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 Running biomechanics are well established in terms of lower extremity joint kinetics as is 

the direct relationship between these variables and running speed. Many studies have 

investigated the differences in these variables when running velocity was increased in discrete 

increments but investigations of accelerated running in which velocity is continually increasing 

are almost non-existent. One investigation of the acceleration phase of running showed that joint 

torques did not increase while accelerating. These results cannot be aligned with the fully 

established results of running biomechanics at different speeds.  We expected the joint torques to 

increase in magnitude for each step during the acceleration phase based on the previous research 

investigating increases in running velocity. The purpose of this study was to quantify lower 

extremity joint torques and powers during constant speed running and during running while 

accelerating at two rates of acceleration between a baseline velocity of 2.50 ms
-1

 to a maximal 

velocity of 6.00 ms
-1

. It was hypothesized that lower extremity sagittal plane joint torques and 

joint powers would positively and linearly increase throughout the acceleration phase of running. 

15 young, healthy runners (n =  8 females) between the ages of 18 and 22 were analyzed on an 

instrumented treadmill while accelerating at 0.40 ms
-2

 (A1) and 0.80 ms
-2

 (A2) from the initial to 

final velocities. Inverse dynamics were used to determine lower limb joint torques and powers 

using ground reaction forces and kinematic data collected by 3D motion capture. Correlation and 

regression analyses were used to identify the relationships between mean, maximum hip, knee, 
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and ankle torques and power to step number during the constant velocity and acceleration phase. 

The results of this study showed a significant increase in the joint torques and joint powers per 

step in both conditions A1 and A2 at the hip, knee, and ankle joints during the acceleration phase 

when the regression beta weights and correlation coefficients were tested for significance (p < 

0.05). It was also observed that the knee and ankle joint torques and the hip, knee, and ankle joint 

powers had significantly greater increases per step in condition A2. There was no significant 

difference in the beta weights in hip joint torque between conditions A1 and A2. The constant 

state, pre- and post-acceleration phases had no relationship between joint torque and step number 

and joint power and step number in almost every variable, with three exceptions. There was a 

significant, direct increase in magnitude in hip joint power during the pre-acceleration period of 

condition A1, as well as hip joint torque during the post-acceleration period of condition A2. 

Additionally, a significant inverse relationship was seen in ankle joint power in condition A2 in 

the post-acceleration period. Finally, it was observed that the hip and ankle are the primary 

contributors to accelerating while running based on the magnitude of the beta weights of these 

variables, with the knee also contributing but not as much as the hip and ankle. In conclusion, in 

contrast to a previous study, our data suggest that hip, knee, and ankle torques doincrease during 

accelerated running on a step by step basis as do hip, knee, and ankle joint powers. Therefore, 

the tested hypothesis was supported based on the results of this study. 
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CHAPTER 1: INTRODUCTION 

Basics of Running 

Running is a repetitive, cyclic activity with a single cycle termed a stride. One stride 

cycle includes flight and support phases which are the periods of time the runner is not in contact 

with the ground and in contact with the ground, respectively. A stride is typically assessed from 

the initial heel contact of the foot to the next successive initial heel contact of the ipsalateral foot. 

Each stride is composed of left and right steps with a step referring to the initial contact of one 

foot to the initial contact of the contralateral foot (Thordarson, 1997). Running is distinguished 

from walking by one key difference. Running has a “flight phase” in which both feet are off the 

ground whereas walking does not (Dicharry, 2010; Nicola & Jewison, 2012; Thordarson, 1997). 

The support phase consists of an absorption or “braking” phase, followed by a propulsion phase. 

The swing phase is comprised of an initial and a terminal swing (Dicharry, 2010; Thordarson, 

1997). During running there are forces acting on the body that tend to cause a collapse. The 

runner through lower extremity joint flexions and the anti-gravity, extensor muscles of the lower 

extremity work to prevent collapse during the entirety of the support phase (Winter, 1980). 

Winter (1980) stated that the lower limb support is derived from the combined muscle torques 

across the hip, knee, and ankle and are termed the “support” torque collectively. Support torques 

represents the ability to provide support and prevent collapse and is due to the collective activity 

of the muscles at all joints of the lower extremity. These muscles produce the individual joint 

torques and create the locomotive pattern of running. If there is a lack of torque production at 

one joint the other two joints may compensate for this to create sufficient support. This concept 

emphasizes the importance of examining all three joints when doing a kinetic assessment of gait 

(Winter, 1980).
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 The muscle groups at the three major joints of the lower extremity perform a 

combination of positive and negative work through their joint powers to create the running 

locomotion pattern. Power is calculated from the product of the torques produced at each joint 

and angular velocity (DeVita, Hortobagyi, & Barrier, 1998; Elftman, 1940; Johnson & Buckley, 

2001; Winter, 1983). Positive power represents a concentric contraction of the musculature and 

negative power represents an eccentric contraction (Winter, 1980). These muscular contractions 

are what keep the body erect when running and prevents collapsing. 

Background on Running Velocity Research 

Running is involved in many sports and forms of physical activity. Within these activities 

running velocity is usually a vital factor to the athlete’s performance. This has spurred research 

interest into running velocity and the changes in kinematics and kinetics that occur at different 

constant velocities. Research investigating the ground reaction forces with constant velocity 

finds the braking force impulse and the propulsive impulse to be equal in magnitude. 

Additionally it has been found that as velocity increases, the ground reaction forces- both 

horizontal and vertical- increase as well (Belli et al., 2002; Munro, Miller, & Fugelvand, 1987).  

Through the manipulation of running velocity, investigators have reported the relationship 

between velocity and joint torques and powers changes to have a direct relationship with 

increasing constant running velocity. The overall findings of the previous research indicated that 

as one runs at a faster constant velocity, the ankle joint torque will increase first contributing to 

the initial increase in velocity by means of increasing stride length, followed by an increase in 
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joint torque at the hip and knee as velocity approaches maximal speeds by means of increasing 

stride rate (Belli et al., 2002; Dorn et al., 2012; Schache et al., 2011).  

Background in Running Acceleration Research 

The literature is quite limited in regards to the acceleration phase of running and the 

neuromuscular causes of actual acceleration. One novel study examined acceleration during 

running but the results do not seem to relate to the previous research that investigated increased 

constant velocities. Van Caekenberghe et al (2013) stated that the primary focus in running 

relating to varying velocities has investigated running locomotion during different constant 

velocities. Running, whether it be during a race or particular sporting event has periods of 

constant velocity but periods of acceleration are also involved, or  a continuum of velocities 

involving purposeful acceleration phases. Van Caekenberghe et al (2013) found no significant 

changes in the joint torques in the acceleration phase when compared to the constant state 

velocity. However, they do suggest that power output by the muscles must be larger to increase 

speed and they found an increase in the positive power at the hip the negative power at the knee 

was greater. (Van Caekenberghe et al., 2013).  This knowledge is verified by the previous 

literature that has investigated the changes in joint powers that occur during running (Cavagna & 

Kaneko, 1977). These findings do not seem to align with the findings of the studies that have 

shown when running velocity is increased, the joint torques also increase (Belli et al., 2002; Dorn 

et al., 2012; Schache et al., 2011). During the acceleration phase, one is running faster at a 

constant or variable rate of change thus the joint torques should increase during an acceleration 

phase. Another interesting finding of this research is that the antero-posterior ground reaction 

forces (GRF) on the treadmill were found to be equal in both the anterior and posterior direction. 

In order to run faster, the “propulsive” (anterior) reaction impulse needs to be greater than the 
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“braking” (posterior) reaction impulse based on Newtonian mechanics (Hunter, Marshall, & 

McNair, 2005; Walter & Carrier, 2009). The findings of Van Caekenberghe et al (2013) are 

indicative of a constant velocity running period. They attribute these findings primarily to the 

lack of the body leaning forward on a treadmill and thus attribute them to the finding that the 

joint torques did not increase. 

The findings of Van Caekenberghe et al (2013) are conflicting to the previous research 

investigating velocity modulation in constant states. Acceleration is an integral part of running 

performance and therefore it merits further investigation based on the minimal research that has 

been done on the acceleration period of running. 

Hypothesis 

 Based on the previous research investigating running biomechanics, including velocity 

related changes in running biomechanics, it was hypothesized that lower extremity, sagittal plane 

joint torques and joint powers would positively and linearly increase throughout the acceleration 

phase of running. 

Statement of Purpose 

The purpose of this study was to quantify lower extremity joint torques and powers 

during  constant speed running and during running while accelerating at two rates of acceleration 

(0.40 ms
-2

 and 0.80 ms
-2

) between a baseline velocity of 2.50 ms
-1

 to 6.00 ms
-1

.  

Significance 

 The literature investigating the changes in running kinematics and kinetics at different 

speeds is much more extensive than the literature on the acceleration phase of running. The 
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research on running at different speeds indicates greater joint torques and powers when one runs 

faster, which is in contrast to the findings of Van Caekenberghe et al (2013) who report there are 

no differences during the acceleration phase of running when compared to steady state running. 

This study was intended to cross-validate these results and in doing so adding to the literature on 

accelerated running. Additionally, this study was meant to add to the minimal literature that 

investigates the acceleration phase of running. 

Delimitations 

1. The subjects will be young, experienced runners who run at least 6 miles a week. 

2. Subjects will be male and female between the ages of 18 and 25 and will have natural 

differences in gait kinematics. 

3. The subjects will be running on a Bertec Instrumented Treadmill, which is an 

automated treadmill controlled by the researchers with a force plate embedded below 

the belt. 

4. The only kinematic measurements will be taken at the hip, knee, and ankle on both 

legs. 

Limitations 

1. There is some error that may occur from soft tissue artifact or from the cameras that 

are used during motion capture. 

2. As with the motion capture system, the force plates may not always accurately 

measure the magnitude or the location of the ground reaction force vector. 

3. The previously mentioned limitations could lead to error in the inverse dynamics 

inputs of joint torques and joint powers.  
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Operational Definitions 

1. Accelerated running- the period of time in which the participant is increasing their 

velocity from the baseline velocity to the maximum velocity. 

2. Ground reaction force- the force that acts equal and opposite to the force created from the 

participant being in contact with the surface of the force plate. 

3. Power absorption- the negative power created from the eccentric (muscle lengthening) 

contraction of the anti-gravity muscles. 

4. Power generation- the positive power created from the concentric (muscle shortening) 

contraction of the anti-gravity muscles. 

5. Posterior“Braking” force- the posterior component of the ground reaction force. 

6. “Propulsive” force- the anterior component of the ground reaction force. 

7. Joint torque- the muscular contributions at each joint, synonomous with joint moment. 

8. Stride length- the distance from the ipsilateral foot to the ipsilateral foot 

9. Step Length- the distance from the ipsilateral foot to the contralateral foot 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 2: LITERATURE REVIEW 

 This study investigated and quantified any changes in joint torques and joint powers in 

the lower extremity that occur between constant speed running and the acceleration phase of 

running at two different rates of acceleration between a baseline velocity of 2.50 ms
-1

 and 6.00 

ms
-1

. A regression based approach was utilized to determine the relationships between these 

variables and the sequence of steps through the acceleration phase. This chapter will review the 

scientific literature related to running biomechanics and is portioned into these sections; 

Advanced Analysis of Running, Literature on Running at Different Constant Velocity Rates, and 

Literature in Accelerated Running. 

