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ABSTRACT 

Pedestrian countdown signals (PCSs) are viable traffic control devices that assist 

pedestrians in crossing intersections safely. Despite the fact that PCSs are meant for 

pedestrians, they also have an impact on drivers’ behavior at intersections. This study focuses 

on the evaluation of the safety effectiveness of PCSs to drivers in the cities of Jacksonville and 

Gainesville, Florida. The study employs two Bayesian approaches, before-and-after empirical 

Bayes (EB) and full Bayes (FB) with a comparison group, to quantify the safety impacts of 

PCSs to drivers. Specifically, crash modification factors (CMFs), which are estimated using 

the aforementioned two methods, were used to evaluate the safety effects of PCSs to drivers. 

Apart from establishing CMFs, crash modification functions (CMFunctions) were also 

developed to observe the relationship between CMFs and traffic volume. 

The CMFs were established for distinctive categories of crashes based on crash type 

(rear-end and angle collisions) and severity level (total, fatal and injury (FI), and property 

damage only (PDO) collisions). The CMFs findings, using the EB approach indicated that 

installing PCSs result in a significant improvement of driver’s safety, at a 95% confidence 

interval (CI), by a 8.8% reduction in total crashes, a 8.0% reduction in rear-end crashes, and a 

7.1% reduction in PDO crashes. In addition, FI crashes and angle crashes were observed to be 

reduced by 4.8%, whereas a 4.6% reduction in angle crashes was observed. In the case of the 

FB approach, PCSs were observed to be effective and significant, at a 95% Bayesian credible 

interval (BCI), for a total (Mean = 0.894, 95% BCI (0.828, 0.911)), PDO (Mean = 0.908, 95% 

BCI (0.838, 0.953)), and rear-end (Mean = 0.920, 95% BCI (0.842, 0.942)) crashes. The results 

of two crash categories such as FI (Mean = 0.957, 95% BCI (0.886, 1. 020)) and angle (Mean 

= 0.969, 95% BCI (0.931, 1.022)) crashes are less than one but are not significant at the 95 % 

BCI. 
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Also, discussed in this study are the CMFunctions, showing the relationship between 

the developed CMFs and total entering traffic volume, obtained by combining the total traffic 

on the major and the minor approaches. In addition, the CMFunctions developed using the FB 

indicated the relationship between the estimated CMFs with the post-treatment year.  The 

CMFunctions developed in this study clearly show that the treatment effectiveness varies 

considerably with post-treatment time and traffic volume. Moreover, using the FB 

methodology, the results suggest the treatment effectiveness increased over time in the post-

treatment years for the crash categories with two important indicators of effectiveness, i.e., 

total and PDO, and rear-end crashes. Nevertheless, the treatment effectiveness on rear-end 

crashes is observed to decline with post-treatment time, although the base value is still less than 

one for all the three years. In summary, the results suggest the usefulness of PCSs for drivers. 
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CHAPTER 1: INTRODUCTION 

Overview of Pedestrian Countdown Signals (PCSs) 

Enhancing pedestrian safety at signalized intersections, especially in urban areas has 

always been a challenge to traffic engineers. Signalized intersections in urban environments 

are characterized with high traffic volume and fast approach speeds when crossing 

intersections. This situation imparts a challenge to pedestrians who intend to cross these 

intersections. To address this challenge, a number of pedestrian controls have been introduced 

to improve the safety of pedestrians as they cross signalized intersections. Pedestrian 

countdown signals (PCSs) are one of the recent pedestrian control devices that have been 

introduced for the purpose of improving pedestrian safety at signalized intersections. These are 

standard devices that inform pedestrians that is safe to cross intersections when there is no 

conflicting vehicular traffic. 

A unique feature of PCSs is the display of the remaining time in seconds in the protected 

pedestrian phase, providing pedestrians with a chance to decide whether they will have enough 

time to clear the intersection before the termination of their right-of-way. In addition, for 

pedestrians who have started to clear the intersection, the PCS’ timer provides them with an 

opportunity to speed up to walk through the intersection. It is worth noting that PCSs are 

replacing the traditional pedestrian signals (Figure 1.1, left picture). 

A standard pedestrian signal consists of a steady WALKING PERSON, signifying 

WALK, which gives permission to a pedestrian to start crossing the intersection in the direction 

of the signal indication. This pedestrian signal also consists of a flashing and steady 

UPRAISED HAND, implying DON’T WALK, indicating that a pedestrian shall not start to 

cross the roadway in the direction of the signal indication, but that any pedestrian who has 

already started to cross on a steady WALKING PERSON (symbolizing WALK) signal 

indication shall speed up to clear the intersection. Lastly, a standard pedestrian signal also 
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consists of a steady UPRAISED HAND, symbolizing DON’T WALK, meaning that a 

pedestrian shall not enter the roadway in the direction of the signal indication (MUTCD, 2009). 

Pedestrians have a tendency to be confused when the standard pedestrian signal shows 

a flashing upraised hand. Though this symbol is meant to provide pedestrians who have already 

started crossing the roadway sufficient clearance time to finish the crossing safely, some 

pedestrians and other road users have difficulty estimating the actual amount of time indicated 

during the flashing hand phase.  Presumably, they consider the amount of time designated for 

the flashing hand phase to be insufficient for pedestrians to finish crossing the intersections 

safely. This confusion has been solved by the display of the countdown timer in a PCS (Figure 

1, right). PCSs were first approved and incorporated in the Manual of Uniform Traffic Control 

Devices (MUTCD) in its 2003 version (MUTCD, 2003). In 2009, the MUTCD warranted the 

installation of PCSs at each intersection with a pedestrian clearance interval of more than 7 

seconds (MUTCD, 2009). Since then, they have been widely utilized by transportation 

authorities as a preferred pedestrian treatment at signalized intersections. 

 

 

 Figure 1.1. Standard pedestrian signal (left) vs pedestrian countdown signal (right) 
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PCSs have a countdown timer, which exhibits the amount of time remaining in seconds 

for pedestrians to clear the intersection before their time for crossing is terminated. The 

remaining time displayed in these signal heads is in descending order, in seconds, using Arabic 

numerals. Normally PCSs are installed at a distance that ranges between 1.5 and 6 feet away 

from the curb face (MUTCD, 2009). Further, the PCSs’ heads are required to be installed at a 

height that ranges between 7 and 10 feet above the sidewalk level (MUTCD, 2009). Based on 

the location and height of PCSs at signalized intersections, some drivers are able to see the 

countdown timing displayed as they approach intersections on a lane parallel to the pedestrian 

crosswalk where the PCS is operating.  

Often, the operation of PCSs is simultaneous to the commencement of the green phase 

on the approaching through traffic parallel to the pedestrian walkway where the PCS is 

directing pedestrians to cross. The time displayed on the operating PCS’ head is also visible to 

motorists on approaches parallel to the crosswalk. When the pedestrian clearance interval reads 

zero, the approaching traffic parallel to the pedestrian walkway will commonly receive a red 

signal, with the exception of some of the intersections where the actuated green signal may be 

extended depending on the detected length of the vehicle platoon waiting to cross the 

intersection. Thus, the information that a pedestrian countdown timer offers to approaching 

drivers may affect their approach speed, especially when drivers realize that the termination of 

the PCS’ timer operation is simultaneous to the termination of their green phase. 

Effects of PCSs on Drivers 

There are two schools of thought regarding the drivers’ reactions as the pedestrian 

countdown timers near zero. There are drivers who would use the timer as a cue to speed up to 

clear the intersection, avoiding being stopped by the traffic light changing from green to red. 

On the other hand, when the timer approaches zero, some drivers slow down and prepare to 

stop.  
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Considering the fact that PCSs are installed with the main purpose of improving the 

safety of pedestrians when crossing intersections, many studies have focused on evaluating 

pedestrian behavior responses towards PCSs (Kimberly et al., 2004; Scott et al., 2012; 

Vasudevan et al., 2011). There is an agreement in the research community on the effectiveness 

of PCSs on the improvement of pedestrian safety and operations as they cross signalized 

intersections. However, research on the impacts that PCSs have on drivers is more limited.  

A study by Schmitz (2011) observed the speeds of vehicles at the stop bar decreased by 

1.0 mph in the presence of PCSs as compared to intersections without PCSs. In contrast, other 

drivers, upon spotting countdown timing, are encouraged to speed through the intersection to 

finish crossing the intersection before the termination of the green phase. In a study conducted 

to evaluate the influence of PCSs on vehicle speeds as they approach the intersection 

(Nambisan and Karkee, 2010), results showed that when a PCS’ timer is counting down vehicle 

speeds tend to be higher near the intersections than the roadway segment upstream of the 

intersections. This indicates that drivers utilize information displayed on PCS’ timers to speed 

up and clear the intersection to avoid being caught waiting for the next cycle. The results of 

this study also indicated that speeds of vehicles approaching the intersection are not influenced 

by the actual numeric display on the PCS’ timer. Another study by Chen et al. (2015) observed 

more red light violation and early-start maneuvers at signalized intersections with PCSs for 

both motorcyclists and drivers compared to intersections without PCSs. While studies on the 

effects of PCSs on pedestrians have consistently reported improvements in pedestrian safety, 

research on the safety effectiveness of PCSs for drivers appear to yield conflicting findings. A 

study is therefore warranted to appraise the safety effects of these signals to drivers.  

Measures to Evaluate the Safety Effects of PCSs to Drivers 

Most transportation agencies promote the use of crash modification factors (CMFs) for 

evaluating safety effectiveness of improvements made to roadway facilities. In fact, CMFs for 
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countdown signals are included in the CMFs’ most-wanted list on the CMF clearinghouse 

website (HSRC, 2016). A CMF is an amplification factor employed to quantify the safety 

effectiveness of the installed countermeasure at a specific site. Implemented treatments include 

variations in the geometric and traffic characteristics of roadway facilities. Varies in safety 

changes is measured relative to a reference value given a CMF of 1.0, which indicates that 

presence of the treatment did not influence changes in the crash frequency. For example, for 

an improved treatment such as intersections with PCSs, a CMF of 0.98 represents an 

anticipated two percent (2%) reduction in crashes. On the other hand, the CMF of 1.02 indicates 

an anticipated deterioration in safety, i.e. a two percent (2%) increase in crashes. In order to 

capture the safety impact of the respective treatment, a crash reduction factor (CRF), which is 

a reverse of CMF (CRF=1-CMF), is computed.  

Together CMFs and CRFs are important measures of effectiveness commonly used by 

transportation professionals for different purposes. Specifically, they assist in the assessment 

of the safety effects of different installed countermeasures and compare safety impacts among 

numerous alternatives and locations. Further, CMFs and CRFs can be used to categorize cost-

effective strategies and locations based on crash effects (Gross et al., 2010). They are also used 

for analyzing the economic impact of proposed safety countermeasures (NCHRP, 2008; 

AASHTO, 2010).  

CMFs provide an overall estimate of the safety impacts of a treatment. To estimate 

CMFs, the expected number of crashes on the treatment intersections during the after period— 

assuming the treatment was not installed— is computed. Specifically, the CMF is computed as 

the annual observed crashes on the treatment sites divided by the expected number of crashes 

on the treatment intersection assuming the absence of the treatment. By this definition, the 

CMF is synonymous to the odds ratio. Estimation of the expected number of crashes in the 

absence of the countermeasure is affected by a number of factors, including the regression-to-
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the-mean (RTM) effect. RTM elaborates the situation in which crash rates are relatively high 

before the installation of the countermeasure where they tend to come back to the mean in the 

year following an unexpectedly high or low crash count. In most cases the proposed safety 

treatment targets high-hazard sites. Therefore, safety analysis of the installed treatments is 

likely to be affected by the RTM phenomenon simply because the sites experience an 

immediate reduction in the number of crashes after these counts come back to their average 

mean (Gross et al., 2010). Figure 1.2 summarizes the annual data for the Hodges Boulevard 

and Beach Boulevard intersections, located in Jacksonville, retrieved from the Signal Four 

Analytics crash database. 

 

 

Figure 1.2. Data Series for Hodges Blvd and Beach Blvd Intersection (example intersection)  

From Figure 1.2, it can be observed that the trend in crash frequency is increasing. An 

interesting insight from this plot is that each time a higher number of crashes are observed, they 

tend to regress to the common moving average. A change in number of crashes would be 
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anticipated eventually even if a treatment was not installed. It is possible to over-estimate the 

effects of the installed treatment on these sites if the RTM bias is not properly addressed in the 

analysis (Gross et al., 2010). Apart from the RTM effects, the estimation of the expected 

crashes on the treatment intersections is expected to be affected by changes in traffic volume, 

unrelated factors, and trends (Sacchi & Sayed, 2014; Gross et al., 2010). Thus, it is important 

that the estimated CMF represents the long-term expected change in crash frequency (Gross et 

al., 2010). The actual change in crashes observed after treatment will vary by location and time 

(year). 

 To examine the variation of the estimated CMF across sites and at different post-

treatment years, crash modification functions (CMFunctions) are used. A CMFunction is a 

formula used to estimate the CMF for a specific site based on its heterogeneous characteristics 

and also within different post-intervention periods (Gross et al., 2010). The CMFunction allows 

the CMF to vary with the change in one or a combination of variables such as traffic volume, 

geometric characteristics, and land use information. 

Empirical Bayes versus Full Bayes 

 Various techniques are used to estimate CMFs where the observational before-and-after 

methods are the most preferred ones (Gross et al., 2010; Sacchi & Sayed, 2014). The superior 

benefit of the before-and-after methods over other safety effectiveness methods is that it is a 

longitudinal analysis, i.e., CMFs derived from the before-and-after studies are based on the 

change in safety performance due to the installed countermeasure. A reliable before-and-after 

study method should ensure that a change in safety has been influenced by the countermeasure 

and not by other external confounding attributes (Sacchi & Sayed, 2014). These include change 

in traffic volume, time trends and unobserved heterogeneity. In this regard, the conventional 

empirical Bayes (EB) method with a comparison group is one of the safety effectiveness 

methods which is able to account for the above-mentioned potential biases (Hauer, 1997).  



8 
 

 The EB method with a comparison group is a statistical approach that more precisely 

combines the observed crash frequency with the predicted crash frequency using the safety 

performance function (SPF). An SPF, derived from the comparison group, is used to calculate 

the expected crash frequency for treatment sites assuming the countermeasure not been 

implemented (Figure 1.3).  
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Figure 1.3. Empirical Bayes flow chart 

 

The benefit of the EB method is that it correctly accounts for the observed changes in crash 

frequencies before-and-after treatment that may be influenced by the RTM effect (Gross et al., 

2010). It is worth noting that the comparison group refers to sites with similar geometric, traffic, 
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and land use information to the treatment sites but without treatment during the after- period. 

The data from comparison sites are utilized to account for changes in crashes unrelated to the 

treatment, such as time and traffic volume trends (Gross et al., 2010). Specifically, the data 

from this group are applied to compute the ratio of the observed crash frequency in the after-

period to that in the before-period. The estimated ratio is then multiplied by the observed crash 

frequency in the before-period at a treatment site group to provide estimates of expected crashes 

on the treatment sites had the countermeasure not been applied (Figure 1.4). 
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Figure 1.4. Before-and-after evaluation using a comparison group Source: (Herbel et al., 2010) 

 

Alternatively, CMFs can be derived using another Bayesian approach, full Bayes (FB). 

Both EB and FB methods employ the same concepts to account for external confounding 
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effects in appraising the safety effectiveness of the countermeasures. Nonetheless, there are a 

number of appealing characteristics of the FB method. The FB approach has the capability to 

account for most of the uncertainties in the dataset and model parameters and hence overcome 

the maximum likelihood methods’ problem of overestimating precision because of ignoring 

this uncertainty (Park et al., 2016).  This approach has the ability to include prior knowledge 

on the values of the coefficients in the model along with the observed data (Gross et al., 2010). 

