insight into user activity that may be otherwise missed if examining

the sources individually.

Understanding how any form of an attack could manifest itself in each of the source types

is necessary for identifying potential attributes for feature extraction. The last step of data

collection is identifying candidate features for extraction. The results of this step are

needed in the pre-processing step where the feature extraction occurs.

- 22 -

3.2.2. Pre-Processing

Data transformation operations are used to convert the dataset into an appropriate

structure to facilitate machine learning. Data aggregation and feature selection are

common data transformation techniques used to obtain a reduced representation of the

dataset without impacting its predictive accuracy [Han06].

The first step in pre-processing is to align the events in each of the source types by their

respective time stamp and compute aggregate feature counts per unit time. The next step

computes aggregate counts per time slot. A time slot has a fixed size and slides through

time incrementally by one unit. For example, a time slot starting at time index t and size

N will contain the count of feature occurrences starting at t and ending at t+N-1. Each

row of the pre-processed dataset represents a collection of feature counts Fi for a single

time slot tsj. A conceptual representation of the resulting pre-processed dataset with the

sliding time window is depicted in Figure 5.

Figure 5: Pre-processed dataset with sliding time window

3.2.3. Feature Selection

A feature is an input variable or attribute that is binary, categorical or continuous in

nature. The primary focus of feature selection is concerned with selecting relevant and

informative features. However, other benefits exist, such as to limit storage requirements,

increase calculation speed, increase predictive accuracy, and to gain an understanding of

the process that generated the dataset [Guyon06].

Integrating data from multiple sources may result in a dataset containing hundreds of

features some of which may be irrelevant or redundant. Redundancy can be detected by

performing correlation analysis. Correlation analysis evaluates the correlation between

two features. Chi-square is a common statistical method used to detect redundancy. There

are other feature evaluation measures, such as Information Gain, Gain ratio, and the Gini

index [Han06].

Selecting the best feature set often requires human expertise to convert raw data into a

useful set of features. However, a variety of feature selection methods can be used in the

absence of a subject matter expert (SME). Such methods are classified as either filters,

wrappers, or embedded methods. Classical statistical methods which use correlation

coefficients, such as the T-test, F-test, and chi-square, are types of filter methods used to

assess variable independence. Filters calculate feature ranking based on classic statistical

methods, where wrappers use the performance of a machine learning algorithm trained

with the given feature subset. Embedded methods perform feature selection in the process

of training, and are specific to a machine learning algorithm [Guyon06]. The hidden

- 23 -

- 24 -

layers generated during training in a neural network are an example of an embedded

method.

3.3 Unsupervised Learning

Unsupervised learning techniques are typically used when the class label of each data

element in a dataset is unknown. Clustering, a type of unsupervised learning is the

process of grouping similar data elements into classes or clusters. Euclidean, Manhattan,

and Minkowski are common similarity measures used by clustering algorithms. There are

a variety of different types of clustering techniques, including but not limited to

partitioning, hierarchical, density-based, and grid-based methods.

Outlier detection is a common application of clustering. Outliers are data elements that

are far from all other elements and fall outside of any cluster. In some cases, the outlier

may provide more insight into a problem than the normal items. Applications of outlier

detection include credit card fraud detection and monitoring of electronic commerce for

criminal activities. Clustering may be used in lieu of manual classification when working

with very large datasets which could be very time-consuming and prone to human error.

Clustering is highly adaptable to change and can identify distinguishing features in the

dataset. However, it also has some challenges. For example, clustering a large dataset

may lead to biased results. Additionally, the results can be affected by noise, outliers, or

missing elements. Mixed data types introduce additional complexity.

- 25 -

K-means is a common partitioning algorithm which calculates the center of each cluster

using the mean value of all the objects in the cluster. K-medoids is similar, but instead of

using the mean for the center of the cluster, it uses objects located near the center of the

cluster. Partitioning based methods must be extended when working with very large

datasets.

3.4 Supervised Learning

Supervised learning is the process of training a machine to accurately classify an instance

or predict a value based on past examples. Data classification uses a labeled set of data

called a training set to train a model for prediction, and a test set for evaluation purposes.

There are several algorithms available used for classification. A renewed interest in

neural networks has peaked with recent technological advances in computing power.

Deep neural networks are especially known to perform well with large datasets

[Edwards15].

3.5 Measurements and Evaluation

The following performance measures were used to evaluate the effectiveness of the

proposed model. Accuracy is an overall measurement. However, Recall and f-score are

equally important. For example, if an alert is raised when there is no security incident in

progress, the cost is likely an inconvenience, however, if a security incident goes

unnoticed, the cost could be devastating depending on the nature of the incident

[Alpaydin14].

- 26 -

Accuracy (Equation 1) is defined as the ratio of correctly classified time slots to the total

number of time slots [Alpaydin14].

Equation 1: Accuracy

Precision (Equation 2) is defined as the ratio of true positives to all time slots classified as

positive. For example, time slots correctly classified as normal to the total number of time

slots classified as normal [Alpaydin14].

Equation 2: Precision

Recall (Equation 3) is defined as the ratio of true positives to the total number of actual

positive time slots. In other words, the number of time slots classified correctly to the

total actual time slots [Alpaydin14].

Equation 3: Recall

F-score is defined as the harmonic mean between precision and recall. This measure

discourages models that sacrifice one measure over another [Han06].

- 27 -

In addition to measuring the detection performance, the training and test time was also

evaluated. These measures were used to support the claim that this model is accurate,

fast, and scalable.

This approach was assessed through experimentation using datasets of differing time

granularity. An initial model and preliminary results using two distinct datasets are

presented in the next chapter. Chapter 5 introduces additional enhancements to the model,

a third dataset, and compares the results on each dataset.

- 28 -

Chapter 4: Ini tial Model and Preliminary Results

INITIAL MODEL AND PRELIMINARY RESULTS

4.1 System Architecture

The proposed system architecture, depicted in Figure 6, was implemented using Splunk

Enterprise Edition 6.42 [Splunk17], R-Studio, and three sources which will be described

in more detail in the next section. The source log files were manually loaded into Splunk

using its web interface. However, a Splunk forwarder may be used to forward log files to

the Splunk indexer for parsing and storing in real-time. A Splunk forwarder is also

capable of receiving log data on a dedicated TCP port from high-speed appliances, such

as a firewall. The Splunk search head hosts the web-based user interface and executes

interactive searches and presents the results to the user.

