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Abstract 

The interest in musculoskeletal fitness and its overall impact on health has been increasing in the 

last decade. The Institute of Medicine (2012) report called for the addition of several muscular 

fitness tests to national surveys of youth health-related physical fitness and to fitness test 

batteries in schools and other educational settings. Purpose: The purpose of this study was to 

examine the relationships among various muscular fitness tests and health outcomes in youth. 

Methods: Participants included 49 boys and girls aged 9 to 14 years. A series of muscular fitness 

tests and tests of health outcomes were completed in two test sessions. Muscular fitness tests 

included the standing long jump, vertical jump, upper body power throw, total body power 

throw, and handgrip strength. Handgrip strength was expressed in absolute terms and 

allometrically scaled to a power of 0.67. The health outcomes examined were aerobic capacity, 

body composition, systolic blood pressure (SBP), diastolic blood pressure (DBP), and physical 

activity. Aerobic capacity (VO2max) was directly measured during a maximal treadmill test. Body 

composition (percent fat) was assessed with the BODPOD. Blood pressure was measured via 

auscultation after 5 minutes of seated rest. Physical activity was quantified as minutes of 

moderate-to-vigorous physical activity (MVPA) from 7-day accelerometer measurement. 

Bivariate correlations were calculated to examine the relationships among fitness tests of 

strength and power and health outcomes. To control for the impact of body mass index (BMI) 

and age, partial correlations were calculated among fitness tests and health outcomes controlling 

for BMI z-score and age. To examine relationships among fitness tests and health outcomes from 

a criterion-referenced perspective, participants were categorized into both the aerobic capacity 
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and body composition Healthy Fitness Zone (HFZ) and Needs Improvement Zone (NIZ) as 

defined by FitnessGram®. Effect size (ES) estimates were calculated with Cohen’s delta to 

examine the size of the difference between the HFZ and NIZ groups on the fitness test variables. 

Results: SBP and VO2max were moderately correlated with several fitness tests, including total 

body power throw (r = .37, -.28), upper body power throw (r = .33, -.31), and dominant (r = .44, 

-.33) and nondominant handgrip strength (r = .37, -.34). Percent fat was moderately correlated 

with the standing long jump (r = -.45) and vertical jump (r = -.50). The correlation between 

percent fat and handgrip strength was close to zero when handgrip strength was expressed in 

absolute terms. Moderate correlations were found between percent fat and handgrip strength 

when handgrip strength was allometrically scaled for body mass (r = -.50 and -.48). When partial 

correlations controlling for BMI z-score and age were calculated, generally a similar pattern of 

correlations was found, except that the partial correlations among SBP and the throwing tests and 

absolute handgrip strength were lower than the bivariate correlations. When the HFZ was 

defined with aerobic capacity standards, the HFZ group did better on the standing long jump than 

the NIZ group (ES = 0.45). However, medium effect sizes demonstrated that the NIZ group did 

better than the HFZ group on total body power throw (ES = -0.42), upper body power throw (ES 

= -0.59), and absolute handgrip strength (ES = -0.48, -0.39). Differences in the vertical jump and 

allometrically scaled handgrip strength favored the HFZ group over the NIZ group, but these 

differences were generally small (range of ES = 0.16 to .32). When the HFZ was defined with 

body composition standards, effect size estimates revealed large differences between the HFZ 

and NIZ groups favoring the HFZ group for standing long jump (ES = 0.84), vertical jump (ES = 

1.06), and allometrically scaled handgrip strength (ES = 1.30, 1.42). Small to medium effect 

sizes were found for total body power throw (ES = 0.26), upper body power throw (ES = 0.19), 



 
 

 

and absolute handgrip strength (ES = 0.36, 0.43) favoring the HFZ group over the NIZ group. 

Conclusion: Results demonstrated moderate levels of norm-referenced and criterion-referenced 

evidence that the tests of musculoskeletal fitness used in the current study are health-related. 

However, findings also indicated that the significant relationships between these musculoskeletal 

fitness tests and health outcomes are highly influenced by body composition. 
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Introduction 

Youth physical fitness testing has a rich history in the United States. This history can date 

back to1885 at the consummation of the American Alliance for Health, Physical Education, and 

Recreation (AAHPER) (Plowman et al., 2006). In 1954 a major impetus for physical fitness 

testing occurred when Kraus and Hirshland (1954) reported that American youth had worse 

muscular fitness than European youth. Shortly after the results of the Kraus and Hirshland report, 

Executive Order 10673 was released creating the President’s Council on Youth Fitness (Morrow 

et al., 2009). In the near future the first national youth fitness test, the AAHPER Youth Fitness 

Test, was established (Franks et al., 1988). 

 Since the AAPHER Youth Fitness Test was established in 1957 numerous developments 

in fitness assessment have surfaced including the development and implementation of new 

fitness tests. The current national youth fitness test is the FitnessGram® (Plowman et al., 2013). 

The FitnessGram includes the following test items: push-up, curl-up, trunk lift, shoulder stretch, 

back-saver sit and reach, PACER test, modified pull-up, skinfolds, and body mass index. Many 

of these tests have been associated with the FitnessGram for over 20 years (Institute of Medicine, 

2012). Recently the Institute of Medicine (IOM) released a report that recommended new 

additions to youth fitness tests. The IOM report reviewed a plethora of studies that measured 

various fitness test items and their relationships to health outcomes. Components of fitness 

examined were body composition, cardiorespiratory endurance, musculoskeletal fitness, and 

flexibility (IOM, 2012). 

 One conclusion drawn from the IOM report was that sufficient evidence is available to 

demonstrate a relationship between musculoskeletal fitness and health. This conclusion, 

however, is drawn primarily from the research findings in adults, with less evidence available in
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youth. The IOM report concluded that no high quality evidence supports a relationship between 

any single musculoskeletal fitness test and health in youth. However, the IOM report 

recommends inclusion of the standing long jump and handgrip strength test in national health 

surveys as well as in educational settings. 

 The IOM report reviewed numerous studies that examined the relationship between 

muscular fitness test scores and metabolic health. Ruiz et al. (2008) found moderate correlations 

in 13-18.5 year olds between a muscular strength score and three inflammatory proteins, C-

reactive protein (r = .32), complement factor C3 (r = .32), and complement factor C4 (r = .45). 

The muscular strength score was calculated from the standardized scores of handgrip strength 

and standing long jump. Artero et al. (2007) reported a positive association (value of correlation 

was not provided) between muscular fitness and a lipid-metabolic index (a combination of 

triglycerides, LDL-C, HDL-C, and glucose concentrations) in 15.2 (± 1.4) year old females. 

Garcia-Artero et al. (2007) represented muscular fitness by a combination of handgrip strength, 

standing long jump, and bent arm hang scores. Artero et al. (2013) reported a negative 

correlation between standing long jump (r = -.38) and inflammatory scores in 14.9 ± 1.2 year 

olds. The inflammatory score was the total of the z-scores for the following inflammatory 

markers: C-reactive protein, complement factor C3, complement factor C4, leptin, and white 

blood cells. Artero et al. (2013) also found a negative relationship between a muscular fitness 

score (r = -.38) and an inflammatory score. The muscular fitness score was the sum of the 

standardized z-scores for handgrip strength and standing long jump.  

Steene-Johannessen et al. (2009) found that the standing long jump had significant, yet 

low, correlations with a homeostasis model assessment (r = -.16), HDL (r = .06), and 
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triglycerides (r = -.09) in 1,891 youth aged 9 and 15 years. Steene-Johannessen et al. also found 

that the standing long jump was significantly correlated (r = -.20) with a metabolic index 

consisting of combined z-scores for homeostasis model, waist circumference, triglycerides, 

HDL, and systolic blood pressure. Artero et al. (2011) reported correlations between the standing 

long jump and multiple metabolic risk factors including waist circumference (r = -.32), HOMA 

(r = -.17), and total cholesterol (r = -.10) in 12.5 to 17.5 year olds. Artero et al. found that the 

standing long jump had a significant, yet low, correlation (r = -.24) with total metabolic risk 

score (calculated as the sum of the standardized z-scores of systolic blood pressure, homeostasis 

model, and total cholesterol). A total muscular fitness score was created from the z-scores for the 

standing long jump and handgrip strength. This total muscular fitness score was significantly 

related to waist circumference (r = -.49), systolic blood pressure (r = -.10), homeostasis model 

assessment (r = - .23), triglycerides (r = -.11), total cholesterol (r = -.12), and total metabolic risk 

score (r = - .33).  

Magnussen et al. (2012) appear to be the only researchers that used allometric parameters 

for normalizing the standing long jump for body mass. Magnussen et al. used the standing long 

jump to measure muscular power and split the cohort into five groups based on performance. 

Group one had the highest performance and group five had the lowest performance. Magnussen 

et al. demonstrated that the highest fit group had significantly lower standardized cardiovascular 

disease risk factor values compared to all four other groups. Cardiovascular disease risk factors 

included: non-HDL-C, HDL-C, total cholesterol, triglycerides, systolic blood pressure, diastolic 

blood pressure, mean arterial pressure, waist circumference, and body mass index. 

 Considerable research has also linked muscular strength and power to body composition 

(Beunen et al., 1983; Brunet et al., 2006; Liao et al., 2013). Brunet et al. (2006) found that in first 
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(r = -.16), second (r = -.25), and fourth grade boys (r = -.39) standing long jump was 

significantly correlated with waist circumference. Similar correlations were found between the 

standing long jump and waist circumference in second grade (r = -.25) and fourth grade (r = -

.39) girls. Beunen et al. (1983) found that amongst over 20,000 participants aged 12-20 years, 

vertical jump was significantly correlated with body fatness within the range of r = -.18 to r = -

.37. Beunen et al. also found that body fatness was significantly correlated with bent arm hang 

within the range of r = -.18 to r = -.37. Minck et al. (2007) reported correlations between body 

fatness and muscular fitness tests, including the arm pull and standing high jump. Correlations 

between body fatness and arm pull were r = -.21 for males and r = -.20 for females. Correlations 

between body fatness and the standing high jump were r = -.11 for males and r = -.21 for 

females. Rodriguez et al. (2011) found that after following a cohort of six year olds for nine 

years certain fitness test were able to predict body fatness. The coefficients reported were 

significant, yet low, for the flexed arm hang (r = -.06), standing long jump (r = -.07), and sit ups 

(r = -.04). 

 In summary, research linking youth muscular fitness tests and health outcomes is limited. 

The standing long jump, used as a measure of lower body muscular power, was shown to have 

significant, but low to moderate, correlations with several health markers (Artero et al., 2011, 

2013; Ortega et al., 2005; Steene-Johannessen et al., 2009). Several researchers developed 

muscular fitness scores based on mulitple fitness tests (primarily the standing long jump and 

handgrip strength) and reported slightly higher correlations with health markers (Artero et al., 

2011; Martinez-Gomez et al., 2012; Ruiz et al., 2008) than was found between standing long 

jump and health markers. Significant and low to moderate correlations have also been reported 

between fitness tests of muscular power (e.g., standing long jump, vertical jump) and body 
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composition variables (e.g., body fatness, waist circumference, body mass index [BMI]) (Beunen 

et al., 1983; Brunet et al., 2006; Liao et al., 2013; Minck et al., 2000; Moliner-Urdiales et al., 

2011). Although Magnussen et al. (2012) adjusted the standing long jump for body composition 

using allometric scaling, the impact of body composition on the relationships between youth 

fitness tests and health markers has not been thoroughly considered. The IOM (2012) report 

recommended that additional research examining the relationships between specific 

musculoskeletal fitness tests and health outcomes in youth is needed.  

Purpose Statement 

The purpose of this study was to examine the relationships among fitness tests of strength 

and power and health outcomes in youth. Health outcomes examined in this study included 

aerobic fitness, blood pressure, physical activity levels, and body composition. In addition, the 

relationships between fitness tests and health outcomes were examined after adjustment for body 

composition. 

Research Hypotheses  

 It was hypothesized that:  

1. Correlations among youth fitness tests of strength and power and health outcomes in 

youth will be significant and of moderate strength. 

2.  After adjustment for body composition, correlations among fitness tests of strength 

and power and health outcomes in youth will be attenuated. 

Definitions of Terms 

BODPOD – The BODPOD is an air displacement plethysmography system used to measure 

body composition. 
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Functional Power – Functional power was defined as the ability to produce maximal muscle 

force during a field test of explosive body movement (e.g., standing long jump) in which a time 

factor is not directly assessed. 

Health outcomes – Health outcomes are traits that reflect specific parameters of health. For this 

study, healthy outcomes will be aerobic fitness, body composition, physical activity level, and 

blood pressure. 

Muscular power – Muscular power was defined as the maximal force exerted by muscles with 

near maximal velocity. Lower body muscular power was assessed in the current study by the 

standing long jump and vertical jump tests. Upper body muscular power was assessed by the 

upper body (seated) medicine ball throw. Whole body muscular power was assessed by the total 

body medicine ball throw. 

Muscular Endurance – Muscular endurance was defined as the ability of a muscle or group of 

muscles to perform repeated contractions against a constant external load for an extended period 

(Institute of Medicine, 2012). 

Muscular Strength – Muscular strength was defined as the ability of skeletal muscle (single or 

group) to produce measurable force, torque, or moment about a single or multiple joints, 

typically during a single maximal voluntary contraction and under a defined set of controlled 

conditions (Institute of Medicine, 2012). The measure of muscular strength used in the current 

study was handgrip strength. 

