
MRSL: AUTONOMOUS NEURAL NETWORK-BASED SELF-STABILIZING SYSTEM

By

Hooman Hedayati

December, 2015

Director of Thesis: Dr. Nasseh Tabrizi

Major Department: Computer Science

Stabilizing and localizing the positioning systems autonomously in the areas without GPS

accessibility is a difficult task. In this thesis we describe a methodology called Most Reliable

Straight Line (MRSL) for stabilizing and positioning camera-based objects in 3-D space. The

camera-captured images are used to identify easy-to-track points “interesting points” and track

them on two consecutive images. The distance between each of interesting points on the two

consecutive images are compared and one with the maximum length is assigned to MRSL, which

is used to indicate the deviation from the original position. To correct this our trained algorithm

is deployed to reduce the deviation by issuing relevant commands, this action is repeated until

MRSL converges to zero. To test the accuracy and robustness, the algorithm was deployed to

control positioning of a Quadcopter. It was demonstrated that the Quadcopter (a) was highly

robust to any external forces, (b) can fly even if the Quadcopter experiences loss of engine, (c)

can fly smoothly and positions itself on a desired location.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarShip

https://core.ac.uk/display/71977759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MRSL: AUTONOMOUS NEURAL NETWORK-BASED SELF-STABILIZING SYSTEM

A Thesis

Presented To the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

By

Hooman Hedayati

December, 2015

© Hooman Hedayati, 2015

MRSL: AUTONOMOUS NEURAL NETWORK-BASED SELF-STABILIZING SYSTEM

By

Hooman Hedayati

APPROVED BY:

DIRECTOR OF THESIS: __

Nasseh Tabrizi, PhD

COMMITTEE MEMBER: ___

Venkat N. Gudivada, PhD

COMMITTEE MEMBER: __

Gopalakrishnan, K., PhD

CHAIR OF THE DEPARTMENT OF COMPUTER SCIENCE: __________________________

Venkat N. Gudivada, PhD

DEAN OF THE GRADUATE SCHOOL:__

 Paul J. Gemperline, PhD

DEDICATION

To dedicate my thesis to my beloved parents “Mohammad and Minou” for always

supporting me, to my lovely sibiling “Mahsa and Reza” for showing me the right path in life and

to Dr. Tabrizi for giving me a chance to prove myself.

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Nasseh Tabrizi, for the continuous

support of my thesis and related research, for his patience, motivation, and immense knowledge.

His guidance helped me throughout my research and writing of this thesis. I could not have

imagined having a better advisor and mentor for my thesis study.

Evaluation of the reliability of MRSL was partially supported by NSF REU grant with

undergraduate student participation.

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. vii

LIST OF EQUATIONS ... viii

LIST OF SYMBOLS ... ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1 – INTRODUCTION ... 1

CHAPTER 2 – RELATED WORK .. 4

CHAPTER 3 – QUADCOPTERS .. 7

CHAPTER 4 – METHODOLOGY .. 15

CHAPTER 5 – THE COORDINATOR ... 25

CHAPTER 6 – THE RESULTS ... 26

CHAPTER 7 – CONCLUSION ... 29

REFERENCES ... 30

LIST OF FIGURES

Figure 1: The de Bothezat helicopter, built in 1922 by the US Army. ... 7

Figure 2: Quadcopter's rotors spin .. 8

Figure 3: Roll, Pitch and Yaw... 9

Figure 4 : Basic Movement of a Quadcopter .. 10

Figure 5 : Top view of Parrot AR.Drone .. 11

Figure 6: Methodology ... 15

Figure 7 The FAST-16 corner detector ... 16

Figure 8: Landmark extraction initialization .. 19

Figure 9 All detected RSLs ... 20

Figure 10 : Neural Network Schema .. 21

Figure 11 Landmarks change captured by camera ... 26

Figure 12 : Movement of center of Quadcopter captured by fix camera 27

Figure 13 Convergence time by amount of applied force ... 28

file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388557
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388558
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388559
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388560
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388561
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388562
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388563
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388564
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388565
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388566
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388567
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388568
file:///F:/Dropbox/Dropbox/M.sc%20ECU/05%20-%20Fall%202015/Thesis/Thesis%20v4.docx%23_Toc436388569

LIST OF EQUATIONS

Equation 1 – ... Error! Bookmark not defined.

Equation 2 – .. 16

Equation 3 – .. 17

Equation 4 – .. 17

Equation 5 – .. 17

Equation 6 – .. 18

Equation 7 – .. 18

Equation 8 – .. 18

Equation 9 – .. 18

Equation 10 – .. 23

LIST OF SYMBOLS

N – Newton

cm – centimeter

LIST OF ABBREVIATIONS

Miniature Aerial Vehicles (MAVs)

Inertial Measurement Unit (IMU)

Global Positioning System (GPS)

Simultaneous localization and mapping (SLAM)

SPLAM (simultaneous planning, localization and mapping)

LRF (Laser Ranging Finder)

EKF(Extended Kalman Filter)

PTAM(Parallel Tracking and Mapping)

Most Reliable Straight Line (MRSL)

Sum of Squared Differences (SSD)

CHAPTER 1 – INTRODUCTION

The demands for utilizing autonomous vehicles in hazardous situations are increasing

rapidly. There are plenty of examples where these vehicles are successfully used in practice, such

as those inspecting the damaged nuclear reactors in Fukushima [1], robotic submarines attempting

to repair the ruptured well in the Gulf of Mexico [2] and firefighters rescuing survivors in a

collapsing building [3]. Among these robots, flying Miniature Aerial Vehicles (MAVs) have

become an important tool not only in the military domain, but also in civilian environments.

