
University of North Florida
UNF Digital Commons

All Volumes (2001-2008) The Osprey Journal of Ideas and Inquiry

2006

Microsoft .NET and Security Provided by High -
Level Internet Protocols
Tatiana Melnik
University of North Florida

Follow this and additional works at: http://digitalcommons.unf.edu/ojii_volumes

Part of the Physical Sciences and Mathematics Commons

This Article is brought to you for free and open access by the The Osprey
Journal of Ideas and Inquiry at UNF Digital Commons. It has been
accepted for inclusion in All Volumes (2001-2008) by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2006 All Rights Reserved

Suggested Citation
Melnik, Tatiana, "Microsoft .NET and Security Provided by High -Level Internet Protocols" (2006). All Volumes (2001-2008). 65.
http://digitalcommons.unf.edu/ojii_volumes/65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/71982165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii_volumes?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii_volumes?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu/ojii_volumes/65?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unf.edu?utm_source=digitalcommons.unf.edu%2Fojii_volumes%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages

Microsoft .NET and Security
Provided by High -Level

Internet Protocols

Tatiana Melnik

Faculty Sponsor: Dr. Zornitza Genova
Prodanoff,

Assistant Professor of Computer Science

Abstract

This paper describes a class of

insecure .NET client applications, which
avoid higher layer protocol protection
through using a “raw” send and receive
API. The .NET Framework rests on
many other Microsoft components,
including the Windows Driver Model
(WDM). This model supports four
driver types, two of which were
considered in this paper: protocol and
miniport drivers. By compiling and
executing client applications using the
“raw” sockets interface, we
demonstrate that insecure clients can be
written with minimal programming
effort (lines of code).

Introduction

The Microsoft .NET (pronounced
dot NET) provides an integrated
development environment for construction
of Web services using eXtensible Markup
Language (XML) [16],[6] and Simple
Object Access Protocol (SOAP) [17]. The
goal of the .NET platform, and
Microsoft’s larger vision, is to allow better
integration of information technology. In
the .NET world, people can access their
home appliances or office computers from
their cellular telephones or personal digital
assistants (PDA’s).

.NET Framework

Figure 1 shows the two basic .NET
Framework components: the Common
Language Runtime (CLR) and the
Framework Class Library (FCL) [24]. The
CLR environment allows the execution of
code written in any of several languages.
The CLR also provides numerous services
to applications, such as elimination of
“DLL Hell,” and prevention of malicious
code execution.

.NET Framework (.NET SDK)

Framework Class Libraries
Common Language Runtime

Windows Operating System

Figure 1. Basic Components of .NET Framework.

The FCL is a collection of classes,
interfaces, and value types and is included
in the Microsoft .NET Framework SDK
[13]. Through the FCL programmers can
easily reuse common functions as well as
gain access to other .NET high-level
services.

Client-Server vs. Distributive
Architecture

Using distributive computing,
Microsoft wants to create a distributed
operating system [25], where all
applications are located on the network
level and users request an application as a
Web service. Currently in distributive
computing, the workload is spread over
multiple computers where each computer
performs a smaller piece of the larger task.
The .NET platform, however, has
programs located on the network level.
Thus “a single application may comprise
services accessed from different

computers at various locations around the
town” [25].

Presently, much of Internet
communication follows the client-server
model, which is based on communication
between two computers: a client and a
server. The client establishes a connection
and requests the information or service,
and the server provides the requested
information or service. Once the server
transmits the information or service
requested, the communication ends. The
.NET platform allows for similar
communication. Programmers can write
programs that provide services and
transfer them to the platform. Users (i.e.,
other clients) can request the services from
the platform.

The .NET approach differs from
the traditional client-sever model in that
programmers can use modules written by
other programmers in their own code.
More specifically, when a programmer
writes code and sends it to the platform,
other programmers can use that code, or
that service, without physically seeing the
code. They would simply “plug-in” the
code from the platform into their own
work. Therefore, the communication
between the client and server does not end
immediately. Rather, the communication
is semi-continuous. Since both of the
programs will be located on the network
level, they will be linked. That is, the
application relying on the foreign code
will not function properly without access
to the foreign code.

