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The primary goal of this study was to characterize the role of GPR18 in the rostral ventrolateral 

medulla (RVLM) in blood pressure (BP) regulation and elucidate the mechanisms involved in 

central GPR18 mediated hypotensive response. The central hypothesis of this study was “central 

GPR18 signaling exerts a tonic sympathoinhibitory effect”. The data provide the first evidence for 

expression of GPR18 in the RVLM, the cardiovascular regulatory nuclei of the brainstem and its 

co-localization in tyrosine hydroxylase (TH)-expressing neurons as well as in RVLM neurons 

expressing cannabinoid1 receptors (CB1R). Also intra-RVLM activation of GPR18 receptors with 

abnormal cannabidiol (Abn CBD) produced a dose-dependent reduction in BP in conscious male 

Sprague Dawley rats whereas blockade of those receptors with 1, 3-dimethoxy-5-methyl-2-[(1R, 

6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl] benzene (O-1918) increased BP and 

abrogated the Abn CBD-evoked reduction in BP. Additional studies tested the hypothesis that the 

negligible hypotensive effect caused by the endogenous GPR18 ligand n-arachidonoyl glycine 



(NAGly) could be due to concurrent activation of CB1R in the RVLM. Our findings supported this 

hypothesis because NAGly-evoked hypotension was doubled following RVLM CB1R blockade 

(SR141716).  Ex-vivo studies revealed that intra-RVLM GPR18 activation (Abn CBD; 0.4 μg) 

enhanced RVLM Akt, ERK1/2 and nNOS phosphorylation and increased adiponectin (ADN) 

levels, during the hypotensive response.  In contrast, prior GPR18 receptor blockade (O-1918) 

produced the opposite effects, and abrogated Abn CBD-evoked responses in conscious Sprague 

Dawley rats. Inhibition of RVLM PI3K/Akt (wortmannin), ERK1/2 (PD98059) or nNOS (N
ω
-

propyl-L-arginine, NPLA) or activation of adenylyl cyclase (forskolin) virtually abolished the 

intra-RVLM Abn CBD-evoked hypotension. Further, wortmannin, PD98059, NPLA or forskolin 

abrogated the GPR18-mediated increases in RVLM Akt, ERK1/2, nNOS phosphorylation and 

ADN levels, along with increased ROS generation. Our in-vitro studies show that GPR18 is co-

expressed with CB1R in nPC12 cells. Our in-vitro studies are in line with our in-vivo findings in 

normotensive rats indicating that GPR18 signals through the PI3K/Akt-ERK1/2-nNOS/ADN 

pathway. Additionally, our confocal imaging findings show that GPR18 is associated with lipid 

rafts (LRs). Furthermore, activation of GPR18 (Abn CBD/ NAGly) displaces it from the LRs and 

this response was abrogated by prior GPR18 blockade (O-1918). Furthermore, cholesterol 

depletion by methyl-β-cyclodextrin (MβCD) enhanced GPR18 signaling and uncovered O-1918 

blockade in nPC12 cells. Collectively, these studies provide insight into identifying the potential 

signaling pathway(s) triggered by central GPR18 activation in conscious animals and the potential 

role of lipid rafts in modulating GPR18 signaling in-vitro. 
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CHAPTER ONE-GENERAL INTRODUCTION 

1.1. Evidence for the presence of Non CB1/Non CB2 receptors 

Cannabinoids elicit complex cardiovascular responses involving both peripheral and central sites 

(Randall et al., 2002; Randall et al., 2004). Cannabinoids cause vasorelaxation in vitro (Mason and 

Matthews, 2012). In anesthetized animals, cannabinoids reduce blood pressure and heart rate 

(Varga et al., 1995), but produce a long lasting pressor response along with bradycardia in 

conscious rats (Stein et al., 1996). Hence, the cardiovascular effects of cannabinoids are complex, 

and depend on the animal model used, experimental conditions and whether the cannabinoids are 

synthetic or endogenous (Randall et al., 2004). In terms of cardiovascular effects produced by 

cannabinoids, many studies have shown the involvement of several novel receptors in mediating 

the cardiovascular effects of several synthetic and natural cannabinoids (Pratt et al., 1998; Jarai et 

al., 1999; Offertáler et al., 2003; Begg et al., 2005; Mackie and Stella, 2006). The synthetic 

cannabinoid abnormal cannabidiol (Abn CBD), which is inactive at CB1/CB2 receptors, causes 

significant hypotension that is blocked by 1, 3-dimethoxy-5-methyl-2-[(1R, 6R)-3-methyl-6-(1-

methylethenyl)-2-cyclohexen-1-yl] benzene (O-1918) (Offertáler et al., 2003). Also Abn CBD 

elicits endothelial-dependent vasodilation even in CBD receptor (CB1 and CB2) knockout mice 

