
AN INVESTIGATION OF VELOPHARYNGEAL CLOSURE WITH LINEAR REGRESSION 

by 

Anish Sana 

December, 2015 

Director of Thesis:  Dr. Nasseh Tabrizi 

Major Department:  Computer Science 

Cleft lip and palate is a common birth defect in the United States. Children diagnosed with 

this abnormality face difficulties during feeding, hearing and speech. Surgical methods exist to 

repair the cleft lip and palate but often require subsequent surgeries as children are unable to gain 

full speech capabilities as they tend to develop hypernasal speech due to velopharyngeal 

inadequacy. Investigating velopharyngeal closure can help speech pathologists, surgeons and 

related professionals understand the effect of velopharyngeal anatomy on velopharyngeal 

function. 

In order to accomplish this, several studies have used two dimensional and three 

dimensional modeling to visualize the velum. Very few attempts have been made to track the 

velum and plot its movement against time. Image segmentation has been used widely for various 

purposes. However, its proficiency in tracking the velum is questionable at the moment. Two 

image segmentation methods, EdgeTrak and the Hidden Markov Model, are reviewed in this 

report. EdgeTrak, a software developed at the Video/Image Modeling and Synthesis Laboratory, 

has been proven to track the surface of a human tongue during speech production. An attempt 

was made to similarly track the velum during speech production using EdgeTrak but the results 

were disappointing. Also, synchronized audio mapping using the Hidden Markov Model was only 
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partially successful. This report describes the challenges image segmentation faces with regards 

to tracking the velum.  

To tackle the ineffectiveness of image segmentation for studying the velopharyngeal 

system, this study introduces a novel method to investigate the effects of muscles in the 

velopharyngeal system on closure force using a machine learning algorithm called multiple linear 

regression. Velopharyngeal muscle data from ten adults and ten children was acquired to train the 

algorithm. A mechanical representation of the velopharyngeal system was used to calculate the 

closure force and angle values for the training set which was validated using linearity where 

closure force increases linearly with increase in muscle activation levels. The algorithm was 

programmed in MATLAB which used the training set data to predict closure force values and 

their direction for any set of anatomical parameters. It was observed that the cross sectional area 

of the velum had a major influence on closure force challenging previous claims that the levator 

veli palatini was responsible for this. It was also found that the levator veli palatini muscle had a 

greater influence on closure force direction than other anatomical parameters suggesting that it 

acts a supporting structure. 
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PREFACE 

At a time when majority of advancements in technology are focused on creating gadgets 

that make life easier on a daily basis, I am so grateful to have had the opportunity to use Computer 

Science on a Health Sciences problem. This interdisciplinary research is the product of the 

Department of Computer Science’s collaboration with the Department of Communication 

Sciences and Disorders at East Carolina University. I hope this research work can help health 

professionals and researchers make progress in the treatment of children with cleft lip and palate. 

 



 

CHAPTER 1 – INTRODUCTION 

Cleft Palate is one of the most commonly occurring birth defects. It occurs during 

embryonic development where a fissure is formed in the midline of the palate due to failure of the 

two sides to fuse [1]. Normal velopharyngeal anatomy consists of several muscles which includes 

the levator veli palatini and the velum. These muscles are of particular interest as they aid in 

velopharyngeal closure, which is essential for speech production and swallowing. Velopharyngeal 

closure is achieved by retraction and elevation of the velum due to contraction of the levator veli 

palatini muscle. In children with a cleft palate, the levator veli palatini is attached onto the lateral 

and posterior aspect of the hard palate which leads to several complications such as feeding, 

hearing and speech, among others [2]. Even with corrective surgery to restore anatomy, patients 

are sometimes unable to gain full speech due to velopharyngeal inadequacy which is characterized 

by hypernasality and sometimes require secondary surgery [3]. 

Studies examining the variability in velopharyngeal muscle measures in normal individuals 

[4, 5] did not adequately investigate the effects of this variability on normal and abnormal function. 

The problem with using magnetic resonance images for such studies is that the samples are small 

and homogenous which makes it difficult to establish a connection between variable anatomies 

and their effect on velopharyngeal function. To overcome this problem, quantitative anatomical 

information obtained from magnetic resonance images, velum and skeletal muscle properties were 

integrated into a computational model to investigate the effects of variation in velopharyngeal 

anatomy in normal individuals on velopharyngeal function [6]. 

Although computational modeling was successful in being able to scale studies by 

simulating data despite the unavailability of a patient’s anatomical data, the technology is not 

without its drawbacks. The primary purpose of most studies related to the velum are to help speech 
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pathologists, surgeons, related professionals and researchers make informed decisions. 

Computational modeling software are expensive, and their usage requires a certain level of 

expertise and understanding of mechanics. 

For these reasons, this study used a machine learning algorithm, multiple linear regression, 

which took anatomical velopharyngeal parameters as an input to predict the closure force 

generated and its direction. Normal speech production is attained by velopharyngeal closure which 

may be influenced by specific dimensional features of velopharyngeal anatomy [2, 4]. Closure 

force is defined as the force generated in the velopharyngeal system against the posterior 

pharyngeal wall by retraction and elevation of the velum due to contraction of the levator veli 

palatini muscle. Multiple linear regression was used in this study, a subset of regression analysis, 

where one dependent variable is predicted by multiple independent variables [7]. The advantage 

of this method is that it is entirely data driven. A user wanting to predict the closure force and 

direction has to only enter the velopharyngeal muscle dimensions into the program. 

The information presented in this thesis report is also presented in the papers, “A Review 

of Image Segmentation Techniques for Tracking the Velum” (accepted by the International 

Conference on Computational Science and Computational Intelligence) [8] and “Investigating 

Velopharyngeal Closure Force with Linear Regression” (submitted to the IEEE International 

Conference on Biomedical and Health Informatics) [9]. 

The thesis report will unfold as follows – 

 Chapter 2 will provide the background where the anatomy of the velopharyngeal system, 

its effect on speech production, and relevant studies are explored in detail. 
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 Chapter 3 will explain the ineffectiveness of Image Segmentation for studying the 

velopharyngeal system. 

 Chapter 4 will introduce Linear Regression, the algorithm being used in the study, the 

methodology and the computer program built to accommodate the methodology. 

 Chapter 5 will validate the methodology through the results produced. 

 Chapter 6 will discuss the effect of velopharyngeal anatomy on velopharyngeal function 

through the results found and compare the findings with previous studies. 

 Chapter 7 will include the conclusion and provide recommendations for future work 

 



 

CHAPTER 2 – BACKGROUND 

As explained in [2], the orientation of the velopharyngeal mechanism consists of the 

musculus uvulae that extends from the posterior surface of the hard palate to the posterior 

pharyngeal wall. It also includes the velum, lateral pharyngeal wall and posterior pharyngeal wall. 

The velopharyngeal port is the orifice behind the velum which is the distance the velum and the 

pharyngeal walls must travel to produce speech. The posterior one-third of the velum varies across 

individuals which affects velopharyngeal closure. The function of the velopharyngeal system is to 

separate the oral and nasal cavities by sealing the velum and pharyngeal walls during speech 

production. The oral surface is against the back of the tongue during breathing and elevates to 

contact the pharyngeal wall during speech. Figure 2.1 shows the velopharyngeal mechanism at rest 

and during speech production. 

 

Figure 2.1 – Velopharyngeal mechanism at rest (A) and during speech (B) [2] 

A structure called the Passavant’s ridge exists in some individuals which bulges forward 

during speech. The levator veli palatini muscle causes closure by elevating the velum. It originates 

from the skull to the middle of the velum. The musculus uvulae is situated between the levator veli 
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palatini and originates from the palatal aponeurosis which supports the velum and regulates jaw 

movement. It fills the gap between the velum and the pharyngeal walls to ensure better closure. 

Figure 2.2 shows the internal model of the velopharyngeal mechanism from a lateral and dorsal 

view. 

 

Figure 2.2 – Internal model of the velopharyngeal mechanism [2] 

The tensor veli palatini originates from the scaphoid fossa and lies between the pterygoid 

fossa. It aids in the opening of the Eustachian tube. The superior pharyngeal constrictor muscle 

aids in closure of the velopharyngeal system and also might aid in velar refraction. The 

palatopharyngeus muscle consists of vertical and transverse fibers that aid in lateral pharyngeal 

wall displacement and positioning of the velum. The palatoglossus runs along the lateral margins 

of the velum to the lateral part of the tongue. It aids in lowering the velum, elevating the posterior 

part of the tongue, and constricting the faucial isthmus, thereby allowing a person to swallow 

bolus. The salpingopharyngeus muscle is located along the lateral pharyngeal walls where it can 

produce a superior pull but is usually insignificant. Motor innervations of the velum are caused by 

the trigeminal nerve and the pharyngeal plexus of nerves. Sensory innervations are performed by 

cranial nerves. Muscle spindles act as sensors which detect change in a muscle’s length. Children 
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with a cleft palate have an absent midline tissue where most of the muscles in the velopharyngeal 

system are inserted. Due to the absence of the midline tissue, the levator veli palatini is forced to 

attach itself to the lateral and posterior parts of the hard palate. Also, the musculus uvulae is 

reduced in size, present in a different location or completely absent. Due to these issues, children 

face problems during feeding, hearing and speech. Figure 2.3 shows an unrepaired unilateral cleft 

lip and palate where the levator veli palatini muscle is attached to the hard palate. 