As demonstrated in Figure 2, in
order to write and run the code, both
computers must install .NET Framework,
including the Common Language Runtime
(CLR). This is necessary because the code
is compiled into the Microsoft
Intermediate Language (MSIL), which
allows for machine specific execution.
One of the goals of .NET is to allow

programmers to write code in any
language, thus making it platform
independent [25]. To achieve such
independence, there must be an
intermediate step to allow integration into
.NET. MSIL is this intermediate step.
Once the code is compiled, it can be run
on any OS containing the .NET
Framework. That is, the application is
platform independent. When run, the
application employs the CLR.

The Scope of this Paper

Microsoft is making a great effort

to provide security for the users of their
products. Although some publications
addressed security issues with the .NET
Framework [8] [10], few have addressed
security issues regarding any specific
implementation of communication
protocol stacks.

Figure 2. .NET Framework Platform.

Request
Application 1

Send
Application 1

Send application in MSIL format to .NET Framework

Client 1– using
Windows 98SE
(writes code in
Java, C++, etc)

(into Microsoft
Intermediate
Language)

Client 2– using
Windows XP

(receives
application in
MSIL format)

Using .NET
Framework

SDK

Run
Application 1

 (employ the
Common Language

Runtime)

.NET
Framework

Using .NET
Framework

SDK

Compile
Application 1

Through writing client
applications using “raw” send and “raw”
receive packet handling, users avoid the
protection provided by these protocols and
can gain access to server resources. With
this paper we demonstrate that the
Microsoft .NET suite allows insecure
client applications to surpass the protocol
logic of higher layer protocols and use the
device driver protocol directly to
communicate with the machine hosting the
server.

Web Services Security and
Communication Protocols

The Internet is a network of
networks [11]. That is, wires, routers, and
numerous other different devices connect
clients and servers, through multiple
networks, to each other. When a client
attempts to communicate with a server, or
network, via the Internet, the two systems,
along with the connecting devices, must
follow the same protocols. Web service
protocols such as Simple Object Access
Protocol (SOAP) run on top of
Transmission Control Protocol/Internet
Protocol (TCP/IP) [21] and Hyper Text
Transfer Protocol (HTTP) [1], [7].

The TCP/IP protocol suite is
modular. That is, the protocol uses a
layered-design approach, where each layer
is encapsulated and independent of the
layer above and the layer below. The
protocol is divided into five layers:
application, transport, internet, network
and physical medium. As Figure 3
demonstrates, each layer provides services
to the layer above, and requests services
from the layer below. The transport layer,
for example, provides a service to the
application layer, and requests a service
from the internet layer. When the sender
sends data the data traverses through each
layer from the top to the bottom.

Sometimes, the data is very large. In order
to adequately transfer the data to the
receiver, it must be broken down into
smaller pieces, or packets. As packets
traverse through the layers, each layer
adds headers (i.e., overhead) to the
original data. The overhead is necessary
because it provides essential information
regarding the formation and reassembly of
packets. When the receiver accepts the
packet, the packet traverses from the
bottom layer to the top layer, where each
layer reads and removes the added
overhead.

Figure 3. TCP/IP Layers and Data Transfer over
Network.

overhead

headers appended by
protocol layers

 application data

forming
a packet

obtaining
application
data from
packet

headers removed as
traverses the

data received

receiver

data sent

sender

Network

Application

Transport

Internet

Network

Physical

Protocol Layer Key:

In order to send or request
information from a server (or network), a
client must have a physical method of
communication with the physical medium
(e.g., coaxial cable, twisted-pair cable,
fiber optic cable, or air - radio frequency).
The network interface card (NIC), such as
an Ethernet (IEEE 802.3) adapter,
facilitates the communication between a
client and the rest of the network. That is,
the NIC allows a client to connect to the
network.