Figure 6: Proposed Solution Architecture

- 29 -

Splunk, a commercial log aggregation application, is used for indexing, searching, and

transformation of log data. Splunk was chosen for its ease of use, fast performance, and

advanced search language functionality. Loading a log file into Splunk can be initiated

via drag and drop operation, and completed with just a few mouse clicks. Additionally,

Splunk’s architecture makes it a primary candidate for use in an online implementation.

Since Splunk requires log files to be no larger than 500 MB in size, a log file splitter

utility was used to load and index the log file. Due to the massive size of the logs, the

import process spanned several days. The status of the import process can be determined

anytime during or after the log import process by executing the Splunk command

depicted in Figure 7. This command will display the source type, first event, last event,

and a total number of events logged for each source type.

| metadata type=sourcetypes | eval firstEvent = strftime(firstTime, "%m-%d-%Y %H:%M:%S") | eval

lastEvent=strftime(lastTime,"%m-%d-%Y %H:%M:%S") | table sourcetype, firstEvent, lastEvent,

totalCount | sort firstEvent

Figure 7: Verify Log File Import

A Splunk search command was executed to create a dataset of aggregate feature counts in

one-minute intervals. This aggregated data was then exported to a CSV file, and fed into

the Pre-Processing module. The Pre-Processing module converts the one-minute interval

total counts to into a five-minute sliding window representation. For initial training, the

data is fed into the Clustering Module where the dataset is classified and labeled. The

resulting classified dataset is used by the Deep Learning module for training and testing.

After the model is trained, Pre-Processed data is then fed directly into the Deep Learning

- 30 -

module for incident detection. The system will generate in real-time alerts and updates to

dashboards when it detects abnormal activity.

4.2 Data Collection

The University of North Florida Information Technology Security Department provided a

“sanitized” set of log files used for this experiment. These files were extracted from real

production system logs and altered to obscure user information. The log files are listed in

Table 1.

Table 1: Source Log Files

Two datasets were extracted from the integrated log files in Table 1 for the purposes of

evaluating the model performance with varying parameters. These datasets are defined in

Table 2. The main difference between the two datasets is the size of the dataset and its

time window. Experimentation was performed using each dataset.

- 31 -

Table 2: Dataset Definitions

The datasets depicted in Table 2 were created using the time slot concept to model the

data. The time slot size selected for both datasets was five minutes. Each row in the

dataset contains aggregate feature counts for five minutes. For example, in three hours of

log data examined, one time slot represented aggregate counts of 26,807 events. This has

the effect of reducing the number of resources needed to represent all the data for each

dataset drastically allowing the system to scale linearly as new log files are introduced.

The log files for this research were extracted from the source systems, compressed, and

transferred to DVD media. As a result, this research method is conducted in an off-line

manner. A production deployment is not in the scope of this research. However, this

research can be implemented in a near real-time manner. The training and test datasets

needed for this research are created using the log files and contain aggregate count values

in time series.

- 32 -

4.3 Feature Selection

The features selected for machine learning are derived counts based on specific attributes

from one or more log files. Selecting the individual user names or IP values as features

would result in a sparse matrix which would exponentially increase the memory

requirement. By examining three hours of the data collected it becomes evident that such

a solution would not be linearly scalable. In one particular case, there were no more than

316 active users out of a total 2,436 possible users. Figure 8 depicts the distribution of

active users for this timeframe. Similarly, approximately 50% of the possible IP

addresses were active at any point during the same timeframe. Consequently, these

attributes were not selected as features.

Figure 8: Active User Distribution

- 33 -

The features selected for this research (Table 3) were derived from aggregate values

using the Neptune, DHCP, and IPS source types.

Table 3: Features used for Machine Learning

The “Neptune” source type contains event data from four Windows servers running

Microsoft Internet Information Server (IIS). The structure of this source type adheres to

the W3C Extended Log File standard [Hallam-Baker96]. The events contained in this

source type are the result of user email activity. The features derived from this source

type include the total number of HTTP POST and GET requests, the total number of

successful and unsuccessful requests, the distinct count of users, and the number of

Active Sync, Web Access, and MAC users. The sample event in Figure 9 depicts in bold

- 34 -

print the portions used to derive the postCount, activeSyncUserCount, uniqueUserCount,

and HTTP2XX features. The features uniqueIPCount and uniqueUserCount appear to

have a strong correlation as shown in Table 4.

D:\Elfa_Data\Neptune\Raw\4\u_ex150419_x.log,293972,2015-04-19,23:59:59,139.62.192.204,POST,

/Microsoft-Server-

ActiveSync/default.eas,User=User951&DeviceId=ApplDKVLK09WDVGF&DeviceType=iPad

&Cmd=Ping&CorrelationID=<empty>;&ClientId=EPYTCILETMFIVQOYCFG

&cafeReqId=f0cf56aa-c4b7-4474-8f5e-4ec2b0e4d895;,443,UNFCSD\User951,139.62.193.253,

Apple-iPad3C2/1206.69,,200,0,0,24625,76.122.20.229

Figure 9: IIS Log Entry Sample

Table 4: Correlation Results for Features

The DHCP source type contains event data from three UNIX servers which process

requests for the network (IP) address for hosts connecting to the network using Dynamic

Host Configuration Protocol [Droms97]. The sample event depicted in Figure 10 is used

to derive the feature DHCPDiscover.

- 35 -

Apr 19 23:59:58 thrasher dhcpd: DHCPDISCOVER from 40:25:c2:7b:d3:14 via eth0

Figure 10: DHCP Log Entry Sample

The IPS source type contains event data from the Tipping Point Intrusion Prevention

System (IPS), an industry standard Intrusion Prevention System. The IPS system logs

events when any network traffic matching a rule is detected. The sample event depicted

in Figure 11 is used to derive the following features: blockCount, facultyCount , and

foreignIPCount.

2015-04-19 23:59:34",Low,"7611: DNS Reputation",Reputation,Block,1,Faculty-

Staff,139.62.200.212,34847,199.249.119.1,53,192,download.newnext.me

Figure 11: IPS Log Entry Sample

4.4 Pre-Processing

The Splunk search in Figure 12 was used to create the datasets for this research by

varying earliest and latest date-time values. The results were exported into a CSV format.

