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selection and speciation. In this study, I will examine patterns of expression divergence in two 

subspecies of the zebra finch Taeniopygia guttata. These two zebra finch populations have been 

allopatrically isolated for about one million years, thus allowing for divergence in aspects of 

morphology, genetics and behavior. Based on previous research, we have a detailed portrait of 

the timing and demographic components of divergence in these birds. However, little is known 

about how gene expression may contribute to genomic divergence. Among sexually reproducing 

organisms, the conclusion of the speciation process is thought to be evidenced by the buildup of 

genomic incompatibilities. The two zebra finch subspecies can mate and generate viable hybrids, 

allowing the use of expression data from hybrids to test for such genomic incompatibilities. 

Here, I will use RNA sequencing technology to quantify genome-scale patterns of expression 

divergence, highlighting patterns of functional divergence in the zebra finch genome. 
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INTRODUCTION: 

The Evolution of Gene Expression 

Since Darwin first published On the Origin of Species (1859), biologists have been 

fascinated by ideas surrounding the mechanisms of species formation. Many evolutionary studies 

have focused on how changes in the genome may contribute to new phenotypes and how natural 

selection may act on these genetic changes (Mitchell-Olds et al., 2007 and Caporale 2003). 

Although changes in gene expression have long been recognized as biologically important to the 

process of evolution (Britten and Davidson 1969, Britten and Davidson 1971, King and Wilson 

1975), there is no consensus as to how important gene expression changes may be for speciation. 

Furthermore, little is known about the relative importance of natural selection and genetic drift in 

driving expression divergence.  

As with nucleotide evolution, one school of though is that gene expression divergence is 

predominantly neutral (King and Jukes, 1969, Khaitovich et al., 2004, Yanai et al. 2005). Under 

neutral theory (Kimura, 1968), most selection primarily functions to eliminate deleterious alleles. 

As a result, most of the changes that are free to accumulate in a population are neutral. 

According to this idea, the vast majority of changes in gene expression do not affect fitness and 

occur in a regular clock-like manner.  

However, recent studies have added evidence that gene expression divergence may not be 

neutral. It has been shown that gene expression level is strongly negatively correlated with gene 

sequence divergence (Pal et al., 2001, Bloom and Adami, 2004, Rocha and Danchin 2004). 

These studies have shown that highly expressed genes tend to evolve more slowly and that more 

highly expressed genes are on average more constrained by purifying selection (Pal et al., 2001). 
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It has been shown that genes that are more broadly expressed tend to be more conserved 

in expression and that interspecific change in gene expression is positively correlated with the 

level of sequence divergence (Jordan et al., 2005). Taken together, these studies provide 

evidence for the adaptive evolution of gene expression.  

Compensatory evolution of regulatory networks has also been demonstrated to be an 

important component of regulatory evolution. For example, it has been shown that there can be 

similar overall expression output despite considerable diversification at the regulatory sequence 

level (Tirosh et al., 2009). This has been shown to be especially true in instances involving cis-

regulatory factors (Hinman et al., 2003, Ihmels et al., 2004). The fact that gene expression output 

remains similar despite regulatory sequence level diversification is strong evidence suggesting 

that natural selection is acting on gene expression as it suggests that compensatory changes are 

favored. Co-adaptation between cis and trans regulatory networks within lineages acts to 

maintain optimal gene expression levels (Porter and Johnson, 2002). This has been shown in 

diverse clades from sea urchins (Wray et al., 2003) to mammals (Cuadrado et al., 2001). Also in 

mammals, comparative analyses of gene sequence divergence and gene expression divergence 

have been performed in order to examine whether or not gene expression evolution is 

independent of gene sequence evolution (Jordan et al., 2005). These studies have shown that 

gene expression divergence is subject to the effects of purifying selective constraints and 

suggests that it might also be influenced by positive Darwinian selection. Altogether, these 

recent studies demonstrate the potential for disparity between sequence divergence and gene 

expression divergence.  

Speciation 
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The transition from a unified initial species into two distinct daughter species is a gradual 

process that generally occurs over long periods of time. In allopatry, the initial population is 

separated into two subgroups when gene flow between them is prevented (Mayr, 1942). Over 

time, due to random changes in allele frequencies through genetic drift, the two subpopulations 

will begin to diverge from one another genetically. In some cases, divergent selection may 

further expedite divergence between the two populations (Rice and Hostert, 1993). One 

byproduct of this genetic divergence is the development of genetic incompatibilities (Orr, 1995). 

Genetic incompatibilities are the result of combinations of alleles that decrease the fitness of 

hybrid offspring either by decreasing survival rate or by decreasing reproductive success. 

Development of such incompatibilities limits gene flow between the two populations. Over time, 

the severity of the consequences of these incompatibilities may increase, eventually leading to 

reproductive isolation between the two populations. This step is seen as the final step in the 

speciation process.  

Models for Genomic Incompatibilities 

How genetic incompatibilities develop was a long-standing conundrum. The existence of 

incompatibilities between species implies that the genetic basis of these incompatibilities arose in 

the past. By definition, when these incompatibilities arose, they should have reduced the fitness 

of the ancestral individuals. How could incompatibilities arise and increase in frequency when 

the evolution of such traits would in fact reduce the fitness of the organisms in question? This 

problem was neatly solved in a now classic model of the evolution of genetic incompatibilities, 

the Dobzhansky- Muller model (Dobzhansky, 1937 and Muller, 1942). According to the 

Dobzhansky-Muller model, hybrid incompatibility results as a consequence of changes at more 

than one locus. Different allelic substitutions may occur in each of the two geographically 
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isolated populations. These new mutations may stochastically increase to fixation in the 

populations due to genetic drift or they may increase due to influence by selection. Additionally, 

given enough time, successive substitutions may occur in a population after the first allele has 

fixed, which also increase in frequency until they become fixed. No ancestral individuals are at a 

distinct fitness disadvantage since these new alleles are not deleterious in the background in 

which they arose. When offspring are formed between the two populations, certain alleles would 

interact within individuals that had never previously interacted. Due to epistasis, these new 

genetic combinations may result in previously unseen phenotypes.  

Dobzhansky-Muller incompatibilities are alleles at different loci that interact with each 

other in a deleterious epistatic manner. While the alleles may be completely harmless in their 

respective parental genetic background, the combination of these alleles interacting with one 

another in one individual may reduce its fitness. As genetic incompatibilities continue to 

increase, the fitness of hybrid offspring decrease. Eventually, Dobzhansky-Muller 

incompatibilities may result in post-zygotic isolation (Orr and Turelli, 2001). Given this 

theoretical framework, a key unanswered question is how gene expression contributes to the 

origin of species and maintenance of species boundaries. One way in which we may look for 

evidence of Dobzhansky-Muller incompatibilities is by examining gene expression patterns of 

hybrid offspring of closely related species (Brideau, et al., 2006, Fishman and Willis, 2001).   

Evidence of Incompatibilities from Gene Expression Studies 

Recent technological advancements have granted us the ability to examine and compare 

gene expression levels at the whole-genome scale (Seehausen et al., 2014). In addition to 

providing information on the ways by which species are diverging, gene expression analysis may 

also provide insight for the evolutionary process of speciation. Components of a regulatory 
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pathway (e.g., a transcription factor and its binding site), may represent exactly the type of 

interaction envisaged in the Dobzhansky-Muller model (Johnson and Porter, 2000). Thus, 

aberrant gene expression may be an important contributor to hybrid dysfunctions. Accordingly, 

several recent studies have linked gene expression anomalies with hybrid dysfunctions (Renaut 

et al., 2009, Nowick et al., 2013, Barrieto et al., 2014). Gene misexpression may occur at 

disproportionately great levels in regulatory pathways containing rapidly evolving or male-

biased genes as these genes have been shown to evolve faster and have highly divergent patterns 

of expression (Ortiz-Barrientos et al., 2007). Gene loss in one population of a species may allow 

the accumulation of mutations in downstream targets making that population genetically 

incompatible with other populations of that species, resulting in reproductive isolation (Zufall 

and Rausher, 2004). By examining these expression levels in hybrid offspring of two closely 

related species and comparing them to the expression level of the parents, we may shed light on 

the question of what genes are likely to contribute to hybrid incompatibility and thus contribute 

to speciation. 

