
GROUP MUTUAL EXCLUSION IN LINEAR TIME AND SPACE

Yuan He

Department of Computer Science

East Carolina University

July 2014

Director of Thesis: Dr. Krishnan Gopalakrishnan

The Group Mutual Exclusion (GME) problem, introduced by Joung, is a nat-

ural extension of the classical Mutual Exclusion problem. In the classical Mu-

tual Exclusion problem, two or more processes are not simultaneously allowed

to be in their CRITICAL SECTION, a piece of code where a common resource

is accessed. In the GME problem, it is necessary to impose mutual exclusion on

different groups of processes in accessing a resource, while allowing processes

of the same group to share the resource. The Group Mutual Exclusion problem

arises in several applications and is the focus of this thesis.

We present an algorithm for the GME problem that satisfies the properties of

Mutual Exclusion, Starvation Freedom, Bounded Exit, Concurrent Entry and First-

Come-First-Served. Our algorithm has Θ(N) shared space complexity and O(N)

RMR (Remote Memory Reference) complexity. Our algorithm is developed by

generalizing the well-known Lamport’s Bakery Algorithm for the classical mu-

tual exclusion problem, while preserving its simplicity and elegance. Just like

Lamport’s Bakery Algorithm, our algorithm has the disadvantage that the token

numbers can grow in an unbounded manner.

When all shared variables are required to be of bounded size, Hadzilacos

presented an algorithm, whose shared space complexity is Θ(N2) and whose

RMR complexity is claimed to be O(N). Hadzilacos posed as an open problem,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarShip

https://core.ac.uk/display/71976348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the development of a linear time and space algorithm that uses only bounded

shared variables and only simple read and write instructions. As a solution to

the open problem, Jayanti et al. presented a space efficient adaptation of the

above algorithm that uses only Θ(N) shared space and inherited the claim that

the RMR complexity is O(N). We show that both of these algorithms are of RMR

complexity Ω(N2) and thus demonstrate that both claims are erroneous. So, the

open problem posed by Hadzilacos is still open.

GROUP MUTUAL EXCLUSION IN LINEAR TIME
AND SPACE

A Dissertation

Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Yuan He

July 2014

c© 2014 Yuan He

GROUP MUTUAL EXCLUSION IN LINEAR TIME AND SPACE

By

Yuan He

APPROVED BY:

DIRECTOR OF THESIS:
Dr.Krishnan Gopalakrishnan

COMMITTEE MEMBER:
Dr. Karl Abrahamson

COMMITTEE MEMBER:
Dr. Junhua Ding

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE:
Dr. Karl Abrahamson

DEEN OF THE

GRADUATE SCHOOL:
Dr. Paul J. Gemperline

Acknowledgments

I am indebted to many people who first helped me to get into East Carolina Uni-

versity, and then helped me to get out again. The first and the most important of

all, the best part of my student life in ECU is to have Krishnan Gopalakrishnan

as my advisor. He shows me how attractive the computer science research is,

and how wonderful an academic life will be. It wouldn’t be possible for me to

finish this without his help.

I would like to express my sincerest appreciation to Junhua Ding, for receiv-

ing guidance and advices about research. I am also grateful to Karl Abraham-

son, for the time and energy he spent on my dissertation and thesis defense. I

would also like to express my thanks and appreciation to faculties in the Com-

puter Science department, Qing Ding, Masao Kishore, Nasseh Tabrizi and Ron-

nie Smith. Many thanks also to my roommate Hui Guo, for helping me a lot in

past two years.

Foremost, I thank my parents for their unwavering support and encourage-

ment, both during graduate school and the years before.

Finally, I want to thank Lei Wang, for all the love and support, for her pa-

tience. I could not have finished this without you.

Table of Contents

1 Introduction 1

1.1 The Mutual Exclusion Problem . 1

1.2 The Group Mutual Exclusion Problem 3

1.3 Fair Properties of Group Mutual Exclusion 6

1.4 Modeling and Measures of Complexity 8

2 Literature Survey 13

2.1 Joung’s Algorithm . 14

2.2 Hadzilacos’s Algorithm . 23

2.3 JPT Algorithm . 28

2.4 Takamura and Igarashi’s Algorithms 32

3 Generalizing the Bakery Algorithm 36

3.1 Lamport’s Bakery Algorithm . 36

3.2 A GME Bakery Algorithm Using Fetch-and-Inc 39

3.2.1 Introduction and Model . 39

3.2.2 Commentary of the algorithm 40

3.2.3 Proof of the Correctness . 41

3.2.4 Complexity Analysis . 43

3.3 A GME Bakery Algorithm Using Only Read/Write Instructions . 44

3.3.1 Introduction . 44

3.3.2 Commentary of the algorithm 45

3.3.3 Proof of the Correctness . 47

3.3.4 Complexity Analysis . 49

4 A Flaw in the Literature 51

4.1 A Flaw in the Literature . 52

4.1.1 One-bit Mutual Exclusion Algorithm 53

4.1.2 RMR Complexity Analysis 55

4.2 Bounding Lamport’s Bakery Algorithm 58

4.2.1 Introduction . 58

4.2.2 Black-White Bakery Algorithm 59

5 Conclusion 63

5.1 Summary . 63

5.2 Open Problems . 65

Bibliography 67

List of Figures

1.1 Process Structure in Mutual Exclusion Problem 2

2.1 Header for Joung’s Algorithm in Figure 2.2 15

2.2 Joung’s Algorithm; Process i ∈ {1..N} 15

2.3 Function NEXT SESSION(session) for Joung’s algorithm in Fig-

ure 2.2 . 16

2.4 Method NONE IN CS(mysession) for Joung’s Algorithm in Fig-

ure 2.2 . 16

2.5 Method NO SUCCESSOR(mysession) for Joung’s Algorithm in

Figure 2.2 . 16

2.6 Method ALL PASSIVE(Turn) for Joung’s algorithm in Figure 2.2 . 17

2.7 Header for Hadzilacos’s Algorithm in Figure 2.8 24

2.8 Hadzilacos’s Algorithm; Process i ∈ {1..N} 25

2.9 JPT Algorithm; Process i ∈ {1..N} 30

2.10 Method CONFLICT(mysession) for JPT Algorithm in Figure 2.9 . 31

2.11 Takamura and Igarashi’s Bakery Algorithm 34

3.1 Lamport’s Bakery Algorithm . 37

3.2 A GME Bakery Algorithm Using Fetch-and-Inc 40

3.3 A GME Algorithm Using Only Read/Write Instructions 45

4.1 One-bit Mutual Exclusion Algorithm 55

4.2 Black-White Bakery Algorithm . 60

Chapter 1

Introduction

1.1 The Mutual Exclusion Problem

Mutual Exclusion problem is a classical problem in computer science introduced

by Dijkstra in 1965 [7]. The problem arose in the context of contention for use

of shared resources by concurrent processes. For example, several processes

may want to access a printer or a disk driver. It would be a complete disaster if

multiple processes use the printer or a disk simultaneously.

To formalize the problem, we assume all running processes repeatedly cycle

through four sections of code viz. REMAINDER SECTION, ENTRY SECTION,

CRITICAL SECTION (CS) and EXIT SECTION, in that order (Figure 1.1).

If a process does not request accessing the shard resource, it is in the RE-

MAINDER SECTION. A process accesses the shared resources only when in the

CRITICAL SECTION code. The ENTRY SECTION consists the code between

the REMAINDERS SECTION execution and subsequent CRITICAL SECTION

execution, and the EXIT SECTION generates the code between a CRITICAL

SECTION execution and the subsequent REMAINDER SECTION execution.

Solving Mutual Exclusion problem consists of designing code for the ENTRY

SECTION and the EXIT SECTION such that following properties are satisfied:

Mutual Exclusion (ME): No two processes can be in the CRITICAL SECTION

at the same time.

Starvation Freedom (SF): If no process stays in the CRITICAL SECTION for-

ever, then any process that enters the ENTRY SECTION eventually enters the

CRITICAL SECTION.

Figure 1.1 Process Structure in Mutual Exclusion Problem
1: repeat
2: REMAINDER SECTION
3: ENTRY SECTION
4: CRITICAL SECTION (CS)
5: EXIT SECTION
6: forever

A mutual exclusion algorithm guarantees that processes requesting the CS

eventually enter the CS. However, if multiple processes request to enter the CS

at the same time, the order that processes enter the CS is undefined. Consider,

for instance, a process i requests to enter the CS and stays in the ENTRY SEC-

TION. After a long time, a process j requests and enters the CS while process i

is still in the ENTRY SECTION. To ensure fairness in this case, a mutual exclu-

sion algorithm is often required to satisfy the property First-Come-First-Served

(FCFS). The idea is to make processes enter the CS in the same order in which

their requests are made. Lamport [16] originally formalized the FCFS property.

We split the ENTRY SECTION into two parts: a doorway part and a following

waiting room part. The doorway is a code part that the process can finish within

a bounded number of its own steps. The waiting room contains the part that

the process is busy-waiting on. Once a process goes through the waiting room,

2

it enters the CS. Thus, a mutual exclusion algorithm is fair if it satisfies the fol-

lowing property:

First-Come-First-Served (FCFS): If process i finished the doorway before pro-

cess j starts the doorway, process j does not enter the CRITICAL SECTION

before process i.

1.2 The Group Mutual Exclusion Problem

Mutual exclusion guarantees competing processes access a shared resource ex-

clusively. However, in applications such as Computer Supported Cooperative

Work (CSCW), it is necessary to keep mutual exclusion while still having some

degree of concurrency. An example named “Congenial Taking Philosophers” is

introduced by Joung [12]. Consider a set of n philosophers who want to think

alone and talk in forum. Suppose that there is only one meeting room for talk

(CRITICAL SECTION), a philosopher can attend a forum only if the meeting

room is empty or another philosopher interested in the same forum is already

in the meeting room (concurrency). The difficulty of solving the problem is

to ensure that philosophers who want to attend the same forum can enter the

meeting room simultaneously, while philosophers requesting different forum

do not stay in the meeting room at the same time.

Obviously, a mutual exclusion algorithm can not provide the concurrency

while preserving the mutual exclusion property. In the mutual exclusion prob-

lem, no two philosophers are allowed in the meeting room at any point of time.

This leads us to the following generalization of the mutual exclusion problem.

Group Mutual Exclusion (GME) problem, first introduced and defined by

Joung [12] in 1998 , is a natural generalization of the classical mutual exclusion

problem. As before, we can think of the processes repeatedly cycling through

3

four sections of code viz., REMAINDER SECTION, ENTRY SECTION, CRITI-

CAL SECTION (CS) and EXIT SECTION, in that order. In GME, when a process

leaves the REMAINDER SECTION, it requests a “session”, and wants to enter

into the CS. Unlike the mutual exclusion problem, multiple processes with the

same session are allowed to be in the CS at the same time. An execution of the

last three sections is called an invocation. To request a “session”, a process picks

a session number (usually it is done by simply writing an integer to a private

variable) when it leaves the REMAINDER SECTION, and this session number

can be different in each invocation. A process is said to be an active process, if

it is in one of its invocation. We will say that processes are in conflict if their

session numbers are different.

A solution to the GME problem consists of developing code for the ENTRY

SECTION and the EXIT SECTION so that the following four properties are sat-

isfied:

Mutual Exclusion (ME): No two conflicting processes can be in the CRITICAL

SECTION at the same time.

Starvation Freedom (SF): If no process stays in the CRITICAL SECTION for-

ever, then any process that enters the ENTRY SECTION eventually enters the

CRITICAL SECTION.

Concurrent Entering (CE): In the absence of conflicting processes, a process in

the ENTRY SECTION should be guaranteed to enter the CRITICAL SECTION

within a bounded number of its own steps.

Bounded Exit (BE): After entering the EXIT SECTION, a process is guaranteed

to leave it within a bounded number of its own steps.

The crucial difference between GME problem and the classical mutual ex-

clusion problem is the concurrent entering property. The property was stated

4

informally by Joung [12] and then was later formalized by Hadzilacos [9]. The

intent of the concurrent entering property is to ensure concurrency: if multi-

ple active processes request the same session and there is no conflicting process,

these processes should be allowed to enter the CS without unnecessary synchro-

nizations among themselves. If we do not care to ensure the concurrent entering

property for GME problem, then almost any algorithm for classical mutual ex-

clusion problem solves the GME. On the other hand, an algorithm of GME also

solves the classical mutual exclusion problem, by simply assigning each process

an unique session.

Several algorithms for the GME problem [13, 19, 1] satisfy a weaker version

of this concurrency property, called Concurrent Occupancy property. Keane and

Moir [13] gave a precise definition of the concurrent occupancy property.

Concurrent Occupancy: In the absence of conflicting processes, a process that

requests a session will eventually enter the CRITICAL SECTION (even if other

processes do not leave the CS).