- 36 -

index=main (sourcetype=neptune OR sourcetype=tpsms OR sourcetype=dhcp) earliest=04/19/2015:21:00:0

latest=04/20/2015:0:0:0 | eval statusCd=substr(sc_status,1,1) | iplocation DEST_IP | bucket _time span=1m | eval

dhcpCMD=if(match(_raw,"DHCPDISCOVER"),"DISCOVER","") | eval userType=if(like(cs_uri_stem,"%owa%"),"OWA",

if(like(cs_uri_stem,"%Microsoft-Server-ActiveSync%"),"ASYNC", if(like(cs_User_Agent,"MacOutlook%"),

"MACOUTLOOK", "OTHER"))) | stats count(eval(cs_method="POST")) as postCount, count(eval(cs_method="GET"))

as getCount, dc(cs_username) as uniqueUserCount, dc(OriginalIP) as uniqueIPCount, count(eval(statusCd="2")) as

HTTP2XX, count(eval(statusCd="4")) as HTTP4XX, count(eval(statusCd="5")) as HTTP5XX, mode(FILTER) as

primaryReason, count(eval(userType="OWA")) as owaUserCount, count(eval(userType="ASYNC")) as

activeSyncUserCount, count(eval(userType="MACOUTLOOK")) as macUserCount,

count(eval(dhcpCMD="DISCOVER")) as DHCPDiscover, count(eval(Country!="United States")) as foreignIPCount,

count(eval(PROFILE="Faculty-Staff")) as facultyCount, count(eval(PROFILE="Dorms-Guest")) as studentCount,

count(eval(ACTION="Block")) as blockCount, count(eval(ACTION="Permit")) as permitCount, mode(VLAN_NUM) as

primaryVLAN by _time

Figure 12: Splunk Transformation Query

The exported CSV data is converted into a sliding window representation using an R-

Script. The purpose of this step is to preserve a continuous set of temporal values as the

system advances through each row in the dataset which contains the aggregate feature

counts for one time slot. For example, given a time slot size of five minutes and a sixty

minute time window starting at 21:00, the first row in the dataset contains aggregate

feature counts for the time slot from 21:00 through 21:04. The second row contains

aggregate feature counts from 21:01 through 21:05, and so forth. The start time for each

subsequent time slot starts one-minute later than the previous time slot began. The time

slot start and end times are included as the first two fields of each dataset as shown in

Figure 13. These time fields were not used for machine learning, instead, are included in

order to provide the actual time frame to a security analyst for investigation purposes.

- 37 -

Figure 13: Partial Dataset Image

4.5 Unsupervised Learning Results

A classified dataset consisting of normal and abnormal activity is needed for supervised

learning to occur. Classification would be extremely labor intensive due to the massive

size of the log files. For example, if activity in one-time slot warranted investigation, a

security analyst could potentially need to review over 30,000 log entries, thus making

visual identification and classification impossible.

Generating synthetic data for abnormal activity was considered because there were no

known security incidents during the timeframe the log data was collected. However,

there is an inherent risk when assuming that the log data contains only normal activity. If

anomalies exist in the data, the model may inaccurately classify instances, or worse

ignore real security incidents. Consequently, clustering was used to identify anomalous

activity within the training dataset.

 The Partitioning Around Medoids (PAM) algorithm was chosen to classify the dataset

into three clusters of activity. PAM was chosen because it is resistant to outliers and

allows clustering of categorical values. Each cluster is classified as normal, critical, or

- 38 -

warning, and is labeled green, red, or yellow, respectively. The cluster score is calculated

from the median value of the sum of all features and is used to determine the label

assigned to each cluster. R code for calculating the cluster score is depicted in Figure 14.

The cluster with the lowest score was labeled green. The cluster with the highest score

was labeled red, and the remaining cluster was labeled yellow.

l<-which(wbpam$clustering %in% c(1))

cluster.scores<-

c(median(rowSums(tw[l,])))

l<-which(wbpam$clustering %in% c(2))

cluster.scores<-c(cluster.scores,

median(rowSums(tw[l,])))

l<-which(wbpam$clustering %in% c(3))

cluster.scores<-c(cluster.scores,

median(rowSums(tw[l,])))

print(cluster.scores)

Figure 14: R Code to Calculate Cluster Scores

The classification results for each dataset are shown in Figure 15. It is worth noting that

all of the cluster scores resulting from Dataset 2 are lower than those from Dataset 1. The

green cluster score from Dataset 2 is fifty-seven percent lower its counterpart.

Figure 15: Clustering Confusion Matrixes

- 39 -

Figure 16 contains box plots depicting the difference in the scale of activity for each

dataset. The Y-axis represents the sum of all features for each instance in a cluster. The

normal and warning clusters in Dataset 2 overlap. Further analysis will reveal that the

skewed results from the clustering Dataset 2 were due to clustering on such a large time

window.

Figure 16: Cluster Scores

Typical user activity patterns appear to follow a Gaussian distribution throughout a

normal business day. This is illustrated by the data from Dataset 2 in Figure 17. As a

result, the peak activity times in Dataset 2 were classified as red, non-peak as green, and

the transition period as yellow.

- 40 -

Figure 17: User Activity Distribution

Table 5 depicts the time slots color-coded according to each cluster in Dataset 1 and

includes the total events, average number of events per minute (EPM), start and end

times, and classification duration in minutes.

- 41 -

Cluster Beginning
Time Slot

Ending
Time
Slot

Start
Time

End
Time

Duration
(min)

AVG
EPM

Total
Events

Green 1 16 21:00 21:20 20 1,324 26,474

Yellow 17 18 21:16 21:22 6 2,934 17,603

Red 19 34 21:18 21:38 20 5,456 109,111

Yellow 35 37 21:34 21:41 7 3,623 25,363

Green 38 83 21:37 22:27 50 1,250 62,501

Yellow 84 105 22:23 22:49 26 3,054 79,391

Red 106 108 22:45 22:52 7 4,018 28,123

Yellow 109 110 22:48 22:54 6 3,384 20,303

Green 111 115 22:50 22:59 9 2,110 18,991

Yellow 116 117 22:55 23:01 6 3,219 19,315

Red 118 152 22:57 23:36 39 5,361 209,096

Yellow 153 157 23:32 23:41 9 4,938 44,442

Red 158 166 23:37 23:50 13 5,297 68,858

Yellow 167 169 23:46 23:53 7 3,349 23,4438

Green 170 176 23:49 00:00 11 1,614 17,750
Table 5: Time Slot Classification Results

Plotting the feature postCount confirms anomalous user activity occurred during the

three-hour time window, shown in the top half of Figure 18. The red line is the average of

events per minute of the red clusters in Table 5. The activity above this line indicates

abnormal activity. The area between the yellow and red lines is indicative of a border

state between normal and abnormal activity.

- 42 -

The bottom chart in Figure 18 is a time chart of the feature postCount from Dataset 2

using the same boundaries as the top graph. The amount of time above the red line is

notably smaller than that from Dataset 1.

