
Physics Letters B 746 (2015) 417–423

brought to you by COREView metadata, citation and similar papers at core.ac.uk
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Chiral fermions, massless particles and Poincare covariance

Krzysztof Andrzejewski, Agnieszka Kijanka-Dec, Piotr Kosiński ∗, Paweł Maślanka
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The coadjoint orbit method is applied to the construction of Hamiltonian dynamics of massless particles 
of arbitrary helicity. The unusual transformation properties of canonical variables are interpreted in terms 
of nonlinear realizations of Poincare group. The action principle is formulated in terms of new space–time 
variables with standard transformation properties.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recently, triangle anomalies, chiral fermions and Berry curva-
ture in momentum space, their interrelations and role played in 
various physical phenomena have attracted much attention [1–23]. 
Much of the research consists in exploring anomaly-related phe-
nomena in kinetic theory. An important point here is that, assum-
ing weak external fields and weak particle interactions, one can 
rely to large extent on (semi)classical approximation. For example, 
instead of using the Weyl equation one can describe massless chi-
ral fermions of helicity 1

2 by the action functional

S =
∫ ((�p + e �A) · �̇x − (|�p| + e�

) − �α · �̇p
)

dt (1)

involving the vector potential �α(�p) describing the Berry monopole 
in momentum space. Eq. (1) can be derived from Weyl Hamil-
tonian by considering semiclassical approximation to the path-
integral representation of a transition amplitude [16] or, alterna-
tively, using wave-packet approach [24].

The main problem with Eq. (1) is that it lacks manifest Lorentz 
symmetry even in the absence of external fields. This is the more 
surprising that it has been derived from explicitly covariant Weyl 
theory. To shed some light on the problem the authors of Ref. [16]
proposed a modified transformation law for particle dynamical 
variables which is consistent in the sense that it leaves the dynam-
ics following from the action (1) invariant and reduces to the stan-
dard Lorentz symmetry if the additional terms which arise due to 
the nonzero helicity are neglected. However, their proposal is ex-
otic in the sense that: (i) it contains additional, helicity-dependent, 
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terms mentioned above; (ii) the group composition rule closes only 
“on-shell”.

A deep analysis of the resulting situation has been given in the 
nice recent papers [14,22,23]. In particular, Duval et al. not only 
extended the results of Ref. [16] to the case of full Poincare sym-
metry but they reconsidered the whole problem in more general 
framework provided by the Souriau sympletic approach to dynam-
ics [25]. They were able to derive the Poincare symmetry for chiral 
fermions by showing that the latter can be obtained from Souriau’s 
model of relativistic massless spinning particle by the procedure 
called “spin enslaving”.

Let us note that some of the apparently paradoxical features 
of Lorentz transformation laws for particles with nonzero spin 
(massive case) or helicity (massless case) appear to be unavoid-
able consequences of the group structure and basic conservation 
laws. It has been noticed long time ago [26] that the generators of 
Poincare symmetry for massless particle of nonzero helicity cannot 
be constructed out of canonical variables obeying standard canon-
ical commutation rules and having standard transformation prop-
erties; if it were possible, the helicity would acquire more than 
one value within irreducible representation of Poincare group. An-
other nice argument in favor of “exotic” transformation has been 
given in Ref. [16] (see also [15]) where the zero impact param-
eter collision of two massless particles of nonvanishing helicities 
was considered. By applying the Lorentz boost along the direction 
of motion of one incoming particle it is shown there that such a 
boost must result in “side jump” in order to fulfill the angular mo-
mentum conservation law. Similar side jumps which depend only 
on the kinematics of the problem appear, for example, in impurity 
scattering caused by spin-orbit interaction [27]. This phenomenon 
seems also to have its counterpart in optics in the form of the rel-
ativistic Hall effect of light [28–34,15] (see also [35–37]).
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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The reason for the existence of the above described specific side 
jumps can be also traced back to the question of defining the cen-
ter of mass of relativistic extended spinning body [38,39,14].

