
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2017

Security Analytics: Using Deep Learning to Detect
Cyber Attacks
Glenn M. Lambert II
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2017 All Rights Reserved

Suggested Citation
Lambert, Glenn M. II, "Security Analytics: Using Deep Learning to Detect Cyber Attacks" (2017). UNF Graduate Theses and
Dissertations. 728.
https://digitalcommons.unf.edu/etd/728

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71985426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu


 
 

 
 

SECURITY ANALYTICS: USING   
DEEP LEARNING TO DETECT CYBER ATTACKS 

 

by 

 

Glenn Monroe Lambert II 

 

 

A thesis submitted to the  
School of Computing 

in partial fulfillment of the requirements for the degree of 

 

Master of Science in Computing and Information Sciences 
 
 
 
 
 

UNIVERSITY OF NORTH FLORIDA 
SCHOOL OF COMPUTING 

Spring, 2017

  



 
 

 ii 

Copyright © 2016 by Glenn Monroe Lambert II 

 

All rights reserved. Reproduction in whole or in part in any form requires the prior 
written permission of Glenn Monroe Lambert II or designated representative. 



 
 

 iii 

This thesis titled “Security Analytics: Using Deep Learning to Detect Cyber Attacks” 
submitted by Glenn Monroe Lambert II in partial fulfillment of the requirements for the 
degree of Master of Science in Computer and Information Sciences has been 
 
Approved by the thesis committee:               Date 

 
Dr. Sherif A. Elfayoumy 
Thesis Advisor and Committee Chairperson 

 
Dr. Ching-Hua Chuan 
 
 
 
Dr. Swapnoneel Roy 

 
 
 
Accepted for the School of Computing: 
 
 
 

 Dr. Sherif A. Elfayoumy 
 Director, School of Computing 

 
 
Accepted for the College of Computing, Engineering, and Construction: 
 
 
 

Dr. Mark Tumeo 
Dean of the College of Computing, Engineering, and Construction 

 
 
Accepted for the University: 
 
 
 

Dr. John Kantner 
Dean of the Graduate School 



 
 

 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This work is dedicated to my wonderful wife, Charlotte Atkinson, for all her support and 

encouragement throughout this endeavor.  

 



 
 

 v 

ACKNOWLEDGEMENT 

 

I would first like to thank my thesis advisor Dr. Sherif Elfayoumy, Director of the School 

of Computing at the University of North Florida, for devoting a significant amount of his 

time to this research effort.  His expert guidance was paramount to keeping me focused to 

the end.  

 

I would also like to thank Clay Maddox, Assistant Director of Information Security at the 

University of North Florida, and Geoffrey Whittaker, IT Security Engineer, for their 

valuable security expertise and their time required for the enormous effort to obtain and 

cleanse the security logs for this research. 

 

I would also like to thank Glenn Ford, Senior Application Security Analyst at Availity for 

lending his security expertise at a moment’s notice. 

 

 

  



 
 

 vi 

CONTENTS 

 

List of Tables ..................................................................................................................... ix 

List of Figures .................................................................................................................... xi 

List of Equations ............................................................................................................... xii 

Abstract ............................................................................................................................ xiii 

Chapter 1:  Introduction .......................................................................................................1 

1.1 Overview ..............................................................................................................1 

1.2 Problem Statement ...............................................................................................4 

Chapter 2:  Background and Related Work .........................................................................5 

2.1 Background ..........................................................................................................5 

2.1.1 Machine Learning ................................................................................................6 

2.1.2 Time Series ..........................................................................................................9 

2.2 Related Work .....................................................................................................11 

2.2.1 Denial of Service and Brute force attacks .........................................................11 

2.2.2 Web Application Attacks ...................................................................................12 

2.2.3 Intrusion Detection Postmortem ........................................................................14 

2.2.4 Training a Neural Network to Mimic a Firewall ...............................................16 

2.3 Shortcomings of existing solutions ....................................................................17 

Chapter 3:  Proposed Approach .........................................................................................19 

3.1 Overview ............................................................................................................19 

3.2 Data Extraction and Transformation ..................................................................20



 
 

 vii 

3.2.1. Data Collection ..........................................................................................21 

3.2.2. Pre-Processing............................................................................................22 

3.2.1. Feature Selection ........................................................................................23 

3.3 Unsupervised Learning ......................................................................................24 

3.4 Supervised Learning ..........................................................................................25 

3.5 Measurements and Evaluation ...........................................................................25 

Chapter 4:  Initial Model and Preliminary Results ............................................................28 

4.1 System Architecture ...........................................................................................28 

4.2 Data Collection ..................................................................................................30 

4.3 Feature Selection ................................................................................................32 

4.4 Pre-Processing ...................................................................................................35 

4.5 Unsupervised Learning Results .........................................................................37 

4.6 Supervised Learning Results .............................................................................43 

Chapter 5:  Experiments and Results .................................................................................45 

5.1 Overview ............................................................................................................45 

5.2 Data Collection ..................................................................................................45 

5.3 Pre-processing ....................................................................................................47 

5.3.1 Normalization ....................................................................................................48 

5.4 Unsupervised Learning Results .........................................................................49 

5.4.1 Rule-based Clustering ........................................................................................53 

5.4.2 Feature Ranking .................................................................................................55 

5.4.3 Split-level Clustering .........................................................................................57 

5.5 Supervised Learning Results .............................................................................58 

5.5.1 Neural Network Topology .................................................................................68 



 
 

 viii 

5.5.2 Additional observations .....................................................................................75 

5.5.3 Implementation considerations ..........................................................................76 

Chapter 6:  Conclusion and Future Work ..........................................................................78 

References ..........................................................................................................................80 

Vita .....................................................................................................................................83 

 
  



 
 

 ix 

TABLES 
 

List of Tables  

 

Table 1: Source Log Files ................................................................................................. 30 

Table 2: Dataset Definitions ............................................................................................. 31 

Table 3: Features used for Machine Learning .................................................................. 33 

Table 4: Correlation Results for Features ......................................................................... 34 

Table 5: Time Slot Classification Results ......................................................................... 41 

Table 6: Deep Learning Results ........................................................................................ 44 

Table 7: Deep Learning Confusion Matrixes .................................................................... 44 

Table 8: Dataset Definitions ............................................................................................. 46 

Table 9: Features used for Machine Learning .................................................................. 47 

Table 10: Pre-processing Times........................................................................................ 48 

Table 11:  PAM Clustering Results .................................................................................. 50 

Table 12: Medoids for Dataset 1 ....................................................................................... 51 

Table 13: Medoids for Dataset 2 ....................................................................................... 52 

Table 14: Medoids for Dataset 3 ....................................................................................... 53 

Table 15: Rule-based Clustering Results .......................................................................... 54 

Table 16: PAM Feature Ranking ...................................................................................... 56 

Table 17: Rule-based Feature Ranking ............................................................................. 56 

Table 18: Deep Learning Results using PAM Labeled Data ............................................ 59 

Table 19: Deep Learning Confusion Matrices for PAM Labeled Data ............................ 60 

Table 20: Single Layer Topology Analysis PAM Labeling Using Dataset 1 ................... 61 

Table 21: Single Layer Topology Analysis PAM Labeling Using Dataset 2 ................... 62



 
 

 x 

Table 22: Single Layer Topology Analysis PAM Labeling Using Dataset 3 ................... 63 

Table 23: Deep Learning Results Using Rule-based Labeled Data .................................. 64 

Table 24: Confusion Matrices for Rule-based Labeled Data ............................................ 65 

Table 25: Single Layer Topology Analysis Rule-based Labeling Using Dataset 1 ......... 66 

Table 26: Single Layer Topology Analysis Rule-based Labeling Using Dataset 2 ......... 67 

Table 27: Single Layer Topology Analysis Rule-based Labeling Using Dataset 3 ......... 68 

Table 28: Layer 1 Topology Analysis Split Level Using Dataset 2 ................................. 70 

Table 29: Layer 2 Topology Analysis Split Level Using Dataset 2 ................................. 71 

Table 30: Layer 1 Topology Analysis Split Level Using Dataset 3 ................................. 72 

Table 31: Layer 2 Topology Analysis Split Level Using Dataset 3 ................................. 73 

Table 32: Layer 3 Topology Analysis Split Level PAM Dataset 3 .................................. 74 

Table 33: Layer 2 Topology Analysis Split Level PAM Dataset 3 .................................. 75 

  



 
 

 xi 

FIGURES 
 

List of Figures  

  

Figure 1: Neural Network Diagram .................................................................................... 8 

Figure 2: Sliding Window Model ..................................................................................... 10 

Figure 3: Detection Rate Calculation ................................................................................ 13 

Figure 4: Process Flow Diagram....................................................................................... 19 

Figure 5: Pre-processed dataset with sliding time window .............................................. 22 

Figure 6: Proposed Solution Architecture......................................................................... 28 

Figure 7: Verify Log File Import ...................................................................................... 29 

Figure 8: Active User Distribution ................................................................................... 32 

Figure 9: IIS Log Entry Sample ........................................................................................ 34 

Figure 10: DHCP Log Entry Sample ................................................................................ 35 

Figure 11: IPS Log Entry Sample ..................................................................................... 35 

Figure 12: Splunk Transformation Query ......................................................................... 36 

Figure 13: Partial Dataset Image....................................................................................... 37 

Figure 14: R Code to Calculate Cluster Scores ................................................................ 38 

Figure 15: Clustering Confusion Matrixes ....................................................................... 38 

Figure 16: Cluster Scores .................................................................................................. 39 

Figure 17: User Activity Distribution ............................................................................... 40 

Figure 18: HTTP POST Requests ..................................................................................... 42 

Figure 19: MinMax Normalization ................................................................................... 48 

Figure 20: Effect of Normalization ................................................................................... 49 

Figure 21: Split-Level Clustering Process ........................................................................ 57 



 
 

 xii 

EQUATIONS 
 

List of Equa tions  

 
 
Equation 1: Accuracy ........................................................................................................ 26 

Equation 2: Precision ........................................................................................................ 26 

Equation 3: Recall ............................................................................................................. 26 

  



 
 

 xiii 

ABSTRACT 
Abstract 

 
 

Security attacks are becoming more prevalent as cyber attackers exploit system 

vulnerabilities for financial gain. The resulting loss of revenue and reputation can have 

deleterious effects on governments and businesses alike. Signature recognition and 

anomaly detection are the most common security detection techniques in use today.  

