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 Mathematical modeling of tumor response to radiation therapy (RT) has great potential 

for designing therapy plans that are more personalized, more adaptive, and more reliable for 

outcome predictions. A preexisting model of tumor response to radiation therapy for cervical 

cancer has been shown to generate model parameters that correlate strongly with both tumor 

local control and disease-specific survival. This model is further developed through 

incorporation of another effect of RT not previously accounted for: the oxygen effect. An easily 

obtainable form of input data, hemoglobin level, enables simulation of the oxygen effect 

simultaneously with the other major model effects. For the Local Control (LC) patient group, the 

changes in the model parameters caused by incorporation of the oxygen effect are found to 

significantly improve the agreement of those parameters with actual patient data. For the Local 

Failure (LF) group and the overall patient group, the oxygen effect is incorporated without 

significant change to the agreement between the model-simulated output parameters and the 

actual patient data. Also, a strategy is presented for solving the main model equations to obtain 

analytic expressions for surviving cell fraction and regression volume ratio as functions of time. 
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CHAPTER 1: INTRODUCTION 
 

1.1 THE PROBLEM: Current RT plans are not adaptive, but more development is needed 
to make adaptive plans clinically feasible. 

 
Only 30 to 40% of conventional radiation therapy (RT) treatments are successful at 2 

years after treatment [1]. The definition of “success” here is a forgiving one, meaning simply that 

the patient is still alive. The success rate for cervical cancer treatments employing the 

conventional combination of RT and chemotherapy is higher, with a one-year success rate of 

83.6% and a five-year success rate of 66.6% [2]. Even so, these statistics are unencouraging 

considering the sophisticated treatment modalities available, not to mention the wholehearted 

intellectual, emotional, and financial investments of patients, hospitals, and research 

organizations in the interest of managing this disease.  

Despite extensive efforts to customize therapy, customized therapy plans are still not 

adaptive once they are in place. After a treatment plan is developed and approved, the plan is 

carried out over a period of 2 to 3 months with little reevaluation in the interim. However, 

radiobiological processes and hard-to-predict proliferative cancers can significantly change the 

state of a patient’s illness in time frames much shorter than 2 months. By responding to these 

changes, adaptive therapy plans have the potential to improve treatment outcomes.  

Though there are many reasons why cancer is difficult to manage, the issue of responding 

to a patient’s changing status along the course of treatment is an issue that can be practically 

addressed using current knowledge and technology. Through use of physical, mathematical, and 

computational methods, adaptive therapy plans are feasible in a clinical setting. However, for 

adaptive therapy strategies to become the new standard-of-care, they must be not only feasible, 

but also be demonstrably worthwhile. The worthiness of such a strategy will depend on (a) how 

well it correlates with predictive power, and (b) the degree of confidence that can be assumed in 
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the strategy’s predictions/conclusions. In 2006, Huang and colleagues developed a kinetic 

model of tumor regression during radiation therapy for cervical cancer. The model enables 

adaptive therapy by generating predictions about tumor survival that are personalized to each 

patient and based on time-dependent data. The model is based on three major effects of RT: 

radiation cell killing, tumor repopulation, and dead cell resolving. In 2010, the same group used 

long-term patient survival data to verify the model’s predictive power in determining therapy 

outcomes, fully addressing (a). The next step is to refine the model in order to improve its 

accuracy, and hence improve (b), the degree of confidence clinicians can assume in its 

conclusions. 
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1.2 The Challenge: Improve the accuracy and scope of the preexisting adaptive therapy 
model by incorporating another major effect of RT. 

 
As previously stated, the preexisting model is based on three major effects of RT: 

radiation cell killing, tumor repopulation, and dead cell resolving. However, the effects of RT are 

numerous. There are many possibilities for how to go about refining the model, but there are 

constraints on the potential refinements. First, it is critical that changes to the model are based on 

tenets of medical physics, radiobiology, or oncology. This way, the equations of the model 

remain scientifically meaningful. When developing quantitative descriptors of traditionally 

qualitative topics, it is more valuable to have a rough but meaningful mathematical description 

than a perfect but nonsensical description. The second constraint involves the type of input data 

from patients that the model may rely upon. Selection and use of input data must be respectful of 

the practical limitations on collecting patient data in the clinic. Ideally, input data should not 

impose additional pain or cost on the patient or require much additional labor from clinicians, 

beyond what is involved in conventional therapy. In accordance with this ideal, the preexisting 

model relies on easily obtainable MRI images and dose schedules as input data. 
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1.3 BACKGROUND INFORMATION 
 
1.3.1 Cancer Biology: Hypoxia and Reoxygenation 
 

Tumor biology is significantly different from normal tissue biology. Converse to normal 

tissues that possess a neat and efficient system of blood vessels, tumors exhibit “vascular chaos” 

resulting from their fast and erratic formation as the tumor grows quickly. This accelerated 

vessel growth is a result of angiogenic switch—the loss of balance between stimulation and 

inhibition hormones that control new blood vessel growth—and is a common characteristic of 

cancerous tumors [3].  Even so, new blood vessels often cannot be formed rapidly enough to 

meet the circulatory demands of the rapidly growing tumor. Consequently, existing vessels 

become elongated, twisted, and dilated in an effort to survive by increasing the area of the vessel 

walls, which function as a metabolic exchange area for nutrients, oxygen, hormones, and waste 

[4].  

These twisted and dilated vessel networks do not function efficiently. Huang et. al. 

succinctly note, “Blood flow is generally erratic, sluggish, and intermittent, characterized by 

arteriovenous shunting [bypass], stasis [flow decline], and also reversal of blood flow within 

tumor vessels” [3]. As tumors continue growing and their vasculature becomes increasingly 

tortuous, circulatory disruptions like shunting, stasis, and reversal becomes increasingly 

consequential, resulting in tumor regions with poor or no circulation.  

The key result of tumor vasculature irregularities and circulatory disruptions is that some 

parts of the tumor do not receive enough oxygen to support normal cell growth and functioning; 

this condition is called “hypoxia.” A key feature of hypoxic cells is that they show 

radioresistance, meaning they are less susceptible to radiation-induced death [5]. There are two 

types of hypoxia: chronic and acute. Chronic hypoxia occurs because oxygen has a limited 
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diffusion distance in respiring tissue and does not always reach cells that are far from 

blood vessels. Acute hypoxia occurs due to random opening and closing of vascular pathways. 

Both chronic hypoxia and acute hypoxia are intermittent and regional. Prominent radiobiologist 

Eric Hall notes that tumor cells are “exposed to a continuum of oxygen concentrations” due to 

both forms of hypoxia [6]. As a result, both the fraction of hypoxic cells and their location will 

change in time. In a study of forty-two tumor types by Moulder and Rockwell, hypoxic fractions 

ranged from 0 to 50%, with an average result of about 15% [7].  

The fact that hypoxia is intermittent and regional implies that tumors can become 

reoxygenated after having been hypoxic. The timescale of reoxygenation is particularly 

important in radiation therapy. In a series of experiments by van Putten, and Kallman on a 

variety of tumor systems, the proportion of hypoxic cells post irradiation returned to its 

pretreatment level within twenty-four hours [8]. It is widely believed that the mechanism of 

reoxygenation is as follows: radiation dose kills aerated cells, and once they are removed, 

formerly hypoxic cells can once again access diffuse oxygen to become reoxygenated, as shown 

in Figure 1. On this theory, Hall notes  “Reoxygenation cannot be measured in human tumors, 

but presumably it occurs, at least in those tumors controlled by conventional fractionated 

radiotherapy” [6]. 
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Figure 1. Tumor Reoxygenation 
 
1.3.2 Radiation Biology and the Oxygen Effect 
 

It has been mentioned above that lack of oxygen leads cells to become radioresistant. The 

corollary is also true; the presence of oxygen makes cells more radiosensitive. This is what is 

known as the “oxygen effect” [6]. The complexities of the oxygen effect will influence how it 

should (and reasonably can) be incorporated into an existing patient model.  

The oxygen effect acts through two distinct mechanisms. Diatomic oxygen gas present in 

irradiated tissue (a) increases free radical production, and (b)  “fixes” (i.e., makes permanent) the 

damage those free radicals cause. An estimated two thirds of the damage that x-rays produce in 
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biological tissue is due to indirect action on the part of free radicals, while the remaining 

one third results from direct “hits” made by the x-ray photons in the tissue [6].  

The creation of free radicals occurs when radiation interacts with matter, causing larger 

molecules to be broken up by the sudden influx of energy. This creates atoms, molecules, or ions 

with unpaired valence electrons—otherwise known as free radicals [9]. The exact mechanisms 

by which this happens cannot be pinpointed, especially since it varies from tissue to tissue. 

However, the free radicals can be attributed to ionizing radiation interactions with water and with 

organic molecules specific to the tissue [10], which will be designated as “T” in this discussion.  

The interaction of radiation with water forms the water radicals 𝑂𝐻 and 𝐻 [10] as shown 

in Equations (1) and (2): 

𝐻𝑂𝐻 → 𝑒! + (𝐻𝑂𝐻)! + 𝑂𝐻    (1) 
 

𝐻𝑂𝐻 + 𝑒! → (𝐻𝑂𝐻)! → 𝐻 + 𝑂𝐻!     (2) 
 
The water radicals have a strong affinity for electrons, and they remove Hydrogen atoms from 

other molecules, “R,” that they encounter in the tissue [10] as shown in Equation (3): 

𝑂𝐻 + 𝑅𝐻 → 𝑅 + 𝐻𝑂𝐻     (3) 
 
The water radicals will recombine to form water if they encounter one another before interacting 

with tissue [10].  

The interaction of radiation with tissue is presented by radiation biologist M. Quintiliani 

in terms of the tissue-specific organic molecule T [11] in Equation (4): 

𝑇𝐻 + 𝛾 → 𝑇 + 𝑂! → 𝑇𝑂!     (4) 
 
The processes shown in Equations (1) through (4) occur with or without diatomic oxygen being 

present in the irradiated tissue. However, the presence of oxygen increases the number and type 

of free radicals produced and thus increases biological damage.  
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In addition to producing more of the water and tissue radicals described above, the 

presence of oxygen results in an additional type of radical—monatomic oxygen radicals. 

Diatomic oxygen molecules that are hit directly by ionizing radiation produce monatomic 

oxygen radicals [12] as shown in Equation (5): 

𝑂!   → 𝑂 + 𝑂       (5) 
 

As various radicals interact with biological matter and with one another, significant biochemical 

changes occur. Chemical bonds are broken, and new ones are formed, and DNA strand breaks 

occur that alter cells’ reproductive blueprints. The cumulative result of this chemical damage is 

expressed as future biological damage [10]. 

