
 
 

ABSTRACT 

FUNCTION OF DISINTEGRIN-LIKE DOMAIN OF KSHV gB IN 

REGULATING VIRUS INFECTION 

by 

Lia R. Walker 

November, 2015 

Director of Dissertation:  Dr. Shaw M. Akula 

Major Department:  Interdisciplinary Doctoral Program in Biological Sciences 

 KSHV, also referred to as human herpesvirus-8 (HHV-8), is the eighth and latest 

identified human herpesvirus.  It is the causative agent for a variety of malignancies namely 

Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease 

(MCD).  The processes and mechanisms involved in virus entry are among the many intricacies 

not fully understood regarding KSHV and other viruses.  As in other herpesviruses, KSHV target 

cell entry is a complex process consisting of multiple steps which include: initial 

attachment/binding to the cell, virus:cell surface receptor interactions, virus internalization/uptake, 

and subsequent trafficking of the virus for nuclear delivery.  Viral envelope glycoproteins interact 

with target cell surface receptor molecules to facilitate entry into cells.  For instance, virus 

envelope associated glycoprotein B (gB) of KSHV is known to interact with integrins via its RGD 

(Arg-Gly-Asp; 27-29aa) integrin binding domain.  RGD of KSHV functionally interacts with 

integrins α3β1, αVβ3, and αVβ5 that have a role in initiating internalization.  Cell surface 

receptors, like integrins, aid in a virus’ ability to establish a successful infection.  In addition to 



   
 

RGD, KSHV gB also harbors the lesser studied integrin recognition motif, disintegrin-like domain 

(DLD; 66-85aa).  As it pertains to virus entry in general, few studies have sought to establish a 

role for DLD, which is highly conserved among gB homologs.  In the following studies, we 

employed phage display peptide library screening and recombinant viruses to determine that DLD 

of KSHV gB binds α9β1 integrin on the surface of target cells in an interaction critical for 

infection.  We go on to specify a role for DLD-binding α9β1 in mediating KSHV entry by 

employing subcellular fractionation.  The virus interactions with α9β1 are crucial for endosomal 

trafficking of KSHV, as integrin α9β1was observed to have a role in late endosomal escape of 

KSHV for cytosolic delivery.  These studies provide new insights in regards to KSHV infectious 

entry into target cells.  Advancing our knowledge of virus entry is critical for a thorough 

understanding of KSHV pathogenesis.       
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CHAPTER 1:  REVIEW OF LITERATURE 

Herpesvirus Overview 

Herpesviruses are highly host-specific, large (125-295Kb), linear double stranded DNA viruses 

with certain shared biological properties (Davison, 2011; Hanson et al., 2011; Lepa & Siwicki, 

2012; Mettenleiter et al., 2009; Wu et al., 2014).  As many as 300 of these enveloped viruses have 

been discovered (Davison, 2011), with well over 130 being characterized.  Herpesviruses infect 

most vertebrates and a few invertebrates (Brown & Newcomb, 2011; Wu et al., 2014).  As of a 

2009 update by the International Committee on Taxonomy of Viruses (ICTV), these viral 

pathogens are classified under the new order, Herpesvirales.  This order is divided into three 

distinct families:  Herpesviridae (subdivided into the alpha-, beta-, and gamma-herpesvirinae and 

containing mammal, bird, and reptile herpesviruses), Alloherpesviridae (fish and frog 

herpesviruses), and Malacoherpesviridae (invertebrate herpesviruses) (Davison, 2010; Davison et 

al., 2009; Griffin et al., 2010).  

All herpesvirus exhibit structural commonality, comprising four layers: (i) an inner core 

containing double stranded viral DNA, (ii) an icosahedral capsid (125nm in diameter) surrounding 

the core and composed of 162 capsomers, (iii) a virus-encoded proteinaceous layer located 

between the capsid and the virus envelope called the tegument, and (iv) a lipid envelope studded 

with viral glycoproteins.  Fully assembled, the herpesvirus virion is approximately 200-250nm in 

diameter (Bohannon et al., 2013; Brown & Newcomb, 2011; Zaichick et al., 2011).  The standout 

fundamental theme unifying all herpesviruses is their ability to establish long-term latency after 

primary infection (Griffin et al., 2010).  In terms of their infectious cycle, herpesviruses share 

common methods of entry into host cells, delivery of their genome to the nucleus, establishment 

of prolonged latent infection, replication and capsid assembly inside the 



2 
 

nucleus, egress of genomes from the nucleus, maturation and envelopment in the cytosol, and 

ultimately exocytosis of mature and infectious virions.  Notable differences among herpesviruses 

include variance in host range, tissue tropism, time course of lytic replication, and disease 

symptoms and severity (Zaichick et al., 2011).  

In particular, Herpesvirdae subfamily classifications (alpha-, beta-, and gamma-

herpesvirinae) are generally based on the host cell type in which latency is established, the length 

of replication cycles, and genome content (Kramer & Enquist, 2013).  Alpha-herpesviruses are 

neuroinvasive pathogens that establish latency in the nervous systems of their mammalian hosts 

(Engel et al., 2015; Kramer & Enquist, 2013).  These viruses have a broad tissue tropism and host 

range and a relatively short replication cycle (i.e. hours) (Jin et al., 2008).  On the other hand, beta-

herpesviruses have a long replication cycle (i.e days) and limited host range.  Additionally, beta-

herpesviruses establish latency in mononuclear cells, secretory cells, epithelial cells, etc. (Fishman, 

2013).  The host range for gamma-herpesviruses is also limited (Cabello et al., 2013), and these 

viruses widely establish latency in lymphocytes (Smith et al., 2006) and have variable replication 

rates.   

Historically, there was a general consensus that only eight herpesviruses infected humans 

as their natural host, namely human herpesviruses (HHV) (Kumari et al., 2015; Tang & Mori, 

2010).  The herpesviruses identified in humans are herpes simplex virus-1 (HSV-1; HHV-1), 

herpes simplex virus-2 (HSV-2; HHV-2), varicella zoster virus (VZV; HHV-3), Epstein-Barr virus 

(EBV; HHV-4), cytomegalovirus (HCMV; HHV-5), human herpesvirus-6A/B (HHV-6A, HHV-

6B), human herpesvirus-7 (HHV-7), and Kaposi’s Sarcoma-associated herpesvirus (KSHV or 

HHV-8).  HSV-1, HSV-2, and VZV are alpha-herpesviruses.  HCMV, HHV-6A/B, and HHV-7 

are beta-herpesviruses.  EBV and KSHV are gamma-herpesviruses (Alibek et al., 2014; Fishman, 



3 
 

2013; Penkert & Kalejta, 2011).  Based on epidemiological, biological, and molecular 

characteristics, the classification of HHV-6A and HHV-6B has transitioned from viral variants to 

distinct viruses (Trempe et al., 2015).  Thus, many researchers are now considering there to be 

nine total human herpesviruses (Grose & Adams, 2014; Ohye et al., 2014).  

Kaposi’s Sarcoma-Associated Herpesvirus 

KSHV, the eighth identified human herpesvirus infecting a relatively small number of the human 

population (Dreyfus, 2013), is of particular interest to the present report.  KSHV belongs to the 

gamma-2-herpesvirus subfamily and the genus Rhadinovirus along with its primate rhadinovirus 

relatives (Bruce et al., 2015; Guito & Lukac, 2015; Neipel et al., 1998).  Primate rhadinoviruses 

have been observed in squirrel monkeys, African Green monkeys, rhesus macaques, etc.  Notably, 

rhesus macaque rhadinovirus infects rhesus macaques and induces disease in a manner that 

resembles KSHV-associated pathologies.  In fact, rhesus macaque rhadinovirus with its genetic 

similarities to KSHV serves as an animal model for understanding KSHV infection and 

pathogenesis (Estep & Wong, 2013).  However, in terms of herpesviruses that infect humans, 

gamma-1-herpesvirus EBV is KSHV’s closest human herpesvirus relative (Guito & Lukac, 2015; 

Jenner et al., 2003).    

With both sequence homology to and gene distinction from related gamma-herpesviruses, 

KSHV was identified as a new human herpesvirus in 1994 by Chang et al. via representational 

difference analysis (Chang et al., 1994).  Using this PCR-based subtraction hybridization 

technique, the team of researchers identified KSHV DNA sequences in lesions from patients with 

acquired immunodeficiency syndrome (AIDS)-Kaposi’s Sarcoma (KS) but not in adjacent normal 

tissue.  Befittingly named based on the KS biopsies from which it was discovered, KSHV has since 

been associated with all forms of KS (Chang et al., 1994; Jenner & Boshoff, 2002; Moore & 
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Chang, 1995).  Not long after its identification, the genome of the ‘new’ herpesvirus was cloned 

and sequenced (Ganem, 1997; Neipel et al., 1998; Russo et al., 1996).  The KSHV genome was 

mapped using cosmid and phage genomic libraries from the BC-1 cell line (a B cell lymphoma 

cell line co-infected with KSHV and EBV; (Ueda et al., 2011)) (Russo et al., 1996).    

KSHV-Associated Diseases 

KSHV is considered the etiological agent for KS, primary effusion lymphoma (PEL), and KSHV-

multicentric Castleman Disease (KSHV-MCD) (Cesarman et al., 1995; Soulier et al., 1995; Ueda 

et al., 2011).  All of these rare neoplastic disorders resulting from KSHV infection are most 

commonly observed in immunocompromised individuals (Kaplan, 2013). 

KS is a malignant vascular tumor characterized by lesions occurring mainly on the skin, 

but it can also affect the mucosa and visceral organs (Makharoblidze et al., 2015; Radu & 

Pantanowitz, 2013).  Hallmarks of KS are angiogenesis, cell proliferation, and inflammation 

(Cancian et al., 2013).  Most human tumors are clonal outgrowths of a single cell type, but KS 

lesions are diverse in cell type (Ganem, 2010).  The purplish-brown lesions progress from early 

stage flat patches to plaques to large nodules (in tumor stage) and histologically exhibit 

proliferation of infiltrating inflammatory cells, slit-like neovascular structures, and spindle-shaped 

endothelial cells (Cai et al., 2010; Ganem, 2010; Gbabe et al., 2014; Radu & Pantanowitz, 2013).  

KS lesions exhibit an abundant expression of pro-inflammatory cytokines (e.g.: interferon gamma 

[IFNγ], tumor necrosis factor alpha [TNF-α], interleukin-1 [IL-1], IL-6, and granulocyte-

macrophage colony-stimulating factor [GM-CSF]), chemokines (e.g.: monocyte chemoattractant 

protein 1 [MCP-1] and IL-8), and pro-angiogenic growth factors (e.g.: vascular endothelial growth 

factor [VEGF], platelet-derived growth factor [PDGF], beta fibroblast growth factor [βFGF], 

transforming growth factor beta [TGFβ]) (Cancian et al., 2013; Sivakumar et al., 2008).  During 



5 
 

early stages of this chronic inflammation-associated malignancy, spindle cells (the predominant 

KSHV-infected cells in advancing KS lesions) secrete inflammatory cytokines and 

growth/angiogenic factors that fuel activation and proliferation of endothelial cells in an autocrine 

or paracrine manner.  Further recruitment of inflammatory cells to the infection site advances the 

inflammatory process (Cancian et al., 2013).     

In 1872, KS was referred to as “idiopathic multiple pigmented sarcoma of the skin” by the 

Hungarian dermatologist, Moritz K. Kaposi.  At the time of Kaposi’s reports, KS was believed to 

be a rare and slowly progressing tumor affecting mainly elderly men of Mediterranean and Eastern 

European origin who were more likely to die with KS rather than from it (Chang & Moore, 2014).  

Until the 1980s, only two forms of KS were readily noted, classic KS, as previously described by 

Kaposi, and an endemic and more aggressive form affecting adults as well as children in sub-

Saharan Africa (Robey & Bower, 2015).  However, with the emergence of the human 

immunodeficiency virus (HIV)/AIDS epidemic, KS quickly became a priority for scientific 

research (Chang & Moore, 2014); individuals with AIDS were at an astonishingly increased risk 

for developing KS (50,000 fold risk compared to the general population) (Shiels et al., 2011).  

During the emergence of the HIV/AIDS epidemic, the incidence of KS reportedly increased over 

1,000 fold in homosexual/bisexual men, intravenous drug users, and promiscuous individuals at 

high risk for contracting HIV (Karamanou et al., 2013).  By 1982, the United States (US) Center 

for Disease Control and Prevention characterized KS as an AIDS-defining illness (Robey & 

Bower, 2015).  

Clinically, there are four recognized variants of KS which include: classic KS, African 

(endemic) KS, iatrogenic (transplantation-associated) KS, and AIDS (epidemic)-KS (Fatahzadeh 

& Schwartz, 2013).  The aforementioned classic form of KS typically affects older (>60 years old) 



6 
 

HIV-uninfected men of Jewish, Mediterranean, and Eastern European decent (estimated 

male/female ratio: 15:1).  Classic KS may persist over the course of many years, but it is considered 

non-life threatening.  The lesions characteristic to this form of KS are usually present on the skin 

of the lower extremities and rarely infiltrate internal organs (Guttman-Yassky et al., 2006; 

Regnier-Rosencher et al., 2013); however, classic KS may be complicated by lympho-edema or 

hyperkeratosis (Hengge et al., 2002).   

African (endemic) KS was prevalent in equatorial countries of Africa long before the 

HIV/AIDS epidemic.  Prior to the epidemic, endemic KS, like classic KS, primarily affected men, 

and tumor development was to some extent linked to environmental factors (e.g. barefoot walking 

on volcanic rock and clay soils composed of iron-oxide rich minerals) (Simonart, 2006).  However, 

during the HIV/AIDS epidemic, endemic KS escalated alongside HIV (Singh et al., 2014); it is 

now difficult to distinguish the endemic form of KS from AIDS-KS in sub-Saharan Africa (van 

Bogaert, 2012).  Nonetheless, endemic KS has been divided into two subtypes.  The first type 

mainly affects middle-aged adults and is locally aggressive on the skin.  The second more 

aggressive and often fatal type of African KS mainly affects children (<10 years old) and is 

accompanied by lymphadenopathy (Szajerka & Jablecki, 2007).   

Iatrogenic (transplantation-associated) KS is generally observed in the setting of solid 

organ transplantation upon treatment with immunosuppressive drugs, such as during renal 

transplantation (Bhutani et al., 2015; Chen et al., 2014).  In addition to transplantation, iatrogenic 

KS also affects those individuals undergoing immunosuppressive therapies for autoimmune 

disorders and cancer (Saggar et al., 2008).  Cessation of immunosuppressive therapy reportedly 

leads to disease regression in some instances, but in other cases, there have been occurrences of 

aggressive/potentially fatal progression of iatrogenic KS (Restrepo & Ocazionez, 2011; Saggar et 
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al., 2008; Schwartz et al., 2008).  Additionally, with this particular form of KS, lymph node and 

visceral organ involvement is more common (Rescigno et al., 2013). 

AIDS-KS is deemed an AIDS-defining illness due to its close association with the AIDS.  

With this AIDS-KS, manifesting lesions are often present in the mouth and on the genitalia and 

internal organs (especially the lungs and gastrointestinal tract) (Robey & Bower, 2015).  This form 

of KS is the most common malignancy in HIV-1 infected individuals.  AIDS-KS is particularly 

frequent in homosexual and bisexual men who have sex with men (MSM) (Minhas & Wood, 

2014).  In the US alone, between 20-50% of AIDS patients developed KS during the early years 

of the epidemic (Bhutani et al., 2015).  However, after the introduction of highly active 

antiretroviral therapy (HAART) in 1996, there was a significant decline in AIDS-KS incidence 

(Restrepo & Ocazionez, 2011).  In fact, in regions with access to combination antiretroviral therapy 

(cART), recent reports have shown an 80% decrease in AIDS-KS incidence since its peak 

occurrence during the early HIV/AIDS epidemic (i.e. the pre-HAART era) (Bhutani et al., 2015).  

Unfortunately, in sub-Saharan Africa where resources are lacking and HIV infections have reached 

pandemic proportions, AIDS-KS continues to be a persisting public health problem.  In some 

African countries, AIDS-KS is the most common cancer in males and second-most common 

malignancy among females (Bhutani et al., 2015; Mosam et al., 2010; Restrepo & Ocazionez, 

2011).   

KSHV is the causative agent for PEL, as well.  PEL is a rare B cell non-Hodgkin’s 

lymphoma originating in body cavities.  This lymphoproliferative disorder causes lymphomatous 

effusions that typically affect surfaces of the pleura, peritoneum, and pericardium; on rare 

incidents, PEL may infiltrate joint spaces (Klepfish et al., 2015).  PEL mainly occurs in HIV 

infected individuals but also may affect solid organ transplant recipients, those inflicted with 
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chronic hepatitis C virus, and elderly individuals (Bhutani et al., 2015).  Though KSHV is deemed 

the etiological agent for PEL, nearly 50% of KSHV-positive PEL patients are also co-infected with 

EBV (Uppal et al., 2015).  Notably, all PEL derived cell lines are infected with KSHV and 70% 

are co-infected with EBV (Spadavecchia et al., 2010).    

KSHV-MCD is among one of the characterized Castleman disease variants that most often 

arises in the setting of an HIV-infection but can also occur in transplant recipients and other HIV-

negative individuals (Bhutani et al., 2015; Uldrick et al., 2012).  KSHV-MCD is a rare 

lymphoproliferative disorder characterized by symptoms of lymphadenopathy, splenomegaly, 

cytopenia, and inflammation (Carbone et al., 2015).  Excess cytokine production is believed to 

cause KSHV-MCD symptoms; specifically, human IL-6 and IL-10 dysregulation and KSHV-

encoded viral IL-6 production is attributed to KSHV-MCD pathogenesis.  Additionally, 

upregulation of nuclear factor-kappa B (NF-κB), VEGF, and other factors is reportedly involved 

in KSHV-MCD pathogenesis (Bhutani et al., 2015; Uldrick et al., 2012). 

More recently, a MCD-related KSHV-associated condition was described.  With few 

exceptions, the clinical symptoms of KSHV inflammatory cytokine syndrome (KICS) are 

indistinguishable from that of KSHV-MCD (Polizzotto et al., 2012; Sakakibara & Tosato, 2014).  

Likewise, KICS patients exhibit upregulated KSHV viral loads, viral IL-6, and homologs of human 

IL-6 and IL-10 quite comparable to levels observed in KSHV-MCD.  The exact KICS:KSHV-

MCD relationship is inconclusive, but it is presumed that KICS may be a being a prodrome or 

milder version of KSHV-MCD that at some point evolves into full-blown KSHV-MCD.  

Additionally, the possibility that KICS may be a contributing factor inducing the inflammatory 

symptoms observed in patients with severe KS or PEL is also being explored (Carbone et al., 2015; 

Polizzotto et al., 2012).   
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KSHV Worldwide: Prevalence, Epidemiology, and Transmission 

KSHV is among the list of viral pathogens estimated to cause 12-25% of human cancers worldwide 

(La Ferla et al., 2013; Morrison et al., 2015).  Unlike its other human herpesvirus counterparts, 

KSHV is not ubiquitous in the human population (Labo et al., 2014; Moore & Chang, 2014; 

Morrison et al., 2015) and its worldwide distribution is disproportionate (Minhas & Wood, 2014; 

Nalwoga et al., 2015).  Prevalence of KSHV infection is directly correlated to KS incidence and 

varies according to geographic location, ethnicity, and distinct behavioral risk factors (Labo et al., 

2014).  Employing enzyme-linked immunosorbent assays (ELISAs) or immunofluorescent assays 

(IFAs), evaluation of KSHV seroprevalence is primarily assessed via antibody testing and typically 

relies on reactivity to one or more KSHV-encoded latent (e.g. latency-associated nuclear antigen 

[LANA]) and/or lytic antigens (e.g. K8.1 antigen) (Bhutani et al., 2015; Labo et al., 2014).   

KSHV is overwhelmingly prevalent in sub-Saharan Africa with seropositivity rates >50%.  

Infection is moderately prevalent in Mediterranean regions (10-30%) and much less prevalent in 

Western and Northern Europe, Asia, and the US (<10%).  Spiked KSHV prevalence is also 

reported among Brazilian Amerindians in South America as well as in some Chinese ethnic groups.  

Notably, even with reportedly low overall KSHV seroprevalence in the US and certain parts of 

Europe, prevalence is significantly elevated in MSM; some reports estimate 20-30% seropositivity 

in MSM in the US and Northern Europe (La Ferla et al., 2013; Labo et al., 2015; Labo et al., 2014; 

Morrison et al., 2015).   