The concurrent occupancy property wrongly formalizes Joung’s intention

that was stated informally in his paper. The original idea of the concurrency in

the group mutual exclusion problem is that in the absence of conflicting pro-

cesses, processes requesting the same session can not only concurrently stay in

the CS but also enter the CS simultaneously without unnecessary synchroniza-

tions. Consider a general solution of GME which has the properties of ME, SF,

BE and Concurrent Occupancy. Suppose process i and process j are requesting

the CS with the same session. If process i is synchronizing with process j in

the ENTRY SECTION and we temporarily stop process j, then the concurrent

occupancy does not guarantee that process i will enter the CS within a bounded

number of its own steps. Accordingly, process i might be delayed to enter the

5

CS for arbitrarily long even though there is no conflict. On the other hand, a

GME solution with the Concurrent Entry property will guarantee process i en-

ters the CS within a bounded number of its own steps. It is obvious to see that

the concurrent entering property implies the concurrent occupancy property.

1.3 Fair Properties of Group Mutual Exclusion

A GME algorithm has the concurrency to let similar processes access the re-

sources simultaneously while preserving the safety to prevent conflicting ac-

cesses. However, like the classical mutual exclusion problem, no stipulation is

made about the order in which processes can enter the CS. To ensure fairness,

it is often required to satisfy the First-Come-First-Served (FCFS) property in ad-

dition to the above mentioned four basic properties. Informally, FCFS property

demands that conflicting processes are allowed into the CS in the same order

in which they made requests. To formalize the idea, we split the ENTRY SEC-

TION into two parts viz., Doorway section and Waiting room section, like we did

in the classical mutual exclusion problem. The doorway section is a wait-free

section of code, i.e., a section of code that can be completed by a process in a

bounded number of its own steps. The waiting room section is where the actual

synchronization with other processes occurs and may entail indefinite waiting.

Processes enter the CS after finishing the waiting room section.

The concept of doorway helps us to define the following two relations be-

tween processes:

Doorway-Precede: If process i finished executing the doorway section before

process j begins to execute the doorway section, then we say process i doorway-

precedes process j.

6

Doorway-Concurrent: If neither process i doorway-precedes process j nor pro-

cess j doorway-precedes process i, then we say process i is doorway-concurrent

with process j

Now, we are ready to state the FCFS property formally:

First-Come-First-Served (FCFS): If process i doorway-precedes process j, and

they request different sessions, then process j does not enter the CRITICAL

SECTION before process i.

The FCFS property in GME ensures fairness if conflicting processes request

to enter the CRITICAL SECTION. However, it fails to ensure fairness among

processes with the same session. For example, Suppose process i and process j

request the CS with the same session S. Process i doorways-proceeds process

j. Suppose another process k requesting a conflicting session S ′ is doorway-

concurrent with both process i and process j. It is possible that process j enters

the CS first because of the concurrent entry property. However, process i can be

blocked by the conflicting process k in the ENTRY SECTION. Thus, although

process i finished the doorway before process j starts the doorway, the FCFS

property does not guarantee the order in which these three processes enter the

CS. Therefore, Jayanti et al. [11] formalized another property to ensure fairness

among processes with the same sessions.

First-In-First-Enable (FIFE): Suppose a process i doorway-precedes a process

j, and both process i and process j request the same session. If process j en-

ters the CRITICAL SECTION before process i, then process i should enter the

CRITICAL SECTION within a bounded number of its own steps.

The concurrent entry property captures the Joung’s idea that, if there is no

conflict, a process should enter the CS without waiting. A natural extension to

7

strengthen the property is as follows: if a process finished the doorway before

any conflicting process, that process should enter the CS without waiting. This

property also ensures fairness in the sense that conflicting processes arriving

later can not prevent a process that has already finished the doorway from en-

tering the CS. Jayanti et al. [11] gave such a stronger version of the concurrent

entry property.

Strong Concurrent Entering: If a process i requests a session S and process i

doorway-precedes every conflicting process, then process i enters the CRITI-

CAL SECTION within a bounded number of its own steps.

In conclusion, an algorithm that solves the group mutual exclusion problem

must satisfy four basic properties of ME, CE, BE and SF. In addition to these four

basic properties, it should be desirable if the algorithm can satisfy the fairness

properties of GME: FCFS, FIFE and strong concurrent entering.

1.4 Modeling and Measures of Complexity

In distributed computing, there are two major types of models for mutual ex-

clusion problems: message-passing model and shared-memory model. In this

thesis, we discuss the problem and solutions in shared-memory model.

We consider a system consisting of N processes, named 1, 2, . . . N and a set of

shared variables. Each process also has its own private variables, which are not

accessible to other processes. A process can communicate with other processes

only by writing into and reading from the shared variables. An execution is

modeled as a sequence of process steps. In each step, a process performs some

local computation or writes into or reads from a shared variable. The processes

take steps asynchronously. Specifically, this means that an unbounded numbers

8

of steps of other processes could be performed in between two consecutive steps

of a process. Also, we assume all processes are live; this means that if a process

has not terminated it will eventually execute its next step. For simplicity of our

discussion of GME algorithms, we sometimes temporarily suspend a process;

this means some steps by other processes are taken during the “freezing”. The

process continues to execute the next step after we resume the process from

freezing.

We only allow simple read and write operations on shared variables. Al-

though we assume that these read and write operations are atomic, we do not

assume that processes have access to more powerful synchronization primitives

such as Fetch-and-Add, Compare-and-Swap etc. However, one of our algorithms in

chapter 3 uses Fetch-and-Add, and hence, we will discuss that instruction further

there.

Two types of shared variables are commonly used in distributed algorithms:

bounded registers and unbounded registers. Bounded shared register means there

is a bound on the maximum value that can be stored in the shared variable.

Unbounded register can store an arbitrarily large value in them.

There are two general types of shared-memory models in the literature, viz.,

Distributed Shared Memory (DSM) model and Cache-Coherent (CC) model. The

difference of these two models depends on the physical location of the shared

variable and how processes access the shared variables.

In the DSM model, each processor has its own memory module and each

shared variable is assigned and belongs to a particular processor. When a pro-

cess is referencing a shared variable, if the shared variable is allocated to itself,

the access is a local memory reference; if the shared variable is allocated to another

processor, the access is a remote memory reference. For example, if there are two

9

processes i and j, and two shared variable vi and vj . We assume vi is stored

in the memory module of process i and vj is stored in the memory module of

process j. If process i is referencing vi or process j is referencing vj , the access

is a local memory reference. On the other hand, if process i is accessing vj or

process j is accessing vi, the operation is a remote memory reference.

In the CC model, all shared variables are located in a global memory module

that is not allocated to any particular processor. Each processor has its private

cache that is associated with the global memory module. On such a machine,

a shared variable becomes locally accessible by migrating it to a local cache.

In the cache, the copy remains there until it is invalidated as a result of the

shared variable being modified by some other process i.e., some other processes

overwriting the shared variable in the global memory module (even if the newly

written value is the same as the previous value). Migrating a shared variable to

a processor’s local cache is considered as a remote memory reference. Also,

when a process writes a shared variable, the process writes the variable to the

global memory module, which also involves a remote memory reference. In

general, a process must make a remote memory reference whenever it writes a

shared variable, tries to read a shared variable for the first time and tries to read

an invalid shared variable. For example, if there are two processes i and j, and

a shared variable v in a system. If process i or process j reads v for the first time,

they need to copy the value of v from the global memory module into its local

cache, which is a remote memory reference. If process i writes a value into v,

it also makes a remote memory reference. When process j subsequently reads

v after process i’s write operation on v, even if v is already in process j’s local

cache, it is invalidated by the hardware protocol and thus results in a remote

memory reference for process j to copy the new value of v to its local cache.

10

The idea of the remote memory reference is formally defined as follows:

Remote Memory Reference (RMR): A Remote Memory Reference (RMR) by

process i is an attempt to access a memory location that is not physically located

in process i’s local memory or its local cache.

In this thesis, the term space complexity means shared space complexity in

this thesis. Shared space complexity counts the total amount of shared space a

solution entails. We do not count the private variables when measuring space

complexity.

We use the term time complexity to denote Remote Memory Reference

(RMR) complexity. Remote memory references are the most time consuming

operations because they involve interconnect traversal and hence we use RMR

complexity as a measure of the performance of the algorithm.

RMR Complexity: The RMR complexity of an algorithm that solves the GME

problem is defined to be the maximum number of remote memory references

that a process uses when it executes the ENTRY SECTION and EXIT SECTION.

It is important to note that most mutual exclusion algorithms use busy-wait

loops. The idea is that a process spins on a variable until another process modi-

fies that variable to let the waiting process make progress. In the CC model, the

spinning on a shared variable is counted as only one remote memory reference

if the value is not changed. In the DSM model, if the spin variable is not located

in local memory of the process, the busy-wait will involve an unbounded num-

ber of remote memory references. Hence, it is desirable to make processes spin

on local variable only.

Local-Spin: A spin that involves only registers those are physically in the local

memory.

11

An algorithm in which all spins are local is called a Local-Spin algorithm.

12

Chapter 2

Literature Survey

We conduct a literature survey in this chapter. We first introduce Joung’s algo-

rithm [12], which is the first algorithm that solves the group mutual exclusion

problem. Then, in section 2.1, we present an algorithm discovered by Hadzi-

lacos [9], which is the first group mutual exclusion algorithm that satisfies the

FCFS property. Next, in section 2.2, we present a modification of the above algo-

rithm that has reduced shared space complexity of Θ(N) by Jayanti et al.[11]. At

last, we present an algorithm by Takamura and Igarashi [19]. They developed

the algorithm by generalizing Lamport’s Bakery Algorithm. Their algorithm

does not have the concurrent entry property and the starvation freedom prop-

erty. Hence, their algorithm is not a valid GME algorithm.

Keane and Moir [13], Alagarsamy and Vidyasankar [15] also presented sev-

eral GME algorithms, however, their algorithms do not satisfy the concurrent

entry property. We will not discuss these algorithms in this thesis since they do

not correctly solve the problem.

2.1 Joung’s Algorithm

Joung [12] formulated the notion of the group mutual exclusion and presented

the first algorithm to solve it in 1998. The idea of Joung’s algorithm comes from

Knuth’s 2-process mutual exclusion algorithm [14]. It uses a shared variable

Turn to resolve the competition between two conflicting processes. Joung’s al-

gorithm has Θ(N) shared variable complexity and unbounded RMR complexity

in both DSM and CC model. Another drawback of the algorithm is that a bound

on the number of sessions should be known in advance.

Three shared variables are used in Joung’s algorithm depicted in Figure 2.1.

The first one is Turn, an integer variable with a value in {1,2,..,m}, where m is

total number of sessions. Turn indicates the session that is currently enabled.

Processes requesting the enabled session have higher priority to enter the CS

than other processes. The second one is Flag, an array of size N , where N is

the total number of processes. Flag[i] represents process i’s requesting status in

the system and it has two components. The first component of Flag[i] is a single

variable with a value in {PASSIVE, REQUEST, IN CS}. A value of “PASSIVE”

means process i is in the REMAINDER SECTION. A value of “REQUEST” in-

dicates process i is in the ENTRY SECTION and requesting a session. A value

of “IN CS” represents process i has a temporary permission to enter the CS or

process i is currently in the CS. A process that has a temporary permission will

fail to enter the CS if there could be a conflict. The second component of Flag[i]

is a single variable of an integer. It represents process i’s current session. If it

is 0, then process i is not requesting any session. The third shared variable is

Successor, an integer array of size N . Process i is said to be “captured” if it finds

Successor[i] is equal to its session number. A captured process can directly enter

the CS. The private variable mysession saves the session number of the process.

14

It is stored in the process’ local memory and can only be accessed by it.