The Hyper-Text Transfer Protocol
(HTTP) is the protocol of the Web [1], [7].
HTTP defines the way Web clients (i.e.,
software allowing access to the Internet)
and servers communicate with each other
via the Internet [11]. Users must
implement HTTP on both the client side
and the server side for communication to
occur. Users employ the HTTP protocol to
define how each side (client and server)
structure a request for the other side (client
or server) to understand. In addition, users
use HTTP to define the format of a client
or server reply to a request.

To communicate with the .NET
Framework, programmers use more than
just the standard protocols. Microsoft
employs the Simple Object Access
Protocol (SOAP) to allow .NET
implementations to communicate with
non-.NET platforms [13]. SOAP is a
simple eXtensible Markup Language
(XML)-based protocol allowing
applications to exchange information over
the Internet using HTTP [2]. XML is a
standard, is based on the Standard
Generalized Markup Language (SGML)
and is a format for structured documents
and data on the Internet [3]. According to
the World Wide Web Consortium (W3C)
“XML has been designed for ease of
implementation and for interoperability
with both SGML and HTML” [3].

Similar to XML, SOAP is also a
standard defined by the W3C. In addition,
similar to the TCP/IP protocol, the SOAP
protocol is also modular. As defined by
the W3C, SOAP consists of three parts:
• The SOAP envelope construct

defines an overall framework for
expressing what is in a message;
who should deal with it, and
whether it is optional or mandatory.

• The SOAP encoding rules defines a
serialization mechanism that can be
used to exchange instances of
application-defined data types.

• The SOAP RPC representation
defines a convention that can be
used to represent remote procedure
calls and responses.

The SOAP protocol is operating system
and programming language independent
and can work in conjunction with other
protocols, such as HTTP [22]. Similar to
protocols previously discussed, for a
message to be understood, both the sender
and receiver must implement SOAP.

Web Services

The basic goal of the .NET
Framework is to provide users an easy
way to build and disseminate Web
services. A Web service is XML-based. It
is transmitted over the Internet and allows
applications to communicate with each
other without consideration of the
operating system or programming
language [9]. Programmers use SOAP in
the implementation of a Web service.

Communication between Web
services is based on the client-server
communication model, where a client is a
machine housing the client application
requesting the service and the server is a
machine housing the server application
responding to the request. Using the

SOAP protocol, the client makes a request
and the server responds (see Figure 4).

The creator of a Web service must
define the functionality of the Web service
as well as the interface. Programmers use
the Web Services Description Language
(WSDL) for such definition [5]. The
WSDL provides the user with information
regarding the functionality and function
for a Web Service [5]. The WSDL is
basically an XML file describing the
message encapsulated within a SOAP
packet [4].

Device Drivers

A device driver is software that
controls the functionality of hardware or a
peripheral device. Traditionally,
programmers wrote drivers to interface
with the CPU and to link with the kernel.
The driver is part of the lowest level of the
Operating System (OS). Through the
kernel, drivers have access to other OS
areas such as passwords as well as other
important user information and functions.
OS access to such sensitive information
caused Windows users, as well as
Microsoft, severe problems. Loopholes
within the driver itself leave the OS open
to spoofing and other hacker attacks. In

addition, if the driver crashes, the entire
OS is susceptible to failure and corruption.

Currently, Microsoft uses the
generic Windows Driver Model (WDM)
based on the International Standards
Organization’s (ISO) Open Systems
Interconnection (OSI) model. The OSI
model emphasizes a layered-design
approach where the application layer is the
highest layer, and the physical layer is the
lowest layer [12]. Similar to the TCP/IP
model, each layer in the OSI model has a
specific function and provides services to
higher and lower layers.