Despite KSHV’s highly conserved genome, certain KSHV genomic regions containing 

sequence variations have been useful in molecular epidemiology studies as markers of strain 

diversity and epidemiologic patterns of viral spread.  The open reading frame (ORF) K1 gene (K1) 

has the most variable region in the KSHV genome.  Sequence variations of K1, a lytic gene unique 
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to KSHV, has allowed for the classification of KSHV into seven subtypes (A/A5, B, C, D, E, F, 

and Z) based on K1 sequence analysis/genotyping (Ouyang et al., 2014).  There is as much as a 

30% difference among KSHV subtypes with variations majorly concentrated in two specific 

hypervariable regions of K1 (Ouyang et al., 2014; White et al., 2008).  According to the accounts 

of several researchers, KSHV strain distribution seemingly varies geographically and ethnically in 

conjunction with historical human migration patterns (Betsem et al., 2014; Fu et al., 2009; 

Fukumoto et al., 2011; Kajumbula et al., 2006; Zong et al., 1999).  Specifically, KSHV subtypes 

A and C are observed in the US, Europe, the Middle East and Northern Asia.  Subtypes B and A5 

are present in Africa and French Guiana.  KSHV subtype D is observed in Taiwan, the pacific 

islands, and Australia.  Subtype E is present in Ecuador and among Brazillian Amerindians.  KSHV 

subtype F was identified in Uganda, and Z has been identified among Zambian children 

(Azadmanesh et al., 2012; Ouyang et al., 2014).    

The non-uniform distribution of KSHV also suggests non-uniformity in its modes of 

transmission (Betsem et al., 2014).  Transmission of KSHV occurs via sexual and non-sexual 

routes.  The bodily fluid in which KSHV is most abundant is saliva (considered the main vehicle 

for transmission (Pinzone et al., 2015)), but it is also present in peripheral blood mononuclear cells 

(PBMCs), oropharyngeal mucosa, semen, cervico-vaginal secretions, and prostate glands (Minhas 

& Wood, 2014).  In non-endemic regions, sexual transmission, with increasing risk according to 

the number of sexual partners and sexual practices (i.e. MSM), is presumably the main route of 

KSHV transmission (Minhas & Wood, 2014; Pinzone et al., 2015).  Though some studies argue 

the validity of sex being the mode of KSHV transmission among heterosexual individuals 

(Malope-Kgokong et al., 2010; van Bogaert, 2012; Zhang et al., 2014), other studies consider men 

in a heterosexual relationship who are concurrently bisexually active as a likely source for KSHV 
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transmission heterosexually (Munawwar et al., 2014).  In terms of non-sexual routes, KSHV 

transmission by blood transfusion may occur on rare occasions, and injection drug poses a risk for 

infection.  As a consequence of immunosuppression, KSHV transmission is linked to solid organ 

transplantation as well (Fatahzadeh, 2012; La Ferla et al., 2013; Pinzone et al., 2015).   

In endemic regions where KSHV affects the general population, transmission is mainly 

believed to occur via non-sexual transmission routes, such as mother-to-child/vertical 

transmission.  However, the precise biological, social, environmental, etc. factors involved in non-

sexual KSHV transmission are unknown (Malope-Kgokong et al., 2010).  In sub-Saharan Africa 

for instance, transmission is to some extent believed to occur via saliva exchange (Nalwoga et al., 

2015; Zhang et al., 2014).  In this region, studies have shown intrafamilial aggregation of KSHV, 

in which viral transmission likely occurs through the exchange of saliva (Betsem et al., 2014; 

Crabtree et al., 2014).   

The KSHV Genome 

KSHV has genomic organization similar to that of other rhadinoviruses.  KSHV possesses a large 

double stranded DNA genome of approximately 170kb which is comprised of a central long unique 

coding region (LUR; approximately 140kb with 53.5% G+C content) flanked by multiple non-

coding G+C-rich terminal repeat sequences (TRs) (Jha et al., 2014; Uppal et al., 2014).  The LUR 

is the protein-coding region encoding 90 or so ORFs, 12 microRNAs (miRNAs), and antisense 

RNAs (Uppal et al., 2014; Uppal et al., 2015).  Of the approximately 90 ORFs in the coding region, 

60 are homologous to other rhadinoviruses, and there are 43 conserved genes among Herpesvirdae 

(Krug & Pellett, 2014; Ouyang et al., 2014).  ORF4-75 are classified based on their homology to 

gamma-2 herpesvirus saimiri (Veettil et al., 2014).  The genome also consists of over 20 ORFs 

unique to KSHV, namely “K genes.”  Viral genes have been have been shown to regulate the cell 
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cycle, inhibit apoptosis, promote angiogenesis, and facilitate immune evasion of infected cells 

(Wen & MacKenzie, 2013).   

KSHV Entry, a Receptor-Mediated Event 

The complex multi-step entry process for KSHV and many other viruses is considered cell type 

dependent (Bandyopadhyay et al., 2014; Li et al., 2015).  It is seemingly a virus’ overall intent to 

transport its genome to the nucleus of an uninfected host cell in a manner such that efficient viral 

replication can occur.  Very few viruses have the ability to directly deliver their viral capsids to 

the cytosol via plasma membrane fusion.  The majority of viruses, including KSHV, exploit 

existing endocytic mechanisms of the cell which presumably offers viruses the advantage of host 

immune system evasion (Mercer & Greber, 2013; Yamauchi & Helenius, 2013b).  The major 

routes of endocytosis utilized by viruses include phagocytosis, macropinocytosis, caveolae-

mediated endocytosis, and clathrin-mediated endocytosis (the most extensively studied and best 

characterized mechanism of endocytosis) (Bhattacharyya et al., 2010; Hernaez & Alonso, 2010).   

KSHV has an extensive cellular tropism and can establish a productive infection in various 

cell types both in vivo and in vitro (Chakraborty et al., 2012; Hertel, 2011).  These cell types 

include endothelial cells, epithelial cells, keratinocytes, fibroblasts and B cells, the only cell type 

in which long-term KSHV latency occurs, in vivo (Sin & Dittmer, 2013).  Depending upon the cell 

type, KSHV utilizes different modes of endocytosis.  For instance, KSHV entry into human 

foreskin fibroblast (HFF) cells is clathrin dependent (Akula et al., 2003), whereas other 

mechanisms such as micropinocytosis have been implicated as the method of entry into endothelial 

cells (Dutta et al., 2013; Raghu et al., 2009).  Nevertheless, most endocytosed viruses are delivered 

to the endosomes of target cells and experience low pH/acidification dependent membrane fusion 

to and penetration from either early or late endosomes for viral capsid delivery to the cytoplasm 
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prior to subsequent travel to the nucleus (Grove & Marsh, 2011; Veettil et al., 2014; Yamauchi & 

Helenius, 2013b).   

Herpesviruses, via their viral envelope glycoproteins, are able to initially attach and bind 

specific cellular entry receptors which in turn facilitates virus access to a target cell’s interior.  

Virus internalization, endomembrane fusion, and subsequent trafficking are all believed to be 

driven by envelope glycoprotein interactions with cell surface receptor molecules (Zhang & Gao, 

2012).  KSHV ORFs 8, 22, 47, 39, and 53 encode conserved herpesvirus envelope glycoproteins 

gB, gH, gL, gM, and gN, respectively.  Specific to KSHV alone are envelope glycoproteins ORF4 

and gpK8.1A, as well as glycoproteins gpK8.1B, K1, K14, and K15; these glycoproteins are 

expressed during the lytic cycle of replication (Veettil et al., 2014).  Incidentally, KSHV is 

believed to infect a plethora of target cells due to its effective ability to interact with ubiquitously 

expressed cell surface molecules such as heparin sulfate (HS) during the preliminary phase of 

entry.  For instance, KSHV gB, gpK8.1A, gH, and ORF4 are all shown to bind cell surface heparin 

sulfate molecules (Akula et al., 2001a; Birkmann et al., 2001; Hahn et al., 2009; Hahn et al., 2012; 

Spiller et al., 2006; Wang et al., 2001).  Harboring a putative heparin binding domain (HBD), gB 

and gpK8.1A are typically considered the key envelope glycoproteins integral for the initial phase 

of infectious entry, as they facilitate attachment to cell surface HS proteoglycans via a charge-

based interaction.  This initial attachment to HS brings the virus within closer proximity to target 

cells such that perhaps more meaningful interactions with other receptor molecules, such as 

integrins (heterodimeric cell adhesion receptors composed of non-covalently associated α and β 

subunits (Barczyk et al., 2010)), can occur to facilitate the actual entry process (Akula et al., 2001a; 

Akula et al., 2001b).   
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Of the human herpesvirus envelope glycoproteins, gB is the most highly conserved (Lopper 

& Compton, 2002; Wanas et al., 1999).  KSHV gB is unique compared to other conserved 

glycoproteins in that it exclusively possesses two distinct integrin recognition motifs:  (i) RGD 

(Arg-Gly-Asp), the minimal peptide region known to interact with subsets of target cell surface 

integrins (Wang et al., 2003); and (ii) disintegrin-like domain (DLD), the highly conserved, less 

common integrin binding domain initially identified within gB of HCMV (Feire et al., 2004; Feire 

et al., 2010).  KSHV was the first herpesvirus shown to interact with adherent target cell integrins 

in a step initiating infectious virus entry (Akula et al., 2002; Chakraborty et al., 2012).  Reportedly, 

KSHV gB:integrin interactions facilitate adhesion, cytoskeleton rearrangement, integrin 

activation, and enhanced intracellular signaling (i.e. focal adhesion kinase (FAK), Src, 

phosphatidylinositol 3-kinase (PI-3K), Rho GTPases, etc).  Such signaling and reorganization 

prompts virus internalization and presumably generates a cellular environment receptive to 

infection (Boulant et al., 2015; DiMaio et al., 2011; Hussein et al., 2015; Van den Broeke et al., 

2014).  A multitude of studies have implicated KSHV gB interactions with RGD-binding integrins, 

α3β1, αVβ3, and αVβ5, as valuable for infectious virus entry (Akula et al., 2002; Chandran, 2010a; 

Garrigues et al., 2008; Veettil et al., 2008).  However, both RGD and non-RGD-binding integrins 

are believed to aid equally in virus entry (Hussein et al., 2015).  For instance, KSHV gB via its 

DLD was recently shown to specifically interact with cell surface expressed non-RGD-binding 

α9β1 integrin to promote infectious entry into cells (Walker et al., 2014).  Throughout the 

subsequent chapters of this work, the role(s) of integrin α9β1 in KSHV entry and infection were 

further explored.    

Apart from integrin-mediated entry, KSHV utilizes other cellular receptors for entry as 

well.  For instance, KSHV envelope associated gH/gL engages the ephrin receptor tyrosine kinase 
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A2 (EphA2) for infectious entry into target cells (Hahn & Desrosiers, 2014; Hahn et al., 2012).  

Additionally, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-

SIGN) (Rappocciolo et al., 2006) and human cysteine transporter xCT (xCT) (Kaleeba & Berger, 

2006) among others, are also considered valuable entry receptors for KSHV (Garrigues et al., 

2014; Zhang & Gao, 2012).  

KSHV Latency and Reactivation 

KSHV infection of cells is established via endocytosis and delivery of viral DNA to the nucleus 

(Lu et al., 2014) where KSHV replication occurs, post-entry (Chakraborty et al., 2012).  Like other 

herpesviruses, KSHV has a biphasic life cycle comprised of latent and lytic phases of replication 

that are distinguished based on divergent gene expression profiles (Owen et al., 2014) 

(Purushothaman et al., 2015; Uppal et al., 2014; Uppal et al., 2015).  The dynamic between latent 

and lytic phases of replication allows the virus to persist for the duration of the host’s lifetime 

(Frappier, 2015).  Notably, KSHV establishes latency in the majority of infected cells (Steitz et 

al., 2011); at any given instance, only a subpopulation (<5%) of infected cells display evidence of 

lytic gene expression (Cai et al., 2010; Dyson et al., 2008; Guito & Lukac, 2015; Sun et al., 1999).    

 The default pathway of KSHV infection both in vivo and in vitro is latent (dormant) 

infection (Uppal et al., 2014).  Establishing latency allows KSHV to evade the host’s immune 

surveillance, maintain persistent life-long infections, and promote tumorigenesis (Yang et al., 

2015).  It is during this phase of replication that the KSHV genome persists in the nucleus of the 

infected host cell as a circular episome.  Latency is also characterized by restricted gene expression 

without the production of infectious virions (Owen et al., 2014; Purushothaman et al., 2015; Uppal 

et al., 2014).  The few genes expressed during latency suppress KSHV lytic gene expression and 

encode proteins that promote cell survival and proliferation, thus preventing viral episome loss 
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(Owen et al., 2014; Ye et al., 2011).  KSHV latent genes include ORF73 (LANA), ORF72 (viral 

cyclin; vCyc), ORF71 (vFLIP), and ORFK12 (kaposin) (Sin & Dittmer, 2013).   

 Latent phase of replication is reversible, and the quiescent state can be disrupted by certain 

environmental and physiological factors, such as hypoxia, oxidative stress, immune suppression, 

pro-inflammatory cytokine upregulation, co-infection with other viruses, etc. (Purushothaman et 

al., 2015; Uppal et al., 2014).  The process by which a latent virus shifts to a lytic (productive) 

phase of replication is termed reactivation (Traylen et al., 2011).  For herpesviruses, the exact 

molecular mechanism by which virus reactivation from latency occurs is unknown (Dyson et al., 

2012).  During lytic phase of infection, the full repertoire of KSHV genes are expressed, facilitating 

replication of linear genomes, production and egress of progeny virions, and cell death (Chen et 

al., 2015; Uppal et al., 2014).   

Expression of lytic genes occurs in a sequential and temporally regulated manner, in the 

order of immediate early (IE), early (E), and late (L) genes (Uppal et al., 2014).  The genes 

expressed first after lytic reactivation, IE genes, regulate further expression of viral and cellular 

genes.  E genes initiate replication of the viral genome, and L genes encode for structural proteins 

(Chang & Kung, 2014).  Specifically, KSHV IE gene ORF50 encodes for replication and 

transcription activator (RTA).  RTA is considered the molecular switch that actually initiates the 

transition from latent to lytic replication and is sufficient for activating the entire lytic program 

(Chen et al., 2015; Li et al., 2014).  Notably, in vitro, KSHV latently infected cells in culture can 

undergo lytic reactivation in response to treatment with chemical inducers such as phorbol esters 

(e.g. 12-O-tetradecanoylphorbol-13- acetate; TPA) or histone deacetylase inhibitors (e.g. sodium 

butyrate) (Kati et al., 2013).  Among other cellular and viral factors, reactivation of KSHV from 

latency (i.e activation of RTA) is shown to require mitogen- activated protein kinase (MAPK) 
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signaling.  The MAPK pathways mediate KSHV reactivation via activating protein (AP)-1 that 

binds specifically to the RTA promoter to initiate RTA expression and activate the lytic program.  

Conversely, MAPK inhibitors/RTA suppression prevents KSHV reactivation (Chen et al., 2015; 

Giffin & Damania, 2014).  Additionally, studies show that inhibition of early growth response-1 

(Egr-1), a transcription factor and signaling component downstream of Raf>MEK>ERK1/2 

(MAPK signaling) impedes KSHV reactivation as well (Dyson et al., 2010; Dyson et al., 2012).  

 In all, even after over 20 years since its identification as a new herpesvirus, several aspects 

of KSHV remain elusive.  Fully comprehending the intricacies of KSHV entry, infection, and 

pathogenesis will allow for the advancement of therapeutic intervention strategies.  However, 

without a thorough understanding of KSHV and other viruses alike, these opportunistic pathogens 

will continue to inflict havoc on their hosts.   

 

 

 

 

 

 



 
 

 

PRELUDE:  THE KNOWNS AND UNKNOWNS INVOLVING KSHV gB’s 

INTERACTIONS WITH INTEGRINS 

Despite barriers that target cells possess, viruses strategically utilize distinct receptor molecules, 

which can be proteins, carbohydrates, or lipids (Dimitrov, 2004), to enter and subsequently infect 

cells (Grove & Marsh, 2011).  Glycoprotein B (gB) is the most highly conserved glycoprotein 

among Herpesvirdae.  Among these gB homologs, only envelope associated KSHV gB possesses 

an RGD (Arg-Gly-Asp; 27-29aa; at the extracellular amino terminus coil region after the putative 

signal sequence) (Akula et al., 2003; Garrigues et al., 2008; Wang et al., 2003; Zhang et al., 2005) 

(Figure 1).  Considered the major integrin binding motif, RGD is the minimal peptide region 

known to interact with subsets of host cell surface integrins (Akula et al., 2003; Wang et al., 2003).  

The RGD sequence recognizes at least half of the more than 20 known integrins (Ruoslahti, 1996).  

Specifically, RGD of KSHV gB interacts with integrins α3β1, αVβ3, and αVβ5 that function in 

promoting KSHV internalization (Akula et al., 2001a; 2002; Akula et al., 2001b; Veettil et al., 

2008) (Figure 1).   

Distinctively, KSHV gB harbors both RGD and DLD (RX5-7D/ELXXFX5C; 66-85aa; 

with a conservative D to E substitution) integrin recognition motifs (Figure 1).  Initially identified 

within HCMV envelope gB, DLD of gB is conserved among many herpesvirus gB homologs 

(Feire et al., 2004; Feire et al., 2010).  This lesser studied integrin recognition motif binds integrins 

RGD-independently (Eto et al., 2002; Feire et al., 2010).  The DLD of gB strongly resembles the 

disintegrin loop of ADAMs (a disintegrin and metalloproteases), multifunctional proteins that 

contain a metalloprotease domain and a disintegrin motif that confers RGD-independent integrin-

binding (Feire et al., 2004).  Disintegrins are non-enzymatic polypeptides with anti-cancer and 

anti-metastatic properties, widely distributed in the venoms of viperid snakes (Selistre-de-Araujo 
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et al., 2010).  Actually, it was with the analysis of related domains of snake venom 

metallopreteases (SVMPs) that lead to the assumption that DLDs of other varieties would also be 

involved in integrin-mediated interactions (Wolfsberg et al., 1995).  Though highly conserved in 

gB of herpesviruses, DLD’s role in virus entry has been minimally explored outside of the virus 

in which it was discovered.  Herein we seek to: (i) define a role for DLD in KSHV infection of 

cells, (ii) identify integrin(s) with which DLD of KSHV gB interacts critical for entry and 

subsequent infection, and (iii) establish a role for DLD-binding integrin(s) during early stages of 

infection. 
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Figure 1.  Role of RGD and DLD binding integrins in KSHV biology.  Envelope associated KSHV gB harbors 

two distinct integrin binding domains: RGD (27-29aa) and DLD (66-85aa).  KSHV gB is the only gB homolog with 

an RGD, whereas DLD is highly conserved among Herpesvirdae.  RGD physically interacts with integrins to initiate 

internalization.  The role for the disintegrin-like function of gB as it pertains to receptor-driven KSHV entry and 

infection is unknown.  This work tackles the following questions: (i) With what integrin(s) does DLD of KSHV gB 

interact; (ii) Is this DLD:integrin interaction critical for KSHV entry and subsequent infection; (iii) At what level does 

this interaction affect virus entry?  The portion of this figure depicting conservation of the gB DLD was derived from 

(Feire et al., 2004).  TM: transmembrane region; C: carboxyl domain 
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SUMMARY: 

KSHV glycoprotein B (gB) is a lytic structural protein expressed on the envelope of mature virions 

and on the membrane of cells supporting lytic infection.  In addition to this viral glycoprotein’s 

interaction with intergrins via its RGD (Arg-Gly-Asp) motif, KSHV gB possesses a disintegrin-

like domain (DLD) which binds integrins as well.  Prior to this study, there has been minimal 

research involving the less common integrin-binding motif, DLD, of gB as it pertains to 

herpesvirus infection.  Via employing phage display peptide library screening and molecular 

biology techniques, DLD of KSHV gB was shown to specifically interact with non-RGD binding 

α9β1 integrins.  Similarly, monitoring wild type infection confirmed α9β1:DLD interactions to be 

critical to successful KSHV infection of HFF and HMVEC-d cells compared to 293 cells.  To 

further demonstrate the importance of DLD of gB in KSHV infection, two recombinant virus 

constructs were generated using a bacterial artificial chromosome (BAC) system harboring the 

KSHV genome (BAC36):  BAC36ΔD-KSHV (lacking a functionally intact DLD of gB and 

containing an introduced tetracycline cassette) and BAC36.T-KSHV (containing an intact DLD 

sequence and an introduced tetracycline cassette).  Accordingly, BAC36ΔD-KSHV presented 

significantly lower infection rates in HFF and HMVEC-d cells compared to the comparable 

infection rates achieved by wild type BAC36-KSHV and BAC36.T-KSHV.  Thus, the present 

report has delineated a critical role for DLD of gB in KSHV infection which may lead to a better 

breadth of knowledge regarding the sophisticated mechanisms utilized by virus-encoded structural 

proteins in KSHV entry and infection. 
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INTRODUCTION 

Since the 1994 discovery of Kaposi’s sarcoma-associated herpesvirus (KSHV) in the Chang-

Moore Lab (Chang et al., 1994), efforts are continuously being made nearly 20 years later to 

understand the intricacies of this double-stranded DNA virus.  KSHV, also referred to as Human 

herpesvirus-8 (HHV-8), belongs to the gamma-2-herpesvirus subfamily and is the eighth and latest 

addition to Herpesviridae (Russo et al., 1996).  KSHV causes a variety of cancers like Kaposi’s 

sarcoma (KS), primary effusion lymphoma, and multicentric Castleman disease (Hamden et al., 

2005). 

