
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2016

Vulnerabililty Analysis of Multi-Factor
Authentication Protocols
Keith Garrett

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2016 All Rights Reserved

Suggested Citation
Garrett, Keith, "Vulnerabililty Analysis of Multi-Factor Authentication Protocols" (2016). UNF Graduate Theses and Dissertations. 715.
https://digitalcommons.unf.edu/etd/715

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNF Digital Commons

https://core.ac.uk/display/71985191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

VULNERABILITY ANALYSIS OF MULTI-FACTOR AUTHENTICATION PROTOCOLS

by

Keith A. Garrett

A thesis submitted to the

School of Computing

in partial fulfilment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA

SCHOOL OF COMPUTING

June, 2016

Copyright (©) 2016 by Keith Garrett

All rights reserved. Reproduction in whole or in part in any form requires the prior

written permission of Keith Garrett or designated representative.

ii

iii

The thesis “Vulnerability Analysis of Multi-Factor Authentication Protocols” submitted
by Keith Garrett in partial fulfillment of the requirements for the degree of Master of
Science in Computing and Information Sciences has been

Approved by the thesis committee: Date

Dr. Swapnoneel Roy
Thesis Advisor and Committee Chairperson

Dr. Asai Asaithambi

Dr. Sandeep Reddivari

Dr. Anand Seetharam

Accepted for the School of Computing:

Dr. Sherif Elfayoumy
Director of the School

Accepted for the College of Computing, Engineering, and Construction:

Dr. Mark Tumeo
Dean of the College

Accepted for the University:

Dr. John Kantner
Dean of the Graduate School

ACKNOWLEGEMENT

I wish to thank all the giants on whose shoulders I am privileged to stand; my teachers,

instructors, and professors; and my family and friends who prayed for me, picked me

up, dusted me off, and threw me back into the battle. A special thanks to Dr. Roy as

all of the above and as a mentor and guide. Thanks to my thesis committee members,

Dr. Swapnoneel Roy, Dr. Asai Asaithambi, Dr. Anand Seetharam, and Dr. Sandeep

Reddivari.

iv

CONTENTS

List of Figures . viii

List of Tables . ix

Abstract . x

Chapter 1 Introduction . 1

1.1 Multi-factor authentication protocols . 1

1.2 Contributions of this thesis . 3

1.3 Organization of this thesis . 3

Chapter 2 Review of the Literature . 4

2.1 Research on authentication protocols . 4

2.1.1 A research snapshot of security protocols 4

2.1.2 Various kinds of attacks on the protocols 5

2.1.3 Approaches to develop secured protocols 7

2.2 Methodology adopted in this thesis . 8

Chapter 3 A General Algorithm for Clogging Attack 9

3.1 The algorithm . 9

3.2 The clogging conditions . 10

3.2.1 Analysis . 12

3.3 Choice of protocols . 12

Chapter 4 Clogging Attack on the Protocols . 13

4.1 Yang’s protocol . 13

v

4.1.1 Review of the protocol . 13

4.1.2 Attack on Yang’s protocol . 14

4.1.3 Proposed countermeasures to the attack 16

4.1.3.1 Security analysis of the solution. 17

4.1.3.2 Another solution . 17

4.2 Islam’s protocol . 17

4.2.1 Review of Islam’s protocol . 18

4.2.2 Attack on Islam’s protocol . 19

4.2.3 Proposed countermeasures to the attack 20

4.3 Jiang’s password based protocol . 20

4.3.1 Review of the protocol . 20

4.3.2 Attack on Jiang et al.’s protocol . 21

4.3.3 Clogging attack performed on other similar schemes 23

4.3.4 Proposed countermeasures to the attack 24

4.3.4.1 Steps to avoid the clogging attack 24

4.3.4.2 Security analysis of the solution 25

4.4 Wang’s smart card based protocol . 25

4.4.1 Review of the protocol . 25

4.4.2 Replay Attack on Wang’s protocol 27

4.4.3 Proposed countermeasures to the attack 28

4.4.3.1 The steps to avoid replay attack resulting in clogging

attack . 28

4.4.3.2 Yet another way to prevent a clogging attack 29

Chapter 5 Conclusion . 30

5.1 Summary of results . 30

5.2 Conclusion . 32

5.3 Directions for future research . 32

vi

References . 33

Appendix A Modular Exponentiation . 36

A.1 Background on modular exponentiation . 36

A.1.1 Exponentiation . 37

A.1.2 Factoring . 37

A.1.3 Modular Exponentiation . 37

A.1.4 Discrete Logarithm Problem and Security 37

A.2 Applications in computer security . 38

Publication . 42

Vita . 43

vii

FIGURES

Figure 2.1 A snapshot of authentication protocols (Wang et al., 2013). 5

Figure 3.1 Energy consumption by modular exponentiation with exponents

of various sizes (Harish and Roy, 2014) 10

Figure 3.2 Comparison of normalized energy consumption of different oper-

ations (on log scale) (Harish and Roy, 2014) 11

viii

TABLES

Table 3.1 Summary of the Differences in the Protocols 12

Table 5.1 Summary of the Results . 31

ix

ABSTRACT

In this thesis, the author hypothesizes that the use of computationally intensive math-

ematical operations in password authentication protocols can lead to security vulnera-

bilities in those protocols. In order to test this hypothesis:

1. A generalized algorithm for cryptanalysis was formulated to perform a clogging

attack (a form of denial of service) on protocols that use computationally intensive

modular exponentiation to guarantee security.

2. This technique was then applied to cryptanalyze four recent password authenti-

cation protocols, to determine their susceptibility to the clogging attack.

The protocols analyzed in this thesis differ in their usage of factors (smart cards, mem-

ory drives, etc.) or their method of communication (encryption, nonces, timestamps,

etc.). Their similarity lies in their use of computationally intensive modular exponentia-

tion as a medium of authentication.

It is concluded that the strengths of all the protocols studied in this thesis can be com-

bined to make each of the protocols secure from the clogging attack. The conclusion is

supported by designing countermeasures for each protocol against the clogging attack.

x

Chapter 1

INTRODUCTION

1.1 Multi-factor authentication protocols

User authentication can enable a perimeter device (e.g., a firewall, proxy server, VPN

server, or remote access server) to decide whether or not to approve a specific access

request to gain entry to a computer network. It is necessary to be able to identify and

authenticate any user with a high level of certainty, so that the user may be held account-

able should his/her actions threaten the security and productivity of the network. The

more confidence a network administrator has regarding the user’s identity, the more

confidence the administrator will have in allowing that user specific privileges, and the

more faith the administrator will have in the internal records regarding that user.

Multi-factor authentication is an approach to cyber-security in which the user is re-

quired to provide more than one form of verification in order to prove his/her identity

and gain access to the system. It takes advantage of a combination of several authen-

tication factors. Commonly used factors include verification by (1) something a user

knows (such as a password), (2) something the user has (such as a smart card or a secu-

rity token), and (3) something the user is (such as the use of biometrics) (Stallings and

Brown, 2008). Due to their increased complexity, multi-factor authentication systems

are harder to breach than those using any single factor.

Smart cards are widely used in multi-factor authentication due to their relatively low

– 1 –

cost, robust security, versatility and variety. Smart card based password authentica-

tion is one of the most convenient and effective two-factor (smart cards and passwords)

authentication mechanisms for remote systems (Chen et al., 2014; Islam, 2014; Jiang

et al., 2015; Li and Lee, 2012; Li et al., 2013; Yang et al., 2014). This technique has been

widely applied to various authentication applications, including remote host login, on-

line banking, e-commerce and e-health. Also, it constitutes the basis of three-factor

authentication. Challenges remain in both security and performance aspects of smart

card authentication due to the stringent security requirements and resource constraints

of the clients.

Many multi-factor authentication protocols (Beller et al., 1993; Huang et al., 2003; Kocher

and Jaffe, 2001; Liao and Wang, 2009) use computationally intensive modular exponenti-

ation, a one-way function (see Appendix A), to guarantee security. The security provided

by modular exponentiation is due to its one-way nature, in other words, the hardness

of computing its inverse called the discrete logarithm problem. But due to the compu-

tationally intensive nature of modular exponentiation, its use leaves a security loophole

in protocols. An attacker can force the server or the client to waste resources by repeat-

edly performing unnecessary computations (due to modular exponentiation), resulting

in clogging (a form of denial of service).