Particularly Quadcopters are becoming more popular, especially for observational and exploration

purposes in indoor and outdoor environments, but also for data collection, object manipulation or

simply as high-tech toys. Also, Quadcopters have many more potential applications such as: A

swarm of small, light and cheap Quadcopters could for example be deployed to quickly and

without risking human lives explore collapsed buildings to find survivors. Equipped with high-

resolution cameras, MAVs they can also be used as flying photographers, providing aerial based

videos of sport events or simply taking holiday photos from a whole new perspective [4].

Among all MAVs, Quadcopters are becoming more popular for observational and

exploration purposes in indoor and outdoor environments. Quadcopters have flying behavior

similar to a helicopter, which means they can fly and land vertically (unlike airplanes), stay

perfectly in a certain point in space (like helicopters) and move in any given direction at any time,

without having to turn first. With these features, Quadcopters can maneuver extremely well in

constrained high-dense indoor spaces, as corridors or offices, making them ideally suited for

stationary observation or exploration in obstacle-dense or indoor environments, making them one

of the best choices for indoor environments exploration compared to other robots [4].

2

In order to navigate, Quadcopters often rely on a wide variety of sensors including Inertial

Measurement Unit (IMU), Global Positioning System (GPS), and gyroscopes. Although these

sensors are not completely reliable individually, combinations of them arguably make them good

enough as outdoor positioning systems. However, flying in an unknown environment without GPS

signal requires alternative positioning methods that include expensive sensors like a 3-D depth

scanning camera [5]. Alternatively, one can use optical cameras to collect information [6]. While

cameras are cost efficient, they have some disadvantages where excessive amounts of data is

collected which in turn makes processing data computationally expensive. In addition, 2-D images

that are captured using cameras make it difficult to extract 3-D information.

One crucial objective of any Quadcopter is to localize and stabilize itself by maintaining

its position by constantly counteracting minor randomly induced movements. Although IMUs help

to achieve this, but a major disadvantage of using IMUs for navigation is that they typically suffer

from accumulated errors, including the “Abbe Error” [7], which describes the magnification of

angular error over distance. Furthermore, as stabilizing systems continually add detected changes

to its previously calculated positions; any errors in measurement are accumulated leading to 'drift',

or an ever-increasing deviation from the actual location, making IMUs not reliable [7].

The task of accurate localizing of a Quadcopters in previously unseen environments is

widely investigated [8]. This thesis presents an innovative approach for stabilizing camera-based

objects in 3-D. Although accuracy and robustness of our approach is tested on a Quadcopter, this

algorithm can be implemented on any 3-D positioning systems.

The objective of this thesis is to develop a system capable of controlling and self-stabilizing

of the Quadcopter in a previously unknown environment using only frontal camera in order to

3

compute an absolute estimate of the Quadcopter’s pose by applying visual tracking methods. This

pose estimate can then be used to calculate the control commands required to fly to and hold a

desired position in 3-D space.

The thesis report will unfold as follows –

 Chapter 2 will overview of the related work

 Chapter 3 will introduce the Quadcopter used (the Parrot AR.Drone) and state its

capabilities and available sensors. Also will describe briefly, how the Quadcopter fly.

 Chapter 4 will explain the methodology called “Most Reliable Straight Line”.

 Chapter 5 will introduce the Coordinator.

 Chapter 6 will validate the methodology through the results produced.

 Chapter 7 will conclude our research.

CHAPTER 2 – RELATED WORK

The problem of accurately tracking the motion of a robot in an arbitrary, previously unseen

environment has been the focus of a lot of research in the field of computer vision and robotics,

and is widely known as the Simultaneous Localization and Mapping (SLAM) problem. It was

originally developed by Hugh Durrant-Whyte and John J. Leonard [9] based on earlier work by

Smith, Self and Cheeseman [10]. Durrant-Whyte and Leonard originally termed it SMAL but it

was later changed to give a better impact. SLAM is concerned with the problem of building a map

of an unknown environment by a mobile robot while at the same time navigating the environment

using the map. SLAM consists of multiple parts; Landmark extraction, data association, state

estimation, state update and landmark update.[11]

The general idea is very straight-forward: Using available sensor data, a map of the

environment is generated. This map in turn is used to re-estimate the new position of the robot

after a short period of time. A SLAM system thus aims at answering the two questions “What does

the world look like?” and “Where am I?”. This process can furthermore be done actively, that is

navigating a robot such that new information about the environment can be acquired while assuring

that the current pose can still be tracked accurately. Such approaches are also called Simultaneous

Planning, Localization and Mapping (SPLAM) [12].

While the SLAM and PSLAM literature is vast, only a small number of solutions facilitate

online control and none of them combine the result of SLAM algorithm for self-stabilizing

problem. Furthermore, Most of the SLAM literature focuses on active range sensing, such as the

SICK laser range-finder. Some of them are as fallow:

5

Keyframe-Based SLAM: The early days, it used Laser Ranging Finder (LRF) and sonar sensors

[13,14] but recently, vision sensor was also used [15,16]. The first stage of vision-based SLAM,

only the sensor was substituted to a camera from LRF or sonar, keeping the overall framework of

SLAM using probabilistic models such as EKF(Extended Kalman Filter) and particle filter.

