
576

Hetero-Diels–Alder reactions of hetaryl and aryl thioketones
with acetylenic dienophiles
Grzegorz Mlostoń*1, Paulina Grzelak1, Maciej Mikina2, Anthony Linden3

and Heinz Heimgartner*3

Full Research Paper Open Access

Address:
1Department of Organic and Applied Chemistry, University of Łódź,
Tamka 12, PL 91-403 Łódź, Poland, 2Center of Molecular and
Macromolecular Studies PAS, Sienkiewicza 112, PL 90-363 Łódź,
Poland and 3Department of Chemistry, University of Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Email:
Grzegorz Mlostoń* - gmloston@uni.lodz.pl;
Heinz Heimgartner* - heinz.heimgartner@chem.uzh.ch

* Corresponding author

Keywords:
dimethyl acetylenedicarboxylate (DMAD); hetero-Diels–Alder
reactions; high pressure reactions; methyl propiolate; thioketones;
thiopyrans

Beilstein J. Org. Chem. 2015, 11, 576–582.
doi:10.3762/bjoc.11.63

Received: 18 January 2015
Accepted: 15 April 2015
Published: 28 April 2015

Dedicated to Dr. Hans Peter Reisenauer (University of Giessen,
Germany) on the occasion of his 65th birthday.

Associate Editor: P. R. Hanson

© 2015 Mlostoń et al; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Selected hetaryl and aryl thioketones react with acetylenecarboxylates under thermal conditions in the presence of LiClO4 or, alter-

natively, under high-pressure conditions (5 kbar) at room temperature yielding thiopyran derivatives. The hetero-Diels–Alder reac-

tion occurs in a chemo- and regioselective manner. The initially formed [4 + 2] cycloadducts rearrange via a 1,3-hydrogen shift

sequence to give the final products. The latter were smoothly oxidized by treatment with mCPBA to the corresponding sulfones.

576

Introduction
A series of recent publications evidence that, in contrast to

earlier opinions, thioketones are useful building blocks for the

preparation of diverse sulfur heterocycles [1-3]. Studies

performed by Huisgen and coworkers are of special importance

and they resulted in the formulation of the name ‘superdipo-

larophiles’ for aromatic thioketones [4-6]. In addition, Sauer

and coworkers called them ‘superdienophiles’ based on kinetic

studies [7,8]. Moreover, thiobenzophenone (1a) was reported to

react as a heterodiene smoothly with cyclooctyne, dicyano-

acetylene, and dimethyl acetylenedicarboxylate (2a) to give

[4 + 2] cycloadducts of type 3a, which spontaneously rearrange

via a 1,3-hydrogen shift yielding rearomatized products of type

4a (Scheme 1) [9-11].

The same transformation occurred faster under photolytic

conditions [9,12]. The hetero-Diels–Alder reaction of 4-substi-

tuted analogues of 1a with in situ generated benzyne is also

known [13]. Heteroaromatic thioketones are reported to

undergo a hetero-Diels–Alder reaction with dienophiles such as

maleic anhydride, acrylonitrile, styrene, and α-chloroacryloni-
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Scheme 1: Hetero-Diels–Alder reaction of thiobenzophenone (1a) with dimethyl acetylenedicarboxylate (2a) [10].

Scheme 2: Synthesis of polycyclic thiopyrans via the hetero-Diels–Alder reaction/1,3-hydrogen shift sequence.

trile [14,15]. In the latter case, the stabilization of the initially

formed cycloadduct occurred via HCl elimination, whereas,

in the other cases, the 1,3-hydrogen shift led to rearomatized

products.

In our ongoing studies on thioketones, we reported recently on

selected reactions of new symmetrical and non-symmetrical

hetaryl thioketones [16]. Among others, the reactions of 2a with

phenyl thien-2-yl thioketone as well as with bis(thien-2-yl)

thioketone were described. The goal of the present study is to

examine the reactions of diverse hetaryl thioketones with both

2a and methyl propiolate (2b). Moreover, along with standard

procedures, the high-pressure technique was applied. Finally,

selected examples of the obtained polycyclic 2H-thiopyrans

were oxidized to give the corresponding sulfones.