In this thesis, four recent multi-factor authentication protocols are analyzed for vulner-

ability. The first two, which are smart card based, differ in the fact that one (Yang et al.,

2014) uses encryption and a nonce (a random number) for verification, while the other

uses timestamps (Islam, 2014). The third multi-factor authentication protocol consid-

ered here is a memory device aided password authentication protocol (Jiang et al., 2013).

In this kind of protocol, the authentication information (issued by a server) is stored in

a memory device such as a universal serial bus (USB) stick, portable hard disk drive, mo-

– 2 –

bile phone, PDA, PC, or, most recently, a software protection dongle (Jiang et al., 2013;

Chen et al., 2012; Rhee et al., 2009). The last protocol considered is also smart card based

and uses modular exponentiation for its security (Wang et al., 2013).

1.2 Contributions of this thesis

In order to demonstrate the vulnerabilities of the four protocols considered, the author

designed a generalized cryptanalysis algorithm to perform clogging attacks on protocols

that use modular exponentiation for authentication purposes being forced to perform

useless modular exponentiation operations results in wastage of time and resources on

the part of the server, and thus denial of service for legitimate users.

1.3 Organization of this thesis

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview of the

research done in this area prior to this work and discusses the techniques employed

in this work. Chapter 3 describes the generic algorithm that was developed to launch

the clogging attack on the various protocols analyzed in this work. Chapter 4 describes

the protocols in detail, the clogging attack on them, and solutions for preventing the

attack. Finally, Chapter 5 summarizes the work, discusses its significance, and proposes

possible future research directions.

– 3 –

Chapter 2

REVIEW OF THE LITERATURE

2.1 Research on authentication protocols

This chapter summarizes the research done in the field of multi-factor authentication

protocols. The various kinds of attacks that are generally performed against these pro-

tocols are discussed, followed by two approaches to dealing with these attacks. Finally

the approach taken in this work is briefly described.

2.1.1 A research snapshot of security protocols

The design and security analysis of authentication protocols has been an active area

of research in recent years. Generally, the security vulnerability analysis of one or more

protocols leads to the design of new protocols. However, in most of these studies, the au-

thors present attacks on previous schemes and propose new protocols with assertions

of the superior aspects of their schemes, while ignoring benefits that their schemes don’t

attempt (or fail) to provide, thus overlooking dimensions on which they perform poorly.New Protool → Broken → Improved Protool → Broken Again
→ Further Improved Protool → ···

In addition to the lack of evaluation criteria, another common feature of these studies

is that there is no proper security justification (or even an explicit security model) pre-

sented, which explains why these protocols previously claimed to be secure turn out to

be vulnerable. Such an approach has generated a lot of literature, yet as far as we know,

– 4 –

little attention has been paid to systematic design and analysis. Fig. 2.1 summarizes the

relationships of the research studies done in this area to date.

Figure 2.1: A snapshot of authentication protocols (Wang et al., 2013).

2.1.2 Various kinds of attacks on the protocols

Most multi-factor authentication protocols have the following phases:

• Registration Phase. In this phase, the user registers with the server with an identity

and password. The password is stored by the server and remains a secret between

the user and the server.

– 5 –

• Login and Authentication Phase. In this phase, the user wants a service from the

server. It sends its identity and password to the server to gain a service. The server

then determines whether the user is legitimate by comparing the received values

of identity and password to the stored values. The server extends the desired ser-

vice to the legitimate user (Garrett et al., 2015).

Multi-factor authentication protocols are prone to various kinds of attacks. Some com-

mon kinds of attacks include:

• Brute Force Attack. In this kind of attack, the adversary simply tries out all possi-

ble combinations of alphabets to obtain the correct password. Alternatively, the

adversary could be a bit more intelligent to try to guess the password by obtaining

some information about the user. Usually, users choose passwords which are easy

for them to remember. Hence, passwords contain things like the year of birth, or

a part of the user name or user ID. The adversary could gather such information

to simplify his efforts to break the password (Knudsen and Robshaw, 2011).

• Impersonation Attack. In this kind of attack, the adversary pretends to be a le-

gitimate user and gains access to the services meant for the legitimate user. The

adversary might spoof the IP address of the legitimate user, or could intercept the

messages sent by the user and use them to gain access to the server (Wei-Chi and

Chang, 2005).

• Replay Attack. In this kind of attack, the adversary intercepts a message with the

identity and the password of the legitimate user. The adversary then waits till the

legitimate user logs out of the service. Then he replays the message with the iden-

tity and the password to the server and gains access. Replay attacks are possible

even when the user identity and password are encrypted (Syverson, 1994).

– 6 –

• Stolen smart card attack. In a password authentication scheme employing smart

cards, the smart card contains the identity and password of the legitimate user.

The stealing of the smart card by an adversary is equivalent to the stealing of a

credit card. The adversary could enjoy service until all the servers to which the

legitimate user has access are notified about the stolen smart card (Chen et al.,

2014).

• Stolen server database attack. In this kind of attack, the adversary steals the database

maintained by the server that contains the user identities and passwords of the le-

gitimate clients. The adversary now has enormous power to do anything at his

will (Wei-Chi et al., 2004).

• Insider attack. A legitimate user of one server could try to hack the credentials

of another user. The victim might have access to some other service which the

adversary does not. The adversary thus gains access to that service (Wood, 2000).

• Denial of service attack. The adversary tries to prevent legitimate users from ob-

taining the designated service. Various techniques are adopted by the adversary

to achieve this goal. This attack prevents the availability of a service rather than

compromising any information (confidentiality), or modifying unauthorized in-

formation (integrity) (Long and Thomas, 2001).

2.1.3 Approaches to develop secured protocols

Security has become an integral part of software design. Nowadays security is consid-

ered during the design and implementation of software rather than as an add on. There

are two approaches to analyzing software for security:

– 7 –

• Static analysis. In this approach, the algorithm and the code after implementa-

tion are analyzed to find security vulnerabilities (Chess and McGraw, 2004; Gar-

rett et al., 2015; Harish and Roy, 2014; Roy et al., 2011; Talluri and Roy, 2014). The

advantage of static analysis is that it can find potential security violations without

executing the application or, in the case of an algorithm analysis, even before the

implementation is done.

• Dynamic analysis. In this approach, the software is executed and tested for poten-

tial vulnerabilities (Rahimi et al., 1993; Russo and Sabelfeld, 2010; Sobajic and Pao,

1989; Yasinsac, 2001). One well known technique is penetration testing in which

the tester tries to be a hacker to break into a system (Petukhov and Kozlov, 2008).

2.2 Methodology adopted in this thesis

In this thesis, static vulnerability analysis is employed on four multi-factor authentica-

tion protocols. Specifically, static vulnerability analysis is performed to conclude if these

protocols are vulnerable to clogging attack, a form of denial of service. The protocols an-

alyzed and modified to produce new secured protocols have been listed in Chapter 1.

– 8 –

Chapter 3

A GENERAL ALGORITHM FOR CLOGGING ATTACK

3.1 The algorithm

Most of the illustrations in this section is a repeat of an already published work by the au-

thor in (Garrett et al., 2015). The mechanism of most password authentication protocols

is that the client (usually a memory stick or a smart card reader) sends its credentials to

the server which then performs certain mathematical operations to verify those creden-

tials. The protocols usually work in different phases. All the phases will be discussed

when each protocol is considered individually. For now, the focus is on the login and

authentication phases, in which the client is authenticated and the server authenticates

itself to the client.

In general, the attacker intercepts the message from the client to server, which contains

the login credentials. This message is plaintext in some protocols and encrypted in

others. It might or might not contain a timestamp. These differences will be noted in

the protocols considered later. In either case, the attacker replays the intercepted mes-

sage several times to force the server to perform computationally intensive operations

(in this case modular exponentiation), thus forcing the server to waste its time and re-

sources. Legitimate users are thus denied services. Algorithm 1 shows the line of attack

developed by the author (Garrett et al., 2015).

– 9 –

Algorithm 1 The general algorithm for a clogging attack (Garrett et al., 2015).

Intercept login message from client to server

if Timestamp is present then

Modify timestamp to match requirements

else

Keep message as is

end if

while The server is not completely clogged do

Replay the message to the server

end while

3.2 The clogging conditions

The clogging conditions we analyze in this work are based on the computational and re-

source intensiveness of the operation of modular exponentiation. The energy consump-

tion of the modular exponentiation computation y ≡ g x (mod n) has been measured

in (Harish and Roy, 2014). In practice, to guarantee security, the modulus n is a very

large prime, and the exponent x, which is often a randomly chosen secret value, should

be very large as well. The researchers computed the energy consumed by modular ex-

ponentiation on two different platforms.