Running is one of the most common forms of physical activity in the United States. As of 

2008 the total number of runners, whether it be recreational or competitive was approximately 

35,904,000 (Cooper, 2009). Interest in the analysis of running originates in the times of the 

Ancient Greeks who were fascinated by the artistic display of running; Aristotle, in particular 

had an interest in running locomotion and the differences seen in humans and in the animal 

kingdom. Wilhelm and Eduard Weber in 1836 truly initiated the study of gait in running and 

walking formulating over 150 hypotheses (Cavanagh, 1990). While distance running has always 

been a part of human locomotion, it was not particularly popular in terms of participation until 

the late 1960’s and early 1970’s in the United States (Cavanagh, 1990) and this increase in 

participation was at least partially due to the work of Kenneth Cooper and his book entitled “Run 

for Your Life: Aerobic Conditioning for Your Heart” (Houmard, 2013). Running is also involved 

in a variety of physical activities including soccer, football and basketball. Since running is an 

integral part of these activities running research contributes valuable information as how to 

improve performance.
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Advanced Analysis of Running  

Understanding the basic concepts of the kinematics and kinetics of running is essential 

for the purpose of this study. The gait cycle refers to the events that occur in the lower extremity 

during running between the initial contact of one foot to the next successive initial contact of the 

same foot which is called the stride (Thordarson, 1997). A step is the period between the initial 

contact of one foot to the initial contact of the opposite foot. Running is an extension of walking 

with one key difference; this difference being the addition of a “flight” phase and lack of a 

“double stance” phase (Dicharry, 2010; Nicola & Jewison, 2012; Thordarson, 1997).  The 

“double stance” phase occurs in walking in which both feet are on the ground. The “flight” phase 

is the period during running in which both feet are not in contact with the ground (Dicharry, 

2010; Thordarson, 1997). 

 The gait cycle can then be broken down into two sub-phases, a swing phase and a support 

phase. The support phase looks at the foot when it is in contact with the ground and is further 

broken down into an absorption phase and a propulsive phase. The swing phase is broken down 

into the initial swing and terminal swing (Munro et al., 1987; Thordarson, 1997). There is some 

variance among the research in terms of percentages of each phase, but the general consensus is 

that the swing phase occupies a greater percentage (approximately 60 percent) of one stride or 

cycle and the support phase is a lesser percentage (approximately 40 percent). This also will vary 

with running speed, where when one runs faster the swing phase percentage increases (Nicola & 

Jewison, 2012; Thordarson, 1997). 

Elftman (1938) is one of the earliest accounts in the investigation of gait locomotion 

biomechanics. He performed a classical study that was able to quantify the movements of the 
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joints during locomotion with the use of a three joint model (Elftman, 1938; Elftman, 1940). The 

ankle and knee joint have been found to play a dominant role in the support phase, providing 

higher magnitude joint torques at the absorption and propulsion phases and thus preventing 

collapse through the support phase (Arampatzis et al., 1999; Belli et al., 2002; Winter, 1983). 

During the swing phase, the hip flexors are concentrically contracting during initial swing 

followed by the hip extensors eccentrically contracting in the terminal swing in preparation for 

ground contact. The knee is also active during the swing phase with knee extension occurring in 

the initial swing. The ankle is mostly active during the stance phase producing plantarflexor 

torques (Winter, 1983). Elftman’s (1938) early models are what allowed for such findings and 

continued regarding the kinematics of running. The patterns of joint mechanics at the hip, knee, 

and ankle are described further in the next paragraphs. 

 Everybody has a certain uniqueness in the way in which they run and these subtle 

differences in kinematics and kinetics can be seen in previous research quantifying muscle 

activation patterns. However, while the magnitudes in the EMG data may vary between people, a 

common pattern of muscle activation can be seen (Guidetti, Rivellini, & Figura, 1996). In terms 

of creating the locomotion pattern of running the three large joints in the lower extremity, hip, 

knee, and ankle, work as one unit with the muscles creating movement and support through the 

gait cycle (Winter, 1980).  Winter (1980) derived the equation; 

      Ms = Mk – Ma – Mh 

 Where Ms is the net support torque of the three joints, Mk is the positive torque of the knee, Ma is 

the joint moment of the ankle, and Mh is the joint torque of the hip. The joint torques can also be 

seen by figure 1 below showing a visual representation of the lower extremity joint torques. In 
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this picture counter-clockwise movements (knee) are positive and clockwise movements (hip and 

ankle) are negative. If one joint is not providing the normal, adequate support, the other joints in 

healthy individuals will be able to compensate for this inadequacy (Winter, 1980).  

 

Figure 1- Moments (Torques) of force at the joints of the lower extremity (Winter, 1980) 

 The joint torques that occur during running can be quantitatively seen in figure 2 and the 

joint power patterns in figure 3 (Winter, 1983). The top curve represents the total support of the 

hip, knee, and ankle. Based on the figure from Winter (1983) the figures can be interpreted as 

follows: 

During stance, we see that the hip in the initial stage is creating an extension torque 

through a very slight concentric contraction indicated by the positive power seen in figure 3. 

After midstance, there is a flexion torque corresponding to a negative power or eccentric 

contraction of the hip flexor musculature. Powers can be indirectly used to determine the type of 

contraction the muscles around a joint are performing. Upon entering the swing phase the hip 

flexion torque continues but it is occurring as result of concentric contraction. As the limb moves 
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toward the terminal swing phase the hip extends concentrically to prepare the limb for the next 

contact.  

 The knee joint during stance creates an extension torque which is to prevent collapsing 

from occurring and is done so through eccentric contraction in the first half of stance and 

concentric contraction in the last half (figures 2 and 3). For this reason, the knee serves primarily 

as an “absorber” (Winter, 1983). During the first half of swing, the knee has an extension torque 

followed by a flexion torque created through the eccentric contraction of knee flexors to prepare 

the leg for contact. 

 The ankle joint has been determined to be primarily a “generator” (Winter, 1983). During 

the stance phase there is a plantarflexor torque created through an eccentric contraction of the 

ankle plantarflexors in the first half of stance acting as a shock absorbing mechanism; in the 

second half of stance the ankle plantarflexors start contracting concentrically to initiate toe-off. 

After toe-off and during the swing phase there is little occurring at the ankle joint as seen in 

figures 2 and 3 (Winter, 1983). 
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Figure 2- Joint torque patterns during running (Winter, 1983) 

 

Figure 3: Muscle power patterns during running (Winter, 1983) 
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 To summarize, the gait cycle is the period of events that occur throughout running 

locomotion.  Running locomotion is supported and produced through the interaction of the hip, 

knee, and ankle joints. At initial contact, the ankle plantarflexors and knee extensors are 

eccentrically contracting to absorb the ground reaction forces. As the limb progresses through the 

support phase, a hip extensor torque occurs followed by a hip flexor torque through the end of 

support. The ankle then pushes off with a plantarflexor torque into the swing phase where the hip 

flexors contract concentrically bringing the limb forward. In the terminal swing, the hip 

extensors eccentrically contract to prepare the limb for the next ground contact. 

Literature on Running at Different Constant Velocity Rates 

As mentioned, running is involved in a variety of physical activities. These activities can 

serve as recreational forms of exercise or they can be involved in a competitive setting. In either 

environment, the velocity- directional speed at which we run- is crucial to the performance 

regardless of if it is a short sprint or a long distance run. Velocity is also rarely held constant and 

is more of a continuum than a discrete variable. Changing velocity has many purposes. It could 

be the end of the race and the participant could be trying for that last push to beat out an 

opponent across the finish line, or to get to the ball first in soccer. These would be examples of 

purposeful positive accelerations-increasing velocity over a certain time period. The opposite 

would be negative acceleration- a purposeful decrease in velocity. This may occur when a runner 

wants to decrease velocity to conserve energy for a long race. 

The kinematics and kinetics of running at different constant velocities have largely been 

the focus of study in terms of changes in velocity (Van Caekenberghe et al., 2013). Studies such 

as the one performed by Dorn et al (2012) analyzed the muscular and joint aspects that change 
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during four different running velocities, 3.5 ms
-1

, 5.0 ms
-1

, 7.0 ms
-1

, and 8.0 ms
-1

 or greater (Dorn 

et al., 2012). The findings of this study stated that the initial increase in velocity, up to 7.0 ms
-1

, 

is due to an increase in stride length (Figure 4). This has also been stated in previous literature 

that it is stride length first that increases velocity followed by stride rate at the higher velocities 

(Cavanagh & Kram, 1990; Fukunaga, Matsuo, Yuasa, Fujimatsu, & Asahina, 1980). 

 

Figure 4. Stride length and stride frequency plotted against running speed. (Dorn et al., 2012) 

They attribute this increase in stride length to the large joint torque created by the 

gastrocnemius and the soleus during propulsion which relates to the previous findings of other 

research projects (Hamner & Delp, 2012; Schache et al., 2011). The peak ankle torque occurs 

roughly 20 percent before the foot off instant, which can be seen in figure 5. Contributions to the 

vertical ground reaction forces remained roughly the same (Figure 6). In Hamner and Delp 

(2012) it was also found that with increased velocity the overall joint angles of the hip, knee, and 

ankle were greater which could have been a result from the increased torques produced by these 

joints. 
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Figure 5 Individual muscle joint torques for each speed. (Dorn et al., 2012) 

 

  

 

 

 

Figure 6. Net Vertical ground reaction forces (shaded). (Dorn et al., 2012) 

Stride frequency continues to increase velocity once maximal stride length has been 

achieved, usually around 7.0 ms
-1 

(figure 4). The increase in stride frequency is driven primarily 

through the increased hip flexion joint torque that occurs in the swing phase. The iliopsoas drives 

hip flexion concentrically in the first half of the swing phase (figure 5). The hamstrings and the 

gluteus maximus create an extensor joint torque in the latter half of the swing to prepare for 

ground contact (figure 5). As one progresses to faster speeds, a larger joint moment can be seen 

in these muscles (figure 5) (Dorn et al., 2012). This finding aligns with the findings of another 
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study that also found that a faster running speed is a result of a larger leg swing due to increased 

hip flexor and extensor action (Gazendam & Hof, 2007). These results also relate to the finding 

of Arampatzis et al (1999). In addition, they found that as running velocity is increased there is 

an increase in the leg stiffness driven by an increase in joint torques at the knee and ankle 

(Arampatzis et al., 1999). These data indicate that as one runs at a faster velocity, at a constant 

rate, that there is a change in joint torques that relate to the specific phase and movements 

occurring in that phase; with the ankle plantarflexors contributing the greatest portion of the 

increase in speed initially followed by the hip flexors at faster speeds (Arampatzis et al., 1999; 

Dorn et al., 2012). These findings are similar to the findings of Thordarson (1997) in that up to a 

certain velocity the ankle plantaflexors contribute to the increase in stride length which leads to 

increased velocity. 