These techniques provide a strong defense. However, they fall short of detecting 

complicated or sophisticated attacks. Recent literature suggests using security analytics to 

differentiate between normal and malicious user activities. 

 

The goal of this research is to develop a repeatable process to detect cyber attacks that is 

fast, accurate, comprehensive, and scalable. A model was developed and evaluated using 

several production log files provided by the University of North Florida Information 

Technology Security department. This model uses security analytics to complement 

existing security controls to detect suspicious user activity occurring in real time by 

applying machine learning algorithms to multiple heterogeneous server-side log files. 

The process is linearly scalable and comprehensive; as such it can be applied to any 

enterprise environment. The process is composed of three steps. The first step is data 

collection and transformation which involves identifying the source log files and 

selecting a feature set from those files. The resulting feature set is then transformed into a 

time series dataset using a sliding time window representation. Each instance of the 

dataset is labeled as green, yellow, or red using three different unsupervised learning 



 
 

 xiv 

methods, one of which is Partitioning around Medoids (PAM). The final step uses Deep 

Learning to train and evaluate the model that will be used for detecting abnormal or 

suspicious activities. Experiments using datasets of varying sizes of time granularity 

resulted in a very high accuracy and performance. The time required to train and test the 

model was surprisingly fast even for large datasets. This is the first research paper that 

develops a model to detect cyber attacks using security analytics; hence this research 

builds a foundation on which to expand upon for future research in this subject area. 
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Chapter 1:  Introduction 

INTRODUCTION 
 
 
 
1.1 Overview 

 

Security attacks are becoming more prevalent as cyber attackers exploit system 

vulnerabilities for financial gain. Theft of Intellectual Property and destruction of 

infrastructure are additional motives resulting from industrial espionage and Nation State 

actors, respectively [Sood13]. Nation State actors employ the most skilled attackers with 

the ability to launch targeted and coordinated attacks. Sony, Stuxnet, and Anthem are 

recent examples of targeted attacks.  

 

The time from a security breach to detection is measured in days [Muncaster15]. Cyber 

attackers are aware of existing security controls and are continually improving their 

attacks. To make matters worse, cyber attackers have a wide range of tools available 

which allow them to bypass traditional security mechanisms. Zero day exploits, Malware 

Infection Frameworks (MIF), Rootkits, and Browser Exploit Packs (BEP) can be readily 

purchased on an underground market. Attackers can also purchase personal information 

and compromised domains in order to launch additional attacks [Sood13]. A security 

breach is inevitable. Early detection and mitigation are the best defense to surviving an 

attack. 
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Security professionals employ prevention and detection techniques to reduce the risk of a 

security breach. In “Applying Data Mining Techniques to Intrusion Detection,” Ng. et al. 

define a security breach as “any action the system owner deems unauthorized” 

[Ng15].  Prevention techniques focus on making attacks more difficult. Some examples 

of prevention techniques include: establishing a good security policy, applying recent 

security updates, avoiding default configurations, and establishing an effective user 

security education program [Garcia12].  All information security policies should adhere 

to the three principles of the CIA triad which are Confidentiality, Integrity, and 

Availability. Confidentiality is a set of rules that limits access to information. Integrity is 

assurance that information is trustworthy and accurate. Availability refers to the ensuring 

that all authorized users are able to access information systems. 

 

Detection techniques fall into two categories, attack recognition or signature-based 

detection, and anomaly-based detection. Traditional security solutions such as Firewalls, 

Intrusion Detection Systems (IDS), and virus scanners use a signature-based approach. 

The signature-based approach compares a hash of the payload to a database of known 

malicious signatures [Razzaq14]. Signature based detection techniques monitor network 

traffic for ongoing attacks but fall short of detecting zero-day attacks or a variant of an 

existing attack, also known as a mimicry attack [Garcia12].  These techniques provide a 

strong defense against known attacks. However, they are by no means a sufficient guard 

against skilled attackers who use the latest attack methods and exploits. Hence, they can 

easily bypass any security controls in place [Ye05, Sood13]. 
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Anomaly detection detects abnormal events, including those that are not yet encountered. 

In other words, anything abnormal is considered an attack [Ng15].  Anomaly detection 

requires a model of normal system behavior. False positives can occur when normal 

activities are detected to be irregular [Garcia12]. 

 

The Cyber Research Alliance (CRA) identified the application of Big Data Analytics to 

cyber security as one of the top six priorities for future cyber security research and 

development [Kott14]. Big Data Analytics (BDA) is the aggregating and correlating of a 

broad range of heterogeneous data from multiple sources, and has the potential to detect 

cyber threats within actionable time frames with minimal or no human intervention 

[Kott14]. Security Analytics is the application of Big Data Analytics to cyber security. 

Security Analytics is a new trend in the industry, and interest is expected to gain 

momentum quickly. Finding appropriate algorithms required to locate hidden patterns in 

huge amounts of data is just one of the several challenges that must be overcome. 

Incomplete and noisy data are additional factors that must be considered. Finally, the 

massive scale of enterprise security data available poses the greatest challenge to a 

successful Security Analytics implementation [Kott14]. Security Analytics differs from 

traditional approaches by separating what is normal from what is abnormal. In other 

words, the focus is on the action or user activity instead of the payload content or 

signature [Mahmood13]. 
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1.2 Problem Statement 

 

The goal of this research is to develop a repeatable process to detect cyber attacks that is 

fast, accurate, and scalable. The process should evaluate multiple data sources in order to 

gain a comprehensive picture of user activity across multiple systems. User activity 

patterns undergo normal fluctuations throughout the day, and often those patterns differ 

from patterns that occur on weekends. The model is expected to differentiate between 

normal fluctuations and abnormal user activities. A deep learning algorithm is used to 

train a neural network to detect suspicious user activities. 

 

This research is very closely related to one class of digital forensics which focuses on 

discovering evidence of criminal activity inadvertently left in log files on computer 

systems by hackers [Garfinkel16]. This research differs from digital forensics in that it 

focuses on finding malicious activity patterns and identifying criminal activity while it is 

occurring. 
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Chapter 2:  Background and Related Wor k 

BACKGROUND AND RELATED WORK  
 
 
 
2.1 Background 

 

Most computer systems record events in log files [Abad03]. The type and structure of log 

files vary widely by system and platform. For example, weblogs are produced by web 

servers running Apache or Internet Information Server (IIS) among others. Operating 

systems, firewalls, and Intrusion Detection Systems (IDS) record event information in log 

files. Applications also record user activities in log files [Abad03]. Any activities 

performed during a security breach will most likely result in log entries being recorded in 

one or more log files. These attacks cannot be identified by a single log entry occurrence, 

but instead, can be identified through a series of entries spanning several minutes 

[Abad03]. The amount of data logged per system can be more than several thousand 

events per minute. Additionally, these files are typically distributed across the network. 

In order to process and analyze the log data, they must be integrated and stored in a 

central location. Integrating highly heterogeneous data from multiple sources requires a 

massive centralized data repository [Kott13]. Such a data repository should meet the 

complexity requirements as defined by Big Data. 
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2.1.1 Machine Learning 

 

Big Data is defined by three characteristics: volume, velocity, and variety. Volume is the 

size of the data stored and is measured in terabytes, petabytes, or Exabytes. Velocity is 

the rate at which data is generated. Variety refers to the types of data, such as structured, 

semi-structured, or non-structured [Mahmood13]. Structured data is data that typically 

reside in a database or data warehouse. Examples of unstructured data are documents, 

images, text messages, and tweets. Log data is considered semi-structured. In some cases, 

log data contains key-value pairs or is stored in CSV format. Adam Jacobs, in “The 

Pathologies of Big Data,” defines Big Data as “data whose size forces us to look beyond 

the tried-and-true methods that are prevalent at that time” [Jacobs09]. Big Data presents 

new challenges to searching and processing of data. These new challenges require new 

techniques and methods, such as data mining or Big Data analytics. 

 

Big data analytics employs data mining techniques for extracting actionable insights from 

data to make intelligent business decisions [Apte03]. Commonly, the first step in Big 

Data analytics is Extract Transform Load (ETL) [Mahmood13]. This is a pre-processing 

step that transforms data into a format that is compatible with data mining algorithms 

[Mahmood13]. The processing or analysis step applies an algorithm, such as clustering, 

to the transformed data. Finally, the results are displayed on a dashboard or in a report 

[Apte03]. Data mining is defined as the application of machine learning methods to large 

datasets [Alpaydin14]. 
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Machine learning is a subfield of artificial intelligence that allows a computer to learn 

using sample data without being programmed to anticipate every possible situation 

[Alpaydin14]. The two most common types of machine learning are supervised and 

unsupervised learning. Supervised learning is used when a dataset of labeled instances is 

available. Supervised learning is used to solve classification problems. The goal of 

supervised learning is to train the computer to learn to predict a value or classify an input 

instance accurately. Unsupervised learning is used when a labeled dataset is not available. 

Clustering is an unsupervised learning technique which results in grouping similar 

instances in clusters. Clustering is used to discover patterns in data.  In some cases, 

clustering is performed to classify an unlabeled dataset and using the resulting classified 

dataset for supervised learning [Alpaydin14]. 