Figure 18: HTTP POST Requests

Approximately 38 percent of the user activity in Dataset 2 was classified as abnormal. If

we assume user activity remains constant throughout the day, the thresholds should

remain constant. However, the chart of Dataset 2 (48 hours) in Figure 18 using the same

threshold for abnormal activity as Dataset 1, shows most of the activity is below the

control boundary. It is apparent that the threshold for abnormal activity changes

throughout the day based on user activity and the size of the time window chosen impacts

the accuracy of the clustering results. In this case, a larger time window produced biased

results.

- 43 -

Future experiments using a smaller time window and a larger period of activity are

expected to result in more accurate clustering and facilitate learning routine activity

patterns specific to any hour of any day of the week.

4.6 Supervised Learning Results

The R package “h2o” was used to train and test a neural network using the deep learning

algorithm. The dataset was split into 70/30 % for training and testing, respectively,

maintaining an equal proportion of each class in both the training and test sets.

The experiments conducted used one hundred epochs and the hyperbolic tangent for the

activation function. Determining the optimal network topology is not a trivial task.

Therefore these experiments used a simple network topology of one hidden layer with

two neurons. Table 6 depicts the overall results of the deep learning algorithm on both

datasets. The larger dataset (Dataset 2) resulted in greater accuracy. The confusion

matrixes for both datasets are depicted in Table 7. The accuracy of the Deep Learning

algorithm was slightly less than that of the Weka Multi-Level Perceptron (MLP). The h2o

deep learning algorithm was significantly faster than the Weka MLP.

- 44 -

Table 6: Deep Learning Results

Table 7: Deep Learning Confusion Matrixes

- 45 -

Chapter 5: Experiments and Results

EXPERIMENTS AND RESULTS

5.1 Overview

In the previous section, it was shown that user activity typically follows a normal

distribution and can vary with the time of day. In order to account for the dynamic nature

of user activity and preserve the prediction accuracy of the model, the experiments

described in this section will introduce two new features and several new methods, such

as normalization, rule-based clustering, split-level clustering, and topology analysis.

Finally, the model was trained and evaluated using the original datasets used in the

previous section, in addition to a newly created dataset.

5.2 Data Collection

A third and final dataset that spans approximately two calendar weeks was created for the

purposes of evaluating the model performance on a larger sample of log data. This

dataset was used to train the model to learn normal activity patterns that occur at various

times during the day and evaluate its performance at detecting those user activities that

fall outside of the normal range. It is worth noting that the new dataset is a superset of the

other two datasets (Table 8).

- 46 -

Table 8: Dataset Definitions

Each dataset is composed of one-minute feature aggregates derived from the original log

files. The features used for machine learning are depicted in Table 9. The source log file

of each feature is listed with its description. This is the same feature set used in the

previous section, with the addition of the two new calculated fields: dhour and wday.

The purpose of introducing the new features is to model the dynamic nature of user

activity over time. For example, a normally occurring pattern during the afternoon may

not normally occur in the middle of the night, and hence is suspicious in nature or could

be an attack.

- 47 -

Table 9: Features used for Machine Learning

5.3 Pre-processing

The pre-processing module converts the datasets listed in Table 8 into a five-minute

sliding window representation by summing the feature aggregates. The reason for using

the sum instead of the median or mean is that the mean or median could mask a subtle

fluctuation in an activity that would otherwise go unnoticed. Additionally, the pre-

processing module introduces two new features which allow the neural network to

accurately differentiate abnormal activity from fluctuations that may normally occur

throughout the day. The new features are wday and dhour. The wday feature is the

- 48 -

ordinal number of the calendar day of the week (0-6). The dhour feature represents the

hour of the timeslot (0-23). The time required for preprocessing each dataset is listed in

Table 10.

Table 10: Pre-processing Times

5.3.1 Normalization

Normalization is performed by the pre-processing module to prepare the data for machine

learning. The purpose of normalization is to bring all features into a common range so

that one feature does not have higher precedence than any other feature. Normalization

was performed on each feature column using Min-Max normalization [Figure 19].

Figure 19: MinMax Normalization

Normalization allows for easier comparison when charting features with a different scale.

Additionally, normalization can speed up the time required to train the neural network

[Han06]. Normalizing the dataset preserves the shape of the feature plots as can be seen

in Figure 20.

- 49 -

Figure 20: Effect of Normalization

5.4 Unsupervised Learning Results

The source log files used for this research were not known to have any intrusions at the

time they were collected, and as a consequence, the datasets were not labeled. Abnormal

activity patterns were discovered to exist within the data. However, there lacked a

sufficient sample to train a neural network effectively. Due to the size of the log files,

manual labeling of a dataset would require intensive effort. Hence, the Partitioning

around Medoids (PAM) algorithm was used to create a labeled dataset with a

proportional number of examples for each class. The PAM clustering results are shown in

Table 11.

- 50 -

Table 11: PAM Clustering Results

Three classifications were chosen to model a common business view of user activity. The

classifications green, yellow, and red were used. These classifications also reflect the

criticality or urgency of activity. Normal user activity patterns are labeled green. Known

attack patterns or activities that have a high sense of urgency are labeled red. Patterns that

are suspicious, unknown or are a precursor to a cyber attack are labeled yellow.

Each of the datasets was partitioned into three clusters and labeled using a cluster scoring

function. The cluster score was calculated by summing of the features of the cluster’s

medoid. The cluster with the lowest score was labeled green. The cluster with the largest

score was labeled red, and the remaining cluster was labeled yellow. The medoids for

each of the datasets are shown in Tables 12, 13, and 14.

- 51 -

Table 12: Medoids for Dataset 1

- 52 -

Table 13: Medoids for Dataset 2

- 53 -

Table 14: Medoids for Dataset 3

5.4.1 Rule-based Clustering

Rule-based clustering was introduced to provide a different method of labeling data since

clustering resulted in a near linear split of the data. This method attempts to fit the data to

a more complex, non-linear equation which would be more representative of an attack.

Additionally, a Subject Matter Expert (SME) may classify some events in the logs

differently from another SME. The rule set chosen does not impact the validity of this

- 54 -

approach, as such the rules used in this experiment could be replaced with an entirely

different set and achieve similar results.

This method utilized four rules that explicitly reference features from three different log

sources. The rules were derived from an interview with a security analyst from a

discussion on what events could represent attacks in the logs. Using the same

classifications introduced earlier, the classes were defined as follows. Instances that

matched one of the rules were labeled yellow, while instances that matched more than

one rule were labeled red. Instances that did not match any of the rule patterns were

labeled green. The results of the rule-based classification are depicted in Table 15.