Further evidence of this increase in joint kinetics is seen in other research. In another 

study through the use of inverse dynamics, joint kinetics and muscle function were determined 

running at three different speeds (Belli et al., 2002). The subjects ran at 4.0 ms
-1

, 6.0 ms
-1

, and 

their maximal speed. The stance phase was the focus of this study. The results showed that as the 

speed progressed up to the maximal speed of the subjects that the angular velocity (rads/s) and 

the power (W) of the hip, knee, and ankle joint all increased with speed. Joint torques increased 

significantly in the hip and knee with no significant change occurring in the ankle (figure 7-

different colored lines represent different velocities) (Belli et al., 2002). In Arampatzis et al 

(1999) increases in joint torques and powers were also seen in the knee but were seen in the 

ankle as well when running speed was increased. The hip joint data was not displayed. Schache 

et al (2011) found increases in joint torques and powers with the hip and knee having the largest 

increase in magnitude with speed during the terminal swing phase. Finally, in two earlier studies 
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which also examined the changes in joint powers at all three joints collectively in relation to 

increases in velocity the results indicated a positive correlation between joint powers and running 

velocity (Fukunaga et al., 1980; Kaneko, 1990) 

 

 

 

 

 

 

 

  

Figure 7-Time normalized, mean angular velocity, joint moment, and power curves (Belli et al., 2002) 

The result for ground reaction forces also indicates a change with increasing speed. The 

vertical ground reaction forces increase significantly from 4.0 ms
-1

 to maximal speed (figure 8) 

(Belli et al., 2002; Hamill, Bates, Knutzen, & Sawhill, 1983; Munro et al., 1987). When 

investigating the effect that body mass and various constant speeds had on support forces in 

another study, it was found that at higher speeds the support ground reaction forces increased 

from 1.5 to 2.5 times the body weight of the subject (Figure 8) (Weyand & Davis, 2005). Dorn et 

al (2012) also had an increase in peak vertical ground reaction forces with an increase in speed 

from 2.7 BW at 3.5 ms
-1

  to 3.6 BW at 7.0 ms
-1

. In previous studies it was also found that vertical 

ground reaction forces increase with an increase in running speed, but only until about 60 percent 

of the subject’s maximal velocity at which point they state velocity increase is a result of muscle 

force production or joint torque (Keller et al., 1996; Schache et al., 2011). Belli et al (2002) and 
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Weyand and Davis (2005) were also supported by the findings of Arampatzis et al (1999) that 

running velocity does influence maximum vertical velocity significantly, especially at faster 

velocities (<4.5 ms
-1

) (Figures 8 and 9). These studies indicate an increase in vertical ground 

reaction forces with an increase in speed which are shown as well in an earlier study that 

performed a reexamination of running and different velocities (Hamill et al., 1983; Munro et al., 

1987). 

 

 

 

  

 

 

Figure 8- Peak ground forces against velocity (Weyand & Davis, 2005) 

 

 

 

 

 

Figure 9- Maximum ground reaction forces (Arampatzis et al., 1999) 
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The horizontal reaction forces also increase with increased speed (figure 10). The 

anteroposterior forces (Fy) are also indicative of an acceleration curve with the “braking” 

posterior portion being smaller than the “propulsive” anterior force whereas they are equal in 

constant state (Belli et al., 2002; Hunter et al., 2005; Walter & Carrier, 2009). This is similar to 

the results found in a later study showing when increasing speed, the propulsive force is greater 

than the braking force (Van Caekenberghe et al., 2013).  

 

 

 

 

 

Figure 10- Mean vertical and horizontal ground reaction forces (Belli et al., 2002) 

Literature in Accelerating Running 

It has been stated previously that the research analyzing the acceleration phase of running 

is not extensive. The literature is dominated by studies investigating different constant state 

running speeds and the mechanical running differences between the constant states (Roberts & 

Scales, 2004; Van Caekenberghe et al., 2013) . Running rarely occurs at a constant state which is 

why the meager amount of literature on the acceleration phases is surprising. There has been 

growth in the study of locomotion from the walk to run transition phase but acceleration phases 

within running alone are not substantial. One difference between the constant-state running and 

accelerated running is net work must be done on the center of mass for the acceleration to occur 
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which is in contrast to constant state locomotion where no net work is done on the center of 

mass. Another difference is it appears that acceleration depends on the muscles ability to rapidly 

shorten while also producing large propulsive forces (McGowan, Baudinette, & Biewener, 2005; 

Walter & Carrier, 2009). Additionally, McGowan et al (2005) stated that there is an energy shift 

in braking phase of stance that goes distal to proximal and vice versa in the propulsive phase. 

Van Caekenberghe et al (2013) performed a novel study in which they investigated the 

acceleration phase in both an over ground modality and treadmill modality. 

 The methodology and protocol for Van Caekenberghe et al’s (2013) study was quite 

sound. The study protocol was able to measure the parameters that were desired to be tested for 

the study analysis. In terms of the protocol it was a relatively simple study and is similar to the 

methods of this study. The ten subjects ran in two modalities, over ground and on an 

instrumented treadmill with a force transducer. The subjects started out at a baseline of 2.0 ms
-1

 

and accelerated to 7.0 ms
-1

 at different accelerations ranging between 0.0 and 3.0 ms
-2

. Various 

forms of data analysis were performed using methods of inverse dynamics to arrive at the results 

(Visual 3-D, C-Motion, Rockville, Maryland). These protocol again are similar to the methods 

used in this study with the exemption of an over ground running modality (Van Caekenberghe et 

al., 2013). 

 The results stated that there were no significant changes in the sagittal plane running joint 

torques at the hip, knee, and ankle during the acceleration phase on an instrumented treadmill. 

This does not relate to the findings of a study investigating the acceleration period of turkeys 

which found there to be an increase in the joint torques through the acceleration periods (Roberts 

& Scales, 2004). Van Caekenberghe et al (2013) contribute the increase in speed to be a result of 

increased muscular power which does correspond with the previous literature that looked at 
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increased constant state velocity (Arampatzis et al., 1999; Belli et al., 2002; McGowan et al., 

2005; Schache et al., 2011). These results also relate to the findings of Roberts and Scales 

(2004). The results of the Roberts and Scales (2004) study can be seen in figures 11a-c. Van 

Cakeneberghe (2013) also found there to be minimal alteration of the ground reaction force 

orientation, contributing this to the absence of linear whole body inertia found in previous 

literature comparing treadmill running and over ground running (Van Caekenberghe et al., 

2012). In the same study by Van Caekenberghe et al (2012), they state that braking and 

propulsive force amplitudes are not affected during accelerating running on a treadmill. In 

continued regard to ground reaction forces, the finding that average body lean is not altered 

during treadmill acceleration is also shown by the limited change in ground reaction forces (Van 

Caekenberghe et al., 2013). They state that the acceleration phase of running on the treadmill has 

an antero-posterior GRF curve with the anterior and posterior curves being equal which is not 

indicative of an acceleration phase antero-posterior GRF as found in previous studies (Hunter et 

al., 2005; McGowan et al., 2005; Walter & Carrier, 2009). In over ground running, the authors of 

this study contribute a large portion of the acceleration phase to the more anteriorly directed 

trunk lean which contributes to the more forward orientation of the ground reaction forces which 

align with previous research findings (Kugler & Janshen, 2010). Additionally, they characterize 

acceleration phases with smaller “braking” phases and larger “propulsive” forces in the 

anteroposterior ground reaction force curves which again can be seen in previous literature (Belli 

et al., 2002).  The authors stated that joint torques in the lower extremity are not altered during 

acceleration; since the magnitude of the ground reaction force during the acceleration is not 

significantly influenced on a treadmill they arrive at this conclusion (Van Caekenberghe et al., 

2013). 
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Fig.11a             Fig. 11b  

Fig.11c  

Figure 11a: Hip joint torque, angle, and power for 

steady speed running, moderate acceleration and 

high acceleration. Figures 11b and 11c show the 

same results for the knee and ankle respectively 

(Roberts and Scales, 2004)  
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Figure 12- Ground Reaction forces during accelerated running on treadmill and overground (Van 

Caekenberghe et al., 2013) 

  

Van Caekenberghe  et al (2013) also compared the results of acceleration patterns on a 

treadmill to over ground running. In a previous study by Van Caekenberghe et al (2012) it was 

found that accelerated running on a treadmill is mechanically different from accelerated over-

ground running. They state that there is minimal or a lack of horizontal ground reaction forces on 

a treadmill due to the belt moving under the body (Van Caekenberghe et al., 2012; Van 

Caekenberghe et al., 2013). This concept could have some validity. However, research 

comparing the kinematics and kinetics of treadmill running to over ground running has stated 
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that they are similar enough to merit the use of treadmills in running biomechanics research 

(Riley et al., 2008). Joint torques and power curves were shown to be qualitatively similar in 

both over ground and treadmill running (Hamner & Delp, 2012; Riley et al., 2008). Van 

Caekenberghe et al (2013) again, stated that there is a minimal change of anteroposterior ground 

reaction forces in treadmill running (Figure 12). While the ground reaction forces were 

significantly reduced in treadmill running, they were present which contradicts the findings of 

Riley et al (2008). 

Summary 

The Van Caekenberghe et al study (2013) was one of the first studies in the research of 

running acceleration phases. The methods of the study were sound in terms of testing the 

parameters desired but it does not line up with the findings of previous research in velocity. The 

aforementioned studies that researched increased constant state velocity indicated there was a 

significant change in the joint torques and joint powers when the running speed was increased. 

Granted, these studies were researching increases in constant state velocity, but since accelerated 

running is a change in velocity over time if one positively accelerates their velocity is increasing 

so the mechanics found should be similar in the acceleration phase of running.  These studies 

have provided very pertinent information to the biomechanics involved in running but running is 

rarely held at a constant velocity for an entire period of time. With that said, the focus of this 

study will be the investigation of the acceleration phase in running in order to add to the 

scientific literature on acceleration phases. We will perform this study on an instrumented 

treadmill with force transducers and though there is much debate on the ability to generalize the 

data found in treadmill studies to over ground running, based on the findings of Riley et al 

(2008) we find this modality to be validated.  
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Based on the previous research investigating running biomechanics, including velocity 

related changes in running biomechanics, it was hypothesized that lower extremity, sagittal plane 

joint torques and joint powers would positively and linearly increase throughout the acceleration 

phase of running.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3: METHODOLOGY 

Based on the previous research investigating running biomechanics, including velocity 

related changes in running biomechanics, it was hypothesized that lower extremity, sagittal plane 

joint torques and joint powers would positively and linearly increase throughout the acceleration 

phase of running. The purpose of this study was to quantify lower extremity joint torques and 

powers during  constant speed running and during running while accelerating at two rates of 

acceleration between a baseline velocity of 2.50 ms
-1

 to 6.00 ms
-1

. The rates of acceleration were 

0.40 ms
-2

 and 0.80 ms
-2

. The general procedures for the study will be outlined in the following 

sections. The testing consisted of four trials in one session at the Human Movement Analysis 

Lab at East Carolina University. The subjects performed trials at two different rates of 

acceleration two times each in case there is an error in the first trial. Kinematic and kinetic data 

were collected and analyzed. From these data the differences in joint torques and powers at each 

rate of acceleration were determined.  

Participants 

 The participants were recruited from the East Carolina University student body and  the 

citizens of the city of Greenville through the use of fliers and classroom announcements. They 

were then screened to see if they meet all inclusion criteria. 15 participants (n = 8 females), all of 

whom were experienced runners (running at least 6 miles per week), were selected to perform 

the protocol for the study. Experienced runners were desired in hopes they would be more 

comfortable and capable with running at higher speeds on an instrumented treadmill. The 

participants were young and between the ages of 18-22. Additional inclusion criteria were that 

the participants had a body mass index of less than 28.0 kgm
-2

, as well as free of pain when they 

run and in daily activities. The participants must not have had any history of severe lower 
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extremity injuries so as to not have any effect on their normal running gait. The protocol was 

approved by the East Carolina University Institutional Review Board and all subjects signed an 

informed consent. 