Figure 3.1: Energy consumption by modular exponentiation with exponents of various

sizes (Harish and Roy, 2014)

– 10 –

Fig. 3.1, plots the energy consumed in Joules by the modular exponentiation operation

with a (randomly) fixed base g = 1024, modulus n = 32416187567, and the exponent

x ranging from values x = 16777216 to x = 536870912 on two different platforms. In

practice, the modulus and the exponent have very large values to guarantee security.

The energy generated due to modular exponentiation was observed to steadily increase

for large values of x.

Figure 3.2: Comparison of normalized energy consumption of different operations (on

log scale) (Harish and Roy, 2014)

To see how much energy is consumed by modular exponentiation in comparison to

common mathematical operations like addition, XOR, and multiplication, Harish and

Roy (2014) further plotted the normalized energy required by all four operations. They

measured energy consumed for the operations g x mod n, g + x + n, g ⊕ x ⊕ n, and

g × x ×n. Fig. 3.2 shows this comparison. It is evident from Fig. 3.2 that the energy

consumed by modular exponentiation is two orders of magnitude more than that of the

other operations.

– 11 –

3.2.1 Analysis

In summary, any security protocol that uses modular exponentiation to guarantee secu-

rity comes with high energy consumption and computational costs. Therefore, a pro-

tocol that uses modular exponentiation is vulnerable to the clogging attack, a form of

denial of service in which the attacker exploits the computational and energy intensive

nature of modular exponentiation (Garrett et al., 2015).

3.3 Choice of protocols

The protocols chosen for analysis in this thesis fall in the broad category of multifactor

authentication protocols. All of them use a password as one of the factors of authen-

tication. Selection of these protocols is based on their differences in the choice of the

second factor (smart cards, memory drives, etc.), and the tools to provide confidentiality

(encryption, nonces, timestamps, etc.).

Protocol Factors Used Confidentiality

Yang Password, Smart Card Usage of Nonces, Encryption

Islam Password, Smart Card Usage of Timestamps

Jiang Password, Memory Stick Usage of Timestamps

Wang Password, Smart Card Usage of Random Numbers

Table 3.1: Summary of the Differences in the Protocols

Table 3.1 shows how the protocols the author has chosen to analyze are different from

each other. Their similarity lies in their use of modular exponentiation as a medium for

authentication.

– 12 –

Chapter 4

CLOGGING ATTACK ON THE PROTOCOLS

In this chapter are described each of the protocols, the attacks on them, and the solu-

tions to foil the attacks. The following notations are used to describe the protocols.

• Z∗
q denotes the finite field over q .

• ⊗ denote (bitwise) exclusive OR.

• A→B : M denotes the propagation of the message M from user A to user B .

• ‖ denotes the concatenation operation.

• In cryptography, a nonce is an arbitrary number that may only be used once.

4.1 Yang’s protocol

The first protocol considered in this work was developed by Yang et al. (2014). It is a

smart card based password authentication protocol to preserve identity privacy. Yang’s

protocol is an improvement over Song’s protocol (Song, 2010) in that Song’s protocol

proved to be vulnerable against impersonation and insider attacks (Yang et al., 2014).

4.1.1 Review of the protocol

Yang’s protocol is presented in Algorithm 2. It works in four phases: Initialization, Reg-

istration, Login, and Authentication. Yang et al. (2014) showed this protocol to be im-

– 13 –

mune from various attacks.

4.1.2 Attack on Yang’s protocol

An adversary A has the same capabilities as assumed by Yang et al. (Yang et al., 2014)

while they exposed the weaknesses of Song’s protocol (Song, 2010). A needs only to be

able to read and modify the contents of messages over an insecure channel during the

Login and Authentication phase of the protocol in order to launch a clogging attack.

1. A intercepts a valid login request ({Wi ,Ci }) from Step L3 (Algorithm 2).

2. Since the message is unencrypted, A changes Ci to any random garbage value

CA .

3. A then sends {Wi ,CA } to the server S.

The following is performed by the server S:

1. S decrypts Wi to retrieve I Di , (Ri ⊗Ki) and, Ni . Verifies that I Di is valid from its

stored value. Here it is valid. S then computes Ki = h(I Di)x mod (p ⊗ Ni) and

R ′
i
= (Ri ⊗Ki)⊗Ki , and compares CA with h(Ni‖R ′

i
‖I Di‖Wi‖Ki). This fails, so the

request gets rejected.

Adversary A would now repeat the steps several times and make the server S compute

the modular exponentiation step several times. A can potentially change all the incom-

ing login request messages from any legitimate user to S. Since modular exponentiation

is computationally intensive, the victimized server spends considerable computing re-

sources doing useless modular exponentiation rather than any real work. Thus A clogs

– 14 –

Algorithm 2 Yang et. al.’s (2014) protocol for password authenticationIn itialization Phase
Server S

1. Step I1. Choose large prime numbers p and q such that p = 2q +1.

2. Step I2. Choose a private key x ∈ Z∗
qRegistration Phase

User Ui

1. Step R1. Choose identity I Di , password PWi , and random number b.

2. Step R2. Compute h(b ⊗PWi).

3. Step R3. Ui→S: {I Di ,h(b ⊗PWi)} through a secure channel.

Server S

1. Step R4. On receiving the registration message from Ui , S creates an entry for

Ui in the account-database and stores I Di in this entry. Next, S computes Bi =

h(I Di)x ⊗h(b ⊗PWi) mod p.

2. Step R5. S stores {I Di ,Bi ,h(·), p, q ,FS(·)} in a smart card and issues it to the

user.

User Ui

1. Step R6. Upon receiving the smart card, the user enters random number b in

it. Login and Authentiation
User Ui

1. Step L1. Smart card generates a random number Ri , and nonce Ni .

2. Step L2. Smart card computes Ki = Bi ⊗h(b ⊗PWi)⊗ Ni , Wi = FS (I Di ,Ri ⊗

Ki , Ni), and Ci = h(Ni‖Ri‖I Di‖Wi‖Ki).

3. Step L3. Ui→S: {Wi ,Ci }.

Server S

1. Step V1. S decrypts Wi to retrieve I Di , (Ri ⊗ Ki) and, Ni . Verifies whether

I Di is valid from its stored value. If not, the request is dropped, and the ses-

sion is terminated. Otherwise, S computes Ki = h(I Di)x mod (p ⊗ Ni) and

R ′
i
= (Ri ⊗Ki)⊗Ki , and compares Ci with h(Ni‖R ′

i
‖I Di‖Wi‖Ki). If they are not

equal the session is terminated. Otherwise S authenticates Ui and the login

request is accepted. S generates a nonce N j , and computes session key sk =

h(I Di‖Ni‖N j ‖R ′
i
), and message authentication code CS = h(sk‖I Di‖R ′

i
‖N j).

2. Step V2. S→Ui : {CS , N j }.

– 15 –

 Yang et. al.’s (2014) scheme (cont’d.)

User Ui

1. Step V3. On receiving the reply message from the server S, smart card com-

putes session key sk = h(I Di‖Ni‖N j ‖Ri), and message authentication code

C ′
S = h(I Di‖Ri‖N j), and verifies whether CS and C ′

S are equal. This equiva-

lency authenticates the legitimacy of the server S, and mutual authentication

between S and Ui is achieved. Otherwise S is not authenticated.

S with useless work and denies service to legitimate users. A needs only the ID of a

single valid user to perform the clogging attack repeatedly.

4.1.3 Proposed countermeasures to the attack

The vulnerability of this protocol is due to the fact that no timestamp checking is used

in order to work around clock synchronization problems between the user and server.

Nonces are used, but not to prevent a replay by the adversary (which clogs the server).

At the beginning of the authentication phase, the server could check whether the net-

work address of the user is valid. To do this, it has to know the network addresses of all

the registered legitimate users. In spite of that, adversary A could spoof the network

address of a legitimate user and replay the login message. To prevent this, a cookie ex-

change step may be added at the beginning of the login phase of Yang’s scheme. This

step was designed in the well-known Oakley key exchange protocol (Orman, 1998), as

follows:

1. User Ui chooses a pseudo-random number n1 and sends it along with the mes-

sage {Wi ,Ci }.

2. Server S, upon receiving the message, acknowledges the message and sends its

own cookie n2 to Ui .

– 16 –

3. The next message from Ui must contain n2, else S rejects the message and the

login request.