(Jarai et al., 1999). This new receptor has been termed the ‘Abn CBD’ receptor and has been 

implicated in the endothelial-dependent vasodilation, hemodynamic responses and in the 

modulation of microglial and endothelial cell migration (Jarai et al., 1999; Offertáler et al., 2003; 

Mo et al., 2004; McCollum et al., 2007; McHugh et al., 2012). One such putative cannabinoid 

receptor, which is thought to be the Abn CBD receptor, is GPR18 (McHugh et al., 2010). There 

are studies showing that Abn CBD and O-1918 also serve as ligands to GPR55 (Johns et al., 2007; 
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Godlewski et al., 2009).  However, more recent studies have shown that although GPR18 and 

GPR55 share the same ligands, they do not respond to these ligands in the same manner or with the 

same efficacy and have confirmed GPR18 as the “Abn CBD” receptor (McHugh et al., 2010; 

Okuno and Yokomizo, 2011). 

1.2. G-Protein Coupled Receptor 18 

Cannabinoids are a group of heterogeneous compounds that are either natural (isolated 

from Cannabis sativa (marijuana)) or synthetic in origin. CB1 and CB2 receptors are two sub-

types of G protein coupled receptors (GPCRs) that have been well characterized as the 

cannabinoid receptors. GPR18 is a GPCR, which is the site of action of several natural and 

synthetic cannabinoids and has been recognized as a putative cannabinoid receptor as discussed 

above. 

1.2.1. Expression and Distribution of GPR18 

GPR18 is localized to human chromosome 13q32 (Gantz et al., 1997). Northern blot 

analysis of human tissues showed that GPR18 transcripts are most abundant in the testis and 

spleen and moderately expressed in brain and lungs (Gantz et al., 1997). Examination of GPCR 

repertoires in human and mouse tissues using real-time PCR showed strong expression of 

GPR18 in hypothalamus, thyroid, peripheral blood leucocytes, cerebellum and brainstem 

(Vassilatis et al., 2003). On the other hand, the liver, kidney, heart and lungs seem to lack 

GPR18 mRNA (Gantz et al., 1997). 
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1.2.2. GPR18 ligands 

Although GPR18 seems to share homology with the µ opioid receptor, it does not bind 

opiate ligands (Gantz et al., 1997). N-arachidonoyl glycine (NAGly), which is an endogenous 

lipid highly expressed in the mammalian nervous system, exhibits high affinity for GPR18 

(Huang et al., 2001). NAGly is produced by both oxidative metabolism of the ethanolamine 

moiety of anandamide (AEA) and through the conjugation of glycine to arachidonic acid (AA) 

that is released during the AEA hydrolysis by fatty acid amyl hydrolase (FAAH) (Bradshaw et 

al., 2009). While Abn CBD, O-1602, Δ
9
-THC and AEA are reported as full agonists at GPR18, 

AM251 is a partial agonist, and O-1918 and cannabidiol (CBD) are antagonists of GPR18 

(McHugh et al., 2010; McHugh et al., 2011; McHugh, 2012). Other typical cannabinoid ligands 

like WIN55212-2, CP55940, JWH-133 and JWH-105 have no effect at GPR18 (McHugh, 2012). 

1.2.3. Signal transduction following GPR18 activation 

As discussed below, several downstream signaling molecules are either activated or 

inhibited upon GPR18 activation. For example, cAMP synthesis is reduced via inhibition of 

adenylyl cyclase activity, stimulation of phosphorylation of ERK1/2 and Akt (Fig. 1.1). 

1.2.3.1. Inhibition of adenylyl cyclase.  

GPR18 is a Gαi/o coupled receptor that has been demonstrated to be negatively coupled to 

adenylyl cyclase (Kohno et al., 2006). Studies on GPR18 in different model systems have shown 

that activation of GPR18 inhibits adenylyl cyclase activity, resulting in the reduction of cAMP 
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production in a pertussis toxin-sensitive manner (Kohno et al., 2006; McHugh et al., 2010; 

Carbone, 2012).  