Gene misexpression may be due to direct incompatibilities between cis and trans 

regulatory elements (Wittkopp et al., 2004, Gracer et al., 2009, McManus et al., 2010). A lack of 

expression divergence between parental taxa is a poor indicator of regulatory incompatibility in 

hybrid offspring (Haerty and Singh, 2006). Regulatory dysfunctions are only revealed when 

differentiated elements are forced to interact in hybrid genomes (Barrieto et al., 2014). As such, 

hybrids play an important role in painting the speciation picture. Cis versus trans effects can be 

distinguished by using interspecific hybrids (Wittkopp et al., 2004). Expression patterns for 

alleles in hybrids reveal trans regulatory differences between parental species. Like any trait, 

expression phenotypes can be inherited in a codominant, dominant or overdominant fashion. If 
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hybrids are intermediate in expression between both parents, this reflects codominance whereas 

if hybrid offspring resemble one parent, this reflects dominance (Tirosh et al., 2009). 

Overdominance is observed when expression in hybrids is outside the range of expression 

variation seen in the parental species. 

Several studies have attempted to examine hybrid incompatibility through gene 

expression (Ortiz-Barrietos et al., 2007, Renaut et al., 2009). In Drosophila, it has been shown 

that regulatory factors and metabolic regulator genes are often overdominant, or misexpressed, in 

hybrid offspring (Ortiz-Barrietos et al., 2007). In whitefish, Coregonus clupeaformis, gene 

expression studies, it has been shown that hybrids have low fitness when natural selection has 

independently altered the binding affinity between transcription factors and DNA binding sites 

(Renaut et al., 2009). This same study found evidence for increased gene misexpression in 

offspring produced with a hybrid and parental backcross. Thus, comparing gene expression 

levels in backcrossed offspring may provide further information regarding genetic 

incompatibilities. 

A Second Rule of Speciation: Haldane’s Rule and the Evolution of Sex Chromosomes 

Haldane’s rule is the observation that the heterogametic sex is the first to evolve hybrid 

sterility (Haldane, 1922). The observation is particularly interesting in that it has been shown in 

many taxa, including Lepidoptera and mammals (Haldane, 1922), other insects (Orr, 1993), 

amphibians (Hillis and Green, 1990), and birds (Haldane, also Price & Bouvier, 2002). It is 

thought that hybrid sterility evolves faster in the heterogametic sex due to deleterious recessive 

alleles on the sex chromosome, which are fully expressed due to the lack of a second sex 

chromosome (Turelli and Orr, 1995). Due to this faster evolution, Haldane’s rule may help 
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explain the development of hybrid incompatibilities and the maintenance of post-zygotic 

reproductive isolation.  

Historical Significance of Speciation in Birds 

Since the Systematics and the Origin of Species was published (Mayr, 1942), birds have 

served as an historically important taxa when testing for speciation. The role played by 

differences in song, plumage, and behavior for sexual selection in birds have been extensively 

studied and documented (Edwards et al., 2005). Additionally, birds display a diversity of mating 

systems and natural history of female preference driving trait differences that have been studied 

more in birds than in any other clade.  

Unlike mammals, in birds, females are the heterogametic sex. As such, studying gene 

expression in birds will allow us a rare opportunity to look for evidence of Haldane’s rule and 

other sex chromosome related hypotheses in a female heterogametic system. According to 

Haldane’s rule, hybrids of the heterogametic sex are more likely to be sterile or inviable. Studies 

in male heterogametic systems have hypothesized an “X-effect” where the X chromosome has 

evolved at a faster rate due to effects of dominance. We can similarly test for a Z effect. The Z 

chromosome has a higher neutral mutation rate than autosomes since it passes through the male 

germ line twice and the male germ line undergoes a greater number of cell divisions (Edwards et 

al., 2005).  

Sexual conflict might also increase the rate at which mutations that could contribute to 

hybrid incompatibility arise. Certain mutations on the sex chromosomes may arise that increase 

the rate at which those chromosomes are transmitted (Hurst et al., 1996). A mutation that 

increases male fitness by stimulating females to invest more in reproduction would provide an 
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advantage that might drive it towards fixation. Similarly a mutation that allows for differential 

transmission of one sex chromosome over the other might arise. Such mutations would result in a 

biased sex ratio, so mutations that counter these biases would be favored. These types of rapidly 

evolving sex chromosome situations may allow for an easier proliferation of mutations that 

contribute to hybrid incompatibility as well. These types of mutations have been well 

documented in many species of birds as well (Price, 2008).  

Project Objectives 

In order to examine patterns of expression divergence and to look for genetic 

contributions to hybrid incompatibility, I have examined populations that are geographically 

isolated and are on their way to becoming distinct species. Roughly one million years ago, zebra 

finches, Taeniopygia guttata, from mainland Australia colonized several of the surrounding 

Lesser Sunda islands (Mayr, 1944, Balakrishnan and Edwards, 2009). This allowed for the 

formation of a distinct subspecies on the Lesser Sunda Islands (Zann, 1996). Over the past 

million years, an initial founder event followed by genetic drift and divergent selection has led to 

the development of distinct Australian (T. guttata castanotis) and island or Timor (T. guttata 

guttata) subspecies (Balakrishnan and Edwards, 2009). While the two subspecies are genetically 

differentiated (Balakrishnan and Edwards 2009), they are still able to interbreed and produce 

viable hybrid offspring.  

Most previous hybrid gene expression studies have looked at taxa with high levels of 

reported misexpression throughout the genome (Roraz et al., 2004). However, much of this 

difference in expression may be influenced by genetic divergence after reproductive isolation. In 

order to understand the role of disruption of gene expression in speciation, I examined a case 

where hybrid breakdown might be less severe (Barrieto et al., 2014) as in the case with zebra 
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finches. In order to understand evolutionary processes such as speciation, it is important to study 

organisms at different points in the speciation process (Seehausen et al., 2014). By examining 

organisms at diverse time points on this continuum, we are able to answer questions such as: 

What types of genes are more prone to early gene expression divergence? Is there a particular 

location such as the sex chromosomes where gene expression diverges earlier? Does genomic 

divergence tend to follow a common trajectory during the speciation process? Are these findings 

consistent for diverse types of taxa? The zebra finch can be used as a model organism in 

examining how gene expression patterns diverge between two geographically isolated 

subspecies.
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METHODS: 

RNA Preparation & Sequencing 

 Gene expression data in the form of RNA-Seq were compared between T. guttata 

castanotis (Australian), T. guttata guttata (Timor), and hybrid zebra finch populations. Birds 

were housed in captivity at the Institute for Genomic Biology at the University of Illinois at 

Urbana-Champaign. Three male birds were sampled from each of the three populations 

(Australian, Timor and hybrid). All of the hybrid birds studied were the result of crosses between 

female Australian zebra finches and Timor males. This crossing directionality was chosen 

because female Australian zebra finches breed more readily in captivity than do female Timor 

finches. 

In order to control for environmental on gene expression, each individual bird was 

isolated in an acoustic isolation chamber the night before they were to be sacrificed. Birds were 

then euthanized by decapitation the next morning to control for circadian effects on gene 

expression. Tissues were isolated and then snap-frozen on dry ice.  

For this study, whole brain tissue was homogenized in Tri-Reagent (Molecular Research 

Company) for RNA purification and total RNA was extracted following manufacturer’s 

instructions. Total RNA was then DNase treated (Qiagen, Valencia CA) to remove any genomic 

DNA contamination and the resulting RNA was further purified using Qiagen RNeasy columns. 

Purified total RNA was assessed for quality using an Agilent Bioanalyzer. Library preparation 

and sequencing were done at the University of Illinois Roy J. Carver Biotechnology Center. 