 

Figure 2.3 – Cleft palate [2] 

Several studies have investigated the velopharyngeal system with various techniques. 

Finite Element Modeling predicted realistic geometries of the velum during velopharyngeal 

opening and closing using a two dimensional computational model [10]. The study decided to use 

a two dimensional model instead of a three dimensional one to avoid unnecessary complications. 

Velar dimensions were measured of which the anterior border was fixed and the rest remained 

unrestrained. The model was split into elements such that they were as square as possible which 

helped in numerical stability. Results from a histological study were mapped into the model and 
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the tissue strain and stretch were predicted when stress was applied. The young’s modulus that 

was used for tendinous tissue was lower than what was used in their reference literature in order 

to produce sufficient bending near the anterior boundary. The young’s modulus for some tissues 

were unavailable and hence were hypothesized. Histological studies provided the location for velar 

muscles and the forces from external muscles exerted on the velum. Hooke’s law was avoided due 

to large strains in the system and the Neo-Hookean equation was modified so that the system was 

nearly incompressible instead of being strictly incompressible because velar tissues contain water. 

ABAQUS [11] was used to simulate the finite element model where the initial velum shape, 

equations and external forces were provided as inputs and the deformed velopharyngeal 

configuration was deemed to be the output. The study showed that constriction of the palatoglossus 

muscle caused velopharyngeal opening and the assumption of incompressible tissues warranted 

the use of second order quadratic elements which caused the velar shape to look rugged. Levator 

veli palatini helped in velopharyngeal closure which generated a force of 0.29 N distributed across 

all elements. The palatopharyngeus muscle also aided in velopharyngeal closure producing a force 

of 0.029 N, which is one-tenth of the force generated by the levator veli palatini muscle in all 

instances, even though one does not necessarily cause the other. The distance between the velum 

and the posterior pharyngeal wall decreases linearly with an increase in the velar force 

exponentially. The study also supported a theory that the soft palate continues moving upwards 

along the posterior pharyngeal wall after initial contact. It was also found that a large force from 

the palatoglossus muscle causes the velum to lower further. 

An approach where speech dependent articulatory adjustment for hypernasality based on 

data from electromagnetic articulography was developed to reduce hypernasality [12]. 

Nasalization is the result of air passed out through the naval and oral cavities when the velum is 
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lowered. Nasalization due to velopharyngeal inadequacy is common in patients with a cleft palate. 

Corrective surgery can be used to overcome the cleft palate but speech therapy is required to 

correct the resulting misarticulation. Speech therapy is often based on the perception of the 

therapist but in reality, the treatment needs to be customized which was the aim of this study, 

where the patient can learn techniques to reduce the perception of hypernasality. A pilot study was 

conducted where the participants of the study consisted of speakers and listeners of American 

English with no speech and hearing disabilities. The subjects were asked to sustain a speech sample 

which consisted words of the consonant-vowel-consonant form. The speech samples were used to 

compute acoustic targets, minimize discrepancy, create a voice source and perform a synthesis. 

The speech samples were segmented into vowels, namely – oral, nasal, and nasal with articulatory 

adjustment, to be used as acoustic targets and normalized to eliminate frequency differences 

between speakers. Both speakers and listeners were trained to familiarize themselves with the 

speech quality and their perception of nasality, respectively. It was seen that articulatory 

adjustment caused the vocal tract to expand in various areas. The plotted nasality scores were lower 

than nasal vowels without articulatory adjustment and higher than oral vowels. Excessive 

velopharyngeal opening causes acoustic deviation which is compensated by articulatory 

adjustment along with reduction in perceived nasality. The model only worked for the speaker of 

the speech samples. It needed to be normalized to make it applicable to other speakers. The model 

was modified by conducting two experiments. The first experiment acquired articulatory data and 

audio signals. The second experiment estimated the velopharyngeal opening using the 

hydrokinetic method based on electropathography recordings and aerodynamic speech signals. 

Nasal airflow, intraoral pressure and nasal pressure were measured. The articulatory data was used 

to adapt the vocal tract model for two speakers by aligning and normalizing the coordinate system 
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and adjusting the articulatory parameters. The audio signals and simulated speech were compared 

and any mismatches were adjusted manually which helped in adapting the model for speaker 

variability. Movement ranges of articulators were used to create a speaker dependent articulatory 

space which was used is customizing the model. In experiment 3, participants listened to the 

stimuli after listening to their respective moduli in order to rate nasality using direct magnitude 

estimation. It was found that the first three orthogonal nodes accounted for over 95% variance in 

the nasal oral area functional difference for all vowels and speakers. Vowel types had a significant 

effect on nasality. The mean nasality score of adjusted nasal vowels was found to be lower than 

that of unadjusted nasal vowels and higher than that of oral vowels. The results from the study 

enabled the researcher to make comparisons between oropharyngeal articulations of oral and nasal 

vowels. The correlation between the logarithm of equalized nasality scores and the amplitude of 

coefficients showed a significant correlation between nasality and adjusted nasality. Nasalization 

resulted in oral and nasal articulatory differences. Lowering of the velum influenced nasalized 

vowels. The phonetic event of nasalization included velar lowering and oropharyngeal articulatory 

adjustments which defined the shape of the vocal tract. Patterns of articulatory adjustments and 

movement of articulators in nasalized vowels were in contrast with oral vowels and resulted in 

variations in oropharyngeal articulation. The study suggests that adjustment in oropharyngeal 

articulation can compensate for the effects of velar lowering. The study successfully used a speaker 

adaptive model to perform articulatory adjustment to compensate for the acoustic outcome due to 

excessive velopharyngeal opening. Also, the model was customized with speaker dependent 

features to account for speaker variability. It also caused a reduction in nasality rating which 

suggests that the perception of nasality was reduced. The study will be helpful to train patients 
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with velopharyngeal inadequacy to properly articulate their speech to reduce the perception of 

nasality. 

The Hidden Markov Model was combined with synchronized audio mapping using Mel 

Frequency Cepstral Coefficients to track the velum and pharynx during speech production from 

dynamic magnetic resonance image data [13]. Images were captured at a fast rate while producing 

the word “ansa” which ensured that images of the velum were captured at different positions. A 

metronome beat was used to control the rate of speech. Care was taken to isolate areas with high 

fat concentration and imperfections resulting from the magnetic field in the oropharyngeal region. 

These images were reconstructed ensuring that there was no redundancy and blurring was 

minimized, after which they were aligned with their respective audio. The audio feature extraction 

was performed by importing magnetic resonance images and isolating the audio and images. Noise 

removal, Mel Frequency Cepstral Coefficients and feature discretization was performed on the 

audio. The images were also tagged, normalized and reduced in order to train the hidden markov 

model for prediction. Visual features were extracted using four markers and one stationary pivot 

point. The anterior and posterior pharyngeal wall movement was calculated along the horizontal 

axis. Three hundred sequential images were tagged which showed movement in the X-Y 

coordinate system. The hidden markov model was used to predict velar and pharyngeal wall 

boundaries. The audio features were observations (inputs) to the model whereas video features 

were the hidden states (outputs). MATLAB [14] was used to estimate the hidden markov model 

parameters for each marker. Two hundred audio features’ data sets were used to train the model 

and a hundred samples were used for testing. The most likely sequence of hidden states was then 

predicted. The location and shape of the velum and pharyngeal wall was predicted using 

Accumulative Minimum Distance and Evaluation by Inspection. The former is a mathematical 
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approach which calculates the difference between actual and predicted distance. This proved to be 

inaccurate due to researcher induced errors as the result was equal to or greater than the 

accumulative minimum distance. The study found that fewer hidden states resulted in less residual 

in the prediction result. Also, little movement in the pharyngeal wall results in a smaller error rate. 

A correlation was found between the audio signal amplitude and the error rate, where a higher 

amplitude resulted in a higher residual in the prediction result. Higher velocity in the velum caused 

an increase in error rate during speech production as the velum moved too fast while contacting 

the pharyngeal wall for only a very short duration. Evaluation by inspection was a comparison 

done by the researcher between manual markers and superimposed predicted markers, where the 

acceptance rate was found to be 83%. 

Magnetic resonance imaging has been used extensively in combination with other 

technologies such as Electropalatography to study inter and intra-speaker variabilities in 

articulatory dynamics [15], where it was concluded that magnetic resonance images were useful 

for three dimensional vocal tract modeling and measurements whereas electropalatography 

accounted for speaker variability.  

