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CHAPTER 1 – INTRODUCTION 

The demands for utilizing autonomous vehicles in hazardous situations are increasing 

rapidly. There are plenty of examples where these vehicles are successfully used in practice, such 

as those inspecting the damaged nuclear reactors in Fukushima [1], robotic submarines attempting 

to repair the ruptured well in the Gulf of Mexico [2] and firefighters rescuing survivors in a 

collapsing building [3]. Among these robots, flying Miniature Aerial Vehicles (MAVs) have 

become an important tool not only in the military domain, but also in civilian environments. 

Particularly Quadcopters are becoming more popular, especially for observational and exploration 

purposes in indoor and outdoor environments, but also for data collection, object manipulation or 

simply as high-tech toys. Also, Quadcopters have many more potential applications such as: A 

swarm of small, light and cheap Quadcopters could for example be deployed to quickly and 

without risking human lives explore collapsed buildings to find survivors. Equipped with high-

resolution cameras, MAVs they can also be used as flying photographers, providing aerial based 

videos of sport events or simply taking holiday photos from a whole new perspective [4]. 

Among all MAVs, Quadcopters are becoming more popular for observational and 

exploration purposes in indoor and outdoor environments. Quadcopters have flying behavior 

similar to a helicopter, which means they can fly and land vertically (unlike airplanes), stay 

perfectly in a certain point in space (like helicopters) and move in any given direction at any time, 

without having to turn first. With these features, Quadcopters can maneuver extremely well in 

constrained high-dense indoor spaces, as corridors or offices, making them ideally suited for 

stationary observation or exploration in obstacle-dense or indoor environments, making them one 

of the best choices for indoor environments exploration compared to other robots [4]. 
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In order to navigate, Quadcopters often rely on a wide variety of sensors including Inertial 

Measurement Unit (IMU), Global Positioning System (GPS), and gyroscopes. Although these 

sensors are not completely reliable individually, combinations of them arguably make them good 

enough as outdoor positioning systems. However, flying in an unknown environment without GPS 

signal requires alternative positioning methods that include expensive sensors like a 3-D depth 

scanning camera [5]. Alternatively, one can use optical cameras to collect information [6]. While 

cameras are cost efficient, they have some disadvantages where excessive amounts of data is 

collected which in turn makes processing data computationally expensive. In addition, 2-D images 

that are captured using cameras make it difficult to extract 3-D information. 

One crucial objective of any Quadcopter is to localize and stabilize itself by maintaining 

its position by constantly counteracting minor randomly induced movements. Although IMUs help 

to achieve this, but a major disadvantage of using IMUs for navigation is that they typically suffer 

from accumulated errors, including the “Abbe Error” [7], which describes the magnification of 

angular error over distance. Furthermore, as stabilizing systems continually add detected changes 

to its previously calculated positions; any errors in measurement are accumulated leading to 'drift', 

or an ever-increasing deviation from the actual location, making IMUs not reliable [7]. 

The task of accurate localizing of a Quadcopters in previously unseen environments is 

widely investigated [8]. This thesis presents an innovative approach for stabilizing camera-based 

objects in 3-D. Although accuracy and robustness of our approach is tested on a Quadcopter, this 

algorithm can be implemented on any 3-D positioning systems. 

The objective of this thesis is to develop a system capable of controlling and self-stabilizing 

of the Quadcopter in a previously unknown environment using only frontal camera in order to 
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compute an absolute estimate of the Quadcopter’s pose by applying visual tracking methods. This 

pose estimate can then be used to calculate the control commands required to fly to and hold a 

desired position in 3-D space.  

The thesis report will unfold as follows – 

 Chapter 2 will overview of the related work 

 Chapter 3 will introduce the Quadcopter used (the Parrot AR.Drone) and state its 

capabilities and available sensors. Also will describe briefly, how the Quadcopter fly. 

 Chapter 4 will explain the methodology called “Most Reliable Straight Line”. 

 Chapter 5 will introduce the Coordinator. 

 Chapter 6 will validate the methodology through the results produced. 

 Chapter 7 will conclude our research.