 

Artificial Neural Network (ANN), proposed fifty years ago, is a collection of supervised 

learning models inspired by the human brain. A simple neural network or multi-layer 

perceptron is composed of three layers; an input layer, a hidden layer, and an output 

layer. Each layer is composed of neurons, which are interconnected to all the neurons in 

the next layer. The network is trained by adjusting the weights of the neurons to minimize 

the error between the output neuron and the desired result [Edwards15]. A neural network 

(Figure 1) using a large number of hidden layers is referred to as a deep neural network 

and training is referred to as deep learning. 
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Figure 1: Neural Network Diagram 

 

In 2006, Geoffrey Hinton and Ruslan Salakhutdinov developed techniques using multiple 

hidden layers. Pre-training was one such technique where the upper layers extract 

features with a higher level of abstraction which is used by the lower layers for more 

efficient classification. Unfortunately, since this technique requires billions of floating 

point operations, it was not computationally feasible until recently. The recent advent of 

technological advances in hardware caused a resurgence of interest due to the resulting 

improvements to performance. For example, a researcher at the Switzerland-based Dalle 

Molle Institute for Artificial Intelligence claims in one instance the training phase took 

only three days using graphic processing units (GPUs) where using CPU’s would have 

taken five months [Edwards15]. Deep learning works well with large datasets of labeled 

data [Edwards15]. 
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2.1.2 Time Series 

 

A time series dataset consists of continuous sequences of values or events which are 

typically collected at fixed time intervals. Real-time surveillance systems, internet traffic, 

network sensors, and on-line data collection tools generate time series data which can be 

mined for valuable insights. Time series datasets have several applications, such as stock 

market analysis, sales forecasting, process and quality control, budgetary analysis, 

scientific experiments, and medical treatments [Han06].  

 

Massive amounts of data can be generated in a constantly changing environment with a 

large number of data sources. This presents an additional challenge when working with 

time series data. In addition to a multitude of data formats, high change rate, and the large 

volumes of data collected, time may be reported inconsistently, or data may contain noise 

which obscures the “truth” within the data. Correlating events across multiple sources 

provides a comprehensive picture of the chain of events. Synchronizing or correlating the 

events from multiple sources introduces additional complexity [Han06].  

 

There are three well-known window models: landmark windows, sliding windows, and 

decaying windows [Zhu03].  A widow can be time-based or count based. The 

exponentially decaying window (or damped window) is a variant of the sliding window 

where older events have a lower weight than more recent events [Zhu02].  Landmark 

windows contain aggregated values computed between a landmark point in time and the 

present.  An example would be the average stock price of a company since its last 

acquisition [Zhu03]. 
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Sliding windows are commonly used to facilitate effective event stream processing. 

Instead of sampling or performing computations on all of the data, only recent data is 

used for making decisions, thus reducing the memory required for processing. 

Aggregates are computed on the last N values and stored in the window (Figure 2). As 

time progresses, newer items are added, and older items are removed. The window is 

usually of a fixed size. Limiting the processing to recent data also prevents less relevant 

data from influencing statistical calculations [Zhu03]. 

 

 
Figure 2: Sliding Window Model 

 

The objectives of time series analysis are to forecast future values, explain how past 

events can impact future events, or how two time series can interact with each other.  

Trend analysis, similarity search, clustering, and classification are typical processes used 

to accomplish these objectives. Trend analysis involves identifying a trend, cyclic 

movement, seasonal variations, or irregular movements. Trends are depicted using a trend 

line over a long interval of time. Typical methods used for identifying long-term trends 

include the weighted average and least squares methods. Cyclic movements refer to the 

long term oscillations around a trend line. Seasonal variations are changes that are 
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calendar based and typically recur, such as holidays. Irregular movements are random 

chance events [Han06]. 

 

Similarity search finds sequences that differ slightly from a given sequence. Additionally, 

similarity search can match partial sequences or the whole sequence. An example would 

be to find a similar performing stock. 

 

Clustering partitions time series data into groups based on similarity or a distance 

measure. Classification builds a model based on the time series in order to predict the 

label of an unlabeled time series. 

 

2.2 Related Work 

 

Many scholarly articles have been published on the topic of detecting intrusions using 

data mining techniques or machine intelligence [Buczak16]. The following sections are 

critical evaluations of recent research efforts on this topic. 

 

2.2.1 Denial of Service and Brute force attacks 

 

In “Applying Data Mining Techniques to Intrusion Detection,” Ng, et al. proposed an off-

line solution to detect Denial of Service (DoS) and brute force password attacks [Ng15]. 

Their solution implements both anomaly detection and signature recognition methods. 

They maintain an attack signature database as well as a normal signature database. A 

Clustering algorithm is used on pre-processed log data to identify multiple occurrences of 
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similar log messages. Their tool searches the signature databases using log patterns 

detected while processing the log data. When the clustering algorithm detects an unusual 

number of event occurrences, the signature is compared to the normal log database and is 

ignored if found. If the signature is found in the existing attack signature database, then 

an alert is generated. However, if the signature is not found in either signature database, 

then it is presented to the user for manual classification. The initial log data was obtained 

from one host running the Ubuntu operating system. Attack log data was obtained by 

performing ICMP flood and brute force attacks against the host. A set of normal and 

attack patterns obtained from the initial data collection were stored in the signature 

database. They identified creating a real-time intrusion detection system as potential 

future work.  

 

The primary shortcoming of the solution developed by Ng, et al. is that it depends on a 

single client log file source from one platform (Ubuntu). Additionally, it does not 

differentiate between events that have occurred recently or far in the past. Since their 

solution maintains a database of all normal activity patterns; it can only be implemented 

as an off-line solution. As such, it is not linearly scalable, and cannot detect suspicious 

user activity in real-time at an enterprise scale. 

 

2.2.2 Web Application Attacks 

 

Razzaq, et al. proposed a solution [Razzaq14] for detecting web application attacks by 

analyzing HTTP requests. The proposed solution was deployed as a web proxy that 

evaluates all network traffic before it is delivered to the web server. Even though the 
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solution only analyzes the HTTP protocol, they claim it could be expanded to other 

protocols. Additionally, their solution only examines portions of the headers and payload 

of user requests. They developed an ontology model (OWL) to build rules to analyze the 

user request to detect web application attacks, such as SQL Injection, DNS Cache 

poisoning attack, and HTTP response splitting attacks. These rules are applied to all user 

requests by analyzing portions of the HTTP traffic before being processed by the web 

server. Test attack vectors consisted of SQL Injection Cross Site Scripting (XSS) attacks 

using an open source tool called Web Goat to simulate the attack vectors. The solution 

detected web application attacks with an average detection rate of 86%. The detection 

rate (Figure 3) is calculated using the total number of attack records (TA) and the number 

of false negatives (FN). A false negative is an attack vector that is classified as normal. 

The performance results of the proposed system were a maximum throughput of 1400 

requests per second with a maximum response time of 374 ms.  

 

 
Figure 3: Detection Rate Calculation 

 

The most significant shortcoming with Razzaq’s proposed solution [Razzaq14] is that all 

user traffic does not flow across a single web proxy. As a result, this solution is capable 

of evaluating only a small portion of user activity which would inevitably result in a 

security breach going unnoticed. Secondly, the solution only evaluates HTTP network 

traffic and is not linearly scalable due to the delay in evaluating every single user request 

before forwarding the request to its destination. Since most enterprise networks use 
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Secure Sockets Layer (SSL) to encrypt the network traffic in motion, the network packets 

will be unreadable unless the processing occurs at an SSL termination endpoint where the 

traffic is decrypted. These types of  issues can be easily overcome by evaluating  log files 

created by various computer systems. 

 

2.2.3 Intrusion Detection Postmortem 

 

Garcia, et al. proposed an off-line solution [Garcia12] to mine client log files to identify 

the source of a security breach. Given a security incident has already been detected, and a 

set of client log files, their system will attempt to locate the exploit in one of the log files. 

Postmortem intrusion detection is primarily used to discover how an intruder gained 

access to a system, what subsystems were accessed, and what information was 

compromised. The solution assumes that a security breach has already occurred and 

bypassed the Intrusion Detection System or any other security controls in place. This 

solution uses a combination of anomaly detection and a classification technique called 

KHMM which utilizes a Hidden Markov Model (HMM) and k-means clustering. The 

main idea around their work is that an attack would result in a sequence of system calls 

being logged that would not normally appear in normal activity. Normal log data is used 

to create a normal behavior profile. First, the log files are shrunk by replacing repetitive 

sequences with a meta-symbol. The log files are then pre-processed using a sliding 

window containing one hundred elements, stepping through the log file one hundred 

elements at a time. The last step builds the normal activity model from vector sequences 

in each window. The resulting model is used for detection. The KHMM process is 

composed of three steps. First, the preprocessed input is clustered using K-means. Then 
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the sliding window approach is used to create an HMM for each window. The last step 

uses an anomaly detection to compare each window with the average HMM from the 

previous step. If two or more consecutive abnormal windows are detected, they are 

marked for verification by a security analyst. The training and validation sets were 

composed of 32 log files from three Unix based systems (REL4, Fedora 8, and Ubuntu 

9.04). The attack logs were synthetically generated using “buffer overflow” and “user to 

root” attacks. Experiments resulted in an average detection rate of 81.99% and false 

positive rate of 4.6%.  

 

A major shortcoming of the solution proposed by Garcia et al. is that it does not detect 

intrusions; instead, it attempts to locate abnormal activity in a collection of client log files 

after a security breach has already been deemed to have occurred. Secondly, their 

solution can be only implemented in an off-line manner because it is not linearly scalable. 

This is primarily due to the fact that their solution evaluates every single user action. 

Scalability can be achieved by using aggregates over time of all user activity. Their 

solution implements a sliding window that is based on the number of events from an 

individual user and slides over the user session in increments equal to the size of the 

window. This method allows for a user sequence to cross window boundaries. Hence this 

presents a likely possibility that an attack sequence will be overlooked. This issue can be 

resolved by sliding the window using smaller increments. 