Library preparation used Illumina TruSeq RNA Sample Prep Kit and manufacturer’s protocols 

(Illumina, San Diego, CA). Sequencing was performed in a single lane of an Illumina HiSeq
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2000 using a TruSeq SBS sequencing kit version 3 producing single end 100 base pair 

reads which were analyzed with Casava 1.8.2. 

Reads were trimmed using the program ConDeTri (Smeds and Kunster, 2011) with the 

minimum length of the reads set to 25.  Across all samples, between 72.47% and 73.40% of the 

reads were kept with at least 23 million reads for each sample.  TopHat 2 (Kim et al., 2013) was 

used to map the reads to the zebra finch reference genome (taeGut3.2.4, Warren et al., 2010).  

For mapping, the read gap length and the read edit distance were both set to 3.  Otherwise, 

default settings in Tophat2 were used. Samtools (Li et al., 2009) were used to convert the output 

files into SAM files, which were then converted to BAM files and sorted also using Samtools.  

Ht-seq (Anders et al., 2014) was used to count the total number of reads per gene.   

Comparative Analysis of Read Mapping Software and Parameters 

Preliminary analyses revealed that T. guttata guttata reads mapped to the reference 

genome at lower rate than T. guttata castanotis, likely due to sequence divergence. To eliminate 

this bias in comparisons of Timor and Australian zebra finches, I tested whether different read 

mapping algorithms and stringency settings could correct for mapping bias (Table 1). Three 

different mappers – Bowtie 2, BWA and STAMPY – were used (Langmead and Salzberg, 2012, 

Li and Durbin, 2009, Lunter and Goodson, 2011). The previously trimmed genomic DNA reads 

from both the Australian population and the Timor population were mapped to an Australian 

reference genome. Reads were mapped using all three mappers at default settings. An additional 

mapping for each program was performed using reads from each bird sample where the default 

settings were altered in order to allow less stringent mapping. For Bowtie 2, the alternative 

mapping strategy involved altering the “score-min” parameter from -0.6 to -0.5. For BWA, the 

“mismatch penalty” parameter was altered from 4 to 5. For STAMPY, the substitution rate 
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parameter was increased to 0.05. Differences between the rate at which the Australian population 

and the Timor population reads mapped to the reference Australian genome at each of the default 

and altered mapping settings were then compared. 

Creation of a Timor Zebra Finch Reference Genome 

 As an additional strategy, I generated a Timor zebra finch genome using a reference-

guided approach. Genomic DNA was extracted from muscle tissue samples of the same three 

Australian zebra finch and the same three Timor zebra finch individuals used in the RNA-Seq 

experiment. DNA was extracted using Qiagen DNA extracting kits. Purified total DNA was 

assessed for quality using an Agilent Bioanalyzer. Library preparation and sequencing were done 

at the University of Illinois Roy J. Carver Biotechnology Center. Library preparation was done 

using Illumina TruSeq DNA Sample Prep Kit and manufacturer’s protocols (Illumina, San 

Diego, CA). Sequencing was done in a single lane of an Illumina HiSeq 2000 using a TruSeq 

SBS sequencing kit version 3 producing paired end 100 base pair reads, which were analyzed 

with Casava 1.8.2. 

Genomic DNA reads from all samples were trimmed using ConDeTri with minimum 

read length set to 25. The mapping program STAMPY was used to map the Timor genomic 

DNA reads to the reference zebra finch genome. Samtools were used to convert the output files 

into SAM files, which were then converted to BAM files and sorted also using Samtools.  

Samtools-merge was used to merge the Timor DNA BAM files, the Timor RNA BAM files for 

the same three individuals and DNA BAM files generated from seven other Timor zebra finch. 

Samtools mpileup was used to generate pileup in a fastq file. The fastq file was converted to a 

fasta file using the conversion program seqtk (Li, 2015). Bowtie2-build was used to create a 

reference index.  
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To test whether mapping bias persisted when using this newly created genome, Genomic 

DNA reads were mapped to a zebra finch reference genome using Bowtie2 for both the 

Australian and Timor populations. Australian DNA reads were mapped to an Australian 

reference genome while the Timor DNA reads were mapped to the newly created Timor 

reference genome. Samtools were used to convert the output files into SAM files, which were 

then converted to BAM files and sorted also using Samtools.  Ht-seq was used to count the total 

number of reads per gene. DESeq 2 was used to calculate variance in read frequency between 

head to head comparisons of sample groups.  Genes that were significantly different (P < 0.01) 

were then uploaded into the biomart tool at the Ensembl website.  

Differential Expression Testing 

After optimizing mapping settings, RNA-Seq reads were re-mapped using STAMPY 

with the parameter substitutionrate = 5%.  DESeq 2 (Anders and Huber, 2010), was then used to 

test for differential expression between populations. DESeq 2 models variance in gene 

expression as a negative binomial distribution. This approach has demonstrated the ability to fit 

well with observed patterns of variation in RNA-Seq data (Love et al., 2014).  Genes were 

considered to be differentially expressed at FDR (False Discovery Rate) adjusted P-value < 0.01. 

Functional Annotation of Differentially Expressed Genes 

 Gene Ontology (GO) was used in functional annotation. All genes were uploaded into the 

biomart tool at the Ensembl website in order to retrieve standardized gene IDs and location of all 

of the genes in the dataset.  The lists of significantly different genes (P < 0.01) output from the 

differential expression analysis were used as test genes, which were uploaded to the zebra finch 

gene ontology program available at http://www.ark-genomics.org/tools/GOfinch and compared 

to a complete reference of 18,276 genes.  This tested for enrichment of GO categories within the 
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list of differentially expressed genes relative to what you would expect based on the whole 

genome. The adjusted Fisher P-value was used to determine significance (P < 0.05) for the 

difference in expected versus observed values for comparisons between these large data sets.   

Gene Expression Divergence Between Subspecies 

The RNA-Seq data from the preliminary experiment was used once again. STAMPY 

with a substitution rate of 0.05 was used to map the reads to a reference zebra finch genome.  

Samtools were used to convert the output files into SAM files, which were then converted to 

BAM files and sorted also using Samtools.  Ht-seq was used to count the total number of reads 

per gene.   

 DESeq 2 was used to calculate variance in read frequency between head to head 

comparisons of sample groups.  Genes that had significantly different (P < 0.01) expression 

values were uploaded to the same zebra finch gene ontology program.  The adjusted Fisher P-

value was used to determine significance for the difference in expected versus observed values 

for comparisons between these large data sets.  Significantly different genes were also uploaded 

to the zebra finch KEGG pathway program available at http://www.ark-

genomics.org/tools/KEGG in order to identify divergent KEGG pathways.  

RNA-Seq Hybrid Comparison 

 The RNA-Seq data for the hybrid zebra finches were used in comparisons of hybrid 

finches with both of the parental populations. Optimized settings were used to map the read of 

the hybrid zebra finch to the same Australian reference zebra finch genome. Samtools were used 

to convert the output files into SAM files, which were then converted to BAM files and sorted 

also using Samtools.  Ht-seq was used to count the total number of reads per gene.  
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Head to head comparisons between Australian (n=3), Timor (n=3), and hybrid (n=3) zebra finch 

were made for a total of 3 comparisons. Genes that were significantly different in expression (P 

< 0.01) were then uploaded to the zebra finch gene ontology program. Significance was 

determined using Fisher P-values.
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RESULTS: 

Read Mapping to the Timor Zebra Finch Reference Genome 

 Despite building a Timor zebra finch reference genome, I still observed a substantial bias 

in mapping rate. Over 54 million (75.7%) of the generated Australian genomic DNA reads 

mapped to the Australian reference genome using Bowtie 2. More than 51 million (70.5%) of the 

Timor DNA reads mapped to the newly assembled Timor reference genome. Of the genes that 

mapped, 42.4% of the Australian reads mapped to Ensembl genes and 34.8% of the Timor reads 

mapped to Ensembl genes. Using DE-Seq 2, 2,407 genes were found to be differentially 

expressed between populations, but many of these may simply reflect poor mapping to the Timor 

reference genome. Due to the large disparity in mapping rates, I did not use this genome in 

further analyses.  