Inclusion Criteria 

The following criteria were met to participate in this study: 

1. Young experienced runners running at least 10 miles per week between the ages of 18-

25. 

2. No recent lower extremity injuries or musculoskeletal disorders that affected running 

performance presently. 

3. Body Mass Index of less than 28.0 kgm
-2

. 

4. Signed written informed consent. 

5. Free of pain when running and in daily activities. 

6. Must be ostensibly healthy having no history of cardiovascular disorders or problems. 

Exclusion Criteria 

The following criteria would result in the inability to participate in the study: 

1. A recent history of musculoskeletal injuries or disorders in the lower extremity. 

2. Presently ill or suffering from cardiovascular, pulmonary, or neurological diseases or 

other major diseases that would affect the ability to run. 

3. Smoking of cigarettes, cigars, or any form of tobacco.  
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Instruments 

 The accelerated running trials took place on a Bertec instrumented split belt treadmill 

(Bertec Corporation, Columbus, Ohio) with force transducers located under the deck. Running 

kinematic data was captured with Qualisys Oqus 300 cameras (Qualisys Medical AB, 

Gothenberg, Sweden). Qualisys Track Manager (Innovision Systems, Columbiaville, Maryland) 

software was used to collect the kinematic and kinetic data at an analog frequency of 2400 Hz 

and a motion capture frequency of 240 Hz. The kinematic and kinetic data was then analyzed 

using Visual 3D Software (C-Motion Inc., Rockville, Maryland) and Microsoft Excel (Microsoft 

Corporation, Redmond, Washington). 

Protocol 

 The testing took place in the Human Movement Analysis Laboratory in the Department 

of Physical Therapy at East Carolina University (Greenville, North Carolina). The participants 

were measured for their height and weight and also asked their age. The data collection occurred 

in one session and lasted approximately one to one and a half hours. Participants changed into 

tight fitting compression shorts to prevent movement of the markers that were placed on both 

legs. They wore their own running shoes to ensure running comfort when performing the 

protocol.  

Before performing the acceleration trials, reflective markers were placed on the lower 

extremity using the locations of the Modified Helen Hayes marker set on both legs of the 

participants. The location of the markers were: right and left posterior superior iliac spine (PSIS), 

right and left iliac crest, right and left anterior superior iliac spine (ASIS), right and left greater 

trochanter, medial and lateral knee, medial and lateral malleoli, heel, first and fifth metatarsal 

heads, a thigh plate consisting of four markers was placed on the lateral side of the thigh, a shank 
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plate consisting of four markers was placed on the lateral side of the leg, and finally a foot plate 

with three markers (two on the lateral side, one on the medial) was placed on the superior side of 

the foot. A five second calibration was taken. The subject stood completely still with their arms 

folded across their chest so no markers were blocked by the arms. After the calibration trial, the 

iliac crests, greater trochanters, knee, malleoli, and metatarsal head markers were removed. 

The participants performed a series of four trials on the instrumented treadmill- unless an 

error occurred in which additional trials were collected. The participants had adequate time to 

become familiar with the treadmill so they could achieve their routine running cadence and gait 

at the designated velocity. They had approximately 5 minutes to warm up on the treadmill prior 

to the testing protocol began and could have requested more time if it was needed. After the 

warmup, they had a practice trial of the 0.40 ms
-2

 acceleration trial. Another practice trial was 

given after they performed the 0.40 ms
-2 

trials for 0.80 ms
-2

. The participants then performed the 

four trials which lasted approximately 45-60 seconds each. They began running at a velocity of 

2.5 ms
-1

 for approximately 20 seconds at which point they then accelerated to a maximum 

velocity of 6.0 ms
-1

. The partcipants accelerated at two different rates for two trials each for a 

total of four trials. The rates of acceleration were, 0.40 ms
-2 

 (A1) and 0.80 ms
-2

 (A2). They 

would then accelerate at the designated rates to a velocity of 6.0 ms
-1

 at which point they ran for 

approximately 10-15 seconds before being brought back to the initial velocity of 2.5 ms
-1

. 

Sufficient rest was given between trials so fatigue was not a confounding variable. The initial 

and maximal velocities along with the rates of acceleration were determined through pilot testing 

as to what was reasonable for the participants to perform on the instrumented treadmill. It was 

also desired to have two rates of acceleration that were sufficiently different from one another. 

The rates of acceleration were within the range that Van Caekenberghe et al (2013) used. 
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Data Reduction 

 The data from the trials were processed in Qualisys Track Manager software. The 

reflective markers placed on the participants were then identified leading to the creation of a 

three dimensional model using a rigid segment system as the basis for model creation. The three 

dimensional model was created in Visual 3D software using the static calibration model. This 

model was then applied to the motion trials and kinetic data was produced. Visual 3D was able to 

find the location of joint centers which were calculated using 50 percent of the distance between 

the reflective markers on the medial and lateral markers of the knee and ankle and 25 percent 

from the greater trochanters for the hip, segment centers of mass were based on anthropometric 

data, and definition of the local coordinate system. Once all kinematic data were determined, the 

data was processed with a low pass digital filter to remove high frequency position error. A 

standard cut-off frequency of 6 Hz was used in the second order-low pass Butterworth digital 

filter and 45 Hz cutoff was used for the GRF data. Linear velocities and accelerations of the joint 

centers and segmental mass centers were then calculated. Ankle, knee, and hip joint angular 

velocities were calculated from the processed positional data. 

Inverse dynamics methods using linear and angular Newtonian equations of motion were 

utilized through the use of rigid segment models of the lower extremity (thigh, leg, and foot) to 

calculate the joint reaction forces and torques from the measured ground reaction forces (N), 

center of pressure, standardized segment anthropometrics, and the kinematic position and 

acceleration data. The Newtonian mechanical analysis to calculate the joint reaction forces and 

torques is displayed in Figure 13 as a series of free body diagrams of the foot, leg, and thigh. 
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Figure 13 a-d : Free Body Diagrams of the lower extremity:  

GRFz is vertical ground reaction force, GRFx is horizontal ground 

reaction force, mfg is mass of foot, Az is vertical ankle JRF, Ax is 

horizontal ankle JRF, msg is mass of shank,  Kz vertical knee JRF, Kx 

is horizontal knee JRF, mtg is the mass of the thigh, Hz is the vertical 

hip JRF, Hx is the horizontal hip JRF. D1-12 are the moment arms to 

the corresponding forces acting on the segment. The axes and arrow 

in the top left corner indicate the linear and angular conventions are 

positive. Figure 13d is the conventions diagram to indicate which 

directions are positive. 
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The variables seen in the free body diagrams are the values used by the Visual 3D 

software to calculate the joint reaction forces (JRF) and then joint torques using the following 

equations. The calculations started at the foot since that is the segment in contact with the force 

plate which provides the only measured external force which then translates proximally up to the 

knee and then the hip. The basis for these calculations is Newton’s Second Law:  

F = ma 

Where F is the force, m is the mass of the segment, and is the acceleration of the object and the 

forces in the various planes will be summed. The determination of the variables being positive or 

negative is based on the coordinate system found in the FBD (Figure 10) and the conventions for 

torque will be counterclockwise is positive and clockwise is negative. 

 The equation for the vertical joint reaction force at the ankle (Az) is represented as such: 

GRFz -  mfg + Az = mfazf 

 Where GRFz represents the ground reaction forces in the vertical direction, mfg 

represents the product of the mass of the foot and the acceleration due to gravity, Az is the ankle 

vertical joint reaction force, mf is the mass of the foot as calculated from the anthropometric 

proportions, azf is the vertical acceleration of the foot. 

 The equation for the horizontal joint reaction force at the ankle is represented as such: 

-GRFx + Ax = mfaxf 
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 Where GRFx represents the ground reaction forces in the horizontal direction, Ax 

represents represents the ankle joint reaction force in the horizontal direction, and axf represents 

the horizontal acceleration of the foot. 

 The previous two equations will calculate the variables necessary to determine the torque 

of the ankle with the use of the equation: 

T = Iα 

Where T is the calculated torque, I represents the moment of inertia, and α represents the angular 

acceleration of the foot. The sum of the products of the four forces acting on the foot and their 

respective moment arms will then be used to determine the torque of the ankle (Ma). 

 The equation to calculate the torque of the ankle (Ma) is represented as such: 

AxD1 + GRFzD2 – GRFxD3 + AzD4 + Ma = Ifαf 

Where D1-D4 represent the moment arms of the ground reaction forces in both the vertical and 

horizontal directions (D2 and D3 respectively) and the ankle joint reaction forces in the horizontal 

and vertical direction (D1 and D4 respectively) from the center of mass of the foot, and Ma 

represents the ankle torque. If represents the moment of inertia of the foot, and αf represents the 

angular velocity of the ankle in the sagittal plane. 

 The knee and hip will follow similar calculations to find the joint reaction forces in the 

horizontal and vertical direction first, followed by the calculation for the knee torque and hip 

torque. 

The equation for the vertical joint reaction of the knee is represented as such: 
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Az – msg + Kz = msazs 

Where Az represents the vertical ankle joint reaction force, msg represents the product of the 

mass of the shank and the acceleration due to gravity, Kz is the vertical knee joint reaction, and 

ms is the mass of the shank, and azs is the vertical acceleration of the shank.  

The equation for the horizontal joint reaction force of the knee is represented as such: 

Ax + Kx = msax 

Where Ax represents the horizontal ankle joint reaction force, Kx represents the horizontal knee 

joint reaction force, ms represent the mass of the shanks, and ax represents the horizontal 

acceleration of the shank. 

 With the calculated JRFs at the knee the torque will be calculated and represented as 

such: 

KxD5 – KzD6 – AxD7 – AzD8 + Mk = Isαs 

Where D5 – D8 represent the moment arms of the knee joint reaction forces in the horizontal and 

vertical direction (D5 and D6 respectively) and the ankle joint reaction forces in the horizontal 

and vertical directions (D7 and D8 respectively) from the center of mass of the shank. Mk 

represents the knee torque, Is represents the moment of inertia of the shank, and αs represents the 

angular acceleration of the shanks in the sagittal plane. 

 The equation for the vertical hip joint reaction force is represented as such: 

Kz – mtg + Hz = mtazt 
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Where Kz represents the vertical knee joint reaction force, mtg is the product of the mass of the 

thigh and the acceleration due to gravity, Hz is the vertical hip joint reaction force, mt is the mass 

of the thigh, azt is the vertical acceleration of the thigh. 

The equation for the horizontal hip joint reaction force is represented as such: 

Kx + Hx = mtaxt 

Where Kx represents the horizontal knee joint reaction force, Hx is the horizontal hip joint 

reaction force, mt is the mass of the thigh, and axt represents the horizontal acceleration of the 

thigh. 

 The equation for the hip torque is represented as such: 

HxD9 + HzD12 – KxD11 + KzD10 +Mh = Itαt 

Where D9 – D12 represent the moment arms of the knee joint reaction forces in the horizontal and 

vertical direction (D10 and D11 respectively) and the hip joint reaction forces in the horizontal and 

vertical directions (D9 and D12 respectively) from the center of mass of the shank. Mh represents 

the hip torque, It is the moment of inertia of the thigh, αt is the angular acceleration of the thigh. 