 

Lastly, their solution is not effective because it only considers one log source type which 

records individual user commands. This solution may lend itself to a low false positive 

rate; however, if all user activity is not captured in the log, then it is highly probable that 
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a security breach will go unnoticed.  In order to overcome this problem, multiple server 

source log files must be evaluated to get a complete picture of overall user activity. 

 

2.2.4 Training a Neural Network to Mimic a Firewall 

 

Valentan and Maly, in “Network firewall using artificial neural networks,” train a multi-

layer perceptron (MLP) artificial neural network to learn the rules of a firewall from the 

network traffic using the back propagation method [Valentan13].  The network consisted 

of 3 output neurons (ALLOW, REJECT, DENY), 49 input neurons, and 13 hidden 

neurons. The input neurons were mapped to the binary representation of IP (32 bit), port 

(16 bit), and protocol (1 bit). If the activation function (sigmoid) did not fire any of the 

output neurons, the network assumed the network packet was malicious and dropped it. 

The accuracy of the neural network on the testing set was 99.79%. A training dataset was 

generated before each epoch. The network used a cross-validation method for training. 

The generated dataset was split into two distinct sets (80% for training, and 20% for 

testing), the former for training, and the latter for testing.  Network packets were created 

by randomly selecting a rule from the firewall table, and then randomly generating a 

network packet to match that rule. The training dataset consisted of a ratio of 4:1 DENY 

to ALLOW network packets. For testing, the dataset consisted of an equal ratio of DENY 

and ALLOW packets. The table of rules contains the associated action of ALLOW, 

REJECT, or DENY. The neural network is given the correct action during the training 

phase. The difference between the REJECT and DENY action is that DENY results in the 

packet being dropped with no response being sent to the source resulting in a “connection 

timed out” error. In the case of a REJECT action, the packet is prohibited from being sent 
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further. However, an ICMP destination unreachable response is communicated back to 

the source. Evaluation of the performance of the neural network was performed by 

comparing the total false positives and false negatives to the total number of packets 

evaluated. False positives were defined as malicious packets that were allowed. False 

negatives were normal packets that were blocked. 

 

Training a neural network to learn the rules of a firewall is not an effective method of 

detecting or deterring intruders. The success of their solution is dependent on how 

effective the rules are at blocking malicious traffic. Commercial firewall and intrusion 

detection software is a better alternative for hardening the network security posture. A 

neural network can supplement a commercial intrusion detection system, but must be 

non-intrusive, and cannot impede normal operations. 

 

2.3 Shortcomings of existing solutions 

 

The most prevalent shortcoming of all the solutions reviewed is that they only detect and 

prevent individual attacks and not coordinated distributed attacks [Abad03]. Many 

attacks are not identified by a single log source but instead discovered when correlating 

information from multiple log files [Abad03]. If the attack does not result in an event 

being logged in the log file that is being monitored, then the attack cannot be detected 

using existing approaches.  

 

Scalability is another major factor in evaluating the effectiveness of a solution. In the 

world of Big Data, the amount of information being stored and searched can easily grow 
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to several gigabytes very quickly [Garcia12]. Hence, a solution that does not scale 

linearly can result in slow detection response times or total system failure. 

 

Additionally, a solution that evaluates raw network traffic to detect intrusions will result 

in overhead that will eventually inhibit the traffic being delivered to its destination 

promptly. Intrusion Detection Systems and Firewalls serve as protection controls to 

harden the security of the network. These systems should be complemented by 

implementing detection systems that are less intrusive. 
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Chapter 3:  Proposed Approach 

PROPOSED APPROACH 
 
 
 
3.1 Overview 

 

This research introduces the concept of a time slot. A time slot represents a small window 

in time which contains aggregate feature counts for that time interval. The time slot ts 

slides over a fixed window of time tw.  

 

The proposed approach consists of five major steps (Figure 4) with the output from each 

step serving as the input to the subsequent step in the process. The first step in the 

process, Data Collection, involves identifying and extracting log files from production 

systems.  

 

 
Figure 4: Process Flow Diagram
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Data pre-processing is required to transform the data into a format usable by machine 

learning algorithms. Feature Selection is the process of identifying and selecting relevant 

features from the pre-processed dataset. Unsupervised learning is used to identify and 

learn patterns of user activity. This can be accomplished using clustering techniques. 

Feature selection and unsupervised learning only need to occur for training purposes. In 

the Supervised Learning step, the model is trained and evaluated using a classification 

technique using the labeled dataset from the previous step. After the model produces 

acceptable results, the model is trained and can be used in production phase to detect 

abnormal user activity. 

 

In this research, a log entry (or instance) is referred to as an event. The term “source” is 

used to refer to an instance of a log file. The term “index” is used to refer to loading and 

parsing a log file using a search tool. The term “source type” is used to refer to a 

collection of log files of the same type. For example, the source type Neptune refers to 

the collection of log files from the Microsoft Internet Information servers used to service 

requests to the Microsoft Exchange servers. Microsoft Exchange is a Windows based 

email system. 

 

3.2 Data Extraction and Transformation 

 

This step is composed of three sub-tasks that collectively produce the required datasets 

for machine learning to occur. The data collection sub-task is the process of identifying, 

extracting, and integrating log data from the source systems into a single repository. Pre-

processing is required to reduce the size of the dataset and transform it into a sliding 
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window representation. Feature selection, the process of identifying a set of features from 

the data to be used in machine learning, is only performed for initial training and 

evaluation of the model.  

 

3.2.1. Data Collection 

 

A familiarity with all available log source types is necessary for the purposes of detecting 

cyber attacks. Interviewing security professionals to identify a list of available source 

types is the first step in data collection. The available sources typically differ among 

organizations depending on their network architecture. However, possible source types 

may include email usage activity, firewall data, wireless access point (WAP) data, 

browser activity, physical facility access data, and Security Information and Event 

Management (SIEM) data [Mahmood13]. Web application log files are also prime 

candidates for consumption. Integrating these sources into a single repository allows us to 

build a comprehensive picture of user activity across multiple systems. Such a repository 

will allow us to gain insight into user activity that may be otherwise missed if examining 

the sources individually. 

 

Understanding how any form of an attack could manifest itself in each of the source types 

is necessary for identifying potential attributes for feature extraction. The last step of data 

collection is identifying candidate features for extraction. The results of this step are 

needed in the pre-processing step where the feature extraction occurs. 
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3.2.2. Pre-Processing 

 

Data transformation operations are used to convert the dataset into an appropriate 

structure to facilitate machine learning. Data aggregation and feature selection are 

common data transformation techniques used to obtain a reduced representation of the 

dataset without impacting its predictive accuracy [Han06]. 

 

The first step in pre-processing is to align the events in each of the source types by their 

respective time stamp and compute aggregate feature counts per unit time. The next step 

computes aggregate counts per time slot. A time slot has a fixed size and slides through 

time incrementally by one unit. For example, a time slot starting at time index t and size 

N will contain the count of feature occurrences starting at t and ending at t+N-1. Each 

row of the pre-processed dataset represents a collection of feature counts Fi for a single 

time slot tsj. A conceptual representation of the resulting pre-processed dataset with the 

sliding time window is depicted in Figure 5. 

 

 
Figure 5: Pre-processed dataset with sliding time window 

 



3.2.3. Feature Selection 

A feature is an input variable or attribute that is binary, categorical or continuous in 

nature. The primary focus of feature selection is concerned with selecting relevant and 

informative features. However, other benefits exist, such as to limit storage requirements, 

increase calculation speed, increase predictive accuracy, and to gain an understanding of 

the process that generated the dataset [Guyon06]. 

Integrating data from multiple sources may result in a dataset containing hundreds of 

features some of which may be irrelevant or redundant. Redundancy can be detected by 

performing correlation analysis. Correlation analysis evaluates the correlation between 

two features. Chi-square is a common statistical method used to detect redundancy. There 

are other feature evaluation measures, such as Information Gain, Gain ratio, and the Gini 

index [Han06]. 

Selecting the best feature set often requires human expertise to convert raw data into a 

useful set of features. However, a variety of feature selection methods can be used in the 

absence of a subject matter expert (SME). Such methods are classified as either filters, 

wrappers, or embedded methods. Classical statistical methods which use correlation 

coefficients, such as the T-test, F-test, and chi-square, are types of filter methods used to 

assess variable independence. Filters calculate feature ranking based on classic statistical 

methods, where wrappers use the performance of a machine learning algorithm trained 

with the given feature subset. Embedded methods perform feature selection in the process 

of training, and are specific to a machine learning algorithm [Guyon06]. The hidden 
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layers generated during training in a neural network are an example of an embedded 

method. 

 

3.3 Unsupervised Learning 

 

Unsupervised learning techniques are typically used when the class label of each data 

element in a dataset is unknown. Clustering, a type of unsupervised learning is the 

process of grouping similar data elements into classes or clusters. Euclidean, Manhattan, 

and Minkowski are common similarity measures used by clustering algorithms. There are 

a variety of different types of clustering techniques, including but not limited to 

partitioning, hierarchical, density-based, and grid-based methods. 

 

Outlier detection is a common application of clustering. Outliers are data elements that 

are far from all other elements and fall outside of any cluster. In some cases, the outlier 

may provide more insight into a problem than the normal items. Applications of outlier 

detection include credit card fraud detection and monitoring of electronic commerce for 

criminal activities. Clustering may be used in lieu of manual classification when working 

with very large datasets which could be very time-consuming and prone to human error. 