Consequences of Alternate Read Mapping Strategies 

 In order to determine the effectiveness of the different mapper programs, the differences 

in mapping rates between the subspecies for the three mapper programs at default and modified 

settings were compared. These differences were plotted in Figure 1. Mappers were considered to 

have more effectively corrected for mapping bias if the rate at which Australian reads mapped to 

the genome and the rate at which the Timor reads mapped were more similar (the difference 

between mapping rates was decreased). Mappers with less stringent parameters performed better 

than mappers at default settings. Differences in mapping rates ranges from 0.73% (Bowtie2 

default) to 0.01% (STAMPY with modified parameters).  Overall, STAMPY performed the best, 

with Timor zebra finch reads mapping at 0.01% higher proportion than Australian zebra finch 

reads. Since STAMPY effectively eliminated read mapping bias, I used STAMPY for 

downstream gene expression analyses.
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Gene Expression Divergence Between Subspecies 

 In the analysis between populations using STAMPY, 632 genes were found to have 

differed in gene expression between the two subspecies (Figure 2). Of the 632 genes, 23 were 

located on the Z chromosome (3.6%) despite the fact that the Z chromosome comprises 4.3% of 

the zebra finch genome. As such, you would expect 27 of the differentially expressed genes to 

have been located on the Z chromosome. A chi squared test showed that there was no significant 

difference (χ2 = 0.67, P-value = 0.41) between the number of differentially expressed genes on 

the Z chromosome, and that which would be expected based on the size of the chromosome.  

Euclidean distance-based clustering of expression profiles generated in this analysis did 

not group samples by population of origin (Figure 2). Similarly, principal components analysis 

revealed that PC2, but not PC1, grouped samples by population of origin. PC1 explained 47% of 

the variance in expression profile. Using Gene Ontology and PCA loadings, categories relating 

to PC1 were based on differences in protein domain specific binding (GO:0019904), calcium ion 

binding (GO:0005509), protein binding (GO:0005515), nucleotide binding (GO:0000166) and 

transition metal ion binding (GO:0046914) (Figure 2). Gene ontology categories relating to 

glycolysis (GO:0006096), beta-amyloid binding (GO:0001540), L-lactate dehydrogenase activity 

(GO:0004459), and regulation of long-term neuronal synaptic plasticity (GO:0048169) 

contributed to PC2.  

Gene Ontology analysis of the differentially expressed genes showed three functional 

categories to differ significantly in comparisons between the Australian and Timor populations 

(adj. P < 0.05). GO categories relating to oxidation-reduction processes and oxidoreductase 

activity were divergent between the two populations with more genes differentially expressed 

than expected (Table 2). On the other hand, genes involved in protein binding processes were 
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shown to be more conserved in expression than expected. Thirty-five genes contributed to the 

oxidation-reduction processes and oxidoreductase activity and were found to be significantly 

different in expression between the two populations (Figure 3). Of these 35 genes, 8 genes were 

under-expressed in the Timor population when compared to the Australian population and 27 

genes were relatively over-expressed in the Timor population indicating these genes were more 

likely (χ2 = 10.31, P-value=0.00132) to be overexpressed in the Timor population than the 

Australian population. KEGG pathway analysis showed pathways relating to homologous 

recombination (5 genes) and Oxidative phosphorylation (8 genes) involved genes that were 

differentially expressed (Table 3).  

Gene Expression in Hybrids Versus Parental Species 

Two hundred and five genes were found to be differentially expressed between 

Australian and hybrid zebra finches. Of these, 142 were also differentially expressed in the 

comparison between the Australian and Timor zebra finches indicating broad overlap in these 

analyses (Figure 5). One GO category was significantly enriched among these differentially 

expressed genes (Table 4). This category related to cytochrome-c (mitochondrial protein 

involved in electron transport chain and oxidation-reduction) activity. No KEGG pathways were 

over or under-represented among the differentially expressed genes. The comparison between the 

hybrid and the Timor zebra finches showed 55 genes that were found to be differentially 

expressed. Of these, three genes were also differentially expressed in the Australian vs Timor 

comparison. No GO categories or KEGG pathways were over- or under-represented.  

In order to test for overdominant gene expression, I compared all six parental zebra finches with 

the three hybrid finches. In this analysis, only one gene (POMC) was differentially expressed 
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(Figure 6). POMC was expressed significantly more highly in hybrids than in either parental 

population with on average 93.9 reads in hybrids, and 32.3 reads in parentals (P-value= 9.6E-8).
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DISCUSSION: 

Gene Expression Divergence 

In my study I have broadly characterized patterns of gene expression divergence between 

two allopatric subspecies. It has previously been shown that the two zebra finch subspecies have 

diverged genetically at the sequence level (Balakrishnan and Edwards, 2009). Despite their 

relatively recent divergence and similar ecology, we found evidence for expression divergence of 

many genes between subpecies. Comparison between the Australian and Timor expression levels 

showed 632 genes that were differentially expressed. This provides evidence that, in addition to 

neutral sequence-level divergence (Balakrishnan & Edwards 2009), gene expression levels 

between the two populations have diverged after 1 million years in allopatry. 

We also found differences in expression between parental species and hybrid birds. Two 

hundred and five genes were found to be differentially expressed between the Australian 

subspecies and hybrids, and 55 genes were found to be differentially expressed between the 

Timor subspecies and hybrids. As such, there were many fewer genes differentially expressed in 

the hybrid comparisons than between subspecies, suggesting that hybrid expression was largely 

intermediate, and not overdominant. Only the gene POMC was found to be overdominant in the 

hybrid population.  

Lack of Evidence for Reproductive Gene Expression Divergence 

Genes found on the sex chromosome or reproductive genes that are involved in male-biased 

pathways or sexual conflict have been shown to evolve relatively rapidly (Hurst et al., 1996, 

Price 2008). These types of genes have also been shown to have highly divergent patterns of 

gene expression (Ortiz-Barrientos et al., 2007). More rapid divergence in gene expression in
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male-biased genes parallels observations that male morphological features evolve more 

rapidly than in females. In Drosophila, substantial differences sex-dependent regulation have 

been demonstrated (Ranz et al., 2003). Contrary to our initial predictions, neither genes on the 

sex chromosomes nor reproduction-related genes (as defined by GO categories) were found to be 

enriched among the set of genes with divergent expression profiles between subspecies. Given 

the strength of the pattern in other taxa, we speculate that the lack of evidence for accelerated 

expression divergence in sex linked genes may have to do with my choice of focal tissue. It is 

possible that the sex linked and reproductive genes that evolve quickly, tend to be those that 

expressed in reproductive tissues. 

Metabolic Gene Expression has Diverged 

I found that genes involved in metabolism processes are enriched among the 

differentially expressed genes. Protein-binding genes were shown to be relatively conserved in 

their expression. The gene categories that most significantly differed between the two zebra finch 

subspecies dealt with the metabolism processes of oxidation-reduction and oxidoreductase 

activity. Metabolic processes diverging in expression between closely related species has 

previously been seen (Ortiz-Barrietos et al., 2007). It is not known why these are often some of 

the first genes to diverge in expression level between separated populations. This trend may be 

impacted by differences in ecological divergence in populations that have been separated in 

allopatry (Arnegard et al., 2014). Metabolic adaptation may be expected in different habitats, 

such as those experienced by birds in arid island Australia versus the Lesser Sunda islands.  

Possible Implications and Future Directions 

Our findings are limited by the fact that the tissue samples used in this experiment were 

collected from the brains of the birds since gene expression levels for certain genes may vary in 
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different tissue types. In order to test for differences in expression of genes relating to the sex 

chromosome, reproductive regulatory genes, or male-biased genes it may be necessary to 

perform a similar experiment examining differences in gene expression of gonadal tissue 

samples. Furthermore, differences in gene expression between the two subspecies may occur at 

higher rates in gonadal tissue than in biologically conserved areas such as brain tissue.  Future 

comparisons similar to this one using gene expression data generated by gonadal tissue may 

provide evidence for this process. 

