

Abstract

Gesture Prediction Model for the Guitar Fingering Problem

by Arman Samavatian

December, 2014

Director: Dr. Nasseh Tabrizi

DEPARTMENT OF Computer Science

 In this thesis we provide a method for finding the fingering of a music piece on

any type of guitar using a hand model. Adapting to the real world conditions by

deploying a model of the user’s hand, and considering the constraints of the guitar and

the music notes is what makes our method more realistic. We have modeled the

movements of the user’s hand in such a way that the thumb does not play any role, and

the movements of the other four fingers are modeled using a set of kinematics equations.

We use two sets of constraints derived from the guitar and the music notes in order to

include the playing techniques, which are required by the music piece and the guitar. The

guitar is considered to be a separate entity in our model having its own properties,

resulting in a method independent of the type and tuning of the instrument. Since we are

using the hand model for generating the fingering of the music piece, the results of the

method are gestures generated for the notes, and the final outcome will be an animation

for the entire sheet of music.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarShip

https://core.ac.uk/display/71976911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gesture Prediction Model for the Guitar Fingering Problem

A Dissertation

Presented To

The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Software Engineering

by

Arman Samavatian

December, 2014

© Copyright 2014

Arman Samavatian

Gesture Prediction Model for the Guitar Fingering Problem

by

Arman Samavatian

APPROVED BY:

DIRECTOR OF DISSERTATION:___

M. H. N. Tabrizi, PhD

COMMITTEE MEMBER:__

Junhua Ding, PhD

COMMITTEE MEMBER:__

Sergiy Vilkomir, PhD

CHAIR OF THE DEPARTMENT OF COMPUTER SCIENCE:

 __

Karl Abrahamson, PhD

DEAN OF THE GRADUATE SCHOOL:

 __

Paul J. Gemperline, PhD

Table of Contents

Title Page ... i

Copyright ... ii

Signature Page .. iii

List of Tables ... vi

List of Figures ... vii

CHAPTER 1: INTRODUCTION ... 1

1.1 Thesis Contributions ... 4

1.2 Thesis Overview .. 4

CHAPTER 2: RELATED WORK .. 5

2.1 Music Performance ... 5

2.2 Modeling the Human Hand ... 6

CHAPTER 3: MODELING THE CONSTRAINTS OF THE GUITAR AND MUSIC NOTES 9

3.1 Constructing the Graph of Notes .. 9

3.2 Constraint Types ... 10

3.2.1 Simultaneous Notes .. 10

3.2.2 Bends and Slides .. 10

3.2.3 Timings of the Notes ... 11

3.2.4 Tapping Technique ... 11

3.3 Applying the Constraints ... 12

3.4 Verification of the Implementation ... 12

CHAPTER 4: GENERATING THE GESTURES USING THE HAND MODEL 15

4.1 The Hand Model ... 16

4.1.1 Mapping the Joint Angles to Fingertip Positions .. 16

4.2.2 Mapping the Target End-Point Positions to Joint Angles ... 19

4.2 Using the Hand Model as the Cost Identifier ... 20

4.3 Animating the Hand Model ... 21

CHAPTER 5: IMPLEMENTATION AND RESULTS .. 23

5.1 System Design and Implementation .. 23

5.1.1 High-level View of the System Components ... 23

5.1.2 System Implementation .. 23

5.1.3 Sequence of Events ... 24

5.1.4 Verification of the Components .. 25

5.2 The Results .. 25

5.3 Discussion: Improvements Compared to the Previous Methods .. 27

CHAPTER 6: CONCLUSIONS AND FUTURE WORK .. 29

Bibliography ... 30

APPENDIX A: BACKGROUND ... 33

About the Guitar ... 33

About MIDI files ... 35

List of Tables

Table 1 – Tested scenarios and their results ... 13

Table 2 - MIDI Messages .. 36

List of Figures

Figure 1 - Finger Joints .. 3

Figure 2 - Graph of three notes (F2, D4, E3) .. 9

Figure 3 - The 3d space axes ... 16

Figure 4 - The defined points on the fingers .. 16

Figure 5 - Example gestures from the hand model .. 18

Figure 6 - View of high-level components of the system .. 23

Figure 7 - Class Diagram ... 24

Figure 8 - Fingering of the C-Major scale ... 26

Figure 9 - Fingering of the F-Minor scale .. 26

Figure 10 - Fingering of a chord progression .. 27

Figure 11 - Major guitar parts .. 33

Figure 12 - Positions of the notes for standard tuning ... 35

CHAPTER 1: INTRODUCTION

 As computers become a larger part of our lives, the need for better and easier

communication with them becomes more sensible. Human Computer Interaction (HCI) is the

field which studies how people design, implement, and interact with computer systems, and how

the interaction is developed between those systems and their users [1]. The goal is to have

efficient and easy to use User Interfaces (UIs), which provide adequate support for the defined

tasks, have a more powerful form of communication, and better access to information [2]. Many

applications exist today with the goal of improving the user experience in a particular area and

tutoring applications are a good example of them. This study proposes a method with the

ultimate goal of being used in a music tutoring application. More specifically, the target

application can be used to teach how to play the guitar, assuming the teacher’s hand is similar to

that of the user. To achieve this, the application needs to play the music piece in a way that the

user can play it. We will refer to “the way of playing the music piece” as fingering.

 In this thesis, we present a new method for finding the fingering of a music piece for the

guitar and other instruments in the guitar family. Our method uses two models to find the

fingering of the music sheet, namely i. a constraint based model (a similar approach is reported

in [3]); and ii. a hand model for identifying appropriate gestures.

A particular note can be played on up to 6 positions on the guitar neck (for the guitars

with 6 strings). So, for n notes we can have up to 6n playable positions. For any of the playable

positions, it is possible to use up to 4 fingers; so the number grows to a maximum of 24n possible

fingered positions for n notes. This is the essential reason that turns fingering into a challenging

problem that needs to be solved.

2

 As it is often the case, multiple acceptable fingering scenarios may exist for the same

music sheet. If that is the case, we consider the fingering which is closest to what the user would

prefer (if no user preferences are reported, any of the acceptable scenarios can be considered).

 The fingering for any music note on the guitar can be specified using a triplet consisting

of three variables <string, fret, finger> [4]. A combination of <string, fret> represents a unique

position on the guitar fretboard and, by assigning a finger to the position, a gesture is produced.