Davison et al.’s work [15] was based on EKF and constructed a map of 3-D sparse points so that

it contained uncertainties on the camera’s position by nature. Later, Parallel Tracking and Mapping

(PTAM) so-called keyframe-based SLAM appeared [16]. To localize a moving camera in an

unknown scene, tracking and mapping are separated and run in two parallel threads. PTAM

constructs a map of 3-D points based on keyframes collected during tracking process using batch

techniques, Bundle Adjustment and the map can contain thousands of points, which allows precise

camera localization more proper for Augmented Reality applications [17].

Scene Modeling: The detection of higher level structure in a real world has been progressed using

both visual and non-visual sensors. Planes were fitted to clouds of points reconstructed using LRF

[18,19]. The discovered planes were, however, not incorporated into a map. Afterward, many

have attempted to discover planes in vision-based SLAM as in [10,11,12]. Rachmielowski et al.’s

work [20] attempted to get 3-D reconstruction of a scene during SLAM tracking. They connected

sparse 3-D points to compose a mesh using a Delaunay triangulation and reconstructed a scene

model with the meshes. Thus, the reconstruction is unlikely a good estimation of the real surface

because the 3-D points used for a mesh were sparse and involved uncertainties by nature of the

SLAM approach. Chekhlov et al.’s work [21] also tried 3-D reconstruction of a scene during

SLAM tracking. However, to find planes they approached with RANSAC process instead of the

Delaunay triangulation used in [20]. In view of using RANSAC process, our system is similar to

6

their system but we go beyond their work by incorporating the discovered planes into the map and

using them during the tracking process[17].

Also, J. J. Engel did a research on application of SLAM and implement the result of it on

a Quadcopter. As a result of his work, enables a Quadcopter to accomplish tasks such as [4]:

 holding a flying position in spite of external disturbances and interference such as wind

 high-level manual control of the Quadcopter: Instead of directly piloting the drone, this

system enables the pilot to send high-level control commands

In this thesis, our approach is to use Neural Network combination of SLAM in order to

achieve self-stabilization.

CHAPTER 3 – QUADCOPTERS

The concept of an aircraft flying with four horizontally aligned rotors had already been

proposed in 1922 [23], The de Bothezat helicopter, built by the US Army (Figure 1 [23]) It is

considered to be one of the first successful helicopters ever built, however it only ever reached a

height of approximately 9 m, and stayed in the air no more than 2:45 minutes. Because of two

weak points this design quickly disappeared and was dominated by the much more common two-

rotor helicopter. Original Quadcopters were not cost and energy efficient compare to helicopters.

Second, Quadcopters were inherently unstable and hence difficult to control - without the help of

advanced electronic control systems and stabilizing routines, manual control turned out to be too

complex.

With advancement in electrical engineering and growing importance of MAVs,

development of new generation of Quadcopters increasingly becoming more popular again.

Because it is less mechanically complex than a normal helicopter as all four rotors have a fixed

pitch. Also, all rotors can be fenced by a frame, protecting them in collisions and permitting safe

flights indoors and in obstacle-dense environments. Finally, the use of four rotors allows each to

Figure 1: The de Bothezat helicopter, built in 1922 by the US Army.

8

have a smaller diameter, causing them to store less kinetic energy during flight and reducing the

damage when the rotor hit a surrounding object, making Quadcopters significantly safer to use

close to people. [4]

The rise in popularity of the Quadcopters demands extensive research in the design to

improve reliability and safety. The most important problem with the current design is “efficiency

rate by distance. As airplanes fly longer distances, they burn fuel and as consequence the total

weight of airplane should be reduced over time. In contrast, Quadcopters use batteries as power

supply. Overtime, the batteries of the Quadcopter discharge, since we cannot get rid of them, the

Quadcopter should carry unusable weight.

Modern definition of a Quadcopter, also called a quadrotor helicopter or quadrotor [24], is

a multirotor helicopter that is lifted and propelled by four rotors. Quadcopters are classified as

rotorcraft, as opposed to fixed-wing aircraft, because their lift is generated by a set of rotors

(vertically oriented propellers). Quadcopters generally use two pairs of identical fixed pitched

propellers; two clockwise (rotors M2 and M4) and two counter-clockwise (rotors M1 and M3).

These use independent variation of the speed of each rotor to achieve control (Figure 2). By

Figure 2: Quadcopter's rotors spin

9

changing the speed of each rotor it is possible to specifically generate a desired total thrust; to

locate for the center of thrust both laterally and longitudinally; and to create a desired total torque,

or turning force [25,26].

MAV cab flies freely in three dimensions; therefore three different types of motions are

introduced. Imagine three lines running through an airplane and intersecting at right angles at the

airplane’s center of gravity as fallow: pitch, nose up or down about an axis running from wing to

wing; yaw, nose left or right about an axis running up and down; and roll, rotation about an axis

running from nose to tail (Figure 3). The axes are alternatively designated as lateral, vertical, and

longitudinal. These axes move with the vehicle and rotate relative to the earth along with the craft.

These definitions were analogously applied to spacecraft when the first manned spacecraft were

designed in the late 1950s.