Figure 2.1 Header for Joung’s Algorithm in Figure 2.2
shared variables:

Turn: integer from {1..m}, initialized arbitrarily
Flag: array[1..N] of {(PASSIVE, 0), (REQUEST, integer), (IN CS, integer)},

initially all (PASSIVE, 0)
Successor: array[1..N] of integer, initially all 0

private variables:
mysession: integer, initially 0

Figure 2.2 Joung’s Algorithm; Process i ∈ {1..N}
1: repeat
2: REMAINDER SECTION

3: Flag[i] := (REQUEST,mysession)
4: Successor[i] := 0
5: repeat
6: Flag[i] := (REQUEST,mysession)
7: await (Successor[i] = mysession) ∨ (NEXT SESSION(Turn) = mysession)
8: Flag[i] := (IN CS,mysession)
9: until ((Successor[i] = mysession) ∨ ((NONE IN CS(mysession))−→∧ (NO SUCCESSOR(mysession))−→∧ ((Turn = mysession) ∨ (ALL PASSIVE(Turn)))))

10: if Successor[i] 6= mysession then
11: Turn := NEXT SESSION(mysession + 1)
12: for j := 1 to N do
13: if j 6= i then
14: if Flag[j] ∈ {(REQUEST,mysession), (IN CS,mysession)} then
15: Successor[j] := mysession
16: end if
17: end if
18: end for
19: end if

20: CRITICAL SECTION

21: Flag[i] := (PASSIVE, 0)
22: forever

15

Figure 2.3 Function NEXT SESSION(session) for Joung’s algorithm in Figure 2.2
1: k := session; /* session is a input of a session number */
2: next := k + m; /* m is the total number of sessions */
3: for j := 1 to N do
4: (, x) := Flag[j]
5: if x 6= 0 then
6: if x ≤ k then
7: x = x + m
8: end if
9: if x ≤ next then

10: next := x
11: end if
12: next := next mod m
13: end if
14: end for
15: return next

Figure 2.4 Method NONE IN CS(mysession) for Joung’s Algorithm in Figure 2.2
1: for j := 1 to N do
2: if j 6= i then
3: (state, x) := Flag[j]
4: if ((state = IN CS) ∧ (x 6= mysession)) then
5: return false
6: end if
7: end if
8: end for
9: return true;

Figure 2.5 Method NO SUCCESSOR(mysession) for Joung’s Algorithm in Figure
2.2

1: for j := 1 to N do
2: if j 6= i then
3: (, x) := Flag[j]
4: if ((Successor[j] := x) ∧ x 6= mysession) then
5: return false
6: end if
7: end if
8: end for
9: return true;

16

Figure 2.6 Method ALL PASSIVE(Turn) for Joung’s algorithm in Figure 2.2
1: for j := 1 to N do
2: if j 6= i then
3: (, x) := Flag[j]
4: if x = Turn then
5: return false
6: end if
7: end if
8: end for
9: return true;

Four functions are used in this algorithm:

1. NEXT SESSION(session) (Figure 2.3):

The function accepts an input of a session number mysession and out-

puts the first requested session number in the sequence session, session +

1, ..., session +m− 1, where each element in the sequence is reduced by the

total number of sessions m. For example, if h = ((session + m − 1) mod

m) and h < session, then the actual sequence is: session, session + 1, ..,m −

1, 0, 1, .., h − 1, h. The function will access the Flag variable of every pro-

cess to record their sessions and requesting status. Then it returns the first

session in the sequence that some process is requesting.

2. ALL PASSIVE(mysession) (Figure 2.6)

The input is a session number. The output is a Boolean value. The function

checks whether there exists a process that is requesting the same session as

the input session. The function accesses the Flag variable of every process

and records the sessions. If some process is requesting the same session

as the input, it returns false. If no process requests the same session, it

returns true.

3. NONE IN CS(mysession) (Figure 2.4)

17

When a process i executes the function with the input mysession, it will

check whether there exists a conflicting process in the CS or with a tempo-

rary permission in the ENTRY SECTION, ready to enter the CS. At first,

the function accesses the Flag variable of every process. If the Flag variable

of a process contains a “IN CS” state and a different session than that of

process i, the function returns false. If no such process exists, it returns

true.

4. NO SUCCESSOR(mysession) (Figure 2.5)

The function checks if there exists a conflicting process that is captured.

At first, it reads the Flag variable of all processes and records the sessions

being requested. If some process j is requesting a conflicting session and

Successor[j] has the same conflicting session number, then the function re-

turns false. Else, it returns true.

The algorithm is presented in Figure 2.2. The doorway consists of lines 3-

4. The waiting room starts from line 5 to line 19. After a process i leaves the

REMAINDER SECTION, it first updates its requesting status (line 3), setting

Flag[i] to <REQUEST, mysession >. It indicates process i is in the ENTRY SEC-

TION and requesting a session mysession. Then, process i initializes Successor[i]

to empty (line 4), to prepare to be captured by a “captain process”. A process p

is a “captain process” if Successor[p] is not equal to its session (line 10). A “cap-

tain process” p will capture processes with the same session and update their

Successor (line 12-18) before process p enters the CS. Processes that are captured

will enter the CS within a bounded number of their own steps.

After going through the doorway, process i executes a loop to check whether

it is safe to enter the CS, corresponding lines 5-9. First, process i firstly re-

sets Flag[i] (line 6) as it did in line 1, the reason for which will be explained

18

later. Next, process i waits until one of the following two conditions is satisfied

(line 7). The first condition is (Successor[i] = mysession), which means process

i is captured by a “captain process”. The second one is NEXT SESSION(Turn)

= mysession, which indicates that process i’s session is the “closest” requested

session to the current enabled session among all requested sessions. If either

one of the condition is satisfied, process i sets Flag[i] to be (IN CS,mysession)

(line 8), to indicate that process i has a temporary permission to enter the CS.

With a temporary permission, process i further checks whether there will be a

conflict if it enters the CS (line 9). Process i will pass the find check if either one

of the following conditions is satisfied:

1. Process i is captured by a “captain process” (NEXT SESSION(Turn) =

mysession).

2. The following three sub conditions are all satisfied:

i. No conflicting process has a “IN CS” state. That is no conflicting process

is in the CS or has a temporary permission (NONE IN CS(mysession) =

True).

ii. No conflicting process is captured by a “captain process”

(NO SUCESSOR(mysession) = True).

iii. The session of process i is the currently enabled session or no process

is requesting the current enabled session, indicated by Turn ((Turn =

mysession) ∨ (ALL PASSIVE(Turn))).

If the first condition is met, process i enters the CS without any wait. If

the second condition is satisfied, no conflicting process will enter or stay in the

CS. So the request of process i can be fulfilled. Process i exits the loop (lines

5-9) if either condition is satisfied. If process i finds none of the above two

19

conditions is satisfied, it gives up its temporary permission and executes the

loop again starting from resetting Flag[i] to (REQUEST,mysession) (line 6). The

reset is essential because after process i fails to make progress with a temporary

permission (Flag[i] = (IN CS,mysession)), it needs to check again if it still has

the priority to enter (line 7). Hence, process i needs to reset Flag[i] to prevent

stopping other processes which may enter the CS.

Once process i exits the loop (lines 5-9), it examines whether it is a “cap-

tain process” (line 10). If Successor[i] 6= mysession, then process i is a “captain

process”, and it will update the Turn to the next session to be enabled (line

11). The next enabled session is set to NEXT SESSION(mysession + 1). It re-

turns the first requested session among the sequence: mysession + 1,mysession +

2, ...,mysession + m, where all elements are reduced by mod m. Next, process i

captures other processes by updating their Successor (lines 12-18). It will catch

every process j that requests the same session (line 14) and set their Successor[j]

to mysession (line 15). After that, process i enters the CS. When it leaves the CS,

it sets Flag[i] to (PASSIVE, 0), which indicates process i is in the REMAINDER

SECTION (Line 21).

The algorithm has the properties of ME, CE, BE and SF. The mechanism

of getting a temporary permission and then checking for a conflict repeatedly

guarantees the mutual exclusion property. The concurrent entry property is en-

sured as the value of the Turn variable at any time is the enabled session. To see

this, observe that in the absence of conflicting processes, process i entering the

ENTRY SECTION will find its session is the next enabled session because that

is the only session requested among all processes. Therefore, when process i is

executing line 9 the condition is immediately satisfied and so, it will enter the

CS within a bounded number of its own steps. The bounded exit property is

20

obvious since the EXIT SECTION is made up of only one line without any wait.

The starvation freedom property is ensured as Turn is updated by executing the

function NEXT SESSION(mysession + 1). Thus, every requested session will be

enabled eventually. A full proof of the correctness is given by Joung [12].

Note that the order of evaluating the conditions NONE IN CS(mysession),

NO SUCCESSOR(mysession) and (Turn = mysession) ∨ (ALL PASSIVE(Turn))

in line 9 is crucial to guarantee the mutual exclusion property (the notation

c1
−→∧ c2 denotes the conjunction of c1 and c2 where c1 is evaluated before c2).

To see this, for example, assume we evaluate NO SUCCESSOR(mysession) be-

fore NONE IN CS(mysession) at line 9. The total number of sessions is 5 and

they are s1, s2,..., s5. Suppose processes i and j request session s2 and process

k requests session s3. The initial value of Turn is 1, which means session s1 is

currently enabled. Consider the following scenario:

1. Process k enters the ENTRY SECTION first, it sees that no process is re-

questing, and so the NEXT SESSION(Turn) returns 3. Hence, process k

exits the busy-wait loop in line 7.

2. Processes i and j enter the ENTRY SECTION. Since they request s2, which

has the smaller session identifier than s3, NEXT SESSION(Turn) returns 2

at line 7. So, both processes i and j also exit the wait loop in line 7.

3. Process j sets its state to (IN CS, s2) and evaluates the condition at

line 9. At this time, since no other process has the state of IN CS

and no process is captured by a “captain process”, the conditions of

NO SUCCESSOR(mysession) and NONE IN CS(mysession) is true. Also,

the ALL PASSIVE(Turn) is true at this time. Thus, process j finished line 9

and jumps out of the repeat loop (lines 5-9).

21

4. Process k changes its Flag to (IN CS, s3) and starts to evaluate the condi-

tions in line 9. Because of the assumption, NO SUCCESSOR(mysession)

is evaluated first. Since no processes is captured by a “captain process”,

process k finds out the condition is true. Next, it begins to evaluate

NONE IN CS(mysession) and starts from process i. Since process k finds

that the Flag[i] is (REQUEST,s2), process k passes process i and continue to

check process j’s Flag.

5. Process j sets the Turn to be the next requesting session s3. Before process

k inspects process j’s Flag, process j finds that process i is also requesting

session s2. Therefore, process j captures process i and sets Successor[i] to

s2. After that, process j finishes the CS, enters the EXIT SECTION and

resets its Flag to (PASSIVE, 0).

6. Process k now sees process j’s Flag and finds out process j has a “PAS-

SIVE” state. Thus, the NONE IN CS(mysession) is true. Moreover, since

Turn is s3 at this time, the conditions at line 9 is all satisfied, and then

process k enters the CS.

7. Process i at line 9 learns that it is captured by a “captain process” and so

it enters the CS directly. Therefore, process i and process k are in the CS

with different sessions, which is a violation of mutual exclusion property.

Note that if NONE IN CS(mysession) is evaluated first, when process k

checks NO SUCCESSOR(mysession), process j already captured process i. So,

process k will find out process i is captured and so, it will wait for process i to

finish the CS.

It is easy to see that the algorithm uses Θ(N) bounded shared variables.

However, it has unbounded RMR complexity in the CC model. Here we give

an example to show that. Assume only two processes i and j are requesting the

22

CS. process i requests session s1 and process j requests the different sessions s2.

Process i enters the ENTRY SECTION first. Since it is the only active process,

process i finishes the repeat loop (lines 5-9). Then process j enters the ENTRY

SECTION. Before process i enters the CS, it updates Turn to 2 because it finds a

conflicting session s2 is requested by process j (line 11). Next, when process j

executes line 7, it gets a temporary permission because NEXT SESSION(Turn)

returns s2. If we temporarily suspend process i, process j will not enter the CS

because the condition of NONE IN CS(mysession) is false (process i is in the CS).

Hence, process j gives up its temporary permission and restarts the repeat loop

from line 5. As long as process i stays in the CS, process j will execute the loop

an indefinite number of times. Since process j needs O(N) RMR at line 7 and

line 9 in the CC model and so, the total number of remote memory reference that

process j made in the ENTRY SECTION is unbounded. Therefore, it is trivial to

see the RMR complexity in the DSM model is also unbounded.

2.2 Hadzilacos’s Algorithm

Hadzilacos’s algorithm, shown in Figure 2.8, is the first group mutual exclusion

algorithm that satisfies the FCFS property. Another advantage of it, when com-

pared to Joung’s algorithm, is that it does not require knowing a bound on the

number of sessions in advance. The algorithm can be thought of as a modular

composition of two independent algorithms, one, the “FCFS algorithm” pro-

vides the FCFS property (but does not necessarily grantee mutual exclusion),

and the other, the “ME algorithm” provides the mutual exclusion property (but

not necessarily FCFS). The idea of the “FCFS algorithm” is somewhat based on

the FCFS mutual exclusion algorithm by Lycklama and Hadzilacos [17]. The

“ME algorithm” is an extension of the One-bit mutual exclusion algorithm de-

23

veloped independently by Burns[5] and Lamport[16].

Four shared variable are used in the algorithm (Figure 2.7). The first one,

Session is an integer array of size N , where N is the total number of processes.

Session[i] represents the session that process i is currently requesting. Process i

is in the REMAINDER SECTION if Session[i] is 0. Turn is an integer array of size

N . It has a value from the set {0,1,2,3}. Turn is used somewhat like a counter.

Process i increments Turn[i] mod 4 each time once it goes through the doorway.