The triplet is all we need to know for each note to play the entire music piece. The goal in

identifying the fingering is to ultimately have only one triplet for every note of the music score.

 There are three entities involved when playing the guitar, namely the hand, the music

notes, and the instrument itself. These entities enforce numerous constraints to the fingering.

Identifying these constraints and applying them in an orderly manner, will lead us to the

successful outcome.

 One of the motivations of this study was to develop a model, which can adapt to human

hands when playing a musical instrument. Guitarists focus on the movements of their hands as

they play the notes; they do not refer to an external source for identifying the possible

movements/positions of their fingers [4, 5, 3, 6, 7]. The Object Oriented Design (OOD) approach

can help to design an entity with the specific task of thinking about the movements of the hand,

and can helps us to not need to statically define the possible movements of the fingers. Examples

of static movement definitions in some of the most recent studies include: defining comfortable

spans [4], defining impossible finger states [3], and using cost functions [5].

 In our method, we have used a hand model to be the decision maker for the movements

of the fingers, instead of the traditionally used cost functions. The hand model generates

appropriate gestures for the possible combinations of triplets, and chooses the most relaxed ones

3

to be parts of the fingering. This requires us to create a model of the human hand with adequate

accuracy. The hand consists of a skeleton, muscles and tendons, and a layer of skin; each

enforcing multiple constraints to the hand movements. The skeleton in our model is a mesh of

hierarchical joints with 19 Degrees of Freedom (DOF); one for the Distal Interphalangeal (DIP)

joint, one for Proximal Interphalangeal (PIP) joint, 2 for Metacarpophalangeal (MCP) joint, and

three for the wrist. Figure 1 shows the finger joints. The constraints of the skeleton are derived

from the freedoms of the joints. Since the position of the hand is also important to us, we add the

position (x, y, and z) to the number of DOFs resulting in 22 in total. We are not considering the

thumb in our model as its movements are independent of the other four fingers, especially since

it will be always placed behind the neck of the guitar.

 According to numerous hand model studies [8, 2, 9, 10], the DIP joint can be

approximated from the PIP joint using Eq. 1

 ӨDIP=2/3ӨPIP (1)

This helps to reduce the total DOF from 22 to 18. We have used this approximation to

reduce the amount of time, which takes to identify a gesture. Our hand model only contains the

Figure 1 - Finger Joints (Adapted from [5])

4

bones and the joint hierarchy. Due to the limited time we had for this study, we haven’t included

muscles, tendons, and the skin. In developing our hand model, we have assumed the following:

 The movements of the fingers are not influenced by each other’s

 Motion frequencies and angular velocities are not influential on the finger movements

 The thumb is not present in the model, since its movements are not of interest

1.1 Thesis Contributions

The contributions of this thesis are as follows: Development of a new model for the

guitar fingering using the hand model, in which we have used no statically defined cost model or

finger movements. Using our method, the system is able to find gestures for any hand, and on

any guitar (bass, guitar, banjo, ukulele, etc.) with any particular tuning. The hand model can

produce gestures close to the actual user’s hand which can follow the path of the user’s fingers,

with the ability to account for possible disabilities or personal playing styles1.

Inclusion of new guitar playing techniques such as sliding, bending, and limited two

handed tapping in the fingering.

1.2 Thesis Overview

 The remainder of this document is organized as follows: in the next chapter we have

reviewed previous literature work, Chapter 3 talks about the constraints of the music notes and

the instrument, Chapter 4 describes the hand model in detail, Chapter 5 will focus on the design

and implementation and will show the results, and Chapter 6 will propose the possible future

extensions to improve this study and discusses the limitations. Finally, Appendix A gives some

insight about the guitar and MIDI files (the music notes input).

1 A playing style is defined by choosing the probabilities of finger usages.

CHAPTER 2: RELATED WORK

This chapter reviews the previous literature work in the following two sections:

 Literature is reviewed for the musical performance problem and the limitations and

valuable ideas behind those methods are discussed.

 A brief survey on the studies of human hand modeling is presented.

2.1 Music Performance

 Fingering is the act of mapping a music note to a position on an instrument, such as the

guitar and associating a finger to it. There are many research articles discussing this problem

from different points of views. The study reported in [6] presents one of the oldest methods for

the fingering of string instruments using an approach called the optimum path paradigm, which

was updated later [7] using a learning algorithm called path difference learning. In this approach,

they have used expert opinion to adjust the movement cost factors in order to find solutions

closer to the desired path (the path that is chosen by the expert). To achieve this they have

applied stochastic models such as simulated annealing or genetic search [11, 12] in the cost

function weight space.

 Radicioni et al. [4] presents an algorithm with a constant, empirically derived cost

function to find the optimum path in the graph of notes using Dijkstra’s shortest path algorithm.

In another article [3] the authors have used the constraint satisfaction problem technique to find

the fingering of the chords, in order to complete their previous study. We have implemented

these two methods as a part of studying the previous work.

 One of the most popular methods for the guitar fingering problem is reported in [5],

where the authors have used a statically defined cost function for different finger movements on

6

the guitar fretboard, and an Inverse Kinematics hand model only for the purpose of showing the

playing as animation. Using a number of variables, they have accounted for the preferences of

the user in using their fingers, and can include user’s disabilities. Static user-defined frames are

used as the choice of how long the algorithm reads into the music notes.

 Although others have considered static cost functions and finger movements, we are

using a purely dynamic model. In this model, the hand itself decides on the movements among

the possible options its fingers have and then selects the best and most relaxed gestures to play

the music piece.

 Generally speaking, the process of finding a fingering for a music piece is an

optimization problem and the cost model heavily depends on the target instrument [13]. To find

the optimum fingering, scientists have used dynamic programming [14, 4, 6], hidden Markov

model [15], neural networks [16, 17], and genetic algorithm [18] for generating guitar tablature

from music notes. The main drawbacks of these methods are as follows. First, most of them

either solve the fingering of the entire score or use statically defined note frames. Second,

defining static and hardcoded cost models is arguably an unnatural decision, especially since the

lengths of the frets become shorter as they become closer to the body of the guitar; this can be

handled by providing a better decision maker, such as a model of the human hand. Finally, some

of the methods do not consider the timings (durations) of the notes and consider equal timings

for them; a decision which will change the input significantly.