4.1.3.1 Security analysis of the solution.

Had A spoofed the Ui ’s IP address, A would not get n2 back from S. A only succeeds

in having S send back an acknowledgement, but S doesn’t perform the computationally

intensive modular exponentiation. Therefore the clogging attack is avoided by these

additional steps. However, this process does not completely prevent the clogging attack

but only thwarts it to some extent. This fix can fully work if n1 and n2 are encrypted,

respectively, by the Ui ’s and S’s private keys for secure communication.

4.1.3.2 Another solution

Another fix would be of course to add a timestamp Ti to Wi . Since Wi is encrypted,

the adversary cannot change the timestamp to do the replay. The server can check the

validity of the timestamp before it does the modular exponentiation step.

4.2 Islam’s protocol

The second protocol is that of Islam (2014). It is again a smart card based remote user

password authentication protocol. Islam’s protocol is an improvement over Li’s proto-

col (Li et al., 2013), which Islam (2014) showed to be vulnerable against attacks such as

stolen smart card, offline password guessing, and insider attack. Islam’s protocol has

been shown to be immune to various attacks (Islam, 2014).

– 17 –

4.2.1 Review of Islam’s protocol

Islam’s protocol works in five phases: Registration, Login, Authentication, Password

Change, and Stolen Smart card Revocation (Islam, 2014). The protocol, presented in

Algorithm 3, omits the last two phases since they are not important in the clogging at-

tack demonstration.

Algorithm 3 Islam’s scheme of password authenticationRegistration Phase
User Ui

1. Step R1. Choose identity I Di .

2. Step R2. Ui→S: I Di through a secure channel.

Server S

1. Step R3. On receiving the registration message from Ui , S chooses a new smart

card and extracts SI Di as its identity. Next, S computes Ci = h(I Di‖x‖SI Di).

2. Step R4. S stores {Ci , p, q ,h(·)} in a smart card and issues it to the user. S stores

(I Di ,SI Di) for Ui in its database.

User Ui

1. Step R5. Upon receiving the smart card, the user enters password PWi in it.

The smart card computes Bi = Ci ⊗ h(PWi) = h(I Di‖x‖SI Di) ⊗ h(PWi) and

Ai = C
PWi

i
mod p = h(I Di‖x‖SI Di) mod p. Now, the smartcard replaces

Ci by Bi and stores Ai . Finally, the smart card contains the information

{Ai ,Bi ,h(·), p, q}. Login and Authentiation
User Ui

1. Step L1. Ui attaches the smart card to an input device and keys his/her

(I Di ,PWi) into the smart card.

2. Step L2. The smart card computes Ci = Bi ⊗h(PWi) and A∗
i
= C PWi mod p.

The smart card then verifies A∗
i
= Ai . If they are not equal, the smart card

rejects Ui ’s login request, otherwise goes to the next step.

3. Step L3. The smart card picks the current timestamp Ti , α ∈ Zp and computes

Di =Cα
i

mod p = h(I Di‖x‖kSI Di)α mod p, Mi = h(I Di‖Ci‖Di‖Ti).

4. Step L4. Ui→S: {I Di ,Di , Mi ,Ti }.

– 18 –

 Islam’s protocol (contd.)

Server S

1. Step V1. S checks if I Di is valid from its stored value, and TS −Ti ≤∆Ti . If not,

the request is dropped, and the session is terminated. Otherwise, S computes

C ′
i
= h(I Di‖x‖SI Di) and M ′

i
= h(I Di‖C ′

i
‖Di‖Ti), and compares Mi with M ′

i
. If

they are not equal the session is terminated. Otherwise S authenticates Ui and

the login request is accepted.

2. Step V2. S chooses β ∈ Z∗
p , computes Vi = (C ′

i
)β mod p and the session key

sk = D
β

i
mod p.

3. Step V3. S selects a current timestamp Ts , computes Ms =

h(I Di‖C ′
i
‖Vi‖sk‖Ts).

4. Step V4. S→Ui : {I Di ,Vi , Ms ,Ts}.

User Ui

1. Step V5. On receiving the reply message from the server S, smart card checks

the timestamp. If valid, computes session key sk ′ = V α
i

mod p, and M ′
s =

h(I Di‖C ′
i
‖Vi‖sk ′‖Ts), and verifies whether Ms and M ′

s are equal. This equiv-

alency authenticates the legitimacy of the server S, and mutual authentication

between S and Ui is achieved. Otherwise S is not authenticated.

4.2.2 Attack on Islam’s protocol

Again, A needs only to be able to read and modify the contents of messages over an

insecure channel (during the Login and Authentication phase of the protocol).

1. A intercepts a valid login request ({I Di ,Di , Mi ,Ti }) from step Step L4.

2. Since the message is unencrypted, A changes Ti to TA to pass the timestamp

check.

3. A then sends {I Di ,Di , Mi ,TA } to the server S.

The server S performs steps V1 through V4 since the timestamp check of V1 passes. The

adversary A would now repeat the steps several times and make the server S compute

– 19 –

the computationally intensive modular exponentiation of Step V2 several times. Thus,

as in the previous case, the server gets clogged doing unnecessary computations.

4.2.3 Proposed countermeasures to the attack

The vulnerability of this protocol is due to the fact the message {I Di ,Di , Mi ,Ti } is not

encrypted. We could use the strength of Yang’s protocol (Yang et al., 2014) here and

design a function FS to encrypt Ti . This prevents A from changing Ti , and hence also

prevents the replay, which leads to clogging attack.

4.3 Jiang’s password based protocol

The next protocol considered is that of Jiang (Jiang et al., 2013). It is a remote authentica-

tion protocol which does not involve smart cards. However, Jiang et al. also had another

version of the protocol which works with smart cards (Jiang et al., 2015). Both protocols

are vulnerable to clogging attacks. Jiang’s protocol (Jiang et al., 2013) is an improvement

over Chen’s protocol (Chen et al., 2012) which they proved to be vulnerable against the

off-line dictionary attack.

4.3.1 Review of the protocol

Jiang’s protocol works in five phases: Initialization, Registration, Login, Authentication,

and Password Change. Jiang’s group showed that their remote authentication protocol

was immune to various attacks (Jiang et al., 2013). The protocol is presented in Algo-

rithm 4. The password change phase is omitted since it is not required to demonstrate

– 20 –

the effect of the clogging attack on the protocol.

4.3.2 Attack on Jiang et al.’s protocol

Adversary A has the same capabilities and knowledge as assumed by Jiang (Jiang et al.,

2013) while exposing the weaknesses of Chen’s protocol. A needs only to be able to

read and modify the contents of messages over an insecure channel (during Login and

Authentication phase of the protocol) in order for the protocol to be susceptible to at-

tack.

1. A intercepts a valid login request ({I Di ,Ci ,Vi ,T1}) from step Step L3.

2. Since the message is unencrypted, A can change the timestamp T1 to some TA

so that it meets the criterion (T2 −TA) <∆T .

3. A changes Ci to any random garbage value CA .

4. A then sends {I Di ,CA ,Vi ,TA } to the server S.

The following is performed by the server S:

1. Check whether I Di is valid. Here it is valid.

2. Check whether the difference between (T2 −TA) <∆T . This step passes as well.

3. Compute Y ′′
i
=H (I Di‖x) and D ′

i
=C x

A
mod p, and compare Vi with H (I Di‖Y ′′

i

‖CA ‖D ′
i
‖TA). This fails, so the request gets rejected.

Adversary A would now repeat the steps several times and make the server S compute

the modular exponentiation step several times. A can potentially change all the incom-

ing login request messages from any legitimate user to S. Since modular exponentiation

– 21 –

Algorithm 4 Jiang’s scheme of password authenticationIn itialization Phase
Server S

1. Step I1. Choose large prime numbers p and q such that p = 2q +1.

2. Step I2. Choose a generator g of Z∗
q , secret key x ∈ Z∗

q , and secure one way hash

H .

3. Step I3. Compute public key X = g x mod p.Registration Phase
User Ui

1. Step R1. Choose identity I Di , password PWi .

2. Step R2. Ui→S: {I Di ,PWi } through a secure channel.

Server S

1. Step R3. On receiving the registration message from Ui , S creates an entry for

Ui in the account-database and stores I Di in this entry. Next, S computes Yi =

H (I Di‖x))⊗H (PWi).