In the present paper, inspired by Ref. [22], we study further 
the invariance properties of the action functional (1). Our starting 
point is the construction of the Hamiltonian dynamics for mass-
less particles with arbitrary helicity. The main tool we use is the 
coadjoint orbits method [25,40–42]; it has been already applied 
to the dynamics of relativistic particles in a number of references 
[25,43–49]. We classify the orbits corresponding to massless parti-
cles of the given helicities and construct the generators of Poincare 
group in terms of canonical variables. We find explicit form of the 
stability subgroup of a “canonical” point on the orbit and reinter-
pret the whole construction in terms of nonlinear realizations of 
Poincare group. This allows for quite natural interpretation of “ex-
otic” transformation properties of coordinate variables. It is shown 
that the action principle can be put in the form which does not 
depend on the value of helicity; the latter enters only the transfor-
mation properties of basic variables. On the other hand, if one in-
sists on having standard transformation properties of basic space–
time variables, the action functional becomes helicity-dependent 
and exhibits the gauge symmetry, the gauge group being the sta-
bility subgroup mentioned above. The initial description is then 
obtained by an appropriate gauge fixing which is not covariant un-
der the action of full Poincare group. Therefore, the action of the 
latter on initial variables is a composition of left action by standard 
space–time transformations supplemented by a gauge transforma-
tion. This provides alternative way of looking at the unusual trans-
formation properties of dynamical variables representing massless 
particles.

2. Classical massless particles

We adopt the convention gμν = diag(+ − −−). The light-cone 
coordinates are defined by x± = 1√

2
(x0 ± x3). Let k be fixed but ar-

bitrary parameter having the momentum dimension and let kμ =
(k, 0, 0, k) be the standard null vector. Denote by Lk ⊂ SO(3, 1) the 
stability subgroup of kμ . Any element � of SO(3, 1) can be decom-
posed as follows

� = B · D · R, D ∈ Lk, R ∈ Lk (2)

where in the light-cone basis (x+, x−, x1, x2) the matrices B , D and 
R take the form

B =

⎛
⎜⎜⎝

�++ 0 0 0

�−+ 1
�++

�1+
�++

�2+
�++

�1+ 0 1 0
�2+ 0 0 1

⎞
⎟⎟⎠ (3)

D =

⎛
⎜⎜⎝

1 �+−
�++ d1 d2

0 1 0 0
0 d1 1 0
0 d2 0 1

⎞
⎟⎟⎠ (4)

R =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cosα sinα
0 0 − sinα cosα

⎞
⎟⎠ (5)

and

d1,2 ≡ �1,2−�++ − �1,2+�+−
�++

(6)

cosα ≡ �1
1�

++ − �1+�+
1

+ (7)

� +
sinα ≡ �1
2�

++ − �1+�+
2

�++
(8)

The decomposition (2) is singular at some points because the prin-
cipal bundle (SO(3, 1), Lk) is nontrivial but this fact does not af-
fect the reasoning. Note that B parametrize the coset manifold 
SO(3, 1)/Lk . Denote by (�, a) the elements of Poincare group P , 
the composition law being (�, a) · (�′, a′) = (��′, �a′ + a). An in-
finitesimal element g = (I + ω, ε) can be written as

g = I + iεμ Pμ − i

2
ωμν Mμν (9)

with Pμ and Mμν = −Mνμ being the generators for translations 
and Lorentz transformations, respectively. Denote by ζμ and ζμν =
−ζνμ the coordinates in the dual space to Lie algebra of P . The 
coadjoint action of P reads

Ad∗
(�,a)ζμ = �μ

νζν (10)

Ad∗
(�,a)ζμν = �μ

α�ν
βζαβ + (aμ�ν

α − aν�μ
α)ζα (11)