Table 15: Rule-based Clustering Results

The rules used in this method are listed below.

▪ Rule 1: High rates of DHCP discover requests are representative of a DHCP

starvation attack.

▪ Rule 2: High connection counts to foreign IP’s with a high rate of HTTP POST

requests could be a malware attack.

- 55 -

▪ Rule 3: High rate of HTTP GET requests with low unique user counts could be

representative of a denial of service attack.

▪ Rule 4: High number of unauthorized attempts for access is likely to be

reconnaissance for an attack.

In order to provide a proportional number of examples for each class, the quantile

function was used on the feature values to establish a dynamic threshold. For example, all

instances where the DHCP discover value exceeds the 75% quantile were considered an

attack. This method was faster than using PAM clustering. Clustering the two-week

dataset using PAM took just under two hours compared to the rule-based method which

took just over two minutes. The rule-based method also resulted in a smaller proportion

of non-normal examples than the PAM method. For example, using the PAM method on

Dataset 3 resulted in approximately 33% of activity in each cluster. The rule-based

method classified 18% of the activity as critical or red.

5.4.2 Feature Ranking

After the datasets had been labeled, the features were ranked using an Information Gain

attribute evaluator using Weka. The feature ranking for the PAM clustered data is shown

in Table 16. The wday feature is a constant value in the three-hour dataset. Hence it was

ranked zero. Any of the features ranked zero could be dropped without impacting the

accuracy of the model, however, all of the features were retained for the experiments in

this research. The new features have a higher ranking in the other two datasets. The

- 56 -

features targeted by the rule-based clustering were ranked higher than the other features

as can be seen in Table 17.

Table 16: PAM Feature Ranking

Table 17: Rule-based Feature Ranking

- 57 -

5.4.3 Split-level Clustering

Split-level clustering was introduced to simulate a non-linear method of classifying the

dataset. PAM is used to partition the dataset into three clusters. Each of the resulting

clusters is then partitioned using PAM to create three clusters which are labeled green,

yellow, or red according to their respective cluster score. The resulting nine clusters are

combined according to their labeled color and used to create a dataset which is then used

for evaluation purposes of the deep learning algorithm using multiple hidden layers.

Figure 21 depicts the process used by the split-level clustering method.

Figure 21: Split-Level Clustering Process

The split-level concept seems similar to hierarchical clustering; however it is not really

for several reasons. First, the algorithm used is Partitioning among Medoids (PAM)

which is a partitioning algorithm. Second, the number of clusters in hierarchical

clustering is determined by the height in the tree, whereas the number of clusters is

- 58 -

specified for PAM. There are two types of hierarchical clustering methods.

Agglomerative is a bottom-up technique which starts with every instance in its own

cluster, and then merges the clusters until they are all in a single cluster. Divisive, a top-

down strategy, starts with all the instances in one cluster and then subdivides the cluster

until each instance is in its own cluster. In the split-level method, the height is constant,

and the final number of clusters is controlled by k used in the second level which should

match the levels of user activity used for classification.

5.5 Supervised Learning Results

Supervised learning was performed using the h2o deep learning algorithm [h2o17] to

train and test the model using each of labeled datasets created during unsupervised

learning. The datasets were split into training and test sets comprising 70% and 30% of

the data respectively. The training set was used solely to train the neural network, and the

test set was reserved for testing and evaluation purposes. The parameters for the h2o deep

learning algorithm are the number of epochs, the activation function, and the hidden layer

topology. The hidden layer parameter is a vector containing the number of neurons for

each hidden layer. The activation function used was the Hyperbolic Tangent, and the

number of epochs used for this research was 1000. The optimal number of epochs was

determined through experimentation using 100, 1,000, and 10,000 epochs taking into

account the accuracy and time to train the model.

Deep learning tests were conducted using the PAM labeled datasets varying the number

of hidden neurons from 2 to 20 in a single hidden layer. The results shown in Table 18

- 59 -

are from a single test on each dataset. The deep learning algorithm automatically dropped

the wday feature in the three-hour dataset because the value was constant.

Table 18: Deep Learning Results using PAM Labeled Data

The resulting confusion matrices for each of the tests are shown in Table 19. There were

no false negatives for Datasets 1 and 2. There were ten false negatives for the larger

dataset where only two were classified as normal. There was only one false positive for

- 60 -

Datasets 1 and 2. The larger dataset resulted in seventeen false positives where only four

were classified as critical.

Table 19: Deep Learning Confusion Matrices for PAM Labeled Data

The single layer topology analysis in Table 20 shows the deep learning results for Dataset

1 of the various neuron configurations while holding all other parameters constant. There

is no difference in performance with two, three, or four neurons. Adding a fifth neuron

allowed the model to achieve 100% accuracy, precision, and recall.

- 61 -

Table 20: Single Layer Topology Analysis PAM Labeling Using Dataset 1

The single layer topology analysis for Dataset 2 is shown in Table 21. Two hidden

neurons produced the best accuracy for this dataset. Adding more neurons had no effect

and in some cases reduced the accuracy slightly. The total time to train the model was

only 5.69 seconds.

- 62 -

Table 21: Single Layer Topology Analysis PAM Labeling Using Dataset 2

The single layer topology analysis results for the largest dataset are shown in Table 22.

Ten hidden neurons produced the highest accuracy (99.33%) and took 170 seconds to

train the model. A single layer of six hidden neurons yielded an accuracy of 99.01%

while only taking 54.5 seconds for training.

- 63 -

Table 22: Single Layer Topology Analysis PAM Labeling Using Dataset 3

Deep learning tests were conducted using the Rule-based labeled datasets varying the

number of hidden neurons from 2 to 20 in a single hidden layer. The results shown in

Table 23 are from a single test on each dataset. The time to train the model using the

Rule-based labeled datasets was significantly longer than the PAM labeled datasets. For

example, the largest rule-based dataset took 90.5 seconds to train compared to the

comparable PAM labeled dataset which took 53.7 seconds. The accuracy of the Rule-

based datasets was also lower than the accuracy with the PAM labeled datasets.

- 64 -

Table 23: Deep Learning Results Using Rule-based Labeled Data

The resulting confusion matrices for each of the tests are shown in Table 24. Looking at

the red cluster, we can see there were no false negatives predicted for Dataset 1; thirty-

nine false negatives occurred while classifying Dataset 2, and only fourteen false

negatives were encountered classifying the test set of Dataset 3.