Other processes wait on Turn[i] to maintain the FCFS property. The third shared

variable Bypass is a two-dimensional Boolean array of size N2. It is used for

ensuring the FCFS property and the starvation freedom property. The complete

details of using Turn and Bypass variables will be explained later. Competing is a

Boolean array of size N . If Competing[i] is true, it means process i is competing

with other processes to enter the CS. If Competing[i] is false, it indicates process

i is temporarily not competing to enter the CS.

Figure 2.8 presents the algorithm. The doorway of the ENTRY SECTION

consists of lines 3-8. The “FCFS algorithm” consists of lines 3-15. The “ME

algorithm” consists of lines 16-26.

Figure 2.7 Header for Hadzilacos’s Algorithm in Figure 2.8
shared variables:

Session: array[1..N] of integer, initially all 0
Turn: array[1..N] of 0..3, initially all 0
Bypass: array[1..N, 1..N] of Boolean, initially all false
Competing: array[1..N] of Boolean, initially all false

private variables:
mysession: integer, initially 0
turn-snap: array[1..N] of 0..3, initially all 0
bypassers: set of 1..N , initially ∅

24

Figure 2.8 Hadzilacos’s Algorithm; Process i ∈ {1..N}
1: repeat
2: REMAINDER SECTION

3: Session[i] := mysession
4: for j := 1 to N do
5: Bypass[i, j] := false
6: turn-snap[j] := Turn[j]
7: end for
8: Turn[i] := (Turn[i] + 1) mod 4
9: bypassers := ∅

10: for j := 1 to N do
11: await((Session[j]∈{0,mysession})∨(Turn[j] 6=turn-snap[j])∨(Bypass[i, j]))
12: if Session[j] = mysession then
13: bypassers := bypassers ∪ {j}
14: end if
15: end for

16: Competing[i] := true
17: for j := 1 to i− 1 do
18: if ((Competing[j] = true) ∧ (Session[j] 6= mysession)) then
19: Competing[i] := false
20: await ((¬Competing[j]) ∨ (Session[j] = mysession))
21: goto line 16
22: end if
23: end for
24: for j := i + 1 to N do
25: await ((¬Competing[j]) ∨ (Session[j] = mysession))
26: end for

27: CRITICAL SECTION

28: for all j ∈ bypassers do
29: Bypass[j, i] := true
30: end for
31: Competing[i] := false
32: Session[i] := 0
33: forever

At first, process i updates its session Session[i] to be mysession (line 2). Then

process i initializes Bypass[i, j] and turn-snap. It sets Bypass[i, j] to false for every

j (line 5) and records Turn[j] into its local variable Turn-snap[j] for every j (line

6). Next, process i increments Turn[i] by one using arithmetic modulo 4 each

25

time it passes through the doorway (line 8). After passing the doorway, i sets the

private variable bypasser to be empty (whose purpose will be explained later).

Next, to ensure the FCFS property, process i waits for every other process j until

one of following conditions is satisfied:

i. Process j is in the REMAINDER SECTION or requesting the same session

as process i (Session[j] ∈ {0,mysession}).

ii. Process i is doorway-concurrent with process j. Process j increments

Turn[j] after process i recorded Turn[j] (Turn[j] 6= turn-snap[j]).

iii. Process i is allowed to bypass process j (Bypass[i, j] = true).

If process i finds Turn[j] 6= turn-snap[j] at line 11, then process j must have

updated the Turn[j] (line 8) after process i copied Turn[j] (line 6). If process i

finds Turn[j] = turn-snap[j] and process j is requesting a different session, then

Turn[j] = turn-snap[j] remains true until process j increments Turn[j] when it

enters the doorway next time. Consequently, process i waits for process j until

it finished its current invocation.

The system can lead to a deadlock if we drop the shared array Bypass. Sup-

pose a process p is in the ENTRY SECTION and we stop process p temporarily

at line 9. Process q repeatedly requests the same session as process p for three

times. In each request, process q increments its Turn[q] and enters the CS by the

concurrent entry property. In the fourth invocation, process q requests a con-

flicting session and increments Turn[q] for the fourth time by modulo 4. If we

resume process p at this time, it will find Turn[q] = turn-snap[q] at line 11. Thus,

process p will continue waiting for process q and process q will also wait on pro-

cess p because of the FCFS property, which leads to a deadlock. The algorithm

uses Bypass to solve this problem. When process q requests the same session as

26

process p, it adds process p into the set bypasser (line 12-13). After process q fin-

ished the CS, it sets Bypass[k, q] to true for every k in the set (line 29). Therefore,

the previous deadlock can not occur as process p will find Bypass[p, q] to be true

in line 11.

The “FCFS algorithm” does not guarantee the mutual exclusion. It is pos-

sible that while process i is in the middle of its doorway, process j enters its

doorway. Then, we say that processes i and j are doorway-concurrent. If two

processes are doorway-concurrent, then the FCFS property does not dictate as

to who should get into the CS first. Consider two conflicting processes i and

j, both of which update their turn-snap before either one increments the Turn.

Then, neither process i nor process j will wait for each other in line 10 because

Turn[i] 6= turn-snap[i] and Turn[j] 6= turn-snap[j]. Therefore, both processes i and

j will get out of the “FCFS algorithm” and enter the CS simultaneously. In order

to prevent this mutual exclusion violation, we need the “ME algorithm”.

The “ME algorithm” (line 16) is based on the elegant one-bit mutual exclu-

sion algorithm independently discovered by Burns [5] and Lamport [16]. In

“ME algorithm”, every process has a one bit shared variable Competing. Af-

ter process i finished the “FCFS algorithm”, it sets Competing[i] to true (line

16). Then process i checks all processes with smaller process identifier (lines

17-23). If such a process j has its bit Competing[j] set to true, then process i resets

Competing[i] to false to allow process j to make progress (line 19) and waits for

Competing[j] to become false (line 20). Once Competing[j] becomes false, process

i sets Competing[i] to be true and rechecks again all processes with smaller pro-

cess identifiers (line 21). If process i finds that no process with lower identifier

is competing, it then checks the higher-numbered processes (lines 24-26). If any

of them is competing, process i waits on them. However, at this time process

27

i does not reset its Competing[i] to false before waiting. Once it finds that no

higher-numbered process is competing, process i enters CS. When it exits the

CS, process i sets Competing[i] to false and Session to 0, and enters the REMAIN-

DER SECTION.

Hadzilacos’s algorithm satisfies the properties of ME, CE, BE, SF and the

FCFS. The algorithm uses Θ(N2) shared variables. Unlike Joung’s algorithm, a

bound on the total number of sessions is not required to be known in advance.

So, the set of sessions can be arbitrarily large.

In the DSM model, process i executing the algorithm owns Competing[i],

Session[i], Turn[i], and Bypass[i, j] for all j in its local memory. Since process i

does not busy-wait on its local variable (lines 11, 20, 25), the algorithm is of

unbounded RMR complexity in the DSM model. Hadzilacos claims that the al-

gorithm has O(N) RMR complexity under the CC model. However, the “ME

algorithm” they used is actually of Ω(N2) RMR complexity in the CC model.

Consequently, Hadzilacos’s algorithm is actually of Ω(N2) RMR complexity in

the CC model. A detailed RMR complexity analysis of the “ME algorithm” is

presented in Chapter 4.

2.3 JPT Algorithm

Hadzilacos mentioned [9] that there exists a simpler algorithm that solves the

group mutual exclusion problem using only Θ(N) shared variables. However,

in the algorithm, the shared variables Turn[i] are unbounded integers (instead

of integers in the range 0..3), and process i in its doorway increments Turn[i] as

a regular integer (not modulo 4). Hence, the disadvantage of the algorithm is

that it uses unbounded shared variables. Hadzilacos left it as an open problem

to determine whether it is possible to devise a FCFS group mutual exclusion al-

28

gorithm that runs in linear time and space using only bounded shared variables.

Couple of years later, Jayanti et al. [11] presented an algorithm as a solution to

the open problem. They came up with a clever modification to the Hadzilacos’s

algorithm to reduce the space complexity. The algorithm retained the idea of

modular composition and also the “ME algorithm” from Burns [5] and Lamport

[16]. They dropped the shared variable Bypass while retaining the mechanism

to ensure the FCFS property.

As we mentioned before, variable Bypass and bypasser are used for solving

the deadlock issue: process j passes process i enough number of times that

process i can not figure out whether Turn[j] is changed too many times or it is

not changed at all. In this algorithm, Jayanti et al. resolve the problem by letting

a process increments its Turn variable only if there is a conflict. Hence, if process

i finds that no process requests a different session than that of process i, it leaves

the Turn[i] unchanged in the doorway. Notice that the value of Turn is bounded

by doing modulo 11 arithmetic in this algorithm. To see that increasing the

bound guarantees the deadlock freedom property, we show the deadlock will

not happen as before. If a process j passes process i many times with the same

session as that of process i, and also increments Turn[j], then each time process

j passes process i, there exists another process k that requests a different session

than process i and process j. Since process j and process k request different

sessions, they will synchronize when they are executing the “FCFS algorithm”.

Meanwhile, process i and process j will also synchronize in the same manner.

After process j increments Turn[j] at most 11 times, process j has to wait for

process k to enter the CS and process k has to wait for process i to enter the

CS. Thus processes i and j will not wait for each other even if process j passes

process i and increases the Turn[j] enough times. Hence, process i will enter the

29

CS eventually. A detailed proof of the algorithm is available in [11].

Figure 2.9 JPT Algorithm; Process i ∈ {1..N}
shared variables:

Session: array[1..N] of integer, initially all 0
Turn: array[1..N] of 0, 1, 2..11, initially all 0
Competing: array[1..N] of Boolean, initially all false

private variables:
mysession: integer, initially all 0
turn-snap: array[1..N] of 0, 1, 2..11, initially all 0

1: repeat
2: REMAINDER SECTION

3: Session[i] := mysession
4: for j := 1 to N do
5: turn-snap[j] := Turn[j]
6: end for
7: if CONFLICT(mysession) then
8: Turn[i] := (Turn[i] + 1) mod 12
9: end if

10: for j := 1 to N do
11: await ((Session[j] ∈ {0,mysession}) ∨ (Turn[j] 6= turn-snap[j]))
12: end for

13: Competing[i] := true
14: for j := 1 to i− 1 do
15: if ((Competing[j] = true) ∧(Session[j] 6= mysession)) then
16: Competing[i] := false
17: await ((¬Competing[j]) ∨ (Session[j] ∈ {0,mysession}))
18: goto line 13
19: end if
20: end for
21: for j := i + 1 to N do
22: await ((¬Competing[j]) ∨ (Session[j] ∈ {0,mysession}))
23: end for

24: CRTICAL SECTION

25: Competing[i] := false
26: Session[i] := 0
27: forever

30

Figure 2.10 Method CONFLICT(mysession) for JPT Algorithm in Figure 2.9
1: for j := 1 to N do
2: if Session[j] /∈ {0,mysession} then
3: return true;
4: end if
5: end for
6: return false;

Figure 2.9 describes the algorithm. It uses only three shared variables:

Session, Turn and Competing. These shared variables originate from the algo-

rithm of Hadzilacos (Figure 2.7). The only crucial difference is that Turn has

an integer value from {0, 1, 2, .., 11}. Two private variables “mysession” and

“turn-snap′′ are used. The ENTRY SECTION consists of the “FCFS algorithm”

(lines 3-12) and the “ME algorithm”(lines 13-23). The doorway is made up of

line 3-9.

At first, process i writes its session into Session[i] and records the Turn of ev-

ery other process (lines 3-6). Then process i updates Turn[i] in case there exists

a conflicting process in the system. The condition is checked by executing the

function CONFLICT(mysession) (line 7). It accesses the session of every other

process and checks whether there is a process requesting a different session.

If no process requests a conflicting session, the function returns false, else it re-

turns true. So, process i increments Turn[i] if the function returns true. Else, pro-

cess i keeps Turn[i] unchanged. After updating Turn[i], process i waits on other

processes to ensure the FCFS property (line 10-12). At line 11, process i waits for

process j if process j requests a conflicting session (Session[j] /∈ {0,mysession})

and (Turn[j] = turn-snap[j]) until one of these two conditions is no longer true.

Thus the FCFS property is guaranteed. Notice that suppose a process i com-

pleted the doorway before process j begins its doorway. Then process j reads

Turn[i] in line 5 after process i completed line 8. If process i and j request differ-

31

ent sessions, then process j has to wait on process i at line 11 to change Turn[i]

or reset the Session[i] to 0 or the process j’s session, neither of which can happen

before process i leaves the CS. After process i finished the “FCFS algorithm”, it

enters the “ME algorithm” (line 13-23). Jayanti et al. uses the same “ME algo-

rithm” as Hadzilacos [9] to guarantee the mutual exclusion property.