 

Clustering is highly adaptable to change and can identify distinguishing features in the 

dataset. However, it also has some challenges. For example, clustering a large dataset 

may lead to biased results. Additionally, the results can be affected by noise, outliers, or 

missing elements. Mixed data types introduce additional complexity. 
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K-means is a common partitioning algorithm which calculates the center of each cluster 

using the mean value of all the objects in the cluster. K-medoids is similar, but instead of 

using the mean for the center of the cluster, it uses objects located near the center of the 

cluster. Partitioning based methods must be extended when working with very large 

datasets. 

 

3.4 Supervised Learning 

 

Supervised learning is the process of training a machine to accurately classify an instance 

or predict a value based on past examples. Data classification uses a labeled set of data 

called a training set to train a model for prediction, and a test set for evaluation purposes.  

There are several algorithms available used for classification. A renewed interest in  

neural networks has peaked with recent technological advances in computing power. 

Deep neural networks are especially known to perform well with large datasets 

[Edwards15]. 

  

3.5 Measurements and Evaluation 

 

The following performance measures were used to evaluate the effectiveness of the 

proposed model. Accuracy is an overall measurement. However, Recall and f-score are 

equally important. For example, if an alert is raised when there is no security incident in 

progress, the cost is likely an inconvenience, however, if a security incident goes 

unnoticed, the cost could be devastating depending on the nature of the incident 

[Alpaydin14]. 



 
 

- 26 - 

Accuracy (Equation 1) is defined as the ratio of correctly classified time slots to the total 

number of time slots [Alpaydin14]. 

 

 
Equation 1: Accuracy 

 

Precision (Equation 2) is defined as the ratio of true positives to all time slots classified as 

positive. For example, time slots correctly classified as normal to the total number of time 

slots classified as normal [Alpaydin14]. 

 

 
Equation 2: Precision 

 

Recall (Equation 3) is defined as the ratio of true positives to the total number of actual 

positive time slots. In other words, the number of time slots classified correctly to the 

total actual time slots [Alpaydin14]. 

 

 
Equation 3: Recall 

 

F-score is defined as the harmonic mean between precision and recall. This measure 

discourages models that sacrifice one measure over another [Han06]. 
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In addition to measuring the detection performance, the training and test time was also 

evaluated. These measures were used to support the claim that this model is accurate, 

fast, and scalable. 

 

This approach was assessed through experimentation using datasets of differing time 

granularity. An initial model and preliminary results using two distinct datasets are 

presented in the next chapter. Chapter 5 introduces additional enhancements to the model, 

a third dataset, and compares the results on each dataset.
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Chapter 4:  Ini tial Model and Preliminary  Results 

INITIAL MODEL AND PRELIMINARY RESULTS 
 
 
 
4.1 System Architecture 

 

The proposed system architecture, depicted in Figure 6, was implemented using Splunk 

Enterprise Edition 6.42 [Splunk17], R-Studio, and three sources which will be described 

in more detail in the next section. The source log files were manually loaded into Splunk 

using its web interface. However, a Splunk forwarder may be used to forward log files to 

the Splunk indexer for parsing and storing in real-time. A Splunk forwarder is also 

capable of receiving log data on a dedicated TCP port from high-speed appliances, such 

as a firewall. The Splunk search head hosts the web-based user interface and executes 

interactive searches and presents the results to the user.  

 

 
Figure 6: Proposed Solution Architecture
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Splunk, a commercial log aggregation application, is used for indexing, searching, and 

transformation of log data. Splunk was chosen for its ease of use, fast performance, and 

advanced search language functionality. Loading a log file into Splunk can be initiated 

via drag and drop operation, and completed with just a few mouse clicks. Additionally, 

Splunk’s architecture makes it a primary candidate for use in an online implementation. 

Since Splunk requires log files to be no larger than 500 MB in size, a log file splitter 

utility was used to load and index the log file. Due to the massive size of the logs, the 

import process spanned several days. The status of the import process can be determined 

anytime during or after the log import process by executing the Splunk command 

depicted in Figure 7. This command will display the source type, first event, last event, 

and a total number of events logged for each source type. 

 

| metadata type=sourcetypes  | eval firstEvent = strftime(firstTime, "%m-%d-%Y %H:%M:%S") | eval 

lastEvent=strftime(lastTime,"%m-%d-%Y %H:%M:%S") | table sourcetype, firstEvent, lastEvent, 

totalCount | sort firstEvent 

Figure 7: Verify Log File Import 

 

A Splunk search command was executed to create a dataset of aggregate feature counts in 

one-minute intervals. This aggregated data was then exported to a CSV file, and fed into 

the Pre-Processing module. The Pre-Processing module converts the one-minute interval 

total counts to into a five-minute sliding window representation. For initial training, the 

data is fed into the Clustering Module where the dataset is classified and labeled. The 

resulting classified dataset is used by the Deep Learning module for training and testing. 

After the model is trained, Pre-Processed data is then fed directly into the Deep Learning 
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module for incident detection. The system will generate in real-time alerts and updates to 

dashboards when it detects abnormal activity. 

 

4.2 Data Collection 

 

The University of North Florida Information Technology Security Department provided a 

“sanitized” set of log files used for this experiment. These files were extracted from real 

production system logs and altered to obscure user information. The log files are listed in 

Table 1. 

 

 
Table 1: Source Log Files 

 

Two datasets were extracted from the integrated log files in Table 1 for the purposes of 

evaluating the model performance with varying parameters. These datasets are defined in 

Table 2. The main difference between the two datasets is the size of the dataset and its 

time window. Experimentation was performed using each dataset.  
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Table 2: Dataset Definitions 

 

The datasets depicted in Table 2 were created using the time slot concept to model the 

data. The time slot size selected for both datasets was five minutes. Each row in the 

dataset contains aggregate feature counts for five minutes. For example, in three hours of 

log data examined, one time slot represented aggregate counts of 26,807 events. This has 

the effect of reducing the number of resources needed to represent all the data for each 

dataset drastically allowing the system to scale linearly as new log files are introduced. 

 

The log files for this research were extracted from the source systems, compressed, and 

transferred to DVD media. As a result, this research method is conducted in an off-line 

manner. A production deployment is not in the scope of this research. However, this 

research can be implemented in a near real-time manner. The training and test datasets 

needed for this research are created using the log files and contain aggregate count values 

in time series. 
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4.3 Feature Selection 

 

The features selected for machine learning are derived counts based on specific attributes 

from one or more log files. Selecting the individual user names or IP values as features 

would result in a sparse matrix which would exponentially increase the memory 

requirement. By examining three hours of the data collected it becomes evident that such 

a solution would not be linearly scalable. In one particular case, there were no more than 

316 active users out of a total 2,436 possible users. Figure 8 depicts the distribution of 

active users for this timeframe. Similarly, approximately 50% of the possible IP 

addresses were active at any point during the same timeframe. Consequently, these 

attributes were not selected as features. 

 

 
Figure 8: Active User Distribution 
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The features selected for this research (Table 3) were derived from aggregate values 

using the Neptune, DHCP, and IPS source types. 

 

 
Table 3: Features used for Machine Learning 

 

The “Neptune” source type contains event data from four Windows servers running 

Microsoft Internet Information Server (IIS). The structure of this source type adheres to 

the W3C Extended Log File standard [Hallam-Baker96]. The events contained in this 

source type are the result of user email activity. The features derived from this source 

type include the total number of HTTP POST and GET requests, the total number of 

successful and unsuccessful requests, the distinct count of users, and the number of 

Active Sync, Web Access, and MAC users. The sample event in Figure 9 depicts in bold 
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print the portions used to derive the postCount, activeSyncUserCount, uniqueUserCount, 

and HTTP2XX features. The features uniqueIPCount and uniqueUserCount appear to 

have a strong correlation as shown in Table 4. 

 

D:\Elfa_Data\Neptune\Raw\4\u_ex150419_x.log,293972,2015-04-19,23:59:59,139.62.192.204,POST, 

/Microsoft-Server-

ActiveSync/default.eas,User=User951&DeviceId=ApplDKVLK09WDVGF&DeviceType=iPad 

&Cmd=Ping&CorrelationID=<empty>;&ClientId=EPYTCILETMFIVQOYCFG 

&cafeReqId=f0cf56aa-c4b7-4474-8f5e-4ec2b0e4d895;,443,UNFCSD\User951,139.62.193.253, 

Apple-iPad3C2/1206.69,,200,0,0,24625,76.122.20.229 

Figure 9: IIS Log Entry Sample 

 

 
Table 4: Correlation Results for Features 

 

The DHCP source type contains event data from three UNIX servers which process 

requests for the network (IP) address for hosts connecting to the network using Dynamic 

Host Configuration Protocol [Droms97]. The sample event depicted in Figure 10 is used 

to derive the feature DHCPDiscover. 
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Apr 19 23:59:58 thrasher dhcpd: DHCPDISCOVER from 40:25:c2:7b:d3:14 via eth0 

Figure 10: DHCP Log Entry Sample 

 

The IPS source type contains event data from the Tipping Point Intrusion Prevention 

System (IPS), an industry standard Intrusion Prevention System. The IPS system logs 

events when any network traffic matching a rule is detected. The sample event depicted 

in Figure 11 is used to derive the following features: blockCount, facultyCount , and 

foreignIPCount.  