2.2 Modeling the Human Hand

 Modeling the hand has become a significant part of several research topics as the

importance of mimicking the correct motions of the hand increases. Researchers have used

multiple methods to model the human hand to use in their studies. In the field of Computer

7

Graphics and for character animation, one of the most frequently used techniques is motion

capture, using cameras, sensors, image processing, or data gloves. A good survey of the topic is

available in [19]. However, the generated motions are often dedicated for a specific usage, and

they are hard and expensive to regenerate [13]. By constructing the underlying Markov model,

some researchers have tried to reuse the motion capture data [20, 21].

 Another useful method to produce hand gestures is Inverse Kinematics (IK) for which

there is a good instruction in [22]. Originally taken from the field of robotics, IK is extensively

used in many researches in computer graphics [23, 24, 5]. Including more details of the hand

(muscles, tendons, deformations of the palm, the interdependence of the joints, etc.) would result

in a more natural hand model, and such a model would generate better gestures due to its ability

to produce more complex effects [25]. But, more complexity means less speed. There have been

some efforts to improve the efficiency of IK solutions from various viewpoints. A linear

programming approach is introduced in [26] to solve IK problems. This method helped the IK

problem to grow linearly with respect to the number of DOF. Other approaches focused on

solving the IK problem for special cases. For example, the authors in [27] present a method to

solve IK for skeletal manipulation by switching between three IK algorithms based on the

situation of the skeleton. Despite the fact that IK is an extensively used technique, applying it to

get the desired animation can be time consuming, and the animator needs to carefully set the

constraints of the rigid body [2].

 Modeling the dynamics of the hand is another method, which includes adding layers of

muscles and tendons to the skeleton of the hand. It is a method widely used in robotics,

biomechanics, and computer animation [28, 29, 30]. The motions of the hand in this approach

are calculated by a set of differential equations over a discrete time period. A model of the

8

human hand and forearm using forward dynamics simulation to produce biomechanically

accurate gestures is proposed in [31]. Some researchers have attempted to model the dynamics

by using prediction methods. Particularly, they try to produce continuous hand gestures using the

captured hand motions [32]. Some of these methods include extended Kalman Filtering, Finite

State Machines, Hidden Markov Models, Bayesian Networks, and Neural Networks [2, 32].

 Additionally, researchers have modeled the hand using other techniques such as

geometrical modeling and statistical modeling. Geometrical modeling is performed by using the

geometry of the surface of the hand [2]. Wu and Huang [32] present a method using splines,

geometric shapes, and free-form models to build a geometric surface to model the hand. In

statistical modeling, the hand movements are learned from a set of previously existing gestures,

such as images or motion capture data [33].

 In this thesis we have used a Forward Kinematics hand model (searching the domain of

the joint angles in order to find appropriate gestures). The rationale for this decision is presented

in Chapter 4.

CHAPTER 3: MODELING THE CONSTRAINTS OF THE GUITAR AND MUSIC NOTES

 Our method starts by first modeling the constraints enforced to the playing by the guitar

and the music notes without considering the hand object. This step can be thought of as a

preprocessing stage with mid-level results, which will be fed into the next step (the hand model,

Chapter 4). The expectation from this step should not be high, since the set of constraints is

rather small and thus, cannot eliminate many possibilities. However, it can help to reduce the

size of the input for the main processing step. The constraints are explained in detail in section

3.2.

 Before discussing the constraints, we need to first explain how the music notes are

structured in the memory once they are read from the input file. The following section discusses

the creation of the graph of notes.

3.1 Constructing the Graph of Notes

 As described in [4], the notes are first organized in a layered graph. For each music note

from the input, there is a group of vertices in the graph representing every possible fingering

triplet for the note. Every triplet of a note is connected to every triplet of the next note of the

input file. Figure 2 shows a graph of three notes (F2, D4, E3).

Figure 2 - Graph of three notes (Adapted from [4]).

10

 Each edge will be weighted by the cost of movement from one triplet to the next. The

costs of movements are generated by the hand model, based on a number of factors described in

Chapter 4. The final solution will be the shortest path in the graph. Since the frames of notes can

be played separately, the graph is created and solved separately for every frame of notes (the

creation of the frames is discussed later in this chapter). For the chords, since we have more than

one note, their vertices will include more than one triplet; in a way that the set of triplets satisfies

the constraints of the chord (see section 3.2.1).

3.2 Constraint Types

3.2.1 Simultaneous Notes

 These are the notes that share their playing time, either entirely (chords) or partially (a

note starts playing before the previous one stops). It is obvious that no two simultaneous notes

can be played on the same string of the guitar; so, in order to play the group of the simultaneous

notes, we need to use as many strings in the fingering as the number of simultaneous notes.

Without considering the hand, all we need to know is that we have to use at least two strings.

However, with the use of the hand model, more constraints will be included later; for example,

higher frets should be played with higher fingers (e.g., we cannot have <1,2,3> and <2,3,2> for

two <string, fret, finger> triplets). This constraint (as we will see) is not specifically stated in the

hand model, but the model behaves in such a way that it includes this constraint (collision

detection).

3.2.2 Bends and Slides

11

 These are the notes that include pitch changes while they are alive (not stopped). There

are three possible pitch changes in a MIDI input: bends, vibratos, and slides. Bending is

performed by stretching a string upward or down, and will result in a continuous pitch change.

Vibrato refers to the act of bending the string up and down slightly and very fast (vibrations).

Finally, slides are performed by moving a finger from one fret to another on the same string of

the guitar without releasing the string, and will result in discrete pitch changes (sliding through

frets). This constraint will force us to choose one finger for the action and only one string.

3.2.3 Timings of the Notes

 Based on the timings of the notes, we can put them into separately playable frames. If we

see a group of fast-playing notes, we can be sure that for playing these notes, the hand should

maintain its position as much as possible, thus, the locality of the solution must be as high as

possible. This will ultimately reflect in the fingering by having close frets on (possibly) close

strings.

3.2.4 Tapping Technique

 In the tapping technique, the right hand will also be involved in the act of fretting, and the

notes are played by tapping a string against the fretboard and holding down on a fret (hammer-

on) and pulling off the string with an already holding finger (pull-off). This can be done with

both hands, as opposed to the right hand usually picking the strings and the left hand only

holding down the strings. The process of identifying this technique from the music notes is fairly

complex, but with some assumptions we can make it easier. Tapping usually happens when the

12

notes have short timings, and they can be divided into two groups playable (with high locality)

on different positions on the fretboard.