The FB methodology is also a single-step integrated procedure (Figure 1.5), i.e., it integrates 

the process of estimating the SPF and the treatment effect in a single step, thus incorporating 

the uncertainties of the SPFs in the final estimates.  
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Figure 1.5. Full Bayes flow chart 
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Another advantage is that the properties of the FB method allow for the computation of reliable 

models with smaller sample sizes (Li et al., 2013; Ahmed, et al., 2015; Gross et al., 2010). This 

characteristic may be specifically valuable to rare crash categories such as those involving 

pedestrians or for comparison cohorts with limited sites, for example five-legged intersections. 

Other benefits of the FB method include the ability to consider the spatial correlation between 

sites in the model formulation (Gross et al., 2010). 

Study Objectives 

The main objective of this study is to examine the influence of PCSs on driver safety. 

In order to accomplish this objective, this study employed two major approaches used to 

quantify the safety impacts of an installed treatment. These approaches are EB and FB 

approaches used in developing crash modification factors and functions. 

Thesis organization 

This thesis comprises four chapters. Chapter 1 provides the general overview of the research 

problem and the description of the research objectives. Because this thesis is a compilation of 

two research articles, chapters 2 and 3 are two stand-alone research papers that are based on 

the subject at hand. Chapter 4 summarizes, concludes, and provides a list of opportunities for 

future work based on the limitations of this thesis.  
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CHAPTER 2: PAPER 1 

PAPER I: Appraisal of Safety Effects of Pedestrian Countdown Signals to Drivers 

Using Crash Modification Factors 

Paper I was originally published in the 2017 Transportation Research Board (TRB) annual 

meeting compendium of papers. The same paper was also presented at the 96th TRB annual meeting in 

January 2017 in Washington, D.C. A variation of this paper has been submitted and is being considered 

for publication in the journal of Transportation Engineering (JTE) Part A. Also, Paper 1 received the 

Research Recognition Award during the SOARS 2017 presentations and selected for presentation at the 

statewide symposium in April 2017. 

 

Introduction 

Pedestrian countdown signals (PCSs) were first approved and included in the 2003 

version of the Manual of Uniform Traffic Control Devices (MUTCD). Since then, they have 

been widely used by different transportation agencies as a preferred pedestrian treatment at 

signalized intersections. For pedestrians, PCSs provide convenient information that helps them 

to cross the street safely. Although the safety benefits of PCSs on pedestrian safety are well 

established by research (Huang and Zeeger, 2000; Markowitz et al., 2006; Chen et al., 2015; 

Lambrianidou et al., 2013; Schmitz 2011; Scott et al., 2012; Vasudevan et al., 2011; and Eccles 

et al. 2004), the effects of PCSs on driver’s safety are still debatable.  

PCSs incorporate countdown timer clocks, which displays the amount of time 

remaining in seconds for pedestrians to clear the intersection before their crossing time is 

terminated. The remaining time is displayed in descending order using the Arabic numerals. 

The MUTCD requires PCSs to be used when the pedestrian change interval is above 7 seconds 

(MUTCD, 2009). Normally, PCSs are installed at a distance that ranges between 1.5 and 6 feet 

away from the curb face according to MUTCD (2009). Furthermore, the MUTCD requires 
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PCS’ heads to be installed at a height that ranges between 7 and 10 feet above the sidewalk 

level (MUTCD, 2009). Based on the location and height of PCSs at signalized intersections, 

some drivers are able to see the countdown timing displayed as they approach intersections. 

Hence, the cues that PCS,’ timers provide to drivers may impact their safety at signalized 

intersection. This situation call for a need to evaluate the safety effects of these signals to 

drivers. 

Most transportation agencies promote the use of crash modification factors (CMFs) for 

evaluating safety effectiveness of improvements made on roadway facilities. In fact, CMFs for 

countdown signals are included in the CMFs’ most-wanted list on the clearinghouse website 

(HSRC, 2016). A CMF is an amplification factor that represents potential variation in the 

expected number of crashes following implementation of a specific treatment. Implemented 

treatments include changes in the geometric and traffic characteristics of roadway facilities. 

Variation in safety changes are measured relative to a baseline value that is assigned a CMF of 

1.0. For example, for an improved treatment such as intersections with PCSs, if the CMF is 

0.98 and the comparison site is intersections without PCSs, an intersection with PCSs is 

expected to experience a 2 percent (2%) reduction in crashes following the installation of PCSs. 

In order to capture the safety impact of the respective treatment, a crash reduction factor (CRF), 

which is a reverse of CMF (CRF=1-CMF), is computed. Both CMF and CRF are important 

measures of effectiveness commonly used for analysis of the costs and benefits of proposed 

safety countermeasures (NCHRP, 2008). Specifically, they assist in the selection of 

improvement projects by quantifying the benefits from potential crash reduction associated 

with each proposed countermeasure (AASHTO, 2010).  

The main objective of this study is to appraise the safety impact of installing PCSs, at 

signalized intersections, to drivers. In order to fill the knowledge gap identified on the CMFs’ 

clearinghouse website, this study develops CMFs for PCSs. In the process, the study develops 
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crash modification functions for total entering traffic through observational before-and-after 

study using the empirical Bayes method. 

Literature Review 

Limited research has been done on safety implications of PCSs to drivers at intersections. 

According to the study that evaluated the engineering improvements of older drivers in 

Michigan, it was observed that the presence of PCSs at signalized intersections reduces not 

only pedestrians’ crashes, but also they were found to reduce five percent (5%) of total crashes 

for all drivers (Kwigizile et al. 2015). This indicates that drivers utilize information provided 

by PCS’ timers to make informed decisions, when approaching and crossing signalized 

intersections (Chen et al., 2015; Schmitz, 2011; Elekwachi, 2010; and Nambisan and Karkee, 

2010). While, some of the drivers use the information on the PCS’ timer clock to slow down 

as they approach the intersection prior to termination of their green phase, other drivers use the 

same information to speed up to clear the intersection. Thus, they avoid being stopped and 

waiting for the next cycle. Presented henceforth, is the summary of the literature from studies 

related to driver behaviors toward PCSs. 

Elekwachi (2010) conducted an empirical study to investigate the effect of PCSs on driver 

behaviors and capacity at signalized intersections. PCSs were observed to have a statistically 

significant impact on driver behaviors and intersection capacity. They were further noticed to 

improve driving decisions and affects braking or stopping maneuvers at signalized 

intersections. Another study conducted by Pulugurtha et al. (2010) found that drivers use the 

information on PCS’ timer clock to decide on slowing down prior to the onset of a yellow 

phase. On the other hand, another study has reported the speed decrease by 1.0 miles per hour 

(mph) on locations with PCSs compared to locations without PCSs (Schmitz, 2011).  

Conflicting results have been reported by researchers, Chen et al. (2015) and Nambisan and 

Karkee (2010), indicating that some drivers, upon spotting countdown timing, are encouraged 
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to speed through the intersection, in order to clear the intersection before the termination of 

their green phase. In a research study that evaluated the influence of PCSs on vehicle speeds 

as they approach the intersection, vehicles were observed to maneuver at higher speeds on the 

segment closer to the intersection than on the segment farther away from the stop bar 

(Nambisan and Karkee, 2010). The results of the study by Chen et al. (2015) indicated a 

prevalence of red-light violation and early-start maneuvers at signalized intersections with 

PCSs as compared to intersections without PCSs. This behavior was observed to be critical on 

both drivers and motorcyclists. The proportion of vehicles entering the intersection late in the 

yellow phase and red-light runners increases because some of the drivers used PCS’ timer 

information to speed up in order to clear the intersection legally. These conflicting scenarios 

may create different expectations among drivers, the situation that might result in rear-end 

conflicts. A possible conflict scenario may occur when the leading vehicle stops while the 

driver of the following vehicle decides to accelerate to clear the intersection, (Park et al., 2016; 

Long et al., 2013).  

Apart from safety impacts, previous research has documented the influence of PCSs in 

operational characteristics. Elekwachi (2010) has reported the influence of PCSs on 

intersection operational characteristics such as headway, saturation flow rate, capacity, start-

up lost time, and driver behaviors. According to the study, the presence of PCSs reduces 

headway, hence increasing the saturation flow, in view of the fact that drivers in the queue are 

aware of the upcoming phase change. The study also found that PCSs significantly reduce the 

amount of start-up lost time. This may be attributed to the fact that drivers waiting in the queue 

at an intersection are aware of the number of seconds remaining on the opposite phase. Thus, 

they respond quicker to the changing phase. 
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Methodology 

Data description 

The analysis required two sets of data: crash data and traffic volumes for before-and-

after installation of PCSs. It is important to note that, the sites selected for evaluating the safety 

effectiveness of a treatment have to be homogenous as recommended by the Section C.5 of the 

Highway Safety Manual (HSM) (AASHTO, 2010). Among the potential characteristics that 

have been proposed to be used in identifying treatment sites for intersections include traffic 

control, i.e. signalized, for this case and a number of approaches e.g. four-legged or three-

legged intersections. Considering the limit of the number of three-legged signalized 

intersections at the study area, the study was limited to only four-legged signalized 

intersections. This is because another vital criteria to consider while collecting sites for 

performing safety effectiveness studies is sufficiency of sample size such that the expected 

change in safety can be statistically detected (Gross, 2010 ). Furthermore, site selection process 

was limited only to state maintained roadways due to reliability of traffic volume data (Average 

Annual Daily Traffic (AADT)) for these sites.  

One hundred and ten (110) signalized intersections with PCSs in Jacksonville and 

Gainesville, Florida were selected as treatment sites for this study, where PCSs were installed 

between years 2006 through 2011. This includes 70 intersections in Jacksonville, and 40 in 

Gainesville. For each of the treatment intersection, three years before the installation of PCSs 

and three years after the installation of PCSs were used for analysis of changes in crash 

frequency due to installation of PCSs. It is worth mentioning that, the respective year that a 

PCS was installed in each of the intersection was excluded from the study to allow enough 

buffer time for changes brought about by PCSs.  

In the site selection procedure, 93 comparison sites, i.e., intersections without PCSs, 33 

in Gainesville, and 60 in Jacksonville, were carefully selected according to their geographic 
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proximity to the treatment sites (intersections with PCSs), while keeping the distance to avoid  

a spillover effect. In general, the comparison intersections were selected within the area of the 

same municipality that share similar geometric characteristics, traffic volume and crash 

frequencies, as the treatment sites. This was so to improve the comparability between 

comparison and treatment sites. 

Data were collected and retrieved from the following databases; Florida Unified Base-Map 

Repository (crashes), Florida Geographic Data Library (FGDL) Metadata explorer (land use 

information), and Florida Department of Transportation (FDOT) Geographical Information 

System (GIS) database (posted speed). Other sources of data included Google Earth-street view 

and historical imagery tool. These were used to retrieve geometric information from previous 

year’s before-and-after installation of PCSs. The last but not least data source used in this study 

was the Florida Traffic Monitoring Sites (TMS) where traffic volume for years 2003 through 

2014 were obtained. The historical imagery tool in Google Earth Pro software was utilized in 

ensuring the quality of the developed SPFs by checking the treatment sites to verify that there 

is no major geometric change during the study period. The flow chart in Figure 2.1 illustrates 

the strategy employed in collecting data for this study. The solid and dotted lines indicate the 

process for collecting data for treatment and comparison intersections, respectively.  
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Figure 2.1. Flow chart illustrating data collected in this study 

 

Crash data were available from the years 2003 through 2014. Table 2.1 summarizes the crash 

data categorized in crash severity (total, fatal-plus-injury (F+I), and property-damage-only 

(PDO) collisions) and crash types (rear-end and angle collisions). All crashes that occurred 

within 250 feet were considered to be intersection related. This radius of 250 feet conforms to 

the definition of intersection related crashes in Florida (FDOT, 2012). In Florida, crashes 

occurring between 0 and 50 feet from the intersection are referred to as intersection crashes 
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whereas crashes occurring between 50 and 250 feet are termed influenced by intersection. In 

Florida, when analyzing intersection safety, all crashes that occur within 250 feet radius from 

the middle of the intersection is considered with the assumption that they are influenced by the 

presence of the intersection (Jacob, 2015). 

 

Table 2.1 Annual Crash Data Summary for Treatment and Comparison Sites 

No

.  

Type of crash 

  

Period 

  

Treatment sites statistics Comparison sites statistics 

Mean SD Min Max Mean SD Min Max 

1. Total crashes  Before 18.38 17.94 0 87 19.97 20.40 0 69 

 Total crashes  After 14.31 14.56 0 74 13.23 12.25 1 64 

2. F + I crashes  Before 11.73 11.79 0 58 10.79 9.27 0 40 

 F + I crashes After 10.55 9.56 0 40 11.03 10.22 0 32 

3. PDO crashes Before 10.50 12.93 0 83 10.91 10.34 0 52 

 PDO crashes After 9.30 10.08 0 60 9.06 11.93 0 68 

4. Rear-end crashes Before 10.09 12.76 0 62 11.65 10.44 0 58 

 Rear-end crashes After 6.74 8.07 0 44 7.23 8.57 0 46 

5. Angle crashes Before 5.29 5.47 0 28 5.00 5.09 0 13 

 Angle crashes After 4.75 5.16 0 26 3.78 4.82 0 10 

Note: SD= standard deviation, Min=minimum, Max=maximum. 

 

Important variables considered for this study includes traffic volumes on the major and 

minor approaches, geometric characteristics of major and minor approaches, and the area type 

(commercial categorized as 1 and other land use types as 0) as illustrated in Table 2.2. In this 

study, the number of lanes ranged from 2 to 6. If the variable for number of lanes was 

considered to be categorical, it would have had five categories. Normally, for categorical 

variables, few categories are associated with more robust model outcome. To avoid causing 

model instability in relation to the number of lanes category, this study considered number of 
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lanes variable to be continuous as employed by various previous studies (Agbelie & 

Roshandeh, 2014; Chen et al., 2009; Chen et al., 2016). 

 

Table 2.2 Selected Variables in Treatment and Comparison Intersections 

 Variable Site  Mean SD Min Max 

 Land use (1 commercial, otherwise 0) Treatment 0.47 0.50 0 1 

  Comparison  0.70 0.46 0 1 

Major Average AADT (Vehicle/day) Treatment 28894.20 12281.44 6034 57459 

  Comparison  29041.13 12750.75 6400 56750 

 Total number of lanes Treatment 5.33 0.95 4 6 

  Comparison  5.78 0.78 4 6 

 Posted speed (mph) Treatment 41.18 6.74 30 55 

  Comparison  40.89 5.92 30 55 

Minor  Average AADT (Vehicle/day) Treatment 11427.93 8120.44 567 36000 

  Comparison  12839.82 7418.19 840 37500 

 Total number of lanes Treatment 2.93 1.00 2 4 

  Comparison  3.01 1.32 2 4 

    Note: AADT=annual average daily traffic. 

 

Other information retrieved on the major street include, posted speed (>40 mph coded as 1, 

otherwise 0). It is worth noting that the same cut-off point of the posted speed has been used 

by Donell et al. (2014) while developing the SPFs. Also, when examining the dataset, it was 

observed that almost half of the sites used for this study had posted speed limit between 30 

mph to 40 mph, and the remaining group (45 mph and above) also constituted about half of the 

data. 
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Modeling approach 

This study uses the before-and-after empirical Bayes (EB) method illustrated by Hauer 

(1997), to develop CMFs for PCSs. The advantage of the empirical Bayes approach is that it 

accounts for the observed changes in crash frequencies on the before and after treatment that 

may be due to regression-to-the-mean. In accounting for regression-to-the-mean phenomenon, 

the number of crashes anticipated before installation of PCSs is a weighted mean of information 

from two sources. The first source is the number of crashes observed in the before period at 

intersections where PCSs have been installed. Additionally, the second source is the number 

of crashes predicted at signalized intersections with PCSs based on reference intersections 

without PCSs, which share similar traffic and physical characteristics. 