2. Step R4. S→Ui : {X ,Yi ,H , p, q}.

User Ui

1. Step R5. Upon receiving {X ,Yi ,H , p, q} from S, Ui enters it locally in his/her

memory device (e.g. USB stick).Login and Authentiation
User Ui

1. Step L1. Ui chooses a random number α ∈ Z∗
q .

2. Step L2. Ui computes Y ′
i
= Yi ⊗H (PWi), Ci = gα mod p, Di = xα mod p, and

Vi =H (I Di‖Y ′
i
‖Ci‖Di‖T1), where T1 is the current system time of Ui .

3. Step L3. Ui→S: {I Di ,Ci ,Vi ,T1}.

Server S

1. Step V1. S checks whether I Di is valid from its stored value, and (T2 −T1) <

∆T , where T2 is the current system time for S. If either does not hold, the

request is dropped, and the session is terminated. Otherwise, S computes

Y ′′
i

= H (I Di‖x) and D ′
i
= C x

i
mod p = g xα mod p = X α mod p = Di , and

compares Vi with H (I Di‖Y ′′
i
‖Ci‖D ′

i
‖T1). If they are not equal the session is

terminated. Otherwise S authenticates Ui and the login request is accepted. S

computes Mi =H (I Di‖D ′
i
‖T3), where T3 is the current system time of S.

2. Step V2. S→Ui : {Mi , t3}.

– 22 –

 Jiang’s scheme (contd.)

User Ui

1. Step V3. On receiving the reply message from the server S, Ui checks whether

T3 is valid, and Mi is equal to H (I Di‖Di‖T3). This equivalency authenticates

the legitimacy of the server S, and mutual authentication between S and Ui is

achieved. Otherwise S is not authenticated.Compute Session Key
User Ui

skU =H (Di)

Server S

skS = H (D ′
i
)

is computationally intensive, the victimized server spends considerable computing re-

sources doing useless modular exponentiation rather than any real work. Thus A clogs

S with useless work and denies service to legitimate users. A needs just an ID of a single

valid user to perform the clogging attack repeatedly.

4.3.3 Clogging attack performed on other similar schemes

Jiang’s group devised a smart card based password authentication protocol (Jiang et al.,

2015). This work was an improvement over another such scheme by Chen et al. (2014b).

This researcher observes that the clogging attack performed on the current protocol un-

der consideration is also effective against both Jiang’s (Jiang et al., 2015) and Chen’s (Chen

et al., 2014) smart card protocols. Both protocols are vulnerable because the user’s smart

card does not encrypt the message it sends over to the server for login and authentica-

tion. This gives an adversary the chance to manipulate the message.

– 23 –

4.3.4 Proposed countermeasures to the attack

The proposed countermeasures to the attack on Jiang’s protocol are on similar lines to

those already seen for the two previous protocols. They are illustrated along with their

security analysis in the next sections.

4.3.4.1 Steps to avoid the clogging attack

At the beginning of the authentication phase, the server could check whether the net-

work address of the user is valid. It has to know the network addresses of all the regis-

tered legitimate users. In spite of that, adversary A could spoof the network address of

a legitimate user and replay the login message. A countermeasure might be the addition

of a cookie exchange step at the beginning of the login phase of Jiang’s scheme. This step

has been designed as in the well known Oakley key exchange protocol (Orman, 1998).

1. User Ui chooses a pseudo-random number n1 and sends it along with the mes-

sage {I Di ,Ci ,Vi ,T1}.

2. Server S upon receiving the message, acknowledges the message and sends its

own cookie n2 to Ui .

3. The next message from Ui must contain n2, else S rejects the message and the

login request.

– 24 –

4.3.4.2 Security analysis of the solution

Had A spoofed the Ui ’s IP address, A would not get n2 back from S. Hence A succeeds

only in having S send back an acknowledgement, but not in launching the computation-

ally intensive modular exponentiation. Hence the clogging attack is avoided. However,

this process does not prevent the clogging attack but only thwarts it to some extent. This

fix can fully work if n1, and n2 are encrypted respectively by the Ui ’s and S’s private keys

for secure communication.

4.4 Wang’s smart card based protocol

Wang’s group (Wang et al., 2013) has reported a smart card based authentication proto-

col. They claim their protocol to be immune to denial of service attacks. To illustrate

this, they assume a situation of a stolen smart card.

4.4.1 Review of the protocol

Wang’s protocol, like most smart card based protocols, has the Registration, Login, and

Verification phases. The protocol is presented in Algorithm 5. To perform a clogging at-

tack on their protocol, the attacker would not have to steal the smart card. The clogging

attack on the protocol presented here is done via replay. A replay is not necessary, but a

replay step by the attacker makes the clogging attack more effective. Most of the smart

card based protocols cited by Wang et al. (2013) are vulnerable to this attack.

– 25 –

Algorithm 5 Wang’s protocol for password authenticationRegistration Phase
User Ui

1. Step R1. Choose identity I Di , password PWi and a random number b.

2. Step R2. Ui→S: I Di ,H0(b‖PWi).

3. Step R3. Upon receiving the smart card SC , Ui enters b into SC .

Server S

1. Step R4. On receiving the registration message from Ui at time T , S first

checks whether Ui is a registered user. If it is Ui ’s initial registration, S cre-

ates an entry for Ui in the account-database and stores (I Di ,Tr eg = T) in

this entry. Otherwise, S updates the value of Tr eg with T in the existing en-

try for Ui . Next, S computes Ni = H0(b‖PWi))⊗H0(x‖I Di‖Tr eg) and Ai =

H0((H0(I Di)⊗H0(b‖PWi)) mod n).

2. Step R5. S→Ui : A smart card containing security parameters

{Ni , Ai , q , g , y ,n,H0(·),H1(·),H2(·),H3(·)}.

User Ui

1. Step R6. Upon receiving the smart card SC , Ui enters b into SC .Login and Authentiation
User Ui

1. Step L1. Ui inserts her smart card into the card reader and inputs I D∗
i

, PW ∗
i

.

2. Step L2. SC computes A∗
i
=H0((H0(I D∗

i
)⊗H0(b‖PW ∗

i
)) mod n) and verifies

the validity of I D∗
i

and PW ∗
i

by checking whether A∗
i

equals the stored Ai . If

the verification holds, it implies I D∗
i
= I Di and PW ∗

i
= PWi with a probability

of n−1
n

(≈ 99.90
100

, when n = 210) . Otherwise, the session is terminated.

3. Step L3. SC chooses a random number u and computes C1 = g u mod p, Y1 =

yu mod p, k = H0(x‖I Di‖Tr eg) = Ni ⊗H0(b‖PWi), C I Di = I Di ⊗H0(C1‖Y1)

and Mi =H0(Y1‖k‖C I Di).

4. Step L4. Ui→S: {C1,C I Di , Mi }.

Server S

1. Step V1. S computes Y1 = (C1)x mod p using its private key x. Then, S derives

I Di =C I Di⊗H0(C1‖Y1) and checks whether I Di is in the correct format. If I Di

is not valid, the session is terminated. Then, S computes k = H0(x‖I Di‖Tr eg)

and M∗
i
=H0(Y1‖k‖C I Di), where Tr eg is extracted from the entry correspond-

ing to I Di . If M∗
i

is not equal to the received Mi , the session is terminated.

Otherwise, S generates a random number v and computes the temporary key

K S = (C1)v mod p, C2 = g v mod p and C3 =H1(I Di‖I DS‖Y1‖C2‖k‖K S).

2. Step V2. S→Ui : {C2,C3}.

– 26 –

 Wang’s scheme (cont’d.)

User Ui

1. Step V3. On receiving the reply message from the server S, SC computes

KU = (C2)u mod p, C∗
3 =H1(I Di‖I DS‖Y1‖C2‖k‖KU), and compares C∗

3 with

the received C3. This equivalency authenticates the legitimacy of the server S,

and Ui goes on to compute C 4=H2(I Di‖I DS‖Y1‖C2‖k‖KU).

2. Step V4. Ui→S: {C4}

Server S

1. Step V5. Upon receiving {C4} from Ui , the server S first computes C∗
4 =

H2(I Di‖I DS‖Y1‖C2‖k‖K S) and then checks if C∗
4 equals the received value of

C4. If this verification holds, S authenticates the user Ui and the login request

is accepted else the connection is terminated.Compute Session Key
User Ui

• skU =H3(I Di‖I DS‖Y1‖C2‖k‖KU)

Server S

• skS = H3(I Di‖I DS‖Y1‖C2‖k‖K S)

4.4.2 Replay Attack on Wang’s protocol

A replay attack is a form of network attack in which a valid data transmission is mali-

ciously or fraudulently repeated or delayed. Replays can be used to gain unauthorized

access, or may be done simply to perform a denial of service. This is carried out either

by the originator or by an adversary who intercepts the data and retransmits it, possibly

as part of a masquerade attack by IP packet substitution (such as stream cipher attack).