 

  

CHAPTER 2 – RELATED WORK 

The problem of accurately tracking the motion of a robot in an arbitrary, previously unseen 

environment has been the focus of a lot of research in the field of computer vision and robotics, 

and is widely known as the Simultaneous Localization and Mapping (SLAM) problem. It was 

originally developed by Hugh Durrant-Whyte and John J. Leonard [9] based on earlier work by 

Smith, Self and Cheeseman [10]. Durrant-Whyte and Leonard originally termed it SMAL but it 

was later changed to give a better impact. SLAM is concerned with the problem of building a map 

of an unknown environment by a mobile robot while at the same time navigating the environment 

using the map. SLAM consists of multiple parts; Landmark extraction, data association, state 

estimation, state update and landmark update.[11] 

The general idea is very straight-forward: Using available sensor data, a map of the 

environment is generated. This map in turn is used to re-estimate the new position of the robot 

after a short period of time. A SLAM system thus aims at answering the two questions “What does 

the world look like?” and “Where am I?”. This process can furthermore be done actively, that is 

navigating a robot such that new information about the environment can be acquired while assuring 

that the current pose can still be tracked accurately. Such approaches are also called Simultaneous 

Planning, Localization and Mapping (SPLAM) [12]. 

While the SLAM and PSLAM literature is vast, only a small number of solutions facilitate 

online control and none of them combine the result of SLAM algorithm for self-stabilizing 

problem. Furthermore, Most of the SLAM literature focuses on active range sensing, such as the 

SICK laser range-finder. Some of them are as fallow:  
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Keyframe-Based SLAM: The early days, it used Laser Ranging Finder (LRF) and sonar sensors 

[13,14] but recently, vision sensor was also used [15,16]. The first stage of vision-based SLAM, 

only the sensor was substituted to a camera from LRF or sonar, keeping the overall framework of 

SLAM using probabilistic models such as EKF(Extended Kalman Filter) and particle filter. 

Davison et al.’s work [15] was based on EKF and constructed a map of 3-D sparse points so that 

it contained uncertainties on the camera’s position by nature. Later, Parallel Tracking and Mapping 

(PTAM) so-called keyframe-based SLAM appeared [16]. To localize a moving camera in an 

unknown scene, tracking and mapping are separated and run in two parallel threads. PTAM 

constructs a map of 3-D points based on keyframes collected during tracking process using batch 

techniques, Bundle Adjustment and the map can contain thousands of points, which allows precise 

camera localization more proper for Augmented Reality applications [17]. 

Scene Modeling: The detection of higher level structure in a real world has been progressed using 

both visual and non-visual sensors. Planes were fitted to clouds of points reconstructed using LRF 

[18,19]. The discovered planes were, however, not incorporated into a map.  Afterward, many 

have attempted to discover planes in vision-based SLAM as in [10,11,12]. Rachmielowski et al.’s 

work [20] attempted to get 3-D reconstruction of a scene during SLAM tracking. They connected 

sparse 3-D points to compose a mesh using a Delaunay triangulation and reconstructed a scene 

model with the meshes. Thus, the reconstruction is unlikely a good estimation of the real surface 

because the 3-D points used for a mesh were sparse and involved uncertainties by nature of the 

SLAM approach. Chekhlov et al.’s work [21] also tried 3-D reconstruction of a scene during 

SLAM tracking. However, to find planes they approached with RANSAC process instead of the 

Delaunay triangulation used in [20]. In view of using RANSAC process, our system is similar to 
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their system but we go beyond their work by incorporating the discovered planes into the map and 

using them during the tracking process[17]. 

Also, J. J. Engel did a research on application of SLAM and implement the result of it on 

a Quadcopter. As a result of his work, enables a Quadcopter to accomplish tasks such as [4]: 

 holding a flying position in spite of external disturbances and interference such as wind 

 high-level manual control of the Quadcopter: Instead of directly piloting the drone, this 

system enables the pilot to send high-level control commands 

In this thesis, our approach is to use Neural Network combination of SLAM in order to 

achieve self-stabilization.