While it is now known that the zebra finch subspecies have diverged in gene expression 

in allopatry an open question regarding this progression remains: what is the evolutionary cause 

of this difference in gene expression? The genes that were shown to have diverged in expression 

levels related to metabolic processes. However, the population bottleneck of the Timor 

subspecies (Balakrishnan and Edwards, 2009) may have contributed to divergence in gene 

expression between the two populations due to lower effective population size (Phifer-Rixey et 

al., 2014) indicating genetic drift may have played a role in expression divergence. All birds used 

in this experiment were domesticated birds. However, the Australian lineage has been 

domesticated for much longer than the Timor lineage. As such, differences in domestication 

histories rather than differences in environmental factors and divergence due to genetic drift may 

have impacted the divergence in gene expression patterns between the two subspecies that were 

observed. Differences in expression of metabolism-related genes may reflect adaptation to 

captivity in domesticated birds, rather than ecological adaptation.  

My study examined only F1 hybrid birds. However, in some cases hybrid compatibilities 

are not observed until F2 or backcross generations (Barrieto et al., 2014, Phifer-Rixey et al., 

2014). For example in Drosophila males have been used to track infertility in order to find what 
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chromosomes and genes contribute to hybrid sterility (Wu &Ting, 2004).  These studies showed 

that gene expression patterns contributing to hybrid incompatibility may not be expressed unless 

recombinant chromosomes are generated, altering regulatory interactions in cis.  As such, some 

traits that contribute to hybrid incompatibility may not arise until the F2 generation or 

backcrossed hybrids. Future studies should incorporate F2 generations, which may result in 

novel gene expression interactions and potential decreases in fitness not seen in the F1 

generation hybrids.  

In addition to looking at F2 generation hybrids, future studies may find increased 

evidence for misexpression in hybrid zebra finch by performing the opposite experimental cross 

(male Australian with female Timor) than the one performed for this experiment (male Timor 

with female Australian). In Drosophila, genes having the greatest effect on hybrid sterility and 

inviability are found on the X chromosome (Coyne & Orr, 1988, Charlesworth et al., 1987).  In 

birds, females are heterogametic with ZW sex chromosomes while males receive two copies of 

the Z chromosome.  Future studies using F1 females from both hybrid cross directions would 

potentially allow for expression of sex linked genes that contribute to speciation, which are not 

present in the current set of crosses.   

Accommodating Sequence Divergence in RNA-Seq 

 Our study also suggests several strategies that may be used to deal with mapping bias, 

which may be observed when attempting to map divergent genes to a reference genome. In order 

to quantify gene expression, RNA reads were mapped to a reference genome. It has been 

observed that it is sometimes difficult for bioinformatics programs to distinguish between reads 

that are derived from alternative alleles for the same gene (Stevenson et al., 2013). For instance, 

in a study where reads of a human heterozygous genotype were mapped to a reference genome, 
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reads that were an exact match to the reference genome mapped at higher rates than those that 

were not despite the fact that reads were simulated at equal numbers for each allele (Degner et 

al., 2009). This difference in ability to map reads to a reference genome results in mapping bias. 

As such, reads that are exact matches to reference alleles map at higher rates than alternative 

alleles.  

I observed that using standard pipelines, the Australian zebra finch reads mapped at a 

higher rate to the zebra finch reference genome than the Timor zebra finch reads did. I 

hypothesized that this was due to sequence divergence between Australian and Timor zebra 

finches. Given a million years of divergence, even neutral divergence in DNA sequence would 

result in substantial mapping bias. In order to eliminate mapping bias, two methods were used: 

creation and use of a Timor zebra finch reference genome for the Timor mapping and the use of 

alternative mapping strategies using less stringent mapping parameters. 

When a comparison was made between the Timor read mapping rate to the Timor 

reference genome and the Australian mapping rate to the Australian reference genome, it was 

found that the Australian reads still mapped at a higher rate (75.7% compared to 70.5%). This 

persistence in disparity between mapping rates shows us that the assembled Timor zebra finch 

reference genome was not able to effectively eliminate the mapping bias. This may have been 

due to low quality of the assembled reference genome.  

The alternate mapper settings showed a decrease in the disparity between rates at which 

Australian reads and Timor reads mapped to the same Australian zebra finch reference genome. 

The program that most successfully eliminated this bias was the mapper STAMPY with a 

substitution rate of 0.05. The substitutionrate parameter allows for easier comparisons to be 

made between divergent populations by factoring in changes in sequence due to substitutions 
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over time. When this setting was set to 0.05, there was only a 0.01% difference between the 

mapping rates of the two populations. Interestingly, under this setting the Timor reads were the 

data that mapped at a higher rate to the Australian zebra finch reference genome. Since this 

setting most effectively corrected for the previously observed mapping bias, this mapper and 

mapper setting was used in the comparisons between the three zebra finch populations. I suggest 

that the STAMPY aligner, designed exactly for this purpose, will be useful in future studies in 

taxa lacking a reference genome.



26 
 

REFERENCES 

Anders, S., Huber, W. “Differential expression analysis for sequence count data.” Genome 

 Biology 11.10 (2010): R106. doi:10.1186/gb-2010-11-10-r106. 

Anders, S., Pyl, PT., Huber, W. “HTSeq – A Python framework to work with high-

 throughput sequencing data.” Bioinformatics 31.2 (2014): 166-69. 

Arnegard, ME., McGee, MD., Matthews, B., Marchinko, KB., Conte, GL., Kabir, S., Bedford, 

 N., Bergek, S., Chan, YF., Jones, FC., Kingsley, DM., Peichel, CL., Schluter, D. 

 “Genetics of ecological divergence during speciation.” Nature 511 (2014): 307-11.  

Balakrishnan, CN., Edwards, SV. “Nucleotide variation, linkage disequilibrium and founder-

 facilitated speciation in wild populations of the zebra finch (Taeniopygia guttata).” 

 Genetics 181.2 (2009): 645-60.  

Balakrishnan, CN., Lin, YC., London, SE., Clayton, DF. “RNA-Seq transcriptome analysis of 

 male and female zebra finch cell lines.” Genomics 100.6 (2012): 363-69. 

Barreto, FS., Pereira, RJ., Burton, RS. “Hybrid dysfunction and physiological compensation 

 in gene expression.” Molecular Biology and Evolution 32.3 (2014): 613-22.  

Bloom, JD., Adami, C. “Evolutionary rate depends on number of protein–protein interactions 

 independently of gene expression level: response.” BMC Evolutionary Biology 4:14 

 (2004): PMC.  

Brideau, NJ., Flores, HA., Wang, J., Maheshawari, S., Wang, X., Barbash, A. “Two 

 Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila.” Science 

 314.5803 (2006): 1291-95.



27 
 

Britten, RJ., Davidson, EH. “Gene regulation for higher cells: a theory.” Science 165 (1969): 

 349-57. 

 

Britten, RJ., Davidson, EH. “Repetitive and non-repetitive DNA sequences and a speculation on 

 the origins of evolutionary novelty.” The Quarterly Review of Biology 46.2 (1971): 111-

 38.  

Belle, GDM., Kane, NC., Rieseberg, LH., Adams, KL. “RNA-Seq analysis of allele-specific 

 expression, hybrid effects, and regulatory divergence in hybrids compared with their 

 parents from natural populations.” Genome Biology and Evolution  5.7 (2013): 1309-23.   

Cabot, EL, “Genetics of reproductive isolation: complex epistasis underlying hybrid 

 sterility in the Drosophila simulans clade.” Genetics 137 (1994): 175-89. 

Caporale, LH. “Natural selection and the emergence of a mutation phenotype: an update of the 

 evolutionary synthesis considering mechanisms that affect genome variation.” Annual 

 Review of Microbiology.  57 (2003): 467-85.  