The dual space is equipped with invariant Poisson structure which 
can be read off from the basic commutation rules of Poincare al-
gebra:

{ζμ, ζν} = 0 (12)

{ζμν, ζα} = gναζμ − gμαζν (13)

{ζμν, ζαβ} = gμβζνα + gναζμβ − gμαζνβ − gνβζμα (14)

The coadjoint orbits are classified by selecting the values of the 
invariants corresponding to the Casimir operators

M2 ≡ ζμζμ (15)

W2 ≡ wμwμ, wμ = 1

2
εμναβζνζαβ (16)

Note the following Poisson brackets following from Eqs. (12)–(16):

{wμ, ζρσ } = δ
μ
ρ wσ − δ

μ
σ wρ (17)

{wμ, wν} = εμνρσ ζρ wσ (18)

We are interested in coadjoint orbits corresponding to M2 = 0, 
W2 = 0 and ζ 0 > 0. Due to the former condition any such orbit 
contains a point (ζμ, ζμν) with ζμ = (k, 0, 0, −k) ≡ kμ . Once ζμ

is fixed, W2 = 0 yields

ζ 01 − ζ 31 = 0 (19)

ζ 02 − ζ 32 = 0 (20)

Consider now the action of the subgroup of P consisting of ele-
ments (h, a), where h ∈ Lk . Using Eqs. (10), (11), (19) and (20) we 
easily conclude that to any orbit under consideration there belongs 
the “canonical” point:

ζμ = kμ

ζμν =
⎧⎨
⎩

0, (μν) 	= (12), (21)

−s, (μν) = (12)

s, (μν) = (21)

(21)

Note that at this point

wμ = skμ (22)

Both sides of Eq. (22) are fourvectors under the coadjoint action of 
Poincare group; therefore, anticipating slightly the notation,

wμ = spμ (23)
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We see that the orbit is uniquely characterized by the single pa-
rameter s which describes helicity.

Let Pk ⊂ P be the stability subgroup of canonical point (21)
under the coadjoint action of Poincare group. It consists of the el-
ements 

(
h, a(h)

)
where h = D R ∈ Lk and a(h) is defined by

a0 = a3-arbitrary, a1 = s√
2k

d2, a2 = −s√
2k

d1 (24)

with d1,2 being defined by Eq. (4).
The Lie algebra of Pk is spanned by

E1 ≡ M01 + M31 + s√
2k

P2 (25)

E2 ≡ M02 − M23 − s√
2k

P1 (26)

P+ = 1√
2
(P0 + P3) (27)

J = M12 (28)

The relevant commutation rules read

[ J , Ei] = iεik Ek (29)

[Ei, Ek] = 2i · s

k
εik P+ (30)

[P+, ·] = 0 (31)

Pk is, therefore, the centrally extended E(2) group.1 Lk is its image 
under the canonical homomorphism P → SO(3, 1). The orbit under 
consideration is isomorphic to the coset manifold:

V = P/Pk (32)

In order to parametrize V let us consider an arbitrary element 
(�, a) ∈P . First, we decompose � according to Eq. (2)

� = B · (D R) ≡ B · h (33)

Let yμ = (0, �y); consider the decomposition

(�,a) = (B, y) · (h,a(h)
)

(34)

where a(h) is given by Eq. (24). Eqs. (33) and (34) imply

aμ = (
Ba(h)

)μ + yμ (35)

Eqs. (33) and (35) can be solved to yield h, a(h), B and y (the 
solution is unique but somewhere singular due to the nontrivial-
ity of the relevant bundle, as mentioned above). The pair (B, y)

parametrizes the coset manifold V and, consequently, the coad-
joint orbit

(ζμ, ζμν) = Ad∗
(B,y)(ζμ, ζμν) (36)

with ζμ , ζμν given by Eq. (21). Finally, we parametrize B as fol-
lows:

pμ = �μ+k+ = �μ+ · √2 · k, pμpμ = 0 (37)