The same coordinates can be applied to the Quadcopters. So the following actions can be

taken to maneuver the Quadcopter:

 vertical acceleration is achieved by increasing or decreasing the speed of all four

rotors equally,

Figure 3: Roll, Pitch and Yaw

10

 Yaw rotation can be achieved by increasing the speed of engines 1 and 4, while

decreasing the speed of engines 2 and 3 (or vice-versa) - resulting in an overall

clockwise (or counter-clockwise) torque, without changing overall upwards thrust

or balance,

 Horizontal movement can be achieved by increasing the speed of one engine, while

decreasing the speed of the opposing one, resulting in a change of the roll or pitch

angle, and thereby inducing horizontal acceleration.

Moreover, the combination of three main actions could be taken to maneuver the

Quadcopter. As a final point there exist eight different maneuvers as shown below (Figure 4):

Figure 4 : Basic Movement of a Quadcopter

11

A. Pitch back B. Pitch forward C. Roll right

D. Roll left E. Yaw clockwise F. Yaw anti-clockwise

G. Ascend H. Descend

To test the accuracy and robustness of the algorithm which will be explained in chapter 4,

the algorithm was deployed to control positioning of a “Parrot AR.Drone”, which is a Quadcopter

built by the French company Parrot [27]. The Parrot AR.Drone has dimensions of 52.5 cm × 51.5

cm with, and 45 cm× 29 cm without hull. It has four rotors with a 20 cm diameter, fastened to a

robust carbon-fiber skeleton cross providing stability. A removable styrofoam hull protects the

drone and particularly the rotors during indoor-flights, allowing the drone to survive minor and

not-so-minor crashes such as flying into various types of room furniture, doors and walls – making

it well suited for experimental flying and development. An alternative outdoor-hull -missing the

rotor-protection and hence offering less protection against collisions - is also provided and allows

for better maneuverability and higher speeds.

Figure 5 : Top view of Parrot AR.Drone

12

The drone weights 380g with the outdoor-hull, and 420 g with the indoor-hull. Although

not officially supported, in our tests the Quadcopter was able to fly with an additional payload of

up to 120 g using the indoor hull - stability, maneuverability and battery life however suffered

significantly, making the drone hardly controllable with that kind of additional weight. The drone

is equipped with two cameras (one directed forward and one directed downward), an ultrasound

altimeter, a 3-axis accelerometer (measuring acceleration), a 2-axis gyroscope (measuring pitch

and roll angle) and a one-axis yaw precision gyroscope. The onboard controller is composed of an

ARM9 468MHz processor with 128Mb DDR Ram, on which a BusyBox based GNU/Linux

distribution is running. It has an USB service port and is controlled via wireless LAN [27].

Software for Parrot AR.Drone is not open source and there is not good documentation for

it. For this thesis we don’t need complex control on the Quadcopter so we assume it as a black

box. There are four built-in communication channel available. Although the approach in this thesis

is not using all channels, for the sake of completeness, all four channels would be introduced. As

soon as the battery is connected, the drone sets up an ad-hoc wireless LAN network to which any

device may connect. Upon network connection, the drone immediately starts to communicate

(sending data and receiving navigational commands) on four separate channels[4,28]:

 navigation channel (UDP port 5554)

While in normal mode the Quadcopter only broadcasts basic navigational data every 30

ms, after switching to debug mode it starts sending large amounts of sensor measurements every

5 ms. The exact encoding of the sent values will not be discussed here, it is partially documented

in [28]. The most important parameters and sensor values - and the ones used in our approach -

are the following:

13

1) Quadcopter orientation as roll, pitch and yaw angles: as mentioned in the previous

section, roll and pitch values are drift-free and very accurate, while the measured

yaw-angle is subject to significant drift over time

2) Horizontal velocity: in order to enable the drone to keep its position in spite of

wind, an optical-flow based motion estimation algorithm utilizing the full 60 fps

from the floor camera is performed onboard, estimating the drone’s horizontal

speed. The exact way these values are determined however is not documented.

 video channel (UDP port 5555)

The drone continuously transmits one video stream, which can be one of four different

channels - switching between channels can be accomplished by sending a control command to the

drone. The four available channels are depicted in Figure 2.3. As can be seen, neither of the

available cameras can be accessed fully: for the downwards facing camera the available frame rate

is - with only 18 fps - significantly lower than the original 60 fps. Furthermore the maximal

supported resolution is 320×240, halving the forward camera’s original resolution1 [4,28].

 command channel (UDP port 5556)

The Drone is navigated by broadcasting a stream of command packages, each defining the

following parameters:

1. desired roll and pitch angle, yaw rotational speed as well as vertical speed, each as

fraction of the allowed maximum, i.e. as value between -1 and 1,

14

2. one bit switching between hover-mode (the drone tries to keep its position, ignoring any

other control commands) and manual control mode,

3. one bit indicating whether the drone is supposed to enter or exit an error-state,

immediately switching off all engines,

4. one bit indicating whether the drone is supposed to take off or land.

Being sent over an UDP channel, reception of any one command package cannot be

guaranteed.

In our implementation the command is therefore re-sent approximately every

10 ms, allowing for smoothly controlling the drone [4,28].

 control port (TCP port 5559, optional)

Control commands can be used to change internal settings of the drone, for example for

switching between the four available video channels. In general a control command is transmitted

as a string of the format “[attribute]=[value]”, for a list of the available commands we refer to

[4,28].

CHAPTER 4 – METHODOLOGY

As it is shown in Figure 6, the camera captures images that are used to identify easy-to-

track points named “Landmarks” and tracks them between two consecutive images. The longest

distance between the landmarks on the two consecutive images is assigned to Most Reliable

Straigh Line (MRSL), which is used to indicate the deviation from the Quadcopter’s original

position. Our trained algorithm is then deployed to reduce the deviation by issuing relevant

commands. This action is repeated until MRSL converges to zero.