 

  

CHAPTER 3 – QUADCOPTERS 

The concept of an aircraft flying with four horizontally aligned rotors had already been 

proposed in 1922 [23], The de Bothezat helicopter, built by the US Army (Figure 1 [23]) It is 

considered to be one of the first successful helicopters ever built, however it only ever reached a 

height of approximately 9 m, and stayed in the air no more than 2:45 minutes. Because of two 

weak points this design quickly disappeared and was dominated by the much more common two-

rotor helicopter. Original Quadcopters were not cost and energy efficient compare to helicopters. 

Second, Quadcopters were inherently unstable and hence difficult to control - without the help of 

advanced electronic control systems and stabilizing routines, manual control turned out to be too 

complex. 

With advancement in electrical engineering and growing importance of MAVs, 

development of new generation of Quadcopters increasingly becoming more popular again. 

Because it is less mechanically complex than a normal helicopter as all four rotors have a fixed 

pitch. Also, all rotors can be fenced by a frame, protecting them in collisions and permitting safe 

flights indoors and in obstacle-dense environments. Finally, the use of four rotors allows each to 

Figure 1: The de Bothezat helicopter, built in 1922 by the US Army. 
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have a smaller diameter, causing them to store less kinetic energy during flight and reducing the 

damage when the rotor hit a surrounding object, making Quadcopters significantly safer to use 

close to people. [4] 

The rise in popularity of the Quadcopters demands extensive research in the design to 

improve reliability and safety. The most important problem with the current design is “efficiency 

rate by distance. As airplanes fly longer distances, they burn fuel and as consequence the total 

weight of airplane should be reduced over time. In contrast, Quadcopters use batteries as power 

supply. Overtime, the batteries of the Quadcopter discharge, since we cannot get rid of them, the 

Quadcopter should carry unusable weight. 

Modern definition of a Quadcopter, also called a quadrotor helicopter or quadrotor [24], is 

a multirotor helicopter that is lifted and propelled by four rotors. Quadcopters are classified as 

rotorcraft, as opposed to fixed-wing aircraft, because their lift is generated by a set of rotors 

(vertically oriented propellers). Quadcopters generally use two pairs of identical fixed pitched 

propellers; two clockwise (rotors M2 and M4) and two counter-clockwise (rotors M1 and M3). 

These use independent variation of the speed of each rotor to achieve control (Figure 2). By 

Figure 2: Quadcopter's rotors spin 
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changing the speed of each rotor it is possible to specifically generate a desired total thrust; to 

locate for the center of thrust both laterally and longitudinally; and to create a desired total torque, 

or turning force [25,26]. 

MAV cab flies freely in three dimensions; therefore three different types of motions are 

introduced. Imagine three lines running through an airplane and intersecting at right angles at the 

airplane’s center of gravity  as fallow: pitch, nose up or down about an axis running from wing to 

wing; yaw, nose left or right about an axis running up and down; and roll, rotation about an axis 

running from nose to tail (Figure 3). The axes are alternatively designated as lateral, vertical, and 

longitudinal. These axes move with the vehicle and rotate relative to the earth along with the craft. 

These definitions were analogously applied to spacecraft when the first manned spacecraft were 

designed in the late 1950s. 

               

The same coordinates can be applied to the Quadcopters. So the following actions can be 

taken to maneuver the Quadcopter: 

 vertical acceleration is achieved by increasing or decreasing the speed of all four 

rotors equally, 

Figure 3: Roll, Pitch and Yaw 
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 Yaw rotation can be achieved by increasing the speed of engines 1 and 4, while 

decreasing the speed of engines 2 and 3 (or vice-versa) - resulting in an overall 

clockwise (or counter-clockwise) torque, without changing overall upwards thrust 

or balance, 

 Horizontal movement can be achieved by increasing the speed of one engine, while 

decreasing the speed of the opposing one, resulting in a change of the roll or pitch 

angle, and thereby inducing horizontal acceleration. 