Results and Discussion
Under standard conditions (benzene, rt), the reaction of 1a with

2a is slow, and it requires several days to be complete [9]. For

that reason, we modified the procedure by using THF as a

solvent and LiClO4 as a known, efficient catalyst applied

frequently in diverse Diels–Alder reactions [17]. Heating the

mixture in a closed tube to 50 °C resulted in completion of the

reaction after only 24 h, and after chromatographic work-up, the

known product 4a was obtained in 84% yield. Another attempt

to optimize the reaction conditions was based on the use of the

high-pressure method. This approach offers some advantages,

especially in the case of cycloaddition reactions [18]. To the

best of our knowledge, reactions of thioketones under high-

pressure conditions have never been studied. After a series of

optimization experiments, a solution of 1a and 2a in a molar

ratio of 1:2 in toluene was placed in a high-pressure vessel at

5 kbar, and after 24 h at room temperature, the product 4a was

isolated in 70% yield.

The reaction conditions with THF and LiClO4 were used for

further reactions of aryl thioketones, i.e., thiodibenzosuberone

1b and thiodibenzosuberenone 1c, with 2a. The expected poly-

cyclic thiopyran derivatives 4b and 4c, respectively, were

obtained in 90 and 46% yield (Scheme 2). In the 1H NMR

spectra of both compounds the low-field shifted CHS signal

appeared at 5.82 and 4.49 ppm. Finally, the 2H-thiopyran struc-

ture of 4b was established by X-ray single crystal structure

determination (Figure 1).
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Scheme 3: Reactions of aryl/hetaryl thioketones with methyl propiolate (Table 1).

Figure 1: ORTEP Plot [19] of the molecular structure of 4b, drawn
using 50% probability displacement ellipsoids.

The analogous reactions of 2a with bis(N-methylpyrrol-2-yl)

thioketone (1d) afforded the pyrrolo[2,3-c]thiopyran derivative

4d in modest yield (35%) (Scheme 2). In the case of bis(thien-

2-yl) thioketone (1e), the reaction with 2a was carried out in

toluene at room temperature under a pressure of 5 kbar. After

72 h, the corresponding thieno[2,3-c]thiopyran 4e was obtained

in 35% yield (Scheme 2).

In an extension of the study, reactions of methyl propiolate (2b)

with selected aryl and hetaryl thioketones were performed under

thermal and high-pressure conditions. The reaction of 1a with

2b in THF and a catalytic amount of LiClO4 led to the benzo-

thiopyran 5a in 61% yield (Scheme 3, Table 1). The 1H NMR

analysis of the crude mixture indicated the presence of a single

regioisomer for which the structure 5a is proposed. In the alter-

native preparation of this product under high-pressure (toluene,

5 kbar), 66% of 5a were isolated. Both methods were applied

for analogous reactions with the symmetrical bis-hetaryl thioke-

tones 1e–g. Under thermal conditions, the products 5d–f were

also formed regioselectively in 83, 5, and 6% yield, respective-

ly. In these cases, the high-pressure experiments were also

performed with 1e (16% yield of 5d) and 1f (33% yield of 5e),

respectively; thioketone 1g was not tested under high pressure.

However, attempted isolations of both 5e and 5f were unsuc-

cessful as the products underwent decomposition upon

chromatographic work-up. The experiment performed with the

non-symmetrical phenyl thien-2-yl thioketone (1h) under

thermal conditions resulted also in the formation of a single

product 5g in a chemo- and regioselective manner in 74% yield.

The experiment under high-pressure conditions was much less

successful and gave 5g in only 17% yield. The structures of the

products were determined based on the spectroscopic data.

Thus, similar to hetero-Diels–Alder reactions with maleic anhy-

dride [14], the C=C bond of the thiophene ring of 1h is part of

the reactive heterodiene system.