To quantify the weights and the number of crashes anticipated on sites with similar 

traffic and physical characteristics, comparison intersections without PCSs but with similar 

traffic, and physical characteristics to the intersections with PCSs were used. This is similar in 

principle to the use of a comparison group in the comparison group method. Nonetheless, the 

two methods differ in one major aspect, i.e., for the before-and-after EB method, data from the 

reference intersections without PCSs are used to estimate safety performance functions (SPFs) 

that relate crash experience of the sites to their traffic and physical characteristics.  

Safety performance functions 

A safety performance function (SPF) is widely known as a crash prediction model that 

relates the crash frequency to traffic, geometric and other factors that influence the change in 

pattern and crash rates (Gross et al., 2010). It predicts the mean crash frequency for similar 

locations with the same characteristics mostly referred to as comparison sites. These 

characteristics typically include traffic volume, traffic control devices, geometric 

characteristics (number of lanes, road surface widths, shoulder widths, median characteristics), 

land use information and socio-demographic characteristics. Generally, comparison sites are 
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used to account for time trends and changes in other factors such as traffic volumes and crash 

reporting systems. SPFs’ development may employ two approaches, which are, simple SPF 

and full SPF. Full SPF is a mathematical relationship that relates all contradicting parameters 

that may influence variation in crash rate, including traffic and geometric parameters as 

predictor variables, while simple SPF includes AADT as the only independent variable in 

predicting crash frequency on a roadway facility (Gross et al., 2010). Thus, full SPFs are 

developed in this study, considering that they capture all contradicting attributes that influence 

the changes in crash frequency at the respective road entity, as crash frequency is not only 

affected by the traffic volume.  

Choice of count model 

Development of SPFs commences with the use of a count model to determine 

coefficients of model variables. In modeling crash counts, normally two categories of count 

modeling approaches are employed. These are Poisson and negative-binomial (NB) regression 

analysis. The choice between the two model types depends upon the relationship between the 

mean and the variance of the data in hand. Poisson regression analysis approach is employed 

in cases where the mean and variance of the data are equal. It is worth mentioning that, due to 

the possible positive correlation between observed crash frequencies, over-dispersion (variance 

of the data exceeds its mean) may occur (Hilbe, 2012). The HSM specifically calls for the use 

of the NB model in lieu of Poisson model. This is because the degree of over-dispersion in a 

negative binomial model is depicted by a statistical parameter normally called over-dispersion 

parameter. This parameter is estimated along with the coefficients of the regression equation 

(AASHTO, 2010).  

In addition to the NB model, other models that account for overdispersion parameter 

include Poisson-lognormal, multivariate, hierarchical, Markov switching, Bayesian neural 

network, and support vector machine models (Lord & Mannering, 2010). It is also worth noting 
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that the NB model is generally used because crash data have a mean which follow a gamma 

distribution and the variance of the crash data is normally greater than the mean (Shen, 2007). 

Hence, this study employs a NB regression analysis, shown in Equation 2.1, as described by 

Washington et al. (2003). The probability P(yi) of intersection i having Ni crashes in a given 

time period (yearly) is computed as follows. 

���� = ������ ����������! � ������ ��/�  � �������� ���
                                                                                (2.1) 

Where 

Γx� a value of gamma function 

Ni is the number of crashes for comparison intersections  

λ" designates the Poisson parameter for intersections without PCS (reference sites) 

# is the over-dispersion parameter 

���� is the probability of intersection i having crashes Ni 

Before-and-after with EB model formulation 

The methodology established by Hauer was adopted to obtain EB estimates of the 

overall CMFs as well as Crash Modification Functions (CMFunctions) for different predictor 

variables (Hauer, 1997). The safety effectiveness of a treatment is estimated by comparing the 

observed number of crashes to the anticipated number of crashes after the installation of PCSs. 

The developed safety performance functions for each crash category was used to estimate the 

predicted crashes before the installation of PCSs, N%&'(")*'(+. Then the weighted adjustment 

factor (W) is computed using the total predicted crashes (by SPF) before the installation of 

PCSs and the over-dispersion parameter #  for each crash category, as shown in Equation 2.2. 

, = ����×./012345126                               (2.2) 

Then, the number of expected average crash frequency before the installation of PCSs 

(789:8;<8=>) is computed using Equation 2.3: 
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 N'?%')*'(+ = , × N%&'(")*'(+ + 1 − W� × NDEF'&G'(+               (2.3) 

Where NDEF'&G'(+ refer to the total number of observed crashes at the treatment intersection 

The expected average crash frequency in the after period for sites with PCSs assuming that 

PCSs were not installed is computed by multiplying the expected crashes before the installation 

of PCSs with r (Equation 2.4), where r, is the crash adjustment factor computed using predicted 

crashes (in SPF) after the installation of PCSs and before the installation of PCSs. 

N'?%')*'(H = N'?%')*'(+ × I;  where          I = ./01234512O./012345126                                     (2.4) 

The CMF is then computed using Equation 2.5: 

CMF%� = T ∑ VWXY10Z12O∑ V1[/14512O��∑ 0\×V1[/145126×�]^�_`` abc 3d510Y1453WdY∑ V1[/14512O\ e × 100                   (2.5) 

In addition, the CRF is computed using Equation 2.6: 

CRF%� = 1 − CMF                     (2.6) 

Standard error of the CMF (h) is then computed using Equation 2.7: 

ϑ = j �∑ VWXY10Z12O�∑ 0\×V1[/145126×�]k�_`` abc 3d510Y1453WdY∑ V1[/14512O\
l��∑ 0\×V1[/145126×�]k�_`` abc 3d510Y1453WdY ∑ m_0∑ V1[/14512O\ n\ × CMFo\

                 (2.7) 

The 95% confidence interval is then computed using Equation 2.8. The CMF is considered 

significant when the 95% confidence interval does not include one (1.0) in its interval. This is 

because the CMF value of one (1.0) indicates no effect of the treatment on crash frequency at 

the treated site. 

95% CI = CMF ± 1.96 × ϑ�                   (2.8) 

 

Model Results  

The results discussed under this section are based on the CMFs for the safety impacts 

that PCSs have on drivers at signalized intersections. The CMFs were estimated using 
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observational before-after study with empirical Bayes method. The SPFs used for predicting 

crash counts are discussed next. 

Safety performance functions results 

Florida-specific full SPFs for four-legged PCSs intersections on Major Street were 

developed. The SPFs were developed based on crash severity levels i.e., total (KABCO) 

crashes, fatal and injury (KABC), and property damage only (PDO). Additional SPFs were 

developed using different crash types; rear-end and angle crashes. Variables to be included into 

the SPF models were selected based upon their level of significance (P-values). In general, the 

SPF models had variables, which were significant at 95% and 90% level of confidence, with 

the exception of one (1) variable, which was significant at 85% level of significance. It is 

possible that the variable total number of lanes on the major approach is not that significant 

due to possible correlation with the traffic volume. The computed results for the five SPF 

models developed indicate the increase of crash frequency for intersections with higher traffic 

volumes. In addition, crash frequency was observed to be higher for intersections with higher 

speed limits (above 40 mph) and commercial land use areas.  

CMFs for impact of PCSs to drivers 

After computing the predicted crash counts from SPFs, the before-and-after study with 

empirical Bayes method was used to estimate the CMFs. The results of SPFs, CMFs, and CRFs 

are presented in Table 2.3. The results are provided for five crash categories, including crash 

severities (KABCO, KABC, and PDO), and crash types (rear-end and angle crashes). All crash 

categories have CMF less than one (1), indicating safety improvements on drivers’ 

maneuverability at signalized intersections. Bolded CMF values for KABCO, PDO, and rear-

end crashes are statistically different from 1.0 at a 95% level of confidence. 
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Table 2.3 SPFs, CMFs, and CRFs Results 

  KABCO KABC PDO Rear-end Angle 

 Parameters  Coef. P>z Coef. P>z Coef. P>z Coef. P>z Coef. P>z 

Over-dispersion  0.371    0.779   0.685   0.643   0.178   

Constant  -4.179 0.002*** -4.651 0.091** -6.062 0.000*** -4.063 0.076** -5.221 0.003*** 

Ln AADT 

(major) 
0.156 0.045*** 0.235 0.060** 0.331 0.029*** 0.294 0.047*** 0.331 0.030*** 

Ln AADT 

(minor) 
0.147 0.033*** 0.305 0.020*** 0.440 0.009*** 0.180 0.041*** 0.244 0.082** 

Total number of 

lanes (major) 
0.459 0.100** 0.158 0.103* 0.129 0.111* 0.188 0.066** 0.195 0.102* 

Total number of 

lanes (minor) 
0.507 0.096** 0.508 0.020*** 0.152 0.012*** 0.240 0.040*** 0.076 0.006*** 

Posted speed 

(major) > 40 mph 
0.113 0.015*** 0.117 0.096**     0.222 0.001***     

Commercial land 

use  
0.105 0.013***              

CMF  0.912  0.952   0.929  0.920  0.954  

CRF (%) 8.8  4.8  7.1  8.0  4.6  

SE of CMF 0.029  0.079  0.034  0.016  0.080  

Note: Coef. = Coefficient, P>z= Level of significance whereby *** indicates significance at 95%, ** 90%, * 85%, 

SE=Standard Error, CMF= Crash Modification Factor whereby bolded CMF are significant at 95% level of 

confidence, CRF=Crash Reduction Factor. 

 

The CMFs for different crash categories represent the expected changes in crashes for 

four-legged intersections with PCSs compared with the expected crashes on four-legged 

intersections without PCSs. The CMF for total crashes is 0.912, indicating a reduction in total 

crashes by 8.8%. This finding is consistent with the CMF obtained in a Michigan study (CMF 

of 0.946), estimated using the before-and-after with comparison group method (Kwigizile et 

al., 2015). The CMF for fatal and injury crashes is 0.952, with a percentage reduction in fatal 

and injury crashes due to the presence of PCSs by 4.8%. For the case of fatal and injury crashes, 

the Michigan study obtained a CMF of 0.927 (Kwigizile et al., 2015). 
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The difference in the CMFs between the ones obtained in this study and the ones in 

Michigan might be attributed to a number of factors. These include use of different CMFs 

estimation methods, whereby this study used before-and-after with EB method while the 

Michigan study used the before-and-after with comparison group method. Other factors may 

include differences in traffic, geometric, weather, and land use characteristics. The CMF for 

fatal and injury crashes was not significant at 95% level of confidence, the fact that may be 

attributed to a higher value of standard error for this crash category. For property damage only 

crash category, the obtained value of CMF is 0.929 indicates improvement in safety due to 

presence of PCSs (7.1% CRF).  

Rear-end crashes were observed to be reduced by 8.0%, an improvement that is made 

due to presence of PCSs. Rear-end crashes are associated with unsafe stopping or reduction in 

speed of the leading vehicle. Information that PCSs provide to drivers enhances safety at 

signalized intersections since it enables drivers to have a prior decision when approaching 

signalized intersections. PCS timers provide drivers with an important cue, i.e., time remaining 

for their right-of-way at the intersection. This may, in turn, reduce the number of vehicles 

exposed to an intersection-approach dilemma zone. Consequently, drivers can start 

decelerating early if they realize that they cannot make the green, when PCS times approach 

zero, promoting comfortable and safe deceleration maneuvers when they are required to stop 

at the intersection.  

Lastly, the CMF for angle crashes is found to be 0.954, indicating safety improvements 

of angle crashes by 4.6%. In addition, the CMF for this crash category was not significant at 

95% level of confidence, due to a large standard error. Among other factors, angle crashes are 

influenced by illegal continuation to cross the intersection during the onset of red phase. 
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Estimation of CMFunctions  

Crash modification functions explain the changes in safety effects while accounting for 

variation in geometric characteristics and other influential factors at the treated sites. Traffic 

volume (AADT) has been observed to be one of the prominent factors influencing the increase 

of crash frequency (Park et al. 2015). Thus, in this study, AADT was used as a continuous 

variable in developing the CMFunctions. Eventually, the relationship between the CMFs and 

AADT for each of the treated sites was developed. The developed CMFunctions are shown in 

Table 2.4. 

 

Table 2.4 CMFunctions for Different Crash Categories 

Crash 

category Equation  

R-

square 

Adjusted 

R-square 

KABCO  

CMF" = 0.969 × expTotal entering traffic × −0.000000462�
+ −0.4638 × exp Total entering traffic
× −0.0000914� 0.247 0.226 

KABC CMF" = 12.88 × expTotal entering traffic × −0.00000772� + −12.05
× exp Total entering traffic × −0.00000803� 0.333 0.305 

PDO CMF" = 0.549 × Total entering traffic�.��� 0.323 0.313 

Rear-end 
CMF" = −0.207 × expTotal entering traffic × −0.0000599� + 0.9475

× exp Total entering traffic × −0.0000000199� 0.313 0.279 

 

Non-linear regression models, i.e. inverse, power, quadratic, and exponential models, 

have been observed to be the best-fitted functions for different roadway characteristics (Park 

et al., 2015). As shown in Figure 2.2, linear and the abovementioned non- inverse, quadratic, 

power and exponential functions were compared, and the best-fitted functions for each crash 
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category were selected based on the R-squared value. It is worth noting that, power and 

exponential functions were the best-fitted functions for this case. Treated sites were grouped 

based on the frequency distribution of crashes for each crash category in a manner to avoid 

observations with zero crash counts. 

2(a) Total crashes CMFunctions 2(b) Fatal and injury crashes CMFunctions 

2(c) PDO crashes CMFunctions 2(d) Rear-end crashes CMFunctions 

Figure 2.2. Crash modification function curves 

 

Conclusions and Recommendations 

In view of the fact that pedestrian countdown signals (PCSs) are meant to help 

pedestrians cross the intersection safely, the same signals could give cues to drivers as they 

approach the intersection. This study focused on evaluating the safety effectiveness of PCSs to 

drivers at signalized intersections using the state maintained intersections in Florida (cities of 

Gainesville and Jacksonville). In total, 110 sites with PCSs and their respective comparison 

sites (without PCSs), 93 in total, were examined, using data collected from years 2003 through 

2014. 
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The before-and-after empirical Bayes with comparison group method was employed in 

developing the CMFs considering its ability to produce reliable and robust estimates. The 

CMFs were developed based on crash severity including total, fatal/injury (F+I), and property 

damage only (PDO) crashes. In addition, the study developed CMFs for two crash types, i.e. 

rear-end and angle crashes. Moreover, to observe the relationship between the CMFs and 

traffic volume, crash modification functions (CMFunctions) for different crash categories used 

in this study were developed.  

Full safety performance functions for each of the aforementioned crash categories were 

developed from comparison intersections based on heterogeneous factors. These include 

additional factors that influence changes in crash frequency and severity patterns at the 

treatment sites independent of the installed treatment, PCSs for this case. The heterogeneous 

factors incorporated in this study include traffic volume, geometric characteristics, traffic 

conditions, and adjacent land use.  

According to the CMFs obtained in this study, PCSs have safety benefits to drivers. 

The results suggest that cues provided by PCS’ timers to drivers as they approach intersections 

may help them in reducing conflicts that may lead to rear-end and angle crashes. In summary, 

this study demonstrated that apart from aiding pedestrians, installation of PCSs improves the 

safety performance of drivers at signalized intersections. 