Moreover, the combination of three main actions could be taken to maneuver the 

Quadcopter. As a final point there exist eight different maneuvers as shown below (Figure 4):  

Figure 4 : Basic Movement of a Quadcopter 
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A. Pitch back              B.      Pitch forward               C.      Roll right                  

D.    Roll left                 E.     Yaw clockwise              F.     Yaw anti-clockwise 

G.    Ascend                  H.      Descend 

To test the accuracy and robustness of the algorithm which will be explained in chapter 4, 

the algorithm was deployed to control positioning of a “Parrot AR.Drone”, which is a Quadcopter 

built by the French company Parrot [27]. The Parrot AR.Drone has dimensions of 52.5 cm × 51.5 

cm with, and 45 cm× 29 cm without hull. It has four rotors with a 20 cm diameter, fastened to a 

robust carbon-fiber skeleton cross providing stability. A removable styrofoam hull protects the 

drone and particularly the rotors during indoor-flights, allowing the drone to survive minor and 

not-so-minor crashes such as flying into various types of room furniture, doors and walls – making 

it well suited for experimental flying and development. An alternative outdoor-hull -missing the 

rotor-protection and hence offering less protection against collisions - is also provided and allows 

for better maneuverability and higher speeds.  

Figure 5 : Top view of Parrot AR.Drone 
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The drone weights 380g with the outdoor-hull, and 420 g with the indoor-hull. Although 

not officially supported, in our tests the Quadcopter was able to fly with an additional payload of 

up to 120 g using the indoor hull - stability, maneuverability and battery life however suffered 

significantly, making the drone hardly controllable with that kind of additional weight. The drone 

is equipped with two cameras (one directed forward and one directed downward), an ultrasound 

altimeter, a 3-axis accelerometer (measuring acceleration), a 2-axis gyroscope (measuring pitch 

and roll angle) and a one-axis yaw precision gyroscope. The onboard controller is composed of an 

ARM9 468MHz processor with 128Mb DDR Ram, on which a BusyBox based GNU/Linux 

distribution is running. It has an USB service port and is controlled via wireless LAN [27]. 

Software for Parrot AR.Drone is not open source and there is not good documentation for 

it. For this thesis we don’t need complex control on the Quadcopter so we assume it as a black 

box. There are four built-in communication channel available. Although the approach in this thesis 

is not using all channels, for the sake of completeness, all four channels would be introduced. As 

soon as the battery is connected, the drone sets up an ad-hoc wireless LAN network to which any 

device may connect. Upon network connection, the drone immediately starts to communicate 

(sending data and receiving navigational commands) on four separate channels[4,28]: 

 navigation channel (UDP port 5554) 

While in normal mode the Quadcopter only broadcasts basic navigational data every 30 

ms, after switching to debug mode it starts sending large amounts of sensor measurements every 

5 ms. The exact encoding of the sent values will not be discussed here, it is partially documented 

in [28]. The most important parameters and sensor values - and the ones used in our approach - 

are the following: 
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1) Quadcopter orientation as roll, pitch and yaw angles: as mentioned in the previous 

section, roll and pitch values are drift-free and very accurate, while the measured 

yaw-angle is subject to significant drift over time 

2) Horizontal velocity: in order to enable the drone to keep its position in spite of 

wind, an optical-flow based motion estimation algorithm utilizing the full 60 fps 

from the floor camera is performed onboard, estimating the drone’s horizontal 

speed. The exact way these values are determined however is not documented. 

 

 video channel (UDP port 5555) 

The drone continuously transmits one video stream, which can be one of four different 

channels - switching between channels can be accomplished by sending a control command to the 

drone. The four available channels are depicted in Figure 2.3. As can be seen, neither of the 

available cameras can be accessed fully: for the downwards facing camera the available frame rate 

is - with only 18 fps - significantly lower than the original 60 fps. Furthermore the maximal 

supported resolution is 320×240, halving the forward camera’s original resolution1 [4,28]. 

 command channel (UDP port 5556) 

The Drone is navigated by broadcasting a stream of command packages, each defining the 

following parameters: 

1. desired roll and pitch angle, yaw rotational speed as well as vertical speed, each as 

fraction of the allowed maximum, i.e. as value between -1 and 1, 
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2. one bit switching between hover-mode (the drone tries to keep its position, ignoring any 

other control commands) and manual control mode, 

3. one bit indicating whether the drone is supposed to enter or exit an error-state, 

immediately switching off all engines, 

4. one bit indicating whether the drone is supposed to take off or land. 

Being sent over an UDP channel, reception of any one command package cannot be 

guaranteed. 