 The aforementioned equations and methods are the basis by which Visual 3D software 

calculated the the joint torques. Joint powers will be calculated from the product of the calculated 

joint torques and calculated joint angular velocities (Elftman, 1940; Johnson & Buckley, 2001; 

Winter, 1983). Peak hip, knee, and ankle, sagittal plane joint torques and powers will then be 

derived at the hip, knee, and ankle joints. The peak value for each step- as determined through a 

Visual 3D pipeline command- of each participant was entered in to a Microsoft Excel (Microsoft 

Corporation, Redmond, Washington)  spreadsheet for each step taken during the acceleration 
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period; as well as ten steps before acceleration and ten steps after acceleration. The acceleration 

period was determined through the use of a heel switch which was activated at the start of the 

acceleration of the treadmill belt. It remained activated until the acceleration period ended. The 

peak values for the participants of both trials in each condition were then used to find the mean 

peak values for hip, knee, and ankle joint torques as well as hip, knee, and ankle joint powers. 

This allowed for an overall representation of all participants but also a view of each individual 

subject and the inter-subject variation that occurred from the differences in how they ran during 

the trials. 

Statistical Analysis 

 A set of correlation coefficients and statistical regressions were performed in which the 

peak hip, knee, and ankle joint torques and powers at each step were correlated and regressed to 

the step number during the acceleration phase to identify the relationship between these variables 

and step number. A 95 % confidence interval was used to determine if there were significant 

differences between the different joints as well as the two conditions. To account for the uneven 

number of steps, we found the mean peak value of each step for all participants and used those 

for the regression analysis. The significance level was set at p < 0.05.   

 

 

 

 

 



 

 

CHAPTER 4: RESULTS 

Based on the previous research investigating running biomechanics, including velocity 

related changes in running biomechanics, it was hypothesized that lower extremity, sagittal plane 

joint torques and joint powers would positively and linearly increase throughout the acceleration 

phase of running. The purpose of this study was to quantify lower extremity joint torques and 

powers during constant speed running and during running while accelerating at two rates of 

acceleration (0.40 ms
-2

 and 0.80 ms
-2

) between a baseline velocity of 2.50 ms
-1

 to 6.00 ms
-1

. The 

results section will be divided in to the following sections, demographics, hip joint torques, knee 

joint torques, ankle joint torques, hip joint powers, knee joint powers, and ankle joint powers, 

regression analysis, with both conditions A1 and A2 presented in each section and then a 

summary. 

VIDEO LINKS: 

Participant Running Protocol 

Visual 3D Model And Figures 

I). Demographics 

The participants were recruited from the East Carolina University student body and were 

between the ages of 18 - 22 (mean age of 19.7 years + 1.3 years). The sample consisted of 15    

(n = 8 females) healthy, young runners with an average BMI of 22.0 kgm
-2

.

https://drive.google.com/file/d/0BxJtnwtSBR05TTlLZ2N3VXc0amM/view?usp=sharing
https://drive.google.com/file/d/0BxJtnwtSBR05Qkk0OHR6QnhXMHM/view?usp=sharing


38 | P a g e  

 

II). Hip Joint Torques 

Figure 14 shows an individual, representative, curve of the hip joint torque with values 

highlighting the beginning, middle, and end of the acceleration period respectively for one 

participant. This figure shows the progression of the increase in the magnitude of the hip torque 

through the acceleration period and is representative of both conditions. The phase correlations 

for step number and torque for A1 and A2 are presented in Table 1. The pre-acceleration, 

acceleration, and post acceleration correlations are 0.128, 0.993 and 0.118 for A1 respectively, 

with the acceleration period being significant (p < 0.05). For A2, the correlations were 0.097, 

0.941, and 0.507 for the pre-acceleration, acceleration, and post-accelerations respectively, and 

the acceleration and post-acceleration periods were significant (p < 0.05).  This shows that there 

is a strong, direct relationship between step number and torque through the acceleration period 

and a moderate relationship in the post-acceleration period. 

 

Figure 14: Representation of right leg hip joint torque during acceleration phase (S3.C1.T1) 
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Condition Pre-Acceleration Acceleration Post-Acceleration 

A1 0.128  0.993* 0.118 

A2 0.097 0.941* 0.507* 

Table 1: A1 and A2 Hip extensor torque correlation coefficients between maximum stance phase torque and step 

number during the acceleration phase; * p<0.05 

Figure 15 shows the mean peak values of all participants of the pre-acceleration, 

acceleration, and post-acceleration phases for A1. A linear regression beta weight of best fit was 

calculated for the acceleration period, y = 3.2268x with an R
2
= of 0.987 (p < 0.05) showing an 

increase in the magnitudes of the three  joint torques during the acceleration phase. The pre-

acceleration and post-acceleration regression beta weights were calculated to be y = 0.02x, R
2
 = 

0.0163 and y = 0.0407x, R
2
 = 0.014, respectively, indicative of no change in the torque values. 

Figure 16 shows the mean peak values of all participants of the three phases for A2 and had a 

similar trend to that of A1. The linear regression beta weight of best fit was calculated to be y = 

3.801x with an R
2
 = 0.8863 (p < 0.05) which is indicative of a significant increase through the 

acceleration period. The pre-acceleration and post-acceleration regression beta weights were 

calculated to be y = 0.015x, R
2
 = 0.0094, and y = 0.2372x, R

2
 = 0.2566, respectively, again 

indicating no change in hip joint torque magnitudes in the constant states.  
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Figure 15: A1 Peak mean hip extensor torque during pre-, post- acceleration phases 

 

Figure 16: A2 Peak mean hipextensor torque during pre-, post- acceleration phases 
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III). Hip Joint Powers 

Figure 17 shows an individual, representative curve of the hip power with values 

highlighting the beginning, middle, and end of the acceleration period respectively for one 

participant. This figure shows the progression of the increase in the magnitude of the concentric  

hip power through the acceleration period and is representative of both conditions.  The phase 

correlations for A1 and A2 are presented in Table 2. The step number and torque correlations for 

the pre-acceleration, acceleration, and post-acceleration periods are 0.518, 0.989, and 0.482 

respectively for A1 with the pre-acceleration and acceleration periods being significant (p < 

0.05). For A2 the step correlations were calculated to be 0.132, 0.917, and 0.104 for the pre-

acceleration, acceleration, and post-acceleration period respectively, with the acceleration period 

being significant (p < 0.05).  This shows that there is a strong, direct relationship between step 

number and torque through the acceleration period for hip joint powers and a moderate, positive 

relationship in the pre-acceleration period for A1 and A2. 

 

Figure 17: Representation of right leg hip joint power during acceleration phase (S3.C1.T1) 
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Condition Pre-Acceleration Acceleration Post-Acceleration 

A1 0.518* 0.989* 0.482 

A2 0.132 0.917* 0.104 

Table 2: A1 and A2 Hip power correlation coefficients between maximum concentric stance phase power and step 

number during the acceleration phase; * p<0.05 

Figure 18 shows the mean peak hip power values of all participants of the three phases 

for A1. A linear regression beta weight of best fit was calculated for the acceleration period to 

be,    y = 12.846x, with an R
2
= of 0.9786 (p < 0.05). This indicates that there is a significant 

increase in concentric extensor power magnitude at the hip joint when accelerating. The pre-

acceleration and post-acceleration regression beta weights for A1 were calculated to be y = 

0.8654x, R
2 

= 0.2682 and y = 1.7265x, R
2
=0.2323 respectively, indicating no change in joint 

power magnitude during the constant state periods.  Figure 19 shows the mean peak values for 

hip joint power in A2. A linear regression beta weight of best fit was calculated for the 

acceleration period, y = 16.447x and R
2
 = 0.8411 (p < 0.05). The pre-acceleration and post-

acceleration regression beta weights for A2 were calculated to be y = -0.3746x, R
2 

= 0.0174 and 

y = -0.7173x, R
2
 = 0.0108 respectively, indicative of no change in hip joint powers during the 

constant state periods. 
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Figure 18: A1 Peak mean sagittal plane concentric hip power during pre-, post- acceleration phases 

 

Figure 19: A2 Peak mean sagittal plane, concentric hip power during pre-, post- acceleration phases 
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IV). Knee Joint Torques 

Figure 20 shows an individual, representative curve of the knee torque with values 

highlighting the beginning, middle, and end of the acceleration period respectively for one 

participant and is representative of both conditions. This figure shows the increase in the 

magnitude of the knee torque from the beginning to the end of the acceleration period. The 

correlation between step number and torque for the three phases in A1 and A2 are presented in 

Table 3. The pre-acceleration, acceleration, and post-acceleration periods were -0.316, 0.896, 

and -0.213 respectively for A1, with the acceleration period being significant (p < 0.05).  For A2, 

the step correlations were calculated to be 0.063, 0.946, and -0.014 for the pre-acceleration, 

acceleration, and post-acceleration period respectively, with the acceleration period being 

significant (p < 0.05). This shows that there is a strong, direct relationship between step number 

and torque through the acceleration period at the knee joint. 

 

Figure 20: Representation of right leg knee joint torque during acceleration phase (S07.C2.T1) 

Condition Pre Accel Accel Post Accel 

A1 -0.316 0.896* -0.213 

A2 0.063 0.946* -0.014 

Table 3: A1 and A2 Knee extensor torque correlation coefficients between maximum stance phase torque and step 

number during the acceleration phase; * p<0.05 

121.1 Nm 

W 

167.8 Nm 

W 

209.4 Nm 

W 
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Figure 21 shows the mean peak values of all participants for the three phases for A1. A linear 

regression beta weight of best fit was calculated for the acceleration period, y = 0.8089x, with 

R
2
= 0.8021 (p < 0.05) indicating a significant increase during the acceleration period. The pre-

acceleration and post-acceleration regression beta weights were calculated to be                     

y = -0.0678x, R
2
 = 0.010 and y = -0.0989x, R

2 
= 0.0453 respectively, indicating no change in the 

magnitude of knee joint torque through the constant state periods. Figure 22 shows the mean 

peak values for knee joint torque in A2. A linear regression beta weight of best fit was calculated 

for the acceleration period, y = 1.162x and R
2
 = 0.8948 (p < 0.05) which is also indicative of a 

significant increase in the acceleration period. The pre-acceleration and post-acceleration 

regression beta weights were calculated to be y = 0.0232x, R
2 

= 0.0002 respectively, and indicate 

no change in joint torque magnitude during the constant state periods. 

