
University of North Florida
UNF Digital Commons

All Volumes (2001-2008) The Osprey Journal of Ideas and Inquiry

2003

Ray Tracing And Global Illumination
Jason Rupard
University of North Florida

Follow this and additional works at: http://digitalcommons.unf.edu/ojii_volumes

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the The Osprey
Journal of Ideas and Inquiry at UNF Digital Commons. It has been
accepted for inclusion in All Volumes (2001-2008) by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2003 All Rights Reserved

Suggested Citation
Rupard, Jason, "Ray Tracing And Global Illumination" (2003). All Volumes (2001-2008). 105.
http://digitalcommons.unf.edu/ojii_volumes/105

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNF Digital Commons

https://core.ac.uk/display/71982226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii_volumes?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii_volumes?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii_volumes/105?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages

Ray Tracing
And

Global Illumination

Jason Rupard

Faculty Sponsor: Dr.Yap Siong Chua,
Professor of Computer Science

Abstract

In order to represent real-world
images with a computer, a program has
to relate three-dimensional images on a
two-dimensional monitor screen. Several
ways of doing this exist with varying
degrees of realism. One of the most
successful methods can be grouped in a
"screen-to-world method" of viewing,
which is also known as "ray-tracing."
This computer graphics technology
simulates light rays within a 3D
environment. Since light rays have
predictable physical properties, the ray
tracing algorithm can attempt to
calculate the exact coloring of each
ray/object intersection at any given pixel.
Advanced levels of ray tracing allow light
rays to bounce from object to object,
mimicking what they do in real life.

"Local illumination" represents the
basic form of ray tracing. It only takes
into account the relationship between
light sources and a single object, but does
not consider the effects that result from
the presence of multiple objects. For
instance, a light source can be intersected
by another surface and therefore be
obscured to any point behind that
surface. Similarly, light can be
contributed not by a light source, but by
a reflection of light from some other
object. The local illumination model does
not visually show this reflection of light.
Therefore, special techniques have to be
used to represent these effects. In real life
there are often multiple sources of light
and multiple reflecting objects that

56 Osprey Journal of Ideas and Inquiry

interact with each other in many ways.
"Global illumination," the more advanced
form of ray tracing, adds to the local
model by reflecting light from
surrounding surfaces to the object. A
global illumination model is more
comprehensive, more physically correct,
and it produces more realistic images.

Ray tracing is an essential subject
when it comes to computer graphics. It
combines issues of efficiency and realism,
thus finding a favorable balance of the
time and effort involved to make realistic
three dimensional images. In the process
of researching the many different ways of
implementing a ray tracer, the study
began with local illumination and
graduated to global illumination, using
some pre-established techniques and the
development of new techniques.

Ray Tracing Basics

A basic model shown in Figure 1 will
shoot one ray per pixel. If an image is
SOOx600 pixels, then when the ray tracing is
complete, 4S0,000 rays will have been shot.
Each will begin at the viewer and end at its
closest intersection with an object in the
scene. The viewer's location is defined with
the other objects of the scene in an input
file. An illumination model will be applied
to figure out how much light is falling on
that point and what color will be produced.
An illumination model is an equation used
to calculate the intensity of light that we
should see at a given point on the surface of
an object [2].

I.aglO PlanlO

lylO

Object within a cene have propertie
de cribing its co lor, if it 's re fl ective (mirror
like) or re fracti ve (g lass- like) and its
location within the scene. Objects can be
pheres, tri ang le (po lygons), rings,

cy linder , e tc [5] . Anyone of these hapes
could be a light as well , known as area li ght
sources when the whole surface of the
object emits li ght. For now, we will use
point light sources, li ght coming from a
s ing le point in the scene, for our
illuminati on model.