Moreover, the CMFunctions developed from this study prove that CMFs vary at 

different treatment sites and with distinct roadway characteristics, area type, socio-economic 

characteristics, and time. Hence, more work is required to improve the developed 

CMFunctions by incorporating more roadway and other pertinent characteristics. It is worth 

mentioning that the developed CMFs can be applied in other areas apart from the study sites 

by applying respective location calibration factors. 
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Unavailability of traffic volume data especially on non-state maintained roadways 

limited the site selected for the study to state-maintained intersections only. Further, because 

the minor street roadways for some of the intersection are mostly non-statewide maintained 

roadways, they also lack reliable traffic volume. This in turn, resulted in dropping of many 

sites from the analysis due to incompleteness of data. In addition, the process of retrieving 

information on the installation dates of PCSs was long and tedious. This was due to the absence 

of a database with the dates of PCSs installation. Maintaining a database with the records of 

the installation dates for traffic control devices such as PCSs is necessary to aid continued 

efforts in evaluating the effectiveness of such devices. To the authors’ knowledge the only 

geometric change that was made on the treatment intersections is the installation of PCSs. It 

was not possible to collect information on the signal retiming changes made on the study 

intersections during the study period due to frequent retiming efforts that agencies undertake 

once they realize a change in traffic patterns.  
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CHAPTER 3: PAPER 2 

PAPER II: A full Bayesian Approach to Appraise the Safety Effects of Pedestrian 

Countdown Signals to Drivers 

Paper II is prepared to be submitted to the journal of Accident Analysis and Prevention. 

Introduction  

 Each year, more than 32,000 fatalities and 2 million non-fatal injuries occur on United 

States roadways. These tragedies amount to an estimated societal burden of more than $230 

billion of medical and other costs (Blincoe et al., 2015; NHTSA, 2010). The U.S has 

experienced a 31 percent decrease in its motor vehicle fatality rate per capita over the past 13 

years. Even so, compared with 19 other developed countries, which experienced on average a 

56 percent reduction in the frequency of fatal crashes during the same period, the U.S has the 

slowest reduction (31%) (Sauber-Schatz et al., 2016). Shockingly, latest data from the National 

Highway Traffic Safety Administration (NHTSA) indicate a 7.2 percent increase in roadway 

fatalities in 2015, shooting from 32,744 in 2014 to 35,092 in 2015 (NHTSA, 2016). This 

amounts to nearly 700 deaths every week due to traffic collisions. To put these statistics in 

perspective, a number of lives lost due to roadway crashes in the U.S. is equivalent to two 

commercial large aircrafts, such as the Airbus A340 500 (capacity of 372 seats), crashing every 

week. 

Although they include a small proportion of the overall roadway network, compared to 

other roadway segments, intersections are characterized by increased conflicts due to various 

conflicting traffic movements converging at the same location. The U.S. Department of 

Transportation estimates that 43 percent (43%) of motor-vehicle crashes occur at intersections 

or are intersection-related. In some cases, the conflicts at intersections involve more than one 

transportation mode as drivers, pedestrians and cyclists come across at the same point.  
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Pedestrians are considered vulnerable road users, hence ensuring their safety when 

crossing intersections is of paramount importance. The Pedestrian countdown signals (PCSs) 

are conventionally installed to improve pedestrian safety at signalized intersections. Generally 

PCSs, through the timer, are used to show the remaining seconds for pedestrians to cross the 

intersection during the pedestrian clearance interval. There is ample research evidence that 

shows safety benefits of PCSs for pedestrians (Huang and Zeeger, 2000; Markowitz et al., 

2006; Chen et al., 2015; Lambrianidou et al., 2013; Schmitz, 2011; Scott et al., 2012; 

Vasudevan et al., 2011; and Eccles et al., 2004). 

Despite being intended for pedestrians, the same information offered by PCSs to 

pedestrians has been observed to give cues to drivers as well. A few studies have documented 

on the effect of PCSs to drivers. These studies have mostly concentrated on the operational and 

capacity effects of these signals, such as the studies by Nambisan & Karkee (2010), Schmitz 

(2011), and Elekwachi (2010). The literature on the safety effectiveness of PCSs on drivers is 

scarce.  

A literature search uncovered only two studies, both recent, that evaluated the safety 

effectiveness of PCSs on drivers. The first study (Kwigizile et al., 2015) was conducted in 

Michigan using the before-and-after with the comparison group method.  According to the 

study, the presence of PCSs at signalized intersections reduce five percent (5%) of total crashes 

for all drivers. This finding was in line with a Florida study (Kitali et al., 2017) that employed 

the same method and observed 8.2 percent (8.2%) reduction in total crashes. This indicates that 

drivers utilize information provided by PCS timers to make informed decisions when 

approaching and crossing signalized intersections. Both studies employed the empirical Bayes 

before-and-after technique, which suffers from methodological and statistical limitations, 

including small sample size, inability to account for the uncertainty of the computed regression 

coefficients from the safety performance function (SPF) into the odds ratio computations (two-
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step procedure), and inability to develop multivariate models. These limitations can be 

potentially addressed by employing a Full Bayes (FB) method in lieu of a conventional 

empirical Bayes. While the before-and-after EB method has been the most acceptable 

technique for evaluating safety effectiveness of various roadway countermeasures since the 

inception of the first Highway Safety Manual (HCM, 2009), there has been an increased use of 

Full Bayes (FB) before-and-after technique for safety study over the last few years.   

A FB approach has the ability to account for most of the uncertainties in the dataset and 

model parameters and thus overcome the maximum likelihood methods’ problem of 

overestimating precision because of ignoring this uncertainty (Park et al., 2016). The FB 

methodology is also a single-step integrated procedure, i.e. it integrates the process of 

estimating the SPF and treatment effect in a single step, thus incorporates the uncertainties of 

the SPFs in the final estimates. The FB methodology is independent of sample size, thus 

yielding robust results even when used with small sample size (Li et al., 2013; Ahmed, et al., 

2015). Another important advantage of FB approach is the ability to allow inference at more 

than one level for multilevel (multivariate) models. The multivariate approach takes into 

account the fact that crash data of different severities e.g. property damage only (PDO) and 

fatalities and injury (FI) crashes are correlated. Unlike the negative binomial model that is 

widely used in the EB methodology, the FB approach makes use of hierarchical models i.e. 

Poisson-Gamma and Poisson-lognormal distributions (Miaou & Lord, 2003; Lan et al., 2009; 

Pawlovich et al., 2006). Additionally, the FB approach divides the periods into time intervals 

(yearly in this case) and models, each time interval as a separate data point to account for time 

variations, unlike the EB methodology which average the data into a single data point. 

Considering the novelty of the FB methodology and the fact that none of the previous studies 

has quantified the effects of PCSs to drivers using this approach, a study is therefore warranted.  
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Research Objective 

The main purpose of this study is to evaluate the safety effectiveness of PCSs to drivers. 

The study employs the FB methodology to evaluate the overall safety effectiveness in terms of 

effectiveness for specific types of crashes – rear-end and angle crashes, in particular, and injury 

severity. The study also reported at the time-based effectiveness, due to the flexibility of the 

FB approach in analyzing changes of treatment effectiveness with time, for the after- period. 

Study Significance 

The findings of my thesis can be used by transportation agencies as part of their decision 

making when deciding on installing PCSs at signalized intersections. Transportation officials 

can incorporate the crash modification factors developed in this study to conduct an economic 

appraisal of installing PCSs. Also, the findings of this study may prompt a need for a much 

broader research to investigate whether the design of PCSs should target both pedestrians and 

drivers. This could lead to a fundamental change in the design of PCSs to enable not only 

pedestrians but the drivers as well to see the information displayed on PCSs at a reasonable 

sight distance– e.g., size can be increased to allow drivers approaching from a distance to 

observe the information on the timer in advance. Further, the height, angle and location of the 

countdown timer can be adjusted to allow drivers in multiple lanes to see them in advance. 

Also, the research community could use the this study’s methodology as a building block to 

support a broad, ongoing effort aimed at mainstreaming the use of FB approach for evaluating 

safety improvement projects. 

Background  

Full Bayes methodology 

Historically, crash prediction models have employed mainly maximum likelihood 

models (Hauer, 2001; Park et al., 2015; Persaud & Lyon, 2007). Even after the introduction of 

the first version of the Highway Safety Manual (AASHTO, 2009), which advocated the use of 
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empirical Bayes, model coefficients were still determined based on maximum likelihood 

models, the negative binomial being a preferred one. Recently, there has been a substantial 

increase in the use of hierarchical Bayesian approach in crash modeling. This increase can be 

attributed to a number of aspects including the availability of open source scripting software 

packages and the invention of strong computers that can perform complex statistical iterations 

such as Markov Chain Monte Carlo (MCMC) simulations. The use of FB in crash predictions 

dates more than two decades ago (Schlüter et al., 1997). But is was only at the end of the last 

decade that highway safety modeling scholars have increasingly researched the use of the FB 

approach applying the MCMC simulation (Aul & Davis, 2006; Carriquiry & Pawlovich, 2004; 

Davis & Yang, 2001; El-Basyouny & Sayed, 2009b; Lan et al., 2009; Li et al., 2008; Miaou & 

Lord, 2003; Park & Lord, 2007; Park et al., 2010; Pawlovich, et al., 2006; Persaud et al., 2010; 

Sacchi et al., 2015). It is worth mentioning that it was only about a decade that the hierarchical 

Poisson regression models with a change point to before-and-after evaluation were introduced 

in the arena of the FB technique (Aul & Davis, 2006; Davis & Yang, 2001; El-Basyouny & 

Sayed, 2009b; Lan et al., 2009; Li et al., 2008; Park & Lord, 2007; Park et al., 2010; Pawlovich, 

et al., 2006; Persaud et al., 2010; Sacchi et al., 2015).  

 Unlike the classical statistical theory, Bayesian statistics use the density function to 

estimate the effect of a given parameter on the model rather than a discrete coefficient 

(Ntzoufras, 2009; Saito et al., 2011). Use of the density function permits for a better 

understanding of the amount of uncertainty in the data, where the density function for each 

parameter provides the likelihood pertaining to a certain prediction effect (Saito et al., 2011). 

In Bayesian statistics, all unknown parameters are considered as random, thus requiring the 

definition of prior distribution initially.  

The Bayesian technique incorporates prior information and observed information to 

develop an estimate for the expected crashes of the sites of interest, intersections with PCSs for 
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this case. In the context of the crash prediction modeling, the prior information is the 

anticipated crash frequency from comparison locations and the observed information are the 

observed crashes on the treatment sites before the installation of the treatment (Persaud et al., 

2010). 

After observing the total number of crashes occurring in the particular study 

intersections, posterior distribution ��│��, described in Equation 3.1, is estimated. This 

computation is done by combining the priori and the observed data. It is worth mentioning that 

this posterior distribution is the key element in Bayesian inference (Ntzoufras, 2009; Saito et 

al., 2011). To account for uncertainty associated with crash modeling, the probability of �, 

given y or fθ│y�� needs to be computed. This probability is used to make inference about 

the entire population. 

��│�� = ��y�θ�������                                                                                                                       (3.1) 

Where: 

�   = Crash frequency, and 

�  = Vector for the unknown modeling parameters (priori) 

��│��  =   posterior distribution of �, determined from known crash data, 

��|��  =   likelihood of y given �, and 

���  =   informational prior distribution of � 

P(y) is estimated through integrating ��|��������, thus making the Bayesian equation a 

complete density function (Saito et al., 2011). Hence the final equation will be as described in 

Equation 3.2: 

πθ│y� = ��y�θ����� ��y�θ����(��                                                                                                                        (3.2) 
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The denominator in Equation 3.2 needs to be integrated for each of the parameters since the 

model composes more than one parameter (Saito et al., 2011). Due to the increasing complexity 

of this equation, a statistical technique such as the Markov Chain Monte Carlo (MCMC) can 

be useful in computing such a complex integration. With an appropriate number of samples 

that allow the model to converge, the true posterior distribution can be accurately estimated. 

Markov Chain Monte Carlo simulation in full Bayes studies 

MCMC simulation is a stochastic simulation technique that is useful for computing 

inferential quantities.  It has been widely employed in Bayesian statistics due to the complexity 

of the integration needed for approximating posterior distributions. There are different types of 

MCMC algorithms. The three most widely used are Gibbs sampler (WinBUGS software) 

(Sacchi et al., 2015), Metropolis-Hastings algorithm (MATLAB) (Park et al., 2010), and 

Hamiltonian Monte Carlo (HMC) algorithm (R software). The fact that this algorithm employs 

the use of physical system dynamics rather than a probability distribution to estimate future 

states in the Markov chain make it appealing over the other two MCMC algorithms (Brooks et 

al., 2011). This is because the use of physical system dynamics allows the Markov chain to 

approach the target distribution more efficiently and thus resulting in faster convergence. 

FB approach improvements on the SPF development 

The abovementioned benefits of the FB approach over other safety effectiveness 

methodologies including EB allows additional flexibility in the development of the crash 

prediction model (SPF). In the FB methodology, prior information and observed data are 

combined to develop a single robust statistical model which is used to generate a posterior 

distribution on which inference on selected parameters can be based. The hyper-prior 

distributions defined while estimating the posterior distribution for the anticipated number of 

crashes is carried over throughout the modeling process and finally the safety effectiveness 

computations. Conversely, the EB approach employs the use of an external function, SPFs, to 
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derive the parameters of prior distributions for the predicted crashes, and consider them as true 

parameters once they are estimated. Ostensibly, the associated uncertainties in the regression 

model parameters of SPFs are not included in the final safety effectiveness estimate (Park et 

al., 2010).  

The FB approach has the capability to accounting for different variations and 

characteristics existing in the crash data such as the use of intervention models during 

evaluation of the safety effects of the installed countermeasure on a road (El-Basyouny & 

Sayed, 2011; Chen & Persaud, 2014; Li et al., 2008; Park et al., 2010; Pawlovich et al., 2006). 

An intervention model allows for the exploration of trends that may occur in between the 

before- or after- periods. This model also allows for the investigation of the temporal effects of 

traffic safety under the hypothesis that its effect changes over time as opposed to occurring 

instantaneously.  

Another important flexibility brought about by the flexibility of the FB approach is the 

application of the multivariate Poisson lognormal (MVPLN) to model number of crashes at 

different severity levels (El-Basyouny & Sayed, 2009b; El-Basyouny & Sayed, 2011). The FB 

approach also allows the incorporation of random parameters to account for the unobserved 

heterogeneity. (El-Basyouny & Sayed, 2009a; Li et al., 2008).  

Jump parameter 

Crash frequency for treatment sites is subject to change due to the effect of the installed 

treatment. Given that changes may not be gradual, an immediate drop or increase in crash 

frequency is expected at the respective sites after the intervention. The model parameter that 

accounts for the immediate drop or increase in the crash frequency at the treatment sites is 

conventionally referred to as a jump parameter. It has been incorporated in several studies 

including (Li et al. 2008; Li, et al., 2013). 
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Random parameters 

As the name suggests, the probability distribution of the Poisson mean for the Poisson 

lognormal count model is lognormal. This probability is associated with the independent 

variables x by regression coefficients. Independent variables included in the regression models 

are variables observed by the analyst from the historical data. Considering that crashes are rare 

and random events, the observed independent variables cannot address all of the heterogeneity 

existing in the crash occurrence events. Random parameters are included in the model to 

account for heterogeneity, which are unobserved factors that may vary across observations. 

Studies that have introduced random parameters in count models have reported improved 

prediction accuracy (Anastasopoulos & Mannering, 2009; Li et al., 2008).  

Cross-validation as a measure of models’ prediction accuracy 

Cross-validation (CV) is normally employed to evaluate the future predictive capability 

of the models developed under different simulation environments including Bayesian (Xie et 

al., 2014; Yang et al., 2013). There are different types of cross-validation methods are used to 

assess the predictive performance of Bayesian models, the Holdout CV method being one of 

the simplest (Arlot & Celisse, 2010). In holdout CV, dataset used in the analysis is randomly 

divided into two sets, namely the training and the testing set. The training set is used in model 

fitting, and then the testing dataset is used to beta test the performance of the model. The 

shortcoming of this technique is that the output of this method depends on the distribution of 

the data points on the two sets i.e. training set and testing dataset. Further, this technique is 

limited to larger datasets only. 