3.3 Applying the Constraints

 We have implemented these constraints to be applied to the graph of notes as a

preprocessing step. The set of constraints are applied to every transition of the graph, and will

filter non-desirable edges. Considering all the above, we can conclude that the results of this step

would only have to be triplets of <string, fret, don’t_care>, meaning no finger information can

be included, otherwise we are enforcing the hand to choose between positions that are generated

with invalid assumptions (any assumption we make about fingers without using the hand model

is invalid). In another words, if we assume constant distances for the finger pairs, we will limit

the input for the hand model.

 Note that the solution resulted from this step is not near complete, since it will not

include any finger information. All we can expect from this step are guidelines towards which

transitions to or not to choose.

3.4 Verification of the Implementation

 After executing this step, the graph of notes should include some extra information

derived from each constraint; such as which notes are supposed to be (or not to be) played on the

same string, which set of notes are considered to require tapping, and the frame definitions for

the notes.

 In order to test the preprocessing stage, we have composed some music notes (special

cases) which contain the above mentioned constraints. Table 1 shows the test cases.

13

Type of Constraint Identified Passed Comments

Sliding one note YES YES

Sliding two notes simultaneously YES YES

Bending and Sliding simultaneously NO YES MIDI processing issue

Tapping (notes with short timings) YES YES

Tapping (notes with long timings) NO NO Considered normal notes

Chord (F#, Gm, G7, A, Am) YES YES

Putting the notes into frames N/A YES

Table 1 – Tested scenarios and their results

 Two of the test cases had problems. The first one was a very odd situation, where a note

is supposed to be bent, while two other are sliding. Though it is an extreme situation, and the

bend and slides are not identified correctly, the test case is marked as passed, because the

requirement was to identify the simultaneous notes and mark the suitable extra information

(regarding the pitch bend) for them. The error lies in the implementation of the MIDI file

processor. Pitch bends in MIDI files are all shown with a short message (code: 224) following

other information which can help to realize whether it is a slide or a bend; the problem is that for

simultaneous notes, there is no way to identify which pitch-bend message corresponds to which

note, since the note-on messages (code: 144) happen at the same time. After those the pitch-bend

messages are listed for them.

 The failed test case was related to tapping, for which we had the assumption that all the

tapping notes will have short timings; but for this test case, we tested a tapping situation with

tapping notes having longer durations then the other non-tapping notes. This is due to the

assumption we made, and to the best of my knowledge, there is no specific way to identify the

tapping notes directly from the MIDI files.

14

 In conclusion, this chapter described the set of constraints extracted from the instrument

and the music notes. The goal of this preprocessing step is to reduce the size of the input for the

next step. So, for future extensions we can imagine more constraints in order to eliminate even

more undesired transitions (moving from a triplet to the next one). Implementing a better and

stronger tapping-recognizing algorithm is a very good example of these constraints. For other

techniques, we can mention artificial harmonies, swipes, and recognizing the necessary barrét

positions (where a finger is used for holding more than one string, on a particular fret).

CHAPTER 4: GENERATING THE GESTURES USING THE HAND MODEL

 The hand model is the entity with three specific tasks. i) It should be able to create

gestures close to the user’s hand. So, we need to develop a mathematical model, which can map

the angles of the finger joints and the wrist, to positions of the fingertips in the 3D Cartesian

space. This process is known as Forward Kinematics. ii) It should be able to do the reverse;

mapping fingertip positions in the Cartesian space, to finger joint and wrist angles. Usually, this

process is done with the use of Inverse Kinematics models; but in this thesis, we have used

Forward Kinematics, which is described in section 4.2.2 in more detail. iii) The hand model

should be able to choose appropriate gestures for different situations. Since the reverse process

(second task in this paragraph) does not have unique answers, we need to include a decision-

making mechanism for the hand entity, which is described in section 4.3 in details.

 The reasons for choosing kinematics equations for the hand model are listed here. Since

the ultimate goal of this study was to use the method in a guitar tutoring application, we have

modeled the hand using kinematics equations. Kinematics formulas help us to define a

mathematical hand model, which is ready to perform its tasks as soon as the lengths of the user’s

fingers are measured and inserted into the model. Kinematics equations are also easier to

understand and use, compared to modeling the dynamics of the hand; and, they require no

peripheral devices as motion capture techniques do. Finally, due to the time constraints of this

study, and their simplicity, kinematics equations were the best option.

 For the second task stated earlier in the beginning of the chapter, we are using a Forward

Kinematics solution. Precisely speaking, we search the domain of joint angles and reposition the

hand, until the fingertip reaches to an epsilon distance from the target end-point. We made this

16

decision due to two main concerns: First, due to the time constraints of this study, and because of

IK’s high complexity, we couldn’t implement a suitable Inverse Kinematics solution. Second,

since the hand model has the task of choosing the best gestures for the action, we need to have

multiple gestures covering each combination of notes in the decision making process. This can

be done easier using Forward Kinematics instead of Inverse.

4.1 The Hand Model

 Each finger in the hand model has three joints: Metacarpophalangeal (MCP) with two

degrees of freedom (DOF), Proximal Interphalangeal (PIP) with one DOF, and Distal

Interphalangeal (DIP) having one DOF. The axes of the 3D space are defined as shown in Figure

3. Note that ӨMCP, ӨPIP, and ӨDIP are for extension/flexion, and ӨMCP2 is for adduction/abduction

(side to side movements) of the fingers (see Figure 4).

4.1.1 Mapping the Joint Angles to Fingertip Positions

 To calculate the positions of the points defined on the fingers (shown in Figure 4), we use

Eq. 2-14 (Base is a point in space, representing the position of the hand):

 l = Length*cos(ӨMCP2) (2)

Figure 4 - The four defined points on a finger Figure 3 - The axes (X, Y, Z) are shown in red, blue, and green respectively

17

 Where Length is the measured value of the length of the user’s finger, and l is its

adjustment after adduction/abduction of the finger, to be used in calculations of X and Z.