Figure 1. Basic Ray Tracing Scenario

Calculating the Closest Intersection

Parametric equations for a line in a 3
dimensional pace are used for calculating
the clo e tinter ection with an object from
the eye (v iewer)[4].

x = Xo + t* (x, - xo)

y = Yo + t* (y, - Yo)
2 = 20 + t* (2, - 20)

Viewer

These equation are hown nex t to
Figure 2. The goa l is to find the smallest t
va lue. The mallest t value will give the
clo est intersecti on to the Viewer as hown
in Figure 2.

t=3:.3 t=38.1

t=93.7

Figure 2. Intersections along a ray, where t=32.3 is the closest one.

Po into (xo, Yo, zo) i the location of the
Viewer at the ori gin fo r the ray. Po int , (x "
y" z ,) is a poi nt on the image plane. Point
(x , y, z) i any point on the line de fined by
Po and PI' otice that (x , - xo) is the x
component of a vector, same for y and z.
So a ray can be represented by vector: (x , -

xu), (y , - Yo), (z, - Zo)·

Applying Illumination

ow that the ca lcul ati on of what the
viewer can ee at a particul ar pixel is found ,
the illumination mode l i applied. The loca l
illuminati on mode l i used fi gure out what
color the pi xel will be .

Pixel"",,, = Diffuse + Specular

Osprey Journal of Ideas alld IlIquiry 57

A diffused material is a dull material,
like chalk. At the point of intersection, a
vector is made from the intersection to a
light. This forms the light vector L. N is the
normal of the surface at that intersection. L
and N are shown in Figure 3. The normal is
perpendicular to the surface. The formula to
calculate the diffused component of the
local illumination model is as follows [2]:

Diffuse

L N

Diffuse = Kdiffu" *Colordiffuu *cos8

Kd'ffu" and Colord'ffu" are pre-defined
inputs of the program describing a particular
object's diffused properties. The angle
between Land N is e, which is calculated
and will change according to the light's
location. This will give the object a shaded
look dependent on the light.

Figure 3. Diffused component, L points at a light source and
N is normal to the surface.

Specular color is viewer dependent. The
closer the reflection vector R is pointing
towards the eye, the brighter the pixel will
get. Simply put, specular color will brighten
a point more if the light reflects back into
the eye. The formula to calculate the
specular component of the local
illumination model is as follows [2]:

specular
N

58 Osprey Journal of Ideas and Inquiry

Specular = K,pecula, *C%r'PCCUI"'. *COS,hiUY l/>

K,pecu'ac' Color,p",u,,,' and shiny are input
describing the object. The shiny exponent
affects the specular spot on the object,
shown in Figure 5. The higher shiny is, the
more concentrated the spot becomes. <p is
the angle between the Normal vector, N,
and the Eye vector, shown if Figure 4.

Figure 4. Specular component, R is the
reflection of L

Specular Color

Figure S. Specular color on a sphere, the shiny exponent will
effect the area of the Specular "spot" .

Pixels will be in a "Red-Green-Blue"
co lor space known as (R, G, B) va lue.
Each RGB component will have range [0.0
- 1.0]. White would be (I, I, I) and Black
(0,0,0). The illuminati on model formula
becomes [2]:

Pixe("",,_H = DiffusedH + Specular.

Smoothing the Image

Antialiasing is a technique used for the
smoothing of an image. It takes sharp,

•
•
•

•
•

jagged edge of an image and blends it with
colors around the edge making it smooth
[I] . For instance, a black surface
intersecting a white surface, at tho e points
of intersecti on the colors will blend and
make a gray ish co lor.

To apply thi technique to ray tracing is
straightforward . Take a pixel and di vide it
into sub-pixel , shown in Figure 6, and shoot
the sub-pixels with rays. Add all the sub
colors up and di vide that by the number of
sub-pi xels. Thi g ive you an average color
for that whole pixel. This works because the
all the sub-rays shot will all not hit the same
place, some will hit the black surface and
some will hit the white surface. Then
averaging the colors will give you a gray.