In our implementation the command is therefore re-sent approximately every 

10 ms, allowing for smoothly controlling the drone [4,28]. 

 control port (TCP port 5559, optional) 

Control commands can be used to change internal settings of the drone, for example for 

switching between the four available video channels. In general a control command is transmitted 

as a string of the format “[attribute]=[value]”, for a list of the available commands we refer to 

[4,28].



 

  

CHAPTER 4 – METHODOLOGY 

As it is shown in Figure 6, the camera captures images that are used to identify easy-to-

track points named “Landmarks” and tracks them between two consecutive images. The longest 

distance between the landmarks on the two consecutive images is assigned to Most Reliable 

Straigh Line (MRSL), which is used to indicate the deviation from the Quadcopter’s original 

position. Our trained algorithm is then deployed to reduce the deviation by issuing relevant 

commands. This action is repeated until MRSL converges to zero. 

 

3.1 Landmark Detection and Tracking 

Movement of the camera, which implies to movement of Quadcopter, cause changes in the 

position of landmark points. The movements of these points are tracked in the next step by 

extracting the magnitude and direction of Quadcopter movement. Some of the features that can be 

extracted from the images are edges, corners, blobs, or ridges. Several feature detection algorithms 

like SIFT (DoG) [29], SURF [30], FAST [31] and Harris corner detector [32] were considered for 

this study but because the high-speed requirement, it was decided to adopt the Features From 

Figure 6: Methodology 
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Accelerated Segment Test (FAST) algorithm. FAST is a corner detection method, which can be 

used to extract landmarks by using a circle of 16 pixels to classify whether center pixel of the circle 

is aligned with a landmark. Decision is made by comparing color intensity of the center pixel with 

those of 16 neighboring pixels located on the perimeter of the circle. For each candidate pixel P 

(see Figure 7), the algorithm identifies which pixels are aligned with a circle perimeter: if a long 

enough sequence of continuously brighter or continuously darker pixels is found, it is classified as 

a landmark. 

Once the landmarks are detected, the exact positions of them are extracted next. A general 

formula for tracking is to find parameters p of a warp function 𝒇(𝒙, 𝒚; 𝒑) ∶ ℝ𝟐 ×  ℝ𝒅 →  ℝ𝟐, such 

that the difference between the original patch 𝑻(𝒙, 𝒚) and the transformed image 𝑰(𝒇(𝒙, 𝒚; 𝒑)) 

becomes minimal, that is minimizing the sum of squared differences (SSD) [4], see Eq. 2. 

𝑬𝑺𝑺𝑫(𝑷) ≔  ∑ (𝑰(𝒇(𝒙, 𝒚; 𝒑)) − 𝑻(𝒙, 𝒚))
𝟐

𝒙,𝒚  (1) 

𝑷∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏 𝑬𝑺𝑺𝑫(𝒑)    (2) 

Figure 7 The FAST-16 corner detector 
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Choosing a good warp function is critical to having a suitable degree of freedom, “Pure 

Translation” function selected as a warp function, which tracks a two-dimensional image patches. 

The resulting transformation has two degrees of freedom, the displacement in two dimensions is 

shown in Eq. 3. 

𝒇(𝒙, 𝒚; 𝜹𝒙, 𝜹𝒚) =  (
𝒙 + 𝜹𝒙
𝒚 + 𝜹𝒚

)   (3) 

3.2 Extracting the Movements 

Let 𝐶1 and 𝐶2 be two consecutive images captured by the camera. First FAST algorithm is 

deployed on 𝐶1 to find all landmarks coordinates ( 𝑃1 , 𝑃2 , … , 𝑃𝑛). Then tracking algorithm is run 

on 𝐶2 to track same landmarks and find their new coordinates (𝑃1
′ , 𝑃2

′  , … , 𝑃𝑛
′ ). By connecting 

each pair 𝑃𝑚 to 𝑃𝑚
′  a line is formed and labeled “Reliable Straight Line” (RSL). RSLs are important 

because they can be used to estimate camera rotation and translation using essential matrix in 

epipolar geometry. The essential matrix is a 3 × 3 matrix that encodes the relationship between 

two images of the same scene from different viewpoints. The essential matrix is defined as in Eq. 

4. 