 In addition to increasing free radical production, oxygen present during irradiation also 

disables repair mechanisms that can counteract free radical damage, thus making that damage 

permanent by initiating a permanent chemical change. Significantly, in the absence of oxygen, 

the radical 𝑇 can be repaired by hydrogen donation from a sulfhydryl compound or other 

hydrogen-donating molecules [11]. However, once the tissue-specific radical 𝑇 reacts with O2, it 

forms an organic peroxide in a one-way chemical reaction [10] as shown in Equation (6): 

𝑇 + 𝑂! → 𝑇𝑂!       (6) 
 
The organic peroxide cannot be changed back to the original organic material, so the damage is 

made permanent on the molecular level, thus “fixing” the damage in place. 

Quintiliani discusses the difficulty of identifying the precise structure of the tissue-

specific molecules T involved in the oxygen effect. Throughout the literature it is agreed upon 

that the oxygen effect acts mainly on the critical target of DNA [6, 13, 14] a molecule for which 

mapping molecular structure is notorious complicated. Though exact mechanisms cannot be 

identified, Chapman estimates that 82% of radiation-induced cell death for aerated cells is caused 
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by the fixation of free radical damage—refer to Equations (1) through (3), and (5) through (6)—

while the remaining 18% is caused by direct action of x-ray photons with tissue—Equation (4) 

[10].  

The overall impact of the oxygen effect is quantified in terms of the Oxygen 

Enhancement Ratio (OER). The OER is the ratio of doses required under hypoxic conditions vs. 

aerated conditions to achieve the same biological effect. For x-rays, the OER is between 2.5 and 

3.5, increasing with dose [6]. The dramatic impact of oxygen as a radiosensitizer is due in part to 

the very small time window required to initiate the oxygen effect and to the low gas tensions 

(pressures) at which effects begin to be seen. For the oxygen effect to be observed, oxygen needs 

to be present during or within microseconds of irradiation. This is because the chemical reactions 

that produce the free radicals and “fix” damage have lifetimes on the order of 10 microseconds at 

the longest [6]. In the living body of a patient, the condition for oxygen presence during or 

within microseconds of irradiation is easily met, except in hypoxic regions. Very low 

concentrations of oxygen are sufficient to sensitize mammalian cells to radiation, with full 

saturation of the oxygen effect occurring around 30 mm Hg, and significant sensitization 

occurring as low as 3 mm Hg. For comparison, normal venous tissue has an oxygen tension of 20 

– 40 mm Hg [6].   

The oxygen effect in RT has long been seen as a double-edged sword. A conundrum 

arises because the lack of oxygen prevents the tumor from growing and metastasizing, but it also 

makes the tumor resistant to conventional RT. Modern RT methods employ the duality of the 

oxygen effect to control tumor growth without compromising radiosensitivity.  
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1.3.3 Fractionated Radiotherapy and the Four R’s 
 

The body of knowledge on cancer biology and radiation biology has resulted in an almost 

universally accepted method of treating cancerous tumors in patients: fractionated radiotherapy. 

Relying on the concept of tumor reoxygenation, radiation doses delivered in strategic fractions 

can overcome tumor hypoxia while mitigating tumor growth.  

 A conventional fraction size is 1.8 – 2.0 Gy [3]. Typically, a patient receives one 

fractionated dosage per day for five days a week over a period of several weeks. The premise of 

this treatment is based on “the Four R’s of Radiotherapy.” They are Repair, Reassortment, 

Repopulation, and Reoxygenation [15]. Repair of sublethal damage takes place in normal tissue 

that has been exposed to radiation. Using a fractionated therapy schedule allows time for normal 

sublethal repair mechanisms to act. Reassortment of cells within the cell cycle as a response to 

irradiation can be used advantageously, since cells are more or less radiosensitive depending on 

what phase of the cell cycle they are in. For low doses like those used in fractionated RT, cells in 

the M phase, late G1 phase, and early S phase are the most radiosensitive [10]. By administering 

radiation doses regularly, clinicians can increase the chance of catching cells in a sensitive phase, 

hence increasing cell killing. Repopulation of normal cells is a controlled process, but for 

tumors, repopulation accelerates as tumor volume decreases, so frequent doses, or fractions, are 

needed to control tumor cell repopulation. Reoxygenation, as discussed above, allows hypoxic 

areas to become oxygenated again after the aerated cells that block them from diffuse oxygen are 

killed in RT and removed by the tumor’s vasculature. Tumors are said to be fully reoxygenated 

when the original proportion of aerated cells is restored to its pre-irradiation value. Once 

reoxygenated, formerly hypoxic tumor cells are again subject to radiation induced death [15].  
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1.3.4 Quantifying Cell Survival 
 

Any in-vivo model for tumor survival like the one presented in this thesis is based on the 

premise that cell survival can be quantified. Below is a discussion of early methods for 

quantifying cell survival, popular models of in-vitro cell survival, and the applicative power of 

cell survival models. 

In 1956, Puck and Marcus developed the first cell survival curve, plotting the surviving 

fraction of irradiated cells as a function of dose [16]. “Survival” is defined in a cell assay as 

reproductive viability, so cells that are able to undergo division and produce a colony within an 

allotted time are said to have survived, while those that did not reproduce are considered dead 

[10]. Cell culture techniques allow the experimenter to control the number of cells being treated, 

so it is possible to predict how many individual colonies to expect [10]. By counting the number 

of colonies that form from a know number of individual cells, a rough estimate of the surviving 

fraction can be obtained. The conventional formula for cell survival in an assay is given by 

Equation (7): 

𝑆 = !"#$%&  !"  !"#"$%&'  !"#$%&
!"#$%&  !"  !"#$%&  !"##$  !"#$%&  !   !" !

    (7) 
 
where (PE)c is the plating efficiency of those cells, or the fraction of living cells that thrived into 

colonies after plating in a Petri dish or a flask [10]. Plating efficiency simply described the viable 

fraction of what was plated; there is no treatment (radiation) involved. A linear-linear plot of 

survival vs. dose produces an exponential curve or a sigmoidal curve, but the convention is to 

use a log-linear plot, which produces a “shoulder” at low doses, followed by a declining linear 

region, as can be seen in Figure 2a. 
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Figure 2. A characteristic shape for a cell survival curve is shown. At left, the curve is delineated 
with LQ model parameters Dq, D0, and n. At right, it is delineated with LQ model parameters α 

and β. 
 

Since the work of early radiobiologists Puck and Marcus, there have been several popular 

theories to account for the shape of survival curves and the mechanisms that produce them. 

Identifying critical targets in the cell, whose interaction with radiation produces death has been 

an important and controversial aspect of these theories. Early thoughts on the topic resulted in 

Hit Theory. This involved the idea that one radiation “hit” to a cell would cause death. Some 

postulated that there was a single critical target, while others assumed multiple critical targets, a 

hit to any one of which could cause cell death. Next, came Target Theory. This model posed the 

idea that cell death (or reproductive inability) was caused by the cumulative damage to several 

nonlethal targets. The cell membrane, DNA, proteins, and enzymes were all considered among 

the potential nonlethal targets [5]. 

 Meanwhile, a large body of research was accumulating that strongly suggested DNA was 

the critical target for reproductive cell death [10]. The study of radiation induced single-strand 

breaks (SSB) and double-strand breaks (DSB) in the DNA’s helical phosphate backbone lead to 

the linear-quadratic (LQ) model. It is based on the high likelihood of single-strand breaks at low 
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doses and the increasing predomination of double-strand breaks at higher doses. The LQ model 

attributes the linear “shoulder” of the survival curve to SSB, and the quadratic tail to DSB. 

Though newer models have been developed, the LQ model is still the standard in the laboratory 

and the clinic for its descriptive power and ease of use.  

Cell survival curves are described in terms of the LQ model using several key 

parameters: D0, Dq, and n, all of which are shown in Figure 2a. D0 describes the slope of the 

linear region. Specifically, D0 is the dose required to produce an average of one hit per target, 

thereby inactivating 63% (or 1-1/e) of the cells. Dq is the dose at which the exponential portion 

of the curve intercepts 100% survival when extrapolated back to the y-axis [10]. Closely related 

to Dq is the extrapolation number n, which is obtained by extrapolating the linear portion of the 

curve back to a dose of zero, and subtracting from it the initial surviving fraction of 1. Both n 

and Dq give an idea of the width of the shoulder region. The three parameters are related [10] by 

Equation (8): 

𝐷! = 𝐷! ln 𝑛        (8) 
 
 Perhaps even more clinically relevant than D0, Dq, and n, are the parameters α and β. α 

describes the portion of cell kill caused by the linear component (SSB).  β describes the portion 

of cell kill caused by the quadratic component (DSB) [10]. As seen in Figure 2b, the α/β ratio is 

the dose at which the two components contribute equally. Visually, this gives an idea of the 

width of the shoulder on the survival curve, and is very useful for determining early and late 

responses of cells to radiation. α and β are the key parameters [10] used in the survival equation 

for the LQ model, Equation (9): 

𝑆 = 𝑒! !"!!!!       (9) 
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Familiarity with the linear-quadratic model combined with known values of Dq, D0, n, or just α/β 

enables clinicians to visualize the key features of any particular survival curve, including how 

the cells respond differently at low and high doses, and how that particular cell group may be 

compared with others. It is this ability to quickly glean rough information from a few simple 

numbers that makes this type of model so powerful and useful. 
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1.4  OVERVIEW OF THE ORIGINAL MODEL 
 
 Before addressing modifications made to the preexisting model, it is necessary to briefly 

describe that model. Again, the original model incorporates three major effects of RT: radiation 

cell killing, tumor repopulation, and dead cell resolving. Equations (10) are the “main model 

equations” as given by the developers, Huang and colleagues, in their 2010 publication [17]: 

!"(!)
!"

=   − !"!
!!/!

𝑅 𝑡 − 𝑆 𝑡 ,
!"(!)
!"

= 𝑆(𝑡) − 1− 𝑆! +    !"!
!!

    (10) 

 
where the time-dependent functions R(t) and S(t) are a tumor’s regression volume ratio and 

surviving cell fraction, respectively. The other variables represent basic radiobiological 

parameters that correspond to the major effects of RT on which the model is based. T1/2 is the 

half-time of dead cell resolving, obviously corresponding to the major effect of dead cell 

resolving. It is a gauge of how long it takes the tumor’s vasculature to clear away cells that are 

reproductively dead. S2 is the surviving cell fraction after a dose of 2 Gy, a measure of 

radiosensitivity corresponding to the major effect of radiation cell-killing. S2 is a standard 

reference point in radiation oncology. Td is the effective tumor doubling time, corresponding to 

the major effect of tumor repopulation. Whereas T1/2 and S2 are free parameters, Td is held 

constant at a value of 3.5 days, an average taken from the literature [18-23].  

 The original model is based on a few major assumptions. It is assumed that when tumor 

cells are killed/inactivated by RT, the damaged cells lose their ability to reproduce, and 

eventually die. Then they are cleared from the area by blood circulation, by uptake of 

reticuloendothelial cells that process waste, or by surface sloughing. Clearing dead cells takes 

time, so immediate change in tumor volume after each RT fraction is not expected. It is assumed 

that the dead cell resolving proceeds in an exponential fashion. As more and more tumor cells 
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are killed and cleared, formerly hypoxic regions regain access to oxygen and nutrients, becoming 

reoxygenated. Then repopulation of surviving tumor cells begins [17].  