Using Eqs. (36) and (37) one easily finds

1 This interesting property can be also inferred from the discussions presented 
in Refs. [14,22,23] and, in form of symmetry of Wess–Zumino-like action, from 
Ref. [58].
ζμ = pμ (38)

ζ12 = y1 p2 − y2 p1 (39)

ζ23 = y2 p3 − y3 p2 + sp1√
2p+ (40)

ζ31 = y3 p1 − y1 p3 + sp2√
2p+ (41)

ζ01 = −y1 p0 + sp2√
2p+ (42)

ζ02 = −y2 p0 − sp1√
2p+ (43)

ζ03 = −y3 p0 (44)

We see that the classical massless particles define the nonlinear 
realization of the Poincare group corresponding to the stability 
subgroup Pk . The variables �y and �p provide independent coor-
dinates on coadjoint orbit/coset manifold (they are Goldstone or 
preferred variables in terminology of Ref. [50]). Their transforma-
tion properties are derived either from coadjoint action of Poincare 
group on ζμ and ζμν or from its left action on the coset manifold 
P/Pk . The relevant transformation rules can be described as fol-
lows. The momentum variables pμ transform separately. Transla-
tions act trivially on them while the action of infinitesimal Lorentz 
transformations �μ

ν = δμ
ν + ωμ

ν reads

δpk = βk|�p| + εklmωl pm (45)

where βk ≡ ωk0, εiklωl = ωik . The translation subgroup is the ker-
nel of the realization on momentum variables which is the nonlin-
ear realization of Lorentz group determined by the E(2) subgroup 
(stability subgroup of kμ). In spite of the fact that the third axis 
plays a distinguished role the realization linearizes on rotations. 
The y-variables transform in a more complicated way. Consider 
again Lorentz transformations. They read

δ�y = �ω × �y − ( �β · �y)
�p

|�p| + ��p(p) (46)

where

(p) = s

(
ω1 p1 + ω2 p2 + β1 p2 − β2 p1√

2p+

)
(47)

It is not difficult to check that the transformations (45)–(47) are 
canonical

δ(·) =
{
(·), 1

2
ωμνζμν

}
(48)

As a next step we find the Poisson brackets for y’s and p’s. Using 
Eqs. (12)–(14) and (38)–(44) one computes

{yi, yk} = 0 (49)

{yi, pk} = δik (50)

{pi, pk} = 0 (51)

In terms of y’s rotations linearize only on the subgroup of rotations 
around the third axis. However, one can make things explicitly 
rotationally invariant by passing to the coordinates �x defined as 
follows:

y1 = x1 + sp2√
2p+p0

(52)

y2 = x2 − sp1√
2p+p0

(53)

y3 = x3 (54)
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Then we find

ζ0i = −p0xi (55)

ζi j = xi p j − x j pi + sεi jk pk

p0
(56)

The price one has to pay for simplifying the transformation prop-
erties is that the new variables are no longer Darboux ones. In fact, 
new Poisson brackets read

{xi, x j} = − sεi jk pk

(p0)3
(57)

{xi, p j} = δi j (58)

{pi, p j} = 0 (59)

In terms of new variables rotations, as it has been mentioned 
above, take the standard form. On the other hand, the boosts read

δxi = −(β j · x j)
pi

|�p| + sεi jkβ j pk

|�p|2 (60)

δpi = βi|�p| (61)

For completeness let us write out the action of translation sub-
group (I, a). It reads

δxi = ai − a0
pi

|�p|
δpi = 0 (62)

This agrees with the identification H = p0 = |�p|.