When a client attempts to
communicate with the server, most of the
time the packet bits are communicated by
going through a modem or a network
interface card (NIC). NIC logic together
with the specific OS compatible device
driver would ensure that the packet bits
are transmitted to the server application.
The Network Driver Interface
Specifications (NDIS) defines a standard
Application Program Interface (API) for
network driver development [19].
Developers use the NDIS to develop
higher-layer (e.g., protocol driver) and
lower-layer (e.g., miniport driver) drivers.
The Media Access Controller (MAC; see
Figure 5) hides the implementation details
of the NIC so that it provides an interface
to higher and lower layers. Therefore, “all
NIC’s for the same media (e.g., Ethernet)
can be accessed using a common
programming interface”[19]. Almost every
version of Microsoft Windows has
different NDIS’s. Having different
specifications is problematic for
developers because they must constantly
update their product drivers, which
becomes very costly in terms of both
capital and labor. In addition, new
specifications are problematic for users
because often times, drivers do not
function properly with the OS or hardware

Figure 4. Web Service Communication.

Application makes
virtual request

Application makes
virtual reply

Client

Application

SOAP packet SOAP packet

Server

Application

Application

NDIS

Miniport Driver

NIC Hardware

Protocol Driver

or users cannot locate new drivers. This
paper will focus on network device driver
design for Microsoft Windows XP
because Microsoft recommends this OS
for use of the .NET Framework.

Device drivers within Microsoft’s
Windows XP OS use the bottom four
layers of the OSI model or the TCP/IP
model (see Figure 5). In terms of the OSI
model, the bottom four layers are the
physical, data link, network and session.
In terms of the TCP/IP model, the bottom
four layers are the physical, network
access, internet and transport. The network
interface card (NIC) enables the physical
layer and part of the network access layer
(i.e., the Media Access Control (MAC)
portion). Protocol drivers carry out the
transport layer, internet layer, and a
portion of the network access layer (i.e.,
the Logical Link Control (LLC) portion).
As visible in Figure 5, the two models do
not correspond exactly; however, both
models are presented for descriptive
purposes. Although the WDM is based on
the ISO model, Microsoft (as most
everyone else) actually implements the
TCP/IP model.

Microsoft’s Windows Driver
Model (WDM) supports many hardware
and peripheral devices, however, some
devices require specific drivers. Due to
poor security as well as numerous
complaints from programmers, Microsoft
is moving to the Windows Driver
Foundation (WDF). The implementation
of the model is similar to the WDM,
however the WDF provides three main
distinctions from the WDM: it has a
kernel-mode driver framework, a user-
mode driver framework, and driver
verification tools [12].

The WDF allows for a separation
of the driver and the OS. First, unlike the
WDM, the WDF is not OS specific. The
OS version can be changed without having
to modify the driver. Second, drivers do
not have unrestricted access to the OS.
The kernel-mode framework provides
access into the kernel, however, not direct
access. The framework is shielded from
the rest of the OS, thus if the driver
crashes, it will not cause system
corruption. In addition, many of the
drivers today do not need to run in kernel
mode, thus they can use the user-mode
driver framework. In this framework,
drivers “do not have access to system
structures or to the system virtual space”
[12]. Therefore, if there is a problem with
the driver, the system is not compromised.
Lastly, programmers can employ the

Figure 5. Implementation of the Four Layers used in
Windows XP [18].

Layer: OSI

Session

Transport

Network

Data Link: LLC

Data Link: MAC

Network
Access

Transport
(TCP)

Internet (IP)

Physical Physical

Implementation

- implemented by protocol drivers

- implemented by protocol drivers

- implemented by protocol drivers

- implemented by NIC, transceiver, and
medium to which NIC is attached

- implemented by NIC (miniport drivers)

Layer: TCP/IP

Figure 6. Simple Driver Structure.

driver verification tools to test their drivers
to ensure Microsoft compliance.

Microsoft Windows XP supports
four different drivers that run in the
kernel-model: protocol drivers, miniport
drivers, intermediate drivers and filter-
hook drivers [14]. This paper will not
focus on intermediate drivers and filter-
hook drivers because they are not relevant
in this discussion. Protocol drivers
implement the transport layer; network
layer and the logical link control of the
data link (LLC) of the OSI model (see
Figure 5). Figure 6 demonstrates that at its
upper boundary, the protocol driver is a
software interface between these layers
and the higher-layers (i.e., application
layer when using the TCP/IP model). At
its lower boundary, the protocol driver
interfaces with the NDIS. At its lower
boundary, the NDIS interfaces with the
media access control (MAC) of the data
link layer. In Windows XP, the MAC is
implemented by the miniport driver, which
manages the NIC. At its lower boundary,
the miniport driver employs the NDIS to
communicate with the NIC hardware. At
its upper boundary the miniport driver
presents “an interface to allow protocol
drivers to configure the adapter, as well as
to send and receive packets over the
network” [15].