 It is useful to obtain regression volume ratio R(t) and surviving cell fraction S(t) for 

adaptive therapy purposes. However, solving Equations (10) requires knowledge of S2, T1/2, and 

Td. For cervical cancer, Td is taken as 3.5 days, as previously stated. In order to determine an 

individual patient’s S2 and T1/2, a numerical calculation method is used to “fit” Equation (11) for 

volume as a function of day to a control curve generated from the patient’s own MRI-volume 

and time data: 

𝑉! = 𝑉!,! + 𝑉!,!      (11) 
 

where Vi is the total tumor volume, Vs,i is the portion of the volume composed of surviving cells 

(or living clonogens), and Vd,i is the volume composed of dead cells that haven’t been removed 

yet [17]. The determination of S2 and T1/2 comes in when you consider Equations (12) and 

Equation (13), the model’s remaining “volume equations” for Vs,i and Vd,i: 

𝑉!,! =
𝑉!,!!!𝑆!

!! ,                                                                              when  𝑖 ≤ 𝑇! ,
𝑉!,!!!𝑆!

!!𝑒!" ! /!! ,                                              when  𝑖 > 𝑇! ,
  (12) 

 
𝑉!,! = 𝑉!,!!!𝑒!!"!/!!/! + (𝑉!,!!! − 𝑉!,!)   (13) 

 
where ni equals 1 for RT days and 0 for non-RT days [17]. Tk is the onset time of tumor 

repopulation, taken from the literature to be 21 days [24]. Equations (12) and (13) are based on a 

study by Bentzen and colleagues that demonstrated proportionality between clonogen number 

and tumor volume [17]. To summarize and restate, the volume equations—Equations (11) 

through (13)—are used to determine an individual patient’s S2 and T1/2 through comparison with 

actual MRI volume and time data, as shown in Figure 3 below.  



	   17	  

 

Figure 3. Varying S2 and T1/2 to produce computed data points, which are connected to form a 
curve. The computed curve is compared to the MRI data curve, and quantified using the 

“goodness of fit” X2 statistic. The values of S2 and T1/2 that produce the best fitting curve are 
selected as output parameters for the individual patient. (Data shown here is hypothetical and is 

used for illustration purposes only.) 
 

 Although the goal is to ultimately obtain R(t) and S(t), Equations (11) through (13) use 

subscripts i—not continuous variable t—where i represents number of days into treatment. 

Because the main model equations describe major effects of RT (cell killing, tumor repopulation, 

and dead cell resolving) that produce detectable changes in volume over a timescale of days, 

time cannot be viewed as truly continuous within the framework of the volume equations, 

Equations (11) through (13). Using the subscripts i, the step size of time is given in days. Further 

discussion of step size limitations for time t is provided in Methods section 2.5.1. 

 The volume equations can be linked to the main model equations [17], Equations (10), by 

equating Ri with R(t) as shown in Equation (14): 

𝑅! ≅ 𝑅 𝑡        (14) 
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In the limit of increasing number of data points, i.e., taking MRI images more frequently, the 

sum over the increment i approaches a continuous function, like R(t). Another basis for equating 

Ri with R(t) is the similarity of their definitions; both Ri and R(t) represent a percentage of tumor 

volume at a given time normalized to the initial tumor volume [17], as in Equation (15): 

𝑅! =
!!
!!

𝑅 𝑡 = !(!)
!(!)

       (15) 

 
 Throughout this thesis, Equations (10) will be referred to as the “main model equations,” 

and Equations (11) through (13) will be referred to as the “volume equations.” The volume 

equations are used to determine patient-specific values for S2 and T1/2 computationally. The main 

model equations, using those patient-specific values of S2 and T1/2 from the volume equations, 

are solvable for R(t) and S(t). 
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1.5  DUAL OUTCOME: Clinical Parameters and Analytic Solution 
 

It is important to note the dual application of the model.  
 
Clinical Outcome 

 The output parameters S2 and T1/2 are useful estimates for describing tumor survival. In 

clinical settings, these parameters can give clinicians a rough idea of a tumor’s survival curve 

very quickly and without any additional calculation. As an example, consider the common 

knowledge that a person’s height and weight are a rough-but-good indication of their body type. 

A body mass index analysis is more technically correct, but is time consuming and difficult by 

comparison.  A patient’s S2 and T1/2 are much like their height and weight—not a complete 

description, but a useful easily obtained picture. Using a more technical example, S2 and T1/2 can 

also be compared to the LQ model’s α and β because they also give an idea of the width of the 

shoulder and the rate of the decline in the linear region of the curve. 

Mathematical Outcome 

The output parameters S2 and T1/2 can be substituted into the main model equations as 

constants, enabling an analytic solution to be obtained for regression volume ratio R(t) and 

surviving cell fraction S(t). These expressions are the most complete description that can be 

obtained from the model. In R(t) and S(t) lies the obvious predictive power of the model, and the 

freedom to choose any t.  
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1.6 HYPOTHESIS AND SPECIFIC AIMS 
 

It is the hypothesis of this thesis that incorporating a fourth major effect of RT into the 

model will improve the accuracy of its output parameters, increasing the degree of confidence 

that may be invested in those parameters. Specifically, the fourth effect to be incorporated is the 

oxygen effect. Since oxygen is abundant in living bodies, it is hypothesized that considering the 

oxygen effect will improve this in-vivo model of tumor survival as a response to RT by 

producing output values S2 and T1/2 that more closely correlate with clinical outcome data.  

The specific aims of this research that enable testing of the hypothesis are as follows: 

I. Propose and test meaningful ways to modify the preexisting model to account for the 

oxygen effect by using average hemoglobin levels as the new input parameter. 

Develop C++ code(s) to tests these modifications. Ultimately, use that code to fit the 

parameters S2 and T1/2 for the each patient in the study using Equations (11) through 

(13). 

II. Use statistical analysis techniques to determine whether incorporating the oxygen 

effect into the model by adding in the hemoglobin level significantly changes the 

output parameters X2 (“goodness of fit”), S2, and T1/2. 

III. Demonstrate the mathematical capabilities of the model by obtaining R(t) and S(t) 

analytically. Investigate the applicability of these expressions. 

Successful completion of these specific aims can provide insight on in vivo modeling for 

RT.  In the broader context, these are steps toward the goal of developing preliminary qualitative 

descriptions of phenomena that have traditionally been understood only qualitatively. Figure 3 

below is a conceptual map of this thesis, illustrating how the patient data will be used to obtain a 

clinical outcome and a mathematical outcome. 
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	   Figure 4. Conceptual Map of Thesis



CHAPTER 2: METHODS 
 

2.1 PATIENT DATA 
 
 Modifications to the model are based on data from a population of 78 patients with 

carcinoma of the cervix who underwent 4 MRI scans throughout the course of treatment. See 

Appendix B for IRB documentation approving the use of this data. 

The patient data used in this thesis is a subset of the patient data used to develop the 

original model. Patients had stages of cervical cancer ranging from IB up to IVB, and some had 

locally recurrent tumors. Both squamous cell and adenocarcinomas were represented. The age 

range of the patients was 25 to 89 years, with a median of 55 years.  Each patient underwent a 

standard treatment plan consisting of pelvic external beam radiation therapy (EBRT) and 

brachytherapy. EBRT consisted of 45 – 50 Gy total dose delivered in 1.8 – 2.0 Gy fractions. The 

brachytherapy used 1 – 2 fractions of 20 Gy given at a low dose rate (LDR). 26 of the patients 

also received cisplatin-based chemotherapy in combination with RT. MRI imaging was 

performed at the start of RT, at 20 – 25 Gy, at 40 – 45 Gy, and following up 1 – 2 months after 

treatment. Tumor volumes were precisely delineated on MRI images by radiologists to minimize 

error.   

The preexisting model relies on MRI images and dose schedules as input parameters. 

Dose delivery schedules are the basis for the volume equations and the use of the index i. The 

doses administered to patients whose data was later used in this study are as follows: 

𝐷! =   
0                                                                𝑖  represents  a  day  without  radiation;
1.8  𝑜𝑟  2.0  𝐺𝑦                                                  𝑖  represents  a  day  with  EBRT;
𝐷!"#                             𝑖  represents  a  day  with  LDR  brachytherapy.

 

 
Where i = 1 represents the first day of RT, and a dose of DLDR is represented in the dose 

schedule as a value normalized to an EBRT dose in fractions of 1.8 to 2.0 Gy. 
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For this thesis, average hemoglobin levels were also used as input parameters. These 

averaged values come from a series of blood tests the patients underwent during the course of 

treatment. Hemoglobin level data comes from the patients’ complete blood count (CBC) and is 

given in grams per deciliter (g/dL).  

 Patient data is divided into 2 subgroups based on treatment outcome: the Local Control 

(LC) subgroup and the Local Failure (LF) subgroup. LF patients either experienced tumor 

recurrence or had tumors that did not regress in response to therapy. LF includes patient who had 

died prior to the follow-up time and those who survived but still had cervical cancer at the 

follow-up time. LC patients had no tumor recurrence at the follow-up time and had tumors that 

regressed in response to therapy.  
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2.2 MODIFYING THE MODEL: Incorporating the Oxygen Effect Using Hemoglobin 
Levels 
 
 The original model is based on three major effects of RT. Those effects are radiation cell 

killing, tumor repopulation, and dead cell resolving. A goal of this thesis is to incorporate a 

fourth major effect of RT into the model that (a) works on a similar time scale as the other 

effects, and (b) is measurable on its own. Requirement (a) is important because analytical 

solutions to the main model equations will not be truly continuous functions of time (further 

discussion is provided in section 2.5.2). Requirement (b) is important because it helps to avoid 

introducing more confounding variables into an already complex system. The oxygen effect 

meets both requirements (a) and (b). Since exploiting the  oxygen effect in RT is based on 

reoxygenation, the tumor’s response to the oxygen effect becomes apparent on a similar 

timescale timescale as responses to cell-killing, dead cell resolving, and tumor repopulation. 

Because the oxygen effect has been quantified and well-documented in vitro, it should not act as 

a confounding variable.  

The oxygen effect not only meets requirements (a) and (b), but is also a highly relevant 

effect of RT in the living body of a patient. Recall that the Oxygen Enhancement Ratio (OER) is 

between 2 and 3 for low Linear Energy Transfer (LET) radiation. A well-established principle in 

medical physics, the oxygen effect has the potential to add meaning and predictive power to the 

original model. In order to incorporate the oxygen effect into the original model, a qualitative, 

easily obtainable parameter is needed as an additional form of input data. 