- 65 -

Table 24: Confusion Matrices for Rule-based Labeled Data

The single layer topology analysis in Table 25 shows the deep learning results for Dataset

1 of the various neuron configurations while holding all other parameters constant. A

single hidden layer with five neurons yielded an accuracy of 84.3% while classifying the

test set of Dataset 1.

- 66 -

Table 25: Single Layer Topology Analysis Rule-based Labeling Using Dataset 1

The single layer topology analysis in Table 26 shows the deep learning results using

Dataset 2 for the different hidden neuron configurations. The configuration using eleven

neurons in the single hidden layer yielded an accuracy of 95.47% with a training time of

28.1 seconds.

- 67 -

Table 26: Single Layer Topology Analysis Rule-based Labeling Using Dataset 2

The single layer topology analysis in Table 27 shows the deep learning results using

Dataset 3 for the different hidden neuron configurations. The configuration using five

neurons in the single hidden layer yielded an accuracy of 97.97% with a training time of

90.5 seconds.

- 68 -

Table 27: Single Layer Topology Analysis Rule-based Labeling Using Dataset 3

5.5.1 Neural Network Topology

Defining the neural network topology must be completed prior to training. Defining the

input and output layers are relatively straightforward. For the experiments conducted in

this research, eighteen neurons were used for the input layer, one neuron for each feature.

Three neurons were used for the output layer, one neuron for each possible classification.

Generally, there is no best practice for selecting the number of hidden layers or neurons,

but these values should not be arbitrarily selected [Han06]. As the number of neurons

increases, the neural network’s hypothesis function becomes more complex. Using more

- 69 -

than one hidden layer allows for implementing a more complex function on the data. An

overly complex hypothesis function will learn the function of the underlying data

including any noise resulting in poor generalization. This is known as overfitting. Finding

the hypothesis with the minimum training error will result in the best fit. Conversely, if

the hypothesis function is less complex than the data, the generalization error will be

high. This is known as under-fitting. Selecting the number of hidden layers and neurons

for each layer was accomplished by varying the number of hidden neurons in each layer

and examining the results.

As the patterns and relationships in the data become more complex, the required number

of hidden layers needed to learn a nonlinear relationship increase. In order to simulate

such a nonlinear equation, testing of multiple hidden layer configurations was

accomplished using the two split-level labeled datasets.

The optimal number of layers was determined by running tests on a single layer with 2 to

20 neurons. The number of neurons that produced the greatest accuracy or f-score with

the least amount of training time was then held constant while varying the second layer of

neurons from 2 to 20. Finally, a third hidden layer was added using the optimal number

of neurons identified in the previous two runs. The layer that produced the greatest

accuracy or f-score was selected as the most optimum hidden layer configuration.

The topology analysis for the first hidden layer using Dataset 2 is shown in Table 28. The

configuration with 16 neurons produced an accuracy of 97.2% with a training time of

39.5 seconds.

- 70 -

Table 28: Layer 1 Topology Analysis Split Level Using Dataset 2

The results from the next step using two hidden layers with the first layer having 16

neurons while varying the number of neurons in the second layer from 2 to 20 are shown

in Table 29. The hidden layer topology of 16, 15 neurons yielded an accuracy of 97.8%.

The two layer hidden layer topology is optimal because it yielded a greater accuracy than

the single layer topology. The gain was 0.6% accuracy at the cost of 20 seconds of

additional training time.

- 71 -

Table 29: Layer 2 Topology Analysis Split Level Using Dataset 2

The topology analysis for the first hidden layer using Dataset 3 is shown in Table 30. The

configuration with 17 neurons produced an accuracy of 94.2% with a training time of

200.8 seconds. The configuration with 15 neurons produced a lower accuracy of 91.5%,

but with a training time of 66 seconds.

- 72 -

Table 30: Layer 1 Topology Analysis Split Level Using Dataset 3

The first test conducted selected the neuron configuration that yielded the most accurate

results with the best time to train. The results from the next step using two hidden layers

with the first layer having 15 neurons while varying the number of neurons in the second

layer from 2 to 20 are shown in Table 31. The hidden layer topology of 15, 6 neurons

yielded an accuracy of 95%.

- 73 -

Table 31: Layer 2 Topology Analysis Split Level Using Dataset 3

The results of the third layer topology analysis with the first and second layer containing

15 and 6 neurons are displayed in Table 32. The best three layer configuration consists of

15, 6, and 12 neurons, yielding an accuracy of 93.1% and f-score of 91.8% with a

training time of 199.3 seconds. The two layer hidden layer topology is optimal because it

yielded a greater accuracy than both the single layer and third layer topology.

- 74 -

Table 32: Layer 3 Topology Analysis Split Level PAM Dataset 3

The second test used the 17 neuron configuration which yielded the most accurate results

in the single layer test. Examining the results of the second layer topology analysis in

Table 33, we can see a network topology configuration of two hidden layers with 17

neurons in each layer is the optimal choice yielding an accuracy of 96.3% and f-score of

96.2%. The best one layer configuration with 17 neurons was 94.2% accuracy and f-score

of 93.5%. The best three layer configuration with 17, 17, and 4 neurons yielded an

accuracy of 94.4% and f-score of 94.0%.

- 75 -

Table 33: Layer 2 Topology Analysis Split Level PAM Dataset 3

5.5.2 Additional observations

Scalability is achieved using the time slot to model the data. For example, Dataset 1

represented a total of 995,701 events in 176 instances. Time to test was 0.094 seconds

using 52 instances. Dataset 2 was created from 12,786,858 events and was reduced to

2,876 instances. Time to test was 0.093 seconds using 861 instances. The number of

instances increased by a factor of 16, but the time to test was faster by 0.001 seconds.

Dataset 3 was comprised of 18,896 instances and represented 102,993,636 raw events.

Time to test was 1.145 seconds. The time to test Dataset 3 was 12 times that of Dataset 1

- 76 -

where Dataset 3 was 363 times larger than Dataset 1. It is evident that increasing the

amount of data increases the time to test linearly.

Including additional log files will not increase the number of instances in the dataset, but

instead will only add columns equal to the number of features extracted from each log

file added.

5.5.3 Implementation considerations

There are several factors that should be considered before training the model whether it is

the initial training or subsequent feedback sessions. First, the security analyst will need a

tool for examining or discovering suspicious patterns in the log data. The PAM clustering

method used in this research does not serve as such a tool.

Additionally, each training session should use current data that contains a proportionate

number of examples for each class. There are a number of methods that can be used to

obtain attack training data. The easiest method is to use data gathered during a real

breach. Another method is to use Honey Pots, systems which are designed to ferret out

hackers and learn new methods. Logs gleaned from penetration or vulnerability scans can

also be a valuable source of log attack data. Lastly, existing data can be programmatically

modified to represent potential incidents or attacks.