T
v

.!:3
til

• v
. ~
0-•

...L
1-1 pixel size-1

Figure 6. The subdivision of a pixel to make sub-pixels. Calculate the color for each sub
pixel and then averaging them to get a color for the whole pixel.

Accelerated Ray Tracing

Ray tracing is very time consuming
algorithm. The majority of the time goes to
finding the intersecti on of a ray [I]. To find
thi intersection you have to test a ray with
every object in the scene, and then chose the
closest intersection. Therefore, if there are
86 K object in a scene and the image is

800x600 (480K ray), 4 1.28 billion
intersection calculati ons are made.

A way of speeding up this process is to
use a 3-D grid to encompass all the objects in
a scene. Now, instead of testing all 86k objects
per ray, only test objects that are in the sub
boxes for which the ray passes through, as
shown in Figure 7. Only objects in boxes
8,9, I 0, 11 , 12 need to be test for intersection.

Osprey Journal of Ideas alld IlIquiry 59

1 3 4

Another way of accelerating the
rendering proce s is to take advantage of a
computer that ha multiple processors. With
thi capability, an image could be split into
N sub-image, where is the number of
processors. Each processor having one sub
image to work on, making the run-time
time faster.

5 6 7

Figure7. 2-D
representation of
3-D grid
structure.

Interpolation of Normals

normal is perpendicular to the
surface at a particular point on that surface
[4] . If a tri angle has just one normal for all
the points on the triangle then that triangle
will be perfectl y fl at. With one normal per
triangle an object made up of triangles will
become patched, as seen with the teapot on
the left in Figure 8. With interpolation, the
goal is to have a slightly different normal
for every point on the triangle making the
object curved, as seen with the teapot on the
ri ght in Figure 8 [2] .

Figure 8. Left teapot is without interpolation; the right teapot was rendered with
interpolation.

60 Osprey JOt/mal of Ideas lind Inqlliry

This new normal, , will be calculated
from three other normals, a, Nb, and c,
representing the normals of the three points
of a tri angle, A, 8 , and C respective ly,
shown in Figure 9. The three normals of the
tri angle are pre-defined inputs to the ray
tracer. These normals will have been
calculated fro m a di ffe rent program. They
are based upon the averaging of urrounding
tri angles and their normals. N is a linear
combination of the vectors, Na, Nb, and Nc.

Global Illumination
Global Illumination will give a more

reali stic image. It will take into account all
light, direct and indirect, to fo rm a better
lighting model on a surface. With local
illumination, one ray is shot to every light to
calculate how much light will be falling on
that surface. With global illumination, once
the intersection is calculated many rays are
shot out in di fferent directions to produce

N = a * N" + f3 * Nh + (j * N,

The location o f point P and its di stances
from each normal determine which one;

a, b, or c is we ighted more than the
rest. In Figure 9, P is clo er to 8 , therefore
~ will have a greater value than a and cr.

Figure 9. A triangle with three normals used
to calculate N, the normal for point P.

the light fa lling on that point. To produce
the most rea listic image possible, all
directions of light would have to be tested.
Thi i impossible because there are infinite
directions of light falling on any particul ar
point. Instead, sample rays are shot to
produce a lighting model, shown in Figure
II. Figure 10 hows that the more samples
that have been taken, the better the image
will come out [4].

Osprey l ournal of Ideas and Inquily 61

Figure 10. Left image: 100 sample rays per intersection. Middle image: 1000 sample rays
per intersection. Right image: 3500 sample rays per intersection

Scen e

Ar ea Li ght Source

D

Figure 11. Basic Global Illumination Scenario

ample ray can bounce randomly off
object until it reaches a light. I f it never
reaches a light in the maximum allowed
bounces, then it is thrown out of the fi nal
ca lculation of pi xel co lor. I f a ample hit a
l ight directly, the full intensity of light goe
in to the calculation. I f it doesn' t hit the light
directly. after every bounc the light
inten ity is decreased by a fac tor of the
di ffused component of the object it is
bouncing from. In global illumination the
sample ray takes the place of the L ight
vector, L, in the pi xel co lor ca lculations,
seen in Figures 3 and 4. The pixel color
formu la is now changed to the following.