3. Poincare symmetry

To derive the symmetry transformations we note that our sym-
metry is a dynamical one: the Hamiltonian belongs to the Lie alge-
bra of symmetry group and, in general, does not Poisson-commute 
with other generators. Their time evolution is given by the one 
parameter subgroup of adjoint transformations generated by the 
Hamiltonian. Expressing the initial (t = 0) generators in terms of 
actual ones yields the conserved charges which generate the sym-
metry. In our case the new conserved generators read

ζ̃μ = ζμ (63)

ζ̃i j = ζi j (64)

ζ̃0i = ζ0i + ζit (65)

By virtue of Eqs. (63)–(65) we conclude that the symmetry 
transformations corresponding to the boosts are modified accord-
ing to

δxi = −(βkxk)
pi

|�p| + βit + sεi jkβ j pk

|�p|2 (66)

The same result is obtained by applying the original transfor-
mations (60) and (61) to initial variables and propagating them to 
the moment t with the help of equations of motion.

Concluding, the symmetry transformations are obtained through 
nonlinear action of Poincare group on the coset manifold de-
fined by the subgroup of Poincare group related to Pk by a 
time-dependent internal automorphism generated by the Hamil-
tonian. In other words, let �x = �x(t, �x0, �p0), �p = �p(t, �x0, �p0) be 
the solution to the equations of motion; the change of variables 
(�x, �p, t) → (�x0, �p0, t) yields the nonlinear realization with �x0, �p0
being the preferred variables parametrizing P/Pk while t is the 
adjoint variable [50] transforming trivially under the action of Pk .

Transformation rules (66) can be put in yet another form. 
Within the Hamiltonian formalism the symmetry transformations 
do not involve the redefinition of time. The symmetries including 
the change of time variable are accommodated by recomputing the 
values of dynamical variables back to initial time with the help of 
canonical equations of motion; for any dynamical variable η the 
relation between the Hamiltonian and Lagrangian form of symme-
tries reads δHη = δLη − η̇δt . Keeping this in mind we rewrite the 
transformation rules (66) as

δt = βkxk (67)

δxi = βit + sεi jkβ j pk

|�p|2 (68)

δpi = βi|�p| (69)

For s = 0 one arrives at the standard Lorentz transformation 
rules. However, for s 	= 0 the above transformation rules close only 
“on-shell” [16]. Indeed, the relevant differential boost generators 
read

M0k = i

(
xk

∂

∂t
+ t

∂

∂xk
+ sεklj pl

|�p|2
∂

∂x j
+ |�p| ∂

∂ pk

)
(70)

The corresponding commutation rule takes the form

[M0k, M0m] = −iMkm − 2sεkml pl

|�p|2
(

∂

∂t
+ p j

|�p|
∂

∂x j

)
(71)

and reduces to the standard form on trajectories xk − pkt
|�p| = const.

4. Quantum theory

It is easy to quantize the classical theory formulated above. We 
start with diagonalizing the momenta yielding the momentum rep-
resentation. As the momentum variables transform in a standard 
way it is convenient to use the explicitly invariant scalar product

( f , g) =
∫

d3 �p
2|�p| f (�p)g(�p) (72)

Due to the canonical relations (49)–(51) y’s are basically 
p-derivatives. However, we should take into account the hermitic-
ity condition with respect to the scalar product (72). Therefore,

�y =
√

|�p|
(

i∂

∂ �p

)
1√|�p| = i∂

∂ �p − i�p
2|�p|2 (73)

Now, one can construct generators according to the equations 
(38)–(44); to this end one has to perform symmetrization yi p0 →
1
2 (yi p0 + p0 yi). The resulting generators read

Pμ = pμ (74)

M12 = i

(
p2

∂

∂ p1
− p1

∂

∂ p2

)
− s (75)

M23 = i

(
p3

∂

∂ p2
− p2

∂

∂ p3

)
+ sp1

p0 − p3
(76)

M31 = i

(
p1

∂

∂ p3
− p3

∂

∂ p1

)
+ sp2

p0 − p3
(77)

M01 = −i|�p| ∂

∂ p1
+ sp2

p0 − p3
(78)

M02 = −i|�p| ∂

∂ p2
− sp1

p0 − p3
(79)

M03 = −i|�p| ∂
(80)
∂ p3
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It is easy to check that Mμν and Pμ obey Poincare algebra. 
If we demand that it integrates to the representation of universal 
covering ISL(2, C) of Poincare group s must be integer or halfinte-
ger. The above representation coincides with that given, for exam-
ple, in Ref. [51] or [52].