 

Figure 21: A1 Peak mean knee extensor torque during pre-, post- acceleration phases 
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Figure 22: A2 Peak mean knee extensor torque during pre-, post- acceleration phases 

V). Knee Joint Powers  

Figure 23 shows an individual, representative curve of the knee power with values 

highlighting the beginning, middle, and end of the acceleration period respectively for one 

participant. This figure shows the increase in the magnitude of the concentric knee power 

through the acceleration period and is representative of both conditions. The correlation between 

step number and concentric knee joint power for the three phases in A1 and A2 are presented in 

Table 4. For the pre-acceleration, acceleration, and post-acceleration they are -0.027, 0.966, and 

0.196 respectively, with the acceleration period being significant (p< 0.05).  For A2, the step 

correlations were calculated to be -0.126, 0.897, and 0.250 for the pre-acceleration, acceleration, 

and post-acceleration period respectively, with the acceleration period being significant             

(p < 0.05). This shows that there is a strong, direct relationship between step number and 

concentric power through the acceleration period for the knee joint. 
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Figure 23: Representation of right leg knee joint power during acceleration phase (S06.C1.T1) 

Condition Pre Accel Accel Post Accel 

A1 -0.027 0.966* 0.196 

A2 -0.126 0.897* 0.250 

Table 4: A1 and A2 Knee concentric power correlation coefficients between maximum stance phase power and step 

number during the acceleration phase; * p<0.05 

Figure 24 shows the mean peak values of all participants for the three phases for A1. A 

linear regression beta weight of best fit was calculated for the acceleration period to be                

y = 6.0547x, with an R
2
= of 0.9328 (p < 0.05) indicating a significant increase power magnitude 

during the acceleration period. The pre-acceleration and post-acceleration regression beta 

weights were calculated to be y = -0.0324x, R
2
 = 0.0007 and y = 0.4092x, R

2
 = 0.0382, 

indicating no change in the constant state periods. Figure 25 shows the mean peak values for 

knee joint power in A2. A linear regression beta weight of best fit was calculated for the 

acceleration period, y = 9.1621x, and R
2
 = 0.804 (p < 0.05), indicating a significant increase in 

the acceleration period. The pre-acceleration and post-acceleration regression beta weights were 

calculated to be y = -0.1386x, R
2
 = 0.0158, and y = 0.501x, R

2
 = 0.0623 respectively, again 

indicating no change in the knee joint powers during the constant state periods. 
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Figure 24: A1 Peak sagittal plane, concentric knee joint power during pre-, post- acceleration phases 

 

Figure 25: A2 Peak sagittal plane, concentric knee joint power during pre-, post- acceleration phases 
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VI). Ankle Joint Torques 

Figure 26 shows an individual, representative curve of the ankle torque with values 

highlighting the beginning, middle, and end of the acceleration period respectively for one 

participant. This figure shows the increase in the magnitude of the ankle plantarflexor torque 

through the acceleration and is representative of both conditions. The correlation between step 

number and ankle plantarflexor torque for the three phases in A1 and A2 are presented in Table 

5. For the pre-acceleration, acceleration, and post-acceleration are 0.021, 0.958, and 0.206 

respectively, with the acceleration period being significant (p < 0.05).  For A2, the step 

correlations were calculated to be -0.226, 0.968, and 0.285 for the pre-acceleration, acceleration, 

and post-acceleration period respectively with the acceleration period being significant (p < 

0.05). This shows that there is a strong, direct relationship between step number and ankle 

plantarflexor torque through the acceleration period. 

 

Figure 26: Representation of right leg ankle joint torque during acceleration phase (S3.C1.T1) 

Condition Pre Accel Accel Post Accel 

A1 0.021 0.958 0.206 

A2 -0.226 0.968* 0.285 

Table 5: A1 and A2 Ankle plantarflexor torque correlation coefficients between maximum stance phase torque and 

step number during the acceleration phase; * p<0.05 

 273.0 Nm 
299.0 Nm 278.0 Nm 



50 | P a g e  

 

Figure 27 shows the mean peak values of all participants of the three phases for A1. A 

linear regression beta weight of best fit was calculated for the acceleration period, y = 1.6505x, 

with R
2 

= 0.9172 (p < 0.05) indicating a significant increase in the magnitude of joint torque at 

the ankle through acceleration. The pre-acceleration and post-acceleration regression beta 

weights for A1 were calculated to be y = 0.005x, R
2
 = 0.0005 and y = 0.0621x, R

2 
= 0.0426 

respectively, indicating no change during the constant states. Figure 28 shows the mean peak 

values for ankle plantarflexor joint torque in A2. A linear regression beta weight of best fit was 

calculated for the acceleration period, y = 3.909x and R
2
 = 0.9364 (p < 0.05) also indicative of a 

significant increase in the acceleration period. The pre-acceleration and post-acceleration 

regression beta weights were calculated to be y = -0.0406x, R
2 

= 0.0511 and y = 0.0437x, R
2
 = 

0.0813 respectively, also indicating no change during the constant state periods in ankle torque. 

 

Figure 27: A1 Peak ankle plantarflexor joint torque during pre-, post- acceleration phases 
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Figure 28: A2 Peak ankle plantarflexor joint torque during pre-, post- acceleration phases 

VII). Ankle Joint Powers  

Figure 29 shows an individual, representative curve of the ankle power with values 

highlighting the beginning, middle, and end of the acceleration period respectively for one 

subject. This figure shows the increase in the magnitude of the ankle power through the 

acceleration and is representative of both conditions. The correlation between step number and 

ankle joint power for the three phases in A1 and A2 are presented in Table 6. For the pre-

acceleration, acceleration, and post-acceleration and they are -0.195, 0.985, and 0.303 

respectively, with the acceleration period being significant (p < 0.05).  For A2, the step 

correlations were calculated to be -0.430, 0.981, and -0.605 for the pre-acceleration, acceleration, 

and post-acceleration period respectively, with the acceleration and post-acceleration periods 

being significant (p < 0.05). This shows that there is a strong, direct relationship between step 
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number and torque through the acceleration period. In condition A2, there was a significant 

inverse relationship during the post-acceleration period. 

 

Figure 29: Representation of right leg ankle joint power during acceleration phase (S3.C1.T1) 

Condition Pre-Acceleration Accel Post-Acceleration 

A1 -0.195 0.985* 0.303 

A2 -0.430 0.981* -0.605* 

Table 6: A1 and A2 Ankle power correlation coefficients between maximum stance phase torque and step number 

during the acceleration phase; * p<0.05 

Figure 30 shows the mean peak values of all participants of the three phases for A1. A 

linear regression weight of best fit was calculated for the acceleration period, y = 26.195x with 

an R
2 

= 0.9707 (p < 0.05) indicating a significant increase in power magnitude through 

acceleration. For the pre-acceleration and post-acceleration linear regression beta weights were 

calculated as y = -0.4014x, R
2 

= 0.0379 and y = -1.1344x, R
2
 = 0.0919 respectively, indicating no 

change in the magnitude of the ankle joint powers during constant state periods. Figure 31 shows 

the mean peak values for knee joint torque in A2. A linear regression beta weight of best fit was 

calculated for the acceleration period, y = 40.029x and R
2
 = 0.9622 (p < 0.05) showing a 

significant increase in ankle joint power during acceleration. For the pre-acceleration and post-

acceleration, the regression beta weights were calculated to be y = -0.6739x, r
2
 = 0.1848 and       

950.0 W 1042.0 W 1455.5 W 
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y = -0.9729x, R
2 
= 0.3655 respectively, again indicating no change in magnitude of the ankle 

joint powers through the constant state periods.  

          

Figure 30: A1 Peak mean sagittal plane, concentric ankle power during pre-, post- acceleration phases 

     

Figure 31: A2 Peak mean ankle power during pre-, post- acceleration phases 
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VIII). Regression and Confidence Interval Analysis 

 Figures 32a and 33a show schematics of the mean regression beta weights for conditions 

A1 and A2, respectively, for the joint torques and joint powers. Figure 19a shows the hip joint 

torque has the greatest beta weight in condition A1 followed by the ankle and then the knee (p< 

0.05). Figure 20a shows ankle and hip joint torque beta weights did not differ in condition A2 

but were significantly greater than the knee (p < 0.05). In figures 33b and 33b for the joint 

powers, it can be seen that the ankle joint power was significantly greater than the hip joint 

power which was significantly greater than the knee joint powers. Tables 7 and 8 show the mean 

beta weights from the regression analysis with the minimum and maximum 95% confidence 

intervals. The results indicate that the beta weights for knee joint torque, ankle joint torque, hip 

joint power, knee joint power, and ankle joint power were all significantly greater in condition 

A2 when compared to condition A1 (p < 0.05). The hip joint torque beta weights were not 

significantly different conditions A1 and A2. 

  

Figure 32 a, b: Depiction of A1 beta weight slopes/ rate of change shown over the sequence of steps during the 

acceleration phase. Value at first step represents initial value during acceleration phase for each joint and higher 

values show the amount of change from the initial value. 

a). b). 
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Figure 33 a, b: Depiction of A2 beta weight slopes/ rate of change shown over the sequence of steps during the 

acceleration phase. Value at first step represents initial value during acceleration phase for each joint and higher 

values show the amount of change from the initial value. 

Condition Hip Torque Knee Torque, Φ Ankle Torque, Φ 

 -95% 

C.I. 

Mean +95% 

C.I 

-95% 

C.I. 

Mean +95% 

C.I 

-95% 

C.I. 

Mean +95% 

C.I 

A1, α, β 3.14 3.23 3.32 0.71 0.81 0.90 1.49 1.65 1.72 

A2, Ω 3.50 3.80 4.10 1.04 1.16 1.28 3.69 3.91 4.13 

Table 7: Beta weights from regression analysis and 95% confidence intervals for hip, knee, and ankle joint torques. 

α: hip > ankle, p< 0.05; β: ankle > knee, p<0.05; Ω:hip & ankle > knee, p<0.05; Φ: condition A2 > A1, p<0.05 

Condition Hip Power, Ψ Knee Power, Ψ Ankle Power, Ψ 

 -95% 

C.I. 

Mean +95% 

C.I 

-95% 

C.I. 

Mean +95% 

C.I 

-95% 

C.I. 

Mean +95% 

C.I 

A1, γ, δ 12.3 12.9 13.3 5.67 6.06 6.44 25.1 26.2 27.3 

A2, ε, θ 14.9 16.5 17.9 8.19 9.16 10.1 38.3 40.0 41.8 

Table 8: Beta Weights from regression analysis and 95% confidence intervals for hip, knee, and ankle joint powers. 

γ: ankle > hip, p< 0.05; δ: hip > knee, p<0.05; ε: ankle > hip, p<0.05; θ: hip > knee, p<0.05; Ψ: condition A2 > A1, 

p<0.05 

 

a). b). 
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IX). Summary 

 Based on these results, it can be concluded that there is a linear increase in the 

magnitudes of the joint torques and joint powers at the hip, knee, and ankle during acceleration 

while running. Based on the calculated regression beta weights and magnitudes of the rates of 

change at the three joints it can also be concluded that in both conditions that the hip joint and 

ankle joint are the main contributors to acceleration during running. The hip joint torque, in 

condition A1, had the greatest rate of change magnitude as seen in figure 32 and table 7 being 

significantly greater than the ankle joint, which was significantly greater than the knee joint 

(p<0.05). The hip and ankle torque beta weights did not differ significantly in A2 but were 

significantly greater when compared to the knee (p<0.05). The ankle joint power had the greatest 

rate of change magnitude in both conditions, as seen in figures 32 and 33 and table 8 and based 

on the beta weights an emphasis should be placed on the change in power magnitude at the 

ankle. The pre-acceleration and post-acceleration constant state correlations and beta weights 

agree with the findings of previous studies in that there were no changes observed in the 

magnitude of joint torques and joint powers, except in the pre-acceleration hip joint power in A1 

and the post-acceleration ankle power in A2.  