wi ll begin equaling the number of
ample, but every time gl() return 0 it wi II

be ubtracted by I . The gl() function will
return 0 i f the sample ray never hit a light.
T hi. th rows out all noncontributing sample
rays. Al so, gl() is a recursive function. It
will recurse till the max imum number of
bounces has been reached, or it has hit a
light. Once gl() has hit a l ight, it returns the
light 's intensity. That light intensity
decreases with every bounce it took to get to
the light. 0, the more bounces the ray takes
to get to the light, the less the light's
inten ity will factor into the fi nal ca lculation
of the pixel co lor. Thi P eudocode below
how this being done.

I '-' Pixel'Q'Q' = IN * I; (Diffused, + Specular) * gl (samples)
.. I

62 Osprey 10um al of Ideas and Il/quil)1

Pseudocode: Global Illumination
.color-pixel(Vector ray_from_eye)

intersection = find_intersection (ray_from_eye)
N=#samples
for(i=O;i<#samples; ++i)

sample_ray = generate_random_ray(intersection)
current_color = diffuse(intersection)+

specular (intersection)
factor = gl(sample_ray)

if(factor == 0)
N - 1
goto next sample

end_if
sum_of_colors += current color * factor

end_for
pixel_color = sum_of_colors I N
return pixel_color

end_color-pixel

gl(Vector sample_ray) Ilrecursive function
if(Max Bounces Reached)

return 0
end_if
intersection find_intersection (sample_ray)
if(intersection is a light)

return light's intensity
end_if

sample_ray = generate_random_ray(intersection)
factor = gl(sample_ray)
return diffuse (intersection) * factor

Generating Random Sample Rays

Generating sample rays is an important
part of the global illumination algorithm.
Sample rays will produce the light; so bad
sample rays will render bad lighting. If a
sample ray never hits a light it is thrown out
of the calculation. We want all rays to have
a "chance" of hitting the light. Sample rays

need to point away from the surface they are
coming from. A sample ray needs to have
an angle with the normal between 0 and 90
degrees, and should be able to reach 360
degrees around the normal. This depicts a
hemisphere, with the surface's normal going
straight through the top "North Pole" of it,
as in Figure 12[1].

Osprey Journal of Ideas and Inquiry 63

The spherical coordinates system can
be use to make random sample rays [1],
shown in Figure 13. Point P on the
hemisphere needs to be randomized. This
can be accomplished by randomizing the
angles <j> and S. Radius r can be kept
constant at 1. P needs to converted to it's x,
y, and z components with the following
formulas.

x = r sin </> cos ()
y = r sin </> sin ()
z = r cos </>

P is oriented about the Origin. So, P
needs to be transformed so it is oriented
with the surface, and its normal. To do this,
an orthonormal basis is made with the
surface's normal. An orthonormal basis
(ONB) is a set of vectors that are mutually

64 Osprey Journal of Ideas and Inquiry

Figure 12. Hemisphere for sample rays

Figure 13. P is a point on the hemisphere.
r is the radius f the hemisphere.
S has a range of [0, 90] degrees.
<j> has a range of [0, 360] degrees.

perpendicular, and are unit length [1]. The
most famous ONB is the xyz coordinate
system, the natural basis. ONBs make
converting to and from different coordinate
systems uncomplicated. Once an
orthonormal basis is made with the surface's
normal, P can be transformed into P'. P' is
now oriented with the new basis. To finish
this process off, a vector is made from the
intersection point on the surface to P' and
the new sample ray is formed. The new
sample ray will be used in place of the light
ray in the illumination formula.