Magnetic resonance imaging was also combined with Computed Tomography imaging to 

develop a three dimensional linear articulatory model of the velum [16]. An organ based model 

was developed where each organ was modeled separately after which the oral and nasal tracts were 

modeled. Non rigid organs were modeled using the weighted sum of nonlinear components which 

were extracted using principal component analysis and linear regression. The weighted sum 

included articulatory control parameters which defined the shape of organs. The study developed 

a database of shapes and analyses of their corresponding three dimensional coordinates. The 

corpus consisted of artificially sustained articulators with supplementary rest and prephonatory 
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articulators. A computed tomography scan of the head was performed where images were taken at 

rest to locate bony structures. Similarly, magnetic resonance images were obtained while the 

subject sustained articulations which determined soft tissues. Due to the low resolution of images, 

manual extraction of contours was performed. The computed tomography and magnetic resonance 

images were resliced. Bony structures were determined through manual edition of each organ 

plane by plane and expansion of two dimensional contours into a three dimensional coordinate 

system. The three dimensional reference coordinate system was attached to the subject’s skull. 

Computed tomography images were manually aligned which provided six degrees of freedom, 

called three dimensional rototranslation which was performed using MATLAB [14] to account for 

the subject’s head movement while the images were being taken. Similar to the technique used to 

determine bony structures, magnetic resonance images were used to determine soft structures. A 

three dimensional surface mesh was fitted to the elastic deformation of three dimensional shapes 

during articulation which helped in the modeling. The elastic deformation was calculated to create 

a set of soft and hard organ surfaces which were used for articulatory modeling. The study 

established an articulatory model of the velum by applying direct principal component analysis to 

observed velum shapes which extracted articulatory control parameters that determined the 

involvement of the levator veli palatini muscle and closure mechanism of the velum.  

Recent studies have focused on combining magnetic resonance images with three 

dimensional modeling such as studying the velopharyngeal anatomy of infants with and without a 

cleft palate [3], where the project aimed to better understand the velopharyngeal structure by 

combining magnetic resonance imaging and computer imaging technology. A three dimensional 

computer model and animation of the velopharyngeal system was created which could be used by 

a researcher to view the system in all coordinate planes, apply external forces and chart resultant 
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movements. The levator muscle dimensions obtained from quantitative magnetic resonance 

imaging data were used to model the system using a software called Maya [17]. The project 

successfully created a two minute animation of velar movement.  

Several limitations exist in modeling the velopharyngeal system such as modeling soft 

tissue structures based on data gathered from computed tomography scans. These challenges were 

addressed by the use of magnetic resonance imaging and quantitative data [18]. An animated 

model was created to show velar movement at rest and during speech. Using the software Maya 

[17], polygonal structures were used to model the muscles. The quantitative data used consisted of 

static measures and magnetic resonance images that were taken in different planes. Since the 

measurement of the levator muscle was not obtained from dynamic data, linear interpolation was 

used. It was ensured that the model matched the data sets and a skull was fit to outline the model 

and add realism.  

A similar modeling study [19] was conducted to study the velopharyngeal anatomy of 

infants with and without a cleft palate. Magnetic resonance images were taken of all subjects with 

a fully functioning velum and one subject who had hearing loss. Subjects with a cleft palate were 

scheduled to receive corrective surgery. Two dimensional scans were performed in different planes 

at high resolutions and similar consistency. The magnetic resonance images were fed into a three 

dimensional visualization software which ensured that no errors were imported when transferring 

data between programs. The software allowed for segmentation of muscles of interest which were 

imported into Maya [17] preserving their original quality. Less important structures to the 

velopharyngeal system such as the skull were modeled based on magnetic resonance imaging data. 

Computer models were created for all subjects which included after surgery models for subjects 

with a cleft palate. Animations of the surgical procedure were also created and joined together to 
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create an instructional movie before surgery. Several variations were observed by combining 

magnetic resonance images and computer modeling, such as differences in the levator muscle sling 

arrangement, levator fibers’ attachment, velum length, angle of the levator muscle, location of the 

uvula and other minor tissue variations. 

All of the literature mentioned in the chapter have been an improvement over the other in 

a chronological order. The latest techniques have used magnetic resonance images as a staple. 

Therefore, attempts were made to use image segmentation to track the velum, details of which are 

provided in CHAPTER 3.



 

CHAPTER 3 – IMAGE SEGMENTATION 

Image segmentation can be used to detect objects where the goal is to cluster pixels into 

salient image regions using methods such as thresholding, clustering, histogram based, edge 

detection and stereovision based, among others [20]. 

Edge detection is one such method where image segmentation is performed based on the 

discontinuity in images that are spliced when an abrupt change in intensity occurs in the edges of 

an image [21]. Several edge detection techniques are currently in existence but a novel method 

called EdgeTrak was specifically developed by the Video/Image Modeling and Synthesis 

Laboratory to track a human tongue [22]. The method was successful in tracking the human tongue 

due to which, a study was conducted to enquire whether it can be used to track muscles other than 

the tongue, specifically the velum. This proved to be a failure for which the reasons are detailed in 

this chapter. 

Additionally, another study is reviewed in the chapter where image segmentation was 

combined with a machine learning technique called the Hidden Markov Model to track the velum 

[13]. In a hidden markov model, the state at some time encapsulates all information about the 

process in order to predict the future of that process [23]. Using this technique, the study tried to 

map movement in magnetic resonance images with its corresponding audio. A success rate of 81% 

was achieved in predicting velar movement. However, this is insufficient from a clinical standpoint 

as the purpose of tracking the velum is to obtain information on its movement with regards to 

speech that can be used to treat velopharyngeal inadequacy. 
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EdgeTrak was a software developed to automatically track the surface of a human tongue 

in a sequence of ultrasound images which is a challenge due to noise and unrelated high contrast 

edges in ultrasound images. Instead of using only the gradient of images such as the image force, 

EdgeTrak uses edge gradient and intensity information in local regions around snake elements. 

One of the advantages is that EdgeTrak can be used with open contours and track partial tongue 

surfaces whereas others can only be applied to closed contours. Also, any unnecessary edges are 

discarded. The software was successfully able to track the surface of a human tongue in ultrasound 

images as shown in Figure 3.1 [24]. 

 

Figure 3.1 – EdgeTrak tracking the surface of a human tongue [24] 

Given the success of EdgeTrak in tracking the human tongue surface, it was hypothesized 

that it could be used to similarly track the velum. An eight second video of a child with normal 

anatomy uttering the phrase “pick up the pup” was used as shown in Figure 3.2.  
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Figure 3.2 – Image from the video of a child saying “pick up the pup” 

This video was originally compiled from a sequence of magnetic resonance images. The 

video was split into two hundred and fifty sequence of images using the software Blender as shown 

in Figure 3.3 [25]. These images were then cropped to the region of interest using MATLAB [14].  
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Figure 3.3 – The software Blender generating image sequences from videos 

The cropped images were loaded onto EdgeTrak and snake initialization was done on the 

velum as shown in Figure 3.4. EdgeTrak was then allowed to automatically track the velum 

through all images in the uploaded image sequence. 
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Figure 3.4 – Snake initialization on Edge Trak 

Image quality is a major concern while using EdgeTrak. In sequence 1 as shown in Figure 

3.5, the velum is clearly visible in all instances due to which the software was able to efficiently 

track it.  



20 

 

 

Figure 3.5 – Snake tracks the velum successfully 

EdgeTrak relies on image intensity to track its objective. One of the problems with using 

image segmentation to track the velum has been that the velum and the posterior pharyngeal wall 

have the same intensity. As it can be seen in sequence 2 shown in Figure 3.6, the snake gets 

attracted to the posterior pharyngeal wall and gets lost, due to the posterior pharyngeal wall’s 

intensity being similar to that of the velum.  

 

Figure 3.6 – Snake gets attracted to the posterior pharyngeal wall due to similar intensity 

As mentioned previously, image quality is important for the software to track the velum. 

In sequence 3 as shown in Figure 3.7, the velum disappears, due to which the size of the snake 

shrinks. 



21 

 

 

Figure 3.7 – Snake shrinks due to the velum disappearing 

Another major concern with EdgeTrak is consistency. Sequence 4 as shown in Figure 3.8 

shows the snake tracking the velum for the same sequence of images used in sequence 3, but 

noticeably getting smaller with each successive image and later regaining its size. This is clearly 

undesirable as results cannot be duplicated. One reason for this inconsistency is that EdgeTrak 

requires a human to manually initialize the snake and then tracks its objective based on initialized 

image intensity. A small error during initialization could cause the snake to show variability in its 

tracking. However, this is very unlikely to avoid as it is difficult for the human eye to select the 

same two pixels on an image. 

 

Figure 3.8 – Snake showing inconsistency while tracking the same set of images 
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Additionally, EdgeTrak can only be used on a limited number of images due to memory 

constraints. The manual [26] provided during installation states that less than or equal to eighty 

images should be used but as image size is increased, the number of images that can be used 

decreases. 