One way to overcome the shortcomings of the holdout CV method is to use the K-fold 

CV (Kuhn & Johnson, 2016). In this method, the dataset is separated into k subsets, and the 

holdout method is repeated k times (Akay et al., 2015). The variance of the resulting estimate 
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decrease as k is increased. The main setback of this method is that selection of number of 

subsets (k) is biased.   

Leave-one-out (LOO) cross validation technique has proven to be most reliable over 

other CV including K-fold CV (Stan Development Team, 2016). This approach computes out-

of-sample prediction accuracy from a fitted Bayesian model using the log-likelihood estimated 

at the posterior simulations of the parameter values (Vehtari et al., 2016). LOO has numerous 

benefits over the simpler estimates of predictive error such as Alkaike Information Criterion 

(AIC) and Deviance Information Criterion (DIC) but are less used in practice due to intense 

computational requirements.  

Data Collection 

The dataset considered in this study was extracted from different four-legged signalized 

intersections in Jacksonville and Gainesville, Florida. The installation date of PCS on the 

treatment sites ranges between the years of 2006 through 2011. For each of the treatment sites, 

three (3) years before the installation of PCSs and three (3) years after installation of PCSs 

were used for analysis of changes in crash frequency due to the installation of PCSs. It is worth 

mentioning that the respective year that PCS was installed in each of the sites was excluded 

from the study to allow enough buffer time for changes brought about by PCSs. One hundred 

and ten (110) treatment intersections and 93 comparison intersections were selected. 

Comparison intersections were selected according to their geographical proximity and 

similarity to the treatment sites in terms of traffic and geometric characteristics.  

Data were collected and retrieved from the following databases; Florida Unified Base-

Map Repository (crashes), Florida Geographic Data Library (FGDL) Metadata explorer (land 

use information), and FDOT GIS database (posted speed). Other sources of data included 

Google earth-street view and historical imagery tool to retrieve geometric information from 

previous years before and after installation of PCSs and Florida Traffic Monitoring Sites (TMS) 
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(traffic volume for the year 2003 through 2014). The historical imagery tool in Google earth 

Pro software was utilized in ensuring the quality of the developed SPF by checking the 

reference sites to verify that there is no major geometric change during the study period. Table 

3.1 summarizes the crash types used in this study in terms of their means and standard deviation 

(SD). 

 

Table 3.1 Annual Crash Data Summary: Treatment and Comparison Intersections 

No.  Type of crash Intersection type 
Before After 

Mean SD Mean SD 

1 Total  Treatment  18.38 17.94 14.31 14.56 

    Comparison 19.97 20.4 13.23 12.25 

2 F + I  Treatment  11.73 11.79 10.55 9.56 

    Comparison 10.79 9.27 11.03 10.22 

3 PDO  Treatment  10.5 12.93 9.3 10.08 

    Comparison 10.91 10.34 9.06 11.93 

4 Rear-end  Treatment  10.09 12.76 6.74 8.07 

    Comparison 11.65 10.44 7.23 8.57 

5 Angle Treatment  5.29 5.47 4.75 5.16 

    Comparison 5.00 5.09 3.78 4.82 

Note: SD= standard deviation. 

 

Important variables considered for this study includes traffic volumes on the major and minor 

approaches, geometric characteristics of major and minor approaches, and the area type 

(commercial categorized as 1 and other land use types as 0) as illustrated in Table 3.2. Other 

information retrieved on the major street include posted speed (>40 mph coded as 1, otherwise 

0). 
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Table 3.2 Selected Variables in Treatment Sites  

 Variable Mean Std. Dev. 

 Land use (1 commercial, otherwise 0) 0.47 0.50 

Major Average AADT (Vehicle/day) 28894.20 12281.44 

 Total number of lanes 5.33 0.95 

 Posted speed (mph) 41.18 6.74 

Minor  Average AADT (Vehicle/day) 11427.93 8120.44 

 Total number of lanes 2.93 1.00 

Note: AADT=annual average daily traffic. 

 

Poisson-Lognormal model: A Statistical Model to Quantify the Impact of PCSs to 

Drivers 

In this study, the Poisson lognormal statistical model is considered to assess the effect 

of the intervention. The Poisson-lognormal model derivation in this study is derived from an 

extensive literature (Li et al. 2008; Zhou, et al., 2012). In all cases, ��< denotes the crash count 

observed at site �� = 1,2,3, … , �� during year t � = 1,2,3, … ,  �, and  

��<|��<  ~ �¢�££¢� (��<),                                                                                                                    (3.3) 

The Poisson mean ��< can be written as shown in Equation 3.4 

��< = ¤�< = ¥(¦§� …� ¦¨©¨)                                                                                                                                     (3.4) 

It is worth noting that, the Poisson model assumes the mean and the variance of the crash counts 

are equal, Equation 3.5.  

ª«Y"*|θ"* = ®¯I«Y"*|θ"* = μ"*                                                                                                  (3.5) 

In practice, however, crash data are often over-dispersed, considering the heterogeneity partly 

contributed by the rareness and randomness of these events. To incorporate the over-dispersion 
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attribute of the crash data, the Poisson regression model can be modified as in Equation 3.6, 

where ±� is a multiplicative random-effect that model heterogeneity across individual crashes. 

θ"* = μ"* +  ε" = e(²§� …� ²d³d)´3                                                                                                                   (3.6) 

Also, the mean and variance for the new Equation 3.6 will be as expressed in Equations 3.7 

and 3.8 respectively, where the variance is greater or equal to the mean. 

ª«Y"*|θ"* = e(²§� …� ²d³d)´3 + ª«ε"                                                                                                                (3.7) 

®¯I«Y"*|θ"* = ª«Y"*|θ"* + ¶·¸«´3

¹\«´3
ªo«Y"*|θ"*                                                                                 (3.8) 

Using the Poisson lognormal, the random effect ε" will be lognormally distributed as presented 

in Equation 3.9. 

ε"~º¢»�¢I ¯º(0, ¼o)                                              (3.9) 

Based on expectation of the mean, ª«ε" = ¥
½\

o¾  and the variance, ®¯I«ε" = ¥½\
�º�½\

− 1� 

using Equation 3.7 and 3.8, the modified Equations are expressed in Equations 3.10 and 3.11, 

respectively. 

ª«Y"*|θ"* = e(²§� …� ²d³d�´3)                                                                                                            (3.10) 

®¯I«Y"*|θ"* = ª«Y"*|θ"* + �¥½\
− 1�ªo«Y"*|θ"*                                                                                 (3.11) 

Then the marginal mean and variance of ��< will be as described in Equations 3.12 and 3.13 

respectively. 

ª(��<) = ª«ª(��<|��<) = ¤�< ,                                                                                                          (3.12) 

®¯I(��<) = ª«®(��<|��<) + ®«ª(��<|��<) = ¤�< + ¥�½\�¿�¤�<
o                                                    (3.13) 

Estimation of the Posterior Distributions of Count Model Parameters 

In this study, crash modification factors are used to assess the effectiveness of PCSs to 

drivers. The study uses the before- and after- method, employing crash data collected before 
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and after installing PCSs. Let ��< denote the crash count observed at site i (� = 1, 2, 3, … , �) 

during year t (� = 1, 2, 3, … ,6). To incorporate the linear intervention model, let À� signify the 

treatment indicator (equals 1 for treatment intersections, 0 for comparison intersections), ��� 

represent the interventions year for the ith treatment intersections and its matching comparison 

intersections, Á�< indicate the time indicator (equals 1 in the after period, 0 in the before period). 

For exposure variables let ®��< and ®o�< denote the annual average daily traffic (AADT) on the 

major and minor approaches respectively.  

In addition, let (ÂÃ� , … , ÂÄ�) symbolize other explanatory variables including geometric 

and land use characteristics. These includes number of lanes on the major and minor 

approaches, land use information, and speed limit. 

Model 1: Poisson-lognormal model with individual site random effect 

The lognormal model for crash density is described as a piecewise linear function 

(Equation 3.14) of predictor variables, such that the function is continuous at the change point 

���. The piecewise linear function is defined by at least two equations, each of which applies 

to a different part of the domain i.e. before and after installation of the PCSs in this case. The 

site-level random effect #� is also included as shown in Equation 3.14. 

º�(¤�<) =  #� +  #�À� + #o� + #Ã(� − ���)Á<Å<§�
+ Æ�®��< +  Æo®o�< + ⋯ +  ÆÈÂÈ + #�  (3.14) 

Where #�~7(0, ¼�
o) and ¼�

o accounts for the variation existing between intersections in yearly 

log crash frequency. The linear-intervention model allow for different slopes of crash 

frequency on time before and after the installation of the PCSs and also across the treatment 

and comparison intersections 

Model (1) in Equation (3.11) is limited to account for potential difference across the 

treatment and the comparison intersections. Considering the crash data were collected for six 

years, i.e. three years before the installation of the treatment and three years after the installation 
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of the treatment, it is also possible that there is a variation of the slope across the data for 

different years. Thus, a parameter, which will account for the heterogeneity of the crash data 

collected at different time periods is required to improve the reliability of the model estimates. 

Model 2: Poisson-lognormal model with individual site random effect and jump parameter 

Considering the fact that there might be an immediate drop or increase in crash 

frequency upon installation of an intervention, it is worth incorporating a parameter that will 

account for this scenario, the jump parameter for this case. Equation 3.15 is an improvement 

of Equation 3.14 with an addition of the jump parameter, #É. 

ln(μ"*) =  α� +  α�T" + αot +  αÃ(t − t�")I*Å*§3
+ αÉT"I*Å*§3

+  β�V�"* +  βoVo"* + ⋯ +

 βÍXÍ + α"                                                                                                                                                (3.15) 

This additional parameter, #É, in the log link function of the Poisson regression model is also 

normally distributed and independent of other parameters. 

Model 3: Poisson lognormal model with individual-site random effect, jump parameter, and 

pair-random effect 

The design of the FB before-and-after with comparison sites study includes comparison 

sites pairs for each of the treatment site. The comparison intersections were selected in a way 

to entail comparable geometric, traffic, and land use characteristics to the treatment 

intersections, a possible correlation between the crash frequencies of the two groups of sites 

maybe induced. In order to account for a possible correlation across the treatment-comparison 

intersection pairs, a random effect parameter ÏÐ for the kth pair is introduced in Equation 3.15, 

creating a new equation (Equation 3.16). 

ln(μ"*) =  α� +  α�T" + αot +  αÃ(t − t�")I*Å*§3
+ αÉT"I*Å*§3

+  β�V�"* +  βoVo"* + ⋯ +

 βÍXÍ + α" + δÒ                                                                                                                               (3.16)                         
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Where, ÏÐ ~ 7(0, ÏÐ
o) accounts for the variability between the treatment intersection and the 

comparison intersection within each pair 

 Figure 3.1 demonstrates, in summary, the procedure used to select the model with the 

highest prediction accuracy (LOO CV). In this study, the approximate LOO cross-validation 

approach was employed using the Pareto-smoothed importance sampling (PSIS) method, a new 

procedure for regularizing important weights. PSIS is an advanced method, which provides 

improved accurate and reliable CV estimate by fitting a Pareto distribution to the upper tail of 

the distribution of the important weights (Vehtari et al., 2016). 
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Figure 3.1. Full Bayes methodology flowchart 
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The Bayesian LOO estimate of out-of-sample predictive fit is: 

elpdÔDD = ∑ log (p(y"|y − i�� Í"Õ�                                                                                                                   (3.17) 

Where  

elpdÔDD      =   LOO expected log predicted density 

 py"|y − i� = � py"|θ�pθ|y − i�dθ  =   leave-one-out predictive density given the data 

without the ith data point  

It is worth noting only the best model was used in quantifying the treatment safety 

effectiveness. 

Measuring Treatment Effectiveness 

Let ¤ÀÖ� and ¤À×� represent the predicted crash counts for the ith treatment intersection 

averaged over three years of the before years and after years, respectively. Moreover, let ¤ØÖ� 
and ¤Ø×� denote the corresponding counts for the paired comparison intersections. Let the 

superscripts T and C denote treatment and comparison intersections, respectively, and let the 

superscripts A and B denote the after and before periods, respectively. The ratio 
ÙÚÛ�ÙÚÜ�, 

conventionally known as comparison ratio, is included during evaluation of the safety effect of 

the countermeasure to account for external confounding factors that might influence the change 

in the crash frequency apart from the installed treatment. These include improvement in the 

vehicle safety technology, new traffic policies, and traffic safety awareness education, among 

other factors. Explicitly, the estimate of this ratio is combined with the observed crashes on 

treatment intersections during the before period to compute the expected crashes on the 

treatment intersections had the PCSs not installed. In summary, the following steps were 

employed when implementing the FB before-and-after with comparison intersections method 

in evaluating the safety impacts of PCSs to drivers at signalized intersections. 
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Step 1: 

Step 1 involved specification of the hyper-parameter values for prior distribution of 

model parameters, i.e. intercept and coefficient priors ~ normal (location (mean), scale 

(standard deviation)). The draw of model parameters and the expected annual crash frequency 

was obtained for each intersection (i), and year (t) by MCMC, using the HMC algorithm for 

this case. 

Step 2: 

Next, the posterior distributions of crash frequencies during the before period for the 

comparison intersections ¤Ý> were estimated in line with the crash frequencies for the 

comparison intersections during the after period  ¤ÝÞ, using Equations 3.18 and 3.19 

respectively. 

º�(¤�<
Ý>) =  #� + #o�> + Æ�®��< +  Æo®o�< + ⋯ +  ÆÈÂÈ                                                                (3.18) 

º�(¤�<
ÝÞ) =  #� +  #o�Þ + #Ã(�Þ − ���)Á�< +  Æ�®��< +  Æo®o�< + ⋯ +  ÆÈÂÈ                       (3.19) 

Step 3: 

To obtain the comparison ratio, the logarithm of the expected crash frequency for before 

period is subtracted from the logarithm of the expected crash frequency during the after periods 

shown in Equation 3.20.  

ßÝ� = º�(¤�<
ÝÞ) − º�(¤�<

Ý>)                                                                                                               (3.20) 

Step 4: 

Subsequent to estimation of the comparison ratio, the predicted crash frequencies in the 

after period for each of the treatment sites had the PCSs not installed ln (π"*
àH) can be computed. 

Using the comparison ratio Rá" and the expected crash frequency for the treatment site during 
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the before period computed using Equations 3.21, ln (π"*
àH) is estimated as shown in Equation 

3.22. 

º�(¤�<
â>) =  #� +  #�À� + #o�> +  #ÉÀ��> + Æ�®��< +  Æo®o�< + ⋯ + ÆÈÂÈ                        (3.21) 

º� (��<
âÞ) =  º�(¤�<

â>) +  ßÝ�                                                                                                                             (3.22) 

Step 5: 

Finally to obtain the safety effectiveness of the PCS to drivers, the logarithm of the 

expected crash frequency on the treatment sites during the after periods were computed 

(Equation 3.23). The PCS CMF, θ"*, was then computed based on the definition of the odds 

ratio i.e. the ratio of the observed crashes on the treatment intersections following the 

installation of PCS to the predicted crashes on the treatment sites assuming PCS were not 

installed during the after period (Equation 3.24). 

º�(¤�<
âÞ) =  #� +  #�À� + #o�Þ +  #Ã(�Þ − ���)Á�< + #ÉÀ��Þ + #�À�(�Þ − ���)Á�< +

 Æ�®��< + Æo®o�< + ⋯ + ÆÈÂÈ                                                                                                                      (3.23) 

��< = º�(¤�<
âÞ) −  º� (��<

âÞ)                                                                                                                              (3.24) 

Subsequent to θ"*, its posterior distribution was also computed following the Bayesian 

principles. The point estimates for CMF with their respective uncertainty estimates (standard 

deviation) were retrieved as the sample means of the respective posterior distributions of θ"*. 

Ultimately, the 95% Bayesian credible intervals (BCI) of CMF was also constructed from the 

estimated posterior distributions using the 2.5th percentile and the 97.5th percentiles. 