 

 

 

 

 



 

 

CHAPTER 5: DISCUSSION 

The purpose of this study was to quantify lower extremity joint torques and powers 

during constant speed running and during running while accelerating at two rates of acceleration 

(0.40 ms
-2

 and 0.80 ms
-2

) between a baseline velocity of 2.50 ms
-1

 to 6.00 ms
-1

.  It was 

hypothesized that lower extremity, sagittal plane joint torques and joint powers would positively 

and linearly increase throughout the acceleration phase of running which was found to be 

supported based on the results of this study. This section will further investigate the findings of 

this study and will be broken down into the following sections: 1).Comparison to the Previous 

Literature on Running Velocity, 2). How Humans Accelerate When Running And Comparison 

Of Accelerated Running Conditions, 3). Applications of Present Study Results, 4). Limitations of 

Present Study, and 5). Conclusion.  

Comparison to the Previous Literature on Running Velocity 

 The joint kinetics of running gait have been well documented in the field of 

biomechanics, starting with the classic study by Winter (1983). The joint torque curves found in 

this study aligned with those found in the results of Winter (1983) in both their magnitude of the 

calculated joint torques and joint powers and general figure shape when matched for velocity. 

The average velocity in Winter’s (1983) was 2.72 ms
-1

. The peak hip, knee and ankle joint 

torques during the stance phase were approximately 80 Nm, 160 Nm, and 180 Nm respectively. 

When compared to the results of this study at approximately the same velocity the hip, knee, to a 

lesser degree, and ankle joint torque curve peak values are approximately the same, being 75 

Nm, 110 Nm, and 183 Nm, respectively, with the notion that there is always some variance 

between participants. The joint power curves also had similar magnitudes and the similar general 

shape at the hip, knee, and ankle joint. The magnitudes calculated by Winter (1983) for the hip, 



58 | P a g e  

 

knee, and ankle joint powers were approximately 100 W, 220 W and 600 W which were 

approximately the same for the similar velocity in this present studywhich were calculated to be 

approximately 130 Nm, 190 Nm, and 660 Nm, respectively. The results of this study showed 

peaks in the hip torque and power curves at the beginning of stance, peaks in the knee torque and 

power curves in mid-stance, and peaks in the ankle torque and power curves near the end of 

stance which again aligns with the curves of Winter (1983). This study by Winter (1983) is 

considered to be the seminal study in quantifying running gait kinetics and has been cited in 

many running biomechanics research papers. 

 As stated previously, the majority of the running research relating to velocity has 

investigated the effect of running velocity on joint kinetics in constant state velocity increments. 

This research was very important to the formulation of the hypothesis of this study. The previous 

research showed that when running velocity was increased the magnitude of the joint torques and 

joint powers directly increased in relation to the velocity (Belli et al., 2002; Dorn et al., 2012; 

Schache et al., 2011). The findings of these studies all showed the hip and ankle to increase the 

most in joint torque and joint power magnitude which aligns with the findings of the present 

study which also showed this based on the regression beta weight analysis (figures 19 and 20 and 

tables 7 and 8 of the Results section) that the hip and ankle contribute the greatest amount during 

acceleration. It was also found that the knee joint torques and powers increased during 

acceleration but not to the same magnitude as the hip and ankle which is similar to the results 

found in the studies of Belli et al (2012) and Schache et al (2011). 

 The results of this study are in alignment with the findings of the previous literature 

investigating increases in velocity in constant state increments when matched relatively to the 

velocity in the acceleration period of this study. The results of Belli et al (2002) at 4.00 ms
-1 

had 
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joint torques of similar magnitudes at the hip and ankle to the present study as well as joint 

powers since they were within 5% of the calculated joint torques and joint powers at the hip and 

ankle. There was a large difference at the knee joint for joint torque (29% less) and joint power 

(30% less). In the same study, similar joint torques and joint powers were seen with the present 

study at the hip and ankle joints (within 5%) at 6.00 ms
-1

 with there being a large difference with 

the present study in the magnitude of the knee joint torque and joint power (55% and 107% 

greater respectively) (Belli et al., 2002). This is one study that the results of the present study 

aligned with when matched for velocity with the exception of the knee joint torque and powers at 

6.00 ms
-1

. 

 The results of the present study also agreed with some results of Schache et al (2011) and 

Dorn et al (2012) when the joint torques and joint powers were normalized to body mass and 

matched for approximate velocity. These studies both tested four different running velocities and 

the two that were within the range of the velocities of this study were 3.50 ms
-1 

and 5.00 ms
-1

. 

When matched to 3.50 ms
-1  

our normalized results for hip joint torque were not similar to the 

results of these studies being 40% greater than Dorn et al (2012) and 28% less than Schache et al 

(2011) but our hip joint torque results did fall in between the results of these studies. The results 

for knee joint torque were similar in magnitude to the results of Dorn et al (2012) with the 

present result being 16% less than the results of Dorn et al (2012). The results of the present 

study were 45% less than the results of Schache et al (2011) for knee joint torque. The calculated 

ankle joint torques of the present study were the same in magnitude to the results of Schache et al 

(2011) having no difference (0%) in magnitude. Our results were only 8% less than the 

calculated ankle joint torques of Dorn et al (2012). At 5.00 ms
-1

, similar results were observed in 

the present and Dorn et al (2012) with the present study results being 22% less than Dorn et al 
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(2012). The results of Schache et al (2011) were 40% greater than the present study results for 

hip joint torque. The results for knee joint torque at 5.00 ms
-1

 for the present study were 41% less 

than the results of Dorn et al (2012) and 59% less than Schache et al (2011). The present study 

had similar ankle joint torque magnitudes when compared to Schache et al (2011) at 5.00 ms
-1

, 

with the presen study’s  results being 8% less than their results. The ankle joint torque results of 

the present study were 3% greater than the results of Dorn et al (2012). When comparing joint 

powers of the present study to the results of Schache et al (2011) the only calculated variable 

within 25% was ankle joint power for 3.50 ms
-1 

, with the present study results being 22% less 

than those of Schache et al (2011). The hip joint and knee joint powers for the present study were 

40% greater than and 66% less than the results of Schache et al (2011). An overview of these 

results comparisons can be seen in Table 9 below. While there were some similarities to 

aforementioned similarities the differences should be considered. 

 Some of the results for the present were not in agreement with the results of the previous 

literature investigating increases in running velocity in constant state increments (Belli et al., 

2002; Dorn et al., 2012; Schache et al., 2011). The reasons for these differences can only be 

speculated but one such reason could be the previous literature was performed overground and 

the present study was done on an instrumented treadmill. There is disagreement in the literature 

as to whether running on a treadmill is the same as overground kinematically and kinetically 

(Lee & Hidler, 2008; Riley et al., 2008; Van Caekenberghe et al., 2012). Taking this into 

account, another reason for the difference could be the differences in vertical and horizontal 

kinematics and kinetics. The present study used an instrumented treadmill and there is no change 

horizontal displacement and there could have been an increase in vertical displacement for this 

reason. There is also normal variation in running gait between participants and this could account 
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for these differences. The present study used runners of all levels from recreational to division I 

cross country runners whereas the referenced studies all used elite level sprinters which could 

account for the differences observed especially at the hip joint torque given the increased role of 

the hip musculature during sprinting. Finally, it could simply be errors in the calculations coming 

from the 3D position data or the force plate.  

 Belli et al (2002) Schache et al (2011) Dorn et al (2012) 

Matched 

Velocity 

4.00 ms
-1 

6.00 ms
-1

 3.50 ms
-1

 5.00 ms
-1

 3.50 ms
-1

 5.00 ms
-1

 

Hip 

Torque 
-5%* -11%* -28% +40% +40% -22%* 

Hip 

Power 
-5%* +33% +55% +40% N/A N/A 

Knee 

Torque 

-29% -55% -45% -59% -16%* -41% 

Knee 

Power 

-30% -107% -55% -66% N/A N/A 

Ankle 

Torque 
+1.5%* +3%* 0%* -8%* -8%* +3%* 

Ankle 

Power 
+5%* +11%* -14%* -32% N/A N/A 

Table 9: Comparison of present study results to previous literature. + indicates present study results were greater 

than the results of corresponding study results, - indicates present study results were less than corresponding study 

results. *percentages within + 25% were considered similar. 

 There have been few running studies that have investigated accelerated running in 

humans. The study by Van Caekenberghe et al (2013) is the one of the only investigations on 

human acceleration. However, the findings of Van Caekenberghe et al (2013) found that there 

was no increase in the joint torque magnitude which is the opposite of the findings of the present 

study which found there to be a linear increase in the joint torques in the hip, knee, and ankle 

with the hip and ankle being the primary contributors based on the regression analysis discussed 

in the results section (Figures 19a and 20a). Van Caekenberghe et al (2013) suggest that the 

reason we accelerate and have a greater propulsive ground reaction is due to the body orientation 
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change.  They state that the muscular contributions of the joints are the same but because of there 

is a more forward lean in terms of body orientation this results in a change in the direction of the 

ground reaction forces which is how we accelerate . The present study did not take into account 

body lean but again did find there to be a significant linear increase in joint torque magnitude 

during the acceleration period on the instrumented treadmill. Van Caekenberghe et al (2013) did 

find that the joint powers did increase (did not quantify this increase in a regression) and this 

observation is in alignment with the findings of the present study which found a linear increase 

in the joint powers at the hip, knee, and ankle. Our results can be explained by an increase in the 

magnitude of the joint torques which is one of the factors of joint power whereas Van 

Caekenberghe et al (2013) attribute their increase to an increase in the joint angular velocity. 

Angular velocity was not a recorded variable in the present study. The findings of the present 

study do not align with one of the few human accelerated running studies but they do align with 

those done in animal models. 

 McGowan et al (2004) performed a study using tammar wallabies and they found that the 

hip and knee joint torques increased during acceleration with the ankle not increasing. This 

aligns with the results of the present with the exception being we did observe an increase in the 

ankle joint. The reason for this difference could be explained by the difference in the anatomy of 

the ankle joint in a tammar wallaby. Using turkeys, another study found that during two different 

accelerations (moderate and fast) an increase in the magnitude of the joint torques and joint 

powers was observed in both acceleration conditions when compared to the steady state which is 

similar to the results of the present study (Roberts & Scales, 2004). 

 Overall, the findings of this study do align with the results of the previous literature- 

when matched approximately for velocity- that investigated the changes in joint kinetics when 
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running velocity was increased in constant state increments. The findings of the present study do 

not align with the results of Van Caekenberghe et al (2013) as increase was observed during the 

acceleration period in the magnitude of the joint torques at the hip, knee, and ankle. The results 

for joint powers in the same study did align with that of the present study in that both suggest 

there to be an increase during acceleration. The results of the present study were similar to the 

findings of Roberts and Scales (2004) and McGowan et al (2004) which both found there to be 

increases in the joint torques and joint powers during acceleration. 

How Humans Accelerate When Running And Comparison Of Accelerated Running 

Conditions 

 Based on the results of this study the general running kinematics (as explained in the 

literature review) remain the same when humans start to accelerate but the joint kinetics of the 

lower extremity are what change. For this study, correlation and a regression analyses were used 

to determine the strength of the relationships between joint torques and step number and the 

magnitude of the increase in the joint torques and joint powers during the acceleration phase at 

the hip, knee, and ankle joint. As stated, there is a linear increase in the joint torques and joint 

powers at the hip, knee, and ankle when humans accelerate. However, the contributions based on 

the rates of change per step of the hip, knee, and ankle are not equal as seen by the beta weight 

regression analysis and the confidence intervals for the joint torques and joint powers. The 

differences between conditions A1, acceleration rate of 0.40 ms
-2

,and A2, acceleration rate of 

0.80 ms
-2

, for beta weights were also analyzed.  