3.1 Landmark Detection and Tracking

Movement of the camera, which implies to movement of Quadcopter, cause changes in the

position of landmark points. The movements of these points are tracked in the next step by

extracting the magnitude and direction of Quadcopter movement. Some of the features that can be

extracted from the images are edges, corners, blobs, or ridges. Several feature detection algorithms

like SIFT (DoG) [29], SURF [30], FAST [31] and Harris corner detector [32] were considered for

this study but because the high-speed requirement, it was decided to adopt the Features From

Figure 6: Methodology

16

Accelerated Segment Test (FAST) algorithm. FAST is a corner detection method, which can be

used to extract landmarks by using a circle of 16 pixels to classify whether center pixel of the circle

is aligned with a landmark. Decision is made by comparing color intensity of the center pixel with

those of 16 neighboring pixels located on the perimeter of the circle. For each candidate pixel P

(see Figure 7), the algorithm identifies which pixels are aligned with a circle perimeter: if a long

enough sequence of continuously brighter or continuously darker pixels is found, it is classified as

a landmark.

Once the landmarks are detected, the exact positions of them are extracted next. A general

formula for tracking is to find parameters p of a warp function 𝒇(𝒙, 𝒚; 𝒑) ∶ ℝ𝟐 × ℝ𝒅 → ℝ𝟐, such

that the difference between the original patch 𝑻(𝒙, 𝒚) and the transformed image 𝑰(𝒇(𝒙, 𝒚; 𝒑))

becomes minimal, that is minimizing the sum of squared differences (SSD) [4], see Eq. 2.

𝑬𝑺𝑺𝑫(𝑷) ≔ ∑ (𝑰(𝒇(𝒙, 𝒚; 𝒑)) − 𝑻(𝒙, 𝒚))
𝟐

𝒙,𝒚 (1)

𝑷∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏 𝑬𝑺𝑺𝑫(𝒑) (2)

Figure 7 The FAST-16 corner detector

17

Choosing a good warp function is critical to having a suitable degree of freedom, “Pure

Translation” function selected as a warp function, which tracks a two-dimensional image patches.

The resulting transformation has two degrees of freedom, the displacement in two dimensions is

shown in Eq. 3.

𝒇(𝒙, 𝒚; 𝜹𝒙, 𝜹𝒚) = (
𝒙 + 𝜹𝒙
𝒚 + 𝜹𝒚

) (3)

3.2 Extracting the Movements

Let 𝐶1 and 𝐶2 be two consecutive images captured by the camera. First FAST algorithm is

deployed on 𝐶1 to find all landmarks coordinates (𝑃1 , 𝑃2 , … , 𝑃𝑛). Then tracking algorithm is run

on 𝐶2 to track same landmarks and find their new coordinates (𝑃1
′ , 𝑃2

′ , … , 𝑃𝑛
′). By connecting

each pair 𝑃𝑚 to 𝑃𝑚
′ a line is formed and labeled “Reliable Straight Line” (RSL). RSLs are important

because they can be used to estimate camera rotation and translation using essential matrix in

epipolar geometry. The essential matrix is a 3 × 3 matrix that encodes the relationship between

two images of the same scene from different viewpoints. The essential matrix is defined as in Eq.

4.

𝐸 : = 𝑅 × [𝒕]𝑥 ∈ ℝ3×3 (4)

Where [𝒕]𝑥 is the matrix corresponding to cross product of 𝒕 and R, is rotation matrix. As

a property of the essential matrix for each 𝑃 and 𝑃′ Eq. 5 is held

(𝑃′)𝑇𝐸 𝑃 = 0 (5)

18

As a result of essential matrix properties there are solutions for determining R and 𝒕 based

on performing Singular Value Decomposition. Using Multiple View Geometry [33] the rotation

matrix R and cross product vector as shown in Eq. 6 and 7 are computed next

[𝒕]𝑥 = ± V W Σ VT (6)

R = U W−1𝑉𝑇 (7)

Where, W = [
0 −1 0
1 0 0
0 0 1

] (8)

Where U and V are orthogonal 3 × 3 matrices and Σ is 3 × 3 diagonal matrix, see Eq. 9.

Σ = [
𝑠 0 0
0 𝑠 0
0 0 0

] (9)

There are several algorithms such as five-point and eight-point algorithms for solving R

and 𝒕. Five-point algorithm [34] was used in this study to estimate camera-rotation and translation

from two consecutive images.

3.3 Most Reliable Straight Line

Let 𝐶𝑎 and 𝐶𝑏 be two arbitrary captured images. By assumption there is no moving object

in the images if three landmarks exists such that the coordinates 𝑃𝑎 = 𝑃𝑏
′ where the position of the

camera in those moments was identical. Using this fact, if the sums of all RSLs length converge

to zero over time, it can be concluded that the camera is stabilized. Therefore the goal is to

minimize the RSLs by issuing relevant commands to Quadcopter. Length of the RSL is directly

correlated with accuracy of algorithm. When one RSL is longer than the others, stabilization is

more accurate and slope is good measure for reliability of a specific RSL. When the slopes are not

19

the same, which means either an object is moving inside the image or camera is rotating around

itself.