1.2.3.2. Modulation of ERK1/2 and PI3K/Akt signaling.  

GPR18 signaling has been linked to activation of extracellular-signal regulated kinases1/2 

(ERK1/2) in several model systems. Importantly, GPR18 activation by NAGly or Abn CBD in 

BV-2 microglial and HEK 293 cells potently drives cellular migration through, ERK1/2 

phosphorylation, which was significantly inhibited by O-1918 (McHugh et al., 2010). Abn CBD 

induced phosphorylation of ERK1/2 and Akt in HUVEC cells is sensitive to pertussis toxin 

treatment (indicating the association with a Gαi/o coupled receptor) and is antagonized by O-

1918 (Offertáler et al., 2003). Also, NAGly, Abn CBD, AEA and THC activated GPR18 to cause 

cell migration in HEC-1B cells via phosphorylating ERK1/2 (McHugh et al., 2011). NAGly also 

causes apoptosis in mouse macrophage cell line through GPR18 by activating ERK1/2, p38 

MAPK and JNK pathway (Carbone, 2012). Whether ERK1/2 and/or PI3K/Akt signaling 

pathways are involved in central GPR18-elicited sympathoinhibition has yet to be elucidated. 
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Table. 1.1. Ligands of GPR18 

Representative structures of phyto-, synthetic, and endogenous cannabinoid compounds active at 

GPR18. The compounds NAGly, Abn CBD and O-1918 were used in these studies.  
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Phytocannabinoids 

Δ
9
–tetra-hydrocannabinol (Δ

9
-THC) 

 

Cannabidiol (CBD) 

 

Synthetic 

cannabinoids 

Abnormal cannabidiol (Abn CBD) 

 

O-1918 

 

Endogenous 

cannabinoids 

N-Arachidonoylglycine (NAGly) 

 

Anandamide (AEA) 
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1.3. Oxidative Stress and Central Regulation of Cardiovascular Function 

Recent studies strongly suggest that increased reactive oxygen species (ROS) generation in 

the brainstem contributes to the neural mechanism underlying the development of hypertension 

in hypertensive rats (Pilowsky and Goodchild, 2002; Kishi et al., 2004; Yoshitaka, 2008). The 

RVLM is the major neural pool that determines basal sympathetic activity and is essential for the 

maintenance of basal vasomotor tone (Dampney, 1994; Sved et al., 2003; Kishi et al., 2004; 

Guyenet, 2006; Ribeiro de Campos and Bergamaschi, 2006). 

1.3.1. Rostral Ventrolateral Medulla (RVLM) in central cardiovascular regulation 

Several brainstem nuclei are implicated in the central regulation of cardiovascular functions 

including blood pressure (BP). In this study, attention has been focused on the rostral 

ventrolateral medulla (RVLM), which plays a pivotal role in central control of sympathetic 

outflow and cardiovascular function (Kishi et al., 2001; Institute for Laboratory Animal 

Research, 2011; Worlein et al., 2011). The RVLM is located in the ventral part of the brainstem, 

lateral to the inferior olive, caudal to the facial nucleus, and ventral to the nucleus ambiguous 

(Farlow et al., 1984; Dampney et al., 1987). It controls BP by integrating a variety of signals 

originating in other regions of the brain like the periaqueductal gray, the paraventricular nucleus 

and/or the lateral hypothalamus (Guyenet et al., 1989; Kishi et al., 2001). The RVLM contains 

both adrenergic and noradrenergic groups of neurons (Hokfelt T. et al., 1984) in addition to 

neurons containing several other neurotransmitters (Pilowsky et al., 1986), and receptors like 

Angiotensin II AT1 receptors (Potts et al., 2000), mu-opioid receptors (Aicher et al., 2001; Drake 

et al., 2005), imidazoline I1 receptors (Zhang and Abdel-Rahman, 2002; Zhang and Abdel-
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Rahman, 2005), 2A adrenergic receptors (El-Mas and Abdel-Rahman, 2004; Li et al., 2005), 

adenosine receptors (A2A) (Nassar and Abdel-Rahman, 2008), cannabinoid CB1 receptors 

(Herkenham et al., 1991; Padley et al., 2003) and CB2 receptors (Van Sickle et al., 2005). 

Evidence has implicated the RVLM C1 neurons in the modulation of sympathetic activity and 

regulation of BP (Dampney, 1994; Sved et al., 2003; Guyenet, 2006). Other physiological 

processes like breathing and nociception are also regulated by the RVLM (Nattie and Li, 1990; 

Javanmardi et al., 2005; Karlsson et al., 2006). 