Conclusion

The study of ray tracing can lead to
interesting things in the field of computer
graphics. Ray tracing is a viable technique
of producing two-dimensional images of a
three dimensional world. It can be a tool
that becomes more and more valued as our
culture heads deeper into computer
generated worlds via games, movies,
training simulators, or even architectural
modeling. Ray tracing can produce images

with varying degrees of realism. With its
strong mathematical and physical
foundations, ray tracing is and will remain a
major concept of computer graphics.

Gallery

To see these images in their full size
please visit:
http://www.unf.edu/-rupjOOOI/ray/

A.) One of the first images produce.
The light is coming from the top
right, and shadows were turned off.
Image took 13min. to render and
its size was 1024x768.

B.) All most same scene as image A,
but with a new cylinder and two
light sources with shadows turned
on. Also this image has
Antialiasing 10rays/pixel. Image
took 10hours to render and its size
was 1024x768.

C.) Two light sources, one inside the
cylinder, and one coming from the
top left. Shadows turned on. Image
took 4min. to render and its size
was 1024x768.

D.) Two light sources coming from the
bottom left and the top right. 4
reflective sphere all reflecting each
other's colors. Image took Imin. to
render and its size was 1024x768
with Srays/pixel.

E.) Same 4 sphere as image D, but
now incase in a reflective box. One
gold-colored light source in the top
right front of the box. Image took

I min. to render and its size was
400x300.

F.) The Parthenon is inside of a blue
reflective box. Three light sources,
on in the back left bottom comer,
one in the front left bottom comer
and one inside the Parthenon.
Image took 3hours to render and its
size was 800x600 with
10rays/pixel.

G.) A glass sphere with a blue diffused
sphere behind it. Image took 3mins
to render and its size was
1024x768 with lOrays/pixel.

H.) 100,000 random spheres to test the
3-D grid acceleration technique.
The image about 18mins at
S12xS12. Without a 3-D grid it
would still be rendering today!

I.) A Sphereflake, this image took
about Smin. to render at 1024x768.

J.) The Rhinoceros Logo, 86000
triangles. Image took 30mins on 7
processors at 1024x768.

K.) This image was the goal of the
research. A global illuminated
scene at 800x600 with
3000samples/intersection. Two area
light sources at the ceiling of the
room. A reflective sphere floats at
the left, with two soft shadows
under it. The soft shadows are one
of the products of the global
illumination technique. Image took
7hours on 8 processors.

L.) A comparison of local illumination
vs. global illumination.

Osprey Journal of Ideas and Inquiry 65

A. B.

c.

D. E.

66 Osprey JOll rnal of Ideas al/d II/quiry

F. G.

H.

I. J.

Osprey l oumal of Ideas and Inquiry 67

K.

L. Local vs. Global

68 Osprey Journal of Ideas and Inquiry

References

[1] Shirley, Peter. 2000. Realistic Ray
Tracing. A K Peters, Natick, Massachusetts.

[2] Baker, M. Pauline. Hearn Donald.
1986. Computer Graphics C Version.
Prentice Hall, Upper Saddle River, New
Jersey.

[3] Bourke, Paul. Personal Pages.
http://astronomy.swin.edu.aul-pbourke/

[4] Larson, Roland. Hostetler, Robert.
Edwards, Bruce. 1998. Calculus Sixth
Edition. Houghton Mifflin Company,
Boston, New York.

[5] Ward, Greg. Materials and
Geometry Format.
http://radsite.lbl.gov/mgf/.

Osprey Journal of Ideas and Inquiry 69

	University of North Florida
	UNF Digital Commons
	2003

	Ray Tracing And Global Illumination
	Jason Rupard
	Suggested Citation

	Title
	Abstract
	Ray Tracing Basics
	Calculating the Closest Intersection
	Applying Illumination
	Acclerated Ray Tracing
	Interpolation of Normals
	Global Illumination
	Generating Random Sample Rays
	Conclusion
	Gallery
	References