In general, envelope associated glycoproteins predominantly assist virus in the entry 

process (Bryan et al., 2005).  In this study, our focus is on KSHV gB, a lytic structural protein 

primarily expressed on the envelope of mature virions, but also present on the membrane of cells 

supporting lytic infection (Akula et al., 2001a).  KSHV virus binding and entry has been linked to 

gB mediated interactions not only with cell surface heparan sulfate (HS) molecules but also to 

integrins, transmembrane receptor molecules with involvement in processes such as adhesion, 

motility, and endocytosis (Akula et al., 2001a; 2002; Hahn et al., 2009).  With KSHV being the 

first herpesvirus shown to exhibit an interaction with adherent target cell integrins—a preliminary 

step essential for successful viral infection—it is now known that via its RGD (Arg-Gly-Asp) 

motif, KSHV gB functionally interacts with a variety of cellular integrins, namely α3β1, αvβ3, and 

αvβ5 (Chakraborty et al., 2012).  Unlike the RGD of gB, the disintegrin-like domain (DLD) is a 

less common integrin recognition motif that was initially identified within HCMV envelope gB 

(Feire et al., 2010).  The DLD in gB was found to bear a striking resemblance to the ADAM (a 

disintegrin and metalloprotease) disintegrin loop (Feire et al., 2004).  Members of the ADAM 

family are multifunctional proteins that contain a metalloprotease domain and a disintegrin motif 
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that confers RGD-independent integrin-binding (Feire et al., 2004).  It has been observed that 

KSHV gB possesses a DLD (RX5-7D/ELXXFX5C; 66-85aa; with a conservative D to E 

substitution) that is notably conserved among gB homologs of many herpesviruses; specifically 

beta and gamma herpesviruses (Feire et al., 2010). 

Thus, in seeking to delineate a role for DLD of KSHV gB, we hypothesized the DLD in 

KSHV gB to play a critical role in the virus infection of cells.  Results from our study using phage 

display peptide library screening and molecular biology techniques implicate the ability of DLD 

in gB to specifically interact with α9β1 integrins.  Utilizing a bacterial artificial chromosome 

(BAC) system harboring the KSHV genome (BAC36), we generated two recombinant virus 

constructs, BAC36ΔD-KSHV (containing alanine point mutations within the DLD sequence of gB 

and an introduced tetracycline cassette from vector pEX18TC) and BAC36.T-KSHV (containing 

an intact DLD sequence and the introduced tetracycline cassette from vector pEX18TC) as a means 

to decipher a potential role for the DLD of KSHV gB in infection of cells. 

 

RESULTS 

Expression and purification of gBΔTMΔD 

The KSHV encoded 2,106bp region of the orf8 gene encoding gBΔTM lacking the transmembrane 

(TM) and carboxyl domains (Wang et al., 2003) was used to generate a soluble gB lacking a 

functionally intact DLD, gBΔTMΔD (Fig. 1).  This was a crucial step to characterize a role for 

DLD of KSHV gB.  Coomassie staining of SDS-PAGE gels was conducted to analyze protein 

purity, and detection following standard Western blotting protocols (Fig. 2).  When purified 

gBΔTMΔD protein treated with 2-mercaptoethanol (2ME; reducing conditions) was analyzed via 

Coomassie staining, bands of approximately 35-40, 68, and 104 kDa were observed as in the lane 
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with gBΔTM (Fig. 2).  Impurities such as other contaminating proteins were not detected in either 

the gBΔTMΔD or the gBΔTM preparations.  When gBΔTMΔD and gBΔTM were resolved under 

non-reducing conditions (-2ME), the 35-40 and 68kDa bands disappeared while only 104kDa band 

and the multiple polypeptides of more than 180kDa were observed (Fig. 2).  The migration pattern 

of gBΔTMΔD is comparable to what was observed when gBΔTM was resolved in earlier studies 

(Dyson et al., 2010; Wang et al., 2003).  The specificity of the gB proteins were confirmed by 

performing Western blotting experiments (Fig. 2).  This implies that gBΔTMΔD, like gBΔTM, 

expressed in Sf9 cells can form disulphide-linked dimers or multimers under non-reducing 

conditions.  These results suggest that the alanine point mutations introduced to the DLD sequence 

of gB did not significantly change the molecular weight or the migration pattern of the protein on 

a gel compared to the wild type (gBΔTM). 

 

Phage display peptide library identifies integrin α9 as a potential receptor for DLD in gB. 

Ph.D phage display libraries was used to identify novel ligands for the DLD in gB.  Three random 

peptide libraries, a linear (X)7, a cyclic Cys (X)7 Cys, and a linear (X)12 were screened against 

the gBDLD peptide.  The single most common peptide (based on the increased frequency; 20 out 

of 30) possessed a PKA(P)DGR(H)V(L) sequence (Table 2).  Interestingly, the major conserved 

sequence among the peptides identified had a conserved sequence of PKADGRV (9 out of 30). 

We tested the ability of the phage carrying peptides L3 (PKADGRV), F1 

(DCKPKPDGRLRD), and F5 (PKADGHV) to bind gBΔTM immobilized on 96 well plates.  It 

was determined that the phage carrying peptides L3, F1, and F5 specifically bound gBΔTM 

compared to BSA and gBΔTMΔD (Fig. 3A).  However, the phage encoding peptide PKADGRV 

(peptide L3) bound more efficiently when compared to the other peptides (F1 and F5).  The binding 



26 
 

of the phage encoding L3 peptide to gBΔTM could be significantly blocked by including 1mM of 

synthetic peptide PKADGRV during the incubating step compared to using scrambled peptide 

(Fig. 3B).  The effect of PKADGRV peptide was measured against the known positive control, 

gBDLD peptide (Fig. 3B).  A protein blast search of this sequence identified α9 integrin [Homo 

sapiens; NCBI Ref Seq: NM_002207.2] to possess such a motif (133-139aa).  This was an 

interesting finding as we had predicted a non-RGD binding integrin (Yokosaki et al., 1994) as a 

probable receptor capable of binding the DLD of gB at the beginning of the study. 

 

Plate based binding assays demonstrate the DLD of KSHV gB to bind α9β1. 

The integrin α9 commonly forms a heterodimer with β1 integrin subunit, α9β1 (Young et al., 

2001).  Upon identifying the α9 integrin as a plausible receptor for gB, we used various modified 

ELISAs to test the ability of soluble KSHV gB to bind α9β1.  The binding of α9β1 to gBΔTM was 

monitored using polyclonal antibodies to α9β1 (H-198).  ELISA studies identified α9β1 to 

specifically bind 1 µg/ml of gBΔTM in a dose dependent manner (Fig. 3C) compared to 

gBΔTMΔD and non-specific controls, BSA or GST.  Similar data was observed when monoclonal 

antibodies to α9β1 (Clone #560201) were used in the ELISA (data not shown).  Interestingly, 

ELISA studies demonstrated an RGD binding integrin αvβ3, to bind gBΔTM and gBΔTMΔD to 

comparable extent (Fig. 3D), demonstrating a functional RGD motif in both the soluble forms of 

the gB tested.  Based on these results, 1µg/ml of both gBΔTM and α9β1 were used in all of our 

other experiments described below.  An Immunoprecipitation experiment was done to further 

authenticate the results from ELISA-based assays.  Herein, it was found α9 subunit to specifically 

bind gBΔTM (Fig.  3E; lane 1) and not the gBΔTM lacking a functional DLD (Fig.  3E; lane 3). 

(A) 

(B) 
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 To confirm the specificity of the KSHV encoded gB:α9β1 binding, we attempted to 

neutralize this interaction by conducting competitive ELISAs.  In this case, different 

concentrations of various ligands or antibodies known to interact with gB, the DLD motif 

specifically, or α9β1 were used.  KSHV gB is known to interact with HS via a charge based 

interaction (Bryan et al., 2005).  HS, chondroitin sulfate-A or -B (CSA, CSB; control 

glycosaminoglycans) had little effect on the gB:α9β1 interactions, as binding between gBΔTM 

and α9β1 still occurred (Fig. 4A). 

KSHV gB interacts with a variety of integrins via its RGD domain.  In order to determine 

if gB interactions via the RGD domain altered its ability to bind α9β1, competitive ELISA using 

GRGDSP and KQAGDV (an irrelevant peptide) was performed.  The results confirmed that 

increasing concentrations of RGD peptides did not alter the ability of α9β1 to bind gBΔTM (Fig. 

4B).  Interestingly, the RGD peptide significantly blocked the ability of αvβ3 to bind gBΔTM 

(Supplemental Figure 1). 

VEGF and tenascin C are common known ligands for integrin α9β1 (Andrews et al., 2009; 

Vlahakis et al., 2005).  Our data suggests that increasing concentrations of VEGF and laminin does 

not alter the binding of α9β1 to gBΔTM (Fig. 4C).  Tenascin C on the other hand, was shown to 

enhance the gB:α9β1 binding interaction (Fig. 4C). 

Finally, to confirm whether gB:α9β1 binding is dependent on the DLD of gB, we conducted 

competitive ELISAs using rabbit antibodies to DLD of gB (anti-DLD).  Here, results show that 

there was a significant inhibition in the ability of α9β1 to interact with gBΔTM when the gBΔTM-

coated wells were incubated with anti-DLD prior to performing ELISA (Fig. 4D).  Incubating 

gBΔTM-coated wells with anti-RGDgB-N1 or anti-gB-C (non-specific antibodies) did not alter 

the ability of α9β1 to bind gBΔTM (Fig. 4D).  Also, the anti-RGDgB-N1 antibodies blocked αvβ3 
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binding to gBΔTM (Supplemental Figure 1), suggesting the specificity of antibodies to DLD of 

gB to block gB:α9β1 interactions.  ELISA when performed at RT or at 37°C (data not shown) 

yielded identical results. 

 

Inhibiting interactions between α9β1 and the DLD of gB lowers KSHV infection. 

To confirm a critical role for the DLD:α9β1 interactions in KSHV infection we utilized the 

recombinant KSHV that expressed green fluorescent protein (GFP) referred to as rKSHV.152 

(Akula et al., 2001b; Grange et al., 2012; Vieira et al., 2001) and three different cell types known 

to support KSHV infection of cells.  They were HFF (fibroblasts), 293 (epithelial cells), and 

HMVEC-d (endothelial cells) cells.  First, we determined if these cells actually did express α9.  

PCR results demonstrated HFF and HMVEC-d cells to express α9 compared to 293 cells (Fig. 

5A).  Both HFF and HMVEC-d cells express α9 on their cell surface as monitored by flow 

cytometry (Fig. 5B) and IFA (Supplemental Figure 2).  Interestingly, all of the above cells 

(including the commonly used B-cell line, BCBL-1) express the β1 integrin subunit (Akula et al., 

2002).  Next, we conducted rKSHV.152 infection-based studies in the above cells using 

appropriate antibodies (Fig. 5C).  Expression of GFP by cells was considered as positive for 

rKSHV.152 infection (Akula et al., 2001b).  This expression of GFP was monitored using a 

fluorescent microscope.  Number of GFP positive cells at 72 h post infection (hPI) in 293, HFF, 

and HMVEC-d cells that were untreated with antibodies were 260, 50, and 105, respectively.  

Antibodies to α5 and a pre-immune IgG did not significantly alter rKSHV.152 infection of cells 

(Fig. 5C).  Soluble heparin was used as a known inhibitor of KSHV binding and infection of all 

the target cells.  Antibodies to β1 and αV integrins significantly inhibited rKSHV.152 infection of 

cells in HFF and HMVEC-d cells compared to infection in 293 cells (Fig. 5C).  Infection of HFF 



29 
 

by rKSHV.152 was significantly lowered by antibodies to α9.  We observed only a modest 

inhibition of rKSHV.152 infection by antibodies to α9 in HMVEC-d cells.  A dose dependent 

effect of the antibodies to α9 antibodies on rKSHV.152 infection is provided in the supplemental 

section (Supplemental Figure 3).  These results suggest an involvement of α9β1 integrin in the 

KSHV infectious process of HFF cells and to a modest extent in HMVEC-d cells.  To further 

authenticate the above results, we tested the effect of incubating rKSHV.152 with the soluble α9β1 

integrin prior to infecting the target cells.  A dose dependent inhibition of KSHV infection of cells 

was observed when rKSHV.152 was incubated with soluble α9β1 compared to α5β1 

(Supplemental Figure 4) prior to infection of HFF and HMVEC-d compared to 293 cells (Fig. 5D).  

The soluble α9β1 used in this study was in a lyophilized form that was resuspended in sterile PBS.  

Finally, we tested the effect of incubating KSHV with rabbit antibodies developed against the DLD 

peptide sequence of gB prior to infection of cells.  Our results indicated incubating KSHV with 

antibodies to DLD or RGD of gB lowered KSHV infection of HFF and HMVEC-d cells compared 

to 293 cells (Fig. 5E).  Overall, these results implicate a key role for α9β1:DLD interactions in 

KSHV infection of HFF and HMVEC-d cells (with minor differences between cell types that is 

discussed in the discussion section). 

 

DLD of gB is critical to KSHV infection of cells. 

We hypothesized knocking down a functional DLD of gB in KSHV will result in a decrease in 

virus infection of cells.  To test this hypothesis, we developed a recombinant virus that lacked a 

functional DLD in KSHV gB (BAC36ΔD).  As a control to the BAC36ΔD, we also generated 

BAC36.T that had an uninterrupted and functional gB; but with a tetracycline cassette (as in 

BAC36ΔD) introduced in the intron region between the orf8 and orf9.  In brief, employing overlap 
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PCR (Fig. 6A, B), a series of cloning experimentations, and recombination rendered BAC36ΔD 

and BAC36.T clones, respectively (Fig. 6C).  Prior to transformation via electroporation and 

tetracycline selection stages, the correct orientation of the inserted tetracycline cassette in 

orf8ΔDLD.Tetr/TOPO and orfΔ7.8.Δ9.Tetr/TOPO positive clones was confirmed by restriction 

enzyme digestion using BamHI and NheI; clone #3.2 and clone #7.2, denoting  

orf8ΔDLD.Tetr/TOPO and orfΔ7.8.Δ9.Tetr/TOPO respectively, contain the correctly oriented 

cassette and were subsequently used in the generation of BAC36ΔD and BAC36.T clones 

(Supplemental Figure 5A).  These clones were further compared with the BAC36 wild type and 

confirmed by performing a variety of PCR reactions.  First, PCR amplified tetracycline gene in 

BAC36ΔD and BAC36.T compared to the BAC36 (Supplemental Figure 5B).  All of the 

recombinant viral genomes contained orf8 gene as determined by PCR (Supplemental Figure 5B).  

Second, we confirmed that the targets-1 and -2 representing a portion of orf7, complete sequence 

of orf8, and the N-terminal sequence of orf9 from the original BAC36 genome (Supplemental 

Figure 5B) was contained in BAC36ΔD and BAC36.T (Supplemental Figure 5C). Third, we 

amplified orf8 from BAC36, BAC36ΔD, BAC36.T genome using T1(F) and T2(R) primers. As 

predicted, we amplified a 4005bp DNA fragment in the BAC36 genome, while amplifying a 

product of size 5698bp from both BAC36ΔD and BAC36.T (Supplemental Figure 5D).  The above 

results were authenticated by sequencing using appropriate primers to confirm the specific 

mutations in the orf8 gene contained within the BAC36ΔD (Supplemental Figure 5E). 

 We then tested the infection rates of the above different recombinant viruses generated in 

the lab.  First, we analyzed cell surface expression of gB in BAC36-KSHV and BAC36ΔD-KSHV 

infected cells by FACS.  This is vital as the results demonstrated cell membrane expression of gB 

in TPA-induced 293 cells infected with BAC36-KSHV and BAC36ΔD-KSHV was comparable 
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(Fig. 7A).  Next, we monitored infection of BAC36-KSHV, BAC36ΔD-KSHV, BAC36.T-KSHV 

in 293, HFF, and HMEVC-d cells as per standard procedures.  Our results indicated a sharp decline 

in the BAC36ΔD-KSHV infection of HFF and HMVEC-d cells compared to BAC36-KSHV and 

BAC36.T-KSHV, respectively (Fig. 7B).  Interestingly, BAC36ΔD-KSHV infection of 293 cells 

was not altered as compared to BAC36-KSHV and BAC36.T-KSHV (Fig. 7B).  Number of GFP 

positive cells at 72 hPI of BAC36-KSHV in 293, HFF, and HMVEC-d cells that were 116, 28, and 

57, respectively.  Taken together, our results implicate a critical role for DLD of gB in KSHV 

infection of HFF and HMVEC-d cells. 

 

DISCUSSION 

In addition to the most common integrin recognition motif, RGD (Akula et al., 2002; Garrigues et 

al., 2008), KSHV gB also possesses DLD juxtaposed in the extracellular amino terminal coil 

region that has potential integrin-binding capabilities as well (Feire et al., 2004).  In fact, it was 

with the analysis of the related domains of snake venom metalloproteases (SVMPs) that sparked 

the assumption that DLDs of other varieties, such as in ADAMs, would also be involved in 

integrin-mediated interactions (Lu et al., 2010; Wolfsberg et al., 1995). 

The DLD of KSHV gB (66-85aa) corresponds to 49-68aa residues within the EBV gB.  

EBV is a closely associated human herpesvirus to KSHV and both are classified as gamma 

herpesviruses.  Earlier, the ectodomain (23-685aa out of 1-875aa full length) of EBV gB was 

crystallized (Backovic et al., 2009).  It was determined that the major portion (52-68aa) of the 

electron dense DLD of EBV gB is contained within the domain III region which is exposed and 

actually wraps around the helices to form a left-handed twist.  Based on these findings, we predict 

DLD of KSHV gB to also be an exposed ectodomain available for interactions with host cell 
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receptor molecules.  Outside of HCMV, the role of DLD in virus entry has been minimally 

explored.  Thus, this study has sought to unearth the role of DLD of gB in KSHV infection.  

Instead of employing antibody based assays, we utilized phage display peptide library to 

ascertain the putative receptor for DLD of KSHV gB.  We determined DLD of gB to interact with 

host cell receptor molecule, integrin α9, by panning random libraries of phage displayed peptides 

against the gBDLD peptide fragment (Table 2; Fig. 3A,B).  The results from screening the phage 

display peptide libraries were further authenticated by performing plate based binding assays 

(ELISAs) and immunoprecipitation experiments using both gBΔTM and gBΔTMΔD (Fig. 3C-D). 