Partial Correlation – A partial correlation represents the degree of association between two 

variables with the effects of other variables removed. 

VO2max – VO2max is the rate of oxygen consumption during maximal exercise and indicates one’s 

capacity for oxygen transport and utilization. VO2max is the criterion measure of aerobic fitness 
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(American College of Sports Medicine, 2000). Aerobic fitness was assessed in this study by a 

maximal treadmill test using the COSMED portable metabolic system. 

Delimitations 

 The study included the following delimitations: 

1. All participants were between 9 and 14 years of age. 

2. Muscular power was assessed via field-based measures that do not have a specific 

measurement of time, although all field-based measures of muscular power are made with 

explosive movements. 

3. Muscular strength was assessed with the handgrip dynamometer test. 

Limitations 

The study is limited by the following: 

1. Participants may not have provided a maximal effort on all fitness tests. Verbal 

encouragement and appropriate instructions and demonstrations were provided for all tests. 

2. Participants may not have exhibited a high level of compliance with wearing the 

accelerometers to assess physical activity. A minimum of three days of wear time was accepted 

as compliant for this study. 

Significance of the Study 

 The Institute of Medicine (2012) report recommended the addition of the handgrip 

strength and standing long jump in future youth fitness test batteries. This recommendation was 

made in light of the report also claiming that further research should examine the relationships 

among muscular strength and power tests and health outcomes. This study responds to the 

Institute of Medicine (IOM) recommendation regarding further research. The study will also 

examine how the correlations among muscular fitness tests and health outcomes changes when 
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controlling for body mass. This is significant because many of the studies examined in the IOM 

report did not adjust for the impact of body mass on the correlations. 
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Review of Literature 

History of Physical Fitness Testing 

Physical fitness testing in the United States has a rich history. It dates back to the 

establishment of the American Alliance for Health, Physical Education and Recreation in 1885 

(Plowman et al. 2006). In the early 1900s Sargent Dudley developed a vertical jump test used to 

measure fitness and health (Institute of Medicine [IOM], 2012). Shortly after that, the 

Playground Association of America Athletic Badge Test was created for boys in 1913 and girls 

in 1916 (IOM, 2012). The heightened awareness of physical fitness was stimulated by the 

wartime era (IOM, 2012).  

 Perhaps the most decisive event that dramatically increased the emphasis of youth fitness 

was the Kraus and Hirshland reports published in 1953 and 1954. These reports revealed that 

American youth had less muscular fitness than European youth (Kraus et al., 1954). This 

publication occurred only a decade after World War II and one year after the Korean War. This 

spurred president Dwight D. Eisenhower to enact Executive Order 10673 in 1956. This 

Executive Order called for the creation of the President’s Council on Youth Fitness (Morrow et 

al., 2009). The increased research during that time period produced the first national youth 

fitness test. This test was called the Youth Fitness Test and was established in 1957 by the 

American Alliance for Health, Physical Education and Recreation (AAHPER) (Franks et al., 

1988). The test items included the straight leg sit-ups, standing long jump, pull-ups, modified 

pull-ups (girls), 50-yard sprint, shuttle run, 600-yard run-walk, softball throw, and optional 

aquatic tests (Morrow et al., 2009).  

 In 1973 the Texas Governor’s Commission Physical Fitness Test was developed 

(Morrow et al., 2009). In the development of this test the authors separated the fitness 
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measurements into two distinct groups, labeled physical fitness or motor ability. This idea, 

including already heightened awareness of health-related fitness components, helped to set the 

stage for the revamping of the previous Youth Fitness Test (Morrow et al., 2009). Therefore, in 

1976 AAPHER made adjustments to the Youth Fitness Test to account for more functional and 

physical health measurements (Plowman et al., 2006). In 1980, AAPHERD came out with a 

fitness test called the American Alliance for Health, Physical Education, Recreation and Dance 

(AAHPERD) Health-related Physical Fitness Test. This test included items that measured 

aerobic fitness, body composition, abdominal function, and low back-hamstring function 

(Morrow et al., 2009).   

 The 1980s was filled with a consistent debate to identify the correct way to measure and 

evaluate fitness. The two major groups in the debate were the President’s Council on Youth 

Fitness and AAPHERD. In 1987, the President’s Council eventually developed its own test 

battery, called the President’s Challenge. One year later AAPHERD came out with a fitness test 

named Physical Best (Franks et al., 1988). In 1987, a new test called the FitnessGram was 

published by the Institute for Aerobics Research (Franks et al., 1988). The FitnessGram is an 

educational fitness assessment and reporting software system that has dramatically grown since 

its inception in 1987 (Plowman et al., 2006). The FitnessGram is now recognized as the official 

national youth fitness test.  

The 2012 Institute of Medicine report evaluated various fitness test items and their 

relationships to health. They reviewed a plethora of scientific articles and recommended 

individual fitness test items that should be tested in youth fitness tests. Among the 

recommendations was that fitness test items that measure musculoskeletal fitness should be 

included in youth fitness tests. The standing long jump and handgrip strength were specifically 
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recommended for inclusion in national youth fitness surveys and in fitness tests for educational 

settings. However, the report stated that no clear evidence has emerged to support the 

relationship between any single musculoskeletal fitness test item and health outcome. Therefore, 

further investigation of the relationships between musculoskeletal fitness test items and health 

outcomes was recommended. The recommendation to further investigate the relationships 

between musculoskeletal fitness items and health outcomes was the catalyst for the current 

thesis. 

Defining Power 

 Power is defined as work divided by time. Power is the rate of work done over the course 

of time (Gray et al., 1962). Power assessments, following the definition of work/time, must be 

expressed in a unit that is equivalent to work per unit of time. Common units to express power 

are Joules per second (watts), horsepower, and foot-pounds per second (Sapega et al., 1983). 

Researchers have used several laboratory-based instruments to measure power. These 

instruments include isokinetic dynamometers, force platforms, and high speed motion analysis 

(Sapega et al., 1983; Smith et al., 2010).  

It is not feasible to assess power via such laboratory-based instruments in field settings, 

such as schools. Instead, a field-based concept of power is used. Sapega et al. (1983) described 

field-based power tests as fast, forceful performance tasks, such as the standing long jump and 

vertical jump. While these tests do not strictly measure power as work/time, they are still widely-

used in the field and assumed to provide a measure of power because they are fast, forceful 

performance tasks. Several authors have used field-based power measurements, but may report 

that they are measuring a characteristic different that power. For instance, the standing long jump 

has been reported to measure power (Magnussen et al., 2012), lower body explosive strength 
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(Artero et al., 2011), and lower body strength (Ruiz, 2008). For the purpose of this literature 

review, field-based power items are considered a measure power regardless of what the authors 

terms the outcome.  

The most widely-used field-based test of power is the standing long jump (Artero et al., 

2011; Brunet et al., 2006; Liao et al., 2013; Magnussen et al., 2012; Martinez-Gomez et al., 

2012; Ortega et al., 2005; Ruiz et al., 2008). Other field-based measurements of power include 

the vertical jump (Beunen et al. 1983, Minck et al. 2000, Moliner-Urdiales et al. 2011) and the 5-

yard sprint and 10-yard sprint (Considine et al., 1973). 

Resistance Training in Adults 

Several researchers have reported a relationship between muscle fitness and health 

parameters in adults (Fitzergerald et al., 2004; Jurca et al., 2005, Ullrich et al., 1987;). The 2011 

American College of Sports Medicine position stand on exercise prescription was drafted to give 

scientific evidence-based recommendations for healthy adults. The authors of the position stand 

devoted a section on muscular fitness citing over 20 studies that identified the health benefits of 

resistance training (Garber et al., 2011). 

Fitzgerald et al. (2004) studied the relationship between all-cause mortality and muscular 

fitness in 9,105 subjects aged 20-82 years. Muscular fitness was measured via one repetition 

maximal bench and leg press tests and a one minute sit-up test. Tertiles were developed for each 

test. Zero was designated as the lowest tertile and two was designated as the highest tertile. The 

scores for each test were combined to create a muscular fitness index that ranged from 0 to 6. 

Low, moderate, and high muscular fitness groups were formed. Proportional hazards analyses 

were conducted.  
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After controlling for age and sex, results revealed that compared to the low muscular 

fitness group, participants in the moderate fitness group had a 44% reduction in relative risk of 

all-cause mortality. The high muscular fitness group had a 35% reduction in relative risk of all-

cause mortality compared to the low muscular fitness group after controlling for age and sex. 

Fitzergerald et al. (2004) further controlled for BMI, cardiorespiratory fitness, health status, total 

cholesterol, resting systolic blood pressure, smoking status, and baseline examination year. 

While controlling for multiple variables moderate and high muscular fitness groups still had a 

36% and 20% reduction in all-cause mortality compared to the low muscular fitness group, 

respectively. The authors concluded that their results supported that increased muscular fitness 

was associated with lower all-cause mortality rates.  

Jurca et al. (2005) examined the relationship between muscular strength and metabolic 

syndrome in 3,233 men aged 20-80 years. Muscular strength was measured through a one 

repetition maximum of the supine bench press and seated leg press. A muscular strength score 

was formulated by combing the two maximum tests and dividing by body weight. Age specific 

quartiles were set up and used in the analyses (20-29, 30-39, 40-49, 50-59, and 60+ years). 

Cardiorespiratory fitness was measured through a maximal treadmill test using a modified Balke 

protocol. Cox regression was used to compute hazard ratios.  

Results revealed that participants in the highest strength category had a 34% lower risk of 

developing metabolic syndrome than subjects in the lowest strength category, while controlling 

for smoking status, alcohol intake, number of metabolic syndrome risk factors at baseline, family 

history of diabetes, hypertension, and premature coronary disease. After further adjusting for 

aerobic fitness, the high strength group had a 24% lower risk of developing metabolic syndrome 

compared to the low strength group. However, this difference was not significant.  
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Participants were divided into two different groups based on BMI level. There was a 

normal weight group (BMI < 25) and a combined group of overweight and obese individuals 

(BMI ≥ 25). Within both groups, muscular strength was inversely related to metabolic syndrome 

incidence. Within the normal weight group the high strength group had a 44% lower chance of 

developing metabolic syndrome compared to the low strength group. The same pattern was 

found in the overweight and obese group with the high strength group having a 39% lower 

chance of developing metabolic syndrome compared to the low strength group. When evaluated 

within separate age categories significant linear trends that demonstrated a decrease in metabolic 

risk as muscular fitness increased were seen for ages 20-39 years, 40-49 years, and 50+ years. 

Jurca et al. (2005) concluded that muscular strength was inversely related to metabolic syndrome 

risk after adjusting for various confounding variables. 

 Ullrich et al. (1987) studied the relationship between a muscular resistance training 

program and various health outcome variables in 25 male participants aged 18-35 years. 

Participants were divided into four separate groups during the eight week intervention, including 

endurance training, strength I training, strength II training, or explosive training groups. Groups 

differed on the number of repetitions, sets, and loads they had to complete for their training 

program. Body fat was determined through hydrostatic weighing and maximal oxygen 

consumption (VO2max) was measured using a modified Balke protocol. Muscle mass was also 

measured using the arm circumference and triceps skinfold measurement. Blood samples were 

taken to assess cholesterol and triglycerides.  

 The results at the end of the intervention revealed several key findings. Total cholesterol 

decreased significantly from 192 mg/dL at baseline to 186 mg/dL for all groups (results were not 

reported separately for each group). LDL-cholesterol decreased significantly by 8%, and HDL 
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increased by 14%. Muscle mass increased by 4.6 kg and percent fat decreased significantly from 

14.0% to 12.7%. Maximal oxygen consumption also increased by 3.8 mL∙kg∙min
-1

. The authors 

concluded that the eight week intervention assisted in improving lipid levels, aerobic 

conditioning, and muscle mass while decreasing fat mass.  

Muscular Power and Health 

Power and Metabolic Risk Factors 

Ruiz et al. (2008) examined the relationship between physical fitness and various markers 

of health in 416 subjects aged 13-18.5 years who participated in the Food and Assessment of 

Nutritional Status of Spanish Adolescents (ANEVA study). Measurements included a complete 

set of inflammatory proteins, muscle strength, and cardiorespiratory fitness measurements. 

Upper body strength was assessed via handgrip strength and lower body strength was assessed 

via standing long jump. The muscular strength score was the mean of the standardized scores of 

the standing long jump and the handgrip strength test. The standardized scores were calculated 

separately for boys and girls for each age group (13, 14, 15, 16, and 17-18.5 years). The PACER 

test was used to estimate aerobic fitness. 

Results showed that the PACER test was significantly correlated to handgrip strength (r = 

.15) and standing long jump performance (r = .75). The PACER test scores were not 

significantly related to any inflammatory protein. C-reactive protein (r = .32), complement factor 

C3 (r = .32), and complement factor C4 (r = .45) were three of the five inflammatory markers 

significantly related to the standardized muscular strength score after controlling for sex, age, 

pubertal status, weight, height, socioeconomic status, and aerobic fitness. Ruiz et al (2008) 

divided subjects into two groups according to BMI: nonoverweight and overweight adolescents. 

Results revealed no significant correlations between any inflammatory protein and muscular 
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fitness in the nonoverweight group. In the overweight group, C-reactive protein (r = .44) and 

prealbumin (r = .33) were significantly correlated with muscular fitness. 

 Ruiz et al. (2008) did not specifically state that they were measuring power in this study. 

However, a major component of their muscular strength score was the standing long jump. The 

standing long jump has been used consistently as a measure of lower body power (Beunen et al., 

1983; Brunet et al., 2006; Kontulainen et al., 2002). Therefore, a relationship could exist between 

muscular power and improved inflammation responses. Ruiz et al. concluded that muscular 

fitness is significantly correlated with inflammatory responses in adolescents and could help 

distinguish more at risk subjects in the overweight category. 

 Garcia-Artero et al. (2007) used the same overarching ANEVA study data to complete 

further analysis of relationships between physical fitness and health markers. The purpose of this 

study was to evaluate the relationship between physical activity and physical fitness in relation to 

lipid and metabolic profiles. Four-hundred and sixty participants with a mean age of 15.2 (± 1.4) 

years were evaluated. Physical activity was measured with the Yesterday Activity Checklist. The 

results from this questionnaire were used to calculate a total MET index. Muscular strength and 

aerobic fitness comprised the physical fitness component. The Course-Navette 20-meter shuttle 

run test was used to assess aerobic fitness and muscular strength included a combined index 

score of the standing long jump, hand grip dynamometry test, and the bent arm hang. Each 

variable of the muscular strength test was modified by dividing the observed score by the 

maximum value of the variable. The maximum value of each variable is defined by the highest 

possible score on the EUROFIT test battery. The transformed scores for each test were averaged 

to create the general strength index. A metabolic cardiovascular risk index was calculated from 

the measures of triglycerides, LDL-C, HDL-C, and glucose concentrations. Each value was 
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standardized separately for boys and girls from sample data. The HDL-C standardized variable 

was multiplied by -1 because of its inverse effect on cardiovascular risk. The total of each of the 

four standardized values made up the metabolic profile. 

Results demonstrated no relationship between the physical activity index and the 

metabolic index. Garcia-Artero et al. (2007) did not report the correlation for this relationship. 

After controlling for age, maturational development, physical activity, and muscular strength, 

aerobic fitness was significantly related to the metabolic index in males. Therefore, in males 

higher aerobic fitness was associated with an improved lipid-metabolic index. Correlation data 

were not provided in the article to support this relationship. For females, muscular strength was 

positively associated with the lipid-metabolic index, after controlling for sex, age, maturational 

development, and aerobic fitness. Correlation data were not provided in the article to support this 

relationship either. When aerobic fitness and muscular strength were combined in the same 

analyses the results showed that a high level of muscular strength was linked to a low metabolic 

risk at any level of aerobic fitness, regardless of sex. Analysis also revealed that muscular 

strength had a low, but significant relationship with aerobic fitness in males (r = .26) and females 

(r = .29). 

Similar to the study by Ruiz et al. (2008), Garcia-Artero et al. (2007) did not specifically 

measure muscular power. In both studies, the standing long jump was used as a major 

component of the muscular strength assessment. Therefore, because the authors considered the 

standing long jump to be a measure of a muscular power, they concluded that a relationship may 

exist between muscular power, cardiovascular health, and improved lipid profile indexes 

(Garcia-Artero et al., 2007). 
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Artero et al. (2013) further examined the relationship between inflammatory biomarkers 

and muscular fitness in adolescents. Participants in the Artero et al. study consisted of 639 

adolescents with a mean age of 14.9 ± 1.2 years. The inflammatory markers of C-reactive 

protein, complement factor C3, complement factor C4, leptin, and white blood cells were 

analyzed via blood sample. Each marker was standardized separately for boys and girls and by 1-

year age groups. The standardized scores were then totaled to achieve the inflammatory score.  

Muscular fitness was assessed using the total standardized scores of the handgrip strength and 

standing long jump for each sex and 1-year age groups. Aerobic fitness was also assessed via the 

PACER. 

 Partial correlations showed standing long jump (r = -.32), aerobic fitness (r = -.31), and 

total muscular fitness score (r = -.38) had similar levels of association with inflammatory scores 

after controlling for age, sex, pubertal state, and center. Four quartiles were developed for 

muscular fitness. Quartile one was the least fit and quartile four was most fit. Analysis revealed 

that there was a significant difference in inflammatory score between quartile one and quartile 

four. 

 Multiple regression revealed a significant moderate predictive value of muscular fitness 

and inflammatory score (β = -0.39) after controlling for age, sex, pubertal state, and center. A 

similar value was revealed after additionally controlling for aerobic fitness. However, once the 

homeostasis model assessment and four skinfolds were controlled, a nonsignificant and weak 

relationship between muscular fitness and inflammatory score resulted (β = -0.08). Participants 

were then split into non-overweight or overweight groups. Within the overweight group, those 

with low muscular fitness had significantly higher inflammatory scores than those with high 

muscular fitness. No other group comparisons were statistically significant. 
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 Artero et al. (2013) concluded that muscular fitness is related to inflammatory biomarkers 

in adolescents. However, this relationship was only found in the overweight group of this study. 

Analysis from the overweight group which revealed a significant difference in inflammatory 

score between low muscular fitness and high muscular fitness showed that muscular fitness 

could help identify which obese individuals are more at risk for poor inflammatory scores.  

Steene-Johannessen et al. (2009) studied the independent associations of muscle fitness 

and aerobic fitness with clustered metabolic risk in 1,851 youth aged 9 and 15 years. Muscle 

fitness was defined through a combination scoring index. The combination score consisted of 

handgrip strength, standing broad jump, sit-up test, and the endurance of the trunk extensor 

muscles. Test results were standardized and the combined standardized scores provided the 

muscle fitness index. Aerobic fitness was tested through a progressive cycle test to exhaustion 

using an electronically braked cycle ergometer. Metabolic index was calculated as the 

combination of standardized scores from the following variables: homeostasis model assessment 

(HOMA), waist circumference, triglycerides, HDL count, and systolic blood pressure.  

Steene-Johannessen et al. (2009) analyzed the partial correlations of muscle fitness and 

aerobic fitness with individual cardiovascular disease risk factors. The standing long jump had 

significant, yet low, relationships with HOMA (r = -.16), waist circumference (r = -.30), HDL (r 

= .06), triglycerides (r = -.09), and total metabolic index (r = -.20). The predictive value of total 

muscular fitness for metabolic risk was moderate (β = -0.32); when adjusted for aerobic fitness 

the value decreased (β = -0.11).  

Participants were split into one of four quartiles for both aerobic and muscle fitness. 

Quartile 1 was the lowest fit group and Quartile 4 was the highest fit group. Quartiles were set up 

for each age and sex. For each set of quartiles a main effect was seen for increased metabolic risk 
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in the low muscle fitness group. Therefore, participants in the lowest quartile of muscle fitness 

had significantly poorer metabolic risk scores compared to the other three groups. Further 

analysis revealed that the odds ratio for having metabolic risk was 7.2 in the least fit quartile 

compared with the most fit quartile. After adjusting for aerobic fitness the odds ratio was 1.7.  

Steene-Johannessen et al. (2009) further analyzed the relationship between muscle fitness 

and metabolic risk while attempting to control for body weight. Participants were split into 

overweight and normal weight categories. Within each weight class, participants were divided 

into one of three groups based on muscular fitness (low, moderate, and high). Within both weight 

categories, significant differences were seen in metabolic risk scores between the low muscular 

fitness group to the high muscular fitness group. Numeric data were not provided for this 

analysis. 

Steene-Johannessen et al. (2009) concluded that muscle fitness was inversely associated 

with clustered metabolic risk. Clustered risk was higher in the least muscular fit group compared 

to the most muscular fit group regardless of weight.  

Artero et al. (2011) studied the relationship between muscular and aerobic fitness with 

metabolic risk in 709 adolescents aged 12.5-17.5 years. Muscular fitness was measured through 

combining the one year age and sex specific standardized scores of the standing long jump and 

handgrip strength. Metabolic components measured were waist circumference, systolic blood 

pressure, homeostasis model assessment, triglycerides, and total cholesterol. A metabolic risk 

score was the summation of one year age and sex specific standardized scores of systolic blood 

pressure, homeostasis model assessment, and total cholesterol.  

 Partial correlation showed that standing long jump was lowly, yet significantly related to 

waist circumference (r = -.32), HOMA (r = -.17), total cholesterol (r = -.10), and total metabolic 
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risk score (r = -.24). The total muscular fitness score was significantly related to waist 

circumference (r = -.49), systolic blood pressure (r = -.10), homeostasis model assessment (r = - 

.23), triglycerides (r = -.11), total cholesterol (r = -.12), and total metabolic risk score (r = - .33).   

 Participants were split into four separate groups: boys < 14.5 years, boys > 14.5 years, 

girls < 14.5 years, girls > 14.5 years. Each group was further divided into four muscular fitness 

quartiles. Quartile one was the lowest fit, while quartile four was the highest fit. ANCOVA 

analysis found main effects for each muscular fitness score across the quartiles in all sex and age 

groups. Post hoc tests revealed that participants in the lowest fitness quartile had a significantly 

higher metabolic risk compared to participants in quartiles two, three, and four.   

Standardized regression coefficients were calculated after controlling for age, sex, 

pubertal status, and center. Muscular fitness showed a low, but significant beta value (β = -0.33) 

after controlling for age, sex, pubertal status, and center. Muscular fitness also showed a low, but 

significant beta value (β = -0.25), even after adjusting for aerobic fitness. Odds ratios were 

calculated after participants were split into four different muscular fitness quartiles. Quartile one 

was the least fit quartile and quartile four was the most fit quartile. The odds ratio (OR = 8.3) for 

metabolic risk in the lowest fit quartile was significant when compared to quartile four after 

controlling for age, sex, pubertal status, and center. After further controlling for aerobic fitness 

the odds ratio for metabolic risk was still significant (OR = 5.3) for quartile one compared to 

quartile four. 

Artero et al. (2011) further studied the metabolic risk while accounting for weight.  

Participants were split into a nonoverweight group and an overweight group. Within each group 

four muscular fitness quartiles were created, quartile one was the least fit quartile and quartile 

four was the most fit quartile. Analysis showed that in the nonoverweight group, metabolic risk 
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score was significantly different between quartile one and quartiles three and four. In the 

overweight group, metabolic risk score was significantly different between quartile one and 

quartile two. 

Artero et al. (2011) concluded that muscular fitness is related to metabolic risk 

independent of aerobic fitness. Artero et al. also explained that the relationship seems to be an 

exponential relationship rather than a linear one because the greatest difference in metabolic risk 

came between the lowest fit group and the other three groups. They concluded that muscular 

fitness could help to determine the increased metabolic risk within an overweight population. 

 Magnussen et al. (2012) examined the relationship between muscular power and 

cardiovascular disease risk in 600 nine year olds, 562 twelve year olds, and 480 fifteen year olds. 

Muscular power was tested via standing long jump and was normalized for childhood body mass 

according to allometric parameters (Jaric et al., 2005). Cardiovascular disease risk factors were 

measured independently including: non-HDL-C, HDL-C, total cholesterol, triglycerides, systolic 

blood pressure, diastolic blood pressure, mean arterial pressure (1/3SBP + 2/3 DBP), waist 

circumference, and body mass index. A clustered cardiovascular disease risk score was 

computed as the sum of the age- and sex-specific z scores of non-HDL-C, HDL-C (multiplied by 

-1), triglycerides, mean arterial pressure, and waist circumference divided by five.   

 Participants were split into five quintiles based on muscular power performance. The 1
st
 

quintile had the lowest power performance and the 5
th

 quintile had the highest power 

performance. Analysis showed that compared to quintile one (r = .33), quintile two (r = .08), 

three (r = -.05), four (r = -.17), and five (r = -.20) all had significantly lower standardized 

cardiovascular disease risk factor values. Systolic blood pressure, diastolic blood pressure, and 

mean arterial pressure all decreased as muscular power increased across quintiles. HDL-C 
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increased as muscular power increased from quintile one to quintile five. After adjusting for 

BMI, muscular power was no longer associated with HDL-C. 

 Magnussen et al. (2012) examined the relationship between muscular power, aerobic 

fitness (1.6 km run time), and cardiovascular disease risk factor. Muscular power was moderately 

related to aerobic fitness (r = .35). Muscular power and aerobic fitness were independently 

shown to significantly predict clustered cardiovascular disease risk. Also the interaction of 

muscular power and aerobic fitness significantly predicted clustered cardiovascular disease risk. 

Muscular power was significantly correlated with clustered CVD risk in each aerobic fitness 

category (low, moderate, and high), but values for the correlations were not given. Magnussen et 

al. concluded that muscular power was inversely related to clustered CVD risk and muscular 

power may provide protection against clustered CVD risk regardless of aerobic fitness.   

Adiponectin and leptin are adipocytokine proteins that seem to contribute to the 

development of cardiovascular disease and type 2 diabetes (Morales et al., 2004; Yoshinaga et 

al., 2008). Martinez-Gomez et al. (2011) examined the relationship between independent and 

joint relationships of physical activity, aerobic fitness, and muscular fitness with adiponectin and 

leptin levels in 198 subjects aged 13-17 years. Physical activity was measured via accelerometer 

for seven consecutive days, aerobic fitness was measured via PACER, and muscular fitness was 

measured via handgrip strength and standing long jump. The muscular fitness score was the 

mean of the handgrip strength and standing long jump standardized scores.   

Physical activity data were used to create two groups (low or high) based on whether 

participants accumulated at least 60 minutes of moderate to vigorous physical activity in a day or 

not. Participants were divided into low or high aerobic fitness groups based on the FitnessGram-

ActivityGram criterion-referenced standards for VO2max. If participants were placed into all 



 
 

24 
 

three high fitness groups (physical activity, aerobic fitness, and muscular fitness), then they were 

categorized as healthy. If participants were placed into two of the three groups, then they were 

categorized as medium-healthy. If participants were placed into one or zero high fitness groups, 

then they were categorized as unhealthy. Adiponectin and leptin values were analyzed via blood 

sample. Insulin resistance was also measured through the homeostasis model assessment.  

 Several analyses were conducted. Aerobic fitness, after controlling for age, sex, and 

pubertal status, was positively correlated with muscular fitness (r = .43). Cardiorespiratory 

fitness was significantly correlated with adiponectin (r = .37) and leptin (r = .81). Muscular 

fitness was also significantly correlated with adiponectin (r = .37) and leptin (r = .82). Multiple 

regression analysis showed that participants in the high aerobic group and high muscular fitness 

group had significantly lower values of adiponectin and leptin than the low aerobic and low 

muscular fitness group (exact values were not reported). Further analysis revealed that the 

healthy group (participants who scored high on each test), had significantly lower values of 

adiponectin and leptin compared to the medium-healthy or unhealthy groups. Results revealed 

that standing long jump, as a single predictor and combined with other fitness components, 

significantly correlated with adiponectin and leptin levels (Martinez-Gomez et al., 2012).  

Ortega et al. (2005) provided normative values for physical fitness tests in 2,859 Spanish 

adolescents aged 13-18.5 years. They presented various relationships that linked physical fitness 

with future cardiovascular disease risks. Physical fitness was tested through a modified version 

of the EUROFIT which included: the sit and reach, handgrip, standing long jump, bent arm hang, 

4 x 10 m shuttle run, and the 20 m shuttle run. Participants were then placed into a non-risk or at-

risk group for future cardiovascular disease risks based on aerobic capacity cut points as defined 

by the FitnessGram test administration manual published in 1999. Seventeen percent of 
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participants were categorized into the at-risk group. The at-risk group and the non-risk group 

were compared on the youth fitness tests. For both males and females a significant difference 

was seen between at-risk and non-risk groups on the bent arm hang, standing long jump, and 

agility tests (data were not provided).  

Jimenez-Pavon et al. (2012) studied the relationships between muscular strength and 

markers of insulin resistance after controlling for total and central body fat in 1,089 subjects aged 

12.5-17.5 years. Muscular strength was assessed via standing long jump for the lower body and 

via handgrip strength for the upper body. Handgrip strength was analyzed as an absolute measure 

and also relative to body weight. Various health measurements were evaluated including insulin, 

glucose, waist circumference, skinfold thickness, BMI, homeostasis model assessment (HOMA), 

and quantitative insulin sensitivity check index.  

 Partial correlations between health outcomes and performance measures controlling for 

pubertal status were calculated. Standing long jump was significantly correlated with insulin (r = 

-.16), HOMA (r = -.16), glucose (r = -.10), quantitative insulin sensitivity (r = .15), waist 

circumference (r = -.16). skinfold thickness (r = -.43), and BMI (r = -.17). Handgrip strength 

expressed relative to body weight was significantly correlated with insulin (r = -.25), HOMA (r = 

-.24), quantitative insulin sensitivity (r = .23), waist circumference (r = -.50), skinfold thickness 

(r = .59), and BMI (r = -.53). 

 Linear regression analyses were used to examine the relationships between the muscular 

fitness tests and health markers. Model I controlled for pubertal status, country, and BMI. For 

males, regression analyses demonstrated significant relationships between handgrip strength 

expressed relative to body weight and HOMA (β = -0.10), and insulin (β = -0.21), and between 

absolute handgrip strength and HOMA (β = -0.14). In males, standing long jump significantly 
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predicted insulin, HOMA, and quantitative insulin sensitivity check index while controlling for 

pubertal status, country, and either BMI, waist circumference, or skinfold thickness. For males, 

beta values for the relationships between standing long jump and insulin and HOMA ranged 

from β = -0.17 to β = -0.19. Beta values for the relationship between standing long jump and 

quantitative insulin sensitivity check index ranged from β = .17 to β = .18. For females, standing 

long jump was only significantly predictive of HOMA (β = -0.11). For females, handgrip 

strength was not significantly associated with insulin, HOMA, or quantitative insulin sensitivity 

check index.    

Jimenez-Pavon et al. (2012) controlled for weight by multiplying the standing long jump 

score by weight. The data were not provided, but Jimenez-Pavon et al. reported that multiplying 

the standing long jump scores by weight did not change the results compared to using the raw 

standing long jump score. When Jimenez-Pavon et al. controlled for aerobic fitness, the 

significant relationships between muscular fitness and health markers became non-significant in 

females.  

Jimenez-Pavon et al. (2012) concluded that for females lower body muscular fitness was 

associated with markers of insulin resistance after controlling for various confounding variables. 

However, these relationships were not significant after controlling for aerobic fitness. Upper 

body strength in males was negatively associated with markers of insulin sensitivity after 

controlling for BMI or waist circumference, but not skinfold thickness.   

Martinez-Gomez et al. (2012) studied the relationship between objectively measured and 

self-reported physical activity and fitness and inflammatory markers in 1,025 subjects aged 12.5 

to 17.5 years. Physical activity was objectively measured with accelerometers using 15 second 

epochs. Physical activity was also self-reported by participants using the International Physical 
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Activity Questionnaire for Adolescents. Aerobic fitness was objectively measured using the 20 

meter shuttle-run test. Muscular fitness was objectively assessed from the average of 

standardized scores from the handgrip strength and standing long jump. Motor fitness was 

objectively assessed using the 4 × 10 shuttle-run test. An overall fitness score was calculated 

taking the average z-scores from aerobic, muscular, and motor fitness tests. Aerobic, muscular, 

and motor fitness were also self-reported using a four question system found in the International 

Fitness Scale. Blood samples were taken to examine levels of C-reactive protein, complement 

factor 3, complement factor 4, interleukin-6, and tumor necrosis factor. 

Partial correlations revealed low, yet significant relationships between various variables 

after controlling for age, sex, and city. Objectively measured muscular fitness, measured by 

handgrip strength and standing long jump, was significantly correlated with overall objectively 

measured physical activity (r = .10), objectively measured vigorous physical activity (r = .17), 

and objectively measured moderate-to-vigorous physical activity (r = .08). Self-reported 

muscular fitness was not significantly correlated with any objective measure of physical activity. 

Overall fitness was significantly correlated with objective measurements of overall physical 

activity (r = .13), vigorous physical activity (r = .16), and moderate-to-vigorous physical activity 

(r = .13).   

Regression analysis showed that objectively measured muscular fitness had low, but 

significant predictive values for C-reactive protein (β = -0.18), complement factor 3 (β = -0.26), 

and complement factor 4 (β = -0.17). There were no significant predictors for any inflammatory 

proteins from self-reported muscular fitness. Objectively measured overall fitness had low, but 

significant predictive value for C-reactive protein (β = -0.22), complement factor 3 (β = -0.35), 

and complement factor 4 (β = -0.29).    
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Martinez-Gomez et al. (2012) concluded that objectively measured overall fitness was 

inversely related to three of the five inflammatory markers measured. Results also showed that 

objectively measured muscular fitness was significantly related to three of the five inflammatory 

markers measured.   

Power and Body Fatness/Body Composition 

The Quebec in Forme project was designed to help promote healthy lifestyles for children 

with low socioeconomic statuses. A total of 1,140 subjects in first, second, or fourth grade were 

involved with the intervention. Within the intervention various anthropometric and fitness 

measurements were assessed including: BMI, waist circumference, standing long jump, speed 

shuttle run, and a 1-minute speed sit-ups test. From these results Brunet, Chaput, and Tremblay 

(2006) evaluated the relationship among anthropometric measurements and fitness 

measurements.  

The correlations for boys between waist circumference and standing long jump increased 

as grade level increased from first
 
(r = -.16), second

 
(r = -.25), to fourth grade (r = -.39). The 

same pattern was found in the girls. The authors reported the following: first grade (no 

significant relationship [NS]), second grade (r = -.25), and fourth grade (r = -.39). For males 

associations were found between BMI and standing long jump in the first (no significant 

relationship [NS] second (r = -.27), and fourth grade (r = -.40). The common knowledge that 

heavier children may not be able to jump as far as leaner children cannot be ignored. Brunet et al. 

(2006) did not control for body weight when evaluating the relationship between standing long 

jump and BMI or waist circumference. Future studies will hopefully identify this deficiency and 

seek to correct it. However, the study by Brunet et al. does add to the literature by at least 

providing evidence that the link between jumping capacity and weight does exist. However, 
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because differences in weight were not controlled, the findings of the Brunet et al. study must be 

interpreted with caution.  

 Liao et al. (2013) investigated the relationship between fitness tests and BMI in 13,500 

Taiwanese students ranging from 10-18 years of age. Subjects were placed in one of three 

groups: non-overweight (BMI ≤ 84
th

 percentile), overweight (85
th

 percentile ≤ BMI ≤ 94
th

 

percentile), and obese (BMI ≥ 95
th

 percentile). Within each category participants were further 

split into five quintiles ranging from Quintile 1 (least fit) to Quintile 5 (most fit) for each fitness 

test. The fitness tests conducted were the modified sit-and-reach test, bent-leg sit-up test, 

standing long jump, and a run/walk test.  

 The results for both boys and girls revealed significant, but weak, correlations among 

BMI and sit-and-reach, bent leg sit-up, and the standing long jump ranging from .08 to   

-.10. The relationships between BMI and running performance appeared stronger with values 

ranging from .17 to .39. Analysis of quintiles done with a chi-square test revealed significant 

increases in the prevalence of overweight and obesity in the least fit quartile compared to the 

most fit quartile within three of the four fitness parameters (bent-leg sit-up, standing long jump, 

and run/walk test). Further analysis showed the adjusted odds of being overweight and obese 

were higher in the least fit quartiles for both the standing long jump (OR = 3.66) and the 

run/walk test (OR = 5.40).  

 Liao et al. (2013) provided evidence of the negative relationships among aerobic fitness, 

lower body power, and obesity risk. The negative relationship found between standing long jump 

and obesity could be due to insufficient lower body explosive strength inhibiting one’s ability to 

participate in physical activity, as suggested by Liao et al. This conclusion should be interpreted 
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with caution, as the common explanation that body weight causes heavier children to not jump as 

far as leaner children, rather than a lack of leg strength, should be considered.  

 Beunen et al. (1983) examined the relationship between body fatness and motor fitness 

through the Leuven Growth Study of Belgian Boys, Beunen et al. which studied 21,174 male 

subjects aged 12-20 years. Participants underwent various anthropometric measurements, 

including body fatness via four site skinfold. Numerous motor fitness tests were conducted, 

including the arm pull, vertical jump, leg lifts, and bent arm hang. Many different correlations 

were reported and they reported in ranges. Among the most significant findings were the inverse 

relationships among the motor fitness tests involving the body being supported off the ground 

and body fatness.  The strongest correlations observed, although still only moderate in strength, 

were between body fatness and the bent arm hang (r = -.18 to -.37) and between the vertical 

jump and body fatness (r = -.18 to -.37). The correlations previously listed were partial 

correlations reported in age-specific ranges. With height and weight held constant, the arm pull 

and vertical jump had the strongest relationships with body fatness (r = - .28  to .40). Beunen et 

al. concluded that fatness is associated with motor performance, defined partially by a power 

assessment.   

In the Amsterdam Growth and Health project, Minck et al. (2007) examined the 

relationship between fitness tests and health markers while correcting for weight. The purpose of 

this study was to examine the relationships between body fatness and physical fitness, and to also 

examine the effect that physical activity may have on these relationships. One hundred and 

eighty-one participants ranging from 13-27 years of age were studied. Numerous tests were used 

to measure physical fitness including: flexed arm hang, arm pull, vertical jump, 10 leg lifts, 10 

times 5-m sprint, plate tapping, and sit and reach. Physical activity was assessed with an 
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interview questionnaire and body fatness was measured through a four-site skinfold 

measurement of biceps, triceps, subscapular, and suprailiac sites. The relationships were 

evaluated with three types of regression analyses. The first analysis examined the univariate 

relationship between each fitness item and body fatness. The second analysis examined the same 

relationship after correcting for physical activity level. The last analysis corrected for physical 

activity, body weight, and height.  

The first analysis showed that for both males and females arm pull (r = -.21, r = -.20, 

respectively), vertical jump (r = -.11, r = -.21), and maximal oxygen uptake (r = -.29, r = -.23) 

were significantly and inversely related to body fatness. Similar relationships with body fatness 

were found when the analysis controlled for physical activity for males and females with the arm 

pull (r = -.19, r = -.20), standing high jump (r = -.10, r = -.19), and maximal oxygen uptake (r = -

.27, r = -.20). The last analysis which controlled for physical activity, body weight, and height, 

showed the greatest association between body fatness and physical fitness for males in the arm 

pull (r = .-23), vertical jump (r = -.32), and maximal oxygen uptake (r = -.44). The same analysis 

found that for females the standing long jump (r = -.38) and maximal oxygen uptake (r = -.40) 

were significantly related to body fatness. These findings suggest that low, yet significant 

relationships, exist between the fitness tests (arm pull, vertical jump, and maximal oxygen 

uptake) and body fatness. Specifically, concerning the vertical jump, for both males and females 

the highest relationship between body fatness and jumping ability was the one that controlled for 

height and weight. Not controlling for height and weight was the pertinent factor that the Brunet 

et al. (2006) study lacked in linking jumping ability to the health marker of body composition.  

Rodriguez et al. (2011) studied the relationship between physical fitness and body fatness 

over nine years. Five hundred and eighteen six year old participants were monitored. Body fat 
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was measured via skinfolds and various fitness tests were administered, including: 60 second sit-

ups, flexed arm hang, standing long jump, 50 m dash, 10 m shuttle run, sit-and-reach, and 20 m 

PACER run. Measurements were taken at the ages of six, seven, eight, nine, and 15 years.  

 Regression coefficients were established to show the significant, yet low, predictive value 

of each fitness test for body fatness including: flexed arm hang (R = -.06), standing long jump (R 

= -.07), sit ups (R = -.04), 50 m dash (R = 0.96), and PACER (R = -.08). The significant, yet low, 

correlation between standing long jump and body fat led Rodriguez et al. (2011) to include 

muscular strength (defined partly by standing long jump in their study) as a target fitness 

component when working with youth. This conclusion should be observed in light of the 

extremely low regression coefficient for standing long jump when predicting body fat (R = -.07). 

Urdiales et al. (2009) analyzed the relationship between fitness and fatness in 363 

teenagers aged 12.5-17.5 years. Fitness was divided into aerobic, agility, and muscle fitness. The 

muscle fitness to fatness relationship will be discussed here. Muscle fitness was measured via 

handgrip strength for the upper body and standing broad jump and vertical jump for lower body 

strength. Fatness was measured through DXA, BodPod, and the sum of skinfolds. Physical 

activity was controlled when fitness and fatness were correlated. Physical activity was measured 

with 15 second epochs with an accelerometer over at least three days.  

Results were analyzed separately for boys and girls. Significant correlations were found 

between each strength test and each measure of fatness for both boys and girls. Values ranged 

from low to moderate associations (r = .24 to .58). The highest correlations for females were 

between the vertical jump and DXA (r = .56), vertical jump and BODPOD (r = .54), and vertical 

jump and skinfolds (r = .54). Slightly lower correlations were found for females for the standing 

long jump and DXA (r = .46), BODPOD (r = .44), and skinfolds (r = .32). The highest 
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correlations for males were found between vertical jump and DXA (r = .52), BODPOD (r = .56), 

and skinfolds (r = .58).  Standing long jump had slightly lower correlations with DXA (r = .48), 

BODPOD (r = .52), and skinfolds (r = .54) for males as well.  The handgrip strength had the 

lowest correlations with the DXA, BODPOD, and skinfolds.  

 When Beta values were calculated the handgrip strength test had a positive relationship 

with fatness, and the jump tests had a negative relationship with fatness. Moliner-Urdiales et al. 

(2011) speculated that this positive relationship could be due to an individual with excess fat 

tissue having extra lean tissue to support the fat tissue, but this relationship deserves further 

study.   

Power and Physical Activity 

Blaues et al. (2011) investigated the relationship between performance on fitness tests 

and physical activity in 214 children aged 6 to 12 years. Physical activity consisted of physical 

activity level (time spent in different physical activity intensities) and physical activity patterns 

(numbers of bouts of physical activity). Physical activity was measured using a uniaxial 

accelerometer over seven consecutive days. A physical activity bout consisted of at least 5 

seconds of activity. Fitness test measurements were taken from the European Physical Fitness 

Test battery: standing long jump, 10 × 5 meter shuttle run, sit-and-reach, handgrip, number of sit 

ups in 30 seconds, and the 20 meter shuttle run. Waist-to-hip ratio and percent body fat were also 

calculated.  

The only significant relationship found was between body fatness and physical activity 

level in boys. Moderate negative relationships were found between body fat and vigorous 

physical activity (r = - .38) and very high physical activity (r = -.35). A moderate positive 

relationship was found between body fat and light physical activity (r = .28). No significant 
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relationships were found between physical activity and physical performance on any fitness test. 

Blaues et al. (2011) concluded that spontaneous physical activity of subjects within this study did 

not induce enough of a stimulus to increase fitness test performance. 

Martinez-Gomez et al. (2012) examined the relationship between physical activity and 

muscular fitness in 2,400 participants aged 13-16 years. Physical activity was measured over 

seven days using the ActiGraph GT1M accelerometer. Strength was measured via muscular 

index. The muscular index included handgrip strength, 60 second abdominal test, and the 

standing long jump. The handgrip strength test score was the average of each hand and the hand-

dynamometer was adjusted for gender and hand size (Ruiz et al., 2008). The muscular index 

score was the summation of the standardized scores from each test. The PACER test was used to 

assess aerobic fitness.   

Aerobic fitness was significantly correlated with standing long jump (r = .48) and with 

the total muscle fitness score (r = .35). Vigorous activity was the only category of physical 

activity which was significantly related to muscle fitness (β = .13), after adjusting for gender, 

age, pubertal status, BMI, and aerobic fitness. Participants were split into three groups of low, 

middle, and high levels of vigorous activity. ANCOVA results revealed significant differences 

between muscle fitness in the lowest vigorous activity group compared to the highest vigorous 

activity group.   

Power and Quality of Life 

 Morales et al. (2013) investigated the relationships between health-related quality of life 

(HRQL), BMI, aerobic fitness, and musculoskeletal fitness in 1,158 children aged 8-11 years. 

HRQL was measured through the KIDSCREEN-52 questionnaire and aerobic fitness was tested 

via the PACER. Musculoskeletal fitness was measured through a musculoskeletal fitness index 
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for each specific age and sex. The index consisted of the sum of standardized scores for each age 

and sex of the handgrip test score expressed relative to body weight and standing long jump 

score. Participants were then divided into three separate categories for both aerobic fitness and 

musculoskeletal fitness. The categories were based on percentile rank for each test and were as 

follows: poor (< 25
th

 percentile), satisfactory (25
th

-75
th

 percentile), and good (> 75
th

 percentile).  

 ANCOVA was used to test differences in the mean scores on HRQL. Results revealed 

that boys who were in the higher aerobic fitness categories had higher scores in physical well-

being and social support segments of HRQL compared to the lower aerobic fitness groups. Data 

showed that boys in the poor category scored a mean score of 51.2 in the physical well-being 

subscale and 52.4 in the social support subscale of the HRQL, compared to a score of 57.0 and 

57.6, respectively, for the good fitness category. Girls who were in the good aerobic fitness 

category had a physical well-being mean of 57 compared to 51.2 in the poor aerobic fitness 

group. Regarding social support, girls in the good aerobic fitness group averaged 57.6 compared 

to a 52.4 score for the poor aerobic fitness group.   

 For boys, significant differences were found between participants in the good vs. the poor 

muscular fitness groups for physical well-being, social support, and social acceptance. The 

biggest difference between the good muscular fitness and poor muscular fitness group was in the 

category of social support (a difference of 6.0 points).  

Morales et al. (2013) used multiple regressions to examine the value of BMI, aerobic 

fitness, and musculoskeletal fitness for predicting HRQL. After controlling for age and jointly 

combining all three factors aerobic fitness was significantly related to physical well-being (β = 

0.12), psychological well-being (β = 0.11), moods and emotions (β = 0.14), self-perception (β = 

0.11), social groups (β = 0.14), school environment (β = 0.11), social acceptance (β = 0.17), and 
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financial resources (β = 0.11) in girls. For boys, aerobic fitness was only significantly associated 

with social groups (β = 0.11). Musculoskeletal fitness seemed to have a much greater impact on 

predicting HRQL for boys than girls, as the musculoskeletal index significantly predicted 

physical well-being (β = 0.19), self-perception (β = 0.12), autonomy (β = 0.13), social support (β 

= 0.22), and financial resources (β = 0.02). For girls, the musculoskeletal fitness index 

significantly predicted physical well-being (β = 0.19). 

  Results from the study by Morales et al. (2013) seem to show that a relationship may 

exist between musculoskeletal fitness and HRQL. Morales et al. used the standing long jump as 

part of a measure of musculoskeletal fitness. It would seem plausible to then link this measure of 

power to HRQL. These relationships, once again, have to be considered with caution as weight 

was not controlled for during the analysis.  

Intervention Studies Evaluating the Relationships among 

Measures of Power and Various Health Markers 

 Numerous intervention studies have tried to identify links between muscle fitness and 

positive health outcomes (Heinonen et al., 2000; Ingle et al., 2006; Kontulainen et al., 2002). 

From these studies, the relationships between the fitness measurement of power and various 

health markers could be examined. For example, Kontulainen et al. (2002) examined the effects 

of a jumping intervention on bone development in growing females. Sixty-four participants with 

a mean age of 12.8 ± 1.5 years were placed in the training group and 62 girls with a mean age of 

12.2 ± 1.6 made up the control group. A pretest was conducted to measure the participants’ bone 

mineral density (BMD) at the lumbar spine and proximal femur locations. Participants also 

underwent various performance tests, such as the leg press to measure maximal isometric 

strength, a shuttle run to measure agility, and the standing long jump to assess muscular power. 
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The training offered two step aerobics classes for 50 minutes a week lasting for 9 months. The 

number of jumps within a class gradually increased as time went on. After the 9-month training 

program, participants were brought in for a follow-up evaluation in which they underwent the 

same tests given before the training.  

A multivariate regression analysis was used to examine the relationship between 

participation in training and bone mineral density. This relationship was established after 

controlling for the effects or various confounding variables, such as growth, nutrition, pubertal 

development, and physical activity. The results showed a 4.9% increase in bone mineral density 

within the lumbar spine of the training group compared to the control group. The training group 

also had a significant increase of 6.4% in the standing long jump (Kontulainen et al., 2002). The 

relationship here could be rather important in that only the standing long jump, not the leg 

extension test nor the shuttle run test, reflected increases in lumbar bone mineral density after 

training. 

Heinonen et al. (2000) investigated the relationship between bone mineral growth and 

jump training in girls. The training group and control group consisted of 73 girls and 64 girls, 

respectively. The two groups were further divided into two groups of premenarcheal or 

postmenarcheal based on several characteristics, one of which was the Tanner five-stage 

assessment. The intervention was a 9 month program in which 50 minute step aerobics sessions 

were offered twice a week. Pretest and posttest measures consisted of various bone density 

measurements via dual-energy X-ray absorptiometry (DXA). Fitness tests were also measured 

pretest and posttest, including isometric leg press, standing long jump, sit-ups, and shuttle run.  

The results showed that premenarcheal girls in the training group increased significantly 

more than participants in control group at the lumbar spine (8.6% vs. 5.3%) and femoral neck 
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(9.3% vs. 5.3%). However, no significant differences were found at the trochanter (9.7% vs. 

6.9%), tibial midshaft (0% vs. 0%), tibial CoA (6.0% vs. 4.4%), or tibial BSI (9.6% vs. 7.5%). 

Postmenarcheal girls showed no significant difference between the training group and control 

group with bone mineral density improvements at any bone site. The fitness tests revealed that, 

compared to the control group, premenarcheal girls in the training group significantly increased 

their performance in the shuttle run (3% vs. 0%) and standing long jump (7% vs. 1%). 

Postmenarcheal girls in the training group significantly increased their scores compared to the 

control group for the sit-up test (18% vs. 12%) and the standing long jump (7% vs. 2%). 

Heinonen et al. (2000) provided limited support for the relationship between lower body power 

and bone health. The premenarcheal girls training group increased both bone mineral density and 

standing long jump performance. However, the postmenarcheal groups did not significantly 

increase in bone mineral density, but did increase significantly in the standing long jump.  

Ingle, Sleap, and Tolfrey (2006) examined the potential link between power assessments 

and decreases in lean body mass and body fatness. A complex training program incorporating 

both plyometrics and resistance training was used over a course of 12 months. The authors 

assessed the effects of the training program on various performance markers in males aged 11 to 

12 years. The intervention group consisted of 33 participants and the control group consisted of 

21 participants. 

Three measurement periods were used to assess percent body fat, lean body mass, and 

performance on various tests including: Wingate anaerobic test, standing long jump test, vertical 

jump test, basketball chest pass, and 40 m-sprint test. The first measurement period was during 

the pretest. The second measurement period was after the intervention. The third measurement 

came after a 12-week detraining period in which the intervention group did not participate in the 
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training. Results revealed that the intervention group lost 6% of their body fat over the course of 

the 24-week study. Performance measurement results of the intervention group revealed a 

statistically significant increase in vertical jump (0.9 cm) and basketball chest pass (80 cm) 

(Ingle et al., 2006). These tests are measures of lower body and upper body power, respectively. 

Therefore the association between increased power performance and improved body composition 

could be plausible.  

Summary 

 Physical fitness testing has a significant history in the United States. The most recent 

development is the official implementation of the FitnessGram as the national youth fitness test. 

The 2012 Institute of Medicine report evaluated various fitness test components as they related to 

health outcomes in hopes to recommend possible improvements to youth fitness testing. Studies 

that examined the relationship between muscular fitness and health outcomes were examined the 

Institute of Medicine report.  The report called for the implementation of the standing long jump 

in national youth fitness tests as  a measure of muscular fitness. However, further research was 

needed to analyze the relationships among muscular fitness and health outcomes. 

 In this review of literature numerous studies were examined to help understand the 

relationships between muscular fitness, with an emphasis on muscular power, and health 

outcomes in youth. The literature revealed that muscular fitness has been linked to healthier 

metabolic profiles in youth including: healthier inflammatory responses (Martinez-Gomez et al., 

2012; Ruiz et al., 2008), improved lipid profile indexes (Artero et al., 2013; Garcia-Artero et al., 

2007), decreased metabolic disease risk (Artero et al., 2011; Steene-Johannessen et al., 2009), 

decreased clustered cardiovascular disease risk (Magnussen et al., 2012; Ortega et al., 2005), and 

improved insulin sensitivity (Jimenez-Pavon et al., 2012).  
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 In addition to its relationship with metabolic health, muscular fitness has also been linked 

to improved body composition among youth (Beunen et al., 1983; Brunet et al., 2007; Liao et al., 

2013; Rodriguez et al., 2011; Urdiales et al., 2009). Muscular fitness has also been positively 

correlated to physical activity in youth (Martinez-Gomez et al., 2012) and quality of life 

(Morales et al., 2013).   

 The Institute of Medicine (2012) recommended that future research focus on the 

relationships among measures of muscular fitness and health outcomes in youth. Specifically, the 

IOM report noted the importance of identifying which individual tests could be used to predict 

health outcomes. Numerous studies have reported relationships between a muscle fitness index 

score, consisting of several tests, and health outcomes. The purpose of this study is to evaluate 

the relationship between muscular fitness tests of power and health outcomes in youth. 
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Methods 

Participants 

Twenty-two girls and 27 boys aged 9 to 14 years were recruited through the East Carolina 

University listserve. Participants were paid $20 for participation in the study and the parent or 

guardian received $5. 

 The study was reviewed and approved by the Institutional Review Board of East Carolina 

University. Written assent was obtained from the participant and consent was received from the 

participant’s parent or guardian. 

Procedures & Measurements  

 Summary of Procedures. Testing took place in two separate sessions. The following 

measures were taken at the first session: resting heart rate, blood pressure, height, body mass, 

physical activity questionnaires, body composition via BODPOD and skinfolds, total body 

medicine ball throw, upper body medicine ball throw, vertical jump, standing long jump, and 

handgrip strength. The same measures were taken on the second day of testing, except for the 

anthropometric measurements. Also, at the end of the testing days either the PACER test or a 

maximal treadmill test was administered. 

Resting heart rate. Resting heart rate was measured for 60 seconds with a Polar heart rate 

monitor after 5 minutes of seated rest. 

Blood Pressure. Blood pressure was measured manually after participants rested for at 

least 5 minutes. Blood pressure was assessed with the participant seated and left arm resting on a 

table. Two blood pressure measurements were conducted with at least 1 minute between 

measures.  
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Height. Height was measured with a stand-alone stadiometer (SECA Corporation, 

Hanover, MD) to the nearest 0.1 cm. Participants stood straight up with their shoes off and heels 

together and were to take a deep breath and hold their breath during the measurement. 

Body Mass. Body mass was measured with an electronic scale (COSMED, Concord, CA) 

to the nearest 0.1 kg during the BODPOD procedure. 

Bod Pod Test. Before completing the BODPOD test participants changed into 

compression shorts or bathing suit and were instructed to remove jewelry, shoes, eye glasses, and 

socks. Participants also wore a swim cap during the test. 

Before the BODPOD test, the system was warmed-up and calibrated. The participant’s 

information was then entered into the system including: date of birth, gender, height, and 

ethnicity. Participants then entered the BODPOD and their thoracic gas volumes (TGV) was 

measured. Five trials were attempted. If TGV was not obtained after five trials, then TGV was 

predicted by the software. 

Skinfolds. Skinfolds were measured two times at the triceps and calf sites of the right arm 

and leg with Lange (Cambridge, MD) calipers. The calf skinfold was measured on the inside of 

the right leg at the level of maximal calf girth. The right foot was placed flat on a crate so that the 

knee was bent at approximately 90. The triceps skinfold was measured on the back of the right 

arm over the triceps muscle, midway between the elbow and the acromion process of the 

scapula. 

Physical Activity Measurement. Physical activity was measured using a GT3X 

accelerometer. Participants were asked to wear the accelerometer for seven days and were 

instructed to put the accelerometer on immediately after getting up out of bed and to take it off 
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right before they went to bed. Epochs were set at 5 seconds and Evenson et al. (2008) cut points 

were used to categorize time spent at various intensities.   

Total Body Medicine Ball Throw. Participants were asked to throw a 4-pound medicine 

ball as far forward as possible. They were instructed that the trajectory of the ball would make a 

difference in the distance it would travel. Participants were told to not throw the ball straight up 

or straight out, but up and out at the same time. Participants started with their toes behind a line 

and squatted with the medicine ball held at chest height with hands slightly behind the ball. From 

the squat position participants then thrust their hips into extension and drove their arms forward 

and up to throw the ball as far as possible. Participants were given two or three practice trials and 

a visual demonstration was provided. After the practice trials, three test trials were administered. 

Distance of the throw was measured with a tape measure. 

Upper Body Medicine Ball Throw. The upper body medicine ball throw was tested with 

participants seated on the ground with their back and head against a wall and feet spread 

shoulder width apart with legs straight. Participants were instructed to hold the 4-pound medicine 

ball at chest height with hands behind the back of the ball. Participants thrust the ball forward 

and were instructed to maintain contact between their back and the wall. Two or three practice 

trials were provided before three test trials were recorded. 

Vertical Jump. The vertical jump was tested with the Vertec (Power Systems, Knoxville, 

TN). Participants were instructed to reach up as far as possible on the Vertec and displace the 

highest plank they could. The standing reach was recorded. Participants were then instructed and 

given a visual demonstration on executing the vertical jump. Participants were told to squat 

down and swing their arms back and then straighten up their legs, bring their hands forward and 
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up and jump as high as they could to displace the highest plank on the Vertec. Two practice 

jumps were allowed and then three test trials were recorded. 

A field test for the vertical jump was also conducted in which participants put a sticker as 

far up the wall as possible while standing. Participants were instructed to use the same form 

previously described to jump up and place a sticker on the wall as far up as possible. Three trials 

for this test were recorded. 

 Standing Long Jump. Participants stood with their toes behind a starting line. They were 

instructed to bend their knees, swing their arms back, and then straighten their legs and bring 

their arms forward and jump horizontally as far as possible. A visual demonstration was 

provided and participants were allowed two or three practice attempts. Three test trials were then 

recorded. Jump distance was measured to the nearest quarter inch from the heel that landed 

closest to the starting line. 

 Handgrip Strength. Handgrip strength was measured with both the JAMAR 

(Warrenville, IL) handgrip dynamometer and the CAMRY (Guangdong, China) handgrip 

dynamometer. The JAMAR and CAMRY dynamometers were fixed in the participants hand so 

that when the participant gripped the device the second joint of the pointer finger was at a 90° 

angle. The arm was bent creating a 90° angle at the elbow and tucked beside the body. The 

participant alternated trials between the dominant and non-dominant hand. The participant was 

encouraged to squeeze the dynamometer as hard as possible. Three test trials for each hand were 

recorded. The participant rotated trials from dominant to non-dominant hand with three test trials 

in each hand. The dynamometer grip width was adjusted to the same standards as followed for 

the JAMAR dynamometer. 
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 Maximal Treadmill Test. The maximal treadmill test was administered on a Trackmaster 

treadmill (model TMX425C, Newton, KS). The testing protocol includes participants walking at 

an initial speed of 2.5 mph. At every one minute interval heart rate was recorded using a Polar 

heart rate monitor. Rating of perceived exertion (RPE) using the OMNI RPE scale was also 

recorded each minute (Utter et al., 2002). Speed was increased 0.5 mph each minute until 5 mph 

was reached. Speed was then maintained at 5 mph and treadmill grade was increased 3% each 

minute until the participant was unable to continue. VO2max was considered maximal if two of 

the following characteristics were met: (a) signs of intense effort such as hyperpnea, facial 

flushing, grimacing, unsteady gait, and sweating; (b) heart rate at or above 90% of age-predicted 

maximal heart rate; (c) respiratory exchange ratio at or above 1.0. Once the test was terminated 

the participant was allowed to cool down. Participants received verbal encouragement 

throughout the test.  

Statistical Analysis 

 Descriptive Analysis. Descriptive statistics were calculated for physical characteristics, 

fitness tests of strength and power, and health outcome measures.  

 Norm-referenced Test-retest Reliability. Reliabilities were estimated with an intraclass 

correlation using a one-way model for the following variables: standing long jump, vertical jump 

total body medicine ball throw, upper body medicine ball throw, and handgrip strength. Paired 

sample t-tests were used to examine differences between the first and second trial of each 

variable. Effect size (ES) was calculated using Cohen’s delta as shown below.  

ES = (Mean of 1
st
 session – Mean of 2

nd
 session) / (Mean of standard deviations of 1

st
 and 2

nd
 

sessions) 
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 Relationships among Fitness Tests and Health Outcomes. Bivariate correlations were 

calculated to examine the relationships among fitness tests of strength and power (standing long 

jump, vertical jump, total body medicine ball throw, upper body medicine ball throw, handgrip 

strength) and health outcomes (blood pressure, VO2max, physical activity level, and body 

composition). To examine the impact of body composition, partial correlations were calculated 

among fitness tests and health outcomes controlling for body mass and age. Partial correlations 

were also calculated controlling for body mass index (BMI) z-score and age. 

 Intercorrelations among fitness tests were also calculated. Of particular interest were 

correlations between standing long jump and vertical jump, total body medicine ball throw and 

upper body medicine ball throw, and left and right handgrip strength. 

Criterion-referenced Evaluation. Participants were categorized into the aerobic capacity 

Healthy Fitness Zone (HFZ) and Needs Improvement Zone (NIZ) as defined by FitnessGram® 

(Meredith & Welk, 2010). Effect size estimates were calculated to examine the size of the 

difference between the HFZ and NIZ aerobic capacity groups on the fitness test variables 

(standing long jump, vertical jump, total body medicine ball throw, upper body medicine ball 

throw, and handgrip strength).  

 Participants were also categorized into the body composition HFZ and NIZ as defined by 

FitnessGram® (Meredith & Welk, 2010). Effect size estimates were calculated to examine the 

size of the difference between the HFZ and NIZ body composition groups on the fitness test 

variables (standing long jump, vertical jump, total body medicine ball throw, upper body 

medicine ball throw, and handgrip strength). 
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Results 

Physical Characteristics 

 Physical descriptive statistics are shown in Table 1 for the 49 participants of the study. 

Twenty-two participants were female (45%) and 27 participants were male (55%). Sixteen 

participants were African American (33%), while the majority of the participants (65%) were 

Caucasian. Age ranged from 9 to 14 years. BMI values ranged from 12.7 to 38.3 kgm
-2

.  

Table 1 

Physical Characteristics (M ± SD) of Sample (N = 49) 

Variable 
Total 

Mean ± SD 

Boys 

Mean ± SD 

Girls 

Mean ± SD 

Age (years) 11.3 ± 1.8 11.4 ± 1.7  11.3 ± 1.9 

Height (cm) 151.9 ± 13.2 153.3 ± 14.4  150.2 ± 11.7 

Body mass (kg)   46.8 ± 16.4   50.2 ± 18.6    42.4 ± 12.0 

BMI (kgm
-2

) 19.8 ± 4.7 20.7 ± 5.4   18.6 ± 3.5 

Note: BMI is body mass index. 

Health Outcomes 

Health outcomes are listed in Table 2. Compared to a nationally representative sample 

taken from National Health and Nutrition Examination Survey (NHANES) data, mean body fat 

was lower in participants in the current study (Laurson et al., 2011). Percent body fat ranged 

from 6.3% to 47.7%. Average percent body fat for boys was higher than the average percent fat 

for girls. Systolic and diastolic blood pressures were similar between boys and girls. Compared 

to physical activity assessed via accelerometry from NHANES data on 12- to 15-year-old 

participants (Troiano et al., 2008), males in the current study had similar levels of physical 

activity (42.1 minutes of MVPA in the current study vs. 45.3 minutes of MVPA in Troiano et al. 

study). Females in the current study were more active than females in the study by Troiano et al. 

(45.6 minutes of MVPA in the current study vs. 24.6 minutes of MVPA in Troiano et al. study). 
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Table 2 

Health Outcomes (M ± SD) of Sample (N = 49) 

Variable 
Total 

Mean ± SD 

Boys 

Mean ± SD 

Girls 

Mean ± SD  

Systolic Blood Pressure (mm Hg) 98.3 ± 9.7 98.0 ± 9.8 100.8 ± 14.4 

Diastolic Blood Pressure (mmHg) 61.8 ± 8.7  62.5 ± 9.6 61.5 ± 8.1 

VO2max (ml·kg
-1

·min
1
) 37.3 ± 7.0  35.6 ± 10.7 39.2 ± 5.2 

Body Fat (%) 24.5 ± 9.7 25.6 ± 8.0 23.2 ± 8.1 

Physical Activity (min MVPA) 44.2 ± 19.5 42.1 ± 21.2 45.6 ± 18.0 

 

Reliability of Blood Pressure Measurement and Fitness Tests 

Table 3 presents the reliability of the blood pressure results and fitness tests. All fitness 

tests had a test-retest reliability estimate above R ≥ .97. Reliability was lower for diastolic blood 

pressure and systolic blood pressure than for the other variables. 

Table 3 

Descriptive Statistics and Test-Retest Reliability (M ± SD) for Selected Variables (N = 49) 

Variable 
Day 1 

(Mean ± SD) 

Day 2 

(Mean ± SD) 
Reliability 

Diastolic Blood Pressure (mm Hg) 62.1 ± 8.9 61.8 ± 8.7 .66 

Systolic Blood Pressure (mm Hg)   99.3 ± 12.0 98.3 ± 9.7 .78 

Standing Long Jump (in.)   54.6 ± 11.8   54.1 ± 12.7 .97 

Vertical Jump (in.) 11.0 ± 4.1 11.0 ± 3.9 .97 

Total Body Power Throw (in.) 183.6 ± 57.2 182.8 ± 58.3 .97 

Upper Body Power Throw (in.) 134.1 ± 39.5 131.5 ± 39.5 .98 

Handgrip (kg) – Dominant hand 23.4 ± 8.4 23.3 ± 8.2 .98 

Handgrip (kg) – Nondominant hand 21.8 ± 8.4 21.4 ± 8.3 .98 
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Correlations among Health Outcomes and Fitness Tests 

Table 4 presents correlations among fitness tests and health outcomes. Correlations 

ranged from low to moderate. Low correlations were found between the health outcomes of 

diastolic blood pressure and physical activity and all fitness tests. Systolic blood pressure and 

VO2max were moderately correlated with several fitness tests, including total body power, upper 

body power, and dominant and nondominant handgrip strength. Percent body fat was moderately 

correlated with the standing long jump and vertical jump. The correlation between percent fat 

and handgrip strength was close to zero when handgrip strength was expressed in absolute terms. 

Moderate correlations were found between percent fat and handgrip strength when handgrip 

strength was allometrically scaled for body mass. 

Table 4 

Correlations among Health Outcomes and Fitness Tests  

Variable 

Diastolic 

Blood 

Pressure 

Systolic 

Blood 

Pressure 

VO2max 

(ml·kg-

1·min-1) 

Body Fat 

(%) 

Physical 

Activity 

(min 

MVPA) 

 

Standing Long Jump -.16 -.01 .18 -.45** .16 
 

Vertical Jump -.25 .08 .04 -.50** .06 
 

Total Body Power Throw -.19 .37** -.28* -.07 .12 
 

Upper Body Power Throw -.17 .33* -.31* -.04 .10 
 

Handgrip (kg) –  

Dominant hand 
.06 .44** -.33* -.03 -.07 

 

Handgrip (kg) –  

Nondominant hand 
.09 .37** -.34* -.03 .01 

 

Handgrip (kgmass
-.67

) 

 – Dominant hand 
.02 .14 .11 -.50** -.13 

 

Handgrip (kgmass
-.67

) 

 – Nondominant hand 
.06 .06 .08 -.48** .01 

 

*p < .05, **p < .01 

  



 
 

50 
 

Partial Correlations among Health Outcomes and Fitness Tests Controlling for Age and Body 

Mass 

Partial correlations, controlling for age and body mass, are presented in Table 5. Low 

correlations were found between all fitness tests and the health outcomes of systolic blood 

pressure, VO2max, and physical activity. Diastolic blood pressure was moderately negatively 

correlated with total body power and upper body power. Percent fat was moderately correlated 

with all fitness tests. 

Table 5 

Partial Correlations among Health Outcomes and Fitness Tests Controlling for Age and 

Body Mass 

Variable 

Diastolic 

Blood 

Pressure 

Systolic 

Blood 

Pressure 

VO2max 

(ml·kg-

1·min-1) 

Body Fat 

(%) 

Physical 

Activity 

(min 

MVPA) 

Standing Long Jump -.17 -.18 .19 -.45** .25 

Vertical Jump -.28 -.04 .00 -.57** .11 

Total Body Power Throw -.42** -.08 .12 -.49** .28 

Upper Body Power Throw -.42** -.19 .07 -.46** .23 

Handgrip (kg) –  

Dominant hand 
-.01 .00 .09 -.55** -.05 

Handgrip (kg) –  

Nondominant hand 
.02 -.15 .15 -.60** .08 

Handgrip (kgmass
-.67

) 

 – Dominant hand 
.07 .09 .07 -.54** -.11 

Handgrip (kgmass
-.67

) 

 – Nondominant hand 
.09 -.09 .13 -.59** .05 

**p < .01 

Partial Correlations among Health Outcomes and Fitness Tests Controlling for Age and BMI 

Z-score 

Partial correlations, controlling for age and BMI z-scores, are presented in Table 6. The 

pattern of correlations was somewhat similar to the partial correlations with age and body mass 
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partialled out, with a few exceptions. The significant correlations between DBP and the total 

body power throw and upper body power throw were smaller when BMI z-scores were 

controlled than when body mass was controlled. In addition, the significant correlations between 

percent fat and total body power throw, upper body power throw, and absolute handgrip strength 

became low and nonsignificant when BMI z-scores were partialled out. The correlations between 

percent fat and standing long jump and vertical jump were similar with body mass or BMI z-

scores partialled out. 

Table 6 

Partial Correlations among Health Outcomes and Fitness Tests Controlling for Age and 

BMI Z-score 

Variable 

Diastolic 

Blood 

Pressure 

Systolic 

Blood 

Pressure 

VO2max 

(ml·kg-

1·min-1) 

Body Fat 

(%) 

Physical 

Activity 

(min 

MVPA) 

Standing Long Jump -.20 -.27 .29 -.52** .25 

Vertical Jump -.30* -.10 .09 -.55** .11 

Total Body Power Throw -.30* .15 -.22 -.14 .25 

Upper Body Power Throw -.30* .06 -.22 -.22 .21 

Handgrip (kg) –  

Dominant hand 
.09 .29* -.35* .01 -.03 

Handgrip (kg) –  

Nondominant hand 
.12 .19 -.33* -.02 .07 

Handgrip (kgmass
-.67

) 

 – Dominant hand 
.05 .04 .04 -.36* -.10 

Handgrip (kgmass
-.67

) 

 – Nondominant hand 
.09 -.06 .00 -.34* .08 

*p < .05, **p < .01 

Intercorrelations among Fitness Tests 

Table 7 presents the correlations among fitness tests. Correlations among all fitness tests 

ranged from .57 to .95 and were statistically significant. The correlation between the two fitness 
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tests designed to assess lower body power, standing long jump and vertical jump, was high (r = 

.84). The two throwing tests (upper body power throw and total body power throw) were also 

highly correlated with each other (r = .95). Absolute handgrip strength measured on the 

dominant and nondominant hands was highly correlated (r = .96). The correlations between 

absolute handgrip strength and allometrically scaled handgrip strength were moderately high (r = 

.76 and .79). 

Table 7 

Intercorrelations among Fitness Tests 

Variable 

Standing 

Long 

Jump 

Vertical 

Jump 

Total 

Body 

Power 

Throw 

Upper 

Body 

Power 

Throw 

Handgrip 

(kg) – 

Dominant 

hand 

Handgrip 

(kg) – 

Nondomi

nant hand 

Handgrip 

(kg∙mass
-

.67
) – 

Dominant 

hand 

Vertical Jump .84**       

Total Body 

Power Throw 
.71** .74**      

Upper Body 

Power Throw 
.71** .75** .95**     

Handgrip (kg) – 

Dominant Hand 
.65** .70** .87** .88**    

Handgrip (kg) – 

Nondominant 

hand 

.61** .66** .85** .86** .96**   

Handgrip 

(kg∙mass
-.67

) – 

Dominant hand 

.71** .79** .58** .57** .76** .69**  

Handgrip   

(kg∙mass
-.67

) –

Nondominant 

hand 

.67** .75** .60** .58** .73** .79** .89** 

**p < .01 
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Partial Correlations among Fitness Tests Controlling for Age and Body Mass 

Table 8 displays the partial correlations among fitness tests, controlling for age and body 

mass. Partial correlations among all fitness tests were statistically significant and moderately or 

highly correlated. The partial correlation between the standing long jump and vertical jump was 

lower than the zero order correlation between these tests (r = .75 vs. r = .84). The partial 

correlation between the two throwing tests (upper body power throw and total body power 

throw) was high, although lower than the zero order correlation between these tests (r = .85 vs. r 

= .95). 

Table 8 

Partial Correlations among Fitness Tests Controlling for Age and Body Mass 

Variable 

Standing 

Long 

Jump 

Vertical 

Jump 

Total 

Body 

Power 

Throw 

Upper 

Body 

Power 

Throw 

Handgrip 

(kg) – 

Dominant 

hand 

Handgrip 

(kg) – 

Nondomi

nant hand 

Handgrip 

(kg∙mass
-

.67
) – 

Dominant 

hand 

Vertical Jump .75**       

Total Body 

Power Throw 
.71** .77**      

Upper Body 

Power Throw 
.73** .83** .85**     

Handgrip (kg) – 

Dominant hand 
.64** .77** .60** .60**    

Handgrip (kg) – 

Nondominant 

hand 

.61** .72** .60** .60** .89**   

Handgrip 

(kg∙mass
-.67

) – 

Dominant hand 

.54** .68** .49** .48** .96** .82**  

Handgrip 

(kg∙mass
-.67

) –

Nondominant 

hand 

.54** .66** .53** .51** .87** .97** .86** 

**p < .01 
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Criterion-referenced Test Results 

Figures 1 and 2 display comparisons between participants categorized into the aerobic 

capacity Healthy Fitness Zone (HFZ) and Needs Improvement Zone (NIZ) as defined by 

FitnessGram® (Meredith & Welk, 2010). Effect size estimates to examine the size of the 

difference between the HFZ and NIZ groups demonstrated that the HFZ group did better on the 

standing long jump than the NIZ group. However, medium effect sizes demonstrated that the 

NIZ group did better than the HFZ group on total body power throw, upper body power throw, 

and absolute handgrip strength. Differences in the vertical jump and allometrically scaled 

handgrip strength favored the HFZ group over the NIZ group, but these differences were 

generally small. 

 Figures 3 and 4 display comparisons between participants categorized into the body 

composition Healthy Fitness Zone and Needs Improvement Zone as defined by FitnessGram® 

(Meredith & Welk, 2010). Effect size estimates revealed large differences between the HFZ and 

NIZ groups favoring the HFZ for standing long jump, vertical jump, and allometrically scaled 

handgrip strength. Small to medium effect sizes were found for total body power throw, upper 

body power throw, and absolute handgrip strength favoring the HFZ group over the NIZ group.  

 

 

. 
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Figure 1 

Comparison of Aerobic Capacity Healthy Fitness Zone groups using FitnessGram® Criterion-

referenced Standards. 

SLJ = Standing Long Jump, VJ = Vertical Jump, TBP = Total Body Power Throw, UBP = Upper 

Body Power Throw. 
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Figure 2 

Comparison of Aerobic Capacity Healthy Fitness Zone groups using FitnessGram® Criterion-

referenced Standards. 

HG (kg) dom is absolute handgrip strength for the dominant hand, HG (kg) nondom is absolute 

handgrip strength for the nondominant hand, HG (kg·wt^-.67) dom is allometrically scaled 

handgrip strength for the dominant hand, HG (kg·wt^-.67) nondom is allometrically scaled 

handgrip strength for the nondominant hand. 
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Figure 3 

Comparison of Body Composition Healthy Fitness Zone groups using FitnessGram® Criterion-

referenced Standards. 

SLJ = Standing Long Jump, VJ = Vertical Jump, TBP = Total Body Power Throw, UBP = Upper 

Body Power Throw. 
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Figure 4 

Comparison of Body Composition Healthy Fitness Zone groups using FitnessGram® Criterion-

referenced Standards. 

HG (kg) dom is absolute handgrip strength for the dominant hand, HG (kg) nondom is absolute 

handgrip strength for the nondominant hand, HG (kg·wt^-.67) dom is allometrically scaled 

handgrip strength for the dominant hand, HG (kg·wt^-.67) nondom is allometrically scaled 

handgrip strength for the nondominant hand. 
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Discussion 

 The current study was conducted in response to the Institute of Medicine (2012) 

recommendation for further investigation of the relationship between musculoskeletal fitness 

tests and health outcomes. Therefore, the primary purpose of the current study was to examine 

the relationship between specific musculoskeletal fitness tests and health outcomes in youth.  

Several studies that evaluated relationships among musculoskeletal fitness tests and 

health outcomes used health markers derived from blood tests, such as C-reactive proteins, lipid 

metabolic indexes, inflammatory scores, cholesterol, triglycerides, and insulin measurements 

(Artero et al., 2011; Artero et al., 2013; Ortega et al., 2005; Ruiz et al., 2008; Steene-

Johannessen et al., 2009). Fewer studies focused on field-based health outcome measures, such 

aerobic fitness, body composition, blood pressure, and physical activity levels (Beuenen et al., 

1983; Martinez-Gomez et al., 2012; Minck et al., 2000). In the current study, relationships 

among various musculoskeletal fitness tests and health outcomes of aerobic fitness, body 

composition, blood pressure, and physical activity were investigated. 

The major findings from the current study were moderate negative correlations between 

aerobic fitness and musculoskeletal fitness tests of total body power throw, upper body power 

throw, and absolute handgrip strength. Positive moderate correlations were found between 

systolic blood pressure and musculoskeletal fitness tests of total body power, upper body power, 

and absolute handgrip strength. Negative moderate correlations were also found between percent 

fat and musculoskeletal fitness tests of standing long jump, vertical jump, and allometrically 

scaled handgrip strength. 

 Further analysis examined partial correlations among fitness test items and health 

outcomes while controlling for age and body mass and for age and BMI z-score. When 
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controlling for age and body mass, percent fat had a negative moderate correlation with all 

fitness tests. Diastolic blood pressure had negative moderate correlations with both the total body 

power throw and upper body power throw, after controlling for age and body mass. 

In youth, BMI z-score may be a more appropriate variable than body mass to partial out 

if the intent it to control for differences in body composition. The main difference between the 

two partial correlation analyses (one with age and body mass controlled, and one with age and 

BMI z-score controlled) was that the correlations between percent fat and total body power 

throw, upper body power throw, and absolute handgrip strength were low and nonsignificant 

when BMI z-score was partialled out, but were moderate and significant when body mass was 

partialled out. This may suggest that BMI z-score did a better job of controlling for differences in 

body composition than did body mass. However, this pattern of correlations did not hold for the 

correlations between percent fat and standing long jump and vertical jump. The correlations 

between percent fat and the two jump tests (standing long jump and vertical jump) were 

moderate and negative, with body mass controlled and with BMI z-score controlled. 

Few studies investigated relationships among aerobic fitness and musculoskeletal fitness 

tests. Garcia-Artero et al. (2007) reported low correlations (r = .26 for males and r = .29 for 

females) between muscular strength and aerobic fitness. Muscular strength was measured 

through a combined score index of bent arm-hang, standing long jump, and a handgrip 

dynamometry test. Aerobic fitness was quantified by the stage number during the PACER test. 

Martinez-Gomez et al. (2012) found a moderate correlation (r = .43) between aerobic fitness 

measured via the PACER and musculoskeletal fitness. Martinez-Gomez et al. defined 

musculoskeletal fitness as the mean of the handgrip strength and standing long jump 

standardized scores. In the current study, low negative correlations were found between aerobic 
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fitness and the total body power throw (r = -.29), upper body power throw (r = -.33), dominant 

handgrip strength (r = -.34), and nondominant handgrip strength (r = -.35). However, after 

controlling for age and body mass, these correlations were lower and not significant. Therefore, 

the relationships between aerobic fitness and musculoskeletal fitness tests may be explained 

simply by the body mass of the participant. The finding that the musculoskeletal fitness tests 

examined in this study are highly dependent on body mass should be considered carefully before 

including such tests in a national test battery, such as the FitnessGram. 

Several other researchers have examined the relationships between body composition and 

physical fitness tests (Beunen et al., 1983; Brunet et al., 2006; Liao et al., 2013; Minck et al., 

2000; Moliner-Urdiales et al., 2011). Beunen et al. (1983) reported a negative relationship 

between vertical jump and body fat measured via skinfolds using 12-20 year old males. The 

correlations ranged from r = -.28 to r = -.40, when controlling for height and body mass. Similar 

to the current study, Moliner-Urdiales et al. (2011) used the BODPOD system to measure body 

fat. They found a correlation of r = .52 between standing long jump and percent fat, after 

controlling for age, pubertal status, and physical activity. Also, after controlling for age, pubertal 

status, and physical activity a correlation of r = .56 was found between vertical jump and percent 

fat. Moliner-Urdiales et al. examined only males. In the present study, both males and females 

were evaluated and negative moderate correlations between body fat and the musculoskeletal 

fitness tests of standing long jump, vertical jump, and allometrically scaled handgrip strength 

were found. When controlling for age and body mass, negative moderate correlations were found 

between all fitness tests and percent fat. However, when controlling for age and BMI z-score, 

low and nonsignificant correlations were found between percent fat and the throwing tests and 

absolute handgrip strength. 
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 Artero et al. (2011) studied the relationship between systolic blood pressure and various 

muscular fitness tests. Artero et al. found a low correlation (r = -.10) between systolic blood 

pressure and a muscular fitness test score. In the current study, moderate correlations were found 

between systolic blood pressure and total body power throw (r = .37), upper body power throw 

(r = .33), and absolute handgrip strength for both the dominant and nondominant hands (r = .44, 

r = .37). After controlling for age and body mass, each of the significant correlations between 

systolic blood pressure and fitness tests were attenuated. After controlling for age and body 

mass, moderate correlations were found between diastolic blood pressure and total body power 

throw (r = -.42) and upper body power throw (r = -.42). The moderate correlations between 

diastolic blood pressure and both throwing tests provides some evidence that these tests are 

health-related, supporting the recommendation of the IOM (2012) report to include 

musculoskeletal tests in national youth fitness tests. 

 Martinez-Gomez et al. (2012) found a low correlation between moderate to vigorous 

physical activity (MVPA) and a muscular fitness test score (r = .08). In the current study, no 

significant relationships between MVPA and muscular fitness tests were found. Several 

scenarios might explain the lack of correlation between physical activity and muscular fitness 

tests. It is possible that the measure of physical activity used in the present study does not 

represent the type of physical activity that might impact musculoskeletal fitness. Although the 

objective measurement of physical activity via accelerometry used in the current study is a 

widely-accepted measure of physical activity, tests such as the standing long jump, total body 

power throw, and handgrip strength may be influenced more by other factors than by minutes 

spent in MVPA.  
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In summary, moderate correlations between percent fat and musculoskeletal fitness tests 

provide some evidence that the fitness tests are health-related. However, because the partial 

correlations between health outcomes and fitness tests are lower than the corresponding zero 

order correlations, it is likely that performance on these fitness tests is highly affected by body 

mass. This finding must be considered when organizations decide which tests to include in their 

test batteries. 

Criterion-referenced standards for body composition were used to categorize participants 

into two groups: Healthy Fitness Zone (HFZ) and Needs Improvement Zone (NIZ). The 

FitnessGram cut-points were used to distinguish the two groups. The analysis revealed that, 

when using the cut-points for body fat, the HFZ group scored significantly better on each 

muscular fitness test than the NIZ group. Effect sizes indicating large differences between the 

groups were found for the standing long jump (ES = 0.84), vertical jump (ES = 1.06), scaled 

handgrip strength for the dominant hand (ES = 1.30), and scaled handgrip strength for the 

nondominant hand (ES =1.40). Small to moderate effects sizes were found for the total body 

power throw (ES = 0.26), upper body power throw (ES = 0.19), absolute handgrip strength for 

the dominant hand (ES = 0.36), and absolute handgrip strength for the nondominant hand (ES = 

0.43). The findings that participants in the HFZ scored better on all fitness tests provides some 

evidence that these fitness tests are health-related. That is, effect size estimates indicated that 

students with healthy levels of body fat scored better on average than students with unhealthy 

levels of body fat. 

Criterion-referenced standards for aerobic fitness were also used to categorize 

participants into two groups: Healthy Fitness Zone (HFZ) and Needs Improvement Zone (NIZ). 

The HFZ group scored better than the NIZ group on several tests, including the standing long 
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jump (ES = 0.45), vertical jump (ES = 0.16), absolute handgrip strength for the dominant hand 

(ES = 0.25), and absolute handgrip strength for the nondominant hand (ES = 0.32). The NIZ 

group, however, scored better on the total body power throw (ES = -0.42), upper body power 

throw (ES = -0.59), scaled handgrip strength for the dominant hand (ES = -0.48), and scaled 

handgrip strength for the nondominant hand (ES = -0.39). In summary, these findings provide 

moderate evidence that these musculoskeletal fitness tests are health-related when considered in 

a criterion-referenced framework.  

Analyses were also conducted to examine the intercorrelations among various 

musculoskeletal fitness tests. The vertical jump and standing long jump were highly correlated (r 

= .84). The total body power throw and upper body power throw tests also were highly correlated 

(r = .95). The correlations remained high when statistically controlling for age and body mass 

between the two jump tests (r = .75) and between the two throwing tests (r = .85). The high 

correlations between the standing long jump and vertical jump suggests that these two tests could 

be used interchangeably. If a teacher is already using one test, such as the vertical jump, then the 

standing long jump would not need to be added, or vice versa. The standing long jump was 

easier to measure than the vertical jump because no specialized equipment was needed to 

measure the distance of the jump. In addition, the vertical jump took longer to administer 

because of the need to evaluate standing reach and then to measure the highest peak of the jump. 

Based on unsystematic observation by the researchers, it appeared that participants enjoyed the 

total body power throw more than the upper body power throw. Participants may have enjoyed 

the total body power throw more because of the dynamic movement they had to complete in 

squatting and pressing the medicine ball. Participants also seemed to appreciate that they were 

able to throw the ball further during the total body power throw compared to the upper body 
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power throw. Importantly, the total body power throw was easier to administer than the upper 

body power throw. During the upper body power throw participants had to be cued several times 

to make sure their hips and back were touching the wall before the throw. It was also difficult for 

participants to keep their back against the wall while throwing. Numerous participants would 

lean forward during the upper body power throw, removing their back from the wall, and then 

throw the ball forward, necessitating additional trials with correct form. Therefore, based on the 

findings and observations from the current study, use of the total body power throw is 

recommended over use of the upper body power throw.  

Limitations of our study included a sample that was slightly different than the nationally 

representative sample of NHANES. In the current study, males had a higher percent fat than 

females. This is contrary to the NHANES data in which females had greater percent fat, on 

average, than males (Laurson et al., 2011). The levels of percent fat in the current study could 

have been greatly influenced by the high percent fat of three male participants, each with a 

percent fat over 42%. The aerobic fitness levels of participants in the current study also differed 

from the aerobic fitness levels of participants in NHANES. In the current study, aerobic fitness 

was higher in females compared to males. The lower aerobic fitness found in males in the current 

study could have been driven by the very low VO2max values obtained from two male participants 

(≤ 21 ml·kg
-1

·min
-1), coupled with high VO2max values for two female participants (≥ 48 ml·kg

-

1
·min

-1). 

 In conclusion, findings from the current study indicated moderate levels of norm-

referenced and criterion-referenced evidence that the tests of musculoskeletal fitness used in the 

current study are health-related. However, findings also indicated that the significant 

relationships between these musculoskeletal fitness tests and health outcomes are highly 
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influenced by body composition. The finding that body mass has a strong influence on the 

standing long jump, vertical jump, and handgrip strength was not unexpected, but should be 

considered when determining if such tests should be added to national youth fitness testing 

batteries. 
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Appendix B 

 

Correlations among Health Outcomes and Fitness Tests For Females 

Variable 

Diastolic 

Blood 

Pressure 

Systolic 

Blood 

Pressure 

VO2max 

(ml·kg-

1·min-1) 

Body Fat 

(%) 

Physical 

Activity 

(min 

MVPA) 

 

Standing Long Jump .43* .18 .22 -.40 -.01 
 

Vertical Jump .31 .15 .32 -.53* -.14 
 

Total Body Power Throw .18 .50* -.36 -.02 -.25 
 

Upper Body Power Throw .15 .53* -.33 -.04 -.20 
 

Handgrip (kg) –  

Dominant hand 
.37 .43* -.33 -.15 -.31 

 

Handgrip (kg) –  

Nondominant hand 
.28 .35 -.34 -.04 -.16 

 

Handgrip (kgweight
-.67

) 

 – Dominant hand 
.36 .10 .20 -.58** -.28 

 

Handgrip (kgweight
-.67

) 

 – Nondominant hand 
.24 .07 .28 -.50* -.06 

 

*p < .05, **p < .01 
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Appendix C 

 

Correlations among Health Outcomes and Fitness Tests For Males 

Variable 

Diastolic 

Blood 

Pressure 

Systolic 

Blood 

Pressure 

VO2max 

(ml·kg-

1·min-1) 

Body Fat 

(%) 

Physical 

Activity 

(min 

MVPA) 

 

Standing Long Jump -.43* -.17 .23 -.51** .26 
 

Vertical Jump -.48* -.00 .01 -.52** .17 
 

Total Body Power Throw -.30 .34 -.20 -.14 .31 
 

Upper Body Power Throw -.28 .26 -.27 -.09 
 

.24 

 

Handgrip (kg) –  

Dominant hand 
-.05 .48* -.32 -.02 .05 

 

Handgrip (kg) –  

Nondominant hand 
.06 .42* -.31 -.07 .06 

 

Handgrip (kgweight
-.67

) 

 – Dominant hand 
-.21 .18 .06 -.48* .02 

 

Handgrip (kgweight
-.67

) 

 – Nondominant hand 
-.01 .12 .03 -.50** .05 

 

*p < .05, **p < .01 

 

 