𝐸 : = 𝑅 × [𝒕]𝑥 ∈  ℝ3×3    (4) 

Where [𝒕]𝑥 is the matrix corresponding to cross product of 𝒕 and R, is rotation matrix. As 

a property of the essential matrix for each 𝑃 and 𝑃′ Eq. 5 is held  

(𝑃′)𝑇𝐸 𝑃 = 0     (5) 
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As a result of essential matrix properties there are solutions for determining R and 𝒕 based 

on performing Singular Value Decomposition. Using Multiple View Geometry [33] the rotation 

matrix R and cross product vector as shown in Eq. 6 and 7 are computed next 

[𝒕]𝑥 =  ± V W Σ VT    (6) 

R = U W−1𝑉𝑇     (7) 

Where,   W = [
0 −1 0
1 0 0
0 0 1

]   (8) 

Where U and V are orthogonal 3 × 3 matrices and Σ is 3 × 3 diagonal matrix, see Eq. 9. 

Σ = [
𝑠 0 0
0 𝑠 0
0 0 0

]    (9) 

There are several algorithms such as five-point and eight-point algorithms for solving R 

and 𝒕. Five-point algorithm [34] was used in this study to estimate camera-rotation and translation 

from two consecutive images. 

3.3 Most Reliable Straight Line  

Let 𝐶𝑎 and 𝐶𝑏 be two arbitrary captured images. By assumption there is no moving object 

in the images if three landmarks exists such that the coordinates 𝑃𝑎 =  𝑃𝑏
′  where the position of the 

camera in those moments was identical. Using this fact, if the sums of all RSLs length converge 

to zero over time, it can be concluded that the camera is stabilized. Therefore the goal is to 

minimize the RSLs by issuing relevant commands to Quadcopter. Length of the RSL is directly 

correlated with accuracy of algorithm. When one RSL is longer than the others, stabilization is 

more accurate and slope is good measure for reliability of a specific RSL. When the slopes are not 
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the same, which means either an object is moving inside the image or camera is rotating around 

itself. 

The MRSL is the longest of RSLs those with similar slope. For each MRSL, 𝑝𝑝′, there 

exist a vector named Most Reliable Straight Vector (MRSV) at starting point of 𝑝′ and endpoint 

of p. MRSV has equal magnitude and direction that of MRSL.   

Although MRSL can be implemented to stabilize Quadcopters, but to remove all the 

unwarranted disturbances an alternative RSL should be used in order to avoid the risk of failure. 

In this case the RSLs with the same slopes are grouped into 3 equal size clusters. Beside the MRSL 

alternative RSLs one line from first along with one from second and two from the last clusters are 

selected and represented by an array[𝑰𝑫, (𝒙, 𝒚), (𝒙′, 𝒚′) , 𝑳], where ID is unique identification 

number for each landmark, (𝒙, 𝒚) is coordinate pair of 𝑪𝟏, and (𝒙′, 𝒚′) is coordinate pair of  𝑪𝟐 , 

and L is the length of RSL. 

Fig.3. Landmark extraction initialization Figure 8: Landmark extraction initialization 
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The candidate MRSL and 4 other RSL are used as inputs to the NN, Figure 8 shows the 

initial step and Figure 9 shows all detected RSLs. 

 

3.4 Neural Network-Based Stabilization System 

 Before going through design and implementation, a brief introduction of Neural Network 

(NN) would be present. The simplest definition of a NN, more properly referred to as an 'artificial' 

neural network (ANN), is provided by the inventor of one of the first neurocomputers, Dr. Robert 

Hecht-Nielsen. He defines a neural network as: “...a computing system made up of a number of 

simple, highly interconnected processing elements, which process information by their dynamic 

state response to external inputs.” [35]  

ANNs are processing devices (algorithms or actual hardware) that are loosely modeled 

after the neuronal structure of the mammalian cerebral cortex but on much smaller scales. A large 

ANN might have hundreds or thousands of processor units, whereas a mammalian brain has 

Fig.4. All detected RSLs Figure 9 All detected RSLs 
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billions of neurons with a corresponding increase in magnitude of their overall interaction and 

emergent behavior. Although ANN researchers are generally not concerned with whether their 

networks accurately resemble biological systems, some have. For example, researchers have 

accurately simulated the function of the retina and modeled the eye rather well [36]. 