Wang’s protocol (Wang et al., 2013) was claimed to be secured against replay attacks,

but as we see, this author has been able to perform a replay attack on Wang’s protocol

to achieve a denial of service. We assume the attacker A has complete knowledge of the

protocol (i.e. not security under obscurity).

1. A intercepts a valid login request ({C1,C I Di , Mi }) from Step L4.

– 27 –

2. A replays {C1,C I Di , Mi } several times. That is, it performs A→S: {C1,C I Di , Mi }

a large number of times.

3. This will force Si perform three modular exponentiations Y1 = (C1)x mod p, K S =

(C1)v mod p, and C2 = g v mod p of Step V1.

4. A can intercept whatever replies Stepi sends (Step V1) and discard them (they

would anyway be lost since SC will not expect these replies).

The attacker A can simply send fake login requests to the server S and could have

launched the clogging attack by forcing S to perform Y1 = (C1)x mod p on Step V1. But

this replay attack results in a bigger DoS attack on S since it is forced to perform three

modular exponentiations (in place of just one). A will need to send fewer messages to S

to clog it. This replay attack is possible because, unlike Jiang’s protocol, Wang’s protocol

does not have a timestamp check on incoming messages from the user(s) by S.

4.4.3 Proposed countermeasures to the attack

In the subsequent section a couple of countermeasures to the attack are illustrated. The

author observes the usage of timestamps and their verifications can make this protocol

secure against replays leading to denial of service.

4.4.3.1 The steps to avoid replay attack resulting in clogging attack

Replay attacks on most smart card based protocols might be possible because their se-

curity relies on computationally intensive modular exponentiation, and the messages

are not by default encrypted. This vulnerability is often overlooked, since the natural

– 28 –

result of a replay is not always denial of service. A few steps to avoid these attacks on

Wang’s protocol (and smart card based protocols in general) would be

1. Ui uses a time stamp T in Step L4., and S verifies it in Step V1.. The time stamp

also must be encrypted in some form so that A cannot tamper with it.

2. S checks whether multiple login requests frequently come from the same user.

This step reduces but does not eliminate the chances of a replay, because A can

obtain a lot of valid user IDs (they are public) and send fake login requests period-

ically from different IDs. Alternatively, A can store various (valid) login requests

over a time period, and replay them periodically.

4.4.3.2 Yet another way to prevent a clogging attack

The mathematical basis which makes the protocols vulnerable to clogging attacks is

modular exponentiation. The complete prevention of this vulnerability requires encryp-

tion of all the messages between Ui and S. But doing so would involve a key exchanging

step, in which each user has a private key and a public key. The server knows the public

key, and can decrypt a message encrypted by a user’s private key. Thus, the server makes

sure that the message is from a valid user before it launches the costly modular exponen-

tiation. This comes with a cost and depends on the level of security desired (Al-Riyami

and Paterson, 2003; Fujisaki and Okamoto, 1999; Wander et al., 2005). This countermea-

sure works for all protocols (smart card and non-smart card based).

– 29 –

Chapter 5

CONCLUSION

5.1 Summary of results

In this thesis, first, the protocols of Yang et al. (2014) and Islam (2014) are shown to be

vulnerable to the clogging attack. The vulnerability lies in the use of computationally

intensive modular exponentiation by the server in the authentication process. In this

analysis it is observed that using a combination of encryption, a nonce, and a timestamp

would prevent clogging attack vulnerability in these two protocols.

The protocol by Jiang (2013a) is next analyzed. Jiang’s protocol is an improvement over

the protocol of Chen et al. (2012), which they show to be insecure against offline pass-

word guessing attacks. Other protocols, for example that of Rhee et al. (2009), preceded

Chen’s protocol also have been shown to be vulnerable to attack. This author finds

Jiang’s protocol to be insecure against clogging attacks. The vulnerability again lies in

the use of computationally intensive modular exponentiation by the server in the au-

thentication process. Another recent protocol by the same researchers (Q. Jiang, 2013b),

which is smart card based, is also observed to be insecure against clogging attacks. A

solution is then presented by the author to prevent an attacker from carrying out such

an attack on the protocol.

The final protocol analyzed is a smart card based protocol by Wang et al. (2013), which

has been claimed to be secure against denial of service. However, the results here show

that an attacker can exploit the fact that the protocol uses multiple modular exponenti-

– 30 –

ations for authentication. A replay attack can be launched on the protocol to achieve a

bigger clogging attack. A clogging attack can also be done on this protocol in the classi-

cal way (without replays). A strategy for making the protocol secure against this attack is

proposed by the author; this fix also makes the protocol of Jiang (2013a) immune against

clogging attacks.

It is observed that modular exponentiation guarantees a level of security, but it might

create a vulnerability if it is used without an additional level of protection. Most of

the multi-factor authentication protocols in the literature, whether smart card based or

memory device aided, rely on modular exponentiation for their security. Hence, some

level of protection should be added to them to guarantee increased security against clog-

ging attacks.

Table 5.1 summarizes the results obtained in this work. It is evident that most of the

protocols are vulnerable to the classical clogging attack.

Protocol Mode of Attack Countermeasure

Yang Classical clogging Timestamps

Islam Classical clogging Encryption

Jiang Classical clogging Cookie Exchanging

Wang Replay attack1 Timestamps

Table 5.1: Summary of the Results

The last column of Table 5.1 suggests the strengths of the protocols could be combined

to prevent the clogging attack on them. However, it must be emphasized that as ev-

1Also classical clogging.

– 31 –

erything has costs involved, the level of security needed will determine the nature of

countermeasure.

5.2 Conclusion

In this thesis, clogging attacks on four advanced multi-factor authentication protocols

have been demonstrated. The goal of this work is to uncover the subtleties and chal-

lenges in designing this type of protocol. While modular exponentiation guarantees a

level of security, this work shows that modular exponentiation might lead to an easily-

exploitable vulnerability if it is used without an additional level of protection. Most of

the multi-factor authentication protocols in the literature, whether smart card based

or memory device aided, rely on modular exponentiation for their security. Therefore,

some level of protection should be added to them to guarantee total security against

clogging attacks.

5.3 Directions for future research

Research on multi-factor authentication protocols is ongoing. An interesting direction

would be to investigate whether protocols that use Elliptic Curve Cryptography (ECC) to

guarantee security are less vulnerable to clogging attacks than those that rely on modu-

lar exponentiation.

– 32 –

REFERENCES

Al-Riyami, S. S. and Paterson, K. G. (2003). Certificateless public key cryptography. In In-

ternational Conference on the Theory and Application of Cryptology and Information

Security, pages 452–473. Springer.

Beller, M. J., Chang, L.-F., and Yacobi, Y. (1993). Privacy and authentication on a

portable communications system. IEEE Journal on Selected Areas in Communications,

11(6):821–829.

Chen, B. L., Kuo, W. C., and Wuu, L. C. (2012). A secure password-based remote user

authentication scheme without smart cards. Information Technology and Control,

41(1):53–59.

Chen, B.-L., Kuo, W.-C., and Wuu, L.-C. (2014). Robust smart-card-based remote user

password authentication scheme. International Journal of Communication Systems,

27(2):377–389.

Chess, B. and McGraw, G. (2004). Static analysis for security. IEEE Security & Privacy,

(6):76–79.

Fujisaki, E. and Okamoto, T. (1999). How to enhance the security of public-key encryp-

tion at minimum cost. In International Workshop on Public Key Cryptography, pages

53–68. Springer.

Garrett, K., Talluri, S. R., and Roy, S. (2015). On vulnerability analysis of several pass-

word authentication protocols. Innovations in Systems and Software Engineering,

11(3):167–176.

Harish, P. D. and Roy, S. (2014). Energy oriented vulnerability analysis on authentication

protocols for cps. In Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE

International Conference on, pages 367–371. IEEE.

Huang, Q., Cukier, J., Kobayashi, H., Liu, B., and Zhang, J. (2003). Fast authenticated

key establishment protocols for self-organizing sensor networks. In Proceedings of

the 2nd ACM international conference on Wireless sensor networks and applications,

pages 141–150. ACM.