The subunit α9 has been widely shown to combine with β1 to form a single heterodimer 

(Young et al., 2001) with non-RGD binding capabilities (Yokosaki et al., 1994).  For this study, 

insight regarding specificity of KSHV gB:α9β1 interactions was provided from results of several 

competitive ELISAs.  HS (Fig. 4A), a target cell membrane molecule whose interaction with 

KSHV is mediated in part by envelope gB (Bryan et al., 2005), VEGF, a known ligand for α9β1 

(Vlahakis et al., 2005), or laminin, an extracellular matrix protein (Fig. 4C), did not block the 

gB:α9β1 interactions.  Another known ligand for α9β1, tenascin C (Andrews et al., 2009), also 

failed to neutralize the gB:α9β1 interaction (Fig. 4C).  In the case of tenascin C however, enhanced 

binding was observed between gBΔTM and α9β1 in what we believe to be a result of an allosteric 

interaction (Fig. 4C), as suggested by an earlier report (Laskowski et al., 2009).  Tenascin C is an 

extracellular matrix (ECM) molecule that is often times expressed at elevated levels in solid tumors 

and is said to have a role in cancer formation (Orend & Chiquet-Ehrismann, 2006).  Further studies 

will focus on appreciating gB:α9 interactions with respect to tenascin C expression. 

Likewise, competitive ELISAs also confirmed the ability of KSHV gB to interact with 

integrin α9β1 independent of its RGD domain (Fig. 4B).  Our findings are reminiscent of results 
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produced by Eto et al., who found that mutating the RGD motif of the aforementioned ADAM-15, 

had no effect on the binding of α9β1 to the protein’s disintegrin domain (Eto et al., 2002).  

Moreover, when using an antibody directed against the DLD in gB, competitive ELISA data 

showed a substantial down regulation in the gB:α9β1 interactions, suggesting the specificity of  

this antibody (Fig. 4D).  These results imply that the avid binding between gB and α9β1 is in fact 

dependent on the DLD of KSHV gB (Fig. 4D). 

In an effort to extrapolate plate based assays to viral infection, we attempted to test the role 

of integrin α9β1 in wild type KSHV infection of different cells (Fig. 5).  HFF and HMVEC-d cells 

express α9β1 compared to 293 cells.  KSHV infection of 293 cells was not altered by antibodies 

to α9, β1 subunits, DLD target sequence; and soluble α9β1 (Fig. 5C-E).  In HFF cells, antibodies 

to α9, β1 subunits, DLD target sequence; and soluble α9β1 significantly lowered KSHV infection 

(Fig. 5C-E).  In HMVEC-d cells, there was a significant decrease in KSHV infection of cells due 

to antibodies against β1 subunit and the DLD target sequence with only a modest decrease in 

infection noticed due to antibodies against α9 and soluble α9β1 (Fig. 5C-E).  Taken together, from 

the above results we conclude the following: (i) The α9β1:DLD of gB interactions may be required 

for an efficient KSHV infection of HFF cells.  The DLD interactions may well play a supportive 

role to the RGD interactions with integrin(s) (Chandran, 2010b; Veettil et al., 2008) in promoting 

virus entry; (ii) There may be another non-RGD binding integrin receptor(s) with which DLD of 

gB interacts in promoting virus infection of HMVEC-d cells; and (iii) KSHV utilizes diverse 

mechanisms to enter variety of target cells. 

The use of soluble integrins and antibodies to define a crucial role for a receptor molecule 

is not without its limitations; primarily depending upon the purity, function, and the concentrations 

of the recombinant proteins or the antibodies.  Hence, we generated BAC36ΔD-KSHV (KSHV 
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lacking the functional DLD) to appreciate the physiological role for DLD in virus infection of cells 

(Fig. 7).  Recently, upon sequencing the KSHV-BAC36 genome in its entirety, Yakushko et al. 

discerned a 9-kb long unique region (LUR) fragment duplication in the terminal repeat region of 

several viral stocks acquired by laboratories.  However, we assume this to possess little to no 

complication to our generation of BAC36ΔD and BAC36.T, as our modifications to BAC36 did 

not involve mutagenesis to viral genes located within the potential LUR duplication (Yakushko et 

al., 2011).  Here, the infection of BAC36ΔD-KSHV was compared with BAC36-KSHV wild type 

and BAC36.T-KSHV in 293, HFF, and HMVEC-d cells (Fig. 7).  Results depict comparable 

infection rates for BAC36-KSHV and BAC36.T-KSHV in all tested cell types (Fig. 7).  However, 

the infection rates for virus lacking an intact DLD of gB were significantly lower in HFF and 

HMVEC-d cells compared to 293 cells (Fig. 7), which provides evidence that the DLD of KSHV 

gB and its interaction with α9β1 has a substantially important role in regulating virus infection.  

Our results also confirm KSHV to utilize a mechanism of entry into 293 cells that is independent 

of α9β1.  Earlier studies also determined KSHV infection of 293 cells to be via binding heparin 

sulfate but independent of RGD integrins (Inoue et al., 2003).  At this stage, we can only 

hypothesize that such an efficient internalization of KSHV by 293 cells occurs as a result of a 

dynamic and biologically active cell membrane of a transformed cell line compared to primary 

cells such as HFF and HMVEC-d cells. 

Multiple studies have determined RGD of gB interactions with α3β1, αVβ3, and αVβ5 as 

a necessity for KSHV entry (Chandran, 2010a) (Veettil et al., 2008).  KSHV has also been shown 

to use DC-SIGN and the 12-transmembrane glutamate/cysteine exchange transporter protein xCT 

as receptor molecules in dendritic cells, macrophages, and activated B cells (Rappocciolo et al., 

2008; Rappocciolo et al., 2006; Zhang & Gao, 2012).  Recent studies by Hahn et al., deciphered a 



35 
 

key role for gH/gL interactions with EphA2, a tyrosine kinase, in promoting virus entry (Hahn et 

al., 2012).  Like other viruses, KSHV has evolved to utilize different combinations of host cell 

receptor molecules to infect target cells, and integrin α9β1 could well be the latest addition to 

KSHV’s arsenal of host cell receptor molecules utilized for entry. 

Though these findings delineate a critical role for the lesser studied integrin-binding 

domain (DLD) of gB in KSHV infection, this study has also opened a realm of other questions 

which await our further research.  Importantly, we seek clarity regarding the manner by which the 

α9β1:DLD induced cellular signaling alter initial stages of virus infection (i.e. virus binding, initial 

target cell entry, escape to the endosome, or eventual nucleo-transport).  Additionally, we seek to 

understand how reactions involving DLD of gB and integrins support RGD-dependent interactions 

critical to virus entry.  Do these seemingly mutually exclusive integrin-binding motifs within gB 

somehow work in concert to regulate virus infection?  Moreover, ongoing studies will also monitor 

the possibility of integrin heterodimer, α9β7, interacting with DLD of KSHV to regulate virus 

infection, as a recent report identified the ability of ADAM-2 in RPMI 8866 cells (which express 

little or no β1) to interact with α9β7 (Desiderio et al., 2010).  All further studies in this area will 

strive for a better understanding of the intricacies involved in the role of and mechanisms utilized 

by glycoproteins in KSHV entry and infection.  

 

METHODS 

Cells.  Human foreskin fibroblasts (HFF), 293 cells, human vascular endothelial cells-dermal 

(HMVEC-Ds, CC-2543; Clonetics) and Spodoptera frugiperda ovarian cells (Sf9) were 

propagated as per standard laboratory protocols (Akula et al., 2005). 
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Antibodies.  An antibody to DLD peptide sequence of gB (anti-DLD) was generated in rabbits by 

Pi-Proteomics, LLC (Huntsville, AL) and used in ELISAs performed in this study.  Rabbit 

antibodies to RGD containing sequence of gB (anti-RGDgB-N1) and a peptide sequence from the 

C-terminal domain in gB (anti-gB-C) was also used.  Antibodies to full length gB, RGDgB-N1 

and gB-C have been described in earlier studies (Akula et al., 2002).  Human α9 (H-198) rabbit 

polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), α9 monoclonal mouse 

IgG Clone #560201 (R & D Systems, Inc.), αV monoclonal mouse IgG (clone P3G8; Millipore), 

α5 monoclonal mouse IgG (Clone P1D6; Millipore), and β1 monoclonal mouse IgG (Clone 6S6; 

Millipore),  were also used in this study. 

 

Proteins and Peptides.  Refer supplemental section.  

 

Cloning and expression of recombinant gBΔTMΔDLD.H.  His-tagged, recombinant, and 

soluble KSHV gBΔTM and gBΔTM lacking the DLD (gBΔTMΔD) was expressed and purified 

from Sf9 cells as per earlier studies (Dyson et al., 2010; Wang et al., 2003). 

 

Western blotting.  Equal concentrations of soluble gB proteins (25µg) were resolved by SDS-

PAGE gels prior to being transferred to a PVDF membrane that was probed using rabbit polyclonal 

antibodies to gB, and appropriate secondary antibodies as per earlier studies (Dyson et al., 2012). 

 

PCR.  PCR assays were conducted using synthesized cDNA and specific primers (Table 1).  PCR 

amplifications were performed using Platinum® Taq DNA Polymerase, High Fidelity (Life 

Technologies, Carlsbad, CA) and/or Advantage® cDNA PCR Kit (BD Biosciences Clontech, Palo 
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Alto, CA) at appropriate annealing temperatures and extension times.  Amplified products were 

separated on agarose gels, and expression was monitored.  

 

Screening phage display peptide libraries to determine a novel receptor for gB.  A detailed 

protocol is provided in the supplemental section. 

 

ELISA.  To characterize the binding interactions between soluble gB and integrin α9, ELISA was 

performed as per standard protocols.  A detailed protocol is provided in the supplemental section. 

 

Immunoprecipitation.  Soluble integrins (1µg/ml) were incubated with different forms of 1 µg/ml 

of recombinant gB for 2h at +4°C.  The protein complexes were immunoprecipitated with 

appropriate antibodies (anti-gB, anti-αV, or pre-immune IgG) for an hour at +4°C, followed by 

addition of 100µl of swollen Protein A-Sepharose beads and further incubating for another hour 

at +4°C.  The beads were washed four times with Gold lysis buffer, boiled in sample loading buffer 

and resolved by a 10% SDS-PAGE gels.  Proteins were transferred on to a PVDF membrane and 

Western blotted using appropriate antibodies as per earlier protocols (Akula et al., 2002).  The 

molecular weights of αV and α9 protein bands are 128 and 140kDa, respectively. 

 

Generating recombinant KSHV.  A detailed protocol is provided in the supplemental section. 

 

Monitoring KSHV infection of cells.  KSHV infection of different cells was recorded by counting 

the number of cells expressing GFP that is indicative of rKSHV.152 and BAC36 infection (Akula 

et al., 2004; Akula et al., 2001b; Grange et al., 2012). 
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Flow cytometry.  Target cells were washed, incubated in growth medium at 37°C for 30 min, 

centrifuged, and resuspended in cold PBS.  The entire procedure involved the use of cold reagents 

and temperatures of +4°C.  Cells (1 X 106) were incubated with different antibodies at 4°C for 30 

min, washed, incubated with FITC-conjugated appropriate secondary IgG at 4°C for 30 min, 

washed, and analyzed in a FACScan flow cytometer (Becton Dickinson) with appropriate gating 

parameters. 
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FIGURE LEGENDS 

Figure 1. Generating KSHV gBΔTMΔD.  The diagram shows the schematic of gBΔTM and 

gBΔTMΔD mutant compared to the full length KSHV-gB (orf8). 

 

Figure 2.  Expression and purification of gBΔTMΔD in baculovirus expression system.  The 

gBΔTMΔD and gBΔTM were expressed in Sf9 cells and the protein purified from the harvested 

supernatant using a column containing Ni-NTA agarose beads.  Protein purity was analyzed by 

Coomassie staining SDS-PAGE gels, and Western blotting procedures using rabbit polyclonal 

antibodies to full length gB.  Experiments were performed under reducing (+2ME) and non-

reducing conditions (-2ME).  Under non-reducing conditions, an upward shift in the migration 

pattern of both the proteins is indicated by an asterisk mark.  Arrows denote the bands 

corresponding to recombinant gB. 

 

Figure 3.  Phage encoding peptide PKADGRV bound gBΔTM efficiently.  (A) PFU recovered 

when 1011 PFU of phage carrying peptides L3, F1, and F5 were screened against immobilized 

gBΔTM, gBΔTMΔD, or BSA (negative control) proteins on microplates.  (B) PFU recovered when 

1011 PFU of phage carrying peptide L3 was screened against immobilized gBΔTM, gBΔTMΔD, 

or BSA on microplates in the absence or presence of 1mM solution of PKADGRV, gBDLD 

peptide, or scrambled peptide.  Finally, ELISA was performed to determine the interactions 

between (C) α9β1 or αvβ3 (D) with immobilized gBΔTM, gBΔTMΔD, BSA, or GST.  Each point 

denotes the average ±S.D. (error bars) of three experiments.  Columns with different alphabets 

and asterisks on the data points denote the value to be statistically significant (p˂0.05) by least 

significant difference (LSD).  (E) Immunoprecipitation experiments to demonstrate gB 
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interactions with α9β1.  Recombinant gBΔTM (lane 1) compared to gBΔTMΔD (lane 3) 

specifically bound α9.  As a positive control, gB interactions with αVβ3 was tested. 

 

Figure 4.  Characterizing the gB:α9β1 interactions by performing competitive ELISA.  Using 

the constant concentration of 1µg/ml for both α9β1 and bound gBΔTM, ELISA was performed: 

(A) Increasing concentrations of HS in PBS (or CSA and CSB) were incubated in gBΔTM-coated 

wells prior to incubating with α9β1 and performing the ELISA.  Increasing concentrations of 

GRGDSP and KQAGDV (an irrelevant peptide) (B); tenascin C, VEGF, and laminin (C) were 

incubated with α9β1 for 30min at room temperature (in an additional step) prior to their addition 

into gBΔTM-coated wells and performing ELISA.  (D) gBΔTM-coated plates were incubated with 

anti-DLD or additional non-specific antibodies prior to incubation with α9β1 and performing 

ELISA.  The results were read at 450nm (OD 450).  Data presented in both the panels represent 

the average±S.D. (error bars) of three experiments.  Asterisks on the data points denote the value 

to be statistically significant (p˂0.05) by LSD. 

 

Figure 5.  Role of integrin α9β1 in wild type KSHV infection.  (A) HFF, HMVEC-d, and BCBL-

1 cells express α9.  cDNA synthesized from target cells was subjected to PCR analysis to amplify 

a α9 PCR product (α9: ~190bp) that was resolved in a 2.1% agarose gel.  (B) Flow cytometry 

analysis of the surface expression of α9 integrin subunit in 293, HFF, and HMVEC-d cells was 

performed by staining with Integrin α9 (H-198) rabbit polyclonal antibodies followed by 

incubation with goat anti-rabbit FITC, before examining by FACS.  The average percentage 

number of cells positive for the α9 expression from three independent experiments is provided 

over the marker.  A representative histogram plot (plots shaded purple and with green outline 
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denotes interactions with pre-immune IgG and anti-α9, respectively) for each cell type is depicted.  

(C-E) Inhibition of rKSHV.152 infection by 20µg/ml of different antibodies to integrins (C), 

soluble integrins (D), and anti-DLD antibodies (E) is shown.  In all of the above experiments 

(panels C-E), infection was monitored at 72h post infection (PI) by recording the total number of 

cells expressing GFP under a fluorescent microscope.  Data are presented as percentage of 

inhibition of virus infectivity obtained when the cells were preincubated with DMEM as control.  

Data represent the average ± SD (error bars) of three experiments.  Columns with different 

alphabets are statistically significant (p<0.05) by LSD. 

 

Figure 6.  Architecture and generation of recombinant BAC36ΔD.  (A) A schematic 

architecture of how the target-3 PCR product was obtained is shown.  (B) DNA agarose gel 

electrophoresis of purified targets to confirm predicted fragment sizes. Elution-purified target-1 

(T1; 2967bp), target-2 (T2; 1055bp), and gel purified target-3 (T3; 4005bp) were resolved in a 1% 

agarose gel and stained by ethidium bromide.  Bands of expected sizes were rendered.  (C) 

Schematic depiction of the molecular biology processes involved in the construction of BAC36ΔD 

and BAC36.T clones is provided.  A detailed description concerning the construction of the clones 

is provided in the supplemental METHODS section. 

 

Figure 7.  DLD of gB is critical for KSHV infection.  (A) Monolayers of 293 cells were infected 

with 0.1 MOI of BAC36-KSHV or BAC36ΔD-KSHV.  At the end of 48hPI, the cells were treated 

with TPA for 72h.  These cells were analyzed for the surface expression of gB in 293 cells by 

staining with pre-immune IgG (shaded purple) rabbit polyclonal anti-gB antibodies (green outline) 

followed by incubation with goat anti-rabbit FITC, before examining by FACS.  The average 
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percentage number of cells positive for the surface expression of gB from three independent 

experiments is provided over the marker.  A representative histogram plot for each cell type is 

depicted.  (B) Monolayers of 70-80% confluent 293, HFF, and HMVEC-d cells were infected with 

BAC36-KSHV, BAC36ΔD-KSHV, and BAC36.T-KSHV.  After 72h of infection, the total 

number of cells expressing GFP under a fluorescent microscope was counted.  Data are presented 

as percentage of virus infection of target cells obtained when the respective cells were infected 

with BAC36-KSHV.  Data represent the average ± SD (error bars) of three experiments.  Columns 

with different alphabets are statistically significant (p<0.05) by LSD. 
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Table 1.  List of primers. 
 

Primer Name Sequence 

α9.FW2.Q.F GATGAGTGGATGGGGGTGAG 

α9.FWQ.R CCGTGTTCCTCTCCGTACTT 

DLD-M2(F) TCGATCACCGGGGAGGCGGCGGCGGCGAACCTGGAGCAGACG 

DLD-M2(R) CGTCTGCTCCAGGTTCGCCGCCGCCGCCTCCCCGGTGATCGA 

pHHV8gB(F) AGTGAGGATCCACAATGACTCCCAGG 

ORF8.HIS(R) TCCGAATTCTCAATGATGATGATGATGATGGCCACCCAGGTCCGCCACTATCTC 

ORF8.RD(F) ATGACTCCCAGGTCTAGATT 

ORF8.D(F) AAGCATCTGGTCCTAAGAGT 

ORF8.RD(R) TCGTTGGCCACAAAGTGGAA 

ORF50P8.ChIP.OD(F) CTACCGGCGACTCATTAAGC 

ORF50P8.ChIP.OD(R) GTGGCTGCCTGGACAGTATT 

T1(F) GTGACGCTGGCTCAGTGCTTCGAGGCTGCGGGCATGCTT 

T1(R) TCGAATCATATGTCACTCCCCCGTTTCCGGACTGATGTC 

T2(F) GAGTGACATATGATTCGAGGTTATTGTTTGATGTAAATT 

T2(R) CGCGTTGGGAAAACCCTTCTCGCCCATACATTCTATATC 

Tet (F) CATATGGCCGATTATGGTGCACTCTCAGTAC 

Tet (R) CATATGTGGTGAATCCGTTAGCGAGGTGCC 
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Table 2.  Amino acid sequences of the phage-displayed peptides isolated by screening 

against DLD in gB. 

 

Name Sequence Frequency 

L3                  P   K   A   D   G   R   V 9 

L5                  M  T   A   E    N   I    R 1 

F1 D   C   K   P   K   P   D    G   R   L   R   D 6 

F3 Q   A   M  S   D   K   F    R   C   G   W  A 2 

F5                  P   K   A   D   G    H   V 5 

F9                  C   N   H   P    L    E   C 1 

S6                  P   Y   H   D   Q     I   A 1 

S8       L   R   P  R    A   D   G    P   T   E   F   W 2 

S9      S   W  A  D   T   T   I    Q   Y   V   V   L 1 

S4      R   F   I   Y   P   E   D   P    F    I   E   C 1 
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SUMMARY 

Virus entry is a complex, multi-step, and highly orchestrated event on which successful virus 

infection collectively depends.  In terms of herpesviruses, viral envelope glycoproteins have been 

widely reported to engage target cell surface receptors, such as integrins, in interactions leading to 

entry and subsequent infection.  Integrins are known to physically interact with Kaposi’s sarcoma-

associated herpesvirus (KSHV) envelope glycoprotein B (gB) to promote virus entry into cells.  

Our recent study identified KSHV gB to interact with cell surface expressed α9β1 integrin crucial 

to promoting viral infection of cells.  KSHV enters human foreskin fibroblast (HFF) cells via 

clathrin-mediated endocytosis.  In this study, the role of disintegrin-like domain (DLD)-binding 

integrin, α9β1, in KSHV entry into HFF cells was analyzed.  Incubating cells with antibodies to 

α9 integrin subunit or soluble α9β1 integrin with the virus significantly inhibited virus infection 

of cells but not the internalization of the virus.  This was true in both the permissive human foreskin 

fibroblast (HFF) and the non-permissive Chinese hamster ovary (CHO) cells that stably expressed 

human α9 integrin subunit.  Therefore, the trafficking of KSHV via endosomes was analyzed using 

a subcellular fractionation method which was supported by traditional imaging techniques.  