 This thesis proposes to use patients’ hemoglobin levels as input data to simulate the effect 

of oxygen during RT. The premise of this idea is based on the fact that red blood cells (RBC) 

distribute oxygen throughout the body’s vasculature [25]. The specific mechanism for this is 

hemoglobin proteins, which are attached the exterior of the red blood cell, and bind to diatomic 
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oxygen, so it is carried along with the RBCs. As RBCs are squeezed through capillaries, 

hemoglobin is released and diffuses into tissue [26]. Though it would be ideal to probe key 

regions of the tumor to determine local oxygen levels, this is impractical in the clinic. Since 

hemoglobin levels in this study showed little fluctuation over the course of treatment, the time-

average of each patient’s hemoglobin levels was used as input data. Hemoglobin level as an 

index of tumor oxygenation easily meets the requirement for clinical practicality and feasibility.  

This approach is not without challenges. While hemoglobin levels correlate highly with 

well-oxygenated regions of the tumor, they are not representative of hypoxic regions [4]. 

However, there is considerable evidence in the literature for the correlation between hemoglobin 

levels and overall tumor radiosensitivity, regardless of hypoxic/anoxic regions. W.C. Yuh and 

colleagues note that radiosensitivity at 2 Gy (S2) correlates with mean hemoglobin level with a 

significance of p = 0.044 in their 2010 study entitled “Hemoglobin Influences Tumor Cell 

Radiosensitivity in Patients with Cervical Cancer” [27]. Michelle Grogan and colleagues 

concluded that “Presenting Hgb [hemoglobin] level, average weekly nadir Hgb (AWNH) during 

RT, and blood transfusion were correlated significantly with local control, disease free survival, 

and overall survival on univariate analysis” [28]. A 2012 study by Stephan Walrand and 

colleagues found a strong correlation (R = 0.96) between early response and absorbed dose, and 

between absorbed dose and hemoglobin levels [29]. The large number of studies demonstrating a 

correlation between tumor oxygenation and response to radiotherapy prompted the National 

Cancer Institute to publish recommendations for future research investigating cervical tumors 

specifically [30]. These publications and many others support the use of hemoglobin levels as an 

index of tumor oxygenation and a qualitative parameter describing the oxygen effect in RT, 

especially for cervical cancer.  
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In this study, hemoglobin levels will be incorporated into the original model with the 

intent of simulating the oxygen effect simultaneously with the three effects of RT for which the 

model already accounts. A patient’s average hemoglobin level is represented by the variable HL 

in the model equations. A scaling constant, C2, will also be built into the model with HL. The 

intended result of C2 is to improve the fit of the model and to enable specific future 

investigations (see Discussion section 4.3 for details). The resultant new model will be referred 

to as “the hemoglobin model” throughout this thesis.   

Strategies for including the oxygen effect in the model using hemoglobin levels follow 

readily from radiobiological principles. The primary result of the oxygen effect is to increase 

radiation cell killing. That affects tumor volume directly. Consequently, the dead cell volume 

Vd,i should be larger, and the surviving cell volume Vs,i should be smaller by the same amount. 

To simulate this, the volume equations have been modified, resulting in Equations (16) and 

Equations (17): 

𝑉!,! =
𝑉!,!!!𝑆!

!!(1− 𝐶!𝐻!),                                                                when  𝑖 ≤ 𝑇! ,
𝑉!,!!!𝑆!

!!𝑒!"!/!!(1− 𝐶!𝐻!),                                        when  𝑖 > 𝑇! ,
       (16) 

 
 

𝑉!,! =   
𝑉!,!!!𝑒!!"!/!!/! + 𝑉!,!!! − 𝑉!,! +   𝑉!,!!!𝑆!

!!𝐶!𝐻!              when  𝑖 ≤   𝑇!
𝑉!,!!!𝑒!!"!/!!/! + 𝑉!,!!! − 𝑉!,! +   𝑉!,!!!𝑆!

!!𝑒!"!/!!𝐶!𝐻!              when  𝑖 >   𝑇!
 

 
(17) 

 
Equations (16) through (17) were found to optimize the model fit and output parameters 

better than some simpler modifications. Since these changes shift the proportions of living and 

dead cells rather than changing the total number of cells, the equation for total volume, Equation 

(11), and the values for total volume remain unchanged: 

𝑉! = 𝑉!,! + 𝑉!,!     (11) 
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 Modifications to the volume equations reduce the portion of the tumor volume attributed 

to surviving cells in order to simulate the oxygen effect in RT. This decrease in surviving cell 

volume is expected to directly decrease the expected surviving cell fraction over time, S(t). For 

this reason, the main model equations, Equations (10), are modified as shown in Equations (18):  

!"(!)
!"

=   − !"!
!!/!

𝑅 𝑡 − 𝑆 𝑡 ,
!"(!)
!"

= 𝑆(𝑡) − 1− 𝑆! +    !"!
!!
− 𝐶!𝐻!

   (18) 

 
 Though the volume equations and main model equations have been modified, Equations 

(14) and (15) remain the same as in the original model: 

𝑅! ≅ 𝑅 𝑡        (14) 
 

𝑅! =
!!
!!

𝑅 𝑡 = !(!)
!(!)

       (15) 

 
The differences between the hemoglobin model and the original model are summarized in 

Table 1 below. The expected consequences of how the hemoglobin model will differ from the 

original model are consistent with how the oxygen effect acts on cells during RT. It is expected 

that S2 will decrease, and T1/2 may increase or decrease (full discussion of null and alternative 

hypotheses in section 2.4). Furthermore, it is expected that the additional term will increase 

mathematical freedom, thus improving the goodness of fit, X2.  
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Comparison	  of	  Hemoglobin	  Model	  and	  Original	  Model	  Equations	  
	  
Surviving	  Cell	  Volume	  
	  

𝑉!,! =
𝑉!,!!!𝑆!

!!(1− 𝐶!𝐻!),                                                                𝑤ℎ𝑒𝑛  𝑖 ≤ 𝑇! ,
𝑉!,!!!𝑆!

!!𝑒!"!/!!(1− 𝐶!𝐻!),                                        𝑤ℎ𝑒𝑛  𝑖 > 𝑇! ,
	  

Hemoglobin	  
	  

𝑉!,! =
𝑉!,!!!𝑆!

!! ,                                                                              𝑤ℎ𝑒𝑛  𝑖 ≤ 𝑇! ,

𝑉!,!!!𝑆!
!!𝑒

!" !
!! ,                                              𝑤ℎ𝑒𝑛  𝑖 > 𝑇! ,

	  

Original	  
Dead	  Cell	  Volume	  
	  

𝑉!,! =   
𝑉!,!!!𝑒!!"!/!!/! + 𝑉!,!!! − 𝑉!,! +   𝑉!,!!!𝑆!

!!𝐶!𝐻!              𝑤ℎ𝑒𝑛  𝑖 ≤   𝑇!
𝑉!,!!!𝑒!!"!/!!/! + 𝑉!,!!! − 𝑉!,! +   𝑉!,!!!𝑆!

!!𝑒!"!/!!𝐶!𝐻!              𝑤ℎ𝑒𝑛  𝑖 >   𝑇!
	  

Hemoglobin	  
	  

𝑉!,! = 𝑉!,!!!𝑒!!"!/!!/! + (𝑉!,!!! − 𝑉!,!)	  
Original	  

Main	  Model	  
	  

𝑑𝑅(𝑡)
𝑑𝑡 =   −

𝑙𝑛2
𝑇!
!

𝑅 𝑡 − 𝑆 𝑡 ,

𝑑𝑆(𝑡)
𝑑𝑡 = 𝑆(𝑡) − 1− 𝑆! +   

𝑙𝑛2
𝑇!

− 𝐶!𝐻!

	  

Hemoglobin	  
	  

𝑑𝑅(𝑡)
𝑑𝑡 =   −

𝑙𝑛2
𝑇!
!

𝑅 𝑡 − 𝑆 𝑡 ,

𝑑𝑆(𝑡)
𝑑𝑡 = 𝑆(𝑡) − 1− 𝑆! +   

𝑙𝑛2
𝑇!

	  

Original	  
 

Table 1. Comparison of Hemoglobin Model and Original Model Equations. Blue boxes represent 
the hemoglobin model. White boxes represent the original model. Note: only the volume 

equations and main model equations are shown. Equations that are the same for both models are 
omitted. 
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2.3 COMPUTING 
 
2.3.1 Numerically Fitting the Output Parameters  
 

To facilitate numerical calculation of the output parameters S2, T1/2, and C2, a C++ code 

was developed to perform computations (see Appendix A). The MRI volume data is input into 

the code as data points of the form (x, y) = (time in days, fraction of original volume remaining). 

These data points serve as the “true” regression volume ratio values to which the simulated 

values will be compared. The simulated regression volume ratio values Ri are computed 

numerically in terms of dose schedule by the code, using the volume equations, Equations (16). 

As in the original model, Ri is still a function of time, but it is a step function in dose 

rather than a (theoretically) continuous function like R(t). The code varies the set of output 

parameters S2, T1/2, and C2 within given ranges and compares the resultant Ri for each set to the 

MRI volume data. After each iteration of the loops that vary S2, T1/2, and C2, the code selects the 

set (S2, T1/2, C2) that corresponds to the Ri that most closely fits the MRI volume data. The 

“goodness of the fit” is expressed using the X2 test statistic, which is also computed by the code. 

X2 values provide a gauge of reliability for the output parameters.  

 S2 is allowed to vary between 0.2 and 1.0 with a step size of 0.001. T1/2 is allowed to vary 

between 1.5 and 101.5 with a step size of 0.4. C2 is allowed to vary between 0 and 0.0001 with a 

step size of 1x10-6. C2 is not a clinically relevant output parameter like S2 and T1/2; it is included 

in the interest of obtaining more reliable values for S2 and T1/2 through a better X2 fit and as a set-

up for future studies.  

 Upon examining Equations (16) – (17), it is noticeable that there are five parameters that 

could be varied in order to fit Ri to MRI volume data. They are S2, T1/2, C2, Td, and Tk. Obvious 

candidates for variability are S2 and T1/2 because of their relevance in estimating survival curves. 
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In this study, C2 is varied for exploratory purposes. This is why S2, T1/2, and C2 were chosen for 

variation over Tk and Td. The fact that average values of Tk and Td are easily located in the 

literature on cervical cancer [18-24] solidifies the decision to hold these parameters constant. Tk, 

the onset time of tumor repopulation, remains constant at 21 days in this study. Td, effective 

tumor doubling time after repopulation begins, remains constant at 3.5 days.  

It is important to note that S2, T1/2, C2, and the associated fit, X2, are obtainable from the 

model’s volume equations alone. The volume equations yield the clinically relevant parameters 

that comprise the model’s most practical usage. To obtain analytic solutions for regression 

volume ratio R(t) and survival rate S(t) for individual patients, the output parameters S2, T1/2, and 

C2 can be taken as constants in the main model equations, which are then solvable. This process 

is described in greater detail in section 2.5. 