 X(M) = X(Base) (3)

 X(P) = X(M) + sin(ӨMCP) * lMtoP (4)

 X(D) = X(P) + sin(ӨMCP + ӨPIP) * lPtoD (5)

 X(F) = X(D) + sin(ӨMCP + ӨPIP + ӨDIP) * lDtoF (6)

 Where M, P, D, and F correspond to MCP joint, PIP joint, DIP joint, and the Fingertip.

 Y(M) = Y(Base) (7)

 Y(P) = Y(M) + sin(ӨMCP2) * LengthMtoP (8)

 Y(D) = Y(P) + sin(ӨMCP2) * LengthPtoD (9)

 Y(F) = Y(D) + sin(ӨMCP2) * LengthDtoF (10)

 Note that for calculating the Y coordinates, we are using Length instead of l.

 Z(M) = Z(Base) (11)

 Z(P) = Z(M) + cos(ӨMCP) * lMtoP (12)

 Z(D) = Z(P) + cos(ӨMCP + ӨPIP) * lPtoD (13)

 Z(F) = Z(D) + cos(ӨMCP + ӨPIP + ӨDIP) * lDtoF (14)

 And Eq.11-14 are used to calculate Z coordinates.

 Based on the values of all the joint angles, we will be able to calculate the coordinates of

each joint on the finger. The next step will be applying the rotations of the wrist to these

coordinates.

 The wrist has three DOF and, for each one, we need to apply a rotation matrix to the

calculated X, Y, and Z. The rotation matrix is presented in Eq. 15.

 cos β cos γ -cos β sin γ sin β

RxRyRz = cos α sin γ + sin α sin β cos γ cos α cos γ - sin α sin β sin γ -sin α cos β (15)

 sin α sin - cos α sin β cos γ sin α cos + cos α sin β sin γ cos α cos β

18

 Where α, β, and γ are the rotation around x, y, and z axis respectively. The rotation matrix

(Eq. 15) will be multiplied to the previous coordinates (calculated by Eq. 2 - 14) as a matrix to

get the rotated coordinates.

 To test this step, we have implemented an application using Java and OpenGL, and

measured real user hand data to be plugged into the model. No OpenGL built-in methods have

been used for rotations of the finger joints or the wrist angles, and only the calculated

coordinates for X, Y, and Z were taken into account. Figure 5 shows examples of what the hand

looks like (the palm is not drawn, only the four fingers are being shown).

Figure 5 - Showing example gestures from the implemented hand model

 The red spheres in Figure 5 are representing the four defined points (joints and the

fingertips) on each finger. The bodies of the phalanges are drawn as parallel circles; this is done

for the purpose of using their coordinates to achieve a collision detection mechanism.

 Relying on the visual outcome of the kinematics equations seems to be safe enough, since

the domain of the joint angles is not so vast. Usually ӨDIP is changing between 0 and 90 degrees,

ӨPIP changes between 0 and 120 degrees, and ӨMCP has the domain of -30 to 90 degrees. The

wrist angles are also tested in all of the 360 possible values. We have performed an exhaustive

test for testing all different states of the hand.

19

4.2.2 Mapping the Target End-Point Positions to Joint Angles

 Mapping the joint angles to fingertip positions was discussed in the previous section, but

that is the first step. In fact, what we actually need is the reverse: we need to extract finger joint

and wrist angles, from the given coordinates of the target end-point for the fingertip. While

playing the guitar, guitarists know where each note can be on the fretboard; by having the

position for the target endpoint (position on the guitar fretboard) they move their fingers and

change the joint and wrist angles, so that the fingertips can reach the target positions.

 For any given point for the fingertip, there are multiple options for the finger base, joint

angles, and the wrist angles; each producing a different gesture. Thus, in order to find plausible

values, since the angle variables won’t have unique answers, and the hand needs multiple options

to use for the decision making process, a search procedure has to be done.

 The strategy to find gestures from the given positions is, to perform a search on all

possible values for every parameter of the hand model. Basically, for a given Base point and

wrist angles, we first reposition the hand, and then search the finger joint and wrist angle

domains to find a state in which the fingertip has an epsilon distance from the target point.

 Since in this approach we are examining every joint on each finger and the wrist, this is a

suitable place to include some limitations to model the disabilities of the user. If any of the joints

have limitations, or even if the user prefers not to use a particular finger, those can be marked

and, the solution will be changed according to the new limitations.

 Performing the described search method for all possible combinations of two triplets

(string, fret, finger) will give us a database with more than 50,000 gesture samples. Using this

method, though it takes a significant initialization time to fill the database, results in a much

20

faster processing step; otherwise we have no choice other than having a long midpoint

preprocessing step every time a new music note input is fed in.

4.2 Using the Hand Model as the Cost Identifier

 This is the decision making step; which includes selecting gestures for every two

consecutive notes of the music score, in a way that the selection minimizes the cost of

movement. Using the database of the gestures, every possible combination of two triplets is

accessible via a simple query. In comparing two gestures, finger base indicates horizontal and

vertical hand displacements on the fretboard; the wrist angles of the two gestures indicate how

much the hand needs to rotate to be able to move from one gesture to the next; and the finger

angles show the finger displacements. Selecting the cost function from all the possible choices

the hand model gives, is the most important factor in the quality of the results; which had to be

done empirically for different situations. After the gesture selection process is done, we will

assign the cost of the selected gesture to the corresponding edge in the graph.

 The most common factor to use for the cost function is the hand displacements (Base

point). ΔY(Base) and ΔZ(Base) indicate horizontal and vertical hand displacements respectively

(for the sake of consistency, only the Base point of the index finger is used). Additionally,

changing the wrist angles while playing fast notes has drastic effects on the economy of

movement, except for minor rotations around the X axis. Also, for playing simultaneous notes,

ӨMCP2 is a suitable metric for the hand pressure (the less the sum of its absolute value for every

finger is, the less pressure the hand bears while maintaining the gesture). Finally, the rest of the

hand variables can be used as metrics if more than one gesture has passed the previous filters

(looking for the smallest changes in them).

21

 The next step in finding the solution will be performing a shortest path algorithm on the

graph of notes. We have used Dijkstra’s shortest path algorithm (dynamic programming).