1.3.2. Impact of Reactive Oxygen Species in the RVLM 

Oxidative stress in the RVLM has been shown to be one of the major contributing factors 

for the high BP in hypertensive rats (Pilowsky and Goodchild, 2002; Kishi et al., 2004). ROS 

levels are higher (Fridovich, 1978; Yoshitaka, 2008) and superoxide dismutase (a ROS 

scavenging enzyme) expression and activity are lower (Chan et al., 2006; Yoshitaka, 2008) in the 

RVLM of SHRs when compared with that of WKY rats. Further, NADPH Oxidase is a major 

source of ROS production in CNS (Griendling et al., 2000; Bedard and Krause, 2007; Akki et al., 

2009; Frey et al., 2009). It has also been demonstrated that expression of inducible nitric oxide 

synthase (iNOS) in the NTS and RVLM decreases blood pressure and heart rate by inhibiting 

sympathetic nervous system activity (Kimura et al., 2009) and may be linked to reduced ROS 

generation. However, the rapid (10-15 min) onset of the GPR18-mediated hypotension in the 

preliminary study precludes a major role for iNOS in the hypotensive response. Therefore, the 

present study dealt with the role of constitutive NOS isoforms, particularly nNOS and eNOS in 

GPR18 signaling.  
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1.4. Lipid Rafts 

The plasma membrane is a phospholipid bilayer that is highly organized and is composed 

of microdomains called Lipid Rafts (LRs) (Herkenham et al., 1991). These lateral platforms 

enriched in cholesterol, sphingolipids are resistant to solubilization with non-ionic detergents 

(Herkenham et al., 1991; Pike, 2003).  Caveolae are funnel shaped invaginations of membrane 

proteins called caveolins and are a subtype of lipid raft (Fielding and Fielding, 1997; Czarny et 

al., 1999). These LR microdomains participate in a number of cellular functions including cell 

signaling, cell trafficking and membrane transport (Moffett et al., 2000; Gaus et al., 2003; 

Wilson et al., 2004) and play a very important role in health and disease (Jin et al., 2011). 

1.4.1. Lipid Rafts and GPCRs  

Lipid rafts/caveolae are the microdomain regions of localization of several physiologically 

important GPCRs (Becher et al., 2004; Chini and Parenti, 2004; Insel et al., 2005) and it is well 

known that the activity of several GPCRs is modulated by lipid rafts (Dainese et al., 2007). 

Many studies indicate that LRs and caveolae participate in the regulation of GPCR signaling by 

affecting both signaling selectivity and coupling efficacy (Chini and Parenti, 2004). 

1.4.2. Lipid Rafts and the Endocannabinoid System  

There is growing evidence suggesting that the endocannabinoid uptake and signaling 

through the cannabinoid receptors are highly dependent on the composition and integrity of lipid 

rafts (Biswas et al., 2003; Bari et al., 2005b; Bari et al., 2006; Rimmerman et al., 2008b). Recent 

studies suggest that anandamide (a precursor of NAGly) and its metabolites accumulate into lipid 
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rafts and these microdomains play important role in the cellular processing and regulation of 

AEA (Sarker and Maruyama, 2003; McFarland et al., 2004; Bari et al., 2005a). NAGly is 

synthesized from AEA and serves as endogenous GPR18 ligand (Huang et al., 2001). 

Additionally, AEA is a common endocannabinoid for both GPR18 and CB1R (Bradshaw et al., 

2009). There is also evidence that CB1R binding/signaling, as well as anandamide (AEA) 

transport is controlled by LRs and caveolin-1 (Dainese et al., 2007; Bari et al., 2008). CB1R 

signaling through AC and MAPK is reduced by half following disruption of LRs indicating the 

importance of the integrity of LRs in CB1R signaling (Bari et al., 2005b; Bari et al., 2006). 

Interestingly, in the case of CB1R, agonist-induced endocytosis is dependent on LRs/caveolae 

and it is this process that counteracts desensitization of the receptor by facilitating its recycling 

and reactivation (Wu et al., 2008). In contrast, raft disruption does not influence CB2R signaling 

or binding (Bari et al., 2005a; Sarnataro et al., 2005; Bari et al., 2006). One recent publication on 

the interaction of GPR55 (a putative cannabinoid receptor) with lipid rafts showed that activation 

of GPR55 leads to localization of the receptor in the LRs and that this association is essential for 

proper GPR55 signaling (Li et al., 2005). Taken together