2.3.2 Validating Modifications 
 

To ensure that modifications to the model have not resulted in loss of agreement between 

the volume equations and the main model equations, Equations (14) and (15) are used in a test 

case to ensure the integrity of the hemoglobin model with respect to the original model. Recall 

these simple equations: 

𝑅! ≅ 𝑅 𝑡        (14) 
 

𝑅! =
!!
!!

𝑅 𝑡 = !(!)
!(!)

       (15) 

 
The level of agreement between Ri and R(t) for the hemoglobin model should be similar to the 

level of agreement between Ri and R(t) for the original model. Using the volume equations to get 

Vi and the analytic solution to the main model equations, R(t), a comparison can be made for any 

patient at any time t. Methods for obtaining R(t) are discussed in section 2.5. For the purpose of 
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validating the integrity of the new hemoglobin model, this was done for two patients whose 

volume data the model was able to fit well with calculated values. The model should be most 

effective for patients with the best fit between actual volumes and calculated values, i.e., patients 

whose data produce small X2 values. Patient 23 and Patient 34 were selected using this criteria. 

Time t = 18 days was selected randomly for this test, which should work for any time t. Table 2 

shows the results.  

Model Patient V18 R(18) Difference 
Hemoglobin 23 0.24196 0.3837 -0.14174 

 
34 0.21165 0.2918 -0.08015 

Original 23 0.24168 0.3866 -0.14492 

 
34 0.21137 0.29356 -0.08219 

Table 2. Validating modifications of the hemoglobin model 
  
 A significant discrepancy between Ri and R(t) can be seen for the both the hemoglobin 

model and the original model. Since the hemoglobin model does not make the discrepancies of 

the original model worse, the model changes that resulted in the hemoglobin model are likely not 

the cause of the discrepancies. The hemoglobin model changes are validated by this data, but the 

models themselves are not. A discussion of likely causes is provided in Discussion section 4.2. 

 Furthermore, there is only a small difference between predicted R(t) values for the 

hemoglobin model versus the original model. Incorporating the oxygen effect made only a very 

small difference. However, the OER is between 2.5 and 3.5, as discussed in Introduction section 

1.3.2. This means that the original model already accounts for the oxygen effect to some extent, 

though that extent has not been quantified.  
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2.4 INVESTIGATING CLINICAL OUTCOMES: Statistical Analysis of Model Output 
Parameters 
 

When the oxygen effect in cell killing is incorporated into the model through use of 

hemoglobin levels, changes to volumetric fit (Χ2), tumor cell survival (S2), and dead cell 

resolving (T1/2) occur. The impact of these changes is quantified using statistical inference. 

Specifically, the difference-of-means t-test is used to determine whether changes in Χ2, S2, and 

T1/2 are statistically significant. In this case, “significant” means the difference is large enough to 

be attributed to the hemoglobin term, as opposed to simply being the insignificant result of 

statistical fluctuation. The idea of inference comes in because it is desirable to know how 

incorporating the oxygen effect will affect model simulations for the population of cervical 

cancer patients at large. However, the data available comes from just 78 patients from that 

population. Since it would be impractical to obtain data on an entire patient population, statistical 

methods are used which allow the inference of conclusions about the population with reasonable 

confidence based on sample size, data spread, and other known parameters.  

The use of statistical inference techniques imposes certain restrictions. The validity of 

these methods depends on several characteristics of the population, the sample, and the data 

collection methods. Measuring the effect of considering the oxygen effect versus not considering 

it is necessarily a matched pairs study, since each patient’s data is subjected to two different 

methods of analysis, which produces two different-but-dependent data sets. For matched pairs 

analysis, it is required that 

(i) The sample is a simple random sample (SRS). 

(ii)  The data sets are not independent.  

(iii) The sample is taken from a normal or near-normal population [31]. 



	   33	  

Consider requirement (i): For a sample to be a SRS, it must be such that any given 

sample of size n is as likely to be chosen as any other sample of size n out of the population. For 

the group of cervical cancer patients who gave data in this study, a broad range of ages, cancer 

stages, and medical histories is included so that no specific sub-group is favored. So, (i) is 

satisfied.  

To address requirement (ii), consider that the data sets from the hemoglobin model and 

the preexisting model are not the same, but they are not independent either, since they were both 

generated from the same tumor volume data.  

Concerning requirement (iii), it would be difficult to comment on the normality of tumor 

volumes in the entire population of cervical cancer patients. However, the Central Limit 

Theorem can be invoked in such a way as to approximate a near-normal population scenario 

using the sample [32]. This is because the distribution of possible sample means tends toward 

normality as the sample size increases. This is true regardless of the shape of the population 

distribution. A conservative rule of thumb for how large a sample must be in order to invoke the 

Central Limit Theorem is n > 30, with the condition that there are no extreme outliers in the 

sample [33].  

For convenience, the difference between paired data points for each parameter is defined 

using Equations (19): 

𝑑!! = (𝜒!)! − (𝜒!)!  
 

𝑑!! = (𝑆!)! − (𝑆!)!     (19) 

 
𝑑!!/! = (𝑇!/!)! − (𝑇!/!)! 
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where the subscript “P” represents the original model, and the subscript “H” represents the 

hemoglobin model. Similarly, define the difference of mean parameter values between the two 

models using Equations (20): 

𝑑!! = (𝜒!)! − (𝜒!)! 
 

𝑑!! = (𝑆!)! − (𝑆!)!                 (20) 
 

𝑑!!/! = (𝑇!/!)! − (𝑇!/!)! 
 

Difference-of-means analysis uses a hypothesis test as its basis. The null hypothesis H0 

for this study is that there is no difference in the mean Χ2, the mean S2, or the mean T1/2 when 

hemoglobin levels are considered. The alternative hypothesis HA is that considering hemoglobin 

levels (a) generates a better fit, i.e., has a smaller Χ2, (b) better accounts for tumor cell killing 

related to the O2 effect, i.e., has a smaller S2, and (c) changes dead cell resolving time, i.e., has a 

different T1/2 than the original model. The null hypotheses are expressed in Equations (21) and 

the alternative hypotheses are expressed in Equations (22): 

H0:  
(𝜒!)! = (𝜒!)!        𝑜𝑟        𝑑!! = 0 

 
𝑑!! = 0     (21) 
 

𝑑!!/! = 0 
 

 
 
HA: 

(𝜒!)! < (𝜒!)!        𝑜𝑟        𝑑!! > 0 
 
𝑑!! > 0     (22) 
 

𝑑!!/! ≠ 0 
  

Notice that the hypotheses involving Χ2 and S2 are directional. It is expected that both 



	   35	  

parameters will be smaller for the hemoglobin model. Also note that the alternative hypothesis 

for T1/2 is non-directional. Biologically speaking, dead cell resolving time could either increase or 

decrease due to the oxygen effect. Since more oxygen means a higher metabolic rate, the 

clearing away of dead cells may happen faster. On the other hand, the extra cell killing that is 

being simulated by the oxygen effect results in a larger dead cell volume that may take longer to 

clear away. In is significant to note that this model uses the half-time of dead cell resolving—not 

the full time—since dead cell resolving proceeds in an exponential fashion. Therefore, changes 

in T1/2 are expected to be affected more by increased metabolic rate than by increased dead cell 

volume. Ultimately, the direction of the change in T1/2 is determined by the more prevalent of the 

two effects: increased metabolic rate versus increased dead cell volume.  

To test these hypotheses, the matched pairs t-test is used on the means. The t-test statistic 

is defined in Equations (23): 

𝑡 =   
𝑑
𝑆𝐸 

 
𝑆𝐸 = !"

!
     (23) 

 

𝑆𝐷 =
𝑑!!!

! − [ 𝑑!!
!

!

𝑛 ]
𝑛 − 1  

 
where SE is standard error on the difference d, SD is standard deviation on the difference d, and 

n is sample size [31]. The t-test statistic is compared to a t distribution, which gives the 

probability P that t would fall at or below this value, assuming the null hypothesis is true. So, 

taking 1 – P gives the probability of getting this t-value or higher if the null hypothesis is true. 

The simple Equation (24) 

1− 𝑃 = 𝑝     (24) 
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gives the well-known p-value. For a directional hypothesis, take p as is. For a non-directional 

hypothesis, a result at the high extreme or the low extreme is anticipated, so take p x 2 = p* and 

use that. In order to evaluate the meaning of p, we must choose some significance level, α, with 

which to compare p.  

If  𝑝 ≤ 𝛼, then  reject  the  null  hypothesis. 
If  𝑝 > 𝛼, then  fail  to  reject  the  null  hypothesis. 

 
When p is less than or equal to α, it means that the data observed would occur less than 

five percent of the time for a directional hypothesis and less than 2.5 percent of the time for a 

non-directional hypothesis, if in fact the null hypothesis were true. This is a conventional basis 

for rejecting the null hypothesis to conclude the result is significant [32]. When p is greater than 

α, it means that the data observed would occur by chance more often than five or 2.5 percent of 

the time, if in fact the null hypothesis were true. In this case, the convention is to fail to reject the 

null hypothesis and conclude that the result may be due to statistical fluctuation. The choice of 

significance level is somewhat arbitrary, but this study uses α = 0.05 to determine a significant 

result. The significance level α = 0.05 is used in the literature on the original model and other 

patient models [17]. Furthermore, results at the α = 0.05 level are still very appropriate for 

clinical use, where much greater uncertainty is typical.  

 Also appearing in this study is the t-test for independent samples, which is used to 

describe the difference in outcomes from the hemoglobin model between the LC subgroup and 

the LF subgroup. The test statistic is given in Equation (25): 

 

𝑡 =
𝑥! − 𝑥!

𝑠!!
𝑛!
+ 𝑠!!
𝑛!

   

       (25) 
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Where 𝑥! and 𝑥! are the means of the respective samples, s1 and s2 are the variances of the 

respective samples, and n1 and n2 are sample sizes [32]. The same rules for determining p-values 

discussed for the matched pairs t-test apply to this t-test as well.  
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2.5 INVESTIGATING MATHEMATICAL OUTCOMES: Obtaining Analytical Solutions 
for Surviving Cell Fraction S(t) and Regression Volume Ratio R(t) using Main Model 
Equations 
 
 Because each patient has a unique S2 and T1/2, analytical solutions to the main model 

equations are only possible on a patient-by-patient basis. Because the model accounts for 

cumulative, major effects of RT that take place on the timescale of days rather than faster effects, 

and because the model is based on a daily dose schedule, the applicability of the model is limited 

to time increments on the order of days. This imposes certain limitations on analytic solutions for 

R(t) and S(t).  

2.5.1  Limiting Factors in the Analytic Solution 
 

It is stated throughout this thesis that the main model equations can be solved for S(t) and 

R(t). This is based on a few key assumptions. The first assumption is that S2, T1/2, and C2 are 

constant over the course of treatment. Their values are obtained computationally by fitting the 

volume equations to the MRI data. Then, they are simply plugged into the main model Equations 

(18) like any other constants. The second assumption is that time t is treated as continuous for the 

purpose of solving the main model equations analytically, but it must be understood that it is not 

truly continuous in the context of the model.  