Model Estimation using Hamiltonian Markov Chain (HMC) Algorithm 

The Bayesian analysis performed in this study employs the Hamiltonian Monte Carlo 

(HMC) algorithm. The HMC is an MCMC algorithm that uses the derivatives of the density 

function being sampled, Poisson lognormal for this case, to produce the posterior distributions 
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of the parameters intended to be estimated. It employs the principles of the Hamiltonian 

dynamics simulation that is based on numerical integration. For the case of MCMC simulation, 

the Hamiltonian dynamics simulation is corrected by performing the Metropolis acceptance 

step (Brooks et al., 2011; Stan Development Team, 2014; Stan Development Team, 2016). The 

HMC algorithm commences at a specified initial set of parameters. These parameters include 

step size (for discretization time) and a number of steps (for total simulation time) whereby the 

simulation are mainly sensitive to the setting of these parameters (Stan Development Team, 

2016). For the sake of maintaining the balance between the selections of the abovementioned 

two parameters, the No-U-Turn sampler (NUTS) is employed. 

No-U-Turn sampler (NUTS) 

NUTS is the HMC sampler that use gradients to guide updates (Stan Development 

Team, 2016). The NUTS automatically selects an appropriate number of leapfrog in each 

iteration in order to allow the proposals to traverse the posterior without doing unnecessary 

work (Hoffman & Gelman, 2011; Hoffman & Gelman, 2014). The motivation is to maximize 

the expected squared jump distance at each step and avoid the random-walk behavior that arises 

in random-walk Metropolis or Gibbs samplers when there is correlation in the posterior 

(Brooks et al., 2011). 

HMC sampling using leapfrog steps 

In HMC simulation, sampling is based on simulating the Hamiltonian of a particle with 

a starting position equal to the current parameter values and an initial momentum that is 

generated randomly. While implementing HMC in practice, the Hamiltonian dynamics of the 

particle is simulated using the leapfrog integrator, which discretizes the smooth path of the 

particle into a number of small time steps called leapfrog steps (Stan Development Team, 

2016).  
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Metropolis acceptance 

Next a Metropolis acceptance step is applied and a decision is made whether to update 

to the new state or keep the existing state (Stan Development Team, 2016). The metropolis 

adjustment is based on comparing log probabilities, defined by Hamiltonian for this case, which 

is the sum of the potential negative log probability and kinetic energies. The probability of 

rejection is determined by the accuracy of the leapfrog approximation to the true trajectory of 

the parameters.  The idea here is to balance the rate of rejection versus the number of leapfrog 

steps.  

Model Estimation Monitoring 

Successful implementation of FB models requires a number of factors including sample 

size selection, divergence and amount of energy employed in the simulation. In HMC 

simulation, different parameters can be monitored during simulation. These include sample, 

divergence, energy, tree-depth, and step-size information. The performance of individual 

parameters during estimation can also be viewed individually. 

Divergence information 

In HMC simulation, divergent refers to the number of leapfrog transitions with 

diverging error. Considering the fact that NUTS terminates at the first divergence, divergent 

value will hence be 0 or 1 for each iteration. Thus, the average value of the divergent over all 

iterations represent the proportion of iterations with diverging error. Two main attributes that 

cause divergent transitions in HMC simulations are the presence of bugs in the model code and 

numerical instability in the leapfrog integrator used to simulate the Hamiltonian evaluation. 

Thus, evaluating the presence of divergence during MCMC simulation help in identifying light 

tails and incomplete exploration of the target distribution. The existence of divergent errors in 

the simulation will be identified by errors noted prior to termination of the simulation. 



53 
 

Energy information 

In HMC simulation, the energy is the value of the Hamiltonian at each sample. The 

energy diagnostics assist in identifying overly heavy tails that are also challenging for 

sampling. Ostensibly, the energy diagnostics quantifies the heaviness of the tails of the 

posterior distribution. The energy diagnostic plot shows the overlaid histograms of the marginal 

energy distribution and the first differenced distribution. The discrepancies between the 

corresponding distributions are what determines the existence of heavy tails. 

Tree-depth information 

In HMC, tree-depth refers to the depth of tree used by NUTS.  Configuring NUTS 

involves putting defining the upper limit of the depth of the tree to be used during the evaluation 

of individual iteration. This is monitored using the maximum depth parameter. 

Step-size information 

The integrator step size used in the Hamiltonian simulation is referred to step size 

information in HMC simulation. Use of the HMC requires the application of a numerical 

integrator in a step-size (Stan Development Team, 2016). On the other hand, if the step-size is 

too large, the leapfrog will be inaccurate and too many proposals will be repeated. If the step-

size is too small, too many small steps will be taken by the leapfrog integrator leading to long 

simulation times per interval. Thus, the goal is to balance the acceptance rate between these 

extremes. 

Model Convergence Parameters  

A Markov chain produces samples from the target distribution after converging to 

equilibrium. Different diagnostic measures are employed to monitor the convergence of the 

respective chains. One of the parameters that is used to monitor the convergence of the chain 

is through the use of the potential scale reduction statistics Rhat �ßã�, (Gelman and Rubin, 

1992). This parameter compares the current chain with other randomly initialized chains. 
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Specifically, the ßã statistic measures the ratio of the average variance of samples within each 

chain to the variance of the pooled samples across chains (Stan Development Team, 2016). 

The convergence of the monitored chains is considered to have achieved convergence when 

this statistic is equal to or less than one (Stan Modeling Team, 2016). Other convergence 

parameters include the ratio of the Monte Carlo (MC) errors relative to the standard deviations, 

whereby the ratio of the estimates less than 0.05 indicates convergence. 

Model Diagnostics using Posterior Predictive Checks 

The idea behind posterior predictive checks is analyzing the model fit of the developed 

model i.e. the ability of the particular model in predicting the response variable. To generate 

the replicated response variable, crashes for this case, the posterior predictive distribution 

equation is employed (Equation 3.25). the posterior predictive check supplements conventional 

techniques such as the residual analysis (Li et al., 2008).  

�(�̧ 8:|� = � ä��̧ 8:�����, ä��̧ 8:��� = � ä��̧ 8:���ä��̧ 8:�����                                   (3.25) 

Discussion of the Results  

Prior specification 

To obtain the FB estimates of the unknown parameters, it is required to specify prior 

distributions for the hyper-parameters. The most commonly used priors are vague normal 

distributions (with zero mean and large variance) for the regression parameters. The posterior 

distributions needed in the FB method were sampled using the MCMC, specifically HMC 

algorithm in the R software. The posterior estimates of the model's parameters for the FB 

methods were obtained via four independent chains with 100,000 iterations where 50,000 were 

used as a burn-in sample. The model chains convergence was monitored using three main 

statistical measures, i.e. Rhat, ratio of Monte Carlo standard error to the posterior standard 

deviation, and autocorrelation plots for each of the four chains. 
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Posterior distribution and cross-validation results 

The posterior means and the 95th percentile Bayesian credible intervals (BCIs) of the posterior 

distributions for each of the crash category are shown in Tables 3.3 through 3.7. The predictor 

variable is considered to be significant at 95% BCI if the values of the 2.5% and 97.5% 

percentiles do not include zero (0) i.e., they are both negative or they are both positive. 

Total crashes posterior distribution 

The results for the evaluation of total crashes model are shown in Table 3.3. According 

to the results, model 3 has the highest prediction accuracy with the lowest LOO cross-validation 

value of -2458.9 and the standard error (SE) of 42.9 as compared to model 2 (Elpd LOO = -

2553.7, SE=58. 2), and model 1 (Elpd LOO = -2585.4, SE = 62.8) (see the bottom of Table 

3.3). Thus, model 3 was selected for further evaluation of the safety effectiveness of PCS to 

drivers on treatment intersections. Three predictor variables; AADT on the major approach, 

speed limit on the major approach, and the number of lanes on the minor approach, were 

significant at 95% confidence level. All the three variables are noted to be significantly 

positive. The coefficient of the AADT on the major approach (Mean = 0.345, 95% BCI (0.060, 

0.132)) indicates that a prior increase in this variable increases the propensity of the overall 

crash occurrence. This is expected as the increase in traffic volume, which is one of the major 

exposure variables, is accompanied by an increase in heterogeneity in driving behavior and 

thus increases the probability of crash occurrence. The same explanation can be given for the 

other two significant variables, i.e., posted speed on the major approach and the total number 

of lanes on the minor approach. The results indicate that higher posted speed limit on the major 

approach influences the increase in the rate of crash occurrence by (Mean = 0.564, 95% BCI 

(0.198, 0.930)). Further, the increase in the number of lanes on the minor approach influences 

the rate of increase in crash occurrence by a mean coefficient of 0.448 with the 95% BCI of 

(0.127, 0.773).
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Table 3.3 Posterior distribution summaries for total crashes 

Variable/parameter 

Model 1 Model 2 Model 3 

Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% 

Intercept -3.348 0.0283 1.394 -6.143 -0.678 -3.436 0.0325 1.392 -6.196 -0.723 -3.633 0.0060 1.491 -6.575 -0.726 

Intervention date -0.012 0.0004 0.055 -0.121 0.097 -0.065 0.0006 0.076 -0.216 0.086 -0.133 0.0003 0.110 -0.350 0.083 

Treatment by date -0.004 0.0003 0.044 -0.089 0.082 -0.014 0.0003 0.044 -0.102 0.072 -0.103 0.0001 0.058 -0.216 0.010 

Treatment by time -0.048 0.0002 0.031 -0.109 0.013 -0.070 0.0003 0.039 -0.146 0.004 -0.021 0.0001 0.044 -0.108 0.066 

Study period 0.041 0.0001 0.018 -0.007 0.076 0.055 0.0002 0.022 -0.011 0.099 0.069 0.0001 0.032 -0.007 0.132 

ln(major AADT) 0.332 0.0028 0.136 0.068 0.602 0.339 0.0032 0.136 0.076 0.608 0.345 0.0006 0.146 0.060 0.633 

ln(minor AADT) 0.047 0.0014 0.075 -0.100 0.192 0.046 0.0017 0.075 -0.105 0.194 0.055 0.0003 0.081 -0.105 0.214 

Major approach  
posted speed <=40 mph                               

Major approach  
posted speed  >40 mph 0.566 0.0042 0.182 0.205 0.922 0.563 0.0054 0.191 0.189 0.942 0.564 0.0008 0.186 0.198 0.930 

Number of major lanes 0.146 0.0043 0.163 -0.177 0.469 0.149 0.0050 0.162 -0.173 0.461 0.135 0.0008 0.164 -0.188 0.458 

Number of minor lanes 0.454 0.0048 0.163 0.141 0.777 0.447 0.0047 0.163 0.129 0.769 0.448 0.0008 0.165 0.127 0.773 

Other land use                

Commercial land use 0.179 0.0048 0.160 -0.139 0.485 0.177 0.0047 0.159 -0.137 0.490 0.168 0.0008 0.160 -0.146 0.481 

Comparison intersections                               

treatment intersections 0.224 0.0047 0.174 -0.115 0.571 0.258 0.0048 0.171 -0.081 0.595 0.157 0.0008 0.177 -0.192 0.504 

Jump parameter           0.110 0.0009 0.110 -0.106 0.326 0.151 0.0003 0.122 -0.088 0.389 

Sigma[random paired]                     0.124 0.0001 0.016 0.094 0.158 

Sigma[site] 0.762 0.0019 0.100 0.586 0.980 0.755 0.0023 0.100 0.580 0.972 0.735 0.0004 0.101 0.560 0.955 

Mean PPD 6.509 0.0008 0.117 6.281 6.742 6.510 0.0008 0.117 6.286 6.741 6.509 0.0003 0.117 6.281 6.741 

log-posterior -2622 0.2356 13 -2648 -2598 -2623 0.2666 13 -2650 -2599 -3011 0.1158 24 -3060 -2964 

Elpd LOO -2585.4 -2553.7 -2458.9 

SE 62.8 58.2 42.9 
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Property damage only (PDO) crashes posterior distribution 

It can be noted from Table 3.4 that model 3 has the smallest Elpd LOO value of -2183.5 

(SE = 41.6) cross-validation value as compared to model 1 (Elpd LOO = -2237.8, SE=48. 2) 

and model 2 (Elpd LOO = -2240.0, SE=48. 7). This indicates that model 3 has a better 

prediction accuracy as compared to the other two models and will hence be selected for further 

estimation of the safety effectiveness of PCS to drivers, based on PDO crashes. One parameter, 

study period, is further noted to be significantly different from zero at the 95 % BCI. The 

regression coefficient for treatment by date parameter (the parameter accounting for the 

difference in the slope of log crash frequency of time between treatment and comparison 

intersections during the before and after periods) is significantly negative (Mean = -0.189, 95% 

BCI (-0.326, -0.050)) suggesting a decrease in PDO crash frequency after the installation of 

PCS at the treatment intersections. 

Five predictor variables were observed to be significant at the 95% BCI on the PDO 

crashes posterior distribution. These are AADT on the major (Mean = 0.530, 95% BCI (0.259, 

0.801)) and minor (Mean = 0.228, 95% BCI (0.071, 0.390)) approaches, posted speed on the 

major approach (Mean = 0.482, 95% BCI (0.071, 0.817)), number of lanes on the minor 

approach (Mean = 0.340, 95% BCI (0.049, 0.643)), and last but not least, commercial land use 

(Mean = 0.309, 95% BCI (0.033, 0.595)). All of these variables are significantly positive, 

suggesting that their increase results in more occurrence of PDO crashes.
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Table 3.4 Posterior distribution summaries for PDO crashes 

Variable/parameter 

Model 1 Model  2 Model 3 

Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% 

Intercept -8.579 0.032 1.375 -11.209 -5.825 -8.611 0.032 1.363 -11.379 -6.010 -7.725 0.032 1.393 -10.517 -5.008 

Intervention date 0.006 0.002 0.068 -0.130 0.137 0.028 0.002 0.090 -0.145 0.198 0.051 0.003 0.131 -0.211 0.297 

Treatment by date -0.047 0.001 0.056 -0.156 0.062 -0.043 0.001 0.060 -0.158 0.073 -0.189 0.002 0.071 -0.326 -0.050 

Treatment by time -0.053 0.001 0.041 -0.137 0.024 -0.045 0.001 0.050 -0.147 0.055 0.048 0.001 0.057 -0.066 0.158 

Study period 0.141 0.001 0.021 -0.099 0.183 0.136 0.001 0.026 -0.085 0.186 0.127 0.001 0.038 -0.055 0.201 

ln(major AADT) 0.601 0.003 0.134 0.333 0.857 0.602 0.003 0.131 0.356 0.871 0.530 0.003 0.140 0.259 0.801 

ln(minor AADT) 0.252 0.002 0.078 0.092 0.411 0.254 0.002 0.080 0.102 0.414 0.228 0.002 0.080 0.071 0.390 

Major approach  
posted speed <=40 mph                               

Major approach  
posted speed  >40 mph 0.466 0.004 0.168 0.139 0.792 0.472 0.004 0.162 0.136 0.789 0.482 0.004 0.166 0.166 0.817 

Number of major lanes 0.017 0.004 0.147 -0.278 0.315 0.021 0.004 0.145 -0.253 0.311 0.028 0.003 0.146 -0.265 0.316 

Number of minor lanes 0.306 0.004 0.146 0.021 0.596 0.300 0.003 0.146 0.014 0.582 0.340 0.004 0.151 0.049 0.643 

Other land use                

Commercial land use  0.291 0.003 0.144 0.007 0.571 0.291 0.003 0.136 0.018 0.558 0.309 0.003 0.143 0.033 0.595 

Comparison intersections                               

Treatment intersections 0.287 0.004 0.166 -0.042 0.610 0.273 0.004 0.172 -0.072 0.605 0.092 0.004 0.184 -0.261 0.448 

Jump parameter           -0.043 0.003 0.133 -0.313 0.209 -0.051 0.003 0.152 -0.347 0.251 