The hidden markov model has been widely used to track objects. Researchers at Lund 

University [27] were successfully able to track multiple objects using the hidden markov model in 

image sequences on three different setups – footfall counter, parking lot monitor and car tracking 

in traffic surveillance videos. The parking lot setup was an initial test where the entrance to a 

narrow parking lot was monitored over seven hours and consisted of seventeen events. All but one 

of the events were correctly detected, giving it an error rate of 3.6%. In the footfall setup, people 

entering and leaving a building were counted by tracking each person for a short distance to decide 

if the person was entering or leaving, with an accuracy rate of 96.4%. In the traffic setup, a seven 

minute surveillance video was analyzed consisting of fifty eight cars and several large vehicles, of 

which fifty seven cars were detected. Not just objects, the hidden markov model can also be used 

to track signals as shown in a study [28] where the researchers were able to track two slowly 

varying time tones in additive white Gaussian noise. The hidden markov model can also be 

combined with other tracking methods, such as Augmenting Electro Optical based tracking 

systems with Infrared modality, known as Coupled Hidden Markov Model [29]. In this study, the 

researchers conducted experiments on real world sequences and reported improvement in tracking 

accuracy over other integration schemes where the target object was corrupted by noise. 

The study that aimed to track the velum using the hidden markov model [13] consisted of 

three hundred images tagged by the researcher of which two hundred images and their 

corresponding audio features were used to train the model. A two and a half second audio file was 
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used to test the model where the error rate was considered to be the minimum calculated distance 

between predicted and actual markers. The model was able to track the velum with an accuracy of 

81%. Although this accuracy is high, there are several problems with the model – 

 Tracking – An accuracy of 81% means that the model can only successfully track the velum 

four out of five times. From a clinical standpoint, this is not sufficient. The purpose of 

tracking the velum is to gauge its movement with regards to speech. This information can 

then be used by either speech pathologists to train patients with velopharyngeal inadequacy 

or clinicians to solve velopharyngeal inadequacy through surgical means. For this purpose, 

the aforementioned accuracy is not sufficient to make informed decisions. 

 Human Errors – In the model, the researcher tags the images manually. This induces errors 

as was self-admitted by the researcher. The images were used to train the model and hence 

any errors would have continued throughout the image sequence which adds to the model’s 

inaccuracy. 

 Performance – Machine learning algorithms such as the hidden markov model perform 

better with increase in data supplied to the model [30]. Given this, the model can never 

gain 100% accuracy until it obtains all the data required for future predictions, which in 

this context would mean the entire population of the planet. This is certainly not possible. 

 Repeatability – The predictions made in the study with the aforementioned accuracy are 

patient dependent. It is difficult to run the model on every patient. 

 Cyclical repetitions – The predictions made in the study were of patients uttering speech 

in cyclical repetitions. In order to be truly effective, the model needs to predict velar 

movement in regular speech. 
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These observations are supported by a study performed at François Rabelais University 

[31], where a new way of using the hidden markov model to track objects in video sequences was 

developed. The goal was to track a football during the entire length of a shot by predicting the 

approximate object position using a simple motion estimator first, following which the exact object 

position was computed. The method yielded a success rate of 87%. It only partially succeeded in 

tracking objects during occlusion (object of interest hidden partially in an image sequence), and 

faced difficulties when faced with two similar objects, such as the ball and a sock. 

Computer based automatic tracking using image segmentation is often complicated due to 

the amount of time required to conduct the process and the inherent noise, motion artifacts, air 

interfaces and refractions in magnetic resonance images. Additionally, poor image quality and lack 

of a distinct boundary between the velum and the posterior pharyngeal wall make the process even 

more difficult [13]. 

EdgeTrak showed a lot of promise given the success it had in tracking the surface of a 

human tongue. However, the results with regards to tracking the velum have been disappointing. 

Several challenges remain for the software to be applicable to muscles other than the tongue. It 

needs to be able to work with images of poor quality as it is not always possible to obtain high 

quality magnetic resonance images or images of other nature. Its over-reliance on image intensity 

causes the snake to get attracted to areas other than the region of interest. An option to select the 

region of interest other than a box would allow the user to select the appropriate region and avoid 

the snake from getting distracted. An automated method of initializing the snake could help 

eliminate human error and provide consistent tracking. 
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Machine learning algorithms such as the review of the hidden markov model performed in 

this chapter are successful in tracking the velum but possess many limitations. Accuracy is always 

an issue as the hidden markov model requires large amounts of data in order to be able to 

successfully predict velar movement that is beneficial for clinical purposes. In this particular study, 

there was an element of human error which could possibly be avoided in future models with the 

help of an automatic marker. Then again, having an automatic marker would mean that it is able 

to successfully track the velum, in which case other efforts are redundant. 

Image segmentation can be used for tracking but it is currently unreliable and requires 

improvement. The technical limitations mentioned can be tackled with improvement in 

technology. However, theoretical challenges remain which require further research for it to be 

useful for clinical purposes. 

Due to the ineffectiveness of image segmentation, a novel approach to use Linear 

Regression was undertaken, as described in CHAPTER 4.



 

CHAPTER 4 – LINEAR REGRESSION 

Statistical models describe a state or a process [7]. Regression Analysis is a type of 

statistical model that investigates the statistical relationships between two or more variables. The 

variables consist of either one or more independent variables which are used to predict the response 

variable that is dependent on these independent variables. Regression analysis can be split into two 

types – linear regression and non-linear regression. Linear regression requires linearity in 

regression parameters whereas in non-linear regression, the relationship between the independent 

variables and the dependent variables is not linear, which is why the latter is not applicable to this 

study since it has been observed that closure force increases linearly with increase in muscle 

activation [6, 32]. In simple linear regression, one independent variable is used to predict one 

dependent variable. Equation 4.1 is a simple linear regression algorithm where y is the dependent 

variable, β0 is the y intercept, β1 is the slope of the regression line, x is the independent variable, 

and ε is the random error. 

𝑦 =  𝛽0 + 𝛽1𝑥 +  𝜀 

Equation 4.1 – Simple linear regression algorithm [7] 

Simple linear regression can be taken a step further to attain multiple linear regression 

where instead of a single independent variable being responsible for the outcome of the dependent 

variable, there are more than one independent variable that are responsible for the outcome of the 

dependent variable. Since this study uses a range of muscle parameters for predicting the closure 

force and its direction, a multiple linear regression algorithm was used as shown in Equation 4.2, 

where y is the dependent variable, β0, β1, …, βp are regression coefficients, x1, …, xp are 

independent variables, and ε is the error term. 
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𝑦 =  𝛽0 +  𝛽1𝑥1 + ⋯ +  𝛽𝑝𝑥𝑝 +  𝜀 

Equation 4.2 – Multiple linear regression algorithm [7] 

This study was reviewed and approved by the Institutional Review Board at East Carolina 

University (IRB #11-001103) and the University of Illinois, Urbana Champaign (IRB #11099) – 

additional information for which can be found in APPENDIX G. For this study, data was collected 

from a total of twenty subjects of whom ten were adults and ten were children. This data consisted 

of muscle dimensions and angles in the velopharyngeal system. The following parameters were 

used in the training set for linear regression computation, also used in a modeling study [6] that 

was used for comparison and detailed in Figure 4.1 –  

 Velopharyngeal port distance (VP distance) – Anterior to posterior distance of the 

velopharyngeal port through the midline. 

 Velum - levator veli palatini angle (Velum-LVP Angle) – Angle between the velum and 

the levator veli palatini muscle formed between the line of the oblique coronal plane and 

the line connecting the posterior nasal spine and levator veli palatini center. 

 Velar length – Length of the velum measured from the posterior nasal spine to the velar 

knee. 

 Levator veli palatini cross-sectional area (LVP CSA) – Cross sectional area of the levator 

veli palatini muscle at the middle. 

 Velar thickness – Thickness of the velum at the middle of the levator veli palatini muscle. 

 Extravelar length – Length of the levator veli palatini muscle outside the body of the velum 

measured from its point of origin to the point where it enters the velum. 

 Velopharyngeal port width (VP width) – Width of the velopharyngeal port. 
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 Intravelar segment – Length of the levator veli palatini muscle measured between the points 

of entry into the velum. 

 Origin to origin (O-O) – Distance between the points of origin of the levator veli palatini 

muscle at the base of the skull. 

 

Figure 4.1 – Muscle measurements from magnetic resonance images [6] 

There are significant differences between white males and females across several levator 

muscle measures [4]. To eliminate this effect, all subjects used in the study were white males. 

Adults aged in the range of 19-22 whereas children were in the range of 8-9 years old. All subjects 

spoke English as their native language and were devoid of any abnormalities. Table 4.1 displays 

the demographic information of the subjects used in the study. Detailed demographics of the 

subjects can be found in APPENDIX A.  
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Table 4.1 – Subject demographics 

Subject code Age at scan (years) 

2 22 

10 21 

20 20 

22 20 

31 20 

34 22 

37 22 

38 20 

41 22 

42 19 

Child002 5 

Child 005 6 

Child 006 5 

Child 004 9 

543 8 

400 8 

449 9 

448 9 

356 9 

324 9 
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Data gathered from these subjects was used to calculate closure force values and the angle 

at which those forces were acting. Figure 4.2 shows the velopharyngeal system being split into 

various force components acting on it.  