  The body of knowledge on fast cellular and subcellular responses to radiation is well 

established. If the model were to use increments of time as small as seconds, minutes, or even 

hours, incorporating these fast processes would be necessary. Sublethal recovery is one such 

process. Sublethal recovery is the ability of cells to repair minor radiation-induced damage below 

a certain dose threshold. Sublethal damage is typically repaired by the cell within 2 hours of 

irradiation [10]. So, the region of the survival curve for hours 0 through 2 is distinctly different 

than the region of the curve for hours 3 through 24. The stages of radiation action and cellular 
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response present another timescale complication. Many models of fast processes use stages to 

classify damage and repair processes by timescale. The physical stage is on the order of 10-11 

seconds. The physiochemical stage is on the order of 10-5 s. The cellular biological stage is on 

the order of minutes to days. The tissue biological stage is on the order of days to years [34, 35]. 

While the physical stage and physiochemical stage are not useful for patient models, the cellular 

biological stage is relevant. The timescales of different radiation response processes vary 

considerably, making it difficult to simulate processes with different timescales in the same 

model. To use a time increment of hours or smaller, cell cycle stages must be considered. The 

four phases of the cell cycle are M (0.5 - 1 hour), G2 (2 - 4 hours), S (6 - 8 hours), and G1 (0 

hours - very long) [10]. Cell radiosensitivity varies significantly depending on which phase of 

the cell cycle the cells are undergoing. Another complication comes from the reliance of the 

hemoglobin model on the theory of tumor reoxygenation. Recall that complete reoxygenation 

means the proportion of aerated cells has returned to what it was before irradiation. 

Reoxygenation completes within 24 hours for most mammalian cells, but varies erratically 

between the time of irradiation and the time at which reoxygenation is finally established [36]. 

Complicated radiobiological processes present significant difficulties for modeling major effects 

of RT using time increments smaller than days.  

 Another reason to use a time increment of days comes directly from fractionated RT dose 

schedules. It is well known that cell survival is a function of the dose given, and doses are ideally 

delivered on a daily basis. Surviving fraction S(t) is a function of dose, and fractionated doses are 

functions of days. Furthermore, the solution for surviving cell fraction S(t) is required to solve 

for regression volume ratio R(t), so R(t) should employ the same time increment as S(t). Finally, 

the model is built on the parameters of effective tumor doubling time Td, and onset time of tumor 
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repopulation Tk, both of which are given in days. Of course, any decimal value of t could be 

plugged into the expression R(t); however, for reliable predictions, t must be in increments of 

days.  

2.5.2 Strategy for Solving the Main Model Equations  
 

To obtain the analytic solutions, first recall differential Equations (18): 
 

!"(!)
!"

=   − !"!
!!/!

𝑅 𝑡 − 𝑆 𝑡 ,
!"(!)
!"

= 𝑆(𝑡) − 1− 𝑆! +    !"!
!!
− 𝐶!𝐻!

   (18) 

 
Because the first of Equations (18) expresses the dependence of R(t) on S(t), S(t) is determined 

first. Begin by defining the bracketed term in the bottom equation as “a” for convenience: 

𝑎 ≝   − 1− 𝑆! + !"!
!!
−   𝐶!𝐻!    [A] 

 
It can be seen that the bottom equation is a separable differential equation of the first order. It has 

the following general solution: 

𝑆 𝑡 =   𝑒!"!!!      [B] 
  
where K1 is a constant of integration. Using the initial condition that S(t=0) = 1, it can be 

determined that K1 must be equal to 0. So, the final solution is: 

𝑆 𝑡 =   𝑒!"       [C] 
 
Next, consider the first of Equations (18). For convenience, define the coefficient on the right 

hand side as “b”: 

𝑏 ≝ !"!
!!/!

       [D] 

 
Now, plugging in b and the solution for S(t), the equation becomes: 
 

!"(!)
!"

=   −𝑏 𝑅 𝑡 − 𝑒!"      [E] 
 
As Z. Lin notes, the solution will be of the form: 
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𝑅 𝑡 =   𝑛! + 𝑛!𝑒!!" + 𝑛!𝑒!"    [F] 
 
where n1, n2, and n3 are constants, and  
 

𝑅! 𝑡 =   −𝑏𝑛!𝑒!!" + 𝑎𝑛!𝑒!"    [G] 
 
Substituting R(t) and R’(t) back into the expression for dR(t)/dt and comparing terms on either 

side of the equation, two constants can be determined: 

𝑛! = 0
𝑛! = undetermined

𝑛! =
!

!!!

     [H] 

 
n2 can be found using the initial condition that R(t=0)=1. The resultant expression for n2 is: 

𝑛! =
!

!!!
      [I] 

 
Simple resubstitution of the constants determined into the expression [E] will give the analytic 

solution for R(t). Both S(t) and R(t) are reported in terms of the convenient constants a and b, 

and in terms of the model constants S2, T1/2, C2, HL, Td, and Tk in Results section 3.2.  

	  
 

 

 

 

 



CHAPTER 3: RESULTS 
 

 This study results in a dual outcome. Section 3.1 reports on the significance of changes in 

X2, S2 and T1/2 that have resulted from incorporating hemoglobin levels into the model to 

simulate the oxygen effect. This is considered the clinical outcome. Section 3.2 reports on the 

analytic solutions S(t) and R(t)—the mathematical outcome.  

3.1 CLINICAL OUTCOMES: Model Output Parameters 
 

The following statistics are based on t-tests of statistical significance for differences 

between means, including the matched-pairs t-test for dependent data sets and the t-test for 

independent samples (discussed in Methods section 2.5). The patient data consisting of MRI-

determined tumor volumes, dose schedules, and average hemoglobin levels was subjected to two 

different treatments—the original model and the hemoglobin model—to produce two different 

sets of outcome parameters X2, S2, and T1/2. Those sets of parameters are compared to determine 

the significance of the differences between the two models. Results are shown for the overall 

patient group and for the subgroups of Local Control (LC) patients and Local Failure (LF) 

patients. Recall from chapter 2 that patient data is divided into 2 subgroups based on treatment 

outcome: the Local Control (LC) subgroup and the Local Failure (LF) subgroup. LF patients 

either experienced tumor recurrence or had tumors that did not regress in response to therapy. LC 

patients had no tumor recurrence at the follow-up time and had tumors that did regress in 

response to therapy. To determine if the hemoglobin model affects the LC subgroup and the LF 

subgroup differently, significance test results are provided for difference in X2, S2, and T1/2 

between the two subgroups. The significance level α = 0.05 is the comparison criterion for 

determining whether or not a result is considered significant. 
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A summary of the raw output data for X2, S2, and T1/2 from both models is provided in 

Table 3. The model parameters are categorized according to patient group. “N” is number of data 

points, or patients who gave data. “DF” is degrees of freedom. “SD” is standard deviation, and 

“SE on Mean” is the standard error on the mean.  

Patient Group 
Model 

Parameter Model N DF Mean SD 
SE on 
Mean 

Overall X2  Original 78 77 212.48 318.07 36.014 

  
Hemoglobin 78 77 206.11 316.62 35.851 

 
S2 Original 78 77 0.5998 0.19019 0.02153 

  
Hemoglobin 78 77 0.6035 0.19214 0.02176 

 
T1/2 Original 78 77 16.11 11.07 0.02153 

  
Hemoglobin 78 77 16.213 11.092 0.02176 

Local Control 
(LC) X2 Original  60 59 185.9 296.91 38.331 

  
Hemoglobin 60 59 185.07 296.27 38.248 

 
S2 Original  60 59 0.5824 0.19235 0.02483 

  
Hemoglobin 60 59 0.5835 0.19305 0.02492 

 
T1/2 Original  60 59 12.713 6.3498 0.02483 

  
Hemoglobin 60 59 12.68 6.3432 0.02492 

Local Failure 
(LF) X2 Original 18 17 301.08 376.12 88.651 

  
Hemoglobin 18 17 276.25 377.73 89.032 

 
S2 Original 18 17 0.6577 0.17553 0.04137 

  
Hemoglobin 18 17 0.6699 0.17833 0.04203 

 
T1/2 Original 18 17 27.433 15.447 0.04137 

  
Hemoglobin 18 17 27.989 15.058 0.04203 

Table 3. Summary of raw output data from original model and hemoglobin model. 
 
 Small difference in average values of X2, S2, and T1/2 exist between the original model 

and the hemoglobin model within each group. Table 4 summarizes the results of matched-pairs t-

tests of significance for these differences.  
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Patient Group 
Model 

Parameter N 
Difference in 

Means t-statistic p-value 
overall X2 78 6.367 1.211 0.1145 

 
S2 78 -0.00371 1.36 0.911 

 
T1/2 78 -0.10256 0.618 0.539 

Local Control 
(LC) X2 60 0.823 5.22 0.00000122 

 
S2 60 -0.00115 2.735 0.996 

 
T1/2 60 0.0333 2.316 0.024 

Local Failure 
(LF) X2 18 24.829 1.093 0.145 

 
S2 18 -0.01222 1.04 0.8435 

 
T1/2 18 -0.55556 0.768 0.453 

Table 4. Summary of significance tests for comparing the original model output and the 
hemoglobin model output. Difference = Original Model parameter – Hemoglobin Model 

parameter. 
 

 Small p-values indicate that the data observed in this work would be very unlikely to 

occur if in fact there was no significant difference in the model output parameters produced by 

the original model versus the hemoglobin model. Specifically, p-values smaller than 0.05 are 

considered small enough to be significant. They indicate that if the null hypothesis (of no 

difference) were true, then, at most, 5% of samples from the population would show this type of 

data.  

Overall Patient Group 

The hemoglobin model does not produce statistically significant changes in fit (X2), 

survival at 2 Gy (S2), or half-time of dead cell resolving (T1/2) when compared to the original 

model. Though the mean X2 is smaller for the hemoglobin model than for the original model, the 

decrease is not statistically significant. Similarly, the mean S2 and T1/2 are very slightly larger for 

the hemoglobin model than the original model, but these increases are not deemed significant 

using t-test methods.  
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Local Control Patient Group 

The hemoglobin model produces significant changes in fit (X2) and half-time of dead cell 

resolving (T1/2) when compared to the original model. The high t-values and correspondingly 

low p-values for differences in X2 and T1/2 fall below the α = 0.05 significance level, so it is safe 

to reject the null hypothesis that there is no difference in these parameters between the two 

models. This indicates that the incorporation of the hemoglobin term simulates a faster half-time 

for dead-cell resolving, T1/2, in accordance with the radiobiological principle that well-

oxygenated cells metabolize waste faster. The hemoglobin model does not produce significant 

changes in survival at 2 Gy (S2) for this group. Though mean S2 is slightly higher for the 

hemoglobin model, the difference is not significant.  