 In condition A1, the beta weights for the joint torques revealed that the hip has a 

significantly greater muscular contribution than the next greatest joint torque beta weight during 
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the acceleration having a beta weight of 3.23. The 95% confidence interval for the hip joint 

torque beta weight was 3.14 to 3.32 (p< 0.05). The ankle joint for condition A1 had the next 

greatest beta weight with a mean beta weight of 1.65, which was significantly less than the hip 

joint torque (p< 0.05). The 95% confidence interval for the ankle joint torque was 1.49 to 1.72. 

Finally, the knee joint torque does increase during acceleration but contributes the least during 

acceleration based on the regression analysis of the beta weights. The mean joint torque beta 

weight was calculated to be 0.81, which was significantly less than the ankle joint (p < 0.05). 

The 95% confidence interval for the knee joint torque was 0.71 to 0.90. These were the findings 

of condition A1 which was the slower rate of acceleration. These findings are similar to that of 

A2 with one difference. 

 In condition A2, the beta weights revealed that the hip joint torque and ankle joint torque 

were not significantly different from one another, unlike condition A1 where they were 

significantly different. The mean beta weight for the hip joint torque was 3.80 and 3.91 for the 

ankle joint torque which were not significantly different. The 95% confidence interval for the hip 

joint torque was 3.50 to 4.10 and 3.69 to 4.13 for the ankle joint torque. The hip joint torque beta 

weight in condition A2 was not significantly different from the hip joint torque beta weight in A1 

but the ankle joint torque beta weight was significantly different from A1. The hip and ankle 

joint torque beta weights were significantly greater than the knee joint torque beta which had a 

mean beta weight of 1.16 (p < 0.05). The 95 % confidence interval for the knee joint torque beta 

weight was 1.04 to 1.28. This result is similar to that of condition A1 in that the knee joint 

contributes the least when we accelerate when running. When comparing the results between 

condition A1 and A2 the hip joint torque beta weights are not significantly different but the knee 

torque and ankle torque beta weights are significantly different indicating a difference in the 
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slow versus fast rates of acceleration. When we analyze the beta weights for the hip, knee, and 

ankle joint powers we see a different trend. 

 The order of peak magnitudes for joint powers is the same for both conditions A1 and A2 

but is not the same when compared to the joint torques. The beta weight regression analysis 

revealed that the ankle joint had the greatest increase in peak, power per step during the 

acceleration period having a mean beta weight of 26.2 and 40.0 for A1 and A2 respectively 

which was significantly greater than the hip joint power and knee joint power (p < 0.05). The 

95% confidence intervals for the ankle joint power were 25.1 to 27.3 and 38.3 to 41.8 for A1 and 

A2, respectively. This also denotes that there was a significant difference in ankle joint power 

between the slow and fast rates of acceleration (conditions A1 and A2). The hip joint power beta 

weights for both conditions A1 and A2 were significantly less than the ankle but were 

significantly greater than the knee joint powers (p< 0.05). The mean hip joint power beta weights 

for A1 and A2 were 12.9 and 16.5, respectively and the 95% confidence interval were 12.3 to 

13.3, and 14.9 and 17.9, respectively. This also indicates that there was a significant difference 

between conditions A1 and A2 (p < 0.05) with the larger acceleration having higher per step rate 

of change in hip power. Finally, the knee joint powers were significantly less than both the ankle 

joint and hip joint powers. The mean knee joint beta weights for conditions A1 and A2 were 6.06 

and 9.16, respectively and the 95% confidence intervals were 5.67 to 6.44 and 8.19 to 10.1, 

respectively. This is again indicative of a difference between conditions A1 and A2 for the knee 

joint powers (p < 0.05). 

 In summary, the results of this study indicate that when humans accelerate the muscular 

contributions, made evident by the joint torque beta weights, indicate that in both conditions A1 

and A2 the hip and ankle joint torques have the greatest contribution during acceleration and 
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increase the greatest in magnitude per step. This could be due to the role the hip has in increasing 

the step rate to move the limbs faster and the ankle in increasing step length (Dorn et al., 2012; 

Fukunaga et al., 1980). In both conditions it was also apparent the knee joint torque beta weight 

was the lowest in magnitude and therefore the knee joint contributes the least to acceleration in 

both conditions A1 and A2 and increases the least per step. The ankle joint torque had different 

results between the two conditions. In condition A1 it was significantly less than the hip joint 

torque beta weight but was not significantly different in condition A2. This suggests again that 

the hip and ankle joint musculature are the primary contributors to the acceleration phase of 

running based on the rates of change in these joint for joint torque. The joint powers had the 

same results in both conditions where the ankle had the greatest joint power beta weight 

magnitude, followed by the hip joint and lastly by the knee joint. This suggests that the muscles 

around the ankle joint are performing a more powerful concentric contraction than the hip and 

knee joint musculature and increasing the most per step followed by the hip joint increasing the 

second most per step, and lastly the knee joint. The joint powers differed significantly at all three 

joints between conditions A1 and A2 with condition A2 having significantly greater joint power 

beta weights. This indicates that there are more forceful concentric contractions at all three joints 

in the lower extremity when humans accelerate at a faster rate. Overall based on the results of 

joint kinetics it could be said the ankle is the primary joint driving acceleration during running. 

Applications of Present Study Results 

 Running is an integral part of many sports such as track, football, soccer, basketball, etc. 

In all of these sports, there are periods where changes in velocity occur for a variety of reasons. 

Based on the protocol, the results of the present study could be most applicable to the way in 

which sprinters accelerate on a track. Sprinters experience a gradual increase in running velocity 
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through gradual acceleration before the rate of acceleration is maximized. In the present study, 

the particpants performed a a gradual, but constant rate of accelerationg for approximately six to 

nine seconds depending on the rate of acceleration being tested. It could be argued that this is a 

similar time frame for acceleration when sprinting on a track. Acceleration in the other sports 

mentioned may usually occur in a very short span, taking 3 or 4 accelerating steps perhaps. This 

makes applying the findings of the present study difficult given the longer period of accelerated 

running the participants performed 

 However, it must also be considered that during sprinting acceleration on a track the rate 

of acceleration may not be constant as it was in the present study’s protocol. This could suggest 

acceleration being a skill as some track athletes could be superior to other athletes at accelerating 

more efficiently and constantly. Manipulating the rate of acceleration was important to the 

present study to insure that all participants did accelerate similarly and took the same, relative 

number of steps. Quantifying the rates of acceleration for track athletes during a sprinting event 

(100 m or 200 m) is a possible future direction for the research on acceleration based off of this 

idea of acceleration being a skill. Coaches could emphasize the movements of the ankle first 

followed by the hip to help in the improved performance of track athletes out of the blocks and 

during the acceleration period during an event. 

Limitations of Present Study 

 This study is not without some limitations. First, there is some error that occurs during 

the testing protocol by the motion capture cameras that is result of residual error or movement 

artifact of the reflective markers. This in turn results in small discrepancies in the inverse 

dynamic calculations. Another limitation of this study is that a Bertec instrumented treadmill was 
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used for the data collections and there is disagreement in the literature as to whether treadmill 

running is the same as over ground running (Lee & Hidler, 2008; Riley et al., 2008; Van 

Caekenberghe et al., 2012). A treadmill was used to be able to collect multiple steps and have the 

rates of acceleration be the same in each condition and between trials. When entered into the 

spreadsheet, some of the treadmill data were deleted due to large discrepancies or measurement 

errors but this amounted to only approximately 1.5% of the total steps collected and entered. 

 The study also had a small sample size of 15 healthy, young runners. Within this sample 

there were 8 females and 7 males and each had various degrees of running experience. Some 

were division I cross country runners with coaching and others were purely recreational. There 

were natural differences in the running gait of each participant which could have affected the 

results to some capacity. One way in which this affected the results is not all the particpants took 

the same number of steps during the acceleration- particularly in condition A2. The participants 

that took more steps happened to be the less heavy particpants and this resulted in there being a 

decrease in the mean torque and power values for the greater step numbers for some variables 

which then affected the regression beta weights. This would be difficult to control for but should 

mentioned as a limitation. Another potential limitation is the comfort level of the participants on 

the instrumented treadmill. It is somewhat different from a normal treadmill as it has two belts 

moving simultaneously with a small space between the two belts. Depending on how the 

participants ran on the treadmill their stance width could have been slightly wider if they ran on 

both belts or slightly more narrow if they were only on one belt. 
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Conclusion 

It was hypothesized that lower extremity, sagittal plane joint torques and joint powers 

would positively and linearly increase throughout the acceleration phase of running. Based on 

the results of this study, the hypothesis was supported. There were some differences in the 

amount each joint contributes to acceleration during running but the general finding was that the 

hip and ankle contribute the greatest amount to acceleration during running based on the idea 

that the rates of change in joint torque and joint power magnitude were greatest at these two 

joints. It is suggested that the ankle is primary joint contributing to accelerated running based on 

the very high increases in magntidue per step for joint power. The knee joint also contributes but 

not to the same degree as the hip and ankle and this again can be seen by the results for therate of 

change beta weights for the joint torques and joint powers for the hip, knee, and ankle. It was 

also observed that magnitude of the increase per step was different between the two conditions 

for the knee torque, ankle torque as well as the hip, knee, and ankle joint powers with condition 

A2 having a greater increase in magnitude per step when humans accelerate at a faster rate. This 

study refutes the findings of Van Caekenberghe et al (2013) and therefore suggests that further 

research is needed to add to the minimal research investigating the acceleration phase of running. 
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APPENDIX B: Treadmill Belt Velocity Data 

 The figures below show the treadmill velocity data in relation to the horizontal ground 

reaction forces and the minimal fluctuation that occurs in the belt velocity when the participants 

pushed off and made initial contact. The treadmill belt velocity had a coefficient of variation 

between 1 and 1.5 for the two velocities test (2.5 ms
-1 

and 4.5 ms
-1

) for both the light mass and 

heavy mass participants. In figures 34-37 when the partipants made initial contact with the 

treadmill belt there is a slight decrease in the velocity of the belt and then conversely a slight 

increase when the participants push off at the end of the stance phase. This is what typically 

happens in normal running overground so it may aid in the argument of treadmill running being 

kinetically similar to overground running. 

 However it should also be taken into account that some of the force and energy exterted 

into the belt is translated into the motor of the treadmill and is therefore lost from the data. This 

could potentially affect the results of the present study to a certain degree. This notion is a minor 

concern for the results validity.  

This data was not included in the results as it was only collected on two participants who 

had varying masses and heights as well as being one male and one female.
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Figure 34: Light Mass 2.5 ms
-1

 running velocity versus horizontal GRF 

 

Figure 34: Heavy Mass 2.5 ms
-1

 running velocity versus horizontal GRF 
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Figure 34: Less Mass 4.5 ms
-1

 running velocity versus horizontal GRF 

 

Figure 34: Heavy Mass 4.5 ms
-1

 running velocity versus horizontal GRF 
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