Sigma[random paired]                      0.158 0.001 0.023 0.114 0.205 

Sigma[site] 0.564 0.002 0.080 0.424 0.729 0.561 0.002 0.079 0.425 0.734 0.536 0.002 0.080 0.396 0.709 

mean PPD 4.143 0.002 0.092 3.961 4.327 4.148 0.002 0.095 3.962 4.331 4.144 0.002 0.094 3.965 4.328 

log-posterior -2323 0 13 -2349 -2299 -2325 0.000 13 -2352 -2302 -2777 1 24 -2825 -2733 

Elpd LOO -2237.8 -2240.0 -2183.5 

SE 48.2 48.7 41.6 
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Fatal and injury (FI) crashes posterior distribution 

Because there were just a few fatal crashes during the study period, fatal and injury 

crashes were combined together and denoted as FI. Model 3 continue to have the best prediction 

accuracy, according to the cross-validation results of this crash category shown in Table 3.5 

(bottom two rows). Hence further discussion is based on the results of model 3 only. According 

to Table 3.5, two parameters are observed to have regression coefficients which are significant 

at the 95% BCI. The negative sign of the intervention parameter (Mean = -0.299, 95% BCI (-

0.457, -0.139)) indicates a general decrease in FI for the after period. The jump parameter 

(Mean = 0.385, 95% BCI (0.111, 0.646)) indicates that there is a sudden increase in FI crash 

frequency at treatment intersections. Further, three predictor variables are observed to be 

significant at the 95% BCI. These are AADT on the major approach (Mean = 0.509, 95% BCI 

0.246, 0.769)), AADT on the minor approach (Mean = 0.226, 95% BCI (0.083, 0.371)), and 

the posted speed limit on the major approach (Mean = 0.435, 95% BCI (0.105, 0.756)). The 

positive sign of the coefficients of these regression coefficients indicates their direct influence 

on FI crash frequency. Ostensibly, crashes occurring at higher speed are prone to have 

increased severity level.
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Table 3.5 Posterior distribution summaries for FI crashes 

 Variable/parameter 
  

Model 1 Model 2 Model 3 

Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.50% 97.5% Mean  MCSE SD 2.5% 97.5% 

Intercept -6.460 0.0317 1.338 -9.115 -3.905 -6.567 0.030 1.298 -9.165 -4.023 -6.603 0.030 1.333 -9.226 -3.937 

Intervention date -0.162 0.0015 0.066 -0.287 -0.034 -0.298 0.002 0.083 -0.459 -0.134 -0.299 0.002 0.082 -0.457 -0.139 

Treatment by date 0.177 0.0015 0.062 -0.057 0.301 0.147 0.001 0.065 -0.017 0.271 0.048 0.001 0.063 -0.024  0.270 

Treatment by time -0.064 0.0010 0.044 -0.151 0.022 -0.042 0.001 0.054 -0.249 -0.033 -0.043 0.001 0.051 -0.047 0.245 

Study period 0.058 0.0005 0.021 0.019 0.098 0.093 0.001 0.025 -0.042 0.141 0.093 0.001 0.024 -0.046 0.139 

ln(major AADT) 0.498 0.0031 0.133 0.235 0.767 0.508 0.003 0.130 0.248 0.758 0.509 0.003 0.131 0.246 0.769 

ln(minor AADT) 0.228 0.0017 0.075 0.084 0.373 0.223 0.002 0.074 0.077 0.366 0.226 0.002 0.073 0.083 0.371 

Major approach  
posted speed <=40 mph                               

Major approach  
posted speed  >40 mph 0.445 0.0043 0.166 0.113 0.774 0.451 0.004 0.164 0.133 0.774 0.435 0.004 0.166 0.105 0.756 

Number of major lanes 0.093 0.0039 0.145 -0.185 0.384 0.084 0.003 0.141 -0.188 0.363 0.083 0.004 0.143 -0.189 0.382 

Number of minor lanes 0.060 0.0035 0.144 -0.220 0.354 0.067 0.004 0.146 -0.225 0.355 0.088 0.004 0.148 -0.202 0.385 

Other land use                

Commercial land use  0.163 0.0037 0.139 -0.090 0.442 0.148 0.003 0.139 -0.117 0.421 0.159 0.004 0.148 -0.120 0.463 

Comparison intersections                               

Treatment intersections -0.392 0.0048 0.172 -0.714 -0.057 -0.285 0.004 0.175 -0.620 0.063 -0.275 0.004 0.161 -0.583 0.047 

Jump parameter           0.383 0.003 0.143 0.107 0.654 0.385 0.003 0.138 0.111 0.646 

Sigma[random paired]                      0.476 0.002 0.089 0.314 0.667 

Sigma[site] 0.551 0.0018 0.079 0.416 0.730 0.549 0.002 0.079 0.413 0.722 0.081 0.002 0.066 0.000 0.236 

mean PPD 4.401 0.0022 0.097 4.220 4.591 4.403 0.002 0.094 4.217 4.584 4.400 0.002 0.097 4.211 4.592 

log-posterior -2385 0.2886 13 -2411 -2360 -2383 0.307 13 -2409 -2358 -2497 0.329 14 -2527 -2471 

Elpd LOO -2319.9 -2310.8 -2264.1 

SE 53.9 53.2 45 
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Rear-end crashes posterior distribution 

In this study, the posterior distribution for the rear-end crashes were also developed, 

and are summarized in Table 3.6. Using the LOO cross-validation, model 3 is identified to have 

the best fit, hence it will be used for further discussion and estimation of index of effectiveness. 

Based on the results shown in Table 3.6, the regression coefficient for the parameter 

intervention date is significantly negative at 95% BCI (Mean = -0.125, 95% BCI (-0.198, -

0.052,)), suggesting the general decrease in rear-end crashes for the after period for comparison 

and treatment intersections. Further, three explanatory variables are also significant at the 95% 

BCI. These are AADT on the major street (Mean = 0.142, 95% BCI (0.328, 0.886)), posted 

speed on the major street (Mean = 0.516, 95% BCI (0.187, 0.844)), and number of lanes on 

minor street (Mean = 0.368, 95% BCI (0.068, 0.671)). Their increase would result in the higher 

occurrence of rear-end crashes, due to the positivity of their regression coefficients.
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Table 3.6 Posterior distribution summaries for rear-end crashes 

Variable/parameter 

Model 1 Model 2 Model 3 

Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% 

Intercept -7.842 0.019 1.412 -10.632 -5.096 -7.858 0.021 1.439 -10.688 -5.077 -7.511 0.022 1.462 -10.382 -4.612 

Intervention date -0.122 0.0002 0.025 -0.171 -0.074 -0.114 0.000 0.029 -0.169 -0.057 -0.125 0.000 0.037 -0.198 -0.052 

Treatment by date 0.024 0.001 0.080 -0.135 0.181 0.058 0.001 0.098 -0.133 0.251 -0.016 0.001 0.130 -0.272 0.238 

Treatment by time -0.140 0.000 0.054 -0.246 -0.034 -0.120 0.000 0.065 -0.247 0.004 -0.077 0.000 0.070 -0.214 0.059 

Study period 0.156 0.001 0.076 0.007 0.303 0.165 0.001 0.078 0.012 0.319 0.052 0.001 0.088 -0.120 0.227 

ln(major AADT) 0.641 0.002 0.140 0.367 0.919 0.640 0.002 0.141 0.357 0.922 0.609 0.002 0.142 0.328 0.886 

ln(minor AADT) 0.114 0.001 0.085 -0.049 0.282 0.118 0.001 0.085 -0.050 0.283 0.108 0.001 0.086 -0.060 0.275 

Major approach  
posted speed <=40 mph                               

Major approach  
posted speed  >40 mph 0.496 0.002 0.169 0.167 0.832 0.495 0.003 0.171 0.159 0.831 0.516 0.003 0.167 0.187 0.844 

Number of major lanes 0.111 0.002 0.148 -0.179 0.402 0.116 0.002 0.148 -0.174 0.411 0.109 0.002 0.148 -0.180 0.403 

Number of minor lanes 0.366 0.002 0.155 0.060 0.668 0.361 0.003 0.154 0.063 0.667 0.368 0.002 0.153 0.068 0.671 

Other land use                

Commercial land use  0.195 0.002 0.143 -0.089 0.477 0.200 0.003 0.143 -0.079 0.480 0.198 0.002 0.144 -0.081 0.481 

Comparison intersections                               

Treatment intersections -0.124 0.002 0.186 -0.491 0.242 -0.153 0.003 0.193 -0.538 0.213 -0.255 0.003 0.199 -0.648 0.135 

Jump parameter           -0.103 0.001 0.170 -0.435 0.229 0.019 0.001 0.182 -0.337 0.373 

Sigma[random paired]                      0.105 0.000 0.022 0.067 0.153 

Sigma[site] 0.550 0.001 0.082 0.409 0.732 0.553 0.001 0.081 0.414 0.730 0.531 0.001 0.081 0.388 0.706 

mean PPD 3.075 0.001 0.080 2.920 3.234 3.074 0.001 0.081 2.918 3.233 3.075 0.001 0.080 2.918 3.234 

log-posterior -1975 0.223 13 -2001 -1950 -1976 0.217 13 -2002 -1952 -2536 0.361 24 -2584 -2489 

Elpd LOO -1871 -1869.2 -1830.3 

SE 39.3 39.2 33.6 
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Angle crashes posterior distribution 

The results of the posterior distributions of explanatory variables used in the Poisson-

lognormal model for angle crashes is presented in Table 3.7. Using the LOO cross-validation, 

model 3 is identified to have the best fit, hence it will be used for further discussion and 

estimation of index of effectiveness. From Table 3.7, it can be observed that the regression 

coefficients for three explanatory variables are significant at the 95% BCI. These are AADT 

on the major street (Mean = 0.142, 95% BCI (0.328, 0.886)), posted speed on the major street 

(Mean = 0.516, 95% BCI (0.187, 0.844)), and number of lanes on the minor street (Mean = 

0.368, 95% BCI (0.068, 0.671)). Because the coefficients of these three significant model 

variables are positive, the results suggest that the increase in their values would cause the 

increase in angle crashes. 
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Table 3.7 Posterior distribution summaries for angle crashes 

 Variable/ parameter 
  

Model 1 Model 2 Model 3 

Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% Mean  MCSE SD 2.5% 97.5% 

Intercept -8.934 0.023 1.584 -12.013 -5.846 -9.080 0.021 1.551 -12.124 -6.113 -8.859 0.0077 1.608 -12.008 -5.699 

Intervention date 0.033 0.0002 0.028 -0.023 0.087 0.091 0.0003 0.037 -0.020 0.164 0.103 0.0001 0.044 -0.017 0.190 

Treatment by date 0.061 0.001 0.087 -0.108 0.232 -0.167 0.001 0.125 -0.411 0.078 -0.191 0.0004 0.152 -0.490 0.106 

Treatment by time 0.071 0.0004 0.052 -0.031 0.173 -0.027 0.0005 0.065 -0.154 0.102 -0.016 0.0002 0.071 -0.155 0.124 

Study period -0.004 0.0005 0.070 -0.139 0.133 -0.025 0.0005 0.070 -0.162 0.112 -0.054 0.0002 0.084 -0.219 0.110 

ln(major AADT) 0.602 0.002 0.155 0.303 0.908 0.609 0.002 0.154 0.311 0.911 0.572 0.0008 0.159 0.260 0.880 

ln(minor AADT) 0.269 0.001 0.086 0.100 0.438 0.267 0.001 0.087 0.100 0.440 0.275 0.0004 0.091 0.096 0.453 

Major approach  
posted speed <=40 mph                               

Major approach  
posted speed  >40 mph 0.351 0.003 0.188 -0.012 0.724 0.354 0.003 0.190 -0.016 0.728 0.360 0.0009 0.190 -0.009 0.736 

Number of major lanes 0.151 0.002 0.161 -0.162 0.467 0.154 0.002 0.164 -0.165 0.483 0.148 0.0009 0.164 -0.173 0.469 

Number of minor lanes 0.144 0.003 0.166 -0.180 0.472 0.145 0.003 0.168 -0.188 0.473 0.158 0.0009 0.167 -0.169 0.488 

Other land use                

Commercial land use 0.308 0.002 0.158 0.001 0.620 0.307 0.003 0.161 -0.009 0.624 0.312 0.0008 0.161 -0.002 0.630 

Comparison intersections                               

Treatment intersections -0.054 0.003 0.198 -0.436 0.335 0.089 0.003 0.206 -0.313 0.498 0.078 0.0010 0.214 -0.341 0.497 

Jump parameter           0.439 0.001 0.174 0.092 0.779 0.451 0.0004 0.186 0.086 0.816 

Sigma[random paired]                      0.124 0.0001 0.024 0.081 0.176 

Sigma[site] 0.682 0.002 0.105 0.503 0.912 0.685 0.001 0.106 0.504 0.918 0.660 0.0005 0.105 0.479 0.892 

mean PPD 2.530 0.001 0.074 2.386 2.676 2.530 0.001 0.073 2.389 2.673 2.530 0.0002 0.073 2.388 2.675 

log-posterior -1882 0.224 13 -1909 -1858 -1880 0.211 13 -1906 -1856 -2433 0.112 24 -2481 -2387 

Elpd LOO -1747.9 -1752.6 -1726.6 

SE 42.2 41.8 35.3 
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PCS Index of Effectiveness 

The PCS treatment effectiveness results are presented in Table 3.8. The table 

summarizes the overall treatment effectiveness for total, PDO, FI, rear-end, and angle crashes 

and the associated 95% credible intervals. The index of effectiveness is considered significant 

at the 95 % BCI when the values of the 2.5% and 97.5% percentiles do not include zero (1) 

i.e., they are both less than one or they are both greater than one. The FB method here accounts 

for the regressions-to-the-mean (RTM) phenomenon by estimating the expected number of 

crashes on the treatment intersections had the PCSs not installed by using the posterior 

distribution of a number of crashes which combines the observed data with the prior 

information. Ostensibly, this approach recognizes that the observed crash count at a site from 

any one year is a noisy measurement of the true long-run mean crash frequency (Park et al., 

2010). 

In this study, three Poisson lognormal models were developed for each crash category 

included in the analysis. The model with the best prediction accuracy selected based on Elpd 

LOO was hence selected for further estimation of the index of effectiveness. It can be depicted 

that three crash types, i.e. total (Mean = 0.894, 95% BCI (0.828, 0.911)), PDO (Mean = 0.908, 

95% BCI (0.838, 0.953)), and rear-end (Mean = 0.920, 95% BCI (0.842, 0.942)) crashes are 

significant at the 95 % BCI as they're significantly different from one. It is worth noting the 

index values obtained in this study are comparable to the findings obtained using the findings 

using the EB methodology as illustrated in chapter 2 of this thesis. Based on these findings, it 

can be concluded that PCSs improve the safety of drivers at signalized intersections. It can also 

be observed from Table 3.8 that the results of two crash categories such as FI (Mean = 0.957, 

95% BCI (0.886, 1. 020)) and angle (Mean = 0.969, 95% BCI (0.931, 1.022)) crashes are less 

than one but are not significant at the 95 % BCI. It is worth noting the significant reduction in 

rear-end crashes was expected, as the cues offered by PCS to drivers prompt drivers on the 
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amount of time remaining to clear the intersection, thus facilitating smooth deceleration for 

drivers as they approach the intersection prior to termination of their green phase. 