Local Failure Patient Group 

The hemoglobin model does not produce statistically significant changes in fit (X2), 

survival at 2 Gy (S2), or half-time of dead cell resolving (T1/2) when compared to the original 

model. For the hemoglobin model, mean X2 is smaller, and mean S2 and mean T1/2 are larger, but 

none of these differences are statistically significant.  

The results of the matched-pairs t-tests for significance indicate that the hemoglobin 

model resulted in significant changes to output parameters for the Local Control patient group. 

However, changes were not significant for the overall patient group or the Local Failure patient 

group. To quantify the different effect the hemoglobin model may have on the LC and LF 

subgroups, t-tests for independent samples were performed. Table 5 summarizes the results of 

those tests.  
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Output 
Parameter 

Levene's 
F 

F 
Significance 

Equal 
Variance? DF 

t-
statistic p-value 

Mean 
Difference 

SE on 
Difference 

X2 0.573 0.452 Y 76 1.073 0.857 -91.181 85.007 
S2 2.047 0.157 Y 76 1.693 0.9527 -0.0863556 0.05102 
T1/2 20.96 0 N 18.8 4.203 0.000534 -15.3089 3.6424 

Table 5. Summary of significance tests for comparing the hemoglobin model LC output and the 
hemoglobin model LF output. Difference = Original Model parameter – Hemoglobin Model 

parameter. 
 

The p-value for the magnitude of change to T1/2 caused in the LC group compared to the 

magnitude of change to T1/2 caused in the LF group is statistically significant. It can be 

concluded that the hemoglobin model affects the LC group differently than it affects the LF 

group. The difference in effect between the two patient subgroups for X2 and S2 are not 

significant.  
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3.2 MATHEMATICAL OUTCOMES: Analytic Solutions for Surviving Cell Fraction S(t) 
and Regression Volume Ratio R(t) 
 

The mathematical outcome of this thesis is the analytic solution for surviving cell fraction 

S(t) and regression volume ratio R(t), where both are functions of time, and time is expressed in 

number of days into treatment. As previously stated, S2, and T1/2 are numerically fitted values 

from the volume equations simulated using the code, and they are treated as constants. Tk, the 

onset time of tumor repopulation, and Td, the effective tumor doubling time after repopulation 

begins, are held fixed at 21 and 3.5 days, respectively, throughout this study. Equations (26) 

below were obtained from solving the main model Equations (18). 

 

𝑆 𝑡 =   𝑒 ! !!!!   !  
!"#
!!

  !  !!!! !  ,

𝑅 𝑡 =   
1

− 1− 𝑆! + ln2𝑇!
− 𝐶!𝐻! +

ln2
𝑇!/!

{ − 1− 𝑆! +
ln2
𝑇!

− 𝐶!𝐻! 𝑒
! !"!
!!/!

!
+ [

ln2
𝑇!/!

]𝑒 ! !!!!   !  
!"#
!!

  !  !!!! !} 

 
(26) 

 
Equations (26) can be expressed more succinctly by Equations (26*) below: 
 

𝑆 𝑡 =   𝑒!" ,
𝑅 𝑡 =    !

!!!
[𝑎𝑒!!" + 𝑏𝑒!"]      

 
where       (26*) 

 

𝑎 = − 1− 𝑆! +
ln2
𝑇!

− 𝐶!𝐻! 

 

𝑏 =   
ln2
𝑇!/!

 

 
A complete analytic solution for regression volume ratio R(t) demonstrates agreement 

with the volume equations. Using the strategy of equation R(t) and Ri for any arbitrarily selected 

time, this completeness of the analytic solution can be tested. If Equations (26*) are a complete 
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solution, R(t) and Ri will be close in value. Patient 23 and Patient 34 were selected to test 

Equations (26*). The randomly selected time was day 18 of treatment. The results are given in 

Table 6.  

Patient R18 R(18) 
23 0.24196 0.3834 
34 0.21165 0.2920 

Table 6. Testing Ri and R(t) agreement. 
   

  R(t) is considerably larger than Ri for both patients. Even though R(t) is a  correct 

solution to the main model differential equations, R(t) and Ri are not close in value. Several 

possible reasons for this discrepancy and potential solutions are presented in Discussion sections 

4.2 and 4.3



CHAPTER 4: DISCUSSIONS 
 

4.1 DISCUSSING CLINICAL OUTCOMES 
 
Overall Patient Group 
 
 For the overall patient group, no changes in X2, S2, and T1/2 caused by the hemoglobin 

model are statistically significant. The changes observed in X2, S2, and T1/2 support the null 

hypotheses of the t-tests performed.  Using the hemoglobin model, this study is able to 

incorporate the oxygen effect as a fourth effect of RT through an additional variable HL and 

scaling parameter C2 without loss of goodness of fit or output parameter integrity for the overall 

patient group.  

Local Control Patient Group 

 For the Local Control patient group, changes in X2 and T1/2 caused by the hemoglobin 

model are statistically significant. The changes in X2 and T1/2 support the alternative hypotheses 

consistent with the hypothesis and specific aims of this thesis. The fact that the half-time of dead 

cell resolving, T1/2, significantly decreased indicates that the increased cell metabolism simulated 

by the oxygen effect is more influential than the increased dead cell volume, answering the 

questions posed in the null hypotheses of Methods section 2.4. Changes in S2 however, are 

insignificant, and support the null hypothesis of the t-test for changes in S2. Using the 

hemoglobin model, this study is able to incorporate the oxygen effect as a fourth effect of RT 

through an additional variable HL and scaling parameter C2 while improving the model fit and 

output parameter integrity for T1/2 for the LC patient group. 

Local Failure Patient Group 

For the Local Failure patient group, no changes in X2, S2, and T1/2 caused by the 

hemoglobin model are statistically significant. The changes observed in X2, S2, and T1/2 support 
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the null hypotheses of the t-tests performed.  Using the hemoglobin model, this study is 

able to incorporate the oxygen effect as a fourth effect of RT through an additional variable HL 

and scaling parameter C2 without loss of goodness of fit or output parameter integrity for the 

overall patient group.  

Of the three patient groups analyzed, only the LC group confirmed the thesis hypothesis 

that incorporating the oxygen effect into the model as another major effect of RT would improve 

goodness of fit or significantly change output parameter values. Since the LC group is 

characterized by its responsiveness to RT, this result is unsurprising. It can be concluded that the 

hemoglobin model is more powerful when used for patients whose tumors behave ideally in 

response to therapy. This conclusion is further supported by the significance tests for comparing 

the hemoglobin model LC output and the hemoglobin model LF output, as summarized in 

chapter 3 Table 4. Ultimately, the thesis hypotheses that X2 would decrease and T1/2 would 

change were proven for the LC group, but not the LF group or the overall group.  

 None of the three patient groups showed the hypothesized decrease in S2. Since the 

oxygen effect increases cell killing due to RT, this is a problematic result. Even at the low dose 

of 2 Gy, a decrease in survival is expected. There are several possible reasons that S2 did not 

decrease for the hemoglobin model. One possible cause of S2 trends seen in the hemoglobin 

model is the way HL and C2 were incorporated into the main model equations. Recall the analytic 

solution S(t) to the main model equation for dS(t)/dt from Equations (26) and (26*): 

 

𝑆 𝑡 =   𝑒
! !!!!   !  

!"#
!!
  !  !!!! ! =   𝑒!"   (26-26*) 

 
 For this solution, as the constant “a” increases, S(t) decreases. It is true that the 

hemoglobin model S(t) is smaller than the original model S(t) because the original model does 

not contain the “-C2HL” term. However, for a fixed S(t), subtracting off the hemoglobin term 
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drives up S2. A worthwhile future investigation would be to incorporate the hemoglobin term 

C2HL in such a way that it does not directly compete with S2 in the exponent. Another possible 

explanation for the behavior of S2 is that combination of RT and chemotherapy are confounding 

variables when it comes to cell killing. Recall that 26 patients received both forms of therapy. 

The model only accounts for RT cell killing, but certainly chemotherapy contributes to cell 

killing as well. A third possible explanation for the S2 trends observed in this study refers to the 

Target Model for cell survival described in chapter 1. The survival curve’s shoulder width is 

described by Dq [10]. If Dq is greater than 2 Gy, then increased cell killing may not be apparent 

at that dose because of sublethal repair of radiation damage. However, increased cell killing 

would still be apparent at higher doses. This explanation is testable by plotting analytic S(t) 

values for time points corresponding to a range of doses for each model, and then comparing the 

survival curves. 
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4.2 DISCUSSING MATHEMATICAL OUTCOMES 
 
 Chapter 3 Table 5 indicates a considerable discrepancy between the regression volume 

ratio predictions R(t) and Ri. There are two likely reasons for this. First, the main model 

equations don’t account for lapses in fractionated RT therapy that typically occur on weekends. 

These lapse periods should technically have unique expressions SL(t) and RL(t) rather than using 

S(t) and R(t). Two days of RT theoretically should not have the same cell surviving fraction and 

regression volume ratio as two days without treatment. The second likely reason for the 

discrepancy is that the main model equations don’t account for onset time of tumor repopulation 

Tk, and the volume equations do account for it. A solution to this problem is to break up all 

analytic solutions S(t), SL(t), R(t), and RL(t) into conditional expressions based on whether or not 

t > Tk, as in the volume equations (16) and (17). An analytic solution addressing both these 

issues is possible, using a step function in dose days of conditional expressions in t, as shown 

below in Equations (27):  

 

𝑆! 𝑡 =   
𝑆 𝑡 ,                          𝑡 ≤ 𝑇!
𝑆!"#$# 𝑡 ,        𝑡 > 𝑇!!!!!

!!!!
              +                   

𝑆! 𝑡 ,                          𝑡 ≤ 𝑇!
𝑆!,!"#$# 𝑡 ,        𝑡 > 𝑇!!!!!

!!!!!!
   

 

+   
𝑆 𝑡 ,                                  𝑡 ≤ 𝑇!
𝑆!"#$# 𝑡 , 𝑡 > 𝑇!!  !!!!!

!!!!!!!!!      

                +                     
𝑆! 𝑡 ,                          𝑡 ≤ 𝑇!
𝑆!,!"#$# 𝑡 ,        𝑡 > 𝑇!!!!!!!!!!

!!!!!!!!!!!!      

            +⋯ 

 
 
 
 

𝑅! 𝑡 =   
𝑅 𝑡 ,                          𝑡 ≤ 𝑇!
𝑅!"#$# 𝑡 ,        𝑡 > 𝑇!!!!!

!!!!
              +                 

𝑅! 𝑡 ,                            𝑡 ≤ 𝑇!
𝑅!,!"#$# 𝑡 ,        𝑡 > 𝑇!!!!!

!!!!!!
   

 
 

+   
𝑅 𝑡 ,                                    𝑡 ≤ 𝑇!
𝑅!"#$# 𝑡 , 𝑡 > 𝑇!!!!!!!