Charlesworth, B., Coyne, JA., Barton, NH. “The relative rates of evolution of sex  chromosomes 

 and autosomes.” The American Naturalist 130 (1987): 113-46. 

Coyne, JA., Charlesworth, B. “Location of an x-linked factor causing male sterility in hybrids of 

 Drosophila simulans and D. mauritiana.” Heredity 57 (1986): 243-46.  

Coyne, JA., Charlesworth, B. “Genetic analysis of X-linked sterility in hybrids between three 

 sibling species of Drosophila.” Heredity 62 (1989): 97-106.  

Coyne, JA., Orr, HA. “Two rules of speciation.” Speciation and its Consequences Sunderland, 

 Mass. Sinauer Associates, 1989. pp. 180-207.  



28 
 

Cuadrado, M., Sacristan, M., Antequera, F. “Species-specific organization of cpg island 

 promoters at mammalian homologous genes.” EMBO Reports 2 (2001): 586–92. 

Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of 

 Favoured Races in the Struggle for Life. London. Murray, 1859. Print.  

Degner, JF., Marioni, JC., Pai, AA., Pickrell, JK., Nkadori, E., Gilad, Y., Pritchard, JK. “Effect 

 of read-mapping biases on detecting allele-specific expression from RNA-sequencing 

 data.”  Bioinformatics 25.24 (2009): 3207-12.  

deQueiroz, K. “Ernst Mayr and the modern concept of species.” Proceedings of the National 

 Academy of Sciences 102 (2005): 6600-07.  

Dobzhansky, T. “Studies on hybrid sterility II. Localization of sterility factors in Drosophila 

 pseudoobscura hybrids.” Genetics 21 (1936): 113-35. 

Dobzhansky, T. Genetics and the Origin of Species. New York, Columbia University. 1937. 

Edwards, SV., Kingan, SB., Calkins, JD., Balakrishnan, CN., Jennings, WB., Swanson, WJ., 

 Sorenson, MD. “Speciation in birds: genes, geography and sexual selection.” 

 Proceedings of the National Academy of Sciences 102 (2005):  6550-57.  

Ekblom, R., Galindo, J. “Applications of next generation sequencing in molecular ecology of 

 non-model organisms.” Heredity 107 (2011): 1–15. 

Fishman, L., Willis, JH. “Evidence for Dobzhansky-Muller incompatibilities contributing to the 

 sterility of hybrids between Mimulus guttatus and M. nasutus.” Evolution 55.10 (2001): 

 1932-42.  



29 
 

Gagnaire, PA., Normandeau, E., Bernatchez, L. “Comparative genomics reveals adaptive  protein 

 evolution and a possible cytonuclear incompatibility between European and American 

 eels.” Molecular Biology and Evolution 29.10 (2012): 2909-19.   

Gilad, Y., Pritchard, JK., Thornton, K. “Characterizing natural variation using next-generation 

 sequencing technologies.” Trends in Genetics 25 (2009): 463–71. 

Gould, SJ. “Is a new and general theory of evolution emerging?” Paleobiology 6 (1980): 119-30. 

Graze, RM., McIntyre, LM., Main, BJ., Wayne, ML., Nuzhdin, SV. “Regulatory divergence in 

 Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific 

 expression.” Genetics 183 (2009): 547-61. 

Haerty, W., Singh, RS. “Gene regulation divergence is a major contributor to the evolution of 

 Dobzhansky–Muller incompatibilities between species of Drosophila.” Molecular 

 Biology Evolution 23 (2006): 1707-14. 

Haldane, JBS. “Sex-ratio and unisexual sterility in hybrid animals.” Journal of Genetics 12 

 (1922): 101— 109. 

Hillis, DM., Green, DM. “Evolutionary changes of heterogametic sex in the phylogenetic 

 history of amphibians.” Journal of Evolutionary Biology 3.1-2. (1990): 49-64.  

Hinman, VF., Nguyen, AT., Cameron, RA., Davidson, EH. “Developmental gene regulatory 

 network architecture across 500 million years of echinoderm evolution.” Proceedings of 

 the National Academy of Sciences 100 (2003): 13356–61. 

Hurst, LD., Atlan, A., Bengtsson, BO. “Genetic conflicts.” Quarterly Review of Biology 71 

 (1996): 317-64.  



30 
 

Ihmels, J., Bergmann, S., Barkai, N. “Defining transcription modules using large-scale gene 

 expression data.” Bioinformatics 166 (2004) 

Johnson, N. “Hybrid incompatibility and speciation.”  Nature Education 1.1 (2008): 20.   

Johnson, NA. “Gene interaction and the origin of species.” Epistasis and the Evolutionary 

 Process Oxford. University Press, New York. 2000. 197-212.  

Johnson, NA., Porter, AH. “Rapid speciation via parallel, directional selection on regulatory 

 genetic pathways.” Journal of Theoretical Biology 205 (2000): 527-42.  

Jordan, IK., Marino-Ramirez, L., Koonin, EV. “Evolutionary significance of gene expression 

 divergence.” Gene 345.1 (2005): 119-26.  

Khaitovich, P., Weiss, G., Lachmann, M., Hellmann, I., Wolfgang, E., Muetzel, B., Wirkner, U., 

 Ansorge, W., Paabo, S. “A neutral model of transcriptome evolution.” PLoS Biol 2.5 

 (2004):  132 doi:10.1371/journal.pbio.0020132. 

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, SL. “TopHat2: accurate 

 alignment of transcriptomes in the presence of insertions, deletions and gene fusions.” 

 Genome Biology 14.4 (2013). 

Kimura, M. “Evolutionary rate at the molecular level.” Nature 217 (1968): 624-26.   

King, JL., Jukes, TH. “Non-Darwinian evolution.” Science (1969): 788-798.  

King, MC., Wilson, AC. “Evolution at two levels in humans and chimpanzees.” Science 

 188.4184 (1975): 107-16.  

Langmead, B., Salzberg, S. “Fast gapped-read alignment with Bowtie 2.” Nature Methods 

 9 (2012): 357-59.  



31 
 

Li, H. “seqtk Toolkit for processing sequences in FASTA/Q formats.” GitHub GitHub, Inc. 

 2015. February, 10th 2015. https://github.com/lh3/seqtk.  

Li, H., Durbin, R. “Fast and accurate short read alignment with Burrows-Wheeler Transform.” 

 Bioinformatics 25 (2009): 1754-69.  

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis G., 

 1000 Genome Project Data Processing Subgroup. “The Sequence alignment/map  (SAM) 

 format and SAMtools.” Bioinformatics 25 (2009): 2078-9.  

Love, MI., Huber, W., Anders, S. “Moderated estimation of fold change and dispersion for 

 RNA-seq data with DESeq 2.” Genome Biology 15.550. (2014): doi: 10.1186/s13059-

 014-0550-8. 

Lunter, Goodson. “Stampy: a statistical algorithm for sensitive and fast mapping of Illumina 

 sequence reads.” Genome Research 21 (2011): 936-39.  

Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, New York). 1942. 

Mayr, E. “Timor and the colonization of Australia by birds.” Emu 44 (1944): 113-30.  

Mayr E. Animal Species and Evolution. Harvard University Press, Cambridge. MA. 1963. 

Maheshwari, S., Barbash, DA. “The genetics of hybrid incompatibilities.” Annual Review 

 Genetics 45 (2011): 331–55. 

Masly, JP., Presgraves, DC. “High-resolution genome-wide dissection of the two rules of 

 speciation in Drosophila.”  PLoS Biology 5 (2007): 243.  

McManus, CJ., “Regulatory divergence in Drosophila revealed by mRNA-seq.” Genome  Results 

 20 (2010): 816–25. 



32 
 

Mitchell-Olds, T., Willis, JH., Goldstein, DB. “Which evolutionary processes influence natural 

 genetic variation for phenotypic traits?” Nature Reviews Genetics 8 (2007): 845-56.  