The MRSL is the longest of RSLs those with similar slope. For each MRSL, 𝑝𝑝′, there

exist a vector named Most Reliable Straight Vector (MRSV) at starting point of 𝑝′ and endpoint

of p. MRSV has equal magnitude and direction that of MRSL.

Although MRSL can be implemented to stabilize Quadcopters, but to remove all the

unwarranted disturbances an alternative RSL should be used in order to avoid the risk of failure.

In this case the RSLs with the same slopes are grouped into 3 equal size clusters. Beside the MRSL

alternative RSLs one line from first along with one from second and two from the last clusters are

selected and represented by an array[𝑰𝑫, (𝒙, 𝒚), (𝒙′, 𝒚′) , 𝑳], where ID is unique identification

number for each landmark, (𝒙, 𝒚) is coordinate pair of 𝑪𝟏, and (𝒙′, 𝒚′) is coordinate pair of 𝑪𝟐 ,

and L is the length of RSL.

Fig.3. Landmark extraction initialization Figure 8: Landmark extraction initialization

20

The candidate MRSL and 4 other RSL are used as inputs to the NN, Figure 8 shows the

initial step and Figure 9 shows all detected RSLs.

3.4 Neural Network-Based Stabilization System

 Before going through design and implementation, a brief introduction of Neural Network

(NN) would be present. The simplest definition of a NN, more properly referred to as an 'artificial'

neural network (ANN), is provided by the inventor of one of the first neurocomputers, Dr. Robert

Hecht-Nielsen. He defines a neural network as: “...a computing system made up of a number of

simple, highly interconnected processing elements, which process information by their dynamic

state response to external inputs.” [35]

ANNs are processing devices (algorithms or actual hardware) that are loosely modeled

after the neuronal structure of the mammalian cerebral cortex but on much smaller scales. A large

ANN might have hundreds or thousands of processor units, whereas a mammalian brain has

Fig.4. All detected RSLs Figure 9 All detected RSLs

21

billions of neurons with a corresponding increase in magnitude of their overall interaction and

emergent behavior. Although ANN researchers are generally not concerned with whether their

networks accurately resemble biological systems, some have. For example, researchers have

accurately simulated the function of the retina and modeled the eye rather well [36].

Neural neworks are typically organized in layers. Layers are made up of a number of

interconnected 'nodes' which contain an 'activation function'. Patterns are presented to the network

via the 'input layer', which communicates to one or more 'hidden layers' where the actual

processing is done via a system of weighted 'connections'. The hidden layers then link to an 'output

layer' where the answer is output as shown in figure 10 [36]:

Most ANNs contain some form of 'learning rule' which modifies the weights of the

connections according to the input patterns that it is presented with. In a sense, ANNs learn by

example as do their biological counterparts; a child learns to recognize dogs from examples of

dogs.

Figure 10 : Neural Network Schema

22

Although there are many different kinds of learning rules used by neural networks, this

demonstration is concerned only with one; the delta rule. The delta rule is often utilized by the

most common class of ANNs called 'backpropagational neural networks' (BPNNs).

Backpropagation is an abbreviation for the backwards propagation of error [36].

With the delta rule, as with other types of backpropagation, 'learning' is a supervised

process that occurs with each cycle or 'epoch' (i.e. each time the network is presented with a new

input pattern) through a forward activation flow of outputs, and the backwards error propagation

of weight adjustments. More simply, when a neural network is initially presented with a pattern it

makes a random 'guess' as to what it might be. It then sees how far its answer was from the actual

one and makes an appropriate adjustment to its connection weights[36].

For this thesis gradient descent used as an optimization method for backpropagation.

Gradient descent is a first-order optimization algorithm. To find a local minimum of a function

using gradient descent, one takes steps proportional to the negative of the gradient (or of the

approximate gradient) of the function at the current point. The method calculates the gradient of a

loss function with respect to all the weights in the network. The gradient is fed to the optimization

method which in turn uses it to update the weights, in an attempt to minimize the loss function.

The psuedocode of the algorithm is as below[37]:

 initialize network weights (often small random values)

 do
 forEach training example ex

 prediction = neural-net-output(network, ex) // forward pass

 actual = teacher-output(ex)

 compute error (prediction - actual) at the output units

 compute ∆𝜔ℎ for all weights from hidden layer to output layer // backward pass

 compute∆𝜔𝑖 for all weights from input layer to hidden layer // backward pass continued

23

 update network weights // input layer not modified by error estimate

 until all examples classified correctly or another stopping criterion satisfied

 return the network

The goal of using NN is that by giving the |𝑀𝑅𝑆𝐿| > 0, suitable commands are issued as

output. These commands counteract and move the Quadcoter back to its initial position. The

designed NN has 7 inputs, where five of them are described in the previous section and are MRSL

and 4 alternative RSLs. The built-in gyroscope data and speed of each motors are used as the

remaining two inputs. Current speed of the motors helps in issuing commands with respect to

current state of Quadcopter.

By controlling speed of each of the motors of a Quadcopter, its movement can be controlled

in 3-D environment. The four different output of NN are respective values of electrical current

applied to each brushless motor. The range of each output node is [0,1]. Zero means that the motors

are off and the one means that the motors are running in the full load. As a last piece of design,

NN has one hidden layer consisted of 10 nodes.