4.3 Animating the Hand Model

 After selecting the shortest path in the graph of notes, animating the hand is only a matter

of playing with the gestures for different timings. The start time and playing duration of each

note is available in the input, so we can infer how long a finger can be free before playing each

note. We assume a time frame of

 tf = max(1 second, idle time) (16)

for the finger to animate. Applying the mathematical model developed by Flash and Hogan,

1985 [34] to the finger, a natural movement for the finger starting from tf to ts (start time) is

generated. The movement has to minimize Eq. 17 (the time integral of the square of the

magnitude of jerk)2.

 c = ½ [[(d3x / dt3)2 + (d3y / dt3)2 + (d3z / dt3)2] dt (17)

 Where x, y, and z are the coordinates of the time varying positions of the points defined

on the finger. For the animating finger, we are only using the varying X coordinate of the finger

at time t, for the sake of simplicity. According to [35] the above optimization problem can be

solved, and the X coordinate of the moving point can be uniquely determined using Eq. 18.

 x(t) = xf + (xs - xf) [-6(t / ts)
5 + 15(t / ts)

4 - 10(t / ts)
3] (18)

2 According to the authors, the ½ coefficient has no significance, and it is only used to produce prettier results

22

 We then insert the gesture which includes the returned finger coordinates, for its

corresponding timestamp, into the list of gestures to be shown in the animation. To improve the

animation, the same equation is applicable for both Y and Z coordinates. See Eq. 19 and 20.

y(t) = yf + (ys - yf) [-6(t / ts)
5 + 15(t / ts)

4 - 10(t / ts)
3] (19)

z(t) = zf + (zs - zf) [-6(t / ts)
5 + 15(t / ts)

4 - 10(t / ts)
3] (20)

CHAPTER 5: IMPLEMENTATION AND RESULTS

5.1 System Design and Implementation

5.1.1 High-level View of the System Components

 Figure 6 shows the high level view of the components in the system.

Figure 6 - View of system components

5.1.2 System Implementation

 All of the system components are implemented using Java. For reading MIDI files, we

have used the package javax.sound.midi, which provides every functionality we need for

working with the MIDI files. For the graphical environment, as the diagram shows, we have used

OpenGL in Java (jogl); and for the database we have used MySQL. Figure 7 shows the class

diagram.

MIDI File

OpenGL Client

Music Notes

The Hand Model
The Guitar

Config File

DB

Data Structure

 Graph Triplet

s

Animator

Config File

24

Figure 7 – Class Diagram

5.1.3 Sequence of Events

 The following describes the flow of events when a new MIDI file is fed in:

 1) The Music Notes entity will read the file, and tells the Guitar entity to tune itself

according to the tuning of the guitar in the music score; 2) The Guitar will create the 3D

positions of the notes in the Cartesian space, based on its tuning and the configuration file; 3)

The graph of notes will be created with all possible triplets for playing each note; 4) The Music

Notes and the Guitar entities will then update the graph based on their constraints (explained in

Chapter 3); 5) The hand model will then assign weights to the edges of the graph based on the

gestures from the DB (the DB is filled/updated after changing the configuration file of the hand

model); 6) The shortest path of the graph of notes will be identified; 7) The gestures

corresponding to the triplets of the shortest path will be inserted into the queue of the Animator

entity at their corresponding times and, as described in Chapter 4, additional gestures will be

added to improve the animation (adding more scenes); 8) The OpenGL engine will show the

queue of the Animator and will play the MIDI file simultaneously.

25

5.1.4 Verification of the Components

 In order to verify the correctness of the implementation of components, we mostly have

used black box testing, with the following details for different situations:

 Reading the input file: This step in the program includes converting the entire MIDI

messages (short messages which are used for describing the notes; see Appendix A,

section 2) into “Note” objects in the system. In order to test this step, we recreated MIDI

messages from the “Note” objects and then played the sequence of the new MIDI

messages, and checked the playback.

 Creation of the Guitar entity: aside from the visual representation (which denotes the

correctness of drawing the guitar; hence, the correctness of reading the configuration

file), we drew labels on top of the guitar frets for each string, showing the expected note

which the fret produces (on the corresponding string). This will test the creation of guitar

entity (positions of the notes), and the tuning.

 The constraints of the music notes and the guitar: After applying the constraints

(described in Chapter 3), we created logs of the graph of notes, specifically focusing on

the proper constraint identification. Table 1 in Chapter 3 shows the results of this logging

procedure.

5.2 The Results

 These frames are captured from the animation created by our implementation. Figure 8

shows the sequence of movements for fingering of C-Major scale, and Figure 9 shows the

fingering of F-Minor scale.

26

Figure 8 - Showing the scenes of playing C-Major scale

Figure 9 - Showing the scenes of playing F-Minor scale

 Note that for the sake of simplicity, and according to our first assumption in Chapter 1,

the free fingers are shown at their default state (all joints are set to 0). In fact, since the

movements of the fingers are not influenced by one another’s, we don’t care about the unused

fingers. They can be changed in any way that is most comfortable for the user.

27

Figure 10 shows the fingering of the chord progression C-Am-Dm-G-G7.

Figure 10 - Showing the scenes of playing chord progression C-Am-Dm-G-G7

5.3 Discussion: Improvements Compared to the Previous Methods

 Using our proposed method, we can produce results arguably better and more complete

than the previously existing methods. It is fairly hard to compare the results of two methods in

studies of the guitar fingering problem, since the evaluation benchmark of none of those methods

is published. If we need to compare the results, we first need to implement their method

thoroughly, then we need to produce the fingering of their mentioned pieces and compare it to

the expert opinion they used for evaluating their results. Thus, comparing the results is often not

an option. What we can do though, is comparing the abilities of the two methods. Following is

the two main areas that make our proposed method stronger than the previous methods (as we

have mentioned in section 1.1):

 1) The cost models of every previous method is a static function; for example, they are

using Δ(fret), Δ(finger), and Δ(string) as metrics [4]. The problem is, the fret lengths become

shorter as their number increases; the space between the strings is not a constant, and has a

different value for different types of the guitar. So, relying only on fret numbers and string

numbers is not a good decision. As an example, it is hardly possible for many people to hold the

gesture defined with the following <string, fret, finger> triplets (on a standard electric guitar) :

<1, 1, 1> and <2, 4, 2>. Δ(fret) here is 3, and Δ(finger) is 1; but it is fairly easy to hold this

28

gesture: <1, 19, 1> and <2, 24, 2>. Δ(fret) here is 5, and Δ(finger) is 1. As we can see, it is not a

good decision to rely on fret numbers. Same argument is applicable for using string numbers.