Islam, S. (2014). Design and analysis of an improved smartcard-based remote user pass-

word authentication scheme. International Journal of Communication Systems.

– 33 –

Jiang, Q., Ma, J., Li, G., and Li, X. (2015). Improvement of robust smart-card-based

password authentication scheme. International Journal of Communication Systems,

28(2):383–393.

Jiang, Q., Ma, J., Li, G., and Ma, Z. (2013). An improved password-based remote user

authentication protocol without smart cards. Information Technology and Control,

42(2):113–123.

Knudsen, L. R. and Robshaw, M. J. (2011). Brute force attacks. In The Block Cipher

Companion, pages 95–108. Springer.

Kocher, P. C. and Jaffe, J. M. (2001). Secure modular exponentiation with leak minimiza-

tion for smartcards and other cryptosystems. US Patent 6,298,442.

Li, C.-T. and Lee, C.-C. (2012). A novel user authentication and privacy preserving

scheme with smart cards for wireless communications. Mathematical and Computer

Modelling, 55(1):35–44.

Li, X., Niu, J., Khan, M. K., and Liao, J. (2013). An enhanced smart card based remote user

password authentication scheme. Journal of Network and Computer Applications,

36(5):1365 – 1371.

Liao, Y.-P. and Wang, S.-S. (2009). A secure dynamic id based remote user authentication

scheme for multi-server environment. Computer Standards & Interfaces, 31(1):24–29.

Long, N. and Thomas, R. (2001). Trends in denial of service attack technology. CERT

Coordination Center, Summary.

Messerschmitt, D. G. (1999). Rsa asymmetric encryption. [Online; accessed 20-July-

2015].

Orman, H. (1998). The OAKLEY Key Determination Protocol. RFC Editor, United States.

Petukhov, A. and Kozlov, D. (2008). Detecting security vulnerabilities in web applica-

tions using dynamic analysis with penetration testing. Computing Systems Lab, De-

partment of Computer Science, Moscow State University.

Rahimi, F. A., Lauby, M. O., Wrubel, J. N., and Lee, K. L. (1993). Evaluation of the transient

energy function method for on-line dynamic security analysis. Power Systems, IEEE

Transactions on, 8(2):497–507.

Rhee, H. S., Kwon, J. O., and Lee, D. H. (2009). A remote user authentication scheme

without using smart cards. Computer Standards & Interfaces, 31(1):6 – 13.

Roy, S., Das, A. K., and Li, Y. (2011). Cryptanalysis and security enhancement of an ad-

vanced authentication scheme using smart cards, and a key agreement scheme for

two-party communication. In Performance Computing and Communications Confer-

ence (IPCCC), 2011 IEEE 30th International, pages 1–7. IEEE.

– 34 –

Russo, A. and Sabelfeld, A. (2010). Dynamic vs. static flow-sensitive security analysis.

In Computer Security Foundations Symposium (CSF), 2010 23rd IEEE, pages 186–199.

IEEE.

Sobajic, D. J. and Pao, Y.-H. (1989). Artificial neural-net based dynamic security assess-

ment for electric power systems. Power Engineering Review, IEEE, 9(2):55–55.

Song, R. (2010). Advanced smart card based password authentication protocol. Comput.

Stand. Interfaces, 32(5-6):321–325.

Stallings, W. and Brown, L. (2008). Computer security. Principles and Practice.

Syverson, P. (1994). A taxonomy of replay attacks [cryptographic protocols]. In Computer

Security Foundations Workshop VII, 1994. CSFW 7. Proceedings, pages 187–191. IEEE.

Talluri, S. R. and Roy, S. (2014). Cryptanalysis and security enhancement of two

advanced authentication protocols. In Advanced Computing, Networking and

Informatics-Volume 2, pages 307–316. Springer.

Wander, A. S., Gura, N., Eberle, H., Gupta, V., and Shantz, S. C. (2005). Energy analysis

of public-key cryptography for wireless sensor networks. In Third IEEE international

conference on pervasive computing and communications, pages 324–328. IEEE.

Wang, D., Ma, C., Zhang, Q.-M., and Zhao, S. (2013). Secure password-based remote

user authentication scheme against smart card security breach. JNW, 8(1):148–155.

Wei-Chi, K. and Chang, S.-T. (2005). Impersonation attack on a dynamic id-based re-

mote user authentication scheme using smart cards. IEICE Transactions on Commu-

nications, 88(5):2165–2167.

Wei-Chi, K., Hao-Chuan, T., and Tsaur, M.-J. (2004). Stolen-verifier attack on an efficient

smartcard-based one-time password authentication scheme. IEICE transactions on

communications, 87(8):2374–2376.

Wood, B. (2000). An insider threat model for adversary simulation. SRI International,

Research on Mitigating the Insider Threat to Information Systems, 2:1–3.

Yang, F.-Y., Hsu, C.-W., and Chiu, S.-H. (2014). Password authentication scheme pre-

serving identity privacy. In Measuring Technology and Mechatronics Automation

(ICMTMA), 2014 Sixth International Conference on, pages 443–447.

Yasinsac, A. (2001). Dynamic analysis of security protocols. In Proceedings of the 2000

workshop on New security paradigms, pages 77–87. ACM.

– 35 –

Appendix A

MODULAR EXPONENTIATION

A.1 Background on modular exponentiation

Modular arithmetic is also called clock arithmetic because like a clock, the hour that

comes after 12 is 1 instead of 13. We count 1,2,3, · · ·10,11,12,1,2,3, · · ·10,11,12,1,2,3, · · · .

Example. 7+8 mod 12 ≡ 3 mod 12. In this example we would say that “7 plus 8 is con-

gruent to 3 mod 12", because 15 divided by 12 leaves a remainder of 3. The remainder is

always a whole number less than the divisor or modulus n, {0,1,2, · · · ,n−2,n−1}. In the

example, we could have used any counting number and multiplied it by 12 and added 3

to get a value that is congruent to 15 mod 12. Thus, 27, 39, and 51 are all congruent to

15 mod 12 because when they are divided by 12, they yield the same remainder.

A card game example. An example of modular arithmetic can be shown with a game

of cards. When a standard 52 card deck is dealt among 5 players, 1 at a time, the dealer

might count 1,2,3,4,5 · · ·1,2,3,4,5 · · · until all the cards are used except the last 2. That

might be written as 2 ≡ 52 mod 5, that is 52 divided by 5 gives each player 10 cards with

2 left over. If there were 4 players instead of 5 then 0 ≡ 52 mod 4. Each player would

receive 13 cards and there would be none left over.

– 36 –

A.1.1 Exponentiation

Exponentiation is raising a base number to a power. In this thesis we restrict those num-

bers to the set of counting numbers. For example 73 = 7×7×7.

A.1.2 Factoring

Factoring is the process of taking a counting number and writing it as the product of its

prime factors. Example: 30,030= 2×3×5×7×11×13. 30029 is prime. Determining that

a number is prime by factoring takes more time and energy or computer cycles than

generating that prime.

A.1.3 Modular Exponentiation

Modular Exponentiation is used to generate a congruence with the input of a base, ex-

ponent and modulus. An example: With a base of 7, exponent of 3 and a divisor of 13,

the congruence would equal 5 (since 5 ≡ 73 mod 13).

A.1.4 Discrete Logarithm Problem and Security

The discrete logarithm is why modular exponentiation is considered useful in cryptog-

raphy. Discrete logarithm is the process of taking a known congruence, base and modu-

lus and finding the exponent from modular exponentiation. For example, the problem

5 ≡ 7x mod 13 is impractical to solve for x with current computer technology for large

– 37 –

exponents that are generated using large primes. As the sizes of the prime numbers

used to generate the exponent get larger so does the difficulty in factoring the product.

A.2 Applications in computer security

Why is modular exponentiation important to computer security? If a stored or transmit-

ted password or other sensitive information is read by an unauthorized user, that infor-

mation may be used to the detriment of a legitimate user or to compromise a system or

network. A solution for that problem might be to encrypt the stored data or transmis-

sion in such a way that it is impractical for an unauthorized user to access it, but is easily

accessible by an authorized user. A simple way to encrypt such data is to take a letter,

or a numerical representation of it, and use that number as input in mathematical func-

tion to provide a result that is not equal to the input, but that can be converted back to

that input value. This process can be extended to any numerical representation, such

as a file that might contain a picture or text.