In order to train NN, a training dataset is generated that includes

(𝑴𝑹𝑺𝑳 , 𝑹𝑺𝑳𝟏, 𝑹𝑺𝑳𝟐, 𝑹𝑺𝑳𝟑, 𝑹𝑺𝑳𝟒, 𝑮𝒚𝒓𝒐𝒕, 𝑴𝒕) → (𝑴𝟏, 𝑴𝟐, 𝑴𝟑, 𝑴𝟒) (10)

The 5 lines, gyroscope data and current state of motors, maps to 4-tuple electrical currents

controlling the speed of each motor. The interpretation is that in order to move the camera to have

a specific |MRSL|, a specific electrical current should be applied to each motor.

This dataset was generated in a creative way. A program generated 4 random numbers in

the range [0,1]. These numbers were sent to motors as control commands. By capturing two images

(𝐶0 and 𝐶1) before and after sending that command, landmarks are extracted from 𝐶0 and tracked

24

in 𝐶1. All variables regarding the MRSL algorithm were calculated and collected in a form of tuple

as shown in (7). This experiment was repeated 700 times to make sure that enough data was

generated for training. This experiment was supervised by an operator to avoid collisions and

gather different viewpoints to make sure that the algorithm is not biased with a particular landmark.

Noise and outliers were injected to the dataset to avoid over fitting. The final dataset contains 1000

samples, 90% were used for training and 10% for testing purpose.

Back propagation [38] was used to compute all the weights in the network. After training,

the algorithm was validated using the test dataset. The success rate of 94.3% was observed.

CHAPTER 5 – THE COORDINATOR

Coordinator is an interface, which handles wireless communication between the

Quadcopter and the PC. Because two different platforms are used in implementation, coordinator

interprets the output of NN to suitable commands and transmits them to the Quadcopter’s flight

control board. Also it takes images from Quadcopter and sends them as input for MRSL algorithm.

Moreover, coordinator is responsible for the emergency situation e.g. when the battery is too low

or the MRSL algorithm is not responding for any reason, coordinator would do an emergency

landing to reduce the probable damages. In this thesis Robot Operating System (ROS) was used.

ROS is a set of software libraries and tools that help you build robot applications. From drivers to

state-of-the-art algorithms, and with powerful developer tools and it is open source. ROS provide

a driver for Parrot AR.Drone and also running FAST algorithm on the captured images.

CHAPTER 6 – THE RESULTS

In this section the accuracy of stabilization and robustness of the Quadcopter using the

MRSL approach is evaluated with experimental data obtained from several test flights in different

location. The experiments can be categorized in two main groups, i) evaluating the stabilization

without any external disturbances, b) applying disturbances e.g. pushing or pulling Quadcopter or

blowing air with blower.

In the first set of experiments the Quadcopter was stabilized with supervision of a human

intervention in a certain position, then the intervention stopped navigating allowing the algorithm

to begin controlling Quadcopter for 60 seconds. The goal of the experiment was to evaluate the

stability of the Quadcopter. This experiment was repeated 100 times. Two criteria measured for

evaluation were movement of the detected landmarks and movement of the center of mass of the

Quadcopter from viewpoint of external fixed camera. As is shown in Figure 11 visualization of

the movement of the landmarks and the actual position of the Quadcopter in a 3-D space.

Figure 11 Landmarks change captured by camera

27

Figure 12 shows the movement of the center of mass of the Quadcopter captured by a fixed

camera. Accuracy of stabilization measured is expressed by the shortest diameter of a circle that

includes all the landmarks. In our experiment the average diameter was about 15 inches for center

of mass of Quadcopter.

In the second experiment after stabilization, external disturbances were introduced in order

to test robustness of the MRSL algorithm. The goal was to measure convergence speed and time

of the Quadcopter to return to its initial position. Result showed that regardless of the direction of

the introduced forces to disturb the stability of the Quadcopter, the convergence time remained

almost constant. But the magnitude of force is inversely correlated with convergence time. The

algorithm was not robust to forces that change the direction of the camera where, none of the

landmarks remained within the image. This threshold is the critical point of MRSL algorithm. As

Figure 13 shows forces from 1 to 5 Newton were applied and the measure of the convergence time

was observed.

Figure 12 : Movement of center of Quadcopter captured by fix camera

28

Figure 13 Convergence time by amount of applied force

Time (s)

F
o

rc
e

(N
)

CHAPTER 7 – CONCLUSION

Stabilizing and localizing positioning systems autonomously in the areas without GPS

accessibility is a difficult task. In this paper, we introduce an innovative methodology for

stabilizing and localizing Quadcopters in 3-D environments. Most of the current methods used to

positioning objects in 3-D are using expensive equipment in contrast to the methodology

introduced in this paper. To prove the robustness of the algorithm, an experiment was set up using

a Quadcopter to measure the reliability of the algorithm, it was observed that the algorithm can

stabilize the Quadcopter effectively even in the presence of external.