The reactions of 2b with thiobenzosuberone 1b and thiobenzo-

suberenone 1c were performed under thermal conditions, and in

both cases, new polycyclic thiopyran derivatives 5b and 5c, res-

pectively, were formed regioselectively and obtained in good

yields (94 and 61%, respectively).

In order to test the scope and limitations of the hetero-

Diels–Alder reaction with thioketones and acetylenic

dienophiles, other easily available acetylenes were used in the
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Table 1: Fused 2H-thiopyrans 5.

1 Ph/Hetar Hetar/Ph 5 Method Aa

yield [%]
Method Ba

yield [%]

a Ph Ph a 61 66
b dibenzosuberone b 94 –
c dibenzosuberenone c 61 –
e thien-2-yl thien-2-yl d 83 16
f selenophen-2-yl selenophen-2-yl e 5b 33c

g furan-2-yl furan-2-yl f 6b –
h Ph thien-2-yl g 74 17

aMethods A and B see Experimental; bnot isolated; cdecomposes during attempted chromatographic separation.

Scheme 4: Oxidation of selected thiopyrans 4 and 5 to give the corresponding sulfones.

reaction with 1a. In all reactions attempted with phenylacety-

lene, (pyridin-2-yl)acetylene, and (tert-butyl)acetylene, no

conversion of 1a was observed as evidenced by the blue color

of the reaction mixture even after 24 h. Unfortunately, the

experiments performed under the described conditions (THF,

LiClO4 ,  temp.) with (trifluoromethyl)acetylene and

(diethoxyphosphoryl)acetylene, activated by the presence of

strongly electron-withdrawing substituents, were also unsuc-

cessful.

Some of the thiopyran derivatives 4 and 5 obtained in the

present study were used for oxidation reactions aimed at the

preparation of the corresponding sulfoxides and sulfones. As

demonstrated in a recent publication [20], polycyclic sulfones

are attractive substrates for the synthesis of polycyclic hydro-

carbons via thermal SO2 extrusion. In our experiments, thiopy-

rans 4a,b and 5a,b were oxidized in CH2Cl2 solution at room

temperature using 3.0 equivalents of mCPBA. In the case of 4a,

the progress of the reaction was monitored by TLC and
1H NMR spectroscopy. The spectrum recorded after 3 h showed

that along with starting materials, two new products in a ratio of

ca. 4:6 are present in the mixture. For that reason, the reaction

time was extended to 3 days. Then, only one of these products

was present, with characteristic signals of 2 MeO groups at 3.93

and 4.05 ppm. The signal of the CHS group was shifted down-

field and appeared at 5.48 ppm. The ESI mass spectra as well as

the elemental analysis confirmed the molecular formula

C19H16SO6, which corresponds with the structure of the sulfone

6a obtained in 90% yield (Scheme 4). Based on this result, the

intermediate product observed in the mixture after 3 h can be

proposed as the corresponding sulfoxide. No attempts were

made to isolate this product.

The same oxidation protocol was applied to convert thio-

pyranes 5a, 4b, and 5b into the corresponding sulfones 6b–6d

in 94, 70, and 80% yield, respectively. The structure of 6d was
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established by X-ray single crystal structure determination

(Figure 2). The course of the oxidation reactions for these

thiopyrans differs from a similar process reported for

Se-containing systems. In these cases, ring contraction and

elimination of an aryl group, but no formation of an oxidized

product, was observed [21]. The same report describes the

appearance of rearranged products (Pummerer-type rearrange-

ment) upon treatment of 1H-2-benzothiopyran-3,4-dicarboxy-

lates of type 4 with an equimolar amount of mCPBA.

Figure 2: ORTEP Plot [19] of the molecular structure of one of the
symmetry-independent molecules of 6d, drawn using 50% probability
displacement ellipsoids.