 

2015-04-19 23:59:34",Low,"7611: DNS Reputation",Reputation,Block,1,Faculty-

Staff,139.62.200.212,34847,199.249.119.1,53,192,download.newnext.me 

Figure 11: IPS Log Entry Sample 

 

4.4 Pre-Processing 

 

The Splunk search in Figure 12 was used to create the datasets for this research by 

varying earliest and latest date-time values. The results were exported into a CSV format.  
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index=main (sourcetype=neptune OR sourcetype=tpsms OR sourcetype=dhcp) earliest=04/19/2015:21:00:0 

latest=04/20/2015:0:0:0 | eval statusCd=substr(sc_status,1,1) | iplocation DEST_IP | bucket _time span=1m | eval 

dhcpCMD=if(match(_raw,"DHCPDISCOVER"),"DISCOVER","") | eval userType=if(like(cs_uri_stem,"%owa%"),"OWA", 

if(like(cs_uri_stem,"%Microsoft-Server-ActiveSync%"),"ASYNC", if(like(cs_User_Agent,"MacOutlook%"), 

"MACOUTLOOK", "OTHER"))) | stats count(eval(cs_method="POST")) as postCount, count(eval(cs_method="GET")) 

as getCount, dc(cs_username) as uniqueUserCount, dc(OriginalIP) as uniqueIPCount, count(eval(statusCd="2")) as 

HTTP2XX, count(eval(statusCd="4")) as HTTP4XX, count(eval(statusCd="5")) as HTTP5XX, mode(FILTER) as 

primaryReason, count(eval(userType="OWA")) as owaUserCount, count(eval(userType="ASYNC")) as 

activeSyncUserCount, count(eval(userType="MACOUTLOOK")) as macUserCount, 

count(eval(dhcpCMD="DISCOVER")) as DHCPDiscover, count(eval(Country!="United States")) as foreignIPCount, 

count(eval(PROFILE="Faculty-Staff")) as facultyCount, count(eval(PROFILE="Dorms-Guest")) as studentCount, 

count(eval(ACTION="Block")) as blockCount, count(eval(ACTION="Permit")) as permitCount, mode(VLAN_NUM) as 

primaryVLAN by _time 

Figure 12: Splunk Transformation Query 

 

The exported CSV data is converted into a sliding window representation using an R-

Script. The purpose of this step is to preserve a continuous set of temporal values as the 

system advances through each row in the dataset which contains the aggregate feature 

counts for one time slot. For example, given a time slot size of five minutes and a sixty 

minute time window starting at 21:00, the first row in the dataset contains aggregate 

feature counts for the time slot from 21:00 through 21:04. The second row contains 

aggregate feature counts from 21:01 through 21:05, and so forth. The start time for each 

subsequent time slot starts one-minute later than the previous time slot began. The time 

slot start and end times are included as the first two fields of each dataset as shown in 

Figure 13. These time fields were not used for machine learning, instead, are included in 

order to provide the actual time frame to a security analyst for investigation purposes. 
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Figure 13: Partial Dataset Image 

 

4.5 Unsupervised Learning Results 

 

A classified dataset consisting of normal and abnormal activity is needed for supervised 

learning to occur. Classification would be extremely labor intensive due to the massive 

size of the log files. For example, if activity in one-time slot warranted investigation, a 

security analyst could potentially need to review over 30,000 log entries, thus making 

visual identification and classification impossible. 

 

Generating synthetic data for abnormal activity was considered because there were no 

known security incidents during the timeframe the log data was collected.  However, 

there is an inherent risk when assuming that the log data contains only normal activity. If 

anomalies exist in the data, the model may inaccurately classify instances, or worse 

ignore real security incidents. Consequently, clustering was used to identify anomalous 

activity within the training dataset.  

 

 The Partitioning Around Medoids (PAM) algorithm was chosen to classify the dataset 

into three clusters of activity. PAM was chosen because it is resistant to outliers and 

allows clustering of categorical values. Each cluster is classified as normal, critical, or 
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warning, and is labeled green, red, or yellow, respectively. The cluster score is calculated 

from the median value of the sum of all features and is used to determine the label 

assigned to each cluster. R code for calculating the cluster score is depicted in Figure 14. 

The cluster with the lowest score was labeled green. The cluster with the highest score 

was labeled red, and the remaining cluster was labeled yellow.  

 

l<-which(wbpam$clustering %in% c(1)) 

cluster.scores<-

c(median(rowSums(tw[l,]))) 

l<-which(wbpam$clustering %in% c(2)) 

cluster.scores<-c(cluster.scores, 

median(rowSums(tw[l,]))) 

l<-which(wbpam$clustering %in% c(3)) 

cluster.scores<-c(cluster.scores, 

median(rowSums(tw[l,]))) 

print(cluster.scores) 

Figure 14: R Code to Calculate Cluster Scores 

 

The classification results for each dataset are shown in Figure 15. It is worth noting that 

all of the cluster scores resulting from Dataset 2 are lower than those from Dataset 1. The 

green cluster score from Dataset 2 is fifty-seven percent lower its counterpart.  

 

 
Figure 15: Clustering Confusion Matrixes 
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Figure 16 contains box plots depicting the difference in the scale of activity for each 

dataset.  The Y-axis represents the sum of all features for each instance in a cluster. The 

normal and warning clusters in Dataset 2 overlap. Further analysis will reveal that the 

skewed results from the clustering Dataset 2 were due to clustering on such a large time 

window. 

 

 
Figure 16: Cluster Scores 

 

Typical user activity patterns appear to follow a Gaussian distribution throughout a 

normal business day. This is illustrated by the data from Dataset 2 in Figure 17. As a 

result, the peak activity times in Dataset 2 were classified as red, non-peak as green, and 

the transition period as yellow. 
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Figure 17: User Activity Distribution 

 

Table 5 depicts the time slots color-coded according to each cluster in Dataset 1 and 

includes the total events, average number of events per minute (EPM), start and end 

times, and classification duration in minutes.  
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Cluster Beginning 
Time Slot 

Ending 
Time 
Slot 

Start 
Time 

End 
Time 

Duration 
(min) 

AVG 
EPM 

Total 
Events 

Green 1 16 21:00 21:20 20 1,324 26,474 

Yellow 17 18 21:16 21:22 6 2,934 17,603 

Red 19 34 21:18 21:38 20 5,456 109,111 

Yellow 35 37 21:34 21:41 7 3,623 25,363 

Green 38 83 21:37 22:27 50 1,250 62,501 

Yellow 84 105 22:23 22:49 26 3,054 79,391 

Red 106 108 22:45 22:52 7 4,018 28,123 

Yellow 109 110 22:48 22:54 6 3,384 20,303 

Green 111 115 22:50 22:59 9 2,110 18,991 

Yellow 116 117 22:55 23:01 6 3,219 19,315 

Red 118 152 22:57 23:36 39 5,361 209,096 

Yellow 153 157 23:32 23:41 9 4,938 44,442 

Red 158 166 23:37 23:50 13 5,297 68,858 

Yellow 167 169 23:46 23:53 7 3,349 23,4438 

Green 170 176 23:49 00:00 11 1,614 17,750 
Table 5: Time Slot Classification Results 

 

Plotting the feature postCount confirms anomalous user activity occurred during the 

three-hour time window, shown in the top half of Figure 18. The red line is the average of 

events per minute of the red clusters in Table 5. The activity above this line indicates 

abnormal activity. The area between the yellow and red lines is indicative of a border 

state between normal and abnormal activity. 
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The bottom chart in Figure 18 is a time chart of the feature postCount from Dataset 2 

using the same boundaries as the top graph. The amount of time above the red line is 

notably smaller than that from Dataset 1.  

 

 
Figure 18: HTTP POST Requests 

 

Approximately 38 percent of the user activity in Dataset 2 was classified as abnormal. If 

we assume user activity remains constant throughout the day, the thresholds should 

remain constant. However, the chart of Dataset 2 (48 hours) in Figure 18 using the same 

threshold for abnormal activity as Dataset 1, shows most of the activity is below the 

control boundary. It is apparent that the threshold for abnormal activity changes 

throughout the day based on user activity and the size of the time window chosen impacts 

the accuracy of the clustering results. In this case, a larger time window produced biased 

results.  
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Future experiments using a smaller time window and a larger period of activity are 

expected to result in more accurate clustering and facilitate learning routine activity 

patterns specific to any hour of any day of the week. 

 

4.6 Supervised Learning Results 

 

The R package “h2o” was used to train and test a neural network using the deep learning 

algorithm. The dataset was split into 70/30 % for training and testing, respectively, 

maintaining an equal proportion of each class in both the training and test sets. 

 

The experiments conducted used one hundred epochs and the hyperbolic tangent for the 

activation function. Determining the optimal network topology is not a trivial task. 

Therefore these experiments used a simple network topology of one hidden layer with 

two neurons. Table 6 depicts the overall results of the deep learning algorithm on both 

datasets. The larger dataset (Dataset 2) resulted in greater accuracy. The confusion 

matrixes for both datasets are depicted in Table 7. The accuracy of the Deep Learning 

algorithm was slightly less than that of the Weka Multi-Level Perceptron (MLP). The h2o 

deep learning algorithm was significantly faster than the Weka MLP.   
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Table 6: Deep Learning Results 

 

 
Table 7: Deep Learning Confusion Matrixes 
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Chapter 5:  Experiments and Results 

EXPERIMENTS AND RESULTS 
 
 
 
5.1 Overview 

 

In the previous section, it was shown that user activity typically follows a normal 

distribution and can vary with the time of day. In order to account for the dynamic nature 

of user activity and preserve the prediction accuracy of the model, the experiments 

described in this section will introduce two new features and several new methods, such 

as normalization, rule-based clustering, split-level clustering, and topology analysis. 

Finally, the model was trained and evaluated using the original datasets used in the 

previous section, in addition to a newly created dataset.  

 

5.2 Data Collection 

 

A third and final dataset that spans approximately two calendar weeks was created for the 

purposes of evaluating the model performance on a larger sample of log data. This 

dataset was used to train the model to learn normal activity patterns that occur at various 

times during the day and evaluate its performance at detecting those user activities that 

fall outside of the normal range. It is worth noting that the new dataset is a superset of the 

other two datasets (Table 8). 
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Table 8: Dataset Definitions 

 

Each dataset is composed of one-minute feature aggregates derived from the original log 

files. The features used for machine learning are depicted in Table 9. The source log file 

of each feature is listed with its description. This is the same feature set used in the 

previous section, with the addition of the two new calculated fields: dhour and wday.  