REFERENCES

[1] Javier Irizarry, Masoud Gheisari, Bruce N. Walker (2012) Usability assessment of drone

technology as safety inspection tools, ITcon Vol. 17, pg. 194-212

[2] Staff writer (25 April 2010). "Robot subs trying to stop Gulf oil leak". CBC News. Retrieved

25 April 2010

[3] Brando, A (2003) Firefighter-robot interaction during a hazardous materials incident exercise,

2011 15th International Conference on Advanced Robotics

[4] Jakob Julian Engel (2011), Autonomous Camera-Based Navigation of a Quadrocopter, TUM

University Thesis

[5] William Morris, Ivan Dryanovski, Jizhong Xiao (2010) 3D indoor mapping for micro-UAVs

using hybrid range finders and multi-volume occupancy grids, workshop on RGB-D: Advanced

Reasoning with Depth Cameras, Zaragoza, Spain

[6] Erdinç Altu˘g , James P. Ostrowski , Camillo J. Taylor (2005) Control of a Quadrotor

Helicopter Using Dual Camera Visual Feedback, The International Journal of Robotics Research

[7] Siciliano B, Khatib O (2008) Handbook of Robotics, Springer

[8] C. Stachniss. (2006) Exploration and Mapping with Mobile Robots. PhD thesis, University

Freiburg

[9] Leonard, Durrant-Whyte: Mobile robot localization by tracking geometric beacons:

[10] Smith, Self, Cheesman: Estimating uncertain spatial relationships in robotics

[11] Riisgaard, Søren and Blas, Morten Rufus. SLAM for Dummies: A Tutorial Approach to

Simultaneous Localization and Mapping . Boston: MIT, 2004.

[12] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis, Universi¨at

Freiburg, 2006.

[13] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A Factored Solution to

Simultaneous Localization and Mapping Problem. In: National Conference on Artificial

Intelligence (2002)

[14] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An Improved

Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably

31

Converges. In: International Joint Conference on Artificial Intelligence (2003)

[15] Davison, A., Reid, I., Molton, N.D., Stasse, O.: MonoSLAM: Real-time single camera

SLAM. IEEE Transaction on Pattern Analysis and Machine Intelligence 29(6), 1052–1067

(2007)

[16] Klein, G., Murray, D.: Parallel Tracking and Mapping for Small AR Workspaces. In: 6th

IEEE International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007)

[17] Yoo, Jaesang, Kyusung Cho, Jinki Jung, and Hyun S. Yang. "Online scene modeling for

interactive AR applications." In Entertainment Computing-ICEC 2010, pp. 139-150. Springer

Berlin Heidelberg, 2010.

[18] Nevado, M.M., Gercía-Bermejo, J.G., Zalama, E.: Obtaining 3D models of indoor

environments with a mobile robot by estimating local surface directions. Robotics and

Autonomous Systems 48(2-3), 131–143 (2004)

[19] Viejo, D., Cazorla, M.: 3D plane-based egomotion for SLAM on semi-structured

environment. In: IEEE International Conference on Intelligent Robots and Systems (2007)

[20] Rachmielowski, A., Jägers, M., Cobzas, D.: Realtime visualization of monocular data for

3D reconstruction. In: Canadian Conference on Computer and Robot Vision, pp. 196–202

(2008)

[21] Chekhlov, D., Gee, A., Calway, A., Mayol-Cuevas, W.: Ninja on a plane: Automatic

Discovery of Physical Planes for Augmented Reality Using Visual Slam. In: 6th IEEE

International Symposium on Mixed and Augmented Reality, pp. 1–4 (2007)

[22]Gee, A., Chekhlov, D., Calway, A., Mayol-Cuevas, W.: Discovering Higher Level

Structure in Visual SLAM. IEEE Trans

actions on Robotics, 980–990 (2008)

[23] Wikipedia. Quadrotor — Wikipedia, the free encyclopedia, 2011. [http://en.

wikipedia.org/w/index.php?title=Quadrotor&oldid=443167665].

32

[24] Hoffmann, G.M.; Rajnarayan, D.G.; Waslander, S.L.; Dostal, D.; Jang, J.S.; Tomlin, C.J.

(November 2004). "The Stanford Testbed of Autonomous Rotorcraft for Multi Agent Control

(STARMAC)" (PDF). In the Proceedings of the 23rd Digital Avionics System Conference. Salt

Lake City, UT. pp. 12.E.4/1–10.

[25] Stafford, Jesse (Spring 2014). "How a Quadcopter works | Clay Allen". University of Alaska,

Fairbanks. Retrieved 2015-01-20.

[26] Stafford, Jesse (2014-01-12). "How does a Quadcopter fly | Minicopter-jp.com". Minicopter-

jp.com. Retrieved 2015-01-20.

[27] Product specification guide at http://ardrone2.parrot.com/

[28] Parrot. AR-Drone developer guide for SDK 1.6, 2011. [http://projects.ardrone.org].

[29] D. Lowe. Object recognition from local scale-invariant features. In Proc. of the

International Conference on Computer Vision (ICCV), 1999.

[30] H. Bay, T. Tuytelaars, and L.V. Gool. SURF: Speeded-up robust features. In Proc. of the

European Conference on Computer Vision (ECCV), 2008.

[31] E. Rosten and T. Drummond (2006) Machine learning for high-speed corner detection. In

Proc. of the European Conference on Computer Vision (ECCV)

[32] Harris, C., & Stephens, M. (1988, August). A combined corner and edge detector. In Alvey

vision conference (Vol. 15, p. 50).

[33] Zisserman, R. H. (2004). Multiple View Geometry in Computer Vision. Cambridge

University Press.

[34] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc. of the International

Conference on Pattern Recognition (ICPR), 2006

[35] "Neural Network Primer: Part I" by Maureen Caudill, AI Expert, Feb. 1989

[36] What is nural network , Josef Burger, 2010

[37] Gradient descent , en.wikipedia.org/wiki/Gradient_descent

[38] Yves Chauvin (2008) Back-Propagation: Theory, Architecture, and Applications, Taylor

& Francis