Incubating KSHV with soluble α9β1 significantly blocked the ability of the viral capsid to escape 

the late endosomes into the cytoplasm.  These results support the fact that α9β1 integrin may play 

a crucial role in mediating endosomal escape of the viral capsid into cytoplasm. 
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INTRODUCTION 

As pathogenic hijackers of cellular machinery, viruses enter target cells via diverse, complex, and 

still fairly enigmatic processes that are presumed to be cell type dependent.  It is widely accepted 

that herpesviruses access a target cell’s interior via interactions between viral envelope 

glycoproteins and host cell surface receptors.  Such glycoprotein:receptor interactions function in  

attachment and binding at the cell surface, successive internalization (uptake into the host cell), 

membrane fusion, and trafficking of the virus (Zhang & Gao, 2012).  The gamma-2-herpesvirus, 

Kaposi’s sarcoma-associated herpesvirus (KSHV) is no different in this respect.  KSHV, otherwise 

known as human herpesvirus-8 (HHV-8), has an extensive cellular tropism both in vivo and in 

vitro and can infect a plethora of different cell types (Hertel, 2011) presumably due to its ability 

to bind ubiquitous molecules expressed on target cells such as heparan sulfate (HS) (Akula et al., 

2001b). 

KSHV binding to HS is thought to bring the virus in closer proximity to target cells such 

that perhaps more meaningful interactions with other receptor molecules, such as integrins, can 

occur to promote the actual entry process (Akula et al., 2001b).  In fact, KSHV sets precedence as 

the first herpesvirus shown to interact with adherent target cell integrins in a step initiating the 

entry process (Akula et al., 2002).  For instance, KSHV envelope associated glycoprotein B (gB) 

is said to interact with integrins via its RGD (Arg-Gly-Asp) (Akula et al., 2002; Chakraborty et 

al., 2012) and disintegrin-like domain (DLD) integrin recognition motifs (Walker et al., 2014) to 

facilitate virus entry and infection.  Aside from integrins, other receptors shown to have a role in 

KSHV entry are ephrin receptor tyrosine kinase A2 (EphA2) (Hahn et al., 2012), dendritic cell-

specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) (Rappocciolo et al., 

2006), and human cysteine transporter xCT (Zhang & Gao, 2012).  After binding to receptors (i.e 
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proteins, carbohydrates, or lipids; (Dimitrov, 2004)), the vast majority of viruses utilize endocytic 

routes to enter target cells (Yamauchi & Helenius, 2013a).    

 The mechanism of endocytosis is thought to leave no trace of the virus at the plasma 

membrane presumably causing delayed detection by the host immune system.  Upon uptake into 

the cell, viruses utilize cellular processes for their own infectious agenda (Mercer et al., 2010).  

Several reports have described KSHV to utilize what is often deemed as the receptor-mediated 

endocytic pathway (Chaudhary et al., 2014; Dutta et al., 2013; Raghu et al., 2009; Veettil et al., 

2014).  Specifically, KSHV enters human foreskin fibroblast (HFF) cells via clathrin-mediated 

endocytosis (Akula et al., 2003).  Recent studies by us (Walker et al., 2014) demonstrated KSHV 

to interact with α9β1 integrins expressed on the surface of cells to mediate infection of cells.  Entry 

processes are commonly analyzed by monitoring internalized virus particles via Western blotting, 

polymerase chain reaction (PCR), and imaging techniques that allow scientists to track their 

intracellular location.  Such studies have provided abundant direct evidence on how viruses 

interact with receptor molecules on the cell surface, induce cell signaling at the point of initial 

contact with the cell to facilitate internalization, and exploit existing endocytic mechanisms of the 

cell for their ultimate infectious agenda.  However, there is dearth of knowledge in regards to 

trafficking of a virus via endosomes.  In this study, we attempted to analyze the role of α9β1 

integrin in the intracellular trafficking of the virus.  We utilized subcellular fractionation to 

understand the transit of KSHV via endosomes.  Our study defines a critical role for α9β1 integrin 

in the ability of KSHV to escape late endosomes in HFF cells.  
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RESULTS 

Anti-α9 and -β1 integrin antibodies and soluble α9β1 integrins do not inhibit KSHV 

internalization but do inhibit KSHV infectivity 

Integrins are known to alter different stages of the virus entry process.  KSHV envelope associated 

gB is shown to interact with RGD-binding integrins α3β1, αVβ3, and αVβ5 (Chakraborty et al., 

2012; Fotiadis et al., 2013; Hahn & Desrosiers, 2013; Veettil et al., 2008), as well as integrin α9β1 

(Walker et al., 2014), a DLD-binding integrin, to aid in initiating the internalization of KSHV.  A 

lot of work has been done to establish a role for RGD-binding integrins in regulating KSHV 

infection, with only very little known about the role of DLD-binding integrins in KSHV infection.  

To further investigate the involvement of DLD-binding integrins during the initial stages of KSHV 

infection, we first conducted infection-based studies in HFF cells using appropriate anti-integrin 

antibodies or soluble integrins (Fig. 1).  Monolayers of HFF cells were incubated with 20µg/ml of 

antibodies against integrin subunits α9, β1, or α5, for 1h at 4°C prior to infection with KSHV (Fig. 

1A).  As per earlier studies (Dyson et al., 2010; Krishnan et al., 2004), expression of orf50 in cells 

(as monitored by qRT-PCR) was considered an indicator for establishment of infection.  

Antibodies to α9 and β1 integrins significantly inhibited KSHV infection of HFF cells compared 

to antibodies to α5 and a pre-immune IgG (Fig. 1A).  For further authentication of the above 

results, the effect of pre-incubating KSHV with human soluble α9β1 for 1h at 4°C prior to infecting 

cells was tested (Fig. 1B).  In this case, a dose dependent inhibition of KSHV infection of HFF 

cells was observed when the virus was incubated with increasing concentrations of soluble α9β1 

versus bovine serum albumin (BSA) prior to infection (Fig. 1B).  As a positive control, soluble 

heparin was used as a known inhibitor of KSHV binding and infection of HFF cells (Fig. 1B). 
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 To assess the roles of these integrins in KSHV internalization, HFF cells were first treated 

with antibodies (20µg/ml) against integrin subunits α9, β1, or α5 prior to infection with KSHV 

(Fig. 1C).  In a separate experiment, KSHV was pre-incubated with different doses of soluble α9β1 

integrin (0, 0.1, 1, 10 µg/ml) prior to infection of cells (Fig. 1D).  Upon quantification of 

internalized KSHV orf50 gene copies via qPCR, we observed neither the anti-integrin antibodies 

nor the soluble integrin to have an effect on the internalization of KSHV in HFF cells (Fig. 1C, 

D).  Expectedly however, soluble heparin inhibited KSHV internalization in a dose dependent 

fashion (Fig. 1D).  Pre-treatment of KSHV with soluble heparin is shown to impede the initial 

attachment of the virus to HS on the cell surface (Bandyopadhyay et al., 2014), thus blocking 

binding, signal induction, entry, and successful infection of target cells (Akula et al., 2001b; 

Chakraborty et al., 2012).   

To further authenticate the above effects of integrins on KSHV internalization and 

infection of cells, we used Chinese hamster ovary (CHO) cells.  CHO cells are not permissive to 

KSHV infection (Akula et al., 2002).  CHO cells do not express α9 integrins (Chen et al., 2006) 

but do express the β1 subunit of integrins (Wu et al., 1995).  To determine the biological role of 

α9β1 integrin in the virus internalization and infection, we stably expressed the human α9 integrin 

subunit in the deficient CHO cells to obtain CHO-α9 cells (Fig. 2A).  The human α9 subunit 

expressed by these cells associated with hamster β1 subunit on the cell surface as shown by 

immunoprecipitation of the integrin complex with anti-α9 antibodies from lysates of surface 

biotinylated cells (Fig. 2B).  CHO-α9 cells were permissive to KSHV infection of cells when 

compared to CHO cells (Fig. 2C).  The KSHV infection of CHO-α9 cells was significantly lowered 

when the cells were incubated with antibodies to integrin α9 prior to conducting infection 

compared to incubating cells with antibodies to α5 integrins (Fig. 2C).  However, internalization 
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of KSHV was not significantly altered in these cells by incubating them with antibodies to integrin 

α9 (Fig. 2D).  These results implicate a possible role for α9β1 integrins at a stage beyond cellular 

uptake of virus. 

 

KSHV particles are trafficked beyond the early endosome for late endosomal escape 

We first attempted to conduct subcellular fractionation in untreated HFF cells via sucrose density 

gradient centrifugation for isolation/detection of organelles associated with the endocytic pathway.  

Typically, cargo internalized by clathrin-mediated endocytosis (e.g. KSHV into HFF cells) is 

thought to be directed from early endosomes (EEs) to late endosomes (LEs) then lysosomes to 

undergo degradation or changes to conformation (Vonderheit & Helenius, 2005).  To begin with, 

untreated HFF cells grown to 80% confluency were cooled (incubated at 30min at 4ºC), infected 

with KSHV or incubated with DMEM alone (15min at 37ºC), collected and lysed in 

homogenization buffer; after which, centrifugation was performed to derive the post-nuclear 

supernatant (PNS) containing intracellular organelles in suspension (Fig. 3).  The PNS adjusted to 

a concentration of 25% sucrose and 1mM EDTA was then subjected to sucrose density gradient 

centrifugation followed by fraction collection (Fig. 3).   

 Collected gradient fractions 1-6 of untreated HFF cells were analyzed for the distribution 

of endosome markers, Rab5 (EE marker) and Rab7 (LE marker) (Harley et al., 2001; Wolf et al., 

2012), by SDS-PAGE and Western blotting (Fig. 4A).  Fractions 1-3 contained the LEs with the 

majority being concentrated in fraction 1 as detected by Rab7, and fractions 4-6 contained the EEs 

with the majority being concentrated in fraction 5 as detected by Rab5 expression (Fig. 4A).  

Interestingly, KSHV infection of HFF cells did not seem to alter this distribution of EEs and LEs 

(Fig. 4A).  LEs (sometimes referred to as pre-lysosomes; (Braulke & Bonifacino, 2009), 
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lysosomes, and the endolysosome hybrid organelle—from where mature lysosomes bud—are said 

to be difficult to distinguish (Repnik et al., 2013), as basic sucrose gradient centrifugation 

procedures are shown to forgo total separation of such organelles (Waugh et al., 2011).  Here, acid 

phosphatase (an established enzyme marker for identifying lysosomes in subcellular fractions; 

(Zhao et al., 2013) activity was analyzed to detect the level of lysosome enrichment in collected 

gradient fractions (Fig. 4B).  Upon fraction comparison, acid phosphatase activity in both the 

uninfected and KSHV infected HFF cells was detected in fractions 1-3 with fraction 1 displaying 

the highest phosphatase activity.  Activity of acid phosphatase foreseeably coincided with the LE 

fractions (fractions 1-3; Fig. 4A);  although acid hydrolases (e.g. acid phosphatase) majorly 

localize in lysosomes, these enzymes can be found in LEs as well (Repnik et al., 2013).  Therefore, 

such findings provide a second line of evidence for the presence of LEs in the said fractions. 

Having established the fractions that contain early and late endosomes, we purified 

endosomes via a sucrose flotation gradient to quantitatively track KSHV in infected HFF cells 

post-internalization and to characterize possible role(s) for DLD-binding integrins during this stage 

of the entry process via qPCR (Fig. 4C).  Earlier studies described KSHV entry as a rapid process 

wherein the capsid delivers the genetic material to the nucleus allowing eventual expression of 

viral transcripts in as early as 30min post infection (PI) (Dyson et al., 2010; Krishnan et al., 2004).  

Therefore, we monitored KSHV particles in endosomes 15min PI.  In the case of cells infected 

with KSHV, there was notably more KSHV DNA detected in EE containing fractions compared 

to the fractions containing LEs (Fig. 4C).  Similar results were observed in cells infected with a 

mixture of KSHV and BSA (Fig. 4C).  Though incubating soluble integrin α9β1 with KSHV did 

not significantly alter the levels of KSHV in EEs, it significantly impeded the ability of KSHV to 

escape the LEs (Fig. 4C).  These results suggest a possible role for α9β1 integrin in virus-mediated 
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endosomal escape.  Additionally, infection in the presence of our positive control, heparin, results 

in a significant drop in the number of virus particles observed in both EE and LE containing 

fractions (Fig. 4C).  Based on these results, as it pertains to HFF cells, we presume KSHV to be a 

late penetrating virus that exits from the LE into the cytosol.  We could not detect HSV-2 in either 

the early or late endosome (data not shown), as earlier studies demonstrated HSV-2 to enter target 

cells via fusion at the cell membrane (Akula et al., 2003). 

 To further confirm the presence of KSHV in endosome containing gradient fractions, 

fractions collected at different early time points (1, 5, or 15min) during the course of infection 

were resolved by SDS-PAGE and subsequently Western blotted with antibodies directed against 

minor capsid protein KSHV ORF62-encoded triplex component I (TRI-1) for detecting the 

presence of viral capsids (Fig. 5).  Expression of TRI-1 is ideal for detection of the virus, as the 

virus envelope is loss upon fusion/penetration.  At 1 min post KSHV infection, significantly more 

virus was observed in EE containing fractions 4-6 versus LE fractions with most virus being 

detected in fraction 5 (Fig. 5).  Similar patterns were observed at 1min PI when the virus was 

incubated with BSA or soluble α9β1 (Fig. 5).  Incubating KSHV with heparin lowered the 

percentage of virus being internalized as detected by limited staining for TRI-1 in EEs (Fig. 5).  

By 5min PI, a significant portion of the virus had reached LEs in KSHV infected cells or cells 

infected with a mixture of KSHV that was incubated with BSA or α9β1 (Fig. 5).  Heparin blocked 

KSHV internalization effectively as described at 1min PI.  By 15min PI, there was a marked drop 

in the levels of virus in LEs (especially LE fraction 1) in cells that were infected with KSHV or a 

mixture of KSHV and BSA (Fig. 5).  Surprisingly, we found an increase in the levels of virus 

associated with LEs of cells that were infected with a mixture of KSHV and soluble α9β1.  Overall, 

Western blotting results monitoring TRI-1 expression as an indicator of KSHV in collected 
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gradient fractions of virus infected HFF cells (Fig. 5) mimic qPCR results (Fig. 4C), thus 

confirming escape of KSHV from the LE to the cytoplasm in HFF cells. 

 

Immunofluorescence microscopy demonstrates KSHV to localize in EEs and LEs 

For further confirmation, we employed the traditional method of immunofluorescence imaging 

with FITC-KSHV and TRITC labeled antibodies to Rab5 and Rab7 to monitor the trafficking of 

KSHV into the target cells.  By as early as 1min PI of cells, KSHV was associated with EEs as 

observed by co-localization of the FITC-KSHV with Rab5 expression (Fig. 6A).  Treating cells 

with antibodies to α9β1 or pre-immune IgGs did not significantly alter this co-localization (Fig. 

6A).  At 15min PI, a fraction of KSHV was associated with LEs as observed by co-localization of 

the FITC-KSHV with Rab7 expression (Fig. 6B).  A similar result was observed when the cells 

were treated with pre-immune IgGs (Fig. 6B).  However, the number of co-localizing events 

substantially increased when the cells were treated with antibodies to α9β1 prior to infection (Fig. 

6B).  For further authentication, subsequent intracellular trafficking of KSHV upon cytosolic 

delivery (post-late endosomal penetration) was similarly analyzed via immunofluorescence 

microscopy using KSHV and antibodies directed against minor capsid protein TRI-1 (Fig 7).  By 

30min PI, KSHV was shown to accumulate at the perinuclear region as observed by TRI-1 positive 

viral capsids (similar results were observed in cells treated with pre-immune IgGs) (Fig. 7).  

However, when cells were treated with antibodies against integrin subunits (α9 or β1), a substantial 

reduction in perinuclear TRI-1 expression corresponding to KSHV nucleocapsids was observed 

(Fig. 7).  This reduction in the number of capsids positive for TRI-1 was not observed when the 

cells were treated with antibodies to integrin subunit α5 that served as a negative control (Fig. 7).  

These results clearly denote the ability of integrin antibodies to block virus infection by preventing 
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the escape of KSHV from LEs.  Overall, we conclude virus:α9β1 integrin interactions to play a 

key role in trafficking of KSHV via endosomes to eventually escape into the cytoplasm. 

 

DISCUSSION 

“Highly orchestrated, but complex” is typically the concluding remarks regarding the still very 

much enigmatic process of virus entry.  Eukaryotic cellular uptake mechanisms under the 

endocytosis umbrella include phagocytosis, macropinocytosis, caveolae-mediated endocytosis, 

and the most well characterized mechanism, clathrin-mediated endocytosis (Ivanov, 2008).  KSHV 

enter HFF cells via endocytosis (Akula et al., 2003). 

 Receptors are considered necessary cell surface molecules instrumental for successful virus 

infection (Grove & Marsh, 2011).  Herpesvirus entry occurs via viral glycoprotein engagement of 

target cell receptor molecules.  Those receptors considered valuable for KSHV entry into HFF 

cells are binding receptor, HS, RGD-binding integrins (α3β1, αVβ3, αVβ5; (Akula et al., 2001a; 

2002; Akula et al., 2001b; Veettil et al., 2008), and DLD-binding α9β1 integrin (Walker et al., 

2014).  The present study, for the first time, has employed subcellular fractionation to decipher a 

role for α9β1 integrin in regulating KSHV entry. 

 KSHV infection-based studies using antibodies against integrin subunits (α9, β1, or α5) as 

well as human soluble α9β1 integrin were implemented to assess the role of DLD-binding integrins 

in KSHV internalization and overall infection of HFF cells (Fig. 1).  Similar to previous studies 

(Veettil et al., 2008; Walker et al., 2014), KSHV infection of HFF cells was significantly blocked 

(between 40 and 50%) by antibodies to integrin subunits (Fig. 1A); along the same lines, soluble 

DLD-binding α9β1 inhibited KSHV infection in a dose dependent fashion according to expression 

of orf50 transcripts in HFF cells (Fig. 1B).  However, qPCR (monitoring internalized KSHV orf50 
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gene copies) results revealed KSHV internalization into HFF cells to be greatly unaffected by the 

aforementioned anti-integrin antibodies and soluble integrin (Fig 1C, D).  Unlike soluble α9β1, 

heparin was shown to have a significant inhibitory effect on both KSHV internalization and 

infection of HFF cells, again supporting claims implicating HS as the initial attachment receptor 

for subsequent virus binding, entry, and eventual infection (Fig. 1B, D).  We observed identical 

results with anti-α9 antibodies on KSHV internalization and infection of CHO and CHO-α9 cells 

(Fig. 2).  The effective inhibition of infection but distinct inability to block internalization by 

antibodies to integrin subunits (α9 or β1) and soluble α9β1 alludes to DLD-binding receptors 

having a role post-internalization during KSHV infection of HFF cells. 

A sucrose flotation gradient assay to track the endocytosed viral cargo through the EEs, 

LEs, and lysosomes via subcellular fractionation was used (Fig. 3).  Determining at which interface 

a particular membrane will be detected depends on the lipid to protein content ratio.  Endosomal 

membranes are considered low density and lipid-rich (Huber et al., 2003).  LEs as well as 

lysosomes were expected to be recovered from the interface between 8 and 25% sucrose, whereas 

the EEs were expected between 25 and 35% sucrose (Yang et al., 2006; Yu & Lai, 2005).  In this 

study, the PNS derived from KSHV infected HFF cells untreated or treated with soluble α9β1, 

heparin, or BSA was subjected to high-speed sucrose density gradient centrifugation (Fig. 4C, 5).  

Mutually, qPCR and Western blotting results revealed significantly lower levels of KSHV in LE 

fractions obtained from KSHV infected cells 15min PI compared to cells that were infected with 

KSHV incubated in the presence of soluble α9β1 (Fig. 4C, 5).  In other words, incubating KSHV 

with soluble α9β1 blocked the escape of KSHV from LEs to the cytoplasm.  Taken together, these 

results suggest integrin α9β1 to have a role in escape of KSHV from the LE for cytosolic delivery. 
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 Presuming KSHV to be a late penetrating virus, immunofluorescence microscopy verified 

that though FITC-KSHV co-localizes with both early (Fig. 6A) and late endosome markers 

(TRITC labeled anti-Rab5 and anti-Rab7, respectively), there was notably less virus association 

with LEs by 15min PI (Fig. 6B).  This significant decrease in the association of KSHV with LEs 

was because capsids containing the viral genome had escaped into the cytoplasm (Fig. 7).  