The purpose of introducing the new features is to model the dynamic nature of user 

activity over time. For example, a normally occurring pattern during the afternoon may 

not normally occur in the middle of the night, and hence is suspicious in nature or could 

be an attack. 
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Table 9: Features used for Machine Learning 

 

5.3 Pre-processing 

 

The pre-processing module converts the datasets listed in Table 8 into a five-minute 

sliding window representation by summing the feature aggregates. The reason for using 

the sum instead of the median or mean is that the mean or median could mask a subtle 

fluctuation in an activity that would otherwise go unnoticed. Additionally, the pre-

processing module introduces two new features which allow the neural network to 

accurately differentiate abnormal activity from fluctuations that may normally occur 

throughout the day. The new features are wday and dhour. The wday feature is the 
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ordinal number of the calendar day of the week (0-6). The dhour feature represents the 

hour of the timeslot (0-23). The time required for preprocessing each dataset is listed in 

Table 10. 

 

 
Table 10: Pre-processing Times 

 

5.3.1 Normalization 

 

Normalization is performed by the pre-processing module to prepare the data for machine 

learning. The purpose of normalization is to bring all features into a common range so 

that one feature does not have higher precedence than any other feature. Normalization 

was performed on each feature column using Min-Max normalization [Figure 19].  

 

 
Figure 19: MinMax Normalization 

 
Normalization allows for easier comparison when charting features with a different scale. 

Additionally, normalization can speed up the time required to train the neural network 

[Han06]. Normalizing the dataset preserves the shape of the feature plots as can be seen 

in Figure 20.  
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Figure 20: Effect of Normalization 

 

5.4 Unsupervised Learning Results 

 

The source log files used for this research were not known to have any intrusions at the 

time they were collected, and as a consequence, the datasets were not labeled. Abnormal 

activity patterns were discovered to exist within the data. However, there lacked a 

sufficient sample to train a neural network effectively. Due to the size of the log files, 

manual labeling of a dataset would require intensive effort. Hence, the Partitioning 

around Medoids (PAM) algorithm was used to create a labeled dataset with a 

proportional number of examples for each class. The PAM clustering results are shown in 

Table 11.  



 
 

- 50 - 

 
Table 11:  PAM Clustering Results 

 

Three classifications were chosen to model a common business view of user activity. The 

classifications green, yellow, and red were used. These classifications also reflect the 

criticality or urgency of activity. Normal user activity patterns are labeled green. Known 

attack patterns or activities that have a high sense of urgency are labeled red. Patterns that 

are suspicious, unknown or are a precursor to a cyber attack are labeled yellow.  

 

Each of the datasets was partitioned into three clusters and labeled using a cluster scoring 

function. The cluster score was calculated by summing of the features of the cluster’s 

medoid. The cluster with the lowest score was labeled green. The cluster with the largest 

score was labeled red, and the remaining cluster was labeled yellow.  The medoids for 

each of the datasets are shown in Tables 12, 13, and 14. 
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Table 12: Medoids for Dataset 1 
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Table 13: Medoids for Dataset 2 

 



 
 

- 53 - 

 
Table 14: Medoids for Dataset 3 

 

5.4.1 Rule-based Clustering 

 

Rule-based clustering was introduced to provide a different method of labeling data since 

clustering resulted in a near linear split of the data. This method attempts to fit the data to 

a more complex, non-linear equation which would be more representative of an attack. 

Additionally, a Subject Matter Expert (SME) may classify some events in the logs 

differently from another SME. The rule set chosen does not impact the validity of this 
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approach, as such the rules used in this experiment could be replaced with an entirely 

different set and achieve similar results.  

 

This method utilized four rules that explicitly reference features from three different log 

sources. The rules were derived from an interview with a security analyst from a 

discussion on what events could represent attacks in the logs. Using the same 

classifications introduced earlier, the classes were defined as follows. Instances that 

matched one of the rules were labeled yellow, while instances that matched more than 

one rule were labeled red. Instances that did not match any of the rule patterns were 

labeled green. The results of the rule-based classification are depicted in Table 15.   

 

 
Table 15: Rule-based Clustering Results 

 

The rules used in this method are listed below. 

▪ Rule 1: High rates of DHCP discover requests are representative of a DHCP 

starvation attack.  

▪ Rule 2: High connection counts to foreign IP’s with a high rate of HTTP POST 

requests could be a malware attack. 
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▪ Rule 3: High rate of HTTP GET requests with low unique user counts could be 

representative of a denial of service attack. 

▪ Rule 4: High number of unauthorized attempts for access is likely to be 

reconnaissance for an attack. 

 

In order to provide a proportional number of examples for each class, the quantile 

function was used on the feature values to establish a dynamic threshold. For example, all 

instances where the DHCP discover value exceeds the 75% quantile were considered an 

attack. This method was faster than using PAM clustering. Clustering the two-week 

dataset using PAM took just under two hours compared to the rule-based method which 

took just over two minutes. The rule-based method also resulted in a smaller proportion 

of non-normal examples than the PAM method. For example, using the PAM method on 

Dataset 3 resulted in approximately 33% of activity in each cluster. The rule-based 

method classified 18% of the activity as critical or red. 

 

5.4.2 Feature Ranking 

 

After the datasets had been labeled, the features were ranked using an Information Gain 

attribute evaluator using Weka. The feature ranking for the PAM clustered data is shown 

in Table 16. The wday feature is a constant value in the three-hour dataset. Hence it was 

ranked zero. Any of the features ranked zero could be dropped without impacting the 

accuracy of the model, however, all of the features were retained for the experiments in 

this research. The new features have a higher ranking in the other two datasets. The 
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features targeted by the rule-based clustering were ranked higher than the other features 

as can be seen in Table 17. 

 

 
Table 16: PAM Feature Ranking 

 

 
Table 17: Rule-based Feature Ranking 
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5.4.3 Split-level Clustering 

 

Split-level clustering was introduced to simulate a non-linear method of classifying the 

dataset. PAM is used to partition the dataset into three clusters. Each of the resulting 

clusters is then partitioned using PAM to create three clusters which are labeled green, 

yellow, or red according to their respective cluster score. The resulting nine clusters are 

combined according to their labeled color and used to create a dataset which is then used 

for evaluation purposes of the deep learning algorithm using multiple hidden layers. 

Figure 21 depicts the process used by the split-level clustering method. 

 

 
Figure 21: Split-Level Clustering Process 

 

The split-level concept seems similar to hierarchical clustering; however it is not really 

for several reasons. First, the algorithm used is Partitioning among Medoids (PAM) 

which is a partitioning algorithm. Second, the number of clusters in hierarchical 

clustering is determined by the height in the tree, whereas the number of clusters is 
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specified for PAM. There are two types of hierarchical clustering methods.  

Agglomerative is a bottom-up technique which starts with every instance in its own 

cluster, and then merges the clusters until they are all in a single cluster. Divisive, a top-

down strategy, starts with all the instances in one cluster and then subdivides the cluster 

until each instance is in its own cluster. In the split-level method, the height is constant, 

and the final number of clusters is controlled by k used in the second level which should 

match the levels of user activity used for classification. 

 

5.5 Supervised Learning Results 

 

Supervised learning was performed using the h2o deep learning algorithm [h2o17] to 

train and test the model using each of labeled datasets created during unsupervised 

learning. The datasets were split into training and test sets comprising 70% and 30% of 

the data respectively. The training set was used solely to train the neural network, and the 

test set was reserved for testing and evaluation purposes. The parameters for the h2o deep 

learning algorithm are the number of epochs, the activation function, and the hidden layer 

topology. The hidden layer parameter is a vector containing the number of neurons for 

each hidden layer. The activation function used was the Hyperbolic Tangent, and the 

number of epochs used for this research was 1000. The optimal number of epochs was 

determined through experimentation using 100, 1,000, and 10,000 epochs taking into 

account the accuracy and time to train the model. 

 

Deep learning tests were conducted using the PAM labeled datasets varying the number 

of hidden neurons from 2 to 20 in a single hidden layer. The results shown in Table 18 
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are from a single test on each dataset. The deep learning algorithm automatically dropped 

the wday feature in the three-hour dataset because the value was constant.  

 

 
Table 18: Deep Learning Results using PAM Labeled Data 

 

The resulting confusion matrices for each of the tests are shown in Table 19. There were 

no false negatives for Datasets 1 and 2. There were ten false negatives for the larger 

dataset where only two were classified as normal. There was only one false positive for 
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Datasets 1 and 2. The larger dataset resulted in seventeen false positives where only four 

were classified as critical. 

 

 
Table 19: Deep Learning Confusion Matrices for PAM Labeled Data 

 

The single layer topology analysis in Table 20 shows the deep learning results for Dataset 

1 of the various neuron configurations while holding all other parameters constant. There 

is no difference in performance with two, three, or four neurons. Adding a fifth neuron 

allowed the model to achieve 100% accuracy, precision, and recall. 
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Table 20: Single Layer Topology Analysis PAM Labeling Using Dataset 1 

 

The single layer topology analysis for Dataset 2 is shown in Table 21. Two hidden 

neurons produced the best accuracy for this dataset. Adding more neurons had no effect 

and in some cases reduced the accuracy slightly. The total time to train the model was 

only 5.69 seconds. 
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Table 21: Single Layer Topology Analysis PAM Labeling Using Dataset 2 

 

The single layer topology analysis results for the largest dataset are shown in Table 22. 