With the use of our hand model, we are only considering distances and relying on the lengths; so

the issue will be resolved.

 2) Including new guitar playing techniques (as discussed in Chapter 3) is another major

improvement compared to the previous methods [5, 6, 36, 4, 3].

 Finally, this study introduces a new approach, and due to the time constraints, it was not

possible for us to use a more complete hand model. Expanding ideas for this study is discussed in

the following chapter; our method has a great potential for future extensions.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

 This thesis proposes a method for fingering of the music piece on the guitar. In our model

we are using the coordinates of the guitar frets as the target end-points for the fingertips. Hence,

we can find the fingerings for any type of guitar with any tunings. Additionally, the hand is

modeled using a set of kinematics equations. Using Forward Kinematics, we are able to

successfully identify the suitable gestures for playing the input. Also, the hand model can take

into account the disabilities and preferences of the user for playing the instrument. Using this

approach, the fingering of the music piece is determined by the hand, as opposed to using hard

coded cost functions and movement definitions by imagining static comfortable spans.

 This study sets up the groundwork for using a more complete hand model for the

fingering problem, which results in a better animation, and requires less time for initializing the

hand model. The main drawback of our method is the time consuming initialization of the hand

(filling the database of gestures); so, for future extensions we can imagine a better gesture

identification process which does not require the initialization step, or can do it faster. The future

extensions can also include the hand dynamics, such as angular velocities of the joints, the skin

layer, muscles, and tendons. Additionally, other guitar playing techniques can be accommodated

to improve the answers, such as implementation of barrét positions, and an extended tapping

mechanism.

Bibliography

[1] "HCI (Wikipedia), Downloaded on November 3rd, 2014," [Online]. Available:

http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction.

[2] P. K. John, "Advanced Human Hand Model with Dynamic Constraints," The Australian

National University, 2006.

[3] D. P. Radicioni and V. Lombardo, "Computational modeling of chord fingering for string

instruments," strings, vol 40, no 45, p. 50, 2005.

[4] D. Radicioni and V. Lombardo, "Guitar fingering for music performance," strings, p. 50,

2005.

[5] G. ElKoura and K. Singh, "Handrix: animating the human hand," Proceedings of the 2003

ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 110--119, 2003.

[6] S. I. Sayegh, "Fingering for string instruments with the optimum path paradigm," Computer

Music Journal, pp. 76-84, 1989.

[7] A. Radisavljevic and P. Driessen, "Path difference learning for guitar fingering problem,"

Proceedings of the International Computer Music Conference, 2004.

[8] H. Rijpkema and M. Girard, "Computer animation of knowledge-based human grasping,"

ACM Siggraph Computer Graphics, pp. 339--348, 1991.

[9] J. Lee and T. L. Kunii, "Model-based analysis of hand posture," Computer Graphics and

Applications, IEEE, pp. 77--86, 1995.

[10] C. Nolker and H. Ritter, "Visual recognition of continuous hand postures," Neural

Networks, IEEE Transactions on, pp. 983--994, 2002.

[11] S. Kirkpatrick, G. C. Daniel, M. P. Vecchi and others, "Optimization by simmulated

annealing," science, pp. 671-680, 1983.

[12] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," Machine

learning 3, no. 2, pp. 95-99, 1988.

[13] C.-C. Lin and D. S.-M. Liu, "An intelligent virtual piano tutor," Proceedings of the 2006

ACM international conference on Virtual reality continuum and its applications, pp. 353-

356, 2006.

31

[14] M. Hart, R. Bosch and E. Tsai, "Finding optimal piano fingerings," The UMAP Journal 2,

no. 21, pp. 167-177, 2000.

[15] Y. Yonebayashi, H. Kameoka and S. Sagayama, "Automatic Decision of Piano Fingering

Based on a Hidden Markov Models," In IJCAI, pp. 2915-2921, 2007.

[16] J. Kim, F. Cordier and N. Magnenat-Thalmann, "Neural Network-based Violinist’s Hand

Animation," Computer Graphics International, Proceedings, pp. 37-41, 2000.

[17] R. Parncutt, J. A. Sloboda, E. F. Clarke, M. Raekallio and P. Desain, "An ergonomic model

of keyboard fingering for melodic fragments," Music Perception, pp. 341-382, 1997.

[18] D. R. Tuohy, "Creating tablature and arranging music for guitar with genetic algorithms and

artificial neural networks," PhD Thesis, University of Georgia, 2006.

[19] T. B. Moeslund and E. Granum, "A survey of computer vision-based human motion

capture," Computer Vision and Image Understanding, vol 81, no 3, pp. 231-268, 2001.

[20] L. J., J. Chai, P. S. Reitsma, J. K. Hodgins and N. S. Pollard, "Interactive control of avatars

animated with human motion data," ACM Transactions on Graphics (TOG), vol. 21, no. 3,

pp. 491-500, 2002.

[21] M. Gleicher, J. S. Hyun, K. Lucas and A. Jepsen, "Snap-together motion: assembling run-

time animations.," ACM SIGGRAPH 2008 classes, p. 52, 2008.

[22] S. R. Buss, "Introduction to inverse kinematics with jacobian transpose, pseudoinverse and

damped least squares methods," IEEE Journal of Robotics and Automation 17, pp. 1-19,

2004.

[23] B. Paolo, "Inverse kinematics techniques for the interactive posture control of articu-lated

figures," PhD Thesis, Ecole Polytechnique Federale de Lausanne, 2001.

[24] K.-J. Choi and H.-S. Ko, "On-line motion retargetting," In Computer Graphics and

Applications. Proceedings. Seventh Pacific Conference on. IEEE, pp. 32-42, 1999.

[25] M. Bray, E. Koller-Meier, P. Muller, L. Van Gool and N. Schraudolph, "3D hand tracking

by rapid stochastic gradient descent using a skinning model.," 1st European Conference on

Visual Media Production, pp. 59-68, 2004.

[26] E. S. Ho, T. Komura and R. W. Lau, "Computing inverse kinematics with linear

programming," Proceedings of the ACM symposium on Virtual reality software and

technology,, pp. 163-166, 2005.

[27] M. Fêdor, "Application of inverse kinematics for skeleton manipulation in real-time,"

Proceedings of the 19th spring conference on Computer graphics, pp. 203-212, 2003.

32

[28] I. Albercht, H. Jorg and S. Hans-Peter, "Construction and animation of anatomically based

human hand models," Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium

on Computer animation, pp. 98-109, 2003.

[29] D. Baraff, "Linear-time dynamics using Lagrange multipliers," Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques, pp. 137-146, 1996.

[30] J. L. Sancho-Bru, A. Perez-Gonzalez, M. Vergara-Monedero and D. Giurintano, "A 3-D

dynamic model of human finger for studying free movements," Journal of Biomechanics 34,

no. 11, pp. 1491-1500, 2001.

[31] W. Tsang, K. Singh and E. Fiume, "Helping hand: an anatomically accurate inverse

dynamics solution for unconstrained hand motion," Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pp. 319-328, 2005.

[32] Y. Wu and T. S. Huang, "Human hand modeling, analysis and animation in the context of

HCI," Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on,

vol. 3, pp. 6-10, 1999.

[33] T. Heap and D. Hogg, "Towards 3D hand tracking using a deformable model.," Automatic

Face and Gesture Recognition, 1996., Proceedings of the Second International Conference

on, pp. 140-145, 1996.

[34] T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed

mathematical model," The journal of Neuroscience, pp. 1688--1703, 1985.

[35] E. Lindo Secco and G. Magenes, "Bio-Mimetic Finger: Human Like Morphology, Control

& Motion Planning for Intelligent Robot & Prosthesis," Mobile Robotics, Moving

Intelligence, Jonas Buchli (Ed.), ISBN: 3-86611-284-X, InTech, DOI: 10.5772, 2006.

[36] S. I. a. T. M. F. Sayegh, "Inverse Viterbi algorithm as learning procedure and application to

optimization in the string instrument fingering problem," Neural Networks, 1988., IEEE

International Conference, p. 1988, 491-497.

[37] "MIDI (Wikipedia), Downloaded on October 25th, 2014," [Online]. Available:

http://en.wikipedia.org/wiki/MIDI.

APPENDIX A: BACKGROUND

About the Guitar

 The guitar is a musical instrument consisting of three major parts: the body, the neck, and

the nut. The body in different types of guitars plays the role of producing the tone. In acoustic

guitars, the body has a hollow form which acts as a resonating chamber. In electric guitars, the

body holds the pick-ups, and they can pick up the signal from the strings and pass it to the

amplifier in order to produce the sound. Figure 11 shows the major three parts.

Figure 11 - Major guitar parts, acoustic (right) and electric (left)

 The neck of the guitar is where the frets are placed. The frets are indicators of the spaces

between the notes on the strings. A position on the guitar neck is defined with two variables:

String, and Fret. Placing a finger on any position would result in sounding a specific note. The

neck of the guitar is also called the fretboard.

34

 The guitar usually has six strings, and can have up to 24 frets. Depending on the tunings

of the strings, each fret on each string produces a specific note. The nut has a knob for each

string, and is where we can tune the strings.

These are the parameters of the guitar which determine the playing of the notes: number of

strings, the space between the strings (it is different for different types of guitars), the length of

the neck (which will determine the space between the frets), and most importantly, the tuning of

the strings.

 The fretting hand (for right-handed people it is their left hand) is a term referring to the

hand which performs the act of fretting. Fretting is done by pressing down a string on a fret as

close as possible to the iron indicating the fret. The picking hand (the right hand for right-handed

people) refers to the hand which performs the picking. Picking is the term referring to the act of

striking the strings with a small plastic object to vibrate the string, to ultimately produce a sound

(other techniques for the right hand are also imaginable, like playing with the finger nails).

 What has been done in this study helps to have a separate entity for the guitar, in a way

that all of those parameters are present in the guitar entity, and it can tell the hand object where

each note is in the Cartesian space. So, any music sheet written for any type of guitar can be

solved using our method.

 Depending on the tunings of the strings, a particular note can be present on up to 6

positions on the guitar neck (because the guitar usually has 6 strings). When using the standard

tuning (E3 A3 D4 G4 B4 E5) only E5 is repeated 6 times, as shown in Figure 12.

35

Figure 12 - Showing the positions of the notes for the standard tuning

The difficulty of finding a solution for the music piece on the guitar comes from this fact. We

need to decide between all these possible options for every note, in a way that the movements of

the hand are minimized (economy of movement).

About MIDI files

 According to [37] “MIDI (short for Musical Instrument Digital Interface) is a technical

standard that describes a protocol, digital interface and connectors and allows a wide variety

of electronic musical instruments, computers and other related devices to connect and

communicate with one another. A single MIDI link can carry up to sixteen channels of

information, each of which can be routed to a separate device”. MIDI files are a MIDI sequence

saved into a file in order to be played later. A MIDI sequence is a sequence of MIDI messages

coming from a MIDI device or sequencer software, each message containing certain information

for the piece of music. MIDI has lots of applications and technical details. For more information

see the Wikipedia entry for MIDI [37].

 A MIDI message can be one of three types: short message, system exclusive message,

and control message. In this study, we have only used short messages.

http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Digital_electronics
http://en.wikipedia.org/wiki/Electrical_connector
http://en.wikipedia.org/wiki/Electronic_musical_instrument
http://en.wikipedia.org/wiki/Computer

36

 Each message has a tick number, indicating where the message happens in the sequence.

To convert the tick to actual timings, we must infer the tempo of the piece first. Java MIDI class

(javax.sound.midi) provides a very good toolset to use MIDI sequences.

 MIDI short messages that are of interest to this study are: NOTE_ON, NOTE_OFF, and

PITCH_BEND. Each short message consists of three bytes: status byte, data1, and data2. Table 2

shows the meaning of these bytes for these three types of messages.

Message Status (in hex) Data1 Data2

NOTE_ON 9x Note number Velocity

NOTE_OFF 8x Note number

PITCH_BEND Ex MSB LSB

Table 2 - MIDI Messages

A NOTE_ON message with the velocity of 0 can also mean NOTE_OFF.

 For PITCH_BEND messages, the LSB does not play a role, and the MSB is the controller

of the pitch. The MSB determines how much a note (for which the NOTE_ON message has been

sent already) should be bent. The PITCH_BEND messages in the MIDI sequence are listed after

the NOTE_ON messages, and finding out which PITCH_BEND corresponds to which

NOTE_ON can be confusing in certain scenarios.