Conclusion
The present study shows that hetaryl thioketones react with acti-

vated acetylenecarboxylates in a hetero-Diels–Alder reaction

followed by the 1,3-hydrogen shift to give fused thiopyran

derivatives in a chemo- and regioselective manner. The thermal

reaction can be catalyzed by LiClO4. Comparable reaction

times were observed when the reaction was performed under

high-pressure conditions at room temperature. The thiopyran

derivatives can be oxidized by treatment with mCPBA at room

temperature to give the corresponding sulfones. In this reaction,

even when using equimolar amounts of mCPBA, selective for-

mation of the sulfoxide could not be achieved. The obtained

sulfones are promising substrates for thermal SO2 extrusion

reactions aimed at the contraction of the ring. The importance

of the presented study is amplified by the fact that benzothio-

pyran and related systems containing a thiopyran moiety, and

especially their carboxylic derivatives, are known as important

pharmacophores, with key importance for the biological activity

of diverse sulfur polyheterocycles [22-24].

It is worth of mentioning, that the described hetero-Diels–Alder

reactions with aromatic thioketones as heterodienes, display

certain similarities to the reported organometallic pathways

observed in their reactions with triiron dodecacarbonyl

Fe3(CO)12 [25,26].

Experimental
General information: Melting points were determined in capil-

laries using a MEL-TEMP II apparatus (Aldrich) and are uncor-

rected. IR spectra were recorded with a FTIR NEXUS spec-

trophotometer as KBr pellets; absorptions (ν) in cm−1. 1H and
13C NMR spectra were measured on a Bruker Avance III (1H at

600 and 13C at 150 MHz) instrument in CDCl3; chemical shifts

(δ) are given in ppm, coupling constants (J) in Hz. The multi-

plicity of the 13C signals was deduced from DEPT, supported

by 1H,13C HMQC spectra. 1H NMR data are presented as

follows: chemical shift, multiplicity (br = broad, s = singlet, d =

doublet, t = triplet, q = quartet, m = multiplet), coupling

constant, integration. The mass spectra were recorded on a

Finnigan MAT-95 (ESI), Bruker maxis (HRESI), or SYNAPT

G2-S HMDS (HR MALDI–TOF) instrument. Elemental

analyses were performed in the Microanalytical Laboraory of

the Chemistry Faculty in Łódź. Reactions under high pressure

were performed in a High Pressure Autoclave LC10T in the

Laboratory of the Polish Academy of Sciences (CBMiM) in

Łódź. Applied reagents such as DMAD, methyl propiolate,

inorganic reagents, and solvents are commercially available

(Aldrich) and were used as received.

Reaction of thioketones 1a–h with acetylenic dienophiles 2a

or 2b – General procedures: Method A: A solution of

1 mmol of the corresponding thioketone, 2 mmol of the corres-

ponding acetylenic dienophiles and 10 mol % of LiClO4 in

1 mL of dry THF was placed in a thick-wall glass tube, which

then was closed with a screw cap. The mixture was heated at

50 °C for 24 h. The solvent was evaporated in vacuo. Subse-

quent separation on preparative plates coated with silica gel

(eluent: CH2Cl2) gave pure products. Method B: The corres-

ponding thioketone (1 mmol) and acetylenic dienophile

(2 mmol) were placed in a 4 mL teflon vial that was then filled

with dry toluene. The vial was closed and kept at 5 kbar at room

temperature for 24 h. After depressurizing, the solvent was

removed in vacuo. Subsequent separation on preparative plates

coated with silica gel (eluent: CH2Cl2) gave pure products.

Dimethyl 11,12-dihydro-4bH-benzo[4,5]cyclohepta[1,2,3-

ij]isothiochromene-6,7-dicarboxylate (4b): Yield: 328.5 mg

(90%). Colorless crystals; mp 147.5–148.0 °C (MeOH); IR

(KBr) ν: 3061 (w), 2948 (w), 1732 (s), 1725 (s), 1597 (w), 1562

(w), 1435 (m), 1270 (s), 1232 (s), 1030 (w), 751(m) cm−1;
1H NMR (600 MHz, CDCl3) δ 7.61 (d, J = 12 Hz, 1Harom),

7.33–7.30 (m, 1Harom), 7.24–7.15 (m, 4Harom), 7.03 (d, J =

6 Hz, 1Harom), 5.82 (br s, S-CH), 3.92, 3.94 (2s, 6H, 2 OCH3),
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3.55 (br s, 1CH), 3.37 (br s, 1CH), 3.12 (br s, 1CH), 3.01–2.97

(m, 1CH) ppm; 13C NMR (150 MHz, CDCl3) δ 168.1, 164.3 (2

C=O), 138.1, 138.0, 131.8, 130.6 (7 C(sp2)), 136.3, 128.0,

127.5, 126.4, 125.3 (7 CHarom), 53.1, 52.8 (2 OCH3), 33.0

(S-CH), 32.0 (broad, 2 CH2) ppm; HRMS (ESI): [M + Na]+

calcd for C21H18NaO4S, 389.08180; found, 389.08178; anal.

calcd for C21H18O4S: C, 68.82; H, 4.95; S, 8.75; found: C,

68.71; H, 5.06; S, 8.82.

Dimethyl 4bH-benzo[4,5]cyclohepta[1,2,3- i j]isoth-

iochromene-6,7-dicarboxylate (4c): Yield: 83 mg (46%).

Orange solid; mp 139.7–140.0 °C (purified chromatographi-

cally); IR (KBr) ν: 3018 (w), 2947 (w), 1728 (s), 1725 (s), 1596

(w), 1563 (w), 1433 (w), 1264 (s),1229 (s), 1097 (w), 771 (w)

cm−1; 1H NMR (600 MHz, CDCl3) δ 7.77 (d, J = 6 Hz,

1Harom), 7.49–7.45 (m, 2Harom), 7.42 (d, J = 6 Hz, 1Harom),

7.36 (d, J = 6 Hz, 1Harom), 7.30, 7.27 (2d, J = 6 Hz, 2 olefinic

HC=), 7.23 (d, J = 6 Hz, 2Harom), 4.49 (s, S-CH), 3.92, 4.00 (2

s, 6H, 2 OCH3) ppm; 13C NMR (150 MHz, CDCl3) δ 167.8,

164.2 (2 C=O), 139.9, 135.8, 134.6, 132.5, 130.3, 128.8, 124.2

(7 C(sp2)), 132.2, 130.1, 129.3, 127.8, 127.6, 126.7, 126.7,

126.6, 125.2 (7 CHarom + 2 CHolefin), 53.2, 52.8 (2 OCH3), 41.8

(S-CH) ppm; HRMS (MALDI–TOF): [M + Na]+ calcd for

C21H16NaO4S, 387.0668; found, 387.0667.

Methyl 11,12-dihydro-4bH-benzo[4,5]cyclohepta[1,2,3-

ij]isothiochromene-7-carboxylate (5b): Yield: 288.5 mg

(94%). Yellow solid; mp 116.0–116.5 °C (chromatographic

purification); IR (KBr) ν: 3059 (w), 2946 (w), 1702 (s), 1591

(w), 1431 (w), 1221 (s), 1068 (m), 756 (m) cm−1; 1H NMR

(600 MHz, CDCl3) δ 7.93–7.87 (m, 1Harom), 7.84–7.80 (m,

1Harom), 7.61 (br s, S-CH=), 7.28–7.23 (m, 2Harom), 7.21–7.17

(m, 2Harom), 7.03 (br s, 1Harom), 5.79 (br s, S-CH), 3.87 (s, 3H,

OCH3), 3.55 (br s, 1CH), 3.35 (br s, 1CH), 3.15 (br s, 1CH),

3.03–2.95 (m, 1CH) ppm; 13C NMR (150 MHz, CDCl3) δ

165.3 (C=O), 142.0, 138.7, 137.6, 135.2, 125.7, 125.4 (6

C(sp2)), 132.4, 130.6, 129.3, 128.0, 127.8, 127.1, 126.6, 126.1

(7 CHarom + S-CH=), 51.9 (OCH3), 35.0 (S-CH), 32.2 (broad, 2

CH2) ppm; HRMS (MALDI–TOF): [M + Na]+ calcd for

C19H16NaO2S, 331.0761; found, 331.0769.