Neural neworks are typically organized in layers. Layers are made up of a number of 

interconnected 'nodes' which contain an 'activation function'. Patterns are presented to the network 

via the 'input layer', which communicates to one or more 'hidden layers' where the actual 

processing is done via a system of weighted 'connections'. The hidden layers then link to an 'output 

layer' where the answer is output as shown in figure 10 [36]: 

Most ANNs contain some form of 'learning rule' which modifies the weights of the 

connections according to the input patterns that it is presented with. In a sense, ANNs learn by 

example as do their biological counterparts; a child learns to recognize dogs from examples of 

dogs. 

Figure 10 : Neural Network Schema 
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Although there are many different kinds of learning rules used by neural networks, this 

demonstration is concerned only with one; the delta rule. The delta rule is often utilized by the 

most common class of ANNs called 'backpropagational neural networks' (BPNNs). 

Backpropagation is an abbreviation for the backwards propagation of error [36]. 

With the delta rule, as with other types of backpropagation, 'learning' is a supervised 

process that occurs with each cycle or 'epoch' (i.e. each time the network is presented with a new 

input pattern) through a forward activation flow of outputs, and the backwards error propagation 

of weight adjustments. More simply, when a neural network is initially presented with a pattern it 

makes a random 'guess' as to what it might be. It then sees how far its answer was from the actual 

one and makes an appropriate adjustment to its connection weights[36]. 

For this thesis gradient descent used as an optimization method for backpropagation. 

Gradient descent is a first-order optimization algorithm. To find a local minimum of a function 

using gradient descent, one takes steps proportional to the negative of the gradient (or of the 

approximate gradient) of the function at the current point. The method calculates the gradient of a 

loss function with respect to all the weights in the network. The gradient is fed to the optimization 

method which in turn uses it to update the weights, in an attempt to minimize the loss function. 

The psuedocode of the algorithm is as below[37]: 

  initialize network weights (often small random values) 

  do 
     forEach training example ex 

        prediction = neural-net-output(network, ex)  // forward pass 

        actual = teacher-output(ex) 

        compute error (prediction - actual) at the output units 

        compute ∆𝜔ℎ for all weights from hidden layer to output layer  // backward pass 

        compute∆𝜔𝑖  for all weights from input layer to hidden layer   // backward pass continued 
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        update network weights // input layer not modified by error estimate 

  until all examples classified correctly or another stopping criterion satisfied 

  return the network 

 

The goal of using NN is that by giving the |𝑀𝑅𝑆𝐿| > 0, suitable commands are issued as 

output. These commands counteract and move the Quadcoter back to its initial position. The 

designed NN has 7 inputs, where five of them are described in the previous section and are MRSL 

and 4 alternative RSLs. The built-in gyroscope data and speed of each motors are used as the 

remaining two inputs. Current speed of the motors helps in issuing commands with respect to 

current state of Quadcopter.  

By controlling speed of each of the motors of a Quadcopter, its movement can be controlled 

in 3-D environment. The four different output of NN are respective values of electrical current 

applied to each brushless motor. The range of each output node is [0,1]. Zero means that the motors 

are off and the one means that the motors are running in the full load. As a last piece of design, 

NN has one hidden layer consisted of 10 nodes. 

In order to train NN, a training dataset is generated that includes  

( 𝑴𝑹𝑺𝑳 , 𝑹𝑺𝑳𝟏, 𝑹𝑺𝑳𝟐, 𝑹𝑺𝑳𝟑, 𝑹𝑺𝑳𝟒, 𝑮𝒚𝒓𝒐𝒕, 𝑴𝒕)  →  (𝑴𝟏, 𝑴𝟐, 𝑴𝟑, 𝑴𝟒)  (10) 

The 5 lines, gyroscope data and current state of motors, maps to 4-tuple electrical currents 

controlling the speed of each motor. The interpretation is that in order to move the camera to have 

a specific |MRSL|, a specific electrical current should be applied to each motor.  