Ten hidden neurons produced the highest accuracy (99.33%) and took 170 seconds to 

train the model. A single layer of six hidden neurons yielded an accuracy of 99.01% 

while only taking 54.5 seconds for training.  
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Table 22: Single Layer Topology Analysis PAM Labeling Using Dataset 3 

 

Deep learning tests were conducted using the Rule-based labeled datasets varying the 

number of hidden neurons from 2 to 20 in a single hidden layer. The results shown in 

Table 23 are from a single test on each dataset. The time to train the model using the 

Rule-based labeled datasets was significantly longer than the PAM labeled datasets. For 

example, the largest rule-based dataset took 90.5 seconds to train compared to the 

comparable PAM labeled dataset which took 53.7 seconds. The accuracy of the Rule-

based datasets was also lower than the accuracy with the PAM labeled datasets.  
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Table 23: Deep Learning Results Using Rule-based Labeled Data 

 

The resulting confusion matrices for each of the tests are shown in Table 24. Looking at 

the red cluster, we can see there were no false negatives predicted for Dataset 1; thirty-

nine false negatives occurred while classifying Dataset 2, and only fourteen false 

negatives were encountered classifying the test set of Dataset 3. 
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Table 24: Confusion Matrices for Rule-based Labeled Data 

 

The single layer topology analysis in Table 25 shows the deep learning results for Dataset 

1 of the various neuron configurations while holding all other parameters constant. A 

single hidden layer with five neurons yielded an accuracy of 84.3% while classifying the 

test set of Dataset 1. 
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Table 25: Single Layer Topology Analysis Rule-based Labeling Using Dataset 1 

 

The single layer topology analysis in Table 26 shows the deep learning results using 

Dataset 2 for the different hidden neuron configurations. The configuration using eleven 

neurons in the single hidden layer yielded an accuracy of 95.47% with a training time of 

28.1 seconds. 
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Table 26: Single Layer Topology Analysis Rule-based Labeling Using Dataset 2 

 

The single layer topology analysis in Table 27 shows the deep learning results using 

Dataset 3 for the different hidden neuron configurations. The configuration using five 

neurons in the single hidden layer yielded an accuracy of 97.97% with a training time of 

90.5 seconds. 
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Table 27: Single Layer Topology Analysis Rule-based Labeling Using Dataset 3 

 

5.5.1 Neural Network Topology  

 

Defining the neural network topology must be completed prior to training. Defining the 

input and output layers are relatively straightforward. For the experiments conducted in 

this research, eighteen neurons were used for the input layer, one neuron for each feature. 

Three neurons were used for the output layer, one neuron for each possible classification. 

Generally, there is no best practice for selecting the number of hidden layers or neurons, 

but these values should not be arbitrarily selected [Han06]. As the number of neurons 

increases, the neural network’s hypothesis function becomes more complex. Using more 
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than one hidden layer allows for implementing a more complex function on the data. An 

overly complex hypothesis function will learn the function of the underlying data 

including any noise resulting in poor generalization. This is known as overfitting. Finding 

the hypothesis with the minimum training error will result in the best fit. Conversely, if 

the hypothesis function is less complex than the data, the generalization error will be 

high. This is known as under-fitting. Selecting the number of hidden layers and neurons 

for each layer was accomplished by varying the number of hidden neurons in each layer 

and examining the results.  

 

As the patterns and relationships in the data become more complex, the required number 

of hidden layers needed to learn a nonlinear relationship increase. In order to simulate 

such a nonlinear equation, testing of multiple hidden layer configurations was 

accomplished using the two split-level labeled datasets.  

 

The optimal number of layers was determined by running tests on a single layer with 2 to 

20 neurons. The number of neurons that produced the greatest accuracy or f-score with 

the least amount of training time was then held constant while varying the second layer of 

neurons from 2 to 20. Finally, a third hidden layer was added using the optimal number 

of neurons identified in the previous two runs. The layer that produced the greatest 

accuracy or f-score was selected as the most optimum hidden layer configuration.  

The topology analysis for the first hidden layer using Dataset 2 is shown in Table 28. The 

configuration with 16 neurons produced an accuracy of 97.2% with a training time of 

39.5 seconds.  
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Table 28: Layer 1 Topology Analysis Split Level Using Dataset 2 

 

The results from the next step using two hidden layers with the first layer having 16 

neurons while varying the number of neurons in the second layer from 2 to 20 are shown 

in Table 29. The hidden layer topology of 16, 15 neurons yielded an accuracy of 97.8%. 

The two layer hidden layer topology is optimal because it yielded a greater accuracy than 

the single layer topology. The gain was 0.6% accuracy at the cost of 20 seconds of 

additional training time. 
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Table 29: Layer 2 Topology Analysis Split Level Using Dataset 2 

 

The topology analysis for the first hidden layer using Dataset 3 is shown in Table 30. The 

configuration with 17 neurons produced an accuracy of 94.2% with a training time of 

200.8 seconds. The configuration with 15 neurons produced a lower accuracy of 91.5%, 

but with a training time of 66 seconds.  
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Table 30: Layer 1 Topology Analysis Split Level Using Dataset 3 

 

The first test conducted selected the neuron configuration that yielded the most accurate 

results with the best time to train. The results from the next step using two hidden layers 

with the first layer having 15 neurons while varying the number of neurons in the second 

layer from 2 to 20 are shown in Table 31. The hidden layer topology of 15, 6 neurons 

yielded an accuracy of 95%.  
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Table 31: Layer 2 Topology Analysis Split Level Using Dataset 3 

 

The results of the third layer topology analysis with the first and second layer containing 

15 and 6 neurons are displayed in Table 32. The best three layer configuration consists of 

15, 6, and 12 neurons, yielding an accuracy of 93.1% and f-score of 91.8% with a 

training time of 199.3 seconds. The two layer hidden layer topology is optimal because it 

yielded a greater accuracy than both the single layer and third layer topology. 
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Table 32: Layer 3 Topology Analysis Split Level PAM Dataset 3 

 

The second test used the 17 neuron configuration which yielded the most accurate results 

in the single layer test. Examining the results of the second layer topology analysis in 

Table 33, we can see a network topology configuration of two hidden layers with 17 

neurons in each layer is the optimal choice yielding an accuracy of 96.3% and f-score of 

96.2%. The best one layer configuration with 17 neurons was 94.2% accuracy and f-score 

of 93.5%. The best three layer configuration with 17, 17, and 4 neurons yielded an 

accuracy of 94.4% and f-score of 94.0%.  
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Table 33: Layer 2 Topology Analysis Split Level PAM Dataset 3 

 

5.5.2 Additional observations 

 

Scalability is achieved using the time slot to model the data. For example, Dataset 1 

represented a total of 995,701 events in 176 instances. Time to test was 0.094 seconds 

using 52 instances. Dataset 2 was created from 12,786,858 events and was reduced to 

2,876 instances. Time to test was 0.093 seconds using 861 instances. The number of 

instances increased by a factor of 16, but the time to test was faster by 0.001 seconds. 

Dataset 3 was comprised of 18,896 instances and represented 102,993,636 raw events. 

Time to test was 1.145 seconds. The time to test Dataset 3 was 12 times that of Dataset 1 



 
 

- 76 - 

where Dataset 3 was 363 times larger than Dataset 1. It is evident that increasing the 

amount of data increases the time to test linearly. 

 

Including additional log files will not increase the number of instances in the dataset, but 

instead will only add columns equal to the number of features extracted from each log 

file added.  

 

5.5.3 Implementation considerations 

 

There are several factors that should be considered before training the model whether it is 

the initial training or subsequent feedback sessions. First, the security analyst will need a 

tool for examining or discovering suspicious patterns in the log data. The PAM clustering 

method used in this research does not serve as such a tool.  

 

Additionally, each training session should use current data that contains a proportionate 

number of examples for each class. There are a number of methods that can be used to 

obtain attack training data. The easiest method is to use data gathered during a real 

breach. Another method is to use Honey Pots, systems which are designed to ferret out 

hackers and learn new methods. Logs gleaned from penetration or vulnerability scans can 

also be a valuable source of log attack data. Lastly, existing data can be programmatically 

modified to represent potential incidents or attacks. 

 

Over time user activity patterns change, and new patterns may ensue. Also, existing 

features may have been overlooked, initially deemed not relevant, or introduced through 



 
 

- 77 - 

the procurement of new computer system. As a result, the performance of the model will 

eventually degrade and become unacceptable. In this event, features should be re-

evaluated for relevance prior to retraining the model with a fresh set of log data.  

 

For subsequent training sessions, the security analyst can use logs that were manually 

marked as suspicious or attack through normal daily investigations. When there are a 

sufficient number of examples, they can be added to the initial dataset and used to retain 

the model. 
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Chapter 6:  Conclus ion and Future Work 

CONCLUSION AND FUTURE WORK 
 
 
 
The results of the experiments conducted in this thesis demonstrate that a classified 

dataset with a proportional set of examples trained with the Deep Learning algorithm can 

accurately detect abnormal activity. This method allows for multiple log source types to 

be aligned using a sliding time window and provides a scalable solution which is a much-

needed feature. 

 

In a typical enterprise environment, the amount of log data processed could vary from 

several hundred gigabytes to a terabyte daily. The prototype developed in this research 

was relatively small consisting of a set of eighteen features from three different log 

source types totaling approximately twenty-five gigabytes in size.  This research 

demonstrated the prototype could very accurately model low complexity data with a 

shallow network. However, the complexity of the data increases as more log sources and 

features are introduced. This research demonstrated that highly complex data could be 

accurately modeled using a deep neural network. 

 

Detecting a cyber attack is just the beginning of a long, complicated investigative 

process. The security analyst may need to perform risk mitigation actions, such as 

blacklisting originating source IP’s and locking accounts. Logs files need to be examined 

to identify any compromised accounts, originating IP’s, and all resources accessed by the 

attacker. All related activities should be collected and examined several weeks or even 

months before the detected event. Potential areas of future work are automatic correlation 
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and analysis of the log data from cyber attacks. Additional machine learning algorithms 

and analysis required for automatic correlation can put a strain on computing resources 

depending on the volume of data to be searched and velocity of the log data being 

collected. Additional areas of future work include building a distributed computing 

implementation such as Hadoop with terabytes of log data.
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