 

Table 3.8 Safety effectiveness indices (CMF) for different crash categories 

Crash type 

CMF 

  
Mean 

BCI 

2.5% 97.5% 

Total crashes 0.894 0.828 0.911 

PDO 0.908  0.838 0.953 

FI 0.957  0.886 1.020 

Rear-end 0.920  0.842 0.942 

Angle 0.969  0.931 1.022 

 

Further, taking an advantage of the benefit of the FB approach, the CMF referred here 

as the safety effectiveness index was obtained per each year for after installing the treatment, 

thus obtaining a trend on the effect of the PCS in yearly basis. Figures 3.2 and 3.3 shows a 

similar declining trend of the treatment effectiveness index for total and PDO crashes. From 

this trend, it may be concluded that the safety improvements of PCS to drivers improves in 

time after they are being installed at the respective intersections. However, the treatment 

effectiveness on rear-end crashes is observed to decline with post-treatment time, although the 

mean value is still less than one for all the three years. This situation may be influenced by an 

increase in the proportion of drivers who wants to clear the intersection before the termination 

of the green phase, while other drivers apply breaks to avoid being caught up at the intersection 

after the termination of the green phase. 
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Figure 3.2. Yearly CMF for total crashes 

 

Figure 3.3. Yearly CMF for PDO crashes 
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Figure 3.4. Rear-end CMF for rear-end crashes 

 

Crash Modification Functions 
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In this study, traffic volume was employed as the main variable to incorporate into the 

CMFunctions for different crash types. The method used to develop the CMFunction is 

described in this section. Let Øåæ� = �� denote an estimate of the index of effectiveness �, 

where ¼� is a precision parameter for the respective index. A Gaussian linear regression model, 

presented in Equation 3.26 is used to model � as the best estimate of the intervention effect 

across treatment intersections (Osama et al., 2016). 

Øåæ�,ç = Â�,çÆ + ±�,ç                 (3.26) 

Where  

Â�,çÆ = linear predictor that represents the traffic volume covariate(s) at the intersection level 

that might influence the size of the intervention effect during the intervention, where y = 1, 2, 

and 3, for three years after installing PCSs. 

Æ   =    vector of coefficients and a regression constant 

Â�,ç   =    vector of covariates values for the ith intersection  

±�,ç   =    error-term parameter across each intersection 

Four different scenarios (Table 3.9) were fitted using the model in Equation 3.26. The four 

models were compared based on the LOOCV, where the model with the best fit was selected. 

It is worth noting that the results from the LOOCV for all models did not significantly differ, 

i.e. difference between scenarios <=0.1. Thus, the total entering traffic (AADT on the major 

approach + AADT on the minor approach) was used as the main explanatory variable for 

estimating the CMFunctions. 
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Table 3.9 Selection of predictor variable(s) in CMFunction formulation 

Scenario Independent variable 

1. Â� = AADT on the major approach 

2. Â� = AADT on the minor approach 

3. Â� = AADT on the major approach + AADT on the minor approach 

4. Â� = AADT on the major approach × AADT on the minor approach 

 

To obtain Bayesian estimates of the unknown parameter, the R software was used. Four 

independent Markov chains were run using 10,000 iterations (the first 5,000 were discarded as 

burn-in runs). The model was fitted assuming the whole set of the regression parameters to be 

non-informative, i.e., they are normally distributed with a zero mean and a large variance. This 

procedure was repeated for the three crash categories with significant CMFs in this study. Once 

the best model was selected, the CMFunctions for each of the respective crash category and 

after-intervention year were estimated as summarized in Table 3.9. 

 

Table 3.10 Posterior distribution summaries for the CMFunctions 

Crash 
type 

Variable/ 

parameter 
After-intervention year 

1 2 3 

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% 

Total  
  
  

Intercept Æ� 0.574 0.273 0.877 0.582 0.332 0.833 0.721 0.546 0.895 

Total entering 
traffic Æ� 0.039 0.01 0.068 0.029 0.005 0.053 0.008 -0.008 0.025 

Error-term ±� 0.063 0.054 0.074 0.053 0.045 0.062 0.037 0.031 0.043 

Elpd_LOO 
    (SE) 

108.5 
(4.9) 

123.1 
(7.3) 

151.6 
(7.3) 

PDO 
  
  

Intercept Æ� 0.33 -0.186 0.846 0.612 0.157 1.065 0.654 0.251 1.057 

Total entering 
traffic Æ� 0.056 0.006 0.105 0.023 -0.020 0.067 0.017 -0.021 0.056 

Error-term ±� 0.108 0.092 0.127 0.096 0.082 0.112 0.086 0.073 0.101 

Elpd_LOO 
    (SE) 

66.4 
(8.3) 

76.6 
(11.1) 

83.8 
(6.8) 

Rear-
end 
  
  

Intercept Æ� 0.276 -0.141 0.697 0.584 0.200 0.975 0.718 0.404 1.027 

Total entering 

traffic Æ� 0.054 0.014 0.094 0.03 -0.008 0.066 0.024 -0.006 0.054 

Error-term ±� 0.088 0.075 0.104 0.082 0.070 0.096 0.066 0.056 0.078 

Elpd_LOO 
    (SE) 

81.8 
(5.3) 

88.5 
(9.6) 

104.8 
(6.1) 
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Figures 3.5 through 3.7 show the plots of the obtained CMFunctions for total, PDO, and rear-

end crashes, respectively. Each of the plots has a total of three post-treatment years estimated 

data. From these plots, it can be observed that the index of effectiveness (CMF) values 

generally increases with the traffic volume and then reaches an asymptotic value which is often 

close to one. This indicates less crash reduction for intersections with high traffic volume. In 

addition, the CMF values based on post-treatment time decreased generally over time in total 

crashes (Figure 3.5) and PDO crashes (Figure 3.6), indicating a consequent improvement of 

safety over time, but have increased for rear-end crashes (Figure 3.7). 

 

Figure 3.5. Total crashes CMFunction 
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Figure 3.6. PDO CMFunction 

 

 

Figure 3.7. Rear-end CMFunction 
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Conclusions and Suggestions for Future Research 

The use of full Bayes (FB) method is emerging as a more reliable approach in safety 

effectiveness studies that can account for the limitations of the conventional empirical Bayes 

(EB) approach. These EB method limitations include the substantial reliance on the safety 

performance functions (SPFs), which may result in the significant underestimation of the 

uncertainties in the crash modification factors (CMFs) estimated using the EB method. In this 

study, the FB approach was employed to investigate the safety effects of pedestrian countdown 

signals (PCSs) to drivers using the FB before-and-after with the comparison group approach. 

This manuscript has demonstrated the estimation of the safety effectiveness index using the FB 

method that employed the Poisson-lognormal model, with an intervention attribute, jump 

parameter, and additional random parameters. For the FB approach, uncertainties in the 

covariates are propagated throughout the model and are carried through the final safety 

effectiveness indices estimate. 

Crash modification factors (CMFs) and crash modification functions (CMFunctions) 

were developed based on total crashes and two injury severity categories, i.e.,  property damage 

only (PDO) and fatal and injury (FI) crashes. Treatment effectiveness indices were also 

developed for two crash types – rear-end and angle crashes. 

Based on the findings of this study, using the CMF as the safety effectiveness index, 

PCSs reduce total crashes by about 10% (Mean = 0.894, 95% BCI (0.828, 0.911)). Installation 

of PCSs is also observed to reduce PDO crashes by just less than 10% (Mean = 0.908, 95% 

BCI (0.838, 0.953)), according to the results of this study. Also, a reduction of 7.8% for rear-

end (Mean = 0.920, 95% BCI (0.842, 0.942)) is observed after installing PCSs. Data do not 

suggest any significant effect of PCSs for angle and FI crashes.   

The CMFunctions developed in this study indicate that the treatment effectiveness 

varies with post-intervention time and the crash exposure variable used in this study (traffic 
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volume). Moreover, the results indicate the treatment effectiveness to increase over time for 

the post-treatment years for a total and PDO crashes. Conversely, the CMF values for rear-end 

crashes was observed to increase over time indicating a consequent decline in the improvement 

of safety over time. 

Despite the advantages of the FB approach discussed herein, there is still room for 

improvement. Future studies can consider using non-linear time trend models for estimating 

the countermeasure safety effectiveness index. Further, more explanatory variables are 

proposed to be included in the CMFunctions estimation. This step can lead to more 

representative functions that better account for more variables that influence the variation of 

crash frequency. It will also be interesting to develop the CMF using the multivariate approach, 

especially in crash categories based on injury severities. Considering the fact that the presence 

of PCSs at signalized intersections may not only be beneficial to pedestrians, but also to drivers, 

it will be interesting to conduct a much broader study to confirm the findings of this study. 
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 

Overview  

This thesis evaluates the safety effects of PCSs to drivers at signalized intersections 

using two methods - empirical Bayes (EB) followed by full Bayes (FB). The study employs 

the before-and-after study approach with the comparison group. For each site, six-year crash 

data (from years 2003 through 2014) are used – three years for the before- and the other three 

for the after- period. The analysis includes a total of 110 treatment and 93 comparison 

intersections. Comparison intersections are included to account for the external attributes that 

may influence the change in crash frequency apart from the main intervention, which is PCSs 

for this study. The study sites are located in the FDOT District 2, two cities in particular –

Jacksonville and Gainesville.  

The safety performance functions (SPFs) for the first method, i.e., EB approach were 

developed using the negative binomial model. In the case of the FB method, the Poisson-

lognormal model with a piecewise linear change point for the before-and-after period was used. 

Several parameters including the site-level effect, jump, and paired-random effect parameters 

were introduced in the FB approach to improve model reliability. It is worth noting that the 

two count models used this study take into account the dispersion nature of crash occurrence. 

Both of the count models used in this thesis incorporate a number of explanatory 

variables, including traffic volume and number of lanes on the major and minor approaches. 

They also incorporate the posted speed on the major approach and land use information. It is 

worth noting that the coefficients of each of these variables are positive for all the models, at 

different significance levels, indicating that the increase of these variables results in the 

increase the crash occurrence rates. It can also be inferred from the results that the coefficient 

of the traffic volume for the major approach is significantly positive and higher than the 

coefficient of the traffic volume of the minor approach, which is also positive and significant 
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at 95% CI/BCI. This indicates that the influence of traffic volume on the major approach to 

increase in crash occurrence is higher than that of traffic volume on the minor approach. 

Measures of Safety Effectiveness Index   

The safety effectiveness of PCSs was measured using the safety effectiveness index 

known as the Crash Modification Factor (CMF). CMFs were developed for various crash 

categories based on type and injury severity. In addition to CMFs, Crash Modification 

Functions (CMFunctions) were developed. CMFunctions are mathematical expressions that 

relate the effectiveness of CMFs with varying exposure factors. For this study, traffic volume, 

in terms of AADT, was used as an exposure variable. CMFs and CMFunctions findings are 

summarized next.  

Summary of Findings for Crash Modification Factors 

Table 4.1 summarizes the computed CMFs estimated for different crash categories 

using the EB and FB approaches.  The results are based on the 95% CI for the EB approach 

and 95% BCI for the FB methodology. Reported in Table 4.1 are also the CRFs (Crash 

reduction factors), which are computed as 1 – CMF.  

Overall, the results indicate that the installation of PCSs significantly reduced total 

collisions by about 10%, PDO by nearly 9%, and rear-end crashes by 8%. The significant 

reduction in rear-end collisions was expected, as the cues offered by PCS timers are likely to 

affect the decisions of drivers as they approach the intersection. Generally, there are no big 

differences between the CMF results of the EB and FB methods. The same observation has 

been reported by a number of previous studies, including Persaud et al. (2010) and Park et al. 

(2016).  
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Table 4.1 Treatment safety effectiveness index for different crash categories using the EB and 
FB approaches 

Crash type 

Safety effectiveness indexes from the EB 
method 

Safety effectiveness indexes from the FB 
method 

Mean CMF 
CRF 
(%) 

95% CMF CI 

Mean CMF 
CRF 
(%) 

95% CMF BCI 

Lower  Upper  2.50% 97.50% 

Total 
crashes 0.912 8.8 0.855 0.969 0.894 10.6 0.828 0.911 

PDO 0.929 7.1 0.862 0.996 0.908 9.2 0.838 0.953 

FI 0.952 4.8 0.797 1.107 0.957 4.3 0.886 1.020 

Rear-end 0.920 8.0 0.889 0.951 0.920 8.0 0.842 0.942 

Angle 0.954 4.6 0.797 1.111 0.969 3.1 0.931 1.022 

 

Summary of Findings for Crash Modification Functions 

This study also developed the CMFunctions for different crash types with total entering 

traffic as the primary explanatory variable. Regarding the extra benefits of the FB approach, 

the linear time trend was added into the CMFunction computations. Using plots, the trend of 

the treatment effectiveness indices was observed to diminish with increase in post-intervention 

duration. In summary, the CMFunctions developed in this study clearly show that the treatment 

effectiveness varies considerably with post-treatment time and crash exposure variables such 

as traffic volume. It is worth mentioning that the developed CMFs are based on local 

characteristics. For a broader use of these CMFs, calibration may be necessary.  

Intuitive and Counterintuitive Findings 

The findings from both the EB and FB methods results indicated that the presence of 

PCSs at signalized intersections improves drivers’ safety. Furthermore, the treatment 

effectiveness was observed to improve over post-treatment years for the total and PDO crashes. 

In contrast, the safety effectiveness of PCSs at signalized intersections was found to decline 

with post-treatment years. Despite suffering a declining trend, the CMF values for all the post-

treatment years are still less than one indicating safety improvement. The reduction in rear-end 

crash frequency upon installation of PCSs can be explained by the increase in the number of 

drivers who use the information offered by the countdown timer to slow down upon the 
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termination of the green phase. In contrast, other drivers may use the same information to speed 

up to clear the intersection, hence avoid being caught up to wait for the next green phase. 

Therefore, the increase in rear-end crash frequency with post-treatment time may be influenced 

by the increment of the ratio of two types of drivers, i.e. those who speed up and those who 

slow-down as the PCSs’ timer approaches zero. 

Study Limitations and Recommendations for Future Work 

There are several limitations of this study. Unavailability of traffic volume (AADT) 

data, particularly on non-state maintained roadways limited the number of sites selected for the 

study to state-maintained intersections only. Further, because the minor street roadways for 

some of the intersections are local roads, reliable traffic volume data could not be obtained. 

This, in turn, resulted in dropping of many sites from the analysis due to the incompleteness of 

data. In addition, the process of retrieving information on the installation dates of PCSs was 

long and tedious. This was due to the absence of a database with the dates of PCSs installation. 

Maintaining a database with the records of the installation dates for traffic control devices 

including PCSs is necessary to aid continued efforts in evaluating the effectiveness of such 

devices. 

It is also worth noting that the variation between the treatment effectiveness index and 

the post-treatment time was assumed to be linear in this study, which may not invariably be the 

case. Thus, a more reliable approach such as the application of autoregressive models which 

do not assume the variation to be linear is proposed. Also, more explanatory variables could be 

explored, especially for estimating CMFunctions, in future work. Incorporating more post-

treatment years in the estimation of the CMFunction is also significant to distinguish whether 

there will be a change in the trend of safety effectiveness. It will also be interesting to develop 

CMFs using the multivariate approach, especially on crash categories based on injury 

severities. 
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Looking at the ancillary behaviors of drivers at intersections with red light cameras it 

will be beneficial to integrate these effects while estimating the safety effectiveness of PCSs to 

drivers at signalized crossings.  Also because this study analyzed only four-legged intersection, 

it will be important for future research to expand the analysis to cover three-legged signalized 

intersections. It is worth noting that, these sites were dropped from the analysis in this thesis 

due to the limitation of the sample size. In view of the fact that the average value of the LOOCV 

value was used as a measure of the prediction accuracy in this thesis, it will be beneficial to 

check the sensitivity of this value for each of the data used in the analysis.  

The FB probabilistic approach used in this study is still an evolving area of research. In 

other research fields, there is a push to move from probabilistic Bayesian techniques to 

optimization based Bayesian methods due to their many advantages, including computational 

efficiencies and the speed of model convergence. Methods such as graphical models, including 

Bayesian networks and hidden Markov model among others, have a potential use in highway 

safety modeling. For future work, there is a need to pursue the possibility of employing such 

methods in safety effectiveness studies as they are known to have computational benefits and 

more optimized results.  
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