When a client communicates with
a server, the client-server connection
occurs at the transport layer (based on the
TCP/IP model). The client initiates the
communication with the server by first
sending a connection request. The server
then responds stating that it is available
and is ready to receive requests. As the
data traverses through the TCP/IP layers
on the client side, it is broken into packets
and each layer adds a header. The
transport layer also adds a sequence
number to each packet to ensure reliable
data transfer. That is, by providing a

sequence number at the sender, the
protocol ensures that all packets are
received and reassembled in sequence by
the receiver. The packets are sent through
the NIC and onto the physical medium.

Programmers can also use “raw” sends
and “raw” receives, which packets are sent
using only the physical layer protocol.
Packets would not need to traverse the
upper-layer protocols before they are
transferred because the data is not coming
from the application or transport layers.
Thus, programmers could write code to
avoid higher-layer protocols. In avoiding
the higher-layer protocols, the
programmer is responsible for writing
code that performs all the functions of the
higher-layer protocols. That is, the
programmer is responsible for the integrity
and security of the data as well as making
sure the code is not harmful.

Security

When considering web services,
security is also a concern. Many Web
services require users to divulge private
information such as a credit card number.
Internet users are increasingly concerned
about identity theft and credit card fraud.
Often, thieves obtain private information
through hacking into corporate servers.
The Microsoft Corporation, as well as
companies and PC users, are well known
for being victims of hacker attacks due to
security issues within Microsoft products.
Hackers can attack the server or the client.

One possible server attack is a
denial of service, which hackers can
accomplish through continuously sending
requests to a server [23]. These requests
force the server to do ‘busy work’ leading
to the consumption of server resources.
The server is unable to handle legitimate
requests and eventually crashes or stalls.
Another possible server attack is an

authorization attack [23]. Here the hacker
attempts to access the server as a
legitimate user through misrepresentation
to the server. Such attacks are often
successful due to poorly written code
where fields are improperly validated or
input is automatically assumed to be valid
[10]. These attacks are devastating to
corporations, where hackers break in and
often steal credit card numbers or sensitive
company information.

Hackers also attack clients. Most
clients are individuals using their personal
computer (PC) at home. The news often
reports stories of hackers finding ‘loop-
holes’ in the Microsoft Operating
System’s and devising viruses or directly
accessing their system. One way to access
the users (PC) is through holes in device
drivers. Because device drivers are
currently systems dependent, programmers
must rewrite and continuously update their
drivers. Unfortunately, sometimes the
code is sloppy, or not well tested. Hackers
therefore, can gain access into the PC and
to the users’ information. In addition, the
hacker can than use the PC to launch
attacks on a server.

Evaluation

This evaluation will demonstrate
how a class of client applications can be
developed to compromise the security of a
.NET server. Through using “raw” packet
sends and receives the application
surpasses all protocols running higher than
the Network Access layer protocol. “raw”
sends and receives allow the application
developer to append potentially
compromised protocol headers for all
layers higher than the physical layer. In
this way the application can misrepresent
any number of header fields (including
client MAC and IP addresses) to the
server.

We built a simple client
application using the winpcap set of
library calls [20] and compiled it with the
Microsoft Visual C++ 2002, Standard.
Our testbed consisted of a 3.06GHz Dell
Optiplex Pentium 4 PC with a
WindowsXP Pro operating system. The
applications used in this evaluation were
accessing a server machine through an
IEEE 802.3 Ethernet compliant network
interface card.