Interestingly, treating cells with antibodies to integrins significantly blocked viral escape from the 

LEs (Fig. 6B, 7).  Thus, these results provided additional evidence that post-internalization, α9β1 

interactions have a role in mediating the LE escape of KSHV into the cytoplasm for subsequent 

infection.   

 These findings have taken our current knowledge of KSHV entry a step further, delineating 

a dynamic role for α9β1 integrins in a post-internalization stage of KSHV infection of HFF cells.  

Based on results from this quantitative study we can conclude that heparin has a role at the initial 

binding stage and DLD-binding integrin α9β1 aids in mediating late endosomal escape.  Earlier 

studies implicate RGD-binding integrins to have a role in the actual internalization of the virus.  

With further studies, we seek to resolve the direct role of α9β1 integrin in the conformational 

changes to KSHV gB that may result in the endosomal escape of the viral capsid. 

 

METHODS 

Cells.  HFF and CHO cells were propagated as per standard laboratory protocols (Akula et al., 

2005; Akula et al., 2002). 

 

Antibodies.  Human α9 (H-198) rabbit polyclonal antibodies (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA), monoclonal anti-human antibody anti-α9β1 (clone Y9A2; Millipore, Darmstadt, 
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Germany), α5 monoclonal mouse IgG (clone P1D6; Millipore), and β1 monoclonal mouse IgG 

(clone 6S6; Millipore) were used in this study.  Rab5 rabbit polyclonal antibody, Rab7 (D95F2) 

XPTM rabbit monoclonal antibody (Cell Signaling Technology, Beverly, MA), and mouse 

monoclonal antibody (5B7B6) to KSHV orf62 encoded minor capsid protein, TRI-1 (Thermo 

Scientific, Rockford, IL) were used for Western blotting experiments and/or immunofluorescence.   

 

Proteins and Reagents.  Recombinant human integrin α9β1 used in this study was obtained from 

R & D Systems, Inc., Minneapolis, MN.  Heparin and fluorescein isothiocyanate (FITC) were 

purchased from Sigma, St. Louis, MO.  Lipofectamine 2000 and G418, Geneticin® were obtained 

from Life Technologies, Grand Island, NY. 

 

Generating stable CHO cell line expressing human α9.  Transfection of α9/pcDNA3.1+ 

expression plasmid into CHO cells grown in 6-well plates was performed using Lipofectamine 

2000.  Twenty-four hours after transfection, the cells were cultured in DMEM supplemented with 

10% heat-inactivated FBS, 2mM L-glutamine, streptomycin and penicillin, and 1mg/mL 

G418/Geneticin.  Cells were grown under selection pressure for 3-4 weeks to avoid contamination 

with non-resistant cells after which the expression of human α9 integrin was confirmed by flow 

cytometry and RT-PCR.    

 

Flow cytometry.  The expression of cell surface α9 integrins on CHO and CHO-α9 cells was 

analyzed via flow cytometric techniques.  Cells were washed, incubated in growth medium at 37ºC 

for 30min, centrifuged and resuspended in cold PBS.  The entire procedure involved the use of 

cold reagents and temperatures of 4°C.  Cells were incubated with integrin a9 (H-198) rabbit 

polyclonal antibody at 4°C for 30min, washed, incubated with FITC-conjugated appropriate 
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secondary IgG at 4°C for 30min, washed, and analyzed in a FACScan flow cytometer (Becton 

Dickinson) with appropriate gating parameters. 

 

Virus infection of cells.  Monolayers of HFF, CHO, or CHO-α9 cells were incubated with 

different antibodies to integrins for 1h at 4°C prior to infection with wild type KSHV (MOI of 5 

DNA copies/cell) at 4°C for 1h.  The unadsorbed viruses were washed with DMEM and the cells 

were further incubated for different time points.  In another set of experiments, KSHV was 

incubated with soluble α9β1 or control proteins (heparin or BSA) for 1h at 4°C prior to incubating 

it on HFF monolayers for 1h at 4°C.  The unadsorbed viruses were washed with DMEM and the 

cells were further incubated for different time points.  Herpes virus simplex-2 (HSV-2) infection 

of cells was performed as per early studies (Akula et al., 2003). 

 

qRT-PCR.  After 2h of KSHV infection of HFF, CHO, and CHO-α9 cells, RNA was extracted, 

cDNA synthesized, and the expression of orf50 was monitored by qRT-PCR using specific primers 

(Dyson et al., 2010).  As a benchmark for successful infection, orf50 was monitored; orf50 is said 

to be expressed within 30min of successful KSHV infection (Dyson et al., 2010; Krishnan et al., 

2004).  As per earlier studies, relative copy numbers of orf50 transcripts were computed based on 

the standard graph plotted using Ct values for different dilutions of in vitro transcribed orf50 (via 

the orf50/pGEM-T plasmid), and these values were normalized against β-actin controls.  HSV-2 

infection of cells was determined by qRT-PCR using primers corresponding to immediate early 

gene, UL5, as per earlier studies (Tang et al., 2012). The lowest limit of detection for the standards 

was 6–60 orf50 gene copies (Dyson et al., 2010). 
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Monitoring KSHV by qPCR.  After 10min of KSHV infection of HFF, CHO, and CHO-α9 cells, 

total genomic DNA was extracted via QIAamp DNA Mini Kit (Qiagen, Valencia, CA) as per 

recommendations of the manufacturer.  Isolated DNA was used to estimate the number of KSHV 

orf50 gene copies by performing real time PCR (qPCR) using appropriate primers as per our earlier 

studies (Grange et al., 2012).  As an external standard, the KSHV orf50 promoter gene cloned in 

the pGEM-T vector was used alongside test samples in the reaction mixtures (Deng et al., 2000).  

The standard graph was plotted using the Ct values which are critical to calculating the relative 

copy numbers of viral DNA in the samples.  A similar approach was used to monitor KSHV levels 

in different fractions collected after gradient centrifugation.  HSV-2 levels in gradient fractions 

were monitored by qPCR using primers corresponding to immediate early gene, UL5, as per earlier 

studies (Tang et al., 2012).  

 

Immunoprecipitation.  Cell surface proteins of HFF, CHO, and CHO-α9 were biotinylated as 

previously described (Wu et al., 1995).  Cell lysates were incubated with 20µg/ml integrin a9 (H-

198) rabbit polyclonal antibody or pre-immune IgG antibodies for 1h at 4°C followed by 

precipitation with Protein A-Sepharose beads at 4°C for 1h.  The beads were washed four times 

with Gold lysis buffer, boiled in sample-loading buffer without 2-mercaptoethanol, and the 

proteins were resolved on a 10% SDS-PAGE gel and Western blotted.  The biotinylated cell 

surface proteins were detected by horseradish peroxidase-conjugated streptavidin and 

chemiluminescence.   

 

Sucrose flotation gradient.  Confluent monolayers of adherent HFF cells were cooled (4ºC for 

30min) and either remained uninfected (undergoing incubation at 37ºC for 15min) or were infected 
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(undergoing incubation 37ºC for 1, 5, or 15min) with wild type KSHV (MOI of 5 DNA copies/cell) 

in the presence of DMEM only or 10µg/ml α9β1, BSA, or heparin.  After the designated time 

point, cells were washed thrice with DMEM followed by the application of 0.5ml of 

homogenization buffer (250mM sucrose, 1mM EDTA, 1mM phenylmethylsulfonyl fluoride 

(PMSF), in which cells were gently detached using a cell scraper, lysed, and further processed for 

examination by a sucrose flotation assay as previously described (Yu & Lai, 2005).  Specifically, 

after centrifugation (1,000 x g), the PNS was collected and adjusted to a concentration of 25% 

sucrose and 1mM EDTA in 1ml total volume.  In 1ml increments, 2.4ml of 45% sucrose was 

transferred to the bottom of a SW41Ti tube and successively overlaid with 5.2ml of 35% sucrose, 

3.9ml of 25% sucrose, and 1ml of PNS in 25% sucrose.  Following centrifugation (100,000 x g), 

2ml fractions were collected from top to bottom.  These fractions were further analyzed using 

endosomal markers and KSHV.  Herpes simplex virus-2 (HSV-2) was used as control in this study. 

 

Western blotting/marker analysis.  Equal protein concentrations (5µg) from different fractions 

obtained from sucrose floatation gradient centrifugation were resolved on a 12% SDS-PAGE gel, 

transferred to a polyvinylidene difluoride (PVDF) membrane, and probed with antibodies to 

proteins Rab5, Rab7, and KSHV TRI-1.  

 

Acid phosphatase activity assay.  Acid phosphatase activity for lysosome identification was 

analyzed by using Acid Phosphatase Assay Kit (Sigma) according to the manufacturer’s 

instructions.  In brief, after fractionation, 50µl of each sample was transferred to triplicate wells of 

a 96-well plate followed by the addition of substrate solution (50µl).  The reaction was mixed for 
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10min using a horizontal shaker and incubated for 20min at 37°C.  Next, stop solution (0.5N 

NaOH) was added and the absorption was measured at 405nm using a spectrophotometer.   

 

FITC-KSHV.  KSHV labeling was conducted as per earlier protocols (Akula et al., 2003).  

Specifically, density gradient-purified wild type KSHV (50µl; 2mg/ml) was incubated at room 

temperature for 8h with a solution of FITC (50µl; 5mg/ml) dissolved in dimethyl sulfoxide 

(DMSO; Sigma).  To rid the virus preparation of free dye, FITC-KSHV was purified by 

centrifugation (70,000 x g) over a 30% sucrose cushion (8.5ml) for 90min at 4°C in a Beckman 

SW41Ti rotor.  The FITC-KSHV band was resuspended in phosphate-buffered saline (PBS) and 

subsequently dialyzed against PBS (pH 7.2).  FITC-HSV-2 was generated on the same lines. 

 

Immunofluorescence microscopy.  In order to map the endosomal location of KSHV, HFF cells 

(75% confluent) cultured in 8 well chamber slides were either uninfected or infected with FITC-

KSHV for 1 or 15min at 37°C.  Post-infection, cells were washed in phosphate-buffered saline 

(PBS) and fixed with 3.7% formaldehyde in PBS for 10min.  After fixing, cells were washed, 

permeabilized using 0.1% Triton X-100 in PBS for 3min, washed again, and incubated for 20min 

at room temperature with PBS containing 1% bovine serum albumin (BSA) to block non-specific 

binding sites.  Post-washing, cells were then incubated successfully (1h at 37°C) with the 

appropriate primary (anti-Rab5, or anti-Rab7) and secondary (goat anti-rabbit TRITC) antibodies.  

Immunostained cells were washed in PBS and imaged with a Nikon fluorescent microscope using 

appropriate filters.  To study the escape of KSHV from the LEs, we infected cells with KSHV for 

30min, fixed the cells as described above, and sequentially stained with anti-KSHV TRI-1 
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antibodies and goat anti-mouse TRITC antibodies prior to examining under a fluorescent 

microscope. 
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FIGURE LEGENDS 

Figure 1. Effect of anti-integrin antibodies and soluble α9β1 on KSHV infection (A, B) and 

internalization (C, D).  (A, C) Monolayers of HFF cells were incubated with antibodies to α9, 

β1, α5, or a pre-immune IgG for 1h at 4°C prior to infection with KSHV (MOI of 5 DNA 

copies/cell).  In another set of experiments (B, D), KSHV was mixed with increasing 

concentrations (0, 0.1, 1, 10µg/ml) of soluble α9β1, heparin, or BSA for 1h at 4°C prior to being 

added to cells.  (A, B) At 2h PI, cells were washed, lysed, RNA extracted, cDNA synthesized, and 

the expression of orf50 was monitored by qRT-PCR using specific primers.  (C, D) At 10min PI, 

cells were lysed and the genomic DNA extracted.  To quantitate internalized viral DNA, KSHV 

orf50 copy numbers were monitored by performing qPCR.  The data are presented as percentages 

of inhibition of KSHV infection (A, B) or viral DNA internalization (C, D).  Data represent the 

average ± SD (error bars) of three experiments. 

 

Figure 2.  Antibodies to integrin α9 inhibit KSHV infection of CHO-α9 cells, but not 

internalization.  (A) Flow cytometry analysis of the surface expression of a9 integrin subunit in 

CHO and CHO-α9 cells was performed following staining with integrin a9 (H-198) rabbit 

polyclonal antibody and subsequent incubation with goat anti-rabbit FITC.  The average 

percentage of cells positive for a9 expression from three independent experiments is shown above 

the marker in the representative histogram plots.  (B) Cell surface expression of α9β1 integrin 

in CHO-α9 and HFF cells.  Integrin α9β1 was immunoprecipitated from cell lysates of surface 

biotinylated HFF and CHO-α9 cells with integrin a9 (H-198) rabbit polyclonal antibody and 

Protein A-Sepharose beads.  Precipitated protein samples were resolved on a 10% SDS-PAGE gel 

and Western blotted.  The biotinylated proteins were detected by horseradish peroxidase-
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conjugated streptavidin and chemiluminescence.  (C,D) Monolayers of CHO and CHO-α9 cells 

were untreated or incubated with antibodies to α9 or α5 for 1h at 4°C prior to infection with KSHV 

(MOI of 5 DNA copies/cell).  (C) At 2h PI, cells were washed, lysed, RNA extracted, cDNA 

synthesized, and the expression of orf50 was monitored by qRT-PCR using specific primers.  (D) 

At 10min PI, cells were lysed and the genomic DNA extracted.  To quantitate internalized viral 

DNA, KSHV orf50 copy numbers were monitored by performing qPCR.  The data are presented 

as percentages of KSHV infection (C) or internalization (D).  Data represent the average ± SD 

(error bars) of three experiments. 

   

 

Figure 3. Schematic representation of the sucrose flotation assay for endosome purification.  

This study used uninfected and KSHV (MOI of 5 DNA copies/cell) infected HFF cells. 

 

Figure 4.  Detection of KSHV in endosomal fractions.  (A) Distribution of endosomal 

membranes was determined from uninfected and KSHV infected HFF cells using sucrose 

gradient fractions.  Equal-volume aliquots from each gradient fraction were separated by SDS-

PAGE and probed by Western blotting against organelle markers:  Rab5 (EE marker) and Rab7 

(LE marker).  (B) Lysosome detection in sucrose gradient fractions of uninfected and KSHV 

infected HFF cells.  Acid phosphatase activity was analyzed by using Acid Phosphatase Assay 

Kit (Sigma).  (C) KSHV escapes from the LE.  Following gradient centrifugation, viral 

genomic DNA was extracted from each recovered fraction.  Fractions were then quantified for 

the content of internalized viral DNA by performing qPCR using specific primers.  Data (panels 
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B, C) represent the average ± SD (error bars) of three experiments.  Columns with different 

alphabets indicate statistical significance (P ˂ 0.05) by Least Significant Difference (LSD).  

 

Figure 5.  Confirming the presence of KSHV in sucrose gradient fractions at different early 

time points.  Fractions (5µg protein) collected at different early time points (1, 5, or 15min) 

during the course of infection were resolved by SDS-PAGE followed by Western blot analysis 

with anti-KSHV TRI-1antibodies. 

 

Figure 6.  Antibodies to integrin α9β1 inhibit KSHV escape from the late endosome.  (A) 

KSHV is present in Rab5-positive EEs and Rab7-positive LEs.  HFF cells were either uninfected 

or pre-treated (1h at 37°C) with antibodies (20µg/ml) to α9β1 or pre-immune IgG prior to 

infection with FITC-KSHV for 1min (A) and 15min (B) at 37°C.  Cells were washed, fixed, and 

subsequently immunostained with TRITC labeled anti-Rab5 antibodies (A) and TRITC labeled 

anti-Rab7 antibodies (B) prior to mounting using an anti-fade reagent containing DAPI and 

examining under a fluorescent microscope.  Representative images are provided at 1,000x 

magnification.  The white circles indicate co-localization of FITC-KSHV with the respective 

endosome marker within the cell (panels A and B). 

 

Figure 7.  Antibodies against α9 and β1 integrin subunits block KSHV nucleocapsid 

trafficking to the perinuclear region by 30min PI.  HFF cells were untreated or pre-treated (1h 

at 37°C) with antibodies (20µg/ml) to α9, β1, α5 or a pre-immune IgG prior to infection with 

KSHV for 30min at 37°C.  Cells were washed, fixed, and subsequently immunostained for TRI-1 
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minor capsid protein.  Representative fluorescence imaging depicting TRI-1 positive viral 

capsids in infected HFF cells are shown.  Mag: 1,000x. 
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SUMMARY 

To date, many aspects of the intricate KSHV entry process are still enigmatic.  Like other viruses, 

KSHV has evolved to utilize combinations of host cell receptor molecules for the infection of 

target cells.  KSHV is the first herpesvirus identified to functionally interact with adherent target 

cell integrins.  KSHV gB is the only gB homolog possessing the most common integrin binding 

domain, RGD.  KSHV envelope associated gB interacts with RGD-binding α3β1, αVβ3, and αVβ5 

integrins for the initiation of virus entry processes.  Apart from RGD, KSHV gB also harbors the 

less common integrin recognition motif, DLD (Summary Figure).  Though DLD is highly 

conserved among herpesviruses, its role in virus entry has been majorly unexplored outside of 

HCMV.  Thus, initially seeking to determine a role for DLD of KSHV gB, we hypothesized that 

this lesser studied integrin binding domain would also play a critical role in KSHV entry and 

subsequent infection of cells (Chapter 2). 

In the first study (Chapter 2) phage display peptide library screening identified integrin 

α9 as a plausible receptor for DLD of KSHV gB; non-RGD binding integrin α9 forms a 

heterodimer with the β1 subunit to yield α9β1.  Binding specificity was confirmed between DLD 

of KSHV gB and integrin α9β1 using soluble proteins.  Inhibition of the DLD:α9β1 interactions 

significantly lowered wild type KSHV infection of HFF and HMVEC-d cells (cells express 

integrin α9β1 on their surfaces) versus 293 cells which do not express α9β1.  The physiological 

relevance of the interaction was explored by performing infection assays using a recombinant virus 

lacking a functional DLD (BAC36ΔD-KSHV).  Recombinant viruses were constructed via use of 

a BAC system harboring the KSHV genome, BAC36.  BAC36ΔD-KSHV infection rates were 

significantly lower in HFF and HMVEC-d cells compared to the comparable infection rates 

observed in BAC36.T-KSHV (containing an intact DLD sequence and an introduced tetracycline 
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cassette) and wild type BAC36-KSHV infected cells.  These findings provided substantial proof 

that interactions between DLD of KSHV gB and α9β1 play an important role in virus infection of 

cells independent of RGD (Summary Figure).   

 As a continuation of this work, our next study further investigated a role for DLD-binding 

α9β1 during the initial stages of KSHV infection (Chapter 3).  Integrins are known to alter various 

stages of virus entry, but there has been very little analysis of the role of DLD-binding integrins 

during early KSHV infection.  Both antibodies against the α9 and β1 integrin subunits as well as 

soluble α9β1 inhibited KSHV infection of HFF cells but failed to inhibit virus uptake.  These 

findings were reproduced in CHO cells that are α9 integrin deficient and non-permissive to KSHV 

infection.  CHO cells stably transfected to express human α9 (CHO-α9) were permissive to 

infection compared to CHO cells.  As in HFF cells, antibodies against the α9 integrin subunit 

inhibited KSHV infection of CHO-α9 cells but not internalization.  Such findings alluded to a 

possible role for α9β1 at an entry step beyond KSHV internalization.   