Over time user activity patterns change, and new patterns may ensue. Also, existing

features may have been overlooked, initially deemed not relevant, or introduced through

- 77 -

the procurement of new computer system. As a result, the performance of the model will

eventually degrade and become unacceptable. In this event, features should be re-

evaluated for relevance prior to retraining the model with a fresh set of log data.

For subsequent training sessions, the security analyst can use logs that were manually

marked as suspicious or attack through normal daily investigations. When there are a

sufficient number of examples, they can be added to the initial dataset and used to retain

the model.

- 78 -

Chapter 6: Conclus ion and Future Work

CONCLUSION AND FUTURE WORK

The results of the experiments conducted in this thesis demonstrate that a classified

dataset with a proportional set of examples trained with the Deep Learning algorithm can

accurately detect abnormal activity. This method allows for multiple log source types to

be aligned using a sliding time window and provides a scalable solution which is a much-

needed feature.

In a typical enterprise environment, the amount of log data processed could vary from

several hundred gigabytes to a terabyte daily. The prototype developed in this research

was relatively small consisting of a set of eighteen features from three different log

source types totaling approximately twenty-five gigabytes in size. This research

demonstrated the prototype could very accurately model low complexity data with a

shallow network. However, the complexity of the data increases as more log sources and

features are introduced. This research demonstrated that highly complex data could be

accurately modeled using a deep neural network.

Detecting a cyber attack is just the beginning of a long, complicated investigative

process. The security analyst may need to perform risk mitigation actions, such as

blacklisting originating source IP’s and locking accounts. Logs files need to be examined

to identify any compromised accounts, originating IP’s, and all resources accessed by the

attacker. All related activities should be collected and examined several weeks or even

months before the detected event. Potential areas of future work are automatic correlation

- 79 -

and analysis of the log data from cyber attacks. Additional machine learning algorithms

and analysis required for automatic correlation can put a strain on computing resources

depending on the volume of data to be searched and velocity of the log data being

collected. Additional areas of future work include building a distributed computing

implementation such as Hadoop with terabytes of log data.

- 80 -

REFERENCES
References

Print Publications:

[Abad03]
Abad, C., Taylor, J., Sengul, C., Yurcik, W., Yuanyuan Zhou, & Rowe, K. “Log

correlation for intrusion detection: A proof of concept.” ASCAC ’03 Proceedings of
the 19th Annual Computer Security Applications Conference. December, 8, 2003, Las
Vegas, NV, USA, pp. 255-264.

[Alpaydin14]
 Alpaydın, Ethem. Introduction to machine learning. Cambridge, MA: MIT Press, 2014.

[Apte03]
Chid Apte. “The big (data) dig” OR/MS Today. 30.1 (Feb. 2003) pp. 24.

[Buczak16]
 A. L. Buczak, and E. Guven. "A Survey of Data Mining and Machine Learning Methods

for Cyber Security Intrusion Detection." IEEE Communications Surveys & Tutorials
18.2 (2016): 1153-76. Print.

[Edwards15]
Edwards, Chris. "Growing Pains for Deep Learning." Communications of the ACM, vol.

58, no. 7, July 2015, pp. 14-16.

[Garcia12]
K. A. Garcia, et al. "Analyzing Log Files for Postmortem Intrusion Detection." IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
42.6 (2012): 1690-704.

[Guyon06]
Guyon, Isabelle. “Feature Extraction: Foundations and Applications.” Springer-Verlag,

2006.

[Han06]
Han, Jiawei, and Micheline Kamber. Data mining concepts and techniques. San

Francisco: Morgan Kaufmann, 2006.

[Jacobs09]
Jacobs, Adam. "The Pathologies of Big Data." Queue 7.6 (2009): 10:10,10:19.

- 81 -

[Kott13]
Kott, A., and C. Arnold. "The Promises and Challenges of Continuous Monitoring and

Risk Scoring." Security & Privacy, IEEE 11.1 (2013): pp. 90-3.

[Kott14]
Kott, Alexander, Ananthram Swami, and Patrick Mcdaniel. "Security Outlook: Six Cyber

Game Changers for the Next 15 Years." Computer 47.12 (2014): 104-06.

[Mahmood13]
Mahmood, T Mahmood, T., and U. Afzal. "Security Analytics: Big Data Analytics for

Cybersecurity: A Review of Trends, Techniques and Tools". 2013 2nd National
Conference on Information Assurance (NCIA). December, 11 2013, Rawalpindi,
Pakistan. pp. 129-134.

[Ng15]
J. Ng, D. Joshi, and S. M. Banik. "Applying Data Mining Techniques to Intrusion

Detection". Information Technology: New Generations (ITNG) 2015 Proceedings of
the 12th International Conference on Information Technology. April 13, 2015, Las
Vegas, NV, USA. pp. 800-801.

[Razzaq14]
Razzaq, Abdul, et al. Semantic Security Against Web Application Attacks. 254 Vol.

Elsevier Inc, 2014.

[Sood13]
A. K. Sood, and R. J. Enbody. "Targeted Cyberattacks: A Superset of Advanced

Persistent Threats." IEEE Security & Privacy 11.1 (2013): pp. 54-61.

[Valentan13]
Valentín, Kristián, and Michal MALY. "Network Firewall using Artificial Neural

Networks." Computing & Informatics 32.6 (2013): 1312-27.

[Ye05]
Nong Ye, and T. Farley. "A Scientific Approach to Cyberattack Detection." Computer

38.11 (2005): pp. 55-61.

[Zhu02]
Y. Zhu and D. Shasha. “StatStream: Statistical monitoring of thousands of data streams

in real-time.” In VLDB 2002, Proceedings of 28th International Conference on Very
Large Data Bases. August 20, 2002, Hong Kong SAR, China, pp. 358-369.

- 82 -

[Zhu03]
Zhu, Yunyue, and Dennis Shasha. "Efficient elastic burst detection in data streams."

Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD '03. August 24, 2003, Washington, DC, USA, pp.
336-345.

Electronic Sources:

[Droms97]
Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, http://www.rfc-

editor.org/info/rfc2131, last revision March 1997, last accessed March 26, 2017.

[Garfinkel16]
Simson L. Garfinkel. "Digital Forensics", American Scientist,

http://www.americanscientist.org/issues/id.16080,y.0,no.,content.true,page.1,css.print
/issue.aspx, last accessed April 19, 2017.