The algorithm satisfies the properties of ME, CE, BE, SF and the FCFS. It

only uses only Θ(N) shared variables as compared to Θ(N2) shared variables in

Hadzilcos’s algorithm. A bound on number of sessions is also not required in

advance. Like Hadzilcos’s algorithm [9], this algorithm is of unbounded RMR

complexity in DSM model because process i does not on wait on its local shared

variable at lines 11, 17 and 22. In the CC model, although Jayanti et al. did not

explicitly claim so, their algorithm is considered to be linear time and space. For

example, the recent paper by Bhatt and Huang [4] explicitly stats that the RMR

complexity of the algorithm by Jayanti et al. is O(N). Thus the open problem

raised by Hadzilacos appears to be solved. However, since they use the same

“ME algorithm” by Burns [5] and Lamport [16], this algorithm is actually of

Ω(N2) RMR complexity in the CC model. We will demonstrate this in detail the

details in Chapter 4. Thus, the open problem prosed by Hadzilacos [9] is still

open.

2.4 Takamura and Igarashi’s Algorithms

Takamura and Igarashi [19] developed an algorithm for the group mutual ex-

clusion problem by generalizing the Lamport’s Bakery Algorithm. The idea is

based on the method used in bakery stores. In the store, only one customer can

be served at any point of time. A customer gets a unique token number upon

entering the bakery store. The customer that holds the lowest token number is

32

the next one served.

The algorithm is presented in Figure 2.11. It uses three shared variables. The

first one is Session, an array of size N , where N is the total number of processes.

Session[i] indicates the session number that process i requests in the current in-

vocation. The second shared variable is Token, an integer array of size N and

Token[i] represents the token number selected by process i. If Token[i] is 0, that

indicates process i is in the REMAINDER SECTION or it is in the process of

selecting a token. The third one is Choosing, a Boolean array of size N and

Choosing[i] is true would indicate that process i is currently attempting to de-

termine its token number in the ENTRY SECTION. The Session array and the

Token array are initialized to zero and the Choosing array is initialized to false. It

is easy to see that the algorithm uses Θ(N) shared variable. However, the token

numbers used in this algorithm can grow unbounded.

When a process i leaves the REMAINDER SECTION, it first sets Choosing[i]

to true to signal other processes that it is currently attempting to get a token

number (line 3). Then it selects its token number to be one more than the

maximum of the token numbers of all other processes and places it in Token[i]

(line 4). Next, process i places its session mysession in Session[i] (line 5) and sets

Choosing[j] to false to signal other processes that process i already got its token

number (line 6).

For each other process j, process i waits until process j has selected its to-

ken number (line 8). Then process i waits for process j until one of the fol-

lowing condition is satisfied (line 9): (i) process j is in the REMAINDER SEC-

TION (Token[j] = 0), (ii) process i has a lower token number than process j

((Token[i],mysession) ≤ (Token[j],Session[j])) and (iii) process j requests the same

session with process i (Session[j] = mysession). It is possible that two different

33

processes read the same set of token numbers and pick the same token number.

In that case, we use the session number to resolve the ties. The relation “less

than” on ordered pairs of integers is defined by (a, b) < (c, d) if (a < c) or if

(a = c) and (b < d). After finishing the loop (lines 7-10), process i enters the CS.

When it exits the CS, process i sets Token[i] and Session[i] to 0, which indicates it

is in the REMAINDER SECTION.

Figure 2.11 Takamura and Igarashi’s Bakery Algorithm
shared variables:

Session: array[1..N] of integer, initially all 0
Token: array[1..N] of integer, initially all 0
Choosing: array[1..N] of Boolean, initially all false

private variables:
mysession: integerb

1: repeat
2: REMAINDER SECTION

3: Choosing[i] := true
4: Token[i] := 1+ max of other token numbers
5: Session[i] := mysession
6: Choosing[i] := false
7: for j := 1 to N do
8: await Choosing[j] = false
9: await ((Token[j] = 0) ∨ ((Token[i],mysession) ≤ (Token[j],Session[j]))

∨(Session[j] = mysession))
10: end for

11: CRITICAL SECTION

12: Token[i] := 0
13: Session[i] := 0
14: forever

The algorithm satisfies the mutual exclusion property and bounded exit

property, however, it does not have the concurrent entry property and the star-

vation freedom property. To see that, assume two processes i and j request the

same session. Suppose process i got a token number and finished line 6 while

process j is still selecting its token number at line 4. When process i checks

34

Choosing[j] at line 8, it finds it to be false and waits for process j to finish select-

ing its token. If we temporarily suspend process j at this time, process i will

wait for process j indefinitely. This is a concurrent entry violation as process

i can not enter the CS within a bounded number of its own steps even though

there is no conflicting process. On the other hand, if we temporarily stop process

i, process j will pass process i and enter the CS because it finds (Choosing[i] =

false) and (Session[j] = Session[i]) at line 8 and line 9. After leaving the CS and

subsequently the EXIT SECTION, suppose process j requests again the same

session as process i and selects a token number at line 4. If we resume process

i at this time, it will find Choosing[j] is false and keep waiting for process j. We

can repeat this scenario as many times as we choose and this leads to a situation

where process i never enters the CS while process j repeatedly enters the CS.

Hence, a starvation occurs in the system.

Takamura and Igarashi [19] also presented two more algorithms based on

generalizing Lamport’s Bakery Algorithm. Their second and third algorithms

have the starvation freedom property, however, both the algorithms do not have

the concurrent entry property because of the same reason mentioned above.

Moreover, they contain busy-wait loops in the EXIT SECTION. So, they do not

have the bounded exit property as well. Hence, none of three algorithms pre-

sented by Takamura and Igarashi [19] can be considered a correct group mutual

exclusion algorithm. In the next chapter, we show a correct generalization of

Lamport’s Bakery Algorithm that solves the group mutual exclusion problem.

35

Chapter 3

Generalizing the Bakery Algorithm

Takamura and Igarashi [19] tried to generalize Lamport’s Bakery Algorithm

to solve group mutual exclusion problem. However, their algorithms are not

proper generalizations as they do not satisfy the concurrent entry property.

In this chapter, we first introduce Lamport’s Bakery Algorithm for the clas-

sical mutual exclusion problem. Then, we present two GME algorithms based

on Lamport’s Bakery Algorithm. Our first algorithm uses the synchronization

primitive Fetch-and-Add instruction. Our second algorithm uses only simple

read and write instructions.

3.1 Lamport’s Bakery Algorithm

Lamport’s Bakery Algorithm is one of the best-known algorithms for classical

mutual exclusion problem. The algorithm is based on a simple and elegant idea,

which is commonly used in bakery stores. When entering the bakery store,

every customer gets a token number that is larger than the token numbers of

other customers that are waiting. The store can only serve one customer at any

point of time. The customer with the smallest token number is the next one to

be served.

Figure 3.1 Lamport’s Bakery Algorithm
shared variables:

Token: array[1..N] of integer, initially all 0
Choosing: array[1..N] of Boolean, initially all false

1: repeat
2: REMAINDER SECTION

3: Choosing[i] := true
4: Token[i] := 1+ max of other token numbers
5: Choosing[i] := false
6: for j := 1 to N do
7: if j 6= i then
8: await Choosing[j] = false
9: await ((Token[j] = 0) ∨ ((Token[i], i) < (Token[j], j)))

10: end if
11: end for

12: CRITICAL SECTION

13: Token[i] := 0
14: forever

Shared variable Token is an integer array of size N , where N is the total num-

ber of processes. Token[i] stores the token number of process i. If process i is in

the REMAINDER SECTION, Token[i] will be set to 0. The second shared vari-

able is Choosing, a Boolean array of size N . If Choosing[i] is true, it indicates that

process i is currently selecting its token number in the doorway. If Choosing[i]

is false, it means process i has already picked up its token number and finished

executing the doorway.

The Lamport’s Bakery Algorithm is presented in Figure 3.1. The doorway of

the algorithm consists of lines 3-5. The waiting room is made up of lines 6-11.

At the beginning, process i sets Choosing[i] to be true (line 3), indicating that

it is starting to pick up its token number. Then process i accesses the token

numbers of every other process and calculates its own token number to be one

37

more than the largest token number of all other processes (line 4). Process i then

sets Choosing[i] to be false to indicate that it is done with picking a token number

(line 5). In the waiting room, for each other process j, process i first waits for

process j to select its token number (line 7). Then process i waits until it has the

lower token number than process j or until process j enters the REMAINDER

SECTION. After the loop, process i enters the CS. It is trivial to see that, the

process that enters the CS has the lowest token number among all processes

that are requesting the CS. When process i exits the CS, it sets Token[i] to 0 to

denote that it is not interested in entering the CS.

We note that in order to ensure the mutual exclusion property it is crucial

that process i first waits until process j has selected its token number before

comparing. Suppose we drop line 8 and two processes i and j are both request-

ing the CS. It is possible that process j gets a smaller token number but does not

update Token[j] yet. When process i finishes the doorway, process i will find out

Token[j] is 0 and then enters the CS. Once process j finishes the doorway, process

j has the smaller token number and so, it will also enter the CS while process i

is still in the CS, which creates a mutual exclusion violation. We also note that

the token number is compared using lexicographic order. That is (a, b) < (c, d) if

a < c or if a = c and b < d (a, b, c and d are all integers). If processes i and j have

the same token number, then the process with the lower process identifier has

the higher priority.

Lamport’s Bakery Algorithm satisfies the mutual exclusion, the starvation

freedom, the bounded exit and the FCFS properties. As Lamport pointed out

in [15], the implementation of computing the maximum of token numbers of

other processes is critical to the correctness. One simple valid implementation

entails the process first recording all other token numbers into its local memory,

38

one at a time, and then calculating the maximum value over all token numbers.

A drawback of the Lamport’s Bakery Algorithm is that the token number can

grow without a bound. It is trivial to see that processes can always request the

CS and increment the value of the token infinitely. Thus, the algorithm uses

unbounded shared variables.

3.2 A GME Bakery Algorithm Using Fetch-and-Inc

3.2.1 Introduction and Model

Takamura and Igarashi did not correctly generalize Lamport’s Bakery Algo-

rithm [19] to solve GME because their algorithms do not have the concurrent

entry property. Here we present a correct generalization of Lamport’s Bakery

Algorithm to a GME algorithm. The algorithm has Θ(N) shared space complex-

ity and O(N) RMR complexity. Other than ordinary read and write instructions,

our algorithm uses the Fetch-and-Inc instruction.

Fetch-and-Inc is a kind of read-modify-write synchronization primitives. A

synchronization primitive is considered as a special instruction that atomically

modifies the content of a memory location. The instruction is defined as follows:

Fetch-and-Inc (Var: integer) {
old var := Var
Var := Var + 1
return old var

}

In the execution of Fetch-and-Inc (Var), a process first reads the shared vari-

able Var. Then it increments Var by one and returns the original value of Var.

The internal procedure of the instruction is executed atomically, i.e., it is guaran-

39

teed that a process will not be interrupted while performing the Fetch-and-Inc

procedure. This means that only one process can be executing the Fetch-and-Inc

at any point of time.

Figure 3.2 A GME Bakery Algorithm Using Fetch-and-Inc
shared variables:

Session: array[1..N] of integer, initially all 0
Token: array[1..N] of integer, initially all 0
Counter: integer, initially 1

private variables:
mysession: integer, initially 0

1: repeat
2: REMAINDER SECTION

3: Session[i] := mysession
4: Token[i] := Fetch-and-Inc(Counter)
5: for j := 1 to N do
6: await ((Token[i] < Token[j]) ∨ (Session[j] ∈ {0,mysession}))
7: end for

8: CRITICAL SECTION

9: Token[i] := 0
10: Session[i] := 0
11: forever

3.2.2 Commentary of the algorithm

Figure 3.2 presents our algorithm. It uses three shared variables. Session is an

integer array of size N . Session[i] represents the session that process i is request-

ing. If Session[i] is 0, that means process i is in the REMAINDER SECTION.

Token is an array of integer of size N . Token[i] stores the token number of process

i. Counter is an integer that can be read and written by every process. Processes

access Counter to get their token numbers. The doorway of the algorithm con-

sists of lines 3-4. The waiting room is made up of lines 5-7.

At first, process i saves its session number in Session[i] to indicate to other

40

processes, which session process i is requesting (line 3). Then process i reads

the value of Counter as its token number and increments the Counter so that

later processes get larger token numbers (line 4). Next, for each process j that is

not in the REMAINDER SECTION, process i waits until it has the smaller token

number than that of process j or process j is requesting the same session as

process i (line 6). After the loop, process i enters the CS. When process i exits the

CS, it resets Token[i] and Session[i] to 0 to indicate that it is in the REMAINDER

SECTION.

3.2.3 Proof of the Correctness

The algorithm satisfies the mutual exclusion property, concurrent entry prop-

erty, starvation freedom property, bounded exit property and the FCFS prop-

erty. Here we present a complete proof of correctness of the algorithm.

Lemma 3.2.1: At any point of time, no two processes will have the same none-

zero value as their token number.