For entry into target cells, KSHV is known to utilize the endocytic pathway (Summary 

Figure).  Unconventionally, we used subcellular fractionation via sucrose density gradient 

centrifugation to isolate intact endosomes from uninfected and KSHV infected HFF cells; 

endocytosed cargo is typically first delivered to endosomes.  Upon confirming gradient fractions 

containing early and late endosomes, we were able to track KSHV in infected HFF cells for 

characterization of possible post-internalization roles for α9β1.  Virus particles in endosomes were 

monitored at early time points.  By 15min PI, significantly more KSHV was present in EE fractions 

versus fractions containing LEs; this decline in late endosomal levels of KSHV was blocked in the 

presence of soluble α9β1.   
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Immunofluorescence microscopy provided confirmation of α9β1 integrin’s role in late 

endosomal escape of the KSHV capsid into the cytoplasm.  By 30min PI of HFF cells, an 

accumulation of KSHV was observed at the perinuclear region.  However, treatment of HFF cells 

with antibodies blocked KSHV nucleocapsid trafficking by preventing the escape of KSHV from 

LEs.  In all, such findings confirm a role for DLD-binding α9β1 in mediating a late endosomal 

escape of KSHV into the cytosol for subsequent infection (Summary Figure). 

Entry processes are commonly analyzed by monitoring internalized virus particles via 

inhibitor-based infection assays, Western blotting, polymerase chain reaction, and imaging 

techniques that allow scientists to track their intracellular location.  To study intracellular 

trafficking of a virus via endosomes, it is imperative to use an approach that will allow us to 

specifically isolate intact early and late endosomes.  Accordingly, we standardized a subcellular 

fractionation method in our laboratory (Chapter 3).  Subcellular fractionation aids in specifically 

isolating virus containing early and late endosomes by performing a series of centrifugation steps.  

In the future, employing such an assay will be a boon to characterize the manner by which KSHV 

traverses via endosomes to successively establish infection.  The future studies will focus on the 

following: 

(i) What is the role for α9β1 integrin in endosome trafficking? 

(ii) What happens to the virus as it is being trafficked within the endosomes? 

(iii) What is effect of acidic pH and protease activity on KSHV envelope gB within the 

endosomes, and how do they promote a successful infection? 
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SUMMARY FIGURE 
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Summary Figure:  Role of RGD and DLD binding integrins in KSHV biology.  KSHV gB possesses two integrin 

recognition motifs: RGD and DLD.  RGD interacts with α3β1, αVβ3, and αVβ5 integrins to initiate entry processes.  

DLD of KSHV gB interacts with integrin α9β1 in an interaction critical for entry and subsequent infection.  Post-

internalization, KSHV:α9β1 interactions play a role in virus trafficking via endosomes for eventual escape into the 

cytoplasm.  The portion of this figure depicting conservation of the gB DLD was derived from (Feire et al., 2004).  

TM: transmembrane region; C: carboxyl domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

CHAPTER 4:  ADDITIONAL DATA 

REACTIVATION OF VIRUSES IN RENAL TRANSPLANT RECIPIENTS 

ABSTRACT 

Objective:  Post-transplantation immunosuppression renders transplant recipients vulnerable to 

reactivation of opportunistic viral infections.  Unfortunately, immunosuppression cannot be 

avoided as it is a preventative measure to combat allograft damage.  Several viruses are said to be 

a threat in renal transplant patients and they include Kaposi’s sarcoma-associated herpesvirus 

(KSHV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), BK virus (BKV), and JC virus 

(JCV).  Therefore, we attempted to establish a direct correlation between immunosuppression in 

renal transplantation to viral lytic replication.  Methods:  A cohort of 10 renal transplantation 

patients receiving a combination of immunosuppressive and an anti-viral drugs were categorized 

into two groups (n=5) based on their prior CMV sero-status.  Each study patient provided pre- (day 

0) and post-transplantation (days 45 and 90) blood (8ml) and urine samples (5ml) for analysis.  

Peripheral blood mononuclear cells (PBMCs) separated from whole blood samples were 

quantitatively monitored (via qRT-PCR) for the expression of KSHV, CMV, and EBV transcripts.  

BKV and JCV DNA levels in urine were also quantitatively monitored (via qPCR).  Conclusions:  

There was no significant KSHV, CMV, or EBV reactivation in any of the study patients.  There 

was reactivation of BKV and JCV in the renal transplant patients but no immediate pathologies 

were associated with it.  We believe that the administered treatment regimen that included a 

cocktail of immunosuppression, anti-inflammatory, and anti-viral drugs is effective within the 

early months post-transplantation.   
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INTRODUCTION 

Throughout the years, commendable advancements have been made to improve renal 

transplantation, as it is now the go-to therapeutic method for survivability and improving quality 

of life in those battling end-stage renal disease (ESRD) (Abecassis et al., 2008).  However, 

successful renal transplantations are not without grave risks.  Unfortunately, viral, non-viral, and 

co-infections as well as allograft dysfunction/failure raise great concern post-solid organ 

transplantation (Cukuranovic et al., 2012).  Contributing to the severe morbidity and mortality risk 

(Weikert & Blumberg, 2008), viruses are among the most common post-transplant infections 

(Snyder et al., 2009).  Some of the typical viral pathogens affecting renal transplant recipients 

include:  Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus-8/HHV-8), 

cytomegalovirus (CMV; human herpesvirus-5/HHV-5), Epstein-Barr virus (EBV; human 

herpesvirus-4/ HHV-4), and urine shedded polyomaviruses, BK virus (BKV) and JC virus 

(JCV/John Cunningham virus) (Kotton & Fishman, 2005).  Incidentally, CMV is considered the 

most common opportunistic pathogen afflicting renal transplant and other allograft recipients 

(Karuthu & Blumberg, 2012; Weikert & Blumberg, 2008).   

 After an allotransplant, patients receive a cocktail of both immunosuppressive and anti-

viral drugs.  Immunosuppressant therapies are vital for preventing immunological damage to and 

rejection of the transplanted kidney, but on the other hand, these drugs promote reactivation of 

latent viral infection (Cukuranovic et al., 2012; Ketteler et al., 2003) which prompts the need for 

antivirals.  This dual treatment approach is not infallible, however.  For instance, viruses can 

develop resistance to anti-viral drugs (Biron, 2006; Einollahi, 2007).  Also, immunosuppressive 

therapy is deemed a potential risk factor for the onset of polyomavirus-associated nephropathy 

(PVAN) for which there is a void of established polyomavirus-specific anti-viral drugs (Wiseman, 
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2009) and the suggested treatment is immunosuppression reduction (Garces, 2010).  Thus, a 

conundrum ensues. 

 For those who are recipients of an allograft, viral infections result majorly from reactivation 

of preexisting latent (i.e. dormant; (Weinberger & Weinberger, 2013)) infections in the host or the 

graft itself (Cukuranovic et al., 2012; Jenkins et al., 2003; Kotton & Fishman, 2005; Weikert & 

Blumberg, 2008).  With the ability to establish latent and/or persistent infections, herpesviruses 

and polyomaviruses generate much concern post-transplantation, as reactivation is frequently 

observed among immunosuppressed transplant recipients (Ling et al., 2003; Tanenbaum et al., 

2007).  Reactivation is the poorly understood molecular mechanism wherein a virus in latent phase 

of the complicated replication process shifts to the productive (lytic) phase of replication—a state 

of full viral gene expression with the production of infectious progeny (Speck & Ganem, 2010)—

allowing cell-to-cell spread (Traylen et al., 2011).   

 In this report, we conducted an in vivo pilot study in which a cohort of ten renal transplant 

recipients receiving treatment (immunosuppressant, anti-inflammatory, and anti-viral drugs) 

functioned as a means to analyze a correlation between immune suppression and virus reactivation.  

Over the course of this three-month study, pre- and post-transplantation blood or urine samples 

collected from enrolled study patients were quantitatively analyzed for reactivation of KSHV, 

CMV, EBV, BKV, and JCV.  Results from our study demonstrate that the treatment strategy being 

followed at the Brody School of Medicine (East Carolina University, Greenville, NC) is effective 

in preventing reactivation of herpesviruses in renal transplant patients but not polyomaviruses. 
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METHODS 

Study patients.  A total of ten English speaking Vidant Medical Center (Greenville, NC) renal 

transplant patients above the age of 18 years and not considered high risk for acute allograft 

rejection were studied.  All participants provided written consent for inclusion into the study prior 

to their transplantation, and the study was approved by East Carolina University’s University and 

Medical Center Institutional Review Board (UMCIRB).  Samples collected by clinical study team 

members on days 0 (pre-transplantation/check-in day for renal transplantation), 45, and 90 (post-

transplantation/days of routine follow-up doctor’s visits) included:  blood (8ml) and urine (5ml).  

Donor:recipient history with respect to prior CMV exposure was taken under consideration, and 

the ten total participants were divided categorically into two groups (n=5): CMV-seropositive 

donor/CMV-seropositive recipient (D+/R+) and CMV-seropositive donor/CMV-seronegative 

recipient (D+/R-).  All study patients were treated with a combination of tacrolimus and 

mycophenolate immunosuppressant drugs, along with the anti-inflammatory steroid, prednisone.  

They were also administered the anti-viral drug, valganciclovir to treat CMV infections.  

 

Isolation of peripheral blood mononuclear cells (PBMCs).  PBMC isolation from collected 

whole blood samples was performed by Ficoll-Paque PREMIUM (GE healthcare, Piscataway, NJ) 

density-gradient centrifugation as per earlier studies (Fidan et al., 2014).  Post-centrifugation, 

buffy coats (the fraction of anti-coagulated blood that contains most of the white blood cells and 

platelets) were collected, washed thrice in phosphate-buffered saline (PBS), and resuspended at a 

concentration of 2 X 106 cells/ml.  All study participants’ blood samples (8ml) from days 0, 45, 

and 90 were processed within 1-2h post-collection to obtain PBMCs.   
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qRT-PCR.  As per standard laboratory protocols, RNA was extracted from 2 X 106 PBMCs, 

cDNA synthesized, and qRT-PCR was conducted (Dyson et al., 2010) to monitor the expression 

of viral transcripts using primers specific to KSHV, CMV, and EBV (Table 1).  Serial dilutions of 

each plasmid control containing PCR products amplified by the respective primer set (Table 1) 

were tested, and standard curves were constructed from the Ct values.  The number of viral copies 

were calculated from these standard curves (values were normalized against β-actin controls) and 

expressed as copies/ml.  The lowest limit of detection for the standards was 6-60 gene copies 

(Dyson et al., 2010). 

 

DNA preparation and qPCR monitoring reactivation of BKV and JCV.  The extraction of 

genomic DNA from urine was performed as previously described (Bergallo et al., 2006) using the 

phenol/chloroform/iso-amyl method.  DNA was precipitated using 3M sodium acetate (1/10 

volume; pH 5) and isopropanol, pelleted, washed with 70% ethanol, and following centrifugation 

(room temperature for 2min at 13,000rpm), the pellet was air-dried and rehydrated with 20µl TE 

buffer (10mM TrisCl, 1mM EDTA pH 8). 

 Per standard protocols (Grange et al., 2012), genomic DNA was used to quantify viral 

DNA in a real-time PCR (qPCR) assay using previously validated primer sets for BKV and JCV 

(Table 1).  Plasmid DNA containing BKV or JCV genomes served to generate standard curves 

against which samples were analysed.  The standard graph was plotted using Ct values which are 

critical to calculating the relative copy numbers of viral DNA in the samples.  All qPCR results 

were calculated as copies/ml, and the detection cut-off of the assay was 1 X 107 copies/ml in urine. 
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RESULTS AND DISCUSSION 

I.  Reactivation of herpesviruses post-renal transplantation. 

Though the mechanism supporting virus reactivation is fairly enigmatic, the potential for virus 

reactivation from latency is significantly enhanced during a state of immunosuppression (Gill et 

al., 2014) (i.e. during renal transplantation).  A 2001 study by Andreoni et al. concluded that the 

level of KSHV reactivation among renal transplant recipients—presumably due to drug-induced 

immunosuppression—resulted in increased incidence of Kaposi’s sarcoma (KS) (Andreoni et al., 

2001), a malignancy caused by KSHV (Moore & Chang, 1995).  Maximum immunosuppression 

is believed to occur within the first three months post-transplantation (Cukuranovic et al., 2012; 

Weikert & Blumberg, 2008), the exact time frame after transplantation in which there is maximal 

disease incidence (Manz et al., 2001).  For instance, EBV reactivation/infection is commonly 

observed between months two and three post-transplantation (Allen & Preiksaitis, 2013).  

Befittingly, in this three month prospective study, herpesvirus (KSHV, CMV, and EBV) 

reactivation was initially monitored in all ten, presumably immunocompromised, renal transplant 

recipients (two patient groups; n=5: D+/R+ and D+/R-).   

 Specifically, PBMCs (comprised of blood cells that regulate the immune system; 

(Koncarevic et al., 2014) separated from the blood samples (8mL) of each study participant pre- 

(day 0) and post-transplantation (days 45 and 90) were quantitatively monitored for the expression 

of viral transcripts (via qRT-PCR) using published primer sets for KSHV, CMV, and EBV (Table 

1).  In all of the allograft recipients (100% of patients from the D+/R+ and D+/R- groups), 

herpesviruses were present at undetectable levels (on days 0, 45, and 90), as neither KSHV, CMV, 

nor EBV lytic replication occurred within the time span of this study.  
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It is likely that the observed negligible herpesviral loads in all members of our study cohort 

are a result of an effectively adapted treatment regimen that includes anti-viral and anti-

inflammatory drugs in addition to the administered immunosuppressant drugs.  In terms of CMV 

for instance, studies have reported that during the period in which antivirals are being 

administered, the incidence of post-transplantation CMV infection and related complications is 

reduced—in the absence of drug toxicity and/or viral resistance.  This reduction in CMV incidence 

was observed despite the fact that the serologically mismatched D+/R- demographic is considered 

high risk for CMV disease (Liu et al., 2013; Singh, 2005).  According to some reports, 

valganciclovir used for CMV prophylaxis can reduce the incidence of non-CMV herpesvirus 

infections, as well (Razonable et al., 2005).  Work by Casper et al. involving KSHV positive 

patients, demonstrated valganciclovir to effectively reduce KSHV replication, in vivo (Casper et 

al., 2008).  Similarly, valganciclovir has been shown to control EBV replication in CMV D+/R- 

solid organ transplant recipients (Razonable et al., 2005). 

  

II.  Incidence of polyomaviruses post-renal transplantation. 

After primary infection, both BK and JC polyomaviruses persist latently within the reno-urinary 

tract (Behzad-Behbahani et al., 2004; Costa & Cavallo, 2012), and although asymptomatic viruria 

may occur as a response to reactivation in ‘normal’ individuals, it is known to precede PVAN in 

renal transplant patients (Bohl & Brennan, 2007; Costa & Cavallo, 2012).  BKV is considered the 

primary causative agent for PVAN (Hirsch & Randhawa, 2013) which causes kidney graft 

dysfunction in 60-90% of affected patients and premature allograft loss in approximately 50% of 

cases (Acott, 2013).  Notably, JCV, the etiological agent of progressive multifocal 

leukoencephalopathy (PML), is estimated to contribute to about 5% of PVAN incidents (Costa & 
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Cavallo, 2012).  Previous studies have considered the ability to quantify viral load in urine (via 

qPCR) an advantageous means for early detection of polyomavirus reactivation prior to the 

occurrence of tissue damage (Marinic et al., 2014), as significant and persisting viruria poses a 

cause for concern given the typical clinical progression from viruria to viremia and later PVAN 

(Costa & Cavallo, 2012). 

 In this study, to initially evaluate reactivation of BKV and/or JCV in our cohort of ten total 

renal transplant recipients, BK and JC viruria was quantitatively investigated pre- (day 0) and post-

transplantation (days 45 and 90) via qPCR using appropriate primer sets (Table 1).  On day 0, 

100% of the renal transplantation study participants from both the D+/R+ and D+/R- groups were 

negative for BK and JC viruria (two patients from both the D+/R+ and D+/R- groups were unable 

to provide a day 0 urine sample).  Interestingly, seemingly sudden polyomavirus reactivation 

occurred on day 45.  Though no D+/R+ group patients (day 45) were positive for BK viruria, four 

out of five kidney graft recipients from this group were positive for JC viruria.  In the D+/R- group 

(day 45), one patient was positive for BK viruria, and two were positive for JC viruria (one patient 

from the D+/R- group was unable to provide a day 45 urine sample).  On day 90, there was again 

no apparent BK viral shedding among the D+/R+ patients.  However, in terms of JC viral shedding, 

by day 90, only one patient from this group (D+/R+) exhibited JC viruria (one patient from the 

D+/R+ group was unable to provide a day 90 urine sample).  In the D+/R- group (day 90), BK 

viruria was apparent in one patient, as was JC viruria (one patient from this group was unable to 

provide a day 90 urine sample).  Taken together, qPCR results revealed a sudden onset in the 

reactivation of both these polyomaviruses with a gradual decline in the occurrence of urinary BKV 

and JCV shedding.   
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In the case of our experimentation, one patient (from the D+/R- group; day 45) presented 

a urine BK viral load at approximately 103 copies/mL which was the highest number of 

polyomavirus copies observed throughout the study among all 10 participants.  However, because 

the observed urinary BK viral load was under 107 copies/mL (the urine DNA level deemed 

significant and potentially predictive of a high risk for PVAN development; (Randhawa et al., 

2004; Saundh et al., 2010; Tremolada et al., 2010; Varella et al., 2014)), there is no immediate 

cause for concern; unfortunately, this particular patient was unable to provide day 0 and 90 urine 

samples for further evaluation. 

Perhaps the observed BKV and JCV replication was due to fluctuations in immune status; 

reportedly, within the first three months following transplantation (i.e. during the time of 

maximum immune suppression), kidney graft recipients are prone to polyomavirus reactivation 

(Vilchez & Kusne, 2006).  Notably, despite the observed polyomavirus shedding on day 45 and to 

a lesser degree, day 90, there has been no indication of adverse effects in any of our pilot study 

participants.  Likewise, donor:recipient CMV status did not appear to make a noticeable difference 

in regards to lytic polyomavirus replication, and with such a small sample cohort for this pilot 

study, the possibility of drawing any statistical conclusions from our results was ruled out.  

Furthermore, due to predominantly minimal and unsustained polyomaviruria among our renal 

transplant patient cohort, the analysis of cell surface receptors—associated with BKV and JCV 

entry and infection—was again waived. 

 

CONCLUDING REMARKS 

(i) BK and JC virus reactivation was observed with no immediately associated pathologies. 
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(ii) The currently adapted treatment regimen significantly limits herpesvirus reactivation within 

the first three months post-renal transplantation.   

(iii) Renal transplant recipients do not serve as an adequate model to study herpesvirus 

reactivation. 
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Table 1.  List of primers. 

Primer Sequence Reference 

ORF50P8.ChIP.OD(F) CTA CCG GCG ACT CAT TAA GC (Dyson et al., 2010) 

ORF50P8.ChIP.OD(R)  GTG GCT GCC TGG ACA GTA TT 

qCMV.gB.F ACG ACC CGT GGT CAT CTT TA (Habbal et al., 2009) 

qCMV.gB.R GCG GTG GTT GCC CAA CAG GA 

qEBV.BALF5.F CGG AAG CCC TCT GGA CTT C (Fadavi, 2013) 

qEBV.BALF5.R CCC TGT TTA TCC GAT GGA ATG 

BKV2.1.F GCA GCT CCC AAA AAG CCA AA (Randhawa et al., 2004) 

BKV2.1.R CTG GGT TTAGGA AGC ATT CTA 

JC-F1 GAA GAA CCC AAA AAC TAT TTG TTG AAA (Holman et al., 2003) 

JC-R1 GCC TAA CTG GAG ACA ATC TAG AAT AAT AGT C 

 

 

Table 2.  Urinary viral loads. 

 

 

 

 
Table 2: Urinary viral loads

Day 0 Day 45 Day 90 Day 0 Day 45 Day 90

D+/R+ 1 *No urine output *No urine output 12.0

D+/R+ 2

D+/R+ 3 *No urine output 9.0 *No urine output

D+/R+ 4 19.0

D+/R+ 5 *No urine output *No urine output 516.0 32.0

D+/R- 1

D+/R- 2 85.0 10.0

D+/R- 3 *No urine output *No urine output *No urine output *No urine output

D+/R- 4 314.0

D+/R- 5 *No urine output 1206.0 *No urine output *No urine output 6.0 *No urine output

*No urine output = no sample processed

denotes viruria negative sample

Renal Transplant                               

Study Patients 

BKV Copies (copies/mL) JCV Copies (copies/mL)
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APPENDIX A: SUPPLEMENTARY DATA FROM CHAPTERS 2  

 

METHODS 

Cells.  Human foreskin fibroblasts (HFF) and 293 cells were propagated in Dulbecco modified 

Eagle medium (DMEM) while, human vascular endothelial cells-dermal (HMVEC-Ds, CC-2543; 

Clonetics) were propagated in EGM MV-microvascular endothelial cell medium (Clonetics) 

(Akula et al., 2005).  Spodoptera frugiperda ovarian cells (Sf9) were routinely cultured in TNM-

FH insect medium (BD Biosciences/PharMingen, San Diego, CA).  For studies involving 

expression and purification of soluble gB proteins, cells were cultured in Gibco® Sf-900™ III 

SFM (Invitrogen, Carlsbad, CA). 