 

Figure 4.2 – Velopharyngeal system split into force components 

The levator veli palatini muscle and velum were modeled as springs with the intravelar 

segment as the common axis. Velar force (Fv) acts along the z-axis at the middle of the intravelar 

segment whereas the levator veli palatini force (Flvp) acts along the extravelar segment at either 

ends of the intravelar segment. Equation 4.3 was used to calculate the force generated by each of 

the springs where, CSA is the cross-sectional area, E is the Young’s modulus, and λ is the 

activation level. 
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𝐹 = 𝐶𝑆𝐴 ∗ 𝐸 (𝜆 − 1) 

Equation 4.3 – Force calculation [6] 

The cross sectional area of the velum (CSAv) and the levator veli palatini muscle (CSAlvp) 

were calculated using Equation 4.4 and Equation 4.5, respectively. 

𝐶𝑆𝐴𝑣 = 𝑣𝑒𝑙𝑎𝑟 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ∗ 𝑉𝑃 𝑤𝑖𝑑𝑡ℎ 

Equation 4.4 – Velum cross sectional area 

𝐶𝑆𝐴𝑙𝑣𝑝 = 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 ∗ 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 ∗  
𝜋

4
 

Equation 4.5 – Levator veli palatini cross sectional area 

The Young’s modulus used in this model was 5 kPa. Previous studies have used Young’s 

modulus values ranging from 0.5 kPa to 100 kPa [10, 33, 34, 35, 36, 37]. The 5 kPa value chosen 

for this study computes closure force values that agree well with other studies where closure force 

was found to be ~1N at 100% activation of the velum [6, 32]. The activation level refers to the 

position of the velum and the levator veli palatini muscle. 0% activation indicates that the muscles 

are at rest whereas 100% is when they are fully activated, for instance, the velum making contact 

with the posterior pharyngeal wall. Forces generated by each of the springs was split into their 

component forces acting along the x, y and z axes. The levator veli palatini forces generated along 

the x-axis are equal and opposite causing them to negate each other. The component forces on the 

y and z axes were used to calculate the closure force along the y-axis (Fcy) and z-axis (Fcz) as 

shown in Equation 4.6 and Equation 4.7 respectively, where Flvpy and Flvpz were the levator force 

components in y and z axes , respectively. 
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𝐹𝑐𝑦 =  −(2 ∗ 𝐹𝑙𝑣𝑝𝑦) 

Equation 4.6 – Closure force along y-axis 

𝐹𝑐𝑧 =  −[(2 ∗  𝐹𝑙𝑣𝑝𝑧) + 𝐹𝑣] 

Equation 4.7 – Closure force along z-axis 

The resultant closure force (Fc) acted downwards against the posterior pharyngeal wall 

whose magnitude and angle of direction (F°) were calculated as shown in Equation 4.8 and 

Equation 4.9, respectively. 

𝐹𝑐 =  √𝐹𝑐𝑦
2 +  𝐹𝑐𝑧

2  

Equation 4.8 – Resultant closure force 

𝐹° =  √𝑡𝑎𝑛−1(
𝐹𝑐𝑦

𝐹𝑐𝑧
) 

Equation 4.9 – Closure force angle 

The calculated closure force and angle values for each of the subjects that was used in the 

training set are shown in Table 4.2. Raw anatomical measurement data used to calculate the closure 

force and direction can be found in APPENDIX B. Detailed closure force and angle calculations 

data can be found in APPENDIX C. 
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Table 4.2 – Closure force and angle values 

Subject code Closure force (N) Closure force angle (°) 

2 1.21 -5.17 

10 1.01 -0.94 

20 0.97 -0.03 

22 1.17 -1.12 

31 1.29 -0.87 

34 1.03 -1.38 

37 1.08 -2.56 

38 0.67 -3.15 

41 0.83 -3.29 

42 0.82 -2.29 

Child002 0.65 -0.43 

Child 005 0.68 -7.91 

Child 006 0.79 -15.05 

Child 004 0.83 -0.94 

543 0.82 -0.43 

400 0.69 -2.09 

449 0.92 -2.31 

448 0.97 -0.03 

356 0.94 -1.51 

324 0.75 -0.03 
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The calculated closure force and angle values along with their corresponding muscle 

dimensions were used to predict the closure force and angle values for unknown muscle 

dimensions in MATLAB [14]. The code used for prediction can be found in APPENDIX D. The 

class multi.m loads the training set data to predict closure force from closureForceData.txt and 

closure force angle from angleData.txt. The data is then normalized by calling the class 

featureNormalize.m. multi.m then calls normalEqn.m to predict the closure force and its 

corresponding angle is predicted using normal equations.   

 



 

CHAPTER 5 – RESULTS 

The program created in MATLAB (APPENDIX D) with the multiple linear regression 

algorithm that uses normal equations to calculate regression coefficients was able to successfully 

predict the closure force and angle values when it was run for any set of anatomical parameters 

input by the user upon being prompted by the program. Figure 5.1 shows the program being 

executed in MATLAB where it loads the training set data, normalizes them, calculates the 

regression coefficients based on the training set values, prompts the user to input anatomical 

parameters for prediction, and then predicts the closure force and its direction. 

 

Figure 5.1 – Program execution in MATLAB 

To validate the model, the training set’s closure forces were checked for linearity, as it had 

been shown in previous studies that closure force increases linearly with increase in the muscle 

activation level [6, 32]. Figure 5.2 displays a graphical plot found in a computational modeling 

study [6] where closure force increases linearly with increase in muscle activation for average, 

individual and randomized models.  
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Figure 5.2 – Linearity of closure force in a modeling study [6] 
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Table 5.1 – Data from the force bulb study [32] 

Closure Force (g) Muscle Activation (%) 

26.7 25.7 

35.3 25.3 

48.5 31.1 

56.3 35.8 

60.7 59.2 

57.9 51.6 

81.9 58.9 

70.8 60.4 

1.6 10.9 

76.5 83.5 

67.2 67.3 

82.9 51.1 

66.8 50.5 

84.4 56.5 

77.7 53.8 

15.6 13.0 

82 83.3 

71.8 68.3 

79.4 53.7 

70.8 52.4 

90.5 57.3 

77.7 54.3 

8.4 10.9 
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Similarly, data gathered from a study [32] that used a force bulb to calculate closure force 

values is plotted in Figure 5.3, which shows linear increase in closure force with increase in muscle 

activation level. Data from only male subjects was used as there are significant differences between 

males and females across several levator muscle measures [4] and males exhibit a higher 

velopharyngeal closure force than females [32]. Table 5.1 displays data gathered from the study.  

 

Figure 5.3 – Linearity of closure force in force bulb study 

 Additionally, having linearity is one of the conditions of linear regression analysis [7]. 

Therefore, it was important to establish linearity with the training set being used. To achieve this, 

closure force values were calculated for each of the subjects in the training set at various muscle 

activation levels, the raw data for which can be found in APPENDIX E.  
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Figure 5.4 – Closure force linearity with multiple linear regression 
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Figure 5.4 shows that each of the subjects in the training set displayed a linear increase in 

closure force with increase in muscle activation level which suggests that the training set being 

used yields accurate results. Similar calculation was performed with closure force angles at varying 

muscle activation levels which showed that angles increase in the negative z-axis direction with 

increase in muscle activation level, displayed in Figure 5.5, the raw data for which can be found 

in APPENDIX F. This indicates that closure force acts in the downward direction on the posterior 

pharyngeal wall as it moves from rest to 100% activation, further validating the model. 

 

Figure 5.5 – Increase in closure force angle  
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CHAPTER 6 – DISCUSSION 

After the training set’s validation, it was possible to study the effects of velopharyngeal 

anatomical parameters on velopharyngeal closure force. For this purpose, new sets of muscle 

dimensions were generated where each of the muscle parameters was increased and decreased by 

one standard deviation for this average set. The outputs predicted from these sets using the multiple 

linear regression algorithm program in MATLAB (APPENDIX D) were used to analyze the effects 

of variability in velopharyngeal anatomy on velopharyngeal function. Table 6.1 shows the average 

values of each of the muscle parameters in the training set and their corresponding standard 

deviation. The change in closure force and its direction due to change in anatomical parameters 

are shown in Table 6.2 and Table 6.3, respectively. Their combined effect can be observed in 

Figure 6.1 and Figure 6.2. 

Table 6.1 – Average anatomical parameter values 

Anatomical Parameter Average Standard Deviation 

VP Distance 9.9 mm 2.6 mm 

Velum-LVP Angle 87.6° 12.6° 

Velar Length 12 mm 2.5 mm 

LVP CSA 57 mm2 21.9 mm2 

Velar Thickness 11 mm 1.6 mm 

Extravelar Length 30.5 mm 3.7 mm 

VP Width 17 mm 2.9 mm 

Intravelar Segment 30.1 mm 6 mm 

Origin to Origin 57.9 mm 4.1 mm 
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Table 6.2 – Change in closure force due to change in anatomical parameters 

Anatomical 

Parameter 

High STD 

value 

Closure 

Force 

Change 

increase 

Low STD 

value 

Closure 

Force 

Change 

decrease 

VP Distance 12.48 mm 0.915 N 0.93% 7.22 mm 0.898 N -0.95% 

Velum-LVP Angle 100.13° 0.907 N 0.03% 75.00° 0.906 N -0.03% 

Velar Length 14.40 mm 0.924 N 1.92% 9.55 mm 0.889 N -1.99% 

LVP CSA 78.94 mm2 0.890 N -0.71% 35.10 mm2 0.913 N 0.70% 

Velar Thickness 12.59 mm 1.039 N 12.75% 9.37 mm 0.774 N -17.11% 

Extravelar Length 34.22 mm 0.891 N -1.72% 26.74 mm 0.922 N 1.67% 

VP Width 19.95 mm 1.050 N 13.67% 14.09 mm 0.763 N -18.82% 

Intravelar Segment 36.08 mm 0.900 N -0.74% 24.06 mm 0.913 N 0.73% 

Origin-Origin 62.00 mm 0.928 N 2.33% 53.87 mm 0.885 N -2.44% 

 

Table 6.3 – Change in angle due to change in anatomical parameters 

Anatomical 

Parameter 

High STD 

value 

Angle 

(°) 

Change 

increase 

Low STD 

value 

Angle 

(°) 

Change 

decrease 

VP Distance 12.48 mm -3.11 17.27% 7.22 mm -2.04 -26.38% 

Velum-LVP Angle 100.13° -4.63 44.34% 75.00° -0.52 -391.69% 

Velar Length 14.40 mm -2.23 -15.73% 9.55 mm -2.93 11.96% 

LVP CSA 78.94 mm2 -6.47 60.14% 35.10 mm2 1.31 296.43% 

Velar Thickness 12.59 mm -1.25 -106.00% 9.37 mm -3.90 33.97% 

Extravelar Length 34.22 mm -3.99 35.37% 26.74 mm -1.17 -120.85% 

VP Width 19.95 mm -2.82 8.71% 14.09 mm -2.33 -10.55% 

Intravelar Segment 36.08 mm -4.43 41.87% 24.06 mm -0.72 -257.55% 

Origin-Origin 62.00 mm -1.48 -74.09% 53.87 mm -3.67 29.85% 
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Figure 6.1 – Change in closure force due to change in anatomical parameters 

 

Figure 6.2 – Change in angle due to change in anatomical parameters 
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Velopharyngeal port width and velar thickness had the greatest influence on change in 

closure force. Increase in their length caused an increase in closure force and vice-versa. This is 

expected behavior. As mentioned in Equation 4.4, the cross sectional area of the velum is the 

algebraic product of velar thickness and velopharyngeal port width. Increase in cross sectional area 

of the velum causes an increase in the force generated by the velum, as explained in Equation 4.3, 

which in turn increases the closure force achieved. Conversely, the levator veli palatini muscle 

pulls the velum reducing the overall closure force generated. All the parameters related to the 

levator veli palatini muscle – the extravelar segment, the intravelar segment, and the levator veli 

palatini cross sectional area, cause a decrease in closure force when their dimensions are increased 

and vice-versa. This behavior is opposite to the influence displayed by the velopharyngeal port 

width and velar thickness. Therefore, the primary job of the levator veli palatini muscle is to aid 

the velopharyngeal system in moving the velum rather than generating significant force. The other 

anatomical parameters do not significantly influence closure force. 

These results are in contradiction with previous studies which suggest that the levator veli 

palatini muscle and the velopharyngeal port distance are major influencers of closure force 

compared to the velum [6, 10]. To further investigate this contradiction, the velum cross sectional 

area (velopharyngeal port width and velar thickness) and combined levator veli palatini muscles 

(extravelar segment, intravelar segment, and the levator veli palatini cross-sectional area) were 

increased and decreased by one standard deviation and run through the algorithm separately to 

gauge their influence on closure force, as shown in Table 6.4 and Figure 6.3. It can be seen that 

the velum cross sectional area has a greater influence on closure force compared to the levator veli 

palatini muscles. Also, the latter’s influence is opposite adding further proof to the observation in 

Figure 6.1. 
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Table 6.4 – Closure force change due to velum CSA and LVP muscles 

Anatomical Parameter 
High STD 

Closure Force 

Change due to 

increase 

Low STD 

Closure Force 

Change due to 

decrease 

Velum CSA 1.1821 N 23.34% 0.6303 N -43.77% 

LVP muscles 0.8778 N -3.23% 0.9346 N 3.04% 

 

Table 6.5 – Angle change due to velum CSA and LVP muscles 

Anatomical Parameter 
High STD 

Angle 

Change due 

to increase 

Low STD 

Angle 

Change due 

to decrease 

Velum CSA -1.50° -72.16% -3.66° 29.53% 

LVP muscles -9.73° 73.52% 4.58° 156.29% 

 

 

Figure 6.3 – Closure force change due to velum CSA and LVP muscles 

 

Figure 6.4 – Angle change due to velum CSA and LVP muscles 
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Contrary to the case of closure force, the levator veli palatini muscle has a greater influence 

on the direction of closure force than the other anatomical parameters. As can be seen in Figure 

6.2, the levator veli palatini cross sectional area, the extravelar segment, the intravelar segment 

and the angle the levator veli palatini muscle makes with the velum have a significant effect on 

the direction of closure force. Figure 6.4 also shows that there is a greater change in the direction 

of closure force when the levator veli palatini muscle’s dimensions are changed compared to the 

cross sectional area of the velum. This adds further support to the argument that the levator veli 

palatini muscle acts as a support structure that maintains direction rather than generating the bulk 

of the force as was evident in Figure 6.1 and Figure 6.3, where it did not have a significant effect 

on closure force compared to the cross sectional area of the velum. However, the influence seems 

to be a combined effort with other anatomical parameters rather than the muscle itself because the 

changes observed in Figure 6.2 and Figure 6.4 are not symmetrical, unlike the effect on closure 

force. This is especially true for the cross sectional area of the levator veli palatini muscle which 

indicates a significant influence on closure force direction but decreasing or increasing its 

parameters only causes an increase in the change but never cause a decrease. These findings are 

supported by a finite element modeling study [10] which states that the distance between the velum 

and the posterior pharyngeal wall decreases linearly with an increase in the velar force 

exponentially, and that the soft palate continues moving upwards along the posterior pharyngeal 

wall after initial contact, thereby producing a reactionary downward force. 

A patient’s ability to generate a high closure force is necessary to overcome velopharyngeal 

inadequacy, as a higher closure force ensures that the velum is pressed against the posterior 

pharyngeal wall, creating a tight seal necessary for speech production. This study focused on 

measuring the variability in velopharyngeal anatomical parameters on velopharyngeal function. 
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However, in order to gauge the effectiveness of this model, future studies should use data from 

patients with abnormal velopharyngeal anatomy. Also, this study used a select few anatomical 

parameters but it is necessary to include craniometrics. This is because the velum and the levator 

veli palatini muscle experience reaction forces being generated due to the movement of the 

cranium. Therefore, including this information will allow the discovery of parameters that are 

ultimately responsible for regulating closure force. One addition that could significantly influence 

the study is the musculus uvulae. This muscle is an intrinsic part of the velopharyngeal system that 

adds stiffness and aids in filling the velopharyngeal gap by providing muscle bulk [38]. The 

musculus uvulae will act as a load bearing structure that could influence closure force, for which 

reason future studies should to include it in their models.



 

CHAPTER 7 – CONCLUSION 

Computational modeling in combination with magnetic resonance imaging has been a 

popular method in recent times for investigating velopharyngeal anatomy. However, this process 

is expensive and impractical. Reliable computational modeling software costs thousands of dollars 

and require technical expertise to be an effective tool. To tackle this issue, this study introduced a 

machine learning algorithm, multiple linear regression, which can be as effective as computational 

modeling in investigating velopharyngeal anatomy while allowing researchers with little technical 

expertise to use it. 

One of the key areas where multiple linear regression, or linear regression in general, is 

advantageous over computational modeling is that they are entirely data driven and self-learning. 

In computational modeling, the relationship and functionality is provided whereas in machine 

learning, the system is capable of forming relations based on historic data. While some of these 

relations are obvious, such as the usage of similar demographic subjects, others are unknown either 

due to lack of information or accessibility to the technology required. Also, machine learning 

algorithms such as linear regression perform better with increase in the data provided [30]. 

Therefore, models can continually be updated with the latest data allowing its prediction 

capabilities to get better. 

The failure rate of first time cleft palate repairs is 25-35% [39]. The model can help speech 

pathologists, surgeons, related professionals and researchers gauge the effect of velopharyngeal 

muscles to reduce this failure rate and prevent the need for further surgeries. This model was 

implemented using MATLAB. This is an expensive software not within the means of every 

individual or organization. However, the multiple linear regression algorithm can easily be 

implemented in other languages or by using other tools. Also, the code provided (APPENDIX D) 
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can be implemented as it is in Octave  [40] which is a high level interpreted open source language 

that is available free of charge. Creating a user interface and shipping the program with the 

algorithm as an executable file will make it accessible to a larger user base. 

The potential for this algorithm shipped as a software is huge and will advance the quest 

towards effectively treating children with a cleft lip and palate.
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APPENDIX A – SUBJECT DEMOGRAPHICS 

 

Subject 

code 

Age 

at 

scan 

Height 
Weight 

(lb.) 

Gender 

(1=M; 2=F) 

Race (1=Caucasian; 2=African 

American; 3=Asian; 4=Hispanic; 

5=Interracial 

2 22 5'10" 165 1 1 

10 21 6'2" 170 1 1 

20 20 5'7" 170 1 1 

22 20 5'11" 140 1 1 

31 20 6'1" 185 1 1 

34 22 5'11" 183 1 1 

37 22 5'5" 170 1 1 

38 20 5'11" 170 1 1 

41 22 5'6" 150 1 1 

42 19 5'9" 160 1 1 

Child002 5 4'2" 50 1 1 

Child 005 6 4'2" 50 1 1 

Child 006 5 4' 45 1 1 

Child 004 9 5' 60 1 1 

543 8   1 1 

400 8   1 1 

449 9   1 1 

448 9   1 1 

356 9   1 1 

324 9   1 1 

  

 



 

APPENDIX B – RAW ANATOMICAL MEASUREMENTS 

 

Subject 

(mm) 

VP 

Distance 

(mm) 

Velum

-LVP 

Angle 

(°) 

Velar 

Length 

(mm) 

LVP 

CSA 

(mm2) 

Velar 

Thickness 

at Mid 

LVP 

(mm) 

Extravelar 

Length 

(mm) 

VP 

Width 

(mm) 

Intravelar 

Segment 

(mm) 

O-O 

(mm) 

2 10.005 74.3 11.8 84.004 13.66 30.48 17.94 36.16 62.79 

10 12.895 83.9 12.71 33.36 11.03 31.54 18.5 40.02 58.6 

20 9.215 88.3 13.35 44.286 11.61 33.9 17.1 29.15 58.12 

22 16.705 80.4 13.21 39.138 12.51 33.21 18.79 31.22 57.88 

31 7.68 70.2 16.95 61.516 11.63 39.28 22.43 36.18 70.85 

34 11.555 78.4 13.58 70.47 13.58 34.59 16.26 36.36 60.04 

37 13.765 77.4 14.59 55.839 9.78 29.23 22.15 33.27 58.5 

38 6.955 80.5 12.25 49.016 10.71 29.14 12.62 37.87 52.38 

41 10.47 77.1 11.34 58.659 13.68 31.1 12.06 40.02 55.25 

42 10.775 73.7 16.19 55.540 11.68 34.53 14.02 32.43 58.83 

Child 

002 
9.865 73 12.7 65.056 9.08 24.045 15.14 28.3 52.97 

Child 

005 
9.53 95.7 13.61 93.650 10.1 30.025 13.46 22.88 56.07 

Child 

006 
5.855 109.1 10.69 119.07 11.12 26.955 15.42 22.7 53.52 

Child 

004 
11.695 84.6 8.22 46.906 9.62 33.595 17.95 23.35 59.51 

543 10.31 93.3 9.74 20.141 7.59 31.865 21.68 25.13 57.84 

400 8.58 90.7 10.33 52.984 9.64 28.765 15.14 27.55 56.11 

449 10.03 99.6 10.54 49.821 9.51 25.555 19.63 24.46 53.5 

448 8.705 107.1 10.32 33.243 10.73 30.29 18.4 26.7 61.55 

356 6.49 106.6 6.63 63.823 12.47 27.735 15.98 20.2 55.11 

324 5.97 107.4 10.78 43.913 9.81 23.805 15.7 27.46 59.33 

 

 



 

APPENDIX C – DETAILED CLOSURE FORCE CALCULATION 

 

Subject 

Code 

Fv 

(N) 
Flvp (N) 

Flvpx  

(+/-N) 

Flvpy   

(+/-N) 

Flvpz   

(+/-N) 

Σ y-axis 

(N) 

Σ z-axis 

(N) 
Fc (N) F° (°) 

2 1.225 -0.32988 0.19568 0.329873 0.15016 -0.10882 1.202755 1.207668 -5.16962 

10 1.020 -0.131 0.08311 0.12881 0.079052 -0.01659 1.014026 1.014162 -0.93746 

20 0.993 -0.17391 0.07477 0.022407 0.16422 -0.0005 0.965687 0.965687 -0.02979 

22 1.175 -0.1537 0.07224 0.151343 0.04386 -0.0229 1.173391 1.173614 -1.11827 

31 1.304 -0.24157 0.11125 0.14043 0.1128 -0.01972 1.29158 1.291731 -0.87477 

34 1.104 -0.27674 0.14545 0.15727 0.274035 -0.02473 1.028959 1.029256 -1.37692 

37 1.083 -0.21928 0.12479 0.21916 0.091607 -0.04803 1.074743 1.075816 -2.5588 

38 0.676 -0.19249 0.12508 0.191941 0.07307 -0.03684 0.670462 0.671473 -3.1452 

41 0.825 -0.23035 0.14821 0.21765 0.030085 -0.04737 0.823999 0.825359 -3.2903 

42 0.819 -0.2181 0.10242 0.180983 0.027717 -0.03275 0.818 0.818655 -2.29305 

Child 

002 
0.687 -0.25547 0.15034 0.070297 0.188078 -0.00494 0.651983 0.652001 -0.43426 

Child 

005 
0.680 -0.36776 0.14012 0.30697 0.04351 -0.09423 0.677837 0.684356 -7.91459 

Child 

006 
0.857 -0.46759 0.19689 0.453 0.306579 -0.20521 0.763361 0.790463 -15.0469 

Child 

004 
0.863 -0.1842 0.06401 0.11691 0.179637 -0.01367 0.831126 0.831238 -0.94214 

543 0.823 -0.07909 0.03119 0.078101 0.04615 -0.0061 0.820626 0.820649 -0.42588 

400 0.730 -0.20807 0.09964 0.15914 0.191139 -0.02533 0.693214 0.693676 -2.09227 

449 0.933 -0.19565 0.09363 0.192652 0.11681 -0.03711 0.919761 0.92051 -2.31077 

448 0.987 -0.13055 0.05754 0.023212 0.12525 -0.00054 0.971473 0.971473 -0.03178 

356 0.996 -0.25063 0.09127 0.157354 0.24491 -0.02476 0.936373 0.9367 -1.51471 

324 0.770 -0.17244 0.09946 0.02086 0.14369 -0.00043 0.749439 0.749439 -0.03325 

 

 



 

APPENDIX D – CODE 

multi.m 

%% Clear and Close Figures 

clear ; close all; clc 

  

fprintf('Loading data ...\n'); 

  

%% Load Data 

data = load('closureForceData.txt'); 

X = data(:, 1:9); 

y = data(:, 10); 

m = length(y); 

  

dataa = load('angleData.txt'); 

Xa = dataa(:, 1:9); 

ya = dataa(:, 10); 

ma = length(ya); 

  

% Scale features and set them to zero mean 

fprintf('Normalizing Features ...\n'); 

  

[X mu sigma] = featureNormalize(X); 

[Xa mu sigma] = featureNormalize(Xa); 

  

% Add intercept term to X 

X = [ones(m, 1) X]; 

Xa = [ones(ma, 1) Xa]; 

  

fprintf('Solving with normal equations...\n'); 

  

%% Load Data 

data = csvread('closureForceData.txt'); 

X = data(:, 1:9); 

y = data(:, 10); 

m = length(y); 

  

dataa = csvread('angleData.txt'); 

Xa = dataa(:, 1:9); 

ya = dataa(:, 10); 

ma = length(ya); 

  

% Add intercept term to X 

X = [ones(m, 1) X]; 

Xa = [ones(ma, 1) Xa]; 
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% Calculate the parameters from the normal equation 

theta = normalEqn(X, y); 

thetaa = normalEqn(Xa, ya); 

  

% Calculate closure force 

d = []; 

d(1) = 1; 

prompt2 = 'Enter VP distance: '; 

d(2) = input(prompt2); 

prompt3 = 'Enter velum-LVP angle: '; 

d(3) = input(prompt3); 

prompt4 = 'Enter velar length: '; 

d(4) = input(prompt4); 

prompt5 = 'Enter LVP CSA: '; 

d(5) = input(prompt5); 

prompt6 = 'Enter velar thickness: '; 

d(6) = input(prompt6); 

prompt7 = 'Enter extravelar length: '; 

d(7) = input(prompt7); 

prompt8 = 'Enter VP width: '; 

d(8) = input(prompt8); 

prompt9 = 'Enter intravelar length: '; 

d(9) = input(prompt9); 

prompt10 = 'Enter origin to origin distance: '; 

d(10) = input(prompt10); 

closureforce = d * theta; 

angle = d * thetaa; 

  

fprintf('The closure force is : %f N\n', closureforce); 

      

fprintf('The force direction is : %f°\n', angle); 
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featureNormalize.m 

function [X_norm, mu, sigma] = featureNormalize(X) 

  

X_norm = X; 

mu = zeros(1, size(X, 2)); 

sigma = zeros(1, size(X, 2)); 

  

mu = mean(X_norm); 

sigma = std(X_norm); 

  

tf_mu = X_norm - repmat(mu,length(X_norm),1); 

tf_std = repmat(sigma,length(X_norm),1); 

  

X_norm = tf_mu ./ tf_std; 

  

end 

 

normalEqn.m 

function [theta] = normalEqn(X, y) 

  

theta = zeros(size(X, 2), 1); 

  

theta = pinv(X'*X)*X'*y; 

  

end 
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closureForceData.txt 

10.005, 74.3, 11.8, 84.0042, 13.66, 30.48, 17.94, 36.16, 62.79, 1.207667603 

12.895, 83.9, 12.71, 33.36, 11.03, 31.54, 18.5, 40.02, 58.6, 1.014161542 

9.215, 88.3, 13.35, 44.286, 11.61, 33.9, 17.1, 29.15, 58.12, 0.965686967 

16.705, 80.4, 13.21, 39.1384, 12.51, 33.21, 18.79, 31.22, 57.88, 1.173614371 

7.68, 70.2, 16.95, 61.5158, 11.63, 39.28, 22.43, 36.18, 70.85, 1.291730932 

11.555, 78.4, 13.58, 70.47, 13.58, 34.59, 16.26, 36.36, 60.04, 1.029256261 

13.765, 77.4, 14.59, 55.8392, 9.78, 29.23, 22.15, 33.27, 58.5, 1.075815869 

6.955, 80.5, 12.25, 49.016, 10.71, 29.14, 12.62, 37.87, 52.38, 0.671472978 

10.47, 77.1, 11.34, 58.6585, 13.68, 31.1, 12.06, 40.02, 55.25, 0.825359441 

10.775, 73.7, 16.19, 55.5395, 11.68, 34.53, 14.02, 32.43, 58.83, 0.818655295 

9.865, 73, 12.7, 65.0558, 9.08, 24.045, 15.14, 28.3, 52.97, 0.652001486 

9.53, 95.7, 13.61, 93.6496, 10.1, 30.025, 13.46, 22.88, 56.07, 0.684356148 

5.855, 109.1, 10.69, 119.071, 11.12, 26.955, 15.42, 22.7, 53.52, 0.790463094 

11.695, 84.6, 8.22, 46.9056, 9.62, 33.595, 17.95, 23.35, 59.51, 0.831238011 

10.31, 93.3, 9.74, 20.1405, 7.59, 31.865, 21.68, 25.13, 57.84, 0.820648944 

8.58, 90.7, 10.33, 52.9842, 9.64, 28.765, 15.14, 27.55, 56.11, 0.693676422 

10.03, 99.6, 10.54, 49.8212, 9.51, 25.555, 19.63, 24.46, 53.5, 0.920509688 

8.705, 107.1, 10.32, 33.2431, 10.73, 30.29, 18.4, 26.7, 61.55, 0.971473055 

6.49, 106.6, 6.63, 63.8232, 12.47, 27.735, 15.98, 20.2, 55.11, 0.936700387 

5.97, 107.4, 10.78, 43.9125, 9.81, 23.805, 15.7, 27.46, 59.33, 0.749438982 

  



 

61 

 

angleData.txt 

10.005, 74.3, 11.8, 84.0042, 13.66, 30.48, 17.94, 36.16, 62.79,-5.169622918 

12.895, 83.9, 12.71, 33.36, 11.03, 31.54, 18.5, 40.02, 58.6,-0.937456071 

9.215, 88.3, 13.35, 44.286, 11.61, 33.9, 17.1, 29.15, 58.12,-0.029790013 

16.705, 80.4, 13.21, 39.1384, 12.51, 33.21, 18.79, 31.22, 57.88,-1.118273045 

7.68, 70.2, 16.95, 61.5158, 11.63, 39.28, 22.43, 36.18, 70.85,-0.874769851 

11.555, 78.4, 13.58, 70.47, 13.58, 34.59, 16.26, 36.36, 60.04,-1.376919959 

13.765, 77.4, 14.59, 55.8392, 9.78, 29.23, 22.15, 33.27, 58.5,-2.558797721 

6.955, 80.5, 12.25, 49.016, 10.71, 29.14, 12.62, 37.87, 52.38,-3.145198219 

10.47, 77.1, 11.34, 58.6585, 13.68, 31.1, 12.06, 40.02, 55.25,-3.290295311 

10.775, 73.7, 16.19, 55.5395, 11.68, 34.53, 14.02, 32.43, 58.83,-2.293053205 

9.865, 73, 12.7, 65.0558, 9.08, 24.045, 15.14, 28.3, 52.97,-0.43426133 

9.53, 95.7, 13.61, 93.6496, 10.1, 30.025, 13.46, 22.88, 56.07,-7.914586971 

5.855, 109.1, 10.69, 119.071, 11.12, 26.955, 15.42, 22.7, 53.52,-15.04689466 

11.695, 84.6, 8.22, 46.9056, 9.62, 33.595, 17.95, 23.35, 59.51,-0.942135176 

10.31, 93.3, 9.74, 20.1405, 7.59, 31.865, 21.68, 25.13, 57.84,-0.425878679 

8.58, 90.7, 10.33, 52.9842, 9.64, 28.765, 15.14, 27.55, 56.11,-2.092273378 

10.03, 99.6, 10.54, 49.8212, 9.51, 25.555, 19.63, 24.46, 53.5,-2.310773145 

8.705, 107.1, 10.32, 33.2431, 10.73, 30.29, 18.4, 26.7, 61.55,-0.031777705 

6.49, 106.6, 6.63, 63.8232, 12.47, 27.735, 15.98, 20.2, 55.11,-1.514714748 

5.97, 107.4, 10.78, 43.9125, 9.81, 23.805, 15.7, 27.46, 59.33,-0.033254334 

 



 

APPENDIX E – CLOSURE FORCE AT VARYING ACTIVATION LEVELS 

The closure forces are given in Newton and muscle activation levels are in %. 

Subject 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

2 0 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.1 1.2 

10 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 

20 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 

22 0 0.1 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.2 

31 0 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 

34 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 

37 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 

38 0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 

41 0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 

42 0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 

Child 002 0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 

Child 005 0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 

Child 006 0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.8 

Child 004 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 

543 0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 

400 0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 

449 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 

448 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 

356 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 

324 0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 

 

 



 

APPENDIX F – CLOSURE FORCE ANGLES AT VARYING ACTIVATION LEVELS 

The closure force angles are given in degrees and muscle activation levels are in %. 

Subject 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

2 0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.6 2.8 3.1 3.3 3.6 3.9 4.1 4.4 4.6 4.9 5.2 

10 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 

20 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

22 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.1 

31 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 

34 0 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.4 

37 0 0.1 0.3 0.4 0.5 0.6 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.7 1.8 1.9 2.0 2.2 2.3 2.4 2.6 

38 0 0.2 0.3 0.5 0.6 0.8 0.9 1.1 1.3 1.4 1.6 1.7 1.9 2.0 2.2 2.4 2.5 2.7 2.8 3.0 3.1 

41 0 0.2 0.3 0.5 0.7 0.8 1.0 1.2 1.3 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.6 2.8 3.0 3.1 3.3 

42 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.2 2.3 

Child 002 0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 

Child 005 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 5.9 6.3 6.7 7.1 7.5 7.9 

Child 006 0 0.7 1.4 2.1 2.8 3.5 4.2 5.0 5.7 6.5 7.2 8.0 8.7 9.5 10.3 11.1 11.9 12.6 13.4 14.2 15.0 

Child 004 0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 

543 0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 

400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.0 2.1 

449 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.4 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3 

448 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

356 0 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.4 1.4 1.5 

324 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

  



 

APPENDIX G – IRB INFORMATION 

No IRB was needed because data was collected for another project under an IRB #11-

001103 & IRB #11099, and the data that was collected was for different purposes than that of the 

present study. Additionally, the data was de-identified and the investigator (Anish Sana) was not 

involved in subject recruitment or enrollment.  



 

 