5. Action principle

It is well-known that the Kirillov form defining Poisson brackets 
on coadjoint orbit is related to the Cartan forms on the relevant 
coset manifold [53]. Applying the prescription given in [53] to the 
case of Poincare symmetry we define

�(p, y) ≡ �μ(p, y)ζμ + �μν(p, y)ζμν (81)

where (p, y) parametrize the coset manifold and

(p, y)−1d(p, y) = i�μ(p, y)Pμ + i�μν(p, y)Mμν (82)

Then

�̃ ≡ d� (83)

is the relevant Kirillov form. Explicit computation yields

� = −pidyi = −pidxi + αi(�p)dpi (84)

with

�α(�p) = s

(
−p2

p0 p+ ,
p1

p0 p+ ,0

)
(85)

being the vector potential of the monopole.
According to the general theory the action functional yielding 

correct equations of motion reads

S =
∫ (−� − Hdt

)
(86)

leading to

S =
∫ (�p · �̇y − |�p|)dt =

∫ (�p · �̇x − |�p| − �α(�p) · �̇p)
dt (87)

The first form of the action integral confirms the conclusion 
that (�y, �p) are Darboux variables. Let us note that it does not de-
pend on the helicity s. Before entering more sophisticated aspects 
of action principle let us make some remarks. The textbook action 
for massive relativistic particle reads

S = −m

∫
ds = −m

∫ √
1 − �̇y2

dt (88)

The m → 0 limit cannot be taken directly. However, one can 
pass to the Hamiltonian form which is straightforward for m 	= 0
and yields

S = −
∫

pμdyμ, y0 = t, pμpμ = 0 (89)

It is now easy to take the limit m → 0 which gives Eq. (87). 
In terms of y, p variables the action has the universal form as it 
does not depend on the helicity value. The latter enters only the 
transformation rule. Let us write it in “Lagrangian” form:

δy0 = �β · �y (90)

δ�y = �ω × �y + �β y0 + ��p(p) (91)

δ�p = �ω × �p + �βp0 (92)

δp0 = �β · �p (93)
(p) is proportional to the helicity and this is the only term 
where s enters. The additional contribution to the action integrand 
reads

�pd
( ��p(p)

) = d
(�p · ��p(p)

) − d�p · ��p(p) =
= d

(�p · ��p(p) − (�p)
)

(94)

which proves the invariance of action principle.
One can pose the question whether and how the space–time 

variables transforming according to the formula x → �x +a can be 
built into the theory. New formalism should be equivalent to the 
one based on coadjoint orbits. Therefore, all dynamical variables 
should be constructed out of group elements. Assume the global 
symmetry is identified with (say) left action of the group on it-
self. From the form of nonlinear group action we conclude that our 
dynamics must be invariant under the right action of stability sub-
group viewed as the gauge group. In fact, the relevant dynamical 
variables parametrize the coset space. If one works with the vari-
ables parametrizing the whole group, those corresponding to the 
subgroup must be redundant and should be eliminated by a sym-
metry transformations. Writing schematically the nonlinear action 
on coset space

g w = w ′h(w, g) (95)

we see that in order to eliminate the subgroup variables one has to 
act from the right with the stability subgroup elements which are 
generally time-dependent; we are dealing with gauge symmetry.