 

Proteins.  Heparan sulfate (HS), chondroitin sulfate A (CSA), chondroitin sulfate B (CSB) (Sigma, 

St. Louis, MO), human recombinant vascular endothelial growth factor (VEGF) (Calbiochem; 

EMD, Darmstadt, Germany), recombinant human tenascin C (R & D Systems, Inc., Minneapolis, 

MN), human laminin (Sigma), recombinant human integrin α9β1, αVβ3 (R & D Systems, Inc.) 

and α5β1 for functional studies (Millipore) were used in various molecular biology and enzyme-

linked immunosorbent assays (ELISAs)/binding assays performed in this study.   

 

Peptides.  Peptide sequence (geeasgpksvdfyqfRVCSASITGELFRFNLEQTCpdtkdkyhqegillv; 

DLD sequence is bolded) flanking the DLD in KSHV encoded gB protein (gBDLD); phage 

carrying peptides, PKADGRV, DCKPKPDGRLRD, PKADGHV; and a scrambled peptide 

sequence of GPDRVKA was synthesized at Pi Proteomics, LLC (Huntsville, AL).  The gBDLD 

peptide was used in the screening of phage display peptide libraries and ELISA.  GRGDSP and 

KQAGDV peptides from Sigma (St. Louis, MO) were also used in ELISAs.   
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Cloning and expression of recombinant gBΔTMΔD.  His-tagged, recombinant, and soluble 

KSHV gBΔTM (2106bp; encoding amino acids 1-702 lacking the transmembrane and cytoplasmic 

domains) was expressed and purified from Sf9 cells as per earlier studies (Dyson et al., 2010; 

Wang et al., 2003).  The gBΔTM lacking the DLD (gBΔTMΔD) mutant was generated by mutating 

four of the existing DLD amino acids 

(geeasgpksvdfyqfRVCSASITGELFRFNLEQTCpdtkdkyhqegillv; DLD sequence is in bold) of 

KSHV gB to alanine (GCG) (geeasgpksvdfyqfRVCSASITGEAAAANLEQTCpdtkdkyhqegillv; 

alanine point mutations are bolded) (Fig. 1).  The point mutations within the DLD sequence of 

KSHV gB were achieved by using the gBΔTM/pCDNA3.1(+) plasmid as the dsDNA template and 

appropriate primers: DLD-M2 forward (5’-

TCGATCACCGGGGAGGCGGCGGCGGCGAACCTGGAGCAGACG-3’; bolded region 

depicts the alanine point mutations to DLD, coding strand) and DLD-M2 reverse (5’-

CGTCTGCTCCAGGTTCGCCGCCGCCGCCTCCCCGGTGATCGA-3’; bolded region depicts 

the alanine point mutations to DLD, non-coding strand); along with the QuikChange XL site-

directed mutagenesis kit (Stratagene, La Jolla, CA) as per the manufacturer’s recommendations to 

yield the gBΔTMΔDLD.M2/pCDNA3.1(+).  To develop His-tagged (at the carboxy-terminal) 

gBΔTMΔD, the gBΔTMΔDLD.M2/ pCDNA3.1(+) plasmid was amplified using primers: 

pHHV8gB(F):  5’-AGTGAGGATCCACAATGACTCCCAGG-3’ and ORF8.HIS(R): 5’-

TCCGAATTCTCAATGATGATGATGATGATGGCCACCCAGGTCCGCC 

ACTATCTC-3’.  The amplified gene encoding his-tagged gBΔTMΔD was cloned into the 

pCR®8/GW/TOPO® vector and expressed in a BaculoDirect™ baculovirus expression system 

using Gateway® technology (Invitrogen, Carlsbad, CA) according to the manufacturer's 

instructions.  Recombinant viruses were passaged a minimum of two times before use.  His-tagged 



131 
 

gBΔTMΔD was expressed in Sf9 cells, the supernatant was harvested on the fifth day, and the 

proteins were purified using a column containing nickel-nitrilotriacetic acid (Ni-NTA) agarose 

beads (5 Prime, Inc., Gaithersburg, MD) as per lab procedures.  The protein purity was analyzed 

by Coomassie staining of sodium dodecyl sulfate (SDS)-10% polyacrylamide gel electrophoresis 

(PAGE) gels, and detection following standard Western blotting procedures. 

 

Screening phage display peptide libraries to determine a novel receptor for gB.  We used 

Ph.D phage display libraries (New England Biolabs, Ipswich, MA) to identify novel ligands for 

the DLD in KSHV gB.  The system was constructed based on a M13 bacteriophage vector, in 

which displayed peptides were fused at the N terminus of the minor coat protein pIII.  E. coli 

ER2738 (included in the kit) was used for M13 phage propagation (Li et al., 2011).  Three random 

peptide libraries (New England Biolabs), a linear (X)7, a cyclic Cys (X)7 Cys, and a linear (X)12 

were screened by panning against the gBDLD peptide corresponding to the DLD in gB as per 

recommendations of the manufacturer.  After 5 binding/amplification enrichment cycles, 

individual phage clones were analyzed by ELISA (Myers et al., 2000) on wells containing the 

immobilized peptide representing the DLD in gB or negative wells containing an irrelevant 

peptide.  For clones producing a signal only in receptor-containing wells, the phage DNA were 

sent for sequencing (Laragen, Inc., Culver City, CA).  

Phage carrying peptides containing a majorly conserved sequence were further analyzed to 

determine their ability to bind soluble gB immobilized on 96 well plates.  In brief, aliquots 

containing 2 x 1011 plaque forming units (PFU) were screened against immobilized proteins 

(1µg/ml of gBΔTM and the bovine serum albumin, BSA, as the negative control) as per 

recommendations of the manufacturer.  Unbound phage particles were washed away with TBST 
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(TBS + 0.1% [v/v] Tween-20), and the bound phage were eluted in 100µl volumes and titrated in 

E. coli host strain ER2738. 

 

ELISA.  To characterize the binding interactions between soluble gB and integrin α9, ELISA was 

performed.  Briefly, high-binding 96-well plates were coated with gBΔTM, gBΔTMΔD, or non-

specific controls, BSA or glutathione-S-transferase (GST) in 100mM bicarbonate/carbonate 

coating buffer overnight at 4 ͦC.  Plates were washed five times with 0.1% Tween 20-PBS, blocked 

for 30min with 1% BSA blocking solution containing 0.1% Tween 20, washed five times, and 

incubated at room temperature (RT) for 30min with different concentrations of recombinant 

human integrin α9β1 in PBS.  Plates were again washed five times and incubated at RT for 1h with 

human integrin α9 antibodies, followed by a 1h RT incubation with goat anti-rabbit horseradish 

peroxidase (or goat anti-mouse horseradish peroxidase).  After reaction with 3,3′,5,5′-

Tetramethylbenzidine substrate, the reaction was stopped by 1N HCl and read at 450nm.  For 

further analysis of the gB:α9β1 binding interactions, various competition ELISAs were performed 

using different concentrations of HS, VEGF, tenascin C, and anti-DLD IgGs. 

 

Generating recombinant KSHV.  We generated recombinant KSHV with mutation in the orf8 

gene encoding gB by employing a combination of overlap PCR and site-directed mutagenesis in a 

BAC system.  As schematically shown in Fig. 6A, a three step process was conducted to generate 

the 4005bp target-3 PCR product corresponding to the orf8 gene with flanking sequences.  

Initially, target-1 and -2 were amplified using appropriate primers (Table 1) using Bac36 genome 

(accession number HQ404500.1) as the template.  Overlap PCR was conducted to amplify target-

3 (Fig. 6B) from elution-purified target-1 and target-2 (Fig. 6B) overlapping (17bp overlap) DNA 

fragments using appropriate primers (Table 1).  Gel purified target-3 was cloned into the PCR XL 

(A) 
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TOPO vector (Invitrogen) to yield orfΔ7.8.Δ9/TOPO, for which the correct orientation of the 

target-3 insert was confirmed via restriction mapping.  A schematic flowchart depicting the 

molecular biology process to obtain the recombinant virus is provided in Figure 6C. 

PCR based Site-directed mutagenesis was used to introduce point mutations to the gene 

fragment encoding DLD of gB.  The point mutations within the DLD sequence of KSHV gB were 

achieved by using the orfΔ7.8.Δ9/TOPO plasmid as the dsDNA template as described under 

section titled ‘Cloning and expression of recombinant gBΔTMΔDLD.H’ to yield 

orf8ΔDLD/TOPO. 

For antibiotic selection purposes, PCR was conducted to amply the tetracycline cassette 

region of pEX18TC using Advantage PCR kit (BD Biosciences Clontech).  While amplifying the 

tetracycline cassette (Tet.NdeI), we engineered NdeI restriction enzyme sites on both the 5’ and 3’ 

ends using specific primers (Table 1).  Elution-purified Tet.NdeI was cloned into the pGEM-T 

Easy vector (Promega Inc., Madison, WI).  Blunt end ligation was performed using NdeI 

restriction enzyme digested tetracycline cassette and orf8ΔDLD/TOPO to yield 

orf8ΔDLD.Tetr/TOPO.  Advantage PCR kit was used to amplify the above mentioned 5698bp 

DNA fragment encoding gB with a mutation to the DLD along with the tetracycline cassette and 

the flanking sequences to yield orf8ΔDLD.Tetr  that was used to electroporate. The 5698bp elution 

purified orf8ΔDLD. Tetr PCR product was electroporated at 1.8kV, 200Ω, and 25µF into into E. 

coli DH10B cells harboring the BAC36wt-KSHV and pGET-rec (Narayanan et al., 2009) 

plasmids.  The electroporated cells were suspended in 800µl of LB medium, incubated at 37ºC for 

1h with shaking, and plated onto LB agar plates containing 10µg/ml tetracycline.  After 48h 

incubation at 37ºC, plasmid DNA was extracted via alkaline lysis, colonies were screened for the 

presence of the tetracycline cassette, and further confirmed by sequencing to detect mutation to 
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the sequence encoding DLD of gB.  Our experimentation confirmed BAC36ΔDLD.Tetr 

(clone#3.2) to contain both the mutation to DLD of gB and the correct orientation of the 

tetracycline cassette.  On the same lines, we also generated a BAC36 episome with the correct 

orientation of the tetracycline cassette with no mutations to the orf8 gene that was referred to as 

BAC36.Tetr (clone#7.2).  This was used as a control in all of the experiments involving generation 

of the recombinant virus. To make it easy for labeling purposes, from now on the wild-type, 

BAC36ΔDLD.Tetr (clone#3.2), and BAC36.Tetr (clone#7.2) episomes will be referred to as 

BAC36, BAC36ΔD, and BAC36.T, respectively. Authenticity of the above mentioned cloning was 

confirmed by sequencing and performing PCR (Fig. 7). 

 

Purifying KSHV for infection studies.  Transfection of BAC36, BAC36ΔD, and BAC36.T 

plasmids into 293 cells grown in six-well plates was performed using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA).  After 48h incubation, the cells were treated with TPA for 4 days prior 

to collecting the supernatant and infecting 50% confluent monolayers of 293 cells in a T25 flask.  

These cells were cultured in DMEM supplemented with 10% heat-inactivated FBS, 2mML-

glutamine, streptomycin and penicillin, and 150µg/ml of hygromycin-B for a period of 3-4 weeks 

to select specifically for cells only harboring the BAC episomes. These cells were used to obtain 

BAC36-KSHV, BAC36ΔD-KSHV, BAC36.T-KSHV, respectively, by specifically treating cells 

with 20ng/ml of TPA. At the end of 4 days post infection (PI), the supernatant was collected and 

the virus purified as per earlier studies (Akula et al., 2004). The copy numbers of the purified 

KSHV from different transfected cell types were quantified by performing DNA PCR as per 

standard protocol (Naranatt et al., 2003). 
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Monitoring KSHV infection of cells.  The rKSHV.152 derived from BCBL-1 cells was used in 

most of the infection-based studies.  The copy numbers of rKSHV.152 were determined by 

performing DNA PCR as mentioned above (Naranatt et al., 2003).  To test the effect of antibodies 

to integrins and the DLD peptide on virus infection of target cells, monolayers of cells cultured in 

8-well chamber slides were incubated with different antibodies for 1h at 37°C prior to infection 

with 1 MOI of rKSHV.152 for 2h at 37°C.  In another set of experiments, rKSHV.152 was 

incubated with 1µg/ml of heparin (a positive control) at 37°C for 1h prior to infecting.  At the end 

of 2h incubation with the virus, cells were washed twice with DMEM and further incubated with 

appropriate growth medium for 72h prior to viewing under a fluorescent NIKON microscope.  

Cells expressing GFP were considered to be an indicator of a successful KSHV infection.  The 

number of cells fluorescing green in five random fields using 20X objective within a particular 

well were counted and averaged.  To avoid bias, the counting of green fluorescent cells for each 

experiment was performed by two different individuals and averaged.  The data for plotting the 

graph was obtained from three different experiments.  The above results were also authenticated 

by performing qRT-PCR using specific primers for orf50. 

 

In all other experiments involving the use of BAC36-KSHV, confluent monolayers (70-

80%) of target cells cultured in chamber slides were infected with 0.1 MOI of BAC36-KSHV, 

BAC36ΔD-KSHV, and BAC36.T-KSHV for 2h prior to washing the cells twice with DMEM to 

remove any unabsorbed virus particles followed by further incubation with growth medium. At 

the end of 72hPI, cells fluorescing green due to the expression of GFP was counted under a 

fluorescent microscope as per standard protocols. 
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Supplemental Figure 1 

Effect of RGD peptides and anti-RGDgB-N1 antibodies in blocking αvβ3 integrin interactions 

with gB. 

 

 

 

 

 

 

 

 

 

SFig. 1: (A) Increasing concentrations of GRGDSP and KQAGDV (an irrelevant peptide) were 

incubated with αvβ3 for 30min at room temperature (in an additional step) prior to their addition 

into gBΔTM-coated wells and performing ELISA.  (B) gBΔTM-coated plates were incubated with 

anti-RGDgB-N1, anti-gB-C or pre-immune IgGs prior to incubation with αvβ3 and performing 

ELISA.  The results were read at 450nm (OD 450).  Data presented in both the panels represent 

the average±S.D. (error bars) of three experiments.  Asterisks on the data points denote the value 

to be statistically significant (p˂0.05) by LSD. 
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Supplemental Figure 2 

Expression of integrin α9 on the surface of HFF and HMVEC-d cells. 

 

 

 

 

 

 

 

 

 

 

 

SFig. 2: Surface Immunofluorescence assay (SIFA) was performed on 0.1% paraformaldehyde-

fixed cells (Akula et al., 2001a) that were stained with Integrin α9 (H-198) rabbit polyclonal 

antibodies followed by incubation with goat anti-rabbit FITC, before examining under a 

fluorescent Nikon microscope using appropriate filters.  A representative panel is depicted.  Mag: 

400X. 
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Supplemental Figure 3 

 

SFig. 3: Inhibition of rKSHV.152 infection by different doses of antibodies to α9 is shown.  In all 

of the above experiments, infection was monitored at 72hPI by recording the total number of cells 

expressing GFP under a fluorescent microscope.  Data are presented as percentage of inhibition of 

virus infectivity obtained when the cells were preincubated with DMEM as control.  Data represent 

the average ± SD (error bars) of three experiments.  Columns with different alphabets are 

statistically significant (p<0.05) by LSD. 
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Supplemental Figure 4 

α5β1 integrin does not inhibit rKSHV.152 infection of cells. 

 

 

 

 

 

 

 

 

 

 

SF4: Inhibition of rKSHV.152 infection by different concentrations of α5β1 soluble integrin is 

shown.  Infection was monitored at 72hPI by counting the number of GFP expressing cells under 

a fluorescent microscope indicative of rKSHV.152 infection.  Data are presented as percentage of 

inhibition of virus infectivity obtained when the cells were preincubated with DMEM (minus 

antibodies) as control.  Data represent the average ± SD (error bars) of three experiments. 
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Supplemental Figure 5: 
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SF5: Molecular cloning and mutagenesis involved in derivation of BAC36ΔD and BAC36.T via 

PCR and sequencing.  (A) Plasmids orf8ΔDLD.Tetr/TOPO (clone#3.2) and orfΔ7.8.Δ9.Tetr/TOPO 

(clone#7.2) contain correctly oriented tetracycline cassette.  Prior to electroporation of orf8ΔDLD. 

Tetr or orf8wtDLD.Tetr into E. coli DH10B cells harboring the BAC36wt-KSHV and pGET-rec 

plasmids, the correct orientation (~4235bp and 4958bp) of inserted Tet.NdeI in 

orf8ΔDLD.Tetr/TOPO and orfΔ7.8.Δ9.Tetr/TOPO positive clones was confirmed by restriction 

enzyme digestion using BamHI and NheI as monitored by DNA agarose gel electrophoresis (0.8% 

agarose gel stained by ethidium bromide). (B) PCR using genomic BAC36, BAC36ΔD, and 

BAC36.T DNA templates and specific primers (Tet(F), Tet(R); ORF8.RD(F), ORF8.RD(R); 

ORF8.D(F), ORF8.RD(R); Table 1) confirm presence of the tetracycline gene (~1.7kb; lanes 1 

and 4) in recombinant BAC36ΔD and BAC36.T.  Likewise, orf8 gene presence (1022bp, lanes 2 

and 5; 865bp lanes 3 and 6) was confirmed in BAC36, BAC36ΔD, and BAC36.T.  (C) PCR using 

BAC36, BAC36ΔD, and BAC36.T genomic DNA templates and specific primers (T1(F), T1(R); 

T2(F), T2(R)) confirm the presence of target-1 (2967bp) and target-2 (1055bp) in all three 

recombinant virus constructs. (D) PCR amplification of the target-3 DNA fragment from BAC36, 

BAC36ΔD, and BAC36.T genomic DNA templates using specific primers (T1(F), T2(R)) confirm 

presence of Tet.NdeI cassette in BAC36ΔD and BAC36.T (5698bp) versus BAC36 (4005bp).  (E) 

Sequencing data (gathered via use of appropriate primers: ORF8.RD(F), ORF8.RD(R)) confirm 

presence of specifically introduced alanine point mutations within the DLD sequence of gB in 

BAC36ΔD. 

 



 
 

 

APPENDIX B: SUPPLEMENTARY DATA FROM CHAPTER 3 

 

METHODS 

Reagents.  Ammonium chloride (NH4Cl) was purchased from Sigma, St. Louis, MO; Brefeldin A 

(BFA) was purchased from Alfa Aesar, Ward Hill, MA. 

Monitoring the effects of inhibitors on KSHV infection.  Confluent monolayers of HFF cells 

grown in 6-well plates were incubated at 37°C for 1h with inhibitors diluted in DMEM:  NH4Cl 

(0.1, 1, 10, 50mM); BFA (0.1, 1, 2.5, 5µg/ml).  Post-incubation, cells were infected with KSHV 

in the presence of inhibitors for 2h at 37°C, washed twice with DMEM, and further incubated with 

growth medium at 37°C.  After 24h, cells were lysed, RNA extracted, cDNA synthesized, and the 

expression of orf50 was monitored by qRT-PCR using specific primers (Dyson et al., 2010) as 

previously mentioned. 
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Supplemental Figure 1 

Disruption of ‘normal’ endosome function inhibits KSHV infectious entry into HFF cells. 

 

SF1:  HFF monolayers were incubated with DMEM containing increasing concentrations of 

NH4Cl (A) or BFA (B) for 1h at 37°C.  Cells were then infected with KSHV in the presence of 

inhibitors for 2h at 37°C, washed with DMEM, and further incubated for 24h at 37°C.  Post-

incubation, cells were lysed, RNA extracted, and cDNA synthesized.  The expression of orf50 was 

monitored by qRT-PCR using specific primers.  The data are presented as percentages of inhibition 

of KSHV infection.  Data represent the average ± SD (error bars) of three experiments.
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APPENDIX C: IRB APPROVAL 

 

 



 
 

 

 