This dataset was generated in a creative way. A program generated 4 random numbers in 

the range [0,1]. These numbers were sent to motors as control commands. By capturing two images 

(𝐶0 and 𝐶1 ) before and after sending that command, landmarks are extracted from 𝐶0 and tracked 
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in 𝐶1. All variables regarding the MRSL algorithm were calculated and collected in a form of tuple 

as shown in (7). This experiment was repeated 700 times to make sure that enough data was 

generated for training. This experiment was supervised by an operator to avoid collisions and 

gather different viewpoints to make sure that the algorithm is not biased with a particular landmark. 

Noise and outliers were injected to the dataset to avoid over fitting. The final dataset contains 1000 

samples, 90% were used for training and 10% for testing purpose.  

Back propagation [38] was used to compute all the weights in the network. After training, 

the algorithm was validated using the test dataset. The success rate of 94.3% was observed. 

 



 

  

CHAPTER 5 – THE COORDINATOR 

Coordinator is an interface, which handles wireless communication between the 

Quadcopter and the PC. Because two different platforms are used in implementation, coordinator 

interprets the output of NN to suitable commands and transmits them to the Quadcopter’s flight 

control board. Also it takes images from Quadcopter and sends them as input for MRSL algorithm. 

Moreover, coordinator is responsible for the emergency situation e.g. when the battery is too low 

or the MRSL algorithm is not responding for any reason, coordinator would do an emergency 

landing to reduce the probable damages. In this thesis Robot Operating System (ROS) was used. 

ROS is a set of software libraries and tools that help you build robot applications. From drivers to 

state-of-the-art algorithms, and with powerful developer tools and it is open source. ROS provide 

a driver for Parrot AR.Drone and also running FAST algorithm on the captured images. 

 

 



 

  

CHAPTER 6 – THE RESULTS 

 

In this section the accuracy of stabilization and robustness of the Quadcopter using the 

MRSL approach is evaluated with experimental data obtained from several test flights in different 

location. The experiments can be categorized in two main groups, i) evaluating the stabilization 

without any external disturbances, b) applying disturbances e.g. pushing or pulling Quadcopter or 

blowing air with blower.  

In the first set of experiments the Quadcopter was stabilized with supervision of a human 

intervention in a certain position, then the intervention stopped navigating allowing the algorithm 

to begin controlling Quadcopter for 60 seconds. The goal of the experiment was to evaluate the 

stability of the Quadcopter. This experiment was repeated 100 times. Two criteria measured for 

evaluation were movement of the detected landmarks and movement of the center of mass of the 

Quadcopter from viewpoint of external fixed camera. As is shown in Figure 11 visualization of 

the movement of the landmarks and the actual position of the Quadcopter in a 3-D space.  

Figure 11 Landmarks change captured by camera 
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Figure 12 shows the movement of the center of mass of the Quadcopter captured by a fixed 

camera. Accuracy of stabilization measured is expressed by the shortest diameter of a circle that 

includes all the landmarks. In our experiment the average diameter was about 15 inches for center 

of mass of Quadcopter.  

In the second experiment after stabilization, external disturbances were introduced in order 

to test robustness of the MRSL algorithm. The goal was to measure convergence speed and time 

of the Quadcopter to return to its initial position. Result showed that regardless of the direction of 

the introduced forces to disturb the stability of the Quadcopter, the convergence time remained 

almost constant. But the magnitude of force is inversely correlated with convergence time. The 

algorithm was not robust to forces that change the direction of the camera where, none of the 

landmarks remained within the image. This threshold is the critical point of MRSL algorithm. As 

Figure 13 shows forces from 1 to 5 Newton were applied and the measure of the convergence time 

was observed. 

Figure 12 : Movement of center of Quadcopter captured by fix camera 
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Figure 13 Convergence time by amount of applied force 
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CHAPTER 7 – CONCLUSION 

 

Stabilizing and localizing positioning systems autonomously in the areas without GPS 

accessibility is a difficult task. In this paper, we introduce an innovative methodology for 

stabilizing and localizing Quadcopters in 3-D environments. Most of the current methods used to 

positioning objects in 3-D are using expensive equipment in contrast to the methodology 

introduced in this paper. To prove the robustness of the algorithm, an experiment was set up using 

a Quadcopter to measure the reliability of the algorithm, it was observed that the algorithm can 

stabilize the Quadcopter effectively even in the presence of external.
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