!!!!!!!!!

              +               
𝑅! 𝑡 ,                          𝑡 ≤ 𝑇!
𝑅!,!"#$# 𝑡 ,        𝑡 > 𝑇!!!!!!!!!!

!!!!!!!!!!!!      

              +⋯     
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(27) 
 
where S(t) and R(t) described therapy days, SL(t) and RL(t) describe lapse days, the subscript 

“repop” means the expression accounts for the onset of tumor repopulation, and the subscript “c” 

stands for “complete,” as in, “a complete solution.” The indices i are treatment days, and the 

indices j are lapse days. n is the number of consecutive treatment days at the beginning of RT, n’ 

is the number of consecutive treatment days after the first lapse, n’’ would be the number of 

consecutive treatment days after the second lapse, and so on. Similarly, m is the number of 

consecutive days of the first lapse, m’ is the number of consecutive days of the second lapse, and 

so on. This type of solution would address inadequacies of analytic solutions S(t) and R(t) as 

given in equations (26) and (26*); but, it is much more mathematically cumbersome. However 

complex, these time-dependent analytic expressions have great potential to contribute to 

treatment plans that are both customized and adaptive.  
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4.3 FUTURE DIRECTIONS FOR RESEARCH 
 
 The above discussions of the clinical and mathematical outcomes of this study motivate 

several directions for future research. Reinvestigating the strategy for incorporating the 

hemoglobin variable HL and scaling term C2 into the main model equations may improve the 

model’s ability to simulate the change in S2 caused by incorporating the oxygen effect. The main 

model equations reflect the change using a linear relationship between S2 and HL, while the 

volume equations reflect the change using a multiplicative relationship between S2 and HL. This 

inconsistency is not easily resolved within the confines of the model equations. A way to modifiy 

the model that is more consistent between the main model equations and the volume equations is 

a useful future step. Perhaps the most crucial extension of this study is the determination of the 

expressions in Equations (27). Cell surviving fraction and regression volume ratio for lapse 

times, SL(t) and RL(t), are needed. Additionally, S(t), R(t), SL(t), and RL(t) each need a 

corresponding repopulation expression for the bracketed equations sets. Development of the 

complete analytic solutions Sc(t) and Rc(t) is a major milestone to strive for in further 

development of this kinetic model.  

 As mentioned previously, the original model already simulates the oxygen effect to some 

extent. The low S2 values produced by the original model indicate this is the case. An important 

future direction for research involving the hemoglobin model is to quantify the extent to which 

the original model simulates the oxygen effect. It would be ideal to have separate terms 

accounting for direct radiation cell-killing and the indirect action of the oxygen effect. This 

would enable more in-depth studies involving different mechanisms of radiation cell killing.  

 In addition to improving the hemoglobin model as described above, future directions in 

research can now use the hemoglobin model to simulate the effect of changing blood oxygen 
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content on tumor shrinkage. There is an abundance of discussion in the oncology literature on the 

effect of blood oxygen levels and anemia on tumor response to RT [30, 36]. The hemoglobin 

model is poised to investigate those questions from a mathematical standpoint.  

 Another future direction for development of the hemoglobin model is to account for 

hypoxic fractions, which can be estimated from MRI images. This refinement of the oxygen 

effect within the model could improve accuracy and address a topic that is important in treatment 

planning.  

  Finally, just as the original model becomes the hemoglobin model in this study, perhaps 

the hemoglobin model could become the “hemoglobin + fifth effect” model. Good candidates for 

the fifth effect of RT will be dose-dependent and tumor repopulation-dependent. For example, 

there is evidence that tissue acidosis, measureable in terms of blood pH, is a predictor of therapy 

outcomes [4].  

 Though development of in vivo patient models like the hemoglobin model presented in 

this thesis presents many challenges, the potential of these models to produce further insight into 

pressing and relevant topics in oncology makes them a worthy investment of research resources.  
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APPENDIX A: C++ CODE FOR HEMOGLOBIN MODEL 

#include <fstream> 
#include <iomanip> 
#include <assert.h> 
#include <math.h> 
#include <iostream> 
#include <stdlib.h> 
using namespace std; 
 
 
int main(void) 
{ 
 ifstream infp1, infp2, infp3; 
 infp1.open("dose_time.dat",ios::in); 
 infp2.open("vol_time.dat",ios::in); 
 infp3.open("hemoglobin.dat",ios::in); 
 assert(infp1); 
 assert(infp2); 
 assert(infp3); 
 
 ofstream outfp1, outfp2; 
 outfp1.open("out.dat",ios::out); 
 outfp2.open("vol_change.dat",ios::out); 
 assert(outfp1); 
 assert(outfp2); 
 outfp1 << setiosflags(ios::right); 
 outfp1 << setiosflags(ios::fixed | ios::showpoint) << setprecision(4); 
 //outfp1 << setiosflags(ios::scientific | ios::showpoint) << setprecision(4); 
 outfp2 << setiosflags(ios::right); 
 outfp2 << setiosflags(ios::fixed | ios::showpoint)  << setprecision(4); 
 
 int i,j,jj,k,m,n, nday=250; 
 int i0,j0,m0,n0; 
 double sf, ht, eta, t, rate1[300], rate2[300], aa,bb,cc,dd,ee, dose1[300]; 
 double dose[300],vol[300],v1[300],v2[300],vom[300],va[300],vb[300]; 
 
 int day0[4]; 
 double vol1[4],sv1[4],vol2[4],sd2[4]],vol11[4],vol1s[4]; 
 
 double doubleTime1, doubleTime10 = 2.; // doublling time of prolif. (day) 
 double prolifRate; 
 
 double chi, chi2, chi0; 
 
 for (i=1; i<300; i++) 
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   {dose[i] = 0.0; 
    dose1[i]=0.0 
  //vom[i] = 0.0; 
   } 
 
 for (i=1; i<90; i++) 
   { 
   infp1>>j>> dose[i]; 
   if (infp1.eof())break; 
   } 
 
 for (i=1;i<100; i++) 
   { 
   count << "i=  " << i << "   dose= " << dose{i} << endl; 
   } 
 
    for (i=0; i<4; i++) 
    { 
    infp2 >> day0{i] >> vol2[i] >> sd2[i] >> vol1[i] >> sd1[i]; 
  cout << ds1[i] << endl; 
  vol11[i]=0.0; 
    } 
 
double hemo1, hemo10 = 10.0; 
for (i=1; i<2; i++)         
  { 
  infp3 >> hemo10; 
  if (infp3.eof( )) break; 
  } 
 
double sf1, sf10 = 0.2; 
double sf2, sf20 = 0.4; 
double resoTime1, resoTime10 = 8.0; 
double resoTime2, resoTime20 = 8.0; 
 
chi0 = 100000000.0; 
 
for (m=0; m<800; m++) 
 { 
 sf1 = sf10 + m/1000.0; 
 
  for (n=0; n<nday; n++) 
 { 
 resoTime1 = 1.5 + resoTime10*n/20.; 
 
 for (jj=0; jj<100;jj++) 
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  { 
  hemo1 =   jj/1000000.0; 
 
   for (j=0; j<1; j++) 
  { 
  doubleTime1 = 3.5; 
  prolifRate = exp(log(2.0)/doubleTime1); 
 
  vol[0] = 1.0; 
  v1[0] = 1.0; 
  v2[0] = 0.0; 
 
  for (i=1; i<nday+1; i++) 
  { 
  eta = log(2.0)/resoTime1; 
  aa = dose[i]/1.8; 
 
    if (i<22) 
    { 
    v1[i]=v1[i-1]*pow(sf1,aa)*(1-hemo1*hemo10); //corresponds to volume 
equations in hemoglobin model 
    }  
/* Tk= 21 days, where Tk is the onset time of tumor repopulation for cervical cancer. This value 
is from the literature. So, for the case where the day corresponds to less than 22, we calculate the 
expected tumor volume as shown above. */ 
    else 
    { 
    v1[i]=v1[i-1]*pow(sf1,aa)*prolifRate*(1-hemo1*hemo10);  //corresponds 
to volume in hemoglobin model 
    }  
/* this loop handles the situation when the day is past Tk, so it is assumed the tumor has begun 
repopulating. In this case, we use a different  equation to calculate the expected volume.*/ 
 
    if (i<22) 
    { 
   v2[i] = v2[i-1]*exp(-eta) + (v1[i-1] - v1[i]) + v1[i-
1]*pow(sf1,aa)*hemo1*hemo10; 
    } 
    else 
   { 
    v2[i] = v2[i-1]*exp(-eta) + (v1[i-1] - v1[i]) + v1[i-
1]*pow(sf1,aa)*prolifRate*hemo1*hemo10;          
   
    } 
 
    vol[i] = v1[i] + v2[i]; 
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    rate2[i] = vol[i]*100.0; 
 
    if (i==day[0]) 
    { 
               
  vol11[0]=rate2[i]; 
    for (k=1; k-4; k++) vol11[k]=vol1[k]*vol11[0]/100; 
    } 
    } 
 
   chi2 = 0.0; 
   for (i=1; i<4; i++) 
  chi2 = chi2 + (rate2[day0[i]] - vol11[i])*(rate2[day0[i]]-vol11[i]) 
               
 /sd1[i]/sd1[i]; 
 
  if (chi0>chi2); 
  { 
  m0 = m; 
  n0 = n; 
  j0 = jj; 
  bb = sf1; 
  cc = respTime1; 
  dd = doubleTime1; 
  ee = hemo1; 
  chi= chi2; 
   

for(i=1; i<nday+1; i++) vom[i]=vol[i]; 
  for(i=0; i<4: i++) vol1s[i]=vol11[i]; 
  } 
  } 
  } 
  } 
 
    cout << setprecision(0) 
       << setw(8) << m0 
       << setw(8) << n0 
       << setw(8) << jo << setprecision(5) 
       << setw(12) << chi << setprecision(3) 
       << setw(10) << bb 
       << setw(10) << cc 
       << setw(10) << dd 
       << setw(10) << ee 
       << endl; 
 
    outfp1 << setprecision(0) 
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       << setw(8) << m0 
       << setw(8) << n0 
       << setw(8) << jo << setprecision(5) 
       << setw(12) << chi << setprecision(3) 
       << setw(10) << bb 
       << setw(10) << cc 
       << setw(10) << dd 
       << setw(10) << ee 
       << endl; 
  } 
 
  for (i=1; i<nday+1; i++) outfp2 << setprecision(0) 
     << setw(8) << i << setprecision(5) 
     << setw(12) << vom[i] << endl; 
 
  for (i=0; i<4; i++) cout << setprecision(0) 
     << setw(3) << day0[i] << setprecision(5) 
     << setw(10) << vol1s[i] << endl; 
 
  for (i=0; i<4; i++) outfp1 << setprecision(0) 
     << setw(3) << day0[i] << setprecision(5) 
     << setw(10) << vol1s[i] << endl; 
return(0); 
 
}
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