A symmetric key encryption scheme uses a single shared number to encrypt messages

between users. A very simple example of this might be the substitution cipher that sub-

stitutes a ‘B’ for an ‘A’, a ‘C’ for a ‘B’ and so on. So a message such as “This is a test."

with substitution only of the letters might come out “Uijt jt b uftu.". The reverse sub-

stitution would restore the message. In other words, add 1 to the letter to encrypt and

subtract 1 to decrypt. This example of a fast and easy symmetric encryption scheme

can be changed so that instead of adding or subtracting 1, you can do so with any count-

ing number, but this does not add any security. Some of the problems with symmetric

key encryption are that anyone who knows how it works and has the key can decipher

any message, make his own encoded messages and imitate another user, or change the

– 38 –

contents of a message without detection. Other protocols or schemes used to hide and

reveal the data are without these faults.

An asymmetric encryption scheme uses a public key which can be used by anyone to

hide data which can only be revealed by a complementary private key. The public key is

also used to reveal the data which was hidden by using the private key. Among the math-

ematical functions available for asymmetric key generation, modular exponentiation is

the most commonly used. One popular implementation using this one-way function

is the RSA algorithm. Many descriptions of the RSA algorithm are available, but one

simple example (Messerschmitt, 1999) will suffice here

The RSA algorithm is paraphrased here: Multiply two large prime numbers, a and b, to

generate a modulus, M . Apply Euler’s totient function to get a count of relatively prime

counting numbers less than M . This is computed by taking the product of a − 1 and

b −1 and is called φ(M). Find a relatively prime counting number less than φ(M), and

call it P . The public key is written as (M ,P). The secret key may be determined with the

function: S ≡ P (φ(φ(M))−1) mod φ(M) and is written (M ,S).

An example of this algorithm follows: Take two prime numbers and multiply them to-

gether. a = 19, b = 23.

This product will be used for the modulus in a modular exponential. M = a×b = 437.

The RSA algorithm uses Euler’s totient function to get the number of relatively prime

counting numbers less than M . φ(M) = (a − 1)(b − 1) =. (19 − 1)(23 − 1) = 18 × 22 =

(20−2)(20+2) = 400−4 = 396. Which is the count of relatively prime natural numbers

less than 437. Therefore φ(437)= 396.

– 39 –

Choose a number that is relatively prime to 396, that is it has no factors in common.

396 = 2×2×3×3×11. A relatively prime number might be 5×13 = 65, since it has no

factors in common with 396 nor 437. We will use this number in our public key. Set the

value of P = 65. The public key is then (M ,P) = (437,65).

To find the private key use S ≡ P (φ(φ(M))−1) mod φ(M). See Euler’s product formula

to find φ(n). If the factors of a number can be written as (F
p1

1)(F
p2

2) · · · (F
pn
n) φ(n) =

n(1/ f1)(1/ f2) · · · (1/ fn) In this case the totient of 396 is φ(396) = (396)(1/2)(1/3)(1/11) =

2×3 = 6 and using that value to plug into the exponent part of the private key formula

φ(φ(437))=φ(396)= 6 and 6−1 = 5.

A private key then is 329 ≡ 655 mod 396. That is the private, secret, key is (M ,S) =

(437,329). Note that 1≡ 65×329 mod 396, and in general 1 ≡ P ×S mod φ(M).

To demonstrate how these public/private keys work, choose a number to encrypt such

as 42. Using the keys generated above (M ,P) = (437,65) and (M ,S) = (437,329). Since

238 ≡ 4265 mod 437, the encryption of 42 gives a result of 238. The decryption of 238

gives a result of 42, since 42≡ 238329 mod 437.

A user may encrypt a message with his private key and anyone can use the public key to

decrypt it. Since that user is the only one that can use the private key, it follows that he is

the one that sent the message, which is a guarantee of identity. If the message were tam-

pered with, the decryption would fail, and so what is received is guaranteed to be what

was sent. When the public key is given, attempting to determine the initial large prime

numbers or private key is called the discrete logarithm problem, and it is impractical to

solve with current computer resources given sufficiently large initial primes.

– 40 –

Asymmetric encryption using this private/public key method requires more time to en-

crypt and decrypt a message than a simpler symmetric key. However, a symmetric key

allows anyone who knows it to decrypt or encrypt a message. A common scheme is

to use an asymmetric key pair to send to the recipient a symmetric (session) key that

is encrypted with his public key. The recipient then decrypts the symmetric (session)

key and uses it in a much faster message transfer. No one else has that session key, so

the messages are kept private between the sender and recipient. If another session is

needed, another session key can be shared. That method gives both the sender and

the receiver some of the security of asymmetric encryption and the speed of symmetric

encryption.

– 41 –

LIST OF PUBLICATIONS FROM THE THESIS

Garrett, Keith, S. Raghu Talluri, and Swapnoneel Roy. “On vulnerability analysis of
several password authentication protocols." Innovations in Systems and Software
Engineering 11.3 (2015): 167-176.

– 42 –

VITA

Keith A. Garrett works for the Florida Department of Health Bureau of Public Health

Labs as a distributed computer systems specialist. He earned his A.A. from the Florida

Junior College at Jacksonville in 1985, where he worked as a math tutor at the Kent cam-

pus lab and participated in the American Mathematical Association of Two-Year Col-

leges math team. At the University of North Florida he earned his undergraduate Com-

puter Science degree, B.S.C.S., in 1990 with a minor in mathematics. He participated

in the student chapter of the ACM at UNF and on the ACM programming team. He

worked at the UNF computer lab as an assistant operator and a weekend operator. He

is continuing his education at UNF where he intends to complete his master’s degree in

computer science.

– 43 –

	UNF Digital Commons
	2016

	Vulnerabililty Analysis of Multi-Factor Authentication Protocols
	Keith Garrett
	Suggested Citation

	Title Page
	Approval page
	Acknowledgement
	Contents
	Figures
	Tables
	Abstract
	Chapter 1: Introduction
	1.1 Multi-factor authentication protocols
	1.2 Contributions of this thesis
	1.3 Organization of this theis

	Chapter 2: Review of the Literature
	2.1 Research on authentication protocols
	2.1.1. A research snapshot of security protocols
	Figure 2.1

	2.1.2. Various Kinds of Attacks on the Protocols
	2.1.3 Approaches to develop secured protocols
	2.2 Methodology adopted in this thesis

	Chapter 3: A General Algorithm for Clogging Attack
	3.1 The Algorithm
	Algorithm 1: The General algorithm for a clogging attack

	3.2 The Clogging Conditions
	Figure 3.1
	Figure 3.2

	3.2.1 Analysis
	3.3 Choice of Protocols
	Table 3.1

	Chapter 4: Clogging Attack on the Protocols
	4.1 Yang's protocol
	4.1.1 Review of the Protocol
	4.1.2 Attack on Yang's Protocol
	Algorithm 2: Yang et. al's (2014) Protocol for Password authentication

	4.1.3 Proposed Countermeasures to the Attack
	4.1.3.1 Security Analysis of the Solution
	4.1.3.2 Another Solution

	4.2 Islam's protocol
	4.2.1 Review of Islam's Protocol
	Algorithm 3: Islam's scheme of password authentication

	4.2.2 Attack on Islam's Protocol
	4.2.3 Proposed countermeasures to the attack
	Algorithm 3

	4.3 Jiang's password based protocol
	4.3.1 Review of the protocol
	4.3.2 Attack on Jiang et al's Protocol
	Algorithm 4: Jiang's scheme of password authentication

	4.3.3 Clogging Attack Performed on Other similar schemes
	4.3.4 Proposed Countermeasures to the Attack
	4.3.4.1 Steps to Avoid the Clogging Attack
	4.3.4.2 Security analysis of the solution

	4.4 Wang's smart card based protocol
	4.4.1 Review of the protocol
	Algorithm 5: Wang's Protocol for Password Authentication

	4.4.2 Replay Attack on Wang's Protocol
	4.4.3 Proposed countermeasures to the attack
	4.4.3.1 The Steps to avoid replay attack resulting in clogging attack
	4.4.3.2 Yet another way to prevent a clogging attack

	Chapter 5: Conclusion
	5.1 Summary of Results
	Table 5.1

	5.2 Conclusion
	5.3 Directions for Future Research

	References
	Appendix A: Modular Exponentiation
	A.1 Background on modular Exponentiation
	A.1.1 Exponentiation
	A.1.2 Factoring
	A.1.3 Modular Exponentiation
	A.1.4 Discrete Logarithm Problem and Security

	A.2 Applications in computer Security

	List of Publications from the Thesis
	Vita