It is quite easy to write out the action integral on group man-
ifold which is invariant under the global action of this group by 
left multiplication and the local action of some its subgroup by 
right multiplication provided this subgroup is the stability group 
of some point on coadjoint action. Let G be a Lie group, H ⊂ G
its subgroup leaving invariant the element ξα of dual space to Lie 
algebra of G . Writing the Cartan–Maurer form as

g−1dg = iηα(g)Aα (96)

where Aα are the generators of G and putting [53]

η(g) ≡ ηα(g)ξα (97)

one easily finds that ω(g) is invariant under the global left action 
of G and, up to a total differential, under the local right action 
of H . Therefore, the first-order action

S =
∫ (−η(g)

)
(98)

defines invariant dynamics of G/H (because of the gauge symme-
try under the right action of H).

Let apply the above construction to the Poincare group. One has

(�, z)−1d(�, z) = (�−1d�,�−1dz) (99)

Keeping in mind the form of “canonical” point (21) we arrive 
easily at the following form of invariant action

S = −
∫ (

k
(
�μ

0 − �μ
3)dzμ − is

2
Tr

(
J�−1d�

))
(100)

with J = M12. This Wess–Zumino like action was considered in 
Refs. [54–58]. (See also [59].) It posses the expected symmetries 
under:

– the global Poincare transformations:

(�̃,a) : (�, z) −→ (�̃�, �̃z + a) (101)
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– the local Pk transformations:

δ� = iθa(t)�Ẽa + iϕ(t)�M (102)

δzμ = s

k

(
θ1(t)�μ

2 − θ(2)(t)�μ
1

)
+

+ a(t)(�μ
0 + �μ

3) (103)

Ẽ1 ≡ M01 + M31, Ẽ2 ≡ M02 − M23 (104)

The first order action (100) exhibits gauge symmetry. A care-
ful analysis of the emerging constraints leads, via Dirac method, to 
the conclusion that it describes, as expected, the massless helic-
ity s particles (cf., for example, Ref. [58]). One can also proceed by 
fixing an appropriate gauge. To this end we recall the decompo-
sition (2)–(8) together with the identification (37). It follows that 
one can fix the gauge such that � = B with matrix elements be-
ing parametrized by fourmomentum pμ . Moreover, the parameter 
function a(t) can be chosen in such a way that z0 ≡ t (in other 
words the invariant evolution parameter can be replaced by time).

Fixing the gauge as above we arrive at the following simple 
action

S =
∫ (�p · �̇y − |�p|)dt (105)

which coincides with Eq. (89); here �y denotes the spatial part of 
gauge-transformed zμ .

The findings of previous sections can be now rephrased as fol-
lows. The gauge fixing condition breaks the explicit global Poincare 
invariance. The Poincare transformation must be supplemented by 
an appropriate gauge transformation which restores the gauge. 
This makes the final transformation rule more complicated.

Let us now consider the coupling to the external electromag-
netic field. The minimal coupling is achieved by adding the term 
e Aμ(z)żμ to the Lagrangian. The z variables transform standardly 
under Poincare group so Aμ(z) have the standard meaning. The 
action takes the form

S =
∫ (

−(�μ0 + �μ3)kdzμ + e Aμ(z)dzμ −

− is

2
Tr( J�−1d�)

)
(106)

Note that the above action, while preserving the standard gauge 
invariance related to electromagnetic coupling, seems to break the 
gauge symmetry related to the right action of stability subgroup. 
This could imply that some of the gauge degrees of freedom be-
come real dynamical variables. The related ambiguity in including 
the interaction has been discussed in Refs. [22,23]. The problem of 
interaction will be treated in more detail in the forthcoming pa-
per [60].

Another interesting question concerns the relation between the 
present formalism for massless particles with nonzero helicities 
and the massive ones with spin based on twistor theory [61–63]. 
Also the relation with other models of massless particles [64–67]
is worth of study.

After submitting this paper an additional somewhat related ref-
erence has been brought to our attention which we find interest-
ing: D. Capasso, D. Sarkar, Phys. Rev. D 89 (2014) 084012.

Acknowledgements
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