Muller, HJ. “Isolating mechanisms, evolution, and temperature.” Biology Symposium 6 (1942): 

 71-125.  

Nowick, K., Carneiro, M., Faria, RA. “A prominent role of KRAB-ZNF transcription factors in 

 mammalian speciation?” Trends in Genetics 29 (2013): 130–139. 

Orr, HA. “Haldane’s rule has multiple genetic causes.” Nature 361 (1993): 532-33.  

Orr, HA. “The population genetics of speciation: the evolution of hybrid incompatibilities.”

 Genetics 139.4 (1995): 1805-13.  

Ortiz-Barrientos, D., Counterman, BA., Noor, MAF. “Gene expression divergence and the 

 origin of hybrid dysfunctions.” Genetica 129 (2007): 71-81.  

Pal, C., Papp, B., Hurst, LD. “Highly expressed genes in yeast evolve slowly” Genetics 158.2 

 (2001): 927-31. 

Phifer-Rixey, M., Bomhoff, M., Nachman, MW. Genome-wide patterns of differentiation 

 among house mouse subspecies. Genetics 198.1 (2014). 283-97.  

Porter, AH., Johnson, NA. “Speciation despite gene flow when developmental pathways 

 evolve.” Evolution 56 (2002): 2103–11. 

Presgraves, DC. “The molecular evolutionary basis of species formation.” Nature Review 

Genetics 11  (2010): 175–180. 

Price, TD., Bouvier, MM. “The evolution of F1 postzygotic incompatibilities in birds.” 

 Evolution 56.10 (2002): 2083-89.  



33 
 

Price T. Speciation in Birds.  Ed. by G Hefta and J Besch.  Roberts and Company  Publishers.  

 Greenwood Village, CO. 2008.  

Ranz, JM., Castillo-Davis, CI., Meiklejohn, CD., Hartl, DL. “Sex-dependent gene expression 

 and evolution of the Drosophila transcriptome.” Science 300 (2003): 1742-45.  

Ranz, JM., Namgyal, K., Gibson, G., Hartl, DL. “Anomalies in the expression profile of 

 interspecific hybrids of Drosophila melanogaster and Drosophila simulans.” Genome 

 Results 14 (2004): 373-79. 

Rice, WR., and Hostert, EE. “Laboratory experiments in speciation: What have we learned in 

 40 years?” Evolution 47.6 (1993): 1637-53.  

Renaut, S., Nolte, AW., Bernatchez, L. “Gene expression divergence and misexpression 

 between lake whitefish species pairs (Coregonus spp. Salmonidae).” Molecular Biology 

 Evolution 4 (2009): 925-36.  

Rocha, EP., Danchin, A. “An analysis of determinants of amino acids substitution rates in 

 bacterial proteins.” Molecular Biology Evolution 21 (2004): 108–16. 

Seehausen, O., Butlin, RK., Keller, I., Wagner, CE., Boughman, JW., Hohenlohe, PA., Peichel, 

 CL., Saetre, GP., Bank, C., Brannstrom, A., Brelsford, A., Clarkson, CS., Eroukhmanoff, 

 F., Feder, JL., Fischer, MC., Foote, AD., Franchini, P., Jiggins, CD., Jones, FC., 

 Lindholm, AK., Kucek, K., Maan, ME., Marques, DA., Martin, SH., Matthews, B., 

 Meier, JI., Most, M., Nachman, MW., Nonaka, E., Rennison, DJ., Schwarzer, J., Watson, 

 ET., Westram, AM., Widmer, A. “Genomics and the origin of species.” Nature Review 

 Genetics 15 (2014): 176-92.  



34 
 

Smeds, L., Kunstner, A. “ConDeTri – A content dependent read trimmer for Illumina data.”

 PLoS ONE 6.10 (2011): e26314. doi:10.1371/journal.pone.0026314. 

Song, R., Messing, J. “Gene expression of a gene family in maize based on noncollinear 

 haplotypes.”  Proceedings of the National Academy of Science 100 (2003): 9055–60. 

Springer, NM., Stupar, RM. “Allele-specific expression patterns reveal biases and embryo-

 specific parent-of-origin effects in hybrid maize.” Plant Cell 19 (2007): 2391–2402. 

Stevenson, KR., Coolon, JD., Wittkopp, PJ. “Sources of bias in measures of allele-specific 

 expression derived from RNA-Seq data aligned to a single reference genome.” BMC 

 Genomics 14.536 (2013): doi:10.1186/1471-2164-14-536. 

Templeton, AR. “Mechanisms of speciation—a population genetic approach.” Annual Review 

 Ecological Systems 12 (1981): 23-48.  

Tirosh, I., Reikhav, S., Levy, AA., Barkai, N. “A yeast hybrid provides insight into the 

 evolution of gene expression regulation.” Science 324.5927 (2009): 659-62.  

Trapnell, C., Patcher, L., Salzber, SL. “TopHat: discovering splice junctions with RNA-Seq.”   

 Bioinformatics 25.9 (2009) 1105-11.  

Turelli, M., Orr, HA. “The Dominance Theory of Haldane’s Rule.” Genetics 140 (1999): 389-

 402.  

Turelli, M., Orr, HA. “The evolution of postzygotic isolation: accumulating Dobzhansky-Muller 

 incompatibilities.” Evolution 55.6 (2001): 1085-94.  

Warren, WC., Clayton, DF., Ellegren, H., Arnold, AP., Hillier, LW., Künstner, A., Searle, S., 

 White, S., Vilella, AJ., Fairley, S., Heger, A., Kong, L., Ponting, CP., Jarvis, ED., Mello, 

 CV., Minx, P., Lovell, P., Velho, TA., Ferris, M., Balakrishnan, CN., Sinha, S., Blatti, C., 

 London, SE., Li, Y., Lin, YC., George, J., Sweedler, J., Southey, B., Gunaratne, P., 



35 
 

 Watson, M., Nam, K., Backström, N., Smeds, L., Nabholz, B., Itoh, Y., Whitney, O, 

 Pfenning, AR., Howard, J.. Völker, M., Skinner, BM., Griffin, DK., Ye, L., McLaren, 

 WM., Flicek, P., Quesada, V., Velasco, G., Lopez-Otin, C., Puente, XS., Olender, T., 

 Lancet, D., Smit, AF., Hubley, R., Konkel, MK., Walker, JA., Batzer, MA., Gu, W., 

 Pollock, DD., Chen, L., Cheng, Z., Eichler, EE., Stapley, J., Slate, J., Ekblom, R., 

 Birkhead, T., Burke, T., Burt, D., Scharff, C., Adam, I., Richard, H., Sultan, M., 

 Soldatov, A., Lehrach, H., Edwards, SV., Yang, SP., Li, X., Graves, T., Fulton, L., 

 Nelson, J., Chinwalla, A., Hou, S., Mardis, ER., Wilson, RK. “The genome of a 

 songbird.” Nature 464.7289 (2009) 757-62.  

Wittkopp, PJ., Haerum, BK., Clark, AG. “Evolutionary changes in cis and trans gene 

 regulation.” Nature 430 (2004): 85–88. 

Wolf, JBW., Lindell, J., Backstrom, N. “Speciation genetics: current status and evolving 

 approaches.” Philosophy of Transactions of the  Royal Society  B Biological Science 365 

 (2010): 1717–1733. 

Wray, GA., Hahn, MW., Abouheif, E., Balhoff, JP., Pizer, M., Rockman, MV., Romano, LA. 

 “The evolution of transcriptional regulation in eukaryotes.” Molecular Biology Evolution 

 20 (2003):  1377– 1419. 

Wu, CI., Davis, AW. “Evolution of post-mating reproductive isolation: the composite nature 

 of Haldane’s rule and its genetic basis.” The American Naturalist 142.2 (1993): 187-212.  

Wu, CI., Ting, CT., “Genes and speciation.”  Nature Reviews Genetics 5 (2004): 114-22.  

Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., 

 Horn-Saban, S., Safran, M., Domany, E., Lancet, D., Shmueli, O. “Genome-wide 



36 
 

 midrange transcription profiles reveal expression level relationships in human tissue 

 specification.” Bioinformatics. 25.5 (2005): 650-59. 

Zann, RA. The Zebra Finch: A Synthesis of Field and Laboratory Studies. Oxford 

 University Press. Oxford.1996.  

Zufall, RA., Rausher, MD. “Genetic changes associated with floral adaptation restrict future 

 evolutionary potential.” Nature 428 (2004): 847–850. 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

Table 1. List of mappers and alternative mapping strategies used in attempts to correct for 

mapping bias. 

Mapping Program  Altered Parameter Default Setting Altered Setting 

Bowtie 2 score-min -0.6 -0.5 

BWA mismatch 4 5 

STAMPY substitution rate 0.01 0.05 
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Table 2. Gene Ontology results for the comparison between Australian and Timor zebra finch 

gene expression levels. Shown are the top 10 results based on adjusted Fisher p-value. Top three 

results were considered significant (P-value < 0.01).  

GO go_description total expectation observation fisher adj.fisher 

GO:0055114 oxidation-

reduction 

process 

463 15 35 7e-06 0.0063 

GO:0005515 protein binding 5548 184 140 1.3e-05 0.0063 

GO:0016491 oxidoreductase 

activity 

361 12 28 3.2e-05 0.01 

GO:0008237 metallopeptidase 

activity 

80 3 10 3e-04    0.066 

GO:0006122 mitochondrial 

electron 

transport, 

ubiquinol to 

cytochrome c 

5 0 3 0.00035 0.066 

GO:0005622 intracellular 1674 56 33 0.00057 0.074 

GO:0016884 carbon-nitrogen 

ligase activity, 

with glutamine 

as amido-N-

donor 

6 0 3 0.00067 0.074 

GO:0008152 metabolic 

process 

537 18 33 0.00075 0.074 

GO:0001558 regulation of 

cell growth 

23 1 5 0.00081 0.074 

GO:0005975 carbohydrate 

metabolic 

process 

125 4 12 0.00091 0.074 
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Table 3. KEGG pathway analysis results for comparison between Australian and Timor zebra 

finch gene expression levels. Top 10 results are shown.  

pathway_id pathway_title total expectation observation fisher adj.fisher 

gga03440 Homologous 

recombination 

24 1 5 0.00078 0.043 

gga00190 Oxidative 

phosphorylation 

75 2 8 0.0022 0.061 

gga03430 Mismatch repair 15 0 3 0.011 0.15 

gga00980 Metabolism of 

xenobiotics by 

cytochrome P450 

15 0 3 0.011 0.15 

gga00511 Other glycan 

degradation 

7 0 2 0.019 0.17 

gga00280 Valine, leucine 

and isoleucine 

degradation 

33 1 4 0.02 0.17 

gga00860 Porphyrin and 

chlorophyll 

metabolism 

19 1 3 0.022 0.17 

gga00350 Tyrosine 

metabolism 

22 1 3 0.032 0.22 

gga00640 Propanoate 

metabolism 

23 1 3 0.036 0.22 

gga03030 DNA replication 26 1 3 0.049 0.27 
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Table 4. Gene Ontology results for the comparison between Australian and hybrid zebra finch 

gene expression levels. Top 10 results are shown.  

GO go_description total expect observation fisher adj.fisher 

GO:0006122 mitochondrial electron 

transport, ubiquinol to 

cytochrome c 

5 0 3 1.2e-05 0.0051 

GO:0008121 ubiquinol-cytochrome-c 

reductase activity 

8 0 3 6.4e-05 0.014 

GO:0008610 lipid biosynthetic 

process 

15 0 3 0.00049 0.071 

GO:0051393 alpha-actinin binding 4 0 2 0.00067 0.073 

GO:0071391 cellular response to 

estrogen stimulus 

5 0 2 0.0011 0.096 

GO:0009755 hormone-mediated 

signaling pathway 

10 0 2 0.0048 0.11 

GO:0005634 nucleus 2257 24 13 0.0096 0.11 

GO:0003874 6-

pyruvoyltetrahydropterin 

synthase activity 

1 0 1 0.011 0.11 

GO:0009181 purine ribonucleoside 

diphosphate catabolic 

process 

1 0 1 0.011 0.11 

GO:0070552 BRISC complex 1 0 1 0.011 0.11 
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Table 5. Gene Ontology results for the comparison between Timor and hybrid zebra finch gene 

expression levels. Top 10 results are shown.  

GO go_description total expectation observation fisher adj.fisher 

GO:0019388 galactose catabolic 

process 

1 0 1 0.003 0.043 

GO:0003978 UDP-glucose 4-

epimerase activity 

1 0 1 0.003 0.043 

GO:0030552 cAMP binding 1 0 1 0.003 0.043 

GO:0005199 structural constituent 

of cell wall 

1 0 1 0.003 0.043 

GO:0018117 protein adenylylation 1 0 1 0.003 0.043 

GO:0070733 protein 

adenylyltransferase 

activity 

1 0 1 0.003 0.043 

GO:0035494 SNARE complex 

disassembly 

1 0 1 0.003 0.043 

GO:0010807 regulation of synaptic 

vesicle priming 

1 0 1 0.003 0.043 

GO:0090231 regulation of spindle 

checkpoint 

1 0 1 0.003 0.043 

GO:0071207 histone pre-mRNA 

stem-loop binding 

1 0 1 0.003 0.043 
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Figure 1: Bar graph showing effectiveness of mapping strategies. Default settings and alternative 

settings for three different mapping programs (Bowtie 2, BWA and STAMPY) are shown. The 

height of each bar represents the magnitude of the difference between the rates at which reads 

from Australian zebra finch mapped to a reference genome compared to the rates at which reads 

from Timor zebra finch mapped to the same reference genome. Mapping strategies with smaller 

bars more effectively corrected for mapping bias. 
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Figure 2: MA plot showing differentially expressed genes in comparison between Australian and 

Timor zebra finch populations. The y-axis shows log2 fold change for gene expression and the x-

axis shows the mean of normalized counts. The black dots represent genes that did not 

significantly differ in expression between the two populations while the red dots represent genes 

that were significantly different in gene expression (P-value < 0.01). In total, 632 genes were 

found to significantly differ in expression values between the two populations.  
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Figure 3: Heatmap and principal component analysis showing similarity of individuals from all 

three populations based on gene expression levels. Darker squares of the heat map show closer 

relatedness between individuals. Hybrids are all found dispersed between the parental individuals 

demonstrating that the hybrids are largely intermediate in overall expression profile. Principal 

component analysis shows PC1 and PC2. Data points designated as H represent hybrid birds 

while data points designated as A represent birds from the Australian subspecies and data points 

designated as T represent birds from the Timor subspecies. PC1 does not segregate individuals 

based on population of origin. However, PC2 does. Ion and protein binding genes were shown to 

have contributed to the differences between individuals in PC1. 
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Figure 4: Plots showing differences in normalized counts of gene expression data for Australian 

and Timor zebra finch. X-axis one of each plot represents expression data for Australian 

individuals while x-axis number 2 of each plot represents expression data for Timor individuals. 

Plots for the top eight genes that most significantly differed in expression are shown. The y-axis 

shows the mean normalized count. Note the difference in scales.  
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Figure 5: Venn diagram showing the overlap in the number of reads that were differentially 

expressed in each pairwise comparison between populations. There is a large amount of overlap 

in comparisons between Australian to Timor populations and the Australian to hybrid 

comparison indicating broad overlap in these two analyses.  
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Figure 6: Plot showing the normalized counts data for the POMC gene. POMC was the gene that 

was found to be different in expression in the hybrid to parental comparison. X-axis number one 

represents birds from both of the parental populations. X-axis number two represents birds from 

the hybrid population. The y-axis shows the mean normalized counts. Gene expression was 

higher in the hybrids showing evidence of over-dominance. 
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