Since the .NET client is an HTTP
aware application that can communicate
with the server, it can run at the Microsoft
protocol driver layer. Other layers below
the protocol driver layer, e.g. miniport and
intermediate drivers, cannot communicate
with user-mode applications (see [21] for
elaboration). Other possible
implementations can be realized at the
NDIS miniport driver level and below.
Such applications are not implemented as
part of this evaluation, because the class of
applications demonstrated in this section
have sufficient functionality to interact
with the server in “raw” mode, that is,
surpassing high layer protocols.

Figure 7 presents the algorithm for
sending a “raw” packet. Lines 1 to 3 show
the use of the pcap_findalldevs()
WINPCAP function. Returned is a list of
pcap_if structures with an internal name
and human readable description of the
device. pcap_open_live(), shown in lines 7
to 9, is used to obtain a packet capture
descriptor to look at packets on the
network. An argument is passed to
pcap_open_live() to put the adapter in a
promiscuous mode and allow for all traffic
to be seen. In normal situations, an adapter
only extracts the network traffic destined
to it; the packets exchanged by other hosts
are therefore ignored. On shared media
(like non-switched Ethernet) WinPcap will
be able to capture the packets of its own
host as well as other hosts. Promiscuous

mode is the default for most capture
applications.

...
1. obtain adapter list //
pcap_findalldevs()
2. if no device available
3. exit
4. select adapter name
5. if no valid name selected
6. exit
7. open capture device //
pcap_open_live()
8. if no adapter opened
9. exit
10. send a “raw” packet //
pcap_sendpacket()
11. if no packet
12. return error
...

To send a “raw” packet
pcap_sendpacket() is called. It takes as an
argument a buffer containing the data to
send, its length and the adapter that will
send it. The buffer is sent to the net as is,
without any manipulation. Thus, the
application has to create the correct
protocol headers in order to send
meaningful data. A similar set of calls is
used to receive and parse a “raw” packet.

Summary and Future Work

This paper identifies a class of
insecure .NET client applications, which
avoid higher layer protocols protection
through using the “raw” sockets API. The
.NET Framework rests on many other
Microsoft components, including the
Windows Driver Model. This model
supports four driver types, two of which
were considered in this paper: protocol
and miniport drivers. By compiling and
executing client applications using the
“raw” send and receive interface, we
demonstrated that insecure clients can be

written with minimal programming effort
(lines of code) by using library calls, e.g.
WINPCAP calls. Microsoft is currently
moving towards a new driver model,
Windows Driver Foundation, which is not
yet available. Future work will include
testing using this new driver model.

References

[1] T. Berners-Lee, R. Fielding, and H.
Frystyk, "Hypertext Transfer Protocol --
HTTP/1.1", IETF RFC 1945, May 1996;
http://www.rfc-editor.org/rfc/rfc1945.txt.

[2] D. Box, et al., "Simple Object Access
Protocol (SOAP) 1.1", World Wide Web
Consortium (W3C) note, May 2000;
http://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

[3] T. Bray, et al., "Extensible Markup
Language (XML) 1.1", World Wide Web
Consortium (W3C) recommendation,
April 2004;
http://www.w3.org/TR/2004/REC-xml11-
20040204/.

[4] K.F. Chavda, "Anatomy of a Web
Service", Journal of Computing Sciences
in Colleges, The Consortium for
Computing in Small Colleges, Little Rock,
AR, Jan 2004, pp.124 – 134.

[5] E. Christensen, et al., "Web Services
Description Language (WSDL) 1.1",
World Wide Web Consortium (W3C)
note, March 2001;
http://www.w3.org/TR/wsdl.

[6] D. III. Eastlake, J. Reagle, and D.
Solo, "(Extensible Markup Language)
XML-Signature Syntax and Processing",
IETF and W3C RFC 3275, March 2002;
http://www.rfc-editor.org/rfc/rfc3275.txt.

Figure 7. “Raw” Packet Send Algorithm.

[7] R. Fielding, et al., "Hypertext Transfer
Protocol - HTTP/1.1", IETF RFC 2616,
June 1999;
http://www.rfc-editor.org/rfc/rfc2616.txt.

[8] Foundstone, Inc., and CORE Security
Technologies, "Security in the Microsoft
.NET Framework", Foundstone Strategic
Security White Paper, 2003;
http://www.foundstone.com/resources/whi
tepapers/dotnet-security-framework.pdf.

[9] H. Haas, "Web Services Activity
Statement", World Wide Web Consortium
(W3C) activity statement, April 2004;
http://www.w3.org/2002/ws/Activity.

[10] A. Klein, "Secure Coding Practices
for Microsoft .NET Applications",
Sanctum, Inc., White Paper, 2003.

[11] J.F. Kurose, and K.W. Ross,
Computer networking: A Top-Down
Approach Featuring the Internet, Pearson
Education, New York, NY, 2003.

[12] Microsoft Corporation, "Introduction
to the Windows Driver Foundation", June
2004;
http://msdn.microsoft.com/library/default.
asp?url=/library/enus/dndevice/html/WDF
_intro.asp.

[13] Microsoft Corporation, ".NET
Framework Developer’s Guide: Overview
of the .NET Framework";
http://msdn.microsoft.com/library/default.
asp?url=/library/enus/cpguide/html/cpovri
ntroductiontonetframeworksdk.asp.

[14] Microsoft Corporation, "Network
Devices and Protocols: Windows DDK:
NDIS Protocol Drivers", June 2004;
http://msdn.microsoft.com/library/default.
asp?url=/library/

enus/network/hh/network/302pro_a64825
0f-4e5c-4140-bd7ca1b8f3b7a154.xml.asp.

[15] Microsoft Corporation, "Network
Devices and Protocols: Windows DDK:
Obtaining and Setting Miniport Driver
Information and NDIS Support for WMI",
June 2004;
http://msdn.microsoft.com/library/default.
asp?url=/library/enus/network/hh/network/
205mpinfo_ab586ccb-6399-420f-89d9-
6a32b20b9e6f.xml.asp.

[16] M. Murata, S. St.Laurent, and D.
Kohn, "XML Media Types", IETF RFC
3023, January 2001;
http://www.rfc-editor.org/rfc/rfc3023.txt.

[17] E. O'Tuathail, and M. Rose, "Using
the Simple Object Access Protocol
(SOAP) in Blocks Extensible Exchange
Protocol (BEEP)", IETF RFC 3288, June
2002;
http://www.rfc-editor.org/rfc/rfc3288.txt.

[18] Open Systems Resources, Inc.
"Windows 2000 and Later Network
Architecture and the OSI Model", April
2003;
http://www.osr.com/ddk/network/102gen_
07vr.htm.

[19] PCAUSA, "What is NDIS?”, June
2004; http://www.ndis.com/.

[20] “Packet Capture Architecture for
Windows, Version 3.0 (WinPcap)”, URL:
http://winpcap.polito.it/.

[21] M. Rose and K. McCloghrie,
“Structure and Identification of
Management Information for TCP/IP-
based Internets”, IETF RFC 1155, May
1990; http://www.rfc-
editor.org/rfc/rfc1155.txt.

[22] A. Skonnard, "Understanding
SOAP", Microsoft Corporation, March
2003;
http://msdn.microsoft.com/library/default.
asp?url=/library/enus/dnsoap/html/underst
andsoap.asp.

[23] W. Stallings, High-Speed Networks
and Internets: Performance and Quality of
Service, 2nd, Pearson Education, New
York, NY, 2001.

[24] P. Tapadiya, .NET programming: A
Practical Guide Using C#, Prentice Hall,
Upper Saddle River, NJ, 2002.

[25] A. Weiss, "Microsoft’s .NET:
Platform in the Clouds", netWorker, vol.
5, no. 4, Dec 2001, pp. 26 – 31.

	University of North Florida
	UNF Digital Commons
	2006

	Microsoft .NET and Security Provided by High -Level Internet Protocols
	Tatiana Melnik
	Suggested Citation

	Title and Abstract

	Introduction
	.NET Framework
	Client-Server vs. Distributive Architecture
	The Scope of this Paper
	Web Services Security and
Communication Protocols
	Web Services
	Device Drivers
	Security
	Evaluation
	Summary and Future Work
	References