[h2o17]
Deep Learning - H2O 3.10.4.4 documentation,
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-
learning.html?highlight=deep%20learning#, last accessed March 18, 2017.

[Hallam-Baker96]
Phillip M Hallam-Baker, Extended Log File Format, http://www.w3.org/TR/WD-

logfile.html, last revised March 23, 1996, last accessed April 13, 2016.

[Muncaster15]
Phil Muncaster. "Hackers Spend Over 200 Days Inside Systems Before Discovery.",
Infosecurity Magazine. N.p., 24 Feb. 2015, https://www.infosecurity-
magazine.com/news/hackers-spend-over-200-days-inside/. Last accessed April 18, 2017.

[Splunk17]
Download Splunk Enterprise for free, https://www.splunk.com/en_us/download/splunk-

enterprise.html, last accessed March 26, 2017.

http://www.rfc-editor.org/info/rfc2131
http://www.rfc-editor.org/info/rfc2131
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html?highlight=deep%20learning
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html?highlight=deep%20learning
http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/TR/WD-logfile.html
https://www.splunk.com/en_us/download/splunk-enterprise.html
https://www.splunk.com/en_us/download/splunk-enterprise.html

- 83 -

VITA
Vita

Glenn Lambert is currently an Operations Center Engineer with Availity, LLC and holds

a Certified Associate in Project Management (CAPM)® Certification and a Bachelor of

Science in Computer and Information Science from the University of North Florida. He

has over 20 years of experience in the Information Technology industry and is currently

responsible for monitoring critical production systems using a variety of tools including

Splunk for log file analysis. He is a military veteran with 15 years of service in the

Florida Army National Guard. He is also a member of the University of North Florida

chapter of Upsilon Pi Epsilon.

	UNF Digital Commons
	2017

	Security Analytics: Using Deep Learning to Detect Cyber Attacks
	Glenn M. Lambert II
	Suggested Citation

	Title Page
	Acknowledgement
	Contents
	Tables
	Figures
	Equations
	Abstract
	Chapter 1: Introduction
	1.1 Overview
	1.2 Problem Statement

	Chapter 2: Background and Related Work
	2.1 Background
	2.1.1 Machine Learning
	Figure 1: Neural Network Diagram

	2.1.2 Time Series
	Figure 2: Sliding Window Model

	2.2 Related Work
	2.2.1 Denial of Service and Brute force attacks
	2.2.2 Web Application Attacks
	Figure 3: Detection Rate Calculation

	2.2.3 Intrusion Detection Postmortem
	2.2.4 Training a Neural Network to Mimic a Firewall

	2.3 Shrotcomings of existing solutions

	Chapter 3: Proposed Approach
	3.1 Overview
	Figure 4: Process Flow Diagram

	3.2 Data Extraction and Transformation
	3.2.1 Data Collection
	3.2.2 Pre-Processing
	Figure 5: Pre-processed dataset with sliding time window

	3.2.3 Feature Selection

	3.3 Unsupervised Learning
	3.4 Supervised Learning
	3.5 Measurements and Evaluation
	Equation 1: Accuracy
	Equation 2: Precision
	Equation 3: Recall

	Chapter 4: Initial Model and Preliminary Results
	4.1 System Architecture
	Figure 6: Proposed Solution Architecture
	Figure 7: Verify Log File Import

	4.2 Data Collection
	Table 1: Source Log Files
	Table 2: Dataset Definitions

	4.3 Feature Selection
	Figure 8: Active User Distribution
	Table 3: Features used for Machine Learning
	Figure 9: IIS Log Entry Sample
	Table 4: Correlation Results for Features
	Figure 10: DHCP Log Entry Sample
	Figure 11: IPS log Entry Sample

	4.4 Pre-Processing
	Figure 12: Splunk Transformation Query
	Figure 13: Partial Dataset Image

	4.5 Unsupervised Learning Results
	Figure 14: R Code to Calculate Cluster Scores
	Figure 15: Clustering Confusion Matrixes
	Figure 16: Cluster Scores
	Figure 17: User Activity Distribution
	Table 5: Time Slot Classification Results
	Figure 18: HTTP POST Requests

	4.6 Supervised Learning Results
	Table 6: Deep Learning Results
	Table 7: Deep Learning Confusion Matrixes

	Chapter 5: Experiments and Results
	5.1: Overview
	5.2: Data Collection
	Table 8: Dataset Definitions
	Table 9: Features used for Machine Learning

	5.3: Pre-processing
	Table 10: Pre-processing Times
	5.3.1 Normalization
	Figure 19: MinMax Normalization
	Figure 20: Effect of Normalization

	5.4: Unsupervised Learning Results
	Table 11: PAM Clustering Results
	Table 12: Medoids for Dataset 1
	Table 13: Medoids for Dataset 2
	Table 14: Medoids for Dataset 3
	5.4.1: Rule-based Clustering
	Table 15: Rule-based Clustering Results

	5.4.2: Feature Ranking
	Table 16: PAM Feature Ranking
	Table 17: Rule-based Feature Ranking

	5.4.3: Split-level clustering
	Figure 21: Split-Level Clustering Process

	5.5: Supervised Learning Results
	Table 18: Deep Learning Results using PAM Labeled Data
	Table 19: Deep Learning Confusion Matrices for PAM Labeled Data
	Table 20: Single Layer Topology Analysis PAM Labeling Using Dataset I
	Table 21: Single Layer Topology Analysis PAM Labeling Using Dataset 2
	Table 22: Single Layer Topology Analysis PAM Labeling Using Dataset 3
	Table 23: Deep Learning Results Using Rule-based Labeled Data
	Table 24: Confusion Matrices for Rule-based Labeled Data
	Table 25: Single Layer Topology Analysis Rule-based Labeling Using Dataset 1
	Table 26: Single Layer Topology Analysis Rule-based Labeling Using Dataset 2
	Table 27: Single Layer Topology Analysis Rule-based Labeling Using Dataset 3
	5.5.1: Neural Network Topology
	Table 28: Layer 1 Topology Analysis Split Level Using Dataset 2
	Table 29: Layer 2 Topology Analysis Split Level Using Dataset 2
	Table 30: Layer 1 topology Analysis Split Level Using Dataset 3
	Table 31: Layer 2 Topology Analysis Split Level Using Dataset 3
	Table 32: Layer 3 Topology Analysis Split Level PAM Dataset 3
	Table 33: Layer 2 Topology Analysis Split Level PAM Dataset 3

	5.5.2 Additional observations
	5.5.3 Implementation considerations

	Chapter 6: Conclusion and Future Work
	References
	Vita

