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Analysis of the miR319 target Zmtcptf24 in the maize inflorescence 

Kelly Kerschner 

Department of Biology, East Carolina University, Greenville, NC 27858 

 

Abstract: 

Maize inflorescences are essential for reproduction and also produce seeds that are consumed as 

food. To understand the genetics pathways that control normal inflorescence development, we 

study mutants with abnormal inflorescence development. A major focus of the Thompson 

laboratory is the maize fuzzy tassel (fzt) mutant, which has severe inflorescence defects. fzt 

contains a mutation in dicer-like 1 (dcl1), which encodes a key enzyme required for microRNA 

(miRNA) biogenesis. miRNAs are 20-22-nucleotide long RNAs that repress gene expression by 

directed RNA cleavage or translational inhibition . In fzt mutants, some miRNAs are 

dramatically decreased, while others are moderately decreased or unchanged. MiR319 is reduced 

approximately 8-fold in fzt mutants, and is predicted to target mRNAs that encode TCP 

transcription factors. We hypothesize that reduced miR319 levels may lead to increased or 

ectopic expression of TCP target genes and be responsible for a subset of the fzt defects. My 

project focuses on one miR319 target, Zmtcptf24. I used RNA in situ hybridization to examine 

expression of Zmtcptf24 in normal tassel primordia. Preliminary experiments indicate that 

Zmtcptf24 is expressed in the carpal, stamens, and lodicules, suggesting that Zmtcptf24 may play 

a role in maize floral development.  
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Introduction  

Maize is a major food crop, which humans are highly dependent on. In maize there are 

two flowering structures called inflorescences, the ear and tassel. The ear makes female flowers 

and produces the kernels that are harvested to provide nutrition. The tassel makes male flowers 

and produces pollen that fertilizes female flowers. The Thompson laboratory studies the genetic 

control of maize inflorescence development.  

Plant growth and development depends on the activity of meristems (Steeves & Sussex, 

1989).  Meristems are groups of indeterminate stem cells. The architecture of the inflorescence is 

determined by the meristem activity (McSteen & Hake et al., 2001; Bartlett & Thompson, 2014). 

The inflorescence meristem (IM) is at the apex (tip) of the inflorescence and initiates long g 

branch or short branch meristems.  Long branches are produced only in the tassel.  The short 

branch meristems are called spikelet pair meristems (SPM). Each SPM gives rise to two spikelet 

meristems (SM), and each SM initiates two terminal floral meristems (FM) (Figure 1). The IM 

and branch meristems are indeterminate meristems because the stem cells are not consumed in 

the production of meristem or organ primordia. The SPM, SM, and FM are determinant 

meristems because stem cells are consumed in the production of primordia (Steeves & Sussex, 

1989). The Thompson lab is interested in the genetic control of meristem fate and determinacy in 

the inflorescence. 

fuzzy tassel Mutant (fzt) 

One mutant we study in the Thompson lab is the fuzzy tassel (fzt) mutant, which has 

severe inflorescence defects. fzt plants have reduced plant stature and also have shorter, narrower 

leaves than normal siblings. fzt inflorescences have increased indeterminacy in multiple 
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meristems (SPM, SM, FM) and abnormal floral organs. Scanning electron micrographs (SEM) of 

the tassel and ear show a lack of stem cell homeostasis in the IM creating abnormal growth 

(Thompson et al., 2014).   

DICER-LIKE1 (DCL1) is a key enzyme required for miRNA biogenesis (Kurihara & 

Watanabe, 2004). fzt has a mutation in dcl1, predicted to cause a  missense mutation in the 

RNAse III domain of DCL1 (Thompson et al., 2014). MiRNAs are 20-22 nucleotide long RNAs 

that play a role in plant growth, stress response, and development (Bartel, 2004; Kim, 2005; 

Bushati & Kohen, 2007; Sunkar et al., 2007). miRNAs are transcribed as long primary miRNAs 

(pri-miRNA) that can form a stem-loop or hairpin structure (Kurihara & Watanabe, 2004). The 

pri-miRNA transcript is cleaved by DCL1 to release the hairpin section, the pre-miRNA 

(Kurihara et al., 2006). The pre-miRNA hairpin is cleaved again by DCL1 resulting in the 

miRNA/miRNA* duplex. (Bartel et al., 2004, Krol et al., 2010) The duplex is exported out of the 

nucleus and one strand of the small RNA duplex is incorporated into the RNA Induced Silencing 

Complex (RISC) (Meister & Tuschl, 2004; Chen, 2009). The miRNA guides RISC to the mRNA 

with a complimentary sequence.  ARGONAUTE (AGO), one of the proteins associated with 

RISC, is the catalytic component of RISC and cleaves the mRNA to the bound miRNA 

(Vaucheret et al., 2004; Miyoshi, 2005; Kurihara & Watanabe, 2004).  

To understand how miRNA processing was affected in fzt, small RNA sequencing was 

performed in fzt and examined against normal tassels (Thompson et al., 2014). The data 

supported the hypothesis that not all miRNAs are affected equally. In plants, miRNAs target 

mRNAs for cleavage and degradation so miRNAs may be responsible for some mutant 

phenotypes or start a cascade of change (Bartel, 2004). The data also indicated that some 

miRNAs are dramatically reduced compared to others (Thompson et al., 2014). The miRNA in 
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question for my project is miR319, which is decreased about 8-fold in fzt mutant tassel primordia 

compared to normal controls (Thompson et al., 2014). In other plant species, miR319 targets a 

plant-specific group of transcription factors called TCPs (Schommer et al., 2008; Palatnik et al., 

2007; Nag et al., 2009; Martín-Trillo & Cubas, 2010).  

TCPs are a group of plant-specific transcription factors contain a similar basic-helix-

loop-helix domain (Martín-Trillo & Cubas, 2010). TCPs are divided into two subgroups, class I 

and class II, based on their protein sequence (Danisman et al, 2012). Within class II TCPs, a 

subset contain a miR319 binding site and are targeted by miR319 (Nag et al., 2009; Ori et al., 

2007). In Arabidopsis, out of 24 TCPs, five are targeted by miR319 including TCP3, TCP4, 

TCP5, TCP10, and TCP24 (Nag et al., 2009). This miR319 binding site is located near the 3’ end 

of the coding region (Schommer et al., 2012).   

My gene of interest in maize is Zmtcptf24, which is closely related to TCP4 in 

Arabidopsis, based on previous phylogenetic analyses (K.Novitzky, unpublished). Proper 

regulation of TCP4 by miR319 is required for petal growth and development in Arabidopsis 

(Nag et al., 2009). Decreased miR319 activity results in reproductive and vegetative defects of 

Arabidopsis (Ori et al., 2007; Schommer et al., 2008). Direct overexpression of TCP4 by absent 

miR319, and the lack of a regulator of the five TCPs, results in a complete loss of petal growth 

(Nag et al., 2009) 

Objective 

The objective of my project is to analyze the role Zmtcptf24 plays in maize. Through in 

vitro and in situ experiments the research questions to answer are what is the normal role of 

Zmtcptf24 in maize development and does over expression contribute to the fzt phenotype. RNA 
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in situ hybridization will give some insight into where Zmtcptf24 is expressed in the mRNA, and 

give an idea of normal gene function. I hypothesize that since TCP4 plays a key role in of floral 

development in Arabidopsis, , Zmtcptf24 may also play a role in maize floral development. 
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Figure 1: Schematic of inflorescence development 

Tassels and ears arise from a collection of indeterminate stem cells at the apex of the 

inflorescence called the inflorescence meristem (IM). The IM initiates the spikelet pair 

meristems (SPM); each SPM gives rise to two spikelet meristems (SM); each SM gives rise to 

two floral meristems (FM). In the tassel, the IM also initiates long branch meristems (BM). 

 

  

FM 
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Figure 2: The function of DCL1 in miRNA biogenesis 

DCL1 is responsible for two cleavage points in miRNA biogenesis. The first cleavage releases 

the hairpin from the pri-miRNA to release the pre-miRNA and the second cleavage releases the 

small RNA duplex, consisting of the miRNA and its complement.  

 

  

Figure Credit Jian-Kang Zhu (2008) 
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Materials and Methods: 

Probe Design and Synthesis 

 Probes for RNA in situ hybridization were designed to target the 5’ and 3’ UTR of 

Zmtcptf24.  UTRs were targeted because these are sequences unique to Zmtcptf24 and not shared 

with closely related tcp genes.  PCR primers were designed to amplify ~150-200 base pairs (bp) 

of Zmtcptf24 cDNA (see Table 1 for primers used) using the Oligoperfect primer design program 

(www.lifetechnologies.com/oligoperfect). To ensure Zmtcptf24 amplicons were unique to 

Zmtcptf24, these sequences were BLASTED against known maize genomic sequences. 

To obtain sufficient amounts of the gene-specific DNA for cloning, PCR was used to 

amplify the targeted regions of Zmtcptf24. DNA from the A619 inbred was used as a template 

for PCR because in situs were carried out on A619 tissue. The targeted regions did not span any 

introns, so the genomic and cDNA sequences should be identical in these regions. To minimize 

PCR errors, Phusion high-fidelity DNA polymerase (Thermofisher) was used to amplify the 

expected fragments (see protocol in Appendix 1A). 5 l of PCR product was run on a 1% 

agarose gel to visualize the size of the PCR product. Reaction products were purified over a 

BIONEER purification column in a PCR purification clean up kit to remove unwanted 

components. These unwanted components included genomic DNA, primers and dNTPs. The 

reaction products with multiple amplification regions were purified using BIONEER gel 

purification clean up kit, which required the 150-200bp fragments to be excised from the agarose 

gel and purified.    

Prior to cloning into the pGEM-T easy vector, the sequences had to be a-tailed. The A tail 

ensured the sequence would insert and bind to the 3’ thymine overhang of the pGEM-T easy 
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vector (see Appendix 1 for exact protocol). PCR products were cloned into the pGEM-T easy 

vector system (Promega) according to manufacturer’s protocols (see Appendix 1C for exact 

protocol). 2µl of ligation reactions were then transformed into 25l competent cells, plated on 

LB/CARB plates coated with 7l (200mg/ml) IPTG and 40l (20 µg/µl) X-Gal, and incubated 

overnight at 37 C.  

Putative positive colonies were selected based on blue/white colony screening (See 

Figure 3).  Plasmids that have insert present interrupt the formation of β-galactosidase by 

blocking the lacZ operon. The blue colonies did not have an interruption because of the lack of 

insert and were able to produce the β-galactosidase. The white colonies were considered 

successful because they disrupted the gene due to the placement of an insert, however the correct 

insert had to be verified through later steps. To verify clones were correct, 4-6 white colonies 

were cultured overnight in selective media and plasmid DNA isolated using BIONEER Plasmid 

clean up kit.  Plasmids were sequenced with T7 and SP6 sequencing primers to confirm sequence 

and insert orientation.  Although the insert is expected to enter in random orientation, all 

plasmids tested (6/6) were in the same orientation and the SP6 RNA polymerase was used to 

generate anti-sense probes. Cultures of selected plasmids for probe synthesis were regrown and 

purified using BIONEER Plasmid Cleanup kit. The plasmid cultures were saved as stocks in 

60% glycerol for a final concentration of 30% and stored at -80 C for long-term storage.  

In Vitro Transcription Reaction 

In order to detect Zmtcptf24 mRNAs during tassel development, I used RNA in situ 

hybridization. Probes for in situ hybridization are antisense transcripts that contain digoxigenin 

(DIG)-labeled uridines. The DIG can be detected by an anti-DIG antibody, which is labeled with 
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alkaline phosphatase (AP).  In the presence of its substrate AP forms a blue precipitate and thus 

provides a method to visualize bound probe.   To generate a template for in vitro transcription, 

linear DNA fragments were amplified off of the select plasmids using M13 forward and reverse 

primers. All of the plasmids I generated required the use of SP6 RNA polymerase to generate the 

RNA antisense probe.  To maximize probe synthesis, in vitro transcription reactions were 

incubated for 2.5 hours (See Appendix 1E for full protocol). To compare whether the DNAse 

treatment was effective, 3µl was removed from the in vitro reaction before stopping the reaction 

by adding DNAse. After the 15 minute DNAse reaction, 2µl were removed. The 3µl before and 

2 µl after samples were loaded onto a 1% Agarose gel and were run to check for degradation of 

DNA contamination by comparing the two samples. The first sample should show a smear after 

the gel is imaged, indicating the presence of RNA. Probe was precipitated with 1µl 10mg/mL of 

yeast tRNA, 75µl 100% EtOH, and 2.5µl 3M NaOAc overnight, spun down the following day, 

washed in 70% EtOH, and resuspended in 40µL of 50% formamide.   

 To determine efficiency of probe synthesis and estimate probe concentration, a dot blot 

was performed. 20-fold serial dilutions were made for both control (DIG-labeled control RNA, 

Roche, 100µm/ml initial concentration) and synthesized probe. 1µl of each dilution was spotted 

and allowed to air dry before being cross-linked to a nylon membrane using UV light. The cross-

linked RNA probes on the nylon membrane were subjected to a series of washes to prepare for 

hybridization following Dot Blot protocol detailed in Appendix 1F, and developed using the 

same detection techniques as those used for in situ hybridization. Synthesized probe intensities 

are compared to Roche manufacturers control to determine starting concentrations for in situ 

hybridization. As expected, T7 -transcribed probes had more robust synthesis (approximately 20 

ng/l) than SP6 probes (approximately 100 pg/l) (see figure 4). 
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In Situ Hybridization 

In situ hybridization is a laboratory technique to visualize which cells in a tissue an RNA 

is expressed. I briefly describe the RNA in situ hybridization method below; a complete protocol 

can be found in Appendix 1E. First, an RNA probe complementary to the mRNA of interest 

(antisense), is synthesized with DIG-labeled UTPs and the labeled probe is hybridized to fixed 

tissue.  Sense probes are not expected to hybridize to any cellular RNAs and serve as a negative 

control.  The antisense RNA probe will hybridize to the RNA transcript with a complementary 

sequence. To visualize where the probe is bound within the tissue, the tissue is incubated with an 

anti-DIG antibody that is coupled to AP. AP will form a blue precipitate when incubated with its 

substrate.  The blue staining identifies cells within the tissue where the synthesized RNA that 

corresponds to Zmtcptf24 is present.  

4µl of probe at 2X concentration was used for each slide pair. Hybridization and 

posthybridization are the two steps the slide pairs go through and are detailed in Appendix 1G. 

The slide pairs were taken through a variety of steps within the initial hybridization and the 

posthybridization. The hybridization step includes fixing the slides with formaldehyde to 

improve tissue fixation on the slides, and a proteinase K treatment to allow the probe to penetrate 

the tissue, thus obtatining better signal. During the posthybridization steps the slides are treated 

with the detection buffer and substrate and allowed to incubate before the reaction is stopped. 

The slides are allowed to develop overnight before expression is visible. A transcript with a low 

concentration can require more detection buffer and a longer period of incubation to detect clear 

signal. After the slides are mounted with permout overnight, they can be imaged under the 

microscope and evaluated for expression. 
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Primer Sequence Date Region 

TCP24-F1 ATCCAACCAGCATGACCATT 5/20/2014 
3' 

TCP24-R1 AATGGGGACAACAGAACTGC 5/20/2014 

TCP24-F2 CCCATTCCAGGAGAGAAGAG 5/20/2014 
3' 

TCP24-R2 TCTTGTGTCGTTCTCGCAGT 5/20/2014 

TCP24-F3 CCCGGTACCAGCTTCTCC 6/19/2014 
Coding 

TCP24-R3 ATCTGTGCTCCACTGCTGCT 6/19/2014 

TCP24-F4 GAGACGGAAACCCCTTCC 6/19/2014 
5' 

TCP24-R4 ACCTTGTCGGGGACCATAAT 6/19/2014 

TCP24-F5 TGGCTTCCTTTGCGTTAAAT 6/19/2014 
5' 

TCP24-R5 CCTGATGGGTGCGATTAAGT 6/19/2014 

 

Table 1: Primers ordered and tested. The purple highlighted primer sets used to generate probes 

for in situ hybridization.  
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Figure 3: Example of a Blue/White Screening  

Insert+pGEMT Easy ligations were transformed into JM 109 High efficiency competent cells. 

The white colonies (black circles) were considered potential positives and cultured. The blue 

colonies contained plasmids that lacked insert. 
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Figure 4: Dot Blot to determine probe concentration 

The purpose was to quantify the amount of probe present for use in in situ hybridization. 

Although the antisense probes were weak they were recorded at about 100 pg/µl and used for in 

situ hybridizations. 
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Results 

 As referenced in the introduction, Zmtcptf24 is closely related to TCP4 in Arabidopsis. In 

plants with reduced miR319 levels, TCP4 is overexpressed, resulting in loss of petal growth 

(Nag et al., 2009). Due to their phylogenetic relatedness, I hypothesize that Zmtcptf24 in maize 

functions similarly in floral development. We are investigating Zmtcptf24 and if/how it 

contributes to the developmental defects found in fzt.  

fzt has decreased levels of several miRNAs that are thought to have key roles in 

development, including miR319.  We hypothesize that misregulation of mRNAs targeted by the 

miR319 and other miRNAs are responsible for the inflorescence defects in fzt. Based upon RNA-

seq data in fzt, miR319 target mRNAs are not upregulated. RNA-seq functions by taking a 

snapshot of the transcriptome at a certain point in time (Wang et al., 2009). Predicted miR319 

targets may not have been upregulated because the time the data was accrued was not a 

developmental period miR319 regulated tcps were functioning at a high level. In situ 

hybridization allows specific cells to be analyzed for expression at multiple developmental 

stages. This allows us to examine if miR319 regulation only occurs in a few cells in a critical 

time period, which would not be revealed in RNA-seq data, which uses whole tissues.  

Based on previous RNA-seq analysis for GRMZM2G015037, Zmtcptf24 is expressed 

strongly in the immature tassel and immature cob. Mild expression was also found at the base of 

the stage two leaf and immature leaf (Sekhon et al., 2011). To determine where Zmtcptf24 is 

expressed during tassel development, I performed in RNA situ hybridization.  I designed probes 

that targeted the 5’ and 3’ UTRs of Zmtcptf24 because they were unique to the Zmtcptf24 
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mRNA. A dot blot was performed to determine the starting concentration of the antisense probe, 

which will bind to the Zmtcptf24 mRNA, and it was 100 pg/µl.  

I have performed in RNA in situ hybridization on tassel primordia that contains floral 

meristems and developing floral organs. Within the developing floret, expression is seen in 

developing floral primordia, including the carpel and stamens. Expression of Zmtcptf24 appears 

in developing lemma and palea. Figure 5B shows a magnified floret from figure 5A and clearly 

identifies structures within the upper and lower florets enclosed by the glume. Zmtcptf24 is not 

expressed in spikelet glumes (Figure 5B). The expression in figure 5C also shows two florets, an 

offset upper floret and a lower floret, that reinforce the observations seen in the other sections; 

there is clear expression in the two carpels and stamens. Staining is observed in the vasculature 

at the base spikelet pairs (Figure 5D). These results are consistent with the hypothesis that 

Zmtcptf24 has a potential role in maize floral development. Thus far, I have only performed in 

situs on one developmental stage of developing tassels. Further investigation in different aged 

tissue will need to be conducted to reinforce the function of Zmtcptf24 in maize and its function 

in floral development.        
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Figure 5: Results of in situ hybridization on Zmtcptf24 

 (A) A section of three spikelets on a normal tassel. (B) A magnified view of the bottom spikelet 

on image A. The carpal is identified by a ‘C’ and the stamens are identified by an ‘S’. The 

glume, which did not exhibit any staining, is outlined in black. (C) A section of another spikelet 

that distinguishes an upper and lower floret, which is outlined with a black circle. (D) A section 

of a spikelet pair exhibiting vascular expression. 
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Discussion 

 TCPs are plant-specific transcription factors that contain a basic-helix-loop-helix domain. 

TCPs are named for their founding members: TEOSITE BRANCHED 1 (TB1) from maize, 

CYCLOIDEA (CYC) from snapdragons, and PROLIFERATING CELL FACTORS 1 and 2 

(PCF1 & PCF2) from rice (Cubas et al, 1999). There are two classes of TCPs, class I and class 

II, that are differentiated by their amino acid sequence (Danisman et al., 2012). Class I TCPs 

include TCP transcription factors with a PCF1 domain. The class II TCPs include TCP 

transcription factors with a CIN domain, along with TB1/CYC (Martín-Trillo & Cubas, 2010). 

Both classes of TCPs regulate various aspects of plant development, including cell division, 

differentiation, and floral development (Schommer et al., 2012; Nag et al., 2009) 

In Arabidopsis and other known species, class II TCPs are targeted by miR319 and have 

key roles in leaf and flower development (Nag et al., 2009; Ori et al., 2007).  The focus of this 

study, Zmtcptf24, is closely related to Arabdiopsis TCP4, suggesting that Zmtcptf24 might share 

some roles with TCP4 (Nag et al., 2009). TCP4 functions by regulating the inflorescences and 

patterning stamens and carpels.  TCP4 mutants that are resistant to miR319, exhibit severe 

developmental defects, and the inability to regulate TCP4 results in the failure of stamen and 

petal development (Nag et al., 2009; Palatnik et al., 2003). 

The maize genome is predicted to contain 7 class II tcp genes, 5 of which are predicted 

targets of miR319.  Zmtcptf24 is closely related to Zmtcptf33, suggesting that the genes might 

function redundantly (K. Novitzky, unpublished).  Other redundancies have been identified 

through analysis of TCP genes in Arabidopsis. In the jaw-D mutant of Arabidopsis, miR319 is 

overexpressed and expression multiple TCP genes are reduced. resulting in a crinkled leaf 

phenotype (Rodriguez et al., 2013). In contrast, single mutants in TCP genes have very mild or 
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no phenotypes and the leaf shape is normal (Schommer et al., 2008). These analyses support the 

conclusion that TCP genes function redundantly (Schommer et al., 2008; Martín-Trillo & Cubas, 

2010).  

To investigate possible function of Zmtcptf24 in maize, I performed RNA in situ 

hybridization on developing maize tassels.  In these preliminary experiments, I observed 

Zmtcptf24 expression in multiple organ primordia; carpels, stamens, palea, and lemma of both 

upper and lower floral meristems. Possible expression was seen in the lodicules, which are 

analogous to petals (Ambrose et al, 2000). The expression of Zmtcp24 in the developing 

primordia is not a confirmation of gene function. In combination with the known function of 

TCP4 in Arabidopsis, however, this analysis supports the hypothesis that Zmtcptf24 plays a role 

in floral development.  

To further identify and verify the location in the tassel where Zmtcptf24 is expressed, in 

situ hybridization needs to be performed on tassels in various stages of development. Zmtcptf24 

may only be identified during a short time period in development and a sequence of different 

aged tassels would help identify what stage of development it is most expressed in, if not all. It is 

also important to take sections of the ears to see if expression is found in both inflorescences. To 

be accurate, multiple ages of the ears need to be examined as well, to see if Zmtcptf24 expression 

is patterned similar to the tassels, and what role that could play in organ primordia development. 

With the first round of in situs complete, early results showed possible expression in the 

vasculature at the base of the florets. To verify this putative vascular expression, transverse 

sections would help confirm this expression.  Transverse sections would also be helpful to 

confirm the putative expression in developing carpels, stamens, palea, lemma, and lodicules (See 

Figure 6A).   
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The shoot apical meristem (SAM) is required for all aerial development and growth.  

Like all meristems, the SAM maintains a population of stem cells and also produces organ 

primordia (leaves).  Because TCPs, have well-established roles in leaf development, Zmtcptf24 

might also be expressed in SAMs or leaf primordia.  To analyze the role Zmtcptf24 plays in the 

SAM, in situ hybridization can be performed on transverse and longitudinal sections of shoot 

apeices. Since most leaf patterning is completed in young leaves, TCP expression will most 

likely be identified in developing leaves  

fzt mutants contain a mutation in DCL1, which encodes a key enzyme required for 

miRNA biogenesis. Some miRNAs are dramatically reduced in fzt, including miR319, which is 

reduced approximately 8-fold in tassel primordia (Thompson et al., 2014). Due to the known 

roles of TCPs targeted by miR319 in Arabidopsis, we hypothesize that some of the fzt 

phenotypes are due to increased expression of miR319 target mRNAs, including Zmtcptf24. 

RNA-seq data indicates that Zmtcptf24 or other TCPs are not overexpressed in fzt mutants, at 

least at the level of whole tassel primordia. Further analysis through in situ hybridization is 

necessary to give us a spatial view of Zmtcptf24 expression. Zmtcptf24 may only be expressed in 

a few cells within a tissue or at a specific developmental time period. Although the RNA-seq 

data did not differentially express the presence of TCPs in whole tissue, early results show that 

Zmtcptf24 is expressed in the developing tassel.  

 To support hypotheses that Zmtcptf24 has a role in developmental defects in the fzt 

mutant, in situ hybridization would need to be performed on the fzt mutant. Knowing what 

expression is seen in the normal maize tassels and developing primordia, and comparing it to the 

expression in fzt tassels and developing primordia, will give insight into the genes functions. To 

do this however, in situ hybridization would need to be performed on the same aged fzt tissue 
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and tissue sections to be successful. If the function of Zmtcptf24 is repressed in normal tassels 

due to regulation by miR319, I would hypothesize that altered expression of Zmtcptf24 would be 

identified in fzt. Since DCL1 is not functioning in fzt miR319 is unable to regulate the targeted 

TCPs, including Zmtcptf24. With early in situs complete on developing normal tassels, and 

expression identified in developing floral primordia, I hypothesize that floral expression in more 

regions would be identified in fzt, due to the suppressed function of miR319 by DCL1. 

The overall goal of this project is to determine the expression Zmtcptf24 in maize 

inflorescence development in both normal and fzt mutant inflorescences.  These experiments will 

potentially give insights into the role of Zmtcpt24 in normal development and also test the 

hypothesis that overexpression of Zmtcptf24 contributes to fzt phenotypes.. The purpose of 

learning more about the genes required for normal inflorescnce development is because they can 

provide insight into future improvement of the crop. TCPs that function in organ primordia may 

give insight into how modification and maintainence can improve robust floral development. As 

with any crop, maize crops have limitations that can affect a high yield. Seeds (kernels) are the 

product of a fertilized ovule, and determining seed number relies on learning about the activity of 

meristems and the number of flowers, thus determining plant structure. Overall, an ear that 

produces a higher amount of kernels would be admirable, and modification of these TCP genes 

in future crops could ensure that end result.  
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A B  

Figure 6: Transverse section and structure of an upper and lower floret 

In figure 6A a hypothetical transverse section of the florets would show the above image, all 

developing structures in the floret would be visible. The sections used for in situs are taken 

longitudinal and use a whole spikelet, see figure 6B. Since the actual spikelet is three-

dimensional, structures like the stamen jut out, making it difficult to get an accurate section 

showing all developing structures.  
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Appendix: 

A. Phusion PCR  

 Individually add 2µl 10mM Forward Primer and 2µl 10mM Reverse Primer to the 

microcentrifuge tubes (Primer sequences found in Table 1) 

 Design a master mix of n+1, where n is the number of reactions, of template, dNTP’s, 5X 

HF Buffer, and water 

 Each 50µl reaction will contain 1µl A619 template, 5µl 2mm dNTPs, 2µl 10µM forward 

primer, 2µl 10µM reverse primer, 10µl 5X HF Buffer, 29.5µl nuclease free water, and 

0.5µl Phusion polymerase 

 Start the cycler, so it can get up to the proper temperature, prior to adding Phusion to the 

master mix (0.5µl per reaction) 

 Add Phusion to the master mix and join by flicking 

 Aliquot 50µL master mix to individual microcentrifuge tubes 

 Place in cycler under the following cycling conditions: 

1. Initial Denature= 98˚C – 2:00 minutes 

2. Denature= 98˚C – 10 seconds 

3. Annealing = 62˚C – 15 seconds 

4. Extension = 72˚C – 15 seconds 

5. Repeat steps 2-4 35 times. 

6. Final Extension = 72˚C – 5:00 minutes 

7. Hold = 4˚C 
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B. A tailing PCR Product 

 Make a 10µl mixture of 2µl DNA Fragment, 2µl 2mm dATP’s, 2µl 5X HF Buffer, 0.6µl 

MgCl2, 2.4µl nuclease free water, and lastly 1µl Taq Polymerase 

 Incubate in cycler for 30 minutes at 70˚C 

 Remove and store on ice at 4˚C 

C. Ligation and Transformation to clone insert into pGEM-T Easy (Promega) 

 Centrifuge vector and control insert 

 Vortex 2X rapid ligation buffer 

 Add 5µl of 2X rapid ligation buffer, 1µl pGEM easy, 3µl PCR product, and 1µl of T4 

DNA ligase into a microcentrifuge tube 

 Set up a positive control with 5µl of 2X rapid ligation buffer, 1µl pGEM easy, 2µl control 

insert, 1µl T4 DNA ligase and 1µl of water to bring up to a 10µl reaction 

 Mix reactions by pipetting 

 Incubate at 4˚C overnight 

 Prep LB/CARB plates by spreading 7µl (200mg/ml) IPTG and 40l (20 µg/µl) X-Gal per 

plate. 

 Centrifuge ligates and add 2µl to new labeled tubes on ice 

 Remove JM109 high efficiency cells from -80 ˚C freezer and place on ice 

 After cells have thawed, mix by flicking and remove 25µl to be added to ligation 

 Incubate 20 minutes on ice 

 Heat shock for 45 second in 42˚C water bath 

 Return to ice for 2 minutes 
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 Add 950µl of SOC medium to reaction  

 Incubate at 37˚C with shaking for 90 minutes 

 Plate 100µl onto the prepared LB/CARB/XGAL/IPTG plates 

 Incubate overnight at 37˚C  

D. Miniprep protocol 

 Pour cultured cells into labelled microcentrifuge tubes and centrifuge for 2 minutes at 

8,000 rpm 

 Remove excess media 

 Resuspend cells in 250µl of Buffer 1 

 Add 250µl of Buffer 2 and invert tubes 3-4 times to mix thoroughly 

 Add 350µl of Buffer 3 and quickly mix by inverting 3-4 times 

 Centrifuge tubes for 10 minutes at 4˚C and 13,000 rpm 

 Pipette out the cleared lysate and transfer to a labelled DNA binding column 

 Centrifuge at 13,000 rpm for one minute 

 Pour off flow-through and reassemble 

 Add 700µl of Buffer 4 to the DNA binding column 

 Centrifuge at 13,000 rpm for one minute 

 Pour off flow-through and reassemble 

 Dry by centrifuging at 13,000 rpm for an additional minute 

 Transfer the binding column to a new microcentrifuge tube and add 75µl of water and 

wait at least one minute for elution 

 Centrifuge at 13,000 rpm for one minute 

 Spec the DNA on the Nanodrop Lite to determine final concentration 
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E. In Vitro Transcription 

 Mix a reaction using 4µl transcription buffer (with DTT and magnesium ions), 2µl DIG 

labeling mix, 1µl RNAsin, 1µl SP6/T7 polymerase, 1000ng of DNA template, and H2O 

to 20µl 

 Incubate the reaction at 37˚C for 2-3 hours in the thermocycler 

 Remove 3µl of reaction to run on a gel later 

 To stop the reaction add 75µl DEPC H2O, 1µl tRNA, and 1µl DNAse 

 Incubate at 37˚C for 10 minutes 

 Remove 2µl of the reaction to run against the 3µl initially removed to ensure the DNA 

template is removed 

 Precipitate probe with 100µl 3M NaOAc and 200µl 100% EtOH 

 Incubate for 1 hour at -20˚C 

 Spin probe at 4˚C at maximum speed for 10 minutes 

 Look for a pellet 

 Wash pellet with 70% 100µl EtOH and spin again for 10 minutes 

 Resuspend in 50µl of 50% foramide 

 Speed Vac to remove excess ethanol 

 Freeze at -20˚C 

F. Dot Blot 

 Start by preparing the five solutions as directed below: 

o Prepare a solution (1) of 100mM Tris (pH=7.5) +150mM NaCl by mixing 100ml 

of 1M Tris pH 7.5, 30ml of 5M NaCl, and DEPC water up to 1L 



40 
 

o Prepare a block solution (2) with 20ml 100mM Tris pH 7.5 microwaved until 

warm. Add 0.04g of blocking Reagent and vortex until it goes into solution and 

store on ice 

o Prepare a Block + αDig Solution (3) with 10ml blocking solution and 2µl of αDig  

Store at 4˚C 

o Prepare a G3 solution (4) with 100mM Tris pH 9.5 (25ml), 100mM NaCl (5 ml), 

50mM MgCl2 (12.5ml), and add DEPC water up to 250ml 

o Prepare a G3+NBT/BCIP solution (5) with 10 ml of G3 solution, and 235μL 

NBT/BCIP. Due to light sensitivity, wrap in foil and store at 4˚C 

 Make a series of five tubes per primer being tested, along with a DIG control  

 Perform a 1:20 serial dilution through each of the tubes 

 Remove 1µl from each tube an sequentially dot on a nylon membrane 

 Crosslink the RNA with UV light twice or incubate at 80˚C for 30 minutes 

 Dampen the membrane with Solution 1 and add 10ml of Solution 2. Incubate with 

shaking at room temperature for five minutes 

 Pour off the solution and add 10ml of Solution 3 and incubate with shaking at room 

temperature for another five minutes 

 Pour off solution and wash twice with Solution 1 for a total of ten minutes 

 Incubate at room temperature and shaking for five minutes with Solution 4 

 Add Solution 5 and incubate at room temperature in the dark for 30 minutes - 2 hours 

 Check dot for probe precipitation and to estimate the concentrations 
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G. In Situ Hybridization 

Hybridization 

 Dewax slides in histoclear for 10 minutes each. While they are dewaxing prepare the 

following: 

o Start by preparing a Pronase solution with 47ml of DEPC water, 2.5ml 1M Tris 

pH 7.5, 0.5ml 0.5M EDTA, and 157µl of 40mg/ml Pronase Stock 

o Prepare a 2% Glycine Solution with 0.1g Glycine, 5ml 10X PBS, and 45ml DEPC 

water 

o Prepare a Formaldehyde solution with 5ml 37% formaldehyde, 45ml PBS 

 Place slides in a graded ethanol series for 2 minutes per step 

o 100% EtOH 

o 100% EtOH 

o 95% EtOH 

o 90%EtOH (5ml 8.5% NaCl, 45 ml 100% EtOH) 

o 80% EtOH (5ml 8.5% NaCl, 5ml DEPC water, 40ml EtOH) 

o 70% EtOH (5ml 8.5% NaCl, 10ml DEPC water, 35ml EtOH) 

o 50% EtOH (5ml 8.5% NaCl, 20ml DEPC water, 20ml EtOH) 

o 30% EtOH (5ml 8.5% NaCl, 30ml DEPC water, 15ml EtOH) 

o 0.85% NaCl (5ml 8.5% NaCl, 45ml DEPC water) 

o 1X PBS (5ml 10X PBS, 45ml DEPC water) 

 Wash in the Pronase solution for 15 minutes and prepare the acetic anhydride treatment 

(592ml DEPC water, 8ml triethanolamine then pH to 8.0 with about 2ml 6M HCl) 

 2 minutes in 2% Glycine (50ml 1X PBS and 0.1g of Glycine) 



42 
 

 Under the hood, wash for 10 minutes in the 3.7% formaldehyde solution 

 Wash for 2 minutes in 1X PBS 

 Suspend slide in acetic anhydride treatment over a stir bar. Slowly drip 3ml of Acetic 

anhydride over the slides and incubate for 10 minutes 

 Grab a bucket of ice and warm the heat block to 80˚C during the Acetic Anhydride step 

 Wash for 2 minutes in 1X PBS 

 Repeat the two minute incubation of the graded ethanol series in reverse (0.85% NaCl to 

100% EtOH) 

 Dry with Kimwipes 

 Wet paper towels with 50% foramide and prepare in a box 

 Defrost Hybe solutions 

 Make Hybe solution with 151µl in situ salts, 500µl deionized foramide, 250µl dextran 

sulfate after heating to 80˚C, 25µl denhardts solution, 12.5µl tRNA, and 87.5µl nuclease 

free water 

 Prepare a probe solution of 4µl tiled probe 1, 4µl tiled probe 2, and 78µl 50% foramide 

 Mix 160µl of hybe solution and 40µl of the probe solution for a total of 200µl. Apply to 

one slide in a T shape and sandwich them together.  

 Suspend sandwiches in the slide box with dampened towels and incubate overnight at 

55˚C 

 Prepare a NTE solution with 50ml 4M NaCl, 4ml 1M tris, 800µl 0.5M EDTA, and water 

up to 400ml. Store overnight at 37˚C. 

 Prepare 0.2X SSC with 3ml 20X SSC, 297ml milliQ water, and store overnight at 55˚C 

 



43 
 

Posthybridization 

 Dip slides in warmed 0.2X SSC solution to separate 

 Wash for 30 minutes at 55˚C in the hybe oven with gentle agitation 

 Repeat once more and prepare the following solutions: 

o Blocking Reagent with 0.2g Roche blocking reagent, and 40ml TBS. Heat to 60˚C 

and stir for about an hour 

o RNase (20µg/ml) with 50ml NTE, 100µl RNase, and hold at 4˚C 

o Buffer A with 9.375ml 4M NaCl, 0.75ml Triton, 25ml Tris pH 7.5, 2.5g BSA, and 

215ml water. Stir for about five minutes. 

o Detection Buffer with 25ml Tris pH 9.6, 6.25ml 4M NaCl, and water to 250ml 

o Prepare 50ml of 1X PBS and hold at 4˚C 

o Anti-DIG antibody with 1000µl Buffer A and 2µl anti-DIG fragments. Hold at 

4˚C. 

o Prepare the detection buffer with substrate with 1000µl detection buffer and 20µl 

NBT/BCIT stock. Hold at 4˚C 

 Wash slides for 5 minutes in NTE at 37˚C with agitation  

 Repeat 

 Rinse 30 minutes with RNase at 37˚C with gentle agitation 

 Rinse 5 minutes in NTE at 37˚C with gentle agitation  

 Repeat 

 Wash 1 hour in 0.2X SSC at 55˚C with gentle agitation 

 Incubate at 4˚C in 1X PBS 
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 Place slides in a Copeland jar with blocking reagent and rock at room temperature for 45 

minutes 

 Replace blocking reagent with Buffer A and wash at room temperature for 45 minutes 

with rocking in Tupperware 

 Make a regular sandwich with anti-DIG fragments 

 Incubate in slide box over wet paper towels at room temperature for one hour 

 Drain slides with kimwipes and place in Tupperware 

 Wash with Buffer A for 20 minute at room temperature 

 Repeat three times 

 Wash for 10 minutes in detection buffer with rocking at room temperature 

 Make sandwiches with detection buffer and substrate (about 100-150µl) 

 Incubate overnight in the dark in the slide box at room temperature 

Stopping Reaction 

 Dip the slides in water and carefully separate 

 Perform a graded ethanol series for 20 seconds each from 0.85% NaCl to histoclear 

 Allow slides to dry on kimwipes 

 Mount slides with long coverslips and approximately 100µl permount 

 Keep in slide box and allow to dry overnight. 

 