Proof. At line 4, processes get token numbers by executing Fetch-and-Inc. Since

Fetch-and-Inc is considered as an atomic instruction, every process will read a

unique value of Counter and increment it. Thus, the value of Counter is monoton-

ically increasing after each execution of Fetch-and-Inc and so, no two processes

will have the same none-zero value as their token numbers.

Corollary 3.2.2: If process i finds Session[j] is 0 at line 6. Then process j can not

enter the CS with a conflicting session before process i exits the CS.

Proof. If process i finds out Session[j] is 0. That means process j is in the RE-

MAINDER SECTION at that time. Since the Counter is monotonically increas-

ing, process j will get a larger token number than process i. Therefore, if process

41

j requests the CS with a conflicting session, it will be blocked at line 6 until pro-

cess i exits the CS.

Theorem 3.2.3: The algorithm in Figure 3.2 has the Mutual Exclusion property.

Proof. Assume process i and process j are in the CS at the same time with dif-

ferent sessions. If process i finds Session[j] is 0 and passes process j at line 6,

by Corollary 3.2.2, process j can not enter the CS with a different session before

process i exits the CS. Thus, process i should pass process j because it has the

smaller token number than process j. Since process j has the larger token num-

ber, it will be blocked by process i at line 6 until process i exits the CS, which

contradicts with our assumption.

Theorem 3.2.4: The algorithm in Figure 3.2 has the Concurrent Entry property.

Proof. Suppose a process i is requesting the CS, and every other process j is in

the REMAINDER SECTION or requesting the same session as process i. For

each other process j, at line 6, process i finds that Session[j] is 0 or mysession.

Hence, process i will not wait for any other process and enter the CS within a

bounded number of its own steps.

Theorem 3.2.5: The algorithm in Figure 3.2 has the Starvation Freedom prop-

erty.

Proof. Suppose there exists a process i that is requesting the CS, but can not

enter the CS forever. Process i must wait for a process j infinitely at line 6. Thus,

process j must request a conflicting session than process i and must always have

smaller token number than process i. Since process j exits the CS eventually

and the Counter always increments, process j can not pick up a smaller token

number than process i again. Thus, process i will find that process j has the

42

session of 0 or a larger token number eventually and stop waiting immediately,

which is a contradiction with our assumption.

Theorem 3.2.6: The algorithm in Figure 3.2 has the Bounded Exit property.

Proof. Since the EXIT SECTION of the algorithm does not have any busy-wait

loops, a process that enters the EXIT SECTION, finishes it within a bounded

number of its own steps.

Theorem 3.2.7: The algorithm in 3.2 has the FCFS property.

Proof. Assume processes i and j request different sessions and process i finished

the doorway (line 4) before process j starts the doorway (line 3). It is trivial to

see process j gets a larger token number than process i. Therefore, process j will

wait for process i at line 6 until process i finishes the CS.

3.2.4 Complexity Analysis

The algorithm has Θ(N) shared variable complexity because it only uses integer

arrays of size N and single integer variable. One draw back of this algorithm

is that the shared variable Counter and Token can grow unbounded. The shared

variable Token used in Lamport’s Bakery Algorithm is also unbounded; how-

ever, the value of Token will start over again from 1 if there is no contention. In

our algorithm, the shared variable Counter will grow unbounded even in a rare

contention environment.

It is trivial to see that the algorithm has unbounded RMR complexity under

the DSM model because the process is not spinning on its local shared variables

only (line 6). There is only one loop in the algorithm (line 6). Thus, there can

only be a constant number of RMR in other lines under the CC model. In line

6, when a process i is busy waiting on Token[j], it will either change to 0 or to a

43

larger token number than Token[i]. If Token[j] changes to a larger token number,

it will cause process i to terminate the wait loop. If Token[j] changes to 0, that

means process j in the EXIT SECTION or REMAINDER SECTION, process j

will sets its session to 0 and cause process i stop waiting. However, it is possible

that Token[j] changes to 0 and process j requests again with another conflicting

session immediately. But, in this case, process j will get a larger token number

than Token[i]. Hence, line 6 can only involve a maximum of six RMR (One for

Token[i], three for Token[j], two for Session[j]). Since line 6 is enclosed within a

for loop that can run a maximum of N times and line 3 and line 4 costs only

two RMR, the ENTRY SECTION is of O(N) RMR complexity. It is also easy

to see that the EXIT SECTION entails just two RMR. Therefore, the total RMR

complexity of the algorithm is O(N).

A drawback of the algorithm is that it uses a strong synchronization prim-

itive viz., Fetch-and-Inc instruction. In the next section, we give another GME

Bakery algorithm that uses only simple read and write instructions.

3.3 A GME Bakery Algorithm Using Only Read/Write Instruc-

tions

3.3.1 Introduction

The Lamport’s Bakery Algorithm does not use any powerful synchronization

primitives. In the same spirit, we present another GME bakery algorithm that

using only simple read and write instructions. The algorithm satisfies the ME,

CE, BE, SF and FCFS properties. It has O(N) RMR complexity in the CC model

and Θ(N) shared space complexity.

44

Figure 3.3 A GME Algorithm Using Only Read/Write Instructions
shared variables:

Session: array[1..N] of integer, initially all 0
Choosing: array[1..N] of Boolean, initially all false
Token: array[1..N] of integer, initially all 0

private variables:
mysession: integer, initially 0

1: repeat
2: REMAINDER SECTION

3: Session[i] := mysession
4: Choosing[i] := true
5: Token[i] := 1+ max of other token numbers
6: Choosing[i] := false
7: for j := 1 to N do
8: await ((Choosing[j] = false) ∨ (Session[j] = mysession))
9: await (((Token[i], i) < (Token[j], j)) ∨ (Session[j] ∈ {0,mysession}))

10: end for

11: CRITICAL SECTION

12: Token[i] := 0
13: Session[i] := 0
14: forever

3.3.2 Commentary of the algorithm

The algorithm is presented in Figure 3.3. It uses three shared variables. The first

one Session is an integer array of size N and Session[i] indicates the session num-

ber that process i requests in the current invocation to enter the CS. If Session[i]

is 0, that means process i is in the REMAINDER SECTION. The second one is

Token, an integer array of size N and Token[i] represents the token number se-

lected by process i. The third shared variable is Choosing, a Boolean array of size

N and Choosing[i] is true would indicate that process i is currently attempting

to determine its token number. The Session array and the Token array are initial-

ized to zero and the Choosing array is initialized to false. The doorway of the

45

algorithm consists of lines 3-6 and the waiting room is made up of lines 7-10.

When a process leaves the REMAINDER SECTION, it first selects its session

number and places it in Session[i] (line 3). We assume that all session numbers

are positive integers. Process i then sets Choosing[i] variable to true to signal to

other processes that it is currently attempting to select a token number (line 4).

It then selects its token number to be one more than the maximum of the token

numbers of all other processes and places it in Token[i] (line 5). Next, process i

sets Choosing[i] to false to signal to other processes that it is done with selecting

its token number (line 6).

In the waiting room, at line 8, for each other process j, process i checks to see

whether process j is requesting the same session. If process j is requesting the

same session, there is no problem. If process j is requesting a conflicting session,

process i waits for process j to finish the doorway and set Choosing[j] to be false.

It is also possible that process j is in the REMAINDER SECTION, however, in

that case, process j has already set Choosing[j] to false, which prevent unneces-

sary wait. Then, process i waits for process j until either process j has a larger

token number or it is in the REMAINDER SECTION or it is requesting the same

session as process i (line 9). It is possible that two conflicting processes pick the

same token number. In that case, we use the process identifier to resolve the ties

(line 9). The relation “less than” among ordered pairs of integers is defined as

in the Lamport’s Bakery Algorithm. That is (a, b) < (c, d) if a < c or if a = c and

b < d (a, b, c and d are all integers). For simplicity, if Token[i] = Token[j], we say

the process with the smaller process identifier has the smaller token number.

After the loop, process i enters the CS. It is easy to see that process i enters the

CS if it has the smallest token number among all conflicting processes. In the

EXIT SECTION, process i resets Token[i] and Session[i] to 0.

46

3.3.3 Proof of the Correctness

The algorithm satisfies the mutual exclusion property, concurrent entry prop-

erty, starvation freedom property, bounded exit property and the FCFS property.

Here we present a complete proof that the algorithm satisfies these properties.

Theorem 3.3.1: The algorithm in Figure 3.3 has the FCFS property.

Proof. Assume two conflicting processes i and j request the CS. Also assume

that process i finished the doorway before process j starts the doorway. So,

when process j is computing its token number, it will read the token number

of process i and select a larger token number. Hence, when process j checks

process i at line 9, since process j has a larger token number, it will wait for

process i until it exits the CS.

Theorem 3.3.2: The algorithm in Figure 3.3 has the Mutual Exclusion property.

Proof. Suppose two conflicting processes i and j are in the CS at the same time

with different sessions. By Theorem 3.3.1, process i and process j must be

doorway-concurrent. Without loss of generality, we assume process i enters

the CS first. Since processes i and j are doorway concurrent and they request

different sessions, at line 8, process i waits for process j to finish the doorway.

Since process i enter the CS first, it must have a smaller token number than

process j. On the other hand, at line 9, process j waits for process i because it

finds that process i has a smaller token number. Therefore, process j can not

enter the CS until process i finishes the CS and resets its token number, which is

contradicting with our assumption.

Theorem 3.3.3: The algorithm in Figure 3.3 has the Concurrent Entry property

Proof. Assume that process i requests a session s, and no other process re-

quests a different session. This means, for every other process j, it holds that

47

Session[j] ∈ {0,mysession}. Since process i always checks whether Session[j] ∈

{0,mysession} in busy-wait line 9, it can not wait on line 9. If process j has the

session of 0, it is in the REMAINDER SECTION and so Choosing[j] must be false.

Thus, in line 8, process i can not be blocked by any non-conflicting process be-

cause it always find that either (Choosing[i] = false) or (Session[j] = mysession).

Therefore, process i can not wait at any line if there is no conflicting process and

so, it enters the CS within a bounded number of its own steps.

Theorem 3.3.4: The algorithm in Figure 3.3 has the Bounded Exit property

Proof. Since the EXIT SECTION consists of two simple write instructions, a pro-

cess that enters the EXIT SECTION will trivially finish it within a bounded num-

ber of its own steps.

Theorem 3.3.5: The algorithm in Figure 3.3 has the Deadlock Freedom property

Proof. Suppose the algorithm does not satisfy the deadlock freedom property.

Then there is an execution of the algorithm in which a nonempty set S of pro-

cesses enter the ENTRY SECTION but none of them enters the CS, and no pro-

cess enters the CS infinitely often. We observe that no process can wait at line 8

forever since every process j requests the CS will finish the doorway eventually

and set Choosing[j] to true. Therefore, processes in the set S must wait on line 9

forever. There exists a process i that has the smallest token number among all

processes in S and that process i will pass all other processes at line 9 and enter

the CS, which is a contradiction with our assumption.

Theorem 3.3.6: The algorithm in Figure 3.3 has the Starvation Freedom prop-

erty.

Proof. Lamport proved [16] that if an algorithm satisfies the deadlock freedom

property and the FCFS property, then it necessarily satisfies the starvation free-

48

dom property. Hence, combining Theorem 3.3.1 and Theorem 3.3.5, we know

the algorithm has the starvation freedom property.

3.3.4 Complexity Analysis

It is trivial to see that the algorithm has Θ(N) shared space complexity. How-

ever, like Lamport’s Bakery Algorithm, it uses unbounded shared registers.

We now analyze the RMR complexity of the algorithm.

In the DSM model, since we assign Session[i], Choosing[i],Token[i] to process i,

it is easy to see the algorithm has unbounded RMR complexity as the busy-wait

is not exclusively on local shared variables.

We now analyze the RMR complexity in the CC model, in the waiting room,

there are only two loops viz., the busy-wait loops in line 8 and line 9. In line

8, when process i is busy waiting for a process j, if Choosing[j] changes to false,

then process i will immediately terminate the wait. It is possible that process

j requests another conflicting session and sets the Choosing[j] to true again. In

that case, since process i doorway-proceeds process j, process j will get a larger

token number than process i. So, process j can not enter the CS to finish that

invocation and therefore can not change the Session again until process i fin-

ishes the CS. Thus, line 8 can only involve a maximum of five RMR (three for

Choosing[j] and two for Session[j]). Similarly in line 9, when process i is busy-

waiting on Token[j], if Token[j] changes to a larger token number, process i will

stop waiting. If Token[j] changes to 0, that means process j is in the REMAIN-

DER SECTION or EXIT SECTION. That means process j sets Session[j] to 0 even-

tually and terminate the waiting of process i. It is also possible that process j

starts a new invocation and sets the Session[j] to another conflicting session. In

that case, since process i doorway-proceeds process j, process j will get a larger

49

token number than process j, which will also terminate the wait. Hence, line

9 involves a maximum of six RMR (one for Token[i], three for Token[j], two for

Session[j]). There are only constant number of RMR in line 8 and line 9. As these

two lines are enclosed within a for loop that can run a maximum of N times,

it follows that the entire waiting room is of O(N) RMR complexity. Note that

the doorway made up of line 3 through line 6 involves only constant number of

RMR, except for the implicit loop in line 5. The implicit loop in line 5 has O(N)

RMR complexity as it involves inspecting the token numbers of all other pro-

cesses. Finally, it is easy to see that the EXIT SECTION consisting of lines 12-13

involves exactly two RMR. Hence, the overall RMR complexity of this algorithm

in the CC model is O(N).