Methyl 4bH-benzo[4,5]cyclohepta[1,2,3-ij]isothiochromene-

7-carboxylate (5c): Yield: 85 mg (61%). Yellow solid; mp

77.5–78.0 °C (chromatographic purification); IR (KBr) ν: 3057

(w), 2948 (w), 1709 (s), 1644 (m), 1589 (w), 1432 (w), 1235

(s), 1066 (m), 726 (m) cm−1; 1H NMR (600 MHz, CDCl3) δ

7.98 (m, 1Harom), 7.95 (d, J = 6 Hz, 1Harom), 7.75 (d, J = 12 Hz,

1Harom), 7.43–7.41 (m, 1Harom), 7.37–7.34 (m, 2Harom), 7.27

(s, 1Harom), 7.28–7.24 (m, 1Harom), 7.22, 7.18 (2 d, J = 12 Hz, 2

olefinic HC=), 4.45 (s, S-CH), 3.86 (s, 3H, OCH3) ppm;
13C NMR (150 MHz, CDCl3) δ 165.2 (C=O), 139.7, 134.9,

134.7, 131.6, 131.1, 125.0 (6 C(sp2)), 138.7, 131.9, 131.6,

130.7, 130.2, 128.8, 127.9, 127.8, 126.5, 126.1 (7 CHarom + 2

CHolefin + S-CH=), 51.9 (OCH3), 41.3 (S-CH) ppm; MS (ESI)

m/z (%): 207 (100, [M − 74]+), 245 (55, [M − 36]+), 297 (45,

[M − 16]+); anal. calcd for C19H14O2S: C, 74.48; H, 4.61; S,

10.46; found: C, 74.53; H, 4.99; S, 10.64.

General procedure for the oxidation of thiopyran deriva-

tives 4a,b and 5a,b: A solution of 1 mmol of the corres-

ponding thiopyran and 3 mmol of mCPBA (70% purity) in

dichloromethane was stirred at room temperature for 3 days.

Then the reaction mixture was extracted with aqueous saturated

NaHCO3 (3 × 10 mL) and distilled water (1 × 10 mL). The

organic phase was dried over anhydrous MgSO4 and concen-

trated in vacuo.

Methyl 11,12-dihydro-4bH-benzo[4,5]cyclohepta[1,2,3-

ij]isothiochromene-7-carboxylate 5,5-dioxide (6d): Yield:

88 mg (80%). Colorless crystals; mp 187.5–188.0 °C (MeOH);

IR (KBr) ν: 3041 (w), 2950 (w), 1717 (s), 1600 (w), 1433 (w),

1307 (s), 1262 (s), 1130 (s), 785 (m) cm−1; 1H NMR (600 MHz,

CDCl3) δ 7.60–7.48 (m, 1Harom), 7.36 (br s, 1Harom + S-CH=),

7.32–7.28 (m, 2Harom), 7.27–7.20 (m, 3Harom), 5.72 (br s

S-CH), 3.96 (s, 3H, OCH3), 3.58 (br s, 1H), 3.10 (br s, 2H),

2.91 (br s, 1H) ppm; 13C NMR (150 MHz, CDCl3) δ 164.9

(C=O), 134.5, 134.3, 132.2, 131.0, 130.8, 129.2 (6 C(sp2)),

134.1, 133.3, 130.0, 129.7, 129.1, 128.0, 127.5, 126.1 (7

CHarom + S-CH=), 62.5 (OCH3), 53.4 (S-CH), 37.3, 34.7 (2

broad signals, 2 CH2) ppm; HRMS (ESI): [M + Na]+ calcd for

C19H16NaO4S, 363.06615; found, 363.06614.
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