50

Chapter 4

A Flaw in the Literature

Hadzilacos developed [9] the first GME algorithm that satisfies the FCFS prop-

erty. As mentioned before, he developed it by using a modular composition of

a “FCFS algorithm” and a “ME algorithm”. His algorithm is of Θ(N2) shared

space complexity and is claimed to have O(N) RMR complexity. Hadzilacos

also posed as an open problem the development of a GME algorithm with lin-

ear time and space while using only bounded shared variables and only simple

read and write instructions. A few years later, Jayanti et al. [11] came up with

a modification to the “FCFS algorithm” to reduce the shared space complexity

while retaining the overall structure of the Hadzilacos’s algorithm. Their algo-

rithm has Θ(N) shared space complexity and they inherited the claim that it

has O(N) RMR complexity. The algorithm of Hadzilacos [9] as well as that of

Jayanti et al. [11] use the same “ME Algorithm”, which is called the “One-bit

Algoirthm” for classical mutual exclusion problem. The “One-bit Algorithm”

is originally discovered by Burns [5] and Lamport [16]. In this chapter, we first

show the “One-bit Algorithm” used by Hadzilacos and Jayanti et al. is of Ω(N2)

RMR complexity. Thus, the open problem of linear time and space GME algo-

rithm is not truly solved by Jayanti et al.

Taubenfeld [20] developed the Black-White Bakery Algorithm to solve classi-

cal mutual exclusion problem while using only bounded shared variables. Here

we give an exposition of his Black-White Bakery Algorithm. We leave it as an

open problem to investigate whether it is possible to bound the shared vari-

ables in our GME Bakery Algorithm by generalizing the Black-White Bakery

Algorithm.

4.1 A Flaw in the Literature

As we showed in Chapter 2, the algorithms by Hadzilacos [9] and Jayanti et al.

[11] satisfy the FCFS property. However, it is possible that while process i is in

the middle of the doorway, a conflicting process j enters its doorway. Under

this circumstance, we say that processes i and j are doorway-concurrent. In this

case, the FCFS property does not dedicate as to who should get into the CS first.

In fact, in their algorithm presented in Figure 2.9 and Figure 2.10, if two conflict-

ing processes i and j record the turn-snap before each other updates their Turn,

both processes i and j can get out of the “FCFS Algorithm” and can potentially

enter the CS simultaneously. In order to prevent this from happening, we need

the “ME Algorithm”. In the worst case, consider a situation where all the n pro-

cesses are doorway concurrent and are requesting different sessions. Then all of

them can get out of the “FCFS Algorithm” and move on the “ME Algorithm”.

In order to simplify the analysis, we consider the “ME Algorithm” alone.

52

4.1.1 One-bit Mutual Exclusion Algorithm

The “ME Algorithm” is independently discovered by Burns [5] and Lamport

[16]. The algorithm is the first mutual exclusion algorithm that uses the min-

imum possible shared space. Every process only uses one-bit shared variable

to guarantee the mutual exclusion. Thus, it is also called the “One-bit” mutual

exclusion algorithm. Figure 4.1 presents the code of the algorithm for process i.

The algorithm only uses one shared variable Competing, a Boolean array of

size N , where N is the total number of processes. Every process owns a single

a single-writer multi-reader shared bit Competing[i]. Only process i can write

into Competing[i]; other processes can read it. If Competing[i] = true, process i is

competing for entry into the CS with other processes.

While entering the ENTRY SECTION, process i sets its bit to true and checks

all processes with smaller-identifier (lines 3-5). If any of them, say process j, is

found to have set its bit Competing[j] to true, then process i resets Competing[i]

to false (line 6), allowing processes with smaller-identifier to make progress.

Later, process i waits for process j’s bit to become false (line 7) and then restarts

the whole competition by going to line 3. Having checked all processes with

smaller-identifiers, process i checks processes with larger-identifier and waits

for each of them to set its bit to false (lines 11-13). This time, however, while

process i is waiting it does not set its bit to false. After that, process i enters the

CS. It turns out that this simple algorithm guarantees the mutual exclusion by

using only one-bit shared variable.

The basic idea behind the algorithm is easy to understand. At any point of

time, the process with the smallest process number has the highest priority to

make progress because it will not set its Competing to false before it enters the

CS. Note that the “goto” statement of line 8 is crucial for the mutual exclusion

53

property. To see that, suppose we drop the “goto” and substitute line 8 with

(Competing[i] = true). Consider the following sequence of execution of three

processes i, j, k(i < j < k) are requesting the CS.

1) Processes j and k sets their Competing bit to true.

2) Process k checks all processes with smaller-identifiers and finds that only

Competing[j] is true. Since process j has a smaller-identifier, process k sets its

Competing[k] to false and waits for Competing[j] to become false.

3) Process i starts requesting and sets its bit to true

4) Process j checks all processes with smaller-identifiers and finds that pro-

cess i’s bit is set to true. So process j sets Competing[j] to false and waits

for Competing[i] to become false.

5) Process i finds no processes with smaller-identifier is requesting and all pro-

cesses with larger-identifier sets their bits to false. Process i enters the CS.

6) Process k now finds Competing[j] to be false. Since we substitute the “goto”

with a new line 8. Process k sets its bit to true and finish checking processes

with smaller-identifiers (process k checked process i before checking process

j).

7) Process k finds that no process with larger-identifier is requesting the CS. So,

process k enters the CS now.

8) Processes i and k are now in the CS at the same time.

On the other hand, if we keep the line of “goto”, process k will restart check-

ing processes with lower-identifier after it terminates the waiting for process j.

Hence, process k will find out that process i’s bit is set to true and then wait for

it.

54

The One-bit mutual exclusion algorithm has the property of ME and DF.

However, it does not satisfy the starvation freedom because process with

smaller-identifier always has higher priority. For example, when a process p

is wanting to enter the CS, it is possible that a process q with a smaller-identifier

requests the CS again and again. It is possible that process p waits for process q

forever. This can happen if every time process p is scheduled, it finds process q

with smaller-identifier has its competing bit sets to true.

Figure 4.1 One-bit Mutual Exclusion Algorithm
shared variables:

Competing: array[1..N] of Boolean, initially all false

1: repeat
2: REMAINDER SECTION

3: Competing[i] := true
4: for j := 1 to i− 1 do
5: if ((Competing[j] = true) then
6: Competing[i] := false
7: await ((¬Competing[j])
8: goto line 3
9: end if

10: end for

11: for j := i + 1 to N do
12: await ((¬Competing[j])
13: end for

14: CRITICAL SECTION

15: Competing[i] := false

16: forever

4.1.2 RMR Complexity Analysis

The RMR complexity of the algorithm is unbounded in both DSM and CC

model. This is because the algorithm does not satisfy the starvation freedom

property. Accordingly, there is no bound on the maximum number of RMR that

55

a process makes before entering the CS.

In Hadzilacos’s algorithm, the modular composition of the “FCFS Algo-

rithm” and the “One-bit” mutual exclusion algorithm guarantee the starvation

freedom property. So, we need to analyze the RMR complexity of the one-bit al-

gorithm under the assumption that it has starvation freedom. In this section, we

show that the One-bit mutual exclusion algorithm is of Ω(N2) RMR complexity

when used in the GME algorithm of Hadzilacos.

Assume N processes requesting N different sessions enter the ENTRY SEC-

TION at about the same time in Hadzilacos’ algorithm (Figure 2.8). Since all

processes are doorway-concurrent, they pass the “FCFS Algorithm” and enter

the One-bit mutual exclusion algorithm. Consider the following sequence of

events.

1) Process N sets its competing bit to true.

2) Process (N − 1) sets its bit to true.

3) Process N checks all processes with lower-identifier and finds that pro-

cess (N − 1)’s bit is set. So, process N sets its bit to false and waits for

Competing[N − 1] to become false.

4) Process (N − 2) sets its bit to true.

5) Process (N − 1) checks all processes with lower-identifier and finds that pro-

cess (N − 2)’s bit is set. So, process (N − 1) sets its bit to false and waits for

Competing[N − 2] to become false.

6) Process N now finds Competing[N − 1] to be false and so restarts the compe-

tition by setting its bit to true.

7) Process N checks all processes with lower-identifier and finds that pro-

cess (N − 2)’s bit is set. So, process N sets its bit to false and waits for

Competing[N − 2] to become false.

56

8) Process (N − 3) sets its bit to true.

9) Process (N − 2) checks all processes with lower-identifier and finds that pro-

cess (N − 3)’s bit is set. So process (N − 2) sets its bit false and waits for

Competing[N − 3] to become false.

10) Process N now finds Competing[N − 2] to be false and so restarts the compe-

tition by setting its bit to true.

11) Process N checks all processes with lower-identifier and finds that pro-

cess (N − 3)’s bit is set. So, process N sets its bit to false and waits for

Competing[N − 3] to become false.

12) .

13) .

14) .

15) Process N checks all processes with lower-identifier and finds that process

1’s bit is set. So, process N sets its bit to false and waits for Competing[1] to

become false.

16) Process 1 checks all processes with larger-identifier and finds that all the bits

are false and enters the CS.

17) Process 1 exits the CS and sets its bit to false.

Noted that during the above sequence of events, process N got blocked once

by each one of the processes with lower-identifier. At the end of the above

sequence, process 1’s request is satisfied. Also, at the end of the above sequence,

the Competing bits of process 2 through N are all false. Now, we can iterate

the same sequence of the events, but this time with only process 2 through N

participating. We can recursively iterate the same sequence of events again and

again until finally we have only process N participating.

57

The net effect is that in this worst scenario, process N got blocked by process

(N−1) a total of (N−1) times, by process (N−2) a total of (N−2) times and so

on. So, the total number of times, process N gets blocked by some other process

is
N−1∑
k=1

k =
N(N − 1)

2
= Ω(N2)

In the CC model, at least one remote memory reference is involved each time

a process gets blocked and hence the RMR complexity of the One-bit mutual

exclusion algorithm when used as part of Hadzilacos’s algorithm is of Ω(N2)

in the CC Model. It was erroneously claimed in [9] and tacitly inherited in [11]

that this algorithm is of O(N) RMR. That claim is clearly wrong as illustrated

above. Hence the problem of developing a linear time (O(N) RMR complexity)

and linear space (O(N) shared space) algorithm for the group mutual exclusion

problem, originally posed by Hadzilacos, is still open. In the remainder of this

chapter, we develop such an algorithm.

4.2 Bounding Lamport’s Bakery Algorithm

4.2.1 Introduction

The Lamport’s Bakery Algorithm [16] is one of the best-known mutual exclu-

sion algorithms. However, the algorithm uses unbounded shared variables.

Several attempts [10, 21, 22] have been made to bound the shared space of the

Lamport’s Bakery Algorithm. However, solutions proposed are quite compli-

cated [10] or even incorrect [21, 22]. In 2004, Taubenfeld [20] came up with

a simple and elegant modification of the Lamport’s Bakery Algorithm called

Black-White Bakery Algorithm that uses only bounded shard variables. In this

section, we introduce an exposition of the Black-White Bakery Algorithm.

58

4.2.2 Black-White Bakery Algorithm

Figure 4.2 depicts the algorithm. The doorway consists of lines 3-6. The waiting

room is made up of lines 7-14. The algorithm uses a multi-writer multi-reader

shared bit variable called GlobalColor that can only be black or white. Every pro-

cess gets a token in each invocation, which consists of two parts: the token-color

and the token-number. The algorithm bounds the growth of token numbers by

coloring the token with the colors black or white. When a process enters the

ENTRY SECTION, it first picks up its token-color by reading the GlobalColor.

Then, process i selects its token-number to be one more than the largest token

number of processes that have the same token-color. Next, process i waits until

its colored token is the “lowest” and then it enters the CS. The order between

tokens is defined as follows: If process i and process j have different token-

colors, the token whose token-color is different from the value of the GlobalColor

is smaller. If process i and process j have the same token color, the token with

the smaller token-number is smaller. It is possible that processes have the same

token-color and token-number. In that case, the process with the smaller identi-

fier is deemed to have the smaller token. Once process i exits the CS, it updates

the GlobalColor to be the opposite of its own token-color. By doing this, process

i give priority to processes that have the same token-color as process i.

59

Figure 4.2 Black-White Bakery Algorithm
shared variables:

Choosing: array[1...N] of Boolean, initially all false
GlobalColor: a bit of type {black, white}, initialized arbitrarily
Token-Color: array[1...N] of type {black, white}, initialized arbitrarily
Token-Number: array[1...N] of integer, initially all 0

1: repeat
2: REMAINDER SECTION

3: Choosing[i] := true
4: Token-Color[i] := GlobalColor
5: Token-Number[i] := 1+ max of token numbers of processes with the same

color
6: Choosing[i] := false

7: for j := 1 to N do
8: await Choosing[j] = false
9: if (Token-Color[i] = Token-Color[j]) then

10: await (((Token-Number[i], i) < (Token-Number[j], j))∨
(Token-Color[i] 6= Token-Color[j]) ∨ (Token-Number[j] = 0)

11: else
12: await ((Token-Color[i] 6= GlobalColor)∨

(Token-Color[i] = Token-Color[j]) ∨ (Token-Number[j] = 0)
13: end if
14: end for

15: CRITICAL SECTION

16: if Token-Color[i] = black then
17: GlobalColor := white
18: else
19: GlobalColor := black
20: end if
21: Token-Number[i] := 0
22: forever

We now take a more detailed view of the algorithm. At first, in the EN-

TRY SECTION, process i sets Choosing[i] to be true to indicate that it enters the

doorway (line 3). Then process i selects its token-color by reading the shared

bit GlobalColor and saving it into Token-Color[i] (line 4). Next, process i selects a

number that is one more than the largest token-number of processes that have

60

the same token color (line 5). Later, process i sets Choosing[j] to be false to in-

dicate that it has finished the doorway. In the waiting room, for each process j,

process i first waits for process j to finish the doorway in case it has started it

(line 8). Then, process i compares the token-color of process j with that of itself

(line 9). If process j has the same token-color, at line 10, process i waits until

it notices that either (i) process i has the smaller token number or (ii) process

j has reentered the ENTRY SECTION with the opposite token-color to that of

process i or (iii) process j has got out of the CS and entered the REMAINDERS

SECTION. If process j has different token-color than process i, at line 12, pro-

cess i waits until either (i) process i’s token-color is different with GlobalColor

or (ii) process j has reentered the ENTRY SECTION with same token-color as

process i’s or (iii) process j has got out of the CS and entered the REMAINDER

SECTION. After checking all other processes, process i enters the CS. When it

exits the CS, process i sets the GlobalColor to the opposite of its own token-color

(lines 16-21) and reset its token-number to 0.

It is trivial to see that if a process enters the CS, then processes with the

different token-color than process i can not enter the CS before all processes

having the same token-color with process i enter the CS. This crucial property

ensures the mutual exclusion property and the bounded shared variable. Note

that the second condition in line 10 and line 12 are essential to the correctness

of the algorithm. For example, assume a process i is waiting for a process j at

line 10 or 12. If process j reenters the ENTRY SECTION and gets a token-color

again, it is possible that process j gets a new token-color that is different than

previous token-color. In that case, process i should not wait for process j any

more because process i doorway-precedes process j. Moreover, it is possible

that process i will still wait for process j, if process i does not recheck process

61

j’s token color, and this will result in a deadlock situation. Thus, by checking

the second condition in line 10 and line 12, process i will detect process j has

reentered the ENTRY SECTION and terminate the wait.

The Black-White Bakery Algorithm satisfies the properties of ME, DF and

FCFS. It is not difficult to see that the algorithm is of Θ(N) shared space com-

plexity. Note that when the GlobalColor changes, the token-numbers start all

over again from 1. Therefore, the maximum value of token-number can have

without a change is N and so the algorithm uses bounded shared variables. In

the DSM model, the algorithm has unbounded RMR complexity because it is

busy-waiting on remote shared variable. Under the CC model, since the busy-

wait loops in lines 8, 10 and 12 can only involve constant number of RMR, the

outer loop in the ENTRY SECTION is of O(N) RMR complexity, and hence the

RMR complexity of the algorithm is O(N).

The Black-White Bakery Algorithm uses a simple and elegant manner to

solve the disadvantage of unbound shared variable for Lamport’s Bakery Al-

gorithm. Since our GME Bakery Algorithm inherits the same disadvantage of

Lamport’s Bakery Algorithm, it might be possible to bound our GME Bakery

Algorithm using similar technique. We leave it as an open problem to inves-

tigate whether it is possible to bound the shared variables in our GME Bakery

Algorithm by using color mechanism like the Black-White Bakery Algorithm.

62

Chapter 5

Conclusion

5.1 Summary

Dijkstra first introduces the classical mutual exclusion problem in 1965 [7]. In

1998, Joung [12] gave the first statement of the group mutual exclusion prob-

lem and proposed a solution. Later, it has been extensively studied and a large

number of algorithms have been developed.

Lamport’s Bakery Algorithm is one of the best-known algorithm for classical

mutual exclusion problem. In this thesis we give two simple and elegant algo-

rithms that generalize Lamport’s Bakery Algorithm to solve GME problem. Our

first algorithm uses synchronization primitive Fetch-and-Inc. Our second algo-

rithm uses only simple read and write operations. To the best of our knowledge,

our algorithm is the simplest and elegant generalization of Lamport’s Bakery

Algorithm for the GME problem. Takamura and Igarashi [19] made an attempt

to generalize the well-known Lamport’s Bakery Algorithm to solve GME. They

presented three different algorithms in that paper. Their first algorithm does not

satisfy the starvation freedom property and concurrent entry property. Their

second and third algorithms, apart from being quite complicated, do not sat-

isfy the concurrent entry property and bounded exit property. All three of their

algorithms satisfy the concurrent occupancy property.

Several GME algorithms have been developed while using using bounded

shared variables. Joung’s GME algorithm satisfies the four basic properties:

ME, CE, BE and SF. However, it does not have the FCFS property. His algo-

rithm has Θ(N) shared space complexity and unbounded RMR complexity in

both DSM and CC model. Joung stated the concurrent entry property infor-

mally. Later, Keane and Moir [13] gave a precise definition of the concurrent

entry property and devised a GME algorithm that satisfies it. However, Hadzi-

lacos [9] pointed out that the formulation of the concurrent entry property by

Keane and Moir does not correctly capture Joung’s intent. Hadzilacos used the

term “concurrent occupancy” to denote the property formulated by Keane and

Moir and reformulated the concurrent entry property to capture Joung’s orig-

inal intent. Hadzilacos [9] gave a nice algorithm that satisfies the concurrent

entry property as well as the FCFS property using bounded shared variables

and only simple read and write operations. His algorithm can be thought of

as a modular composition of two independent algorithms, one, the “FCFS al-

gorithm” and the other, the “ME algorithm”. The “ME algorithm” is based on

the “One-bit Algorithm” for classical mutual exclusion problem that was inde-

pendently developed by Burns [5] and Lamport [16]. The algorithm is of Θ(N2)

shared space complexity and unbounded RMR complexity in the DSM model.

Hadzilacos claimed that it has O(N) RMR complexity in the CC model. Also,

Hadzilacos left as an open problem the development of an algorithm satisfying

the properties of ME, CE, BE, SF and FCFS for the GME problem that runs in

linear time (RMR complexity) and space (shared space complexity) while using

64

only bounded shared variables and simple read and write instructions.

A couple of year later, Jayanti et al. [11] presented an algorithm as a solution

to the above-mentioned open problem. They came up with a modification of

the FCFS algorithm to reduce the shared space complexity while retaining the

overall structure of Hadzilacos’s algorithm and the “One-bit Algorithm”. Al-

though they did not explicitly claim so, their algorithm is considered to be of

linear space and time complexity (for example, see the citation in [4]).

We demonstrate that both algorithms by Hadzilacos [9] and Jayanti et al.

[11] are of Ω(N2) RMR complexity in the CC model. Therefore the open prob-

lem of development of a linear time and space GME algorithms proposed by

Hadzilacos is still open.

5.2 Open Problems

In a recent paper, Attiya, Hendler and Woefel [3] provided a Ω(logN) RMR

bound for the classical mutual exclusion problem in both DSM and CC models.

These lower bounds are valid even if the algorithms are allowed to use Com-

pare&Swap primitive and load-link(LL)/store-conditional(SC) variables in addi-

tion to simple read and write operations. Since the classical mutual exclusion

problem is a special case of GME, the lower bound on RMR complexity for

group mutual exclusion problem is Ω(logN) as well.

Bhatt and Huang [4] presented an algorithm for GME problem whose RMR

complexity matches the lower bound. So their algorithm is optimal with respect

to RMR complexity. However, it may be possible to beat the lower bound if

the algorithm is allowed to use more powerful synchronization primitives such

as Fetch&Add. In fact, several constant RMR algorithms [2, 8, 18] have been

developed for the classical mutual exclusion problem using this approach.

65

We leave it as an open problem to investigate whether it is possible to create

a GME algorithm that has constant RMR complexity in the CC model using

more powerful synchronization primitives.

Danek and Hadzilacos [6] proved a lower bound of Ω(N) on the RMR com-

plexity of local-spin GME algorithms under the DSM model regardless of how

powerful synchronization primitives it may use. They also gave a local-spin

GME algorithm whose RMR complexity matches the lower bound. In this sense,

their algorithm is an optimal algorithm. However, their algorithm uses Θ(N2)

shared space. It is still unknown whether there exists a local-spin GME algo-

rithm has both linear time complexity and linear space complexity in the DSM

model.

66

Bibliography

[1] K. Alagarsamy and K. Vidyasankar. Elegant solutions for group mutual
exclusion problem. Unpublished manuscript, 1999.

[2] T. Anderson. The performance of spin lock alternatives for shared-money
multiprocessors. Parallel and Distributed Systems, IEEE Transactions on,
1(1):6–16, 1990.

[3] H. Attiya, D. Hendler, and P. Woelfel. Tight rmr lower bounds for mutual
exclusion and other problems. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 217–226. ACM, 2008.

[4] V. Bhatt and C. Huang. Group mutual exclusion in o (log n) rmr. In Proceed-
ings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, pages 45–54. ACM, 2010.

[5] J. Burns. Complexity of Communication Among Asynchronous Parallel Pro-
cesses. PhD thesis, Georgia Institute of Technology, January 1981.

[6] R. Danek and V. Hadzilacos. Local-spin group mutual exclusion algo-
rithms. In DISC, volume 3274 of LNCS, pages 71–85. Springer, 2004.

[7] E. Dijkstra. Solution of a problem in concurrent programming control.
In Pioneers and Their Contributions to Software Engineering, pages 289–294.
Springer, 2001.

[8] G. Graunke and S. Thakkar. Synchronization algorithms for shared-
memory multiprocessors. Computer, 23(6):60–69, 1990.

[9] V. Hadzilacos. A note on group mutual exclusion. In Proceedings of the
twentieth annual ACM symposium on Principles of distributed computing, pages
100–106. ACM, 2001.

67

[10] P. Jayanti, K. Tan, G. Friedland, and A. Katz. Bounding lamports bakery
algorithm. In SOFSEM 2001: Theory and Practice of Informatics, pages 261–
270. Springer, 2001.

[11] S. Jayanti, P.and Petrovic and K. Tan. Fair group mutual exclusion. In
Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 275–284. ACM, 2003.

[12] Y. Joung. Asynchronous group mutual exclusion. Distributed Computing,
13(4):189–206, 2000.

[13] P. Keane and M. Moir. A simple local-spin group mutual exclusion algo-
rithm. In Proceedings of the eighteenth annual ACM symposium on Principles of
distributed computing, pages 23–32. ACM, 1999.

[14] D. Knuth. Additional comments on a problem in concurrent programming
control. Commun. ACM, 9(5):321–322, May 1966.

[15] L. Lamport. A bug in the bakery algorithm. Technical report, Technical
Report CA–7704–0611, Massachusette computer associates, inc, 1977.

[16] L. Lamport. The mutual exclusion problem: Parts i and ii. Journal of the
ACM (JACM), 33(2):313–348, 1986.

[17] E. Lycklama and V. Hadzilacos. A first-come-first-served mutual exclusion al-
gorithm with small communication variables. ACM Transactions of Program-
ming Languages and Systems 13(4), (1991), 558-576.

[18] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems
(TOCS), 9(1):21–65, 1991.

[19] M. Takamura and Y. Igarashi. Group mutual exclusion algorithms based
on ticket orders. In Computing and Combinatorics, pages 232–241. Springer,
2003.

[20] G. Taubenfeld. The black-white bakery algorithm and related bounded-
space, adaptive, local-spinning and fifo algorithms. In Distributed Comput-
ing, pages 56–70. Springer, 2004.

[21] S. Vijayaraghavan. A variant of the bakery algorithm with bounded val-

68

ues as a solution to abrahams concurrent programming problem. Proc. of
Design, Analysis and Simulation of Distributed Systems, 2003.

[22] T. Woo. A note on lamport’s mutual exclusion algorithm. Operating Systems
Review, 24(4):78–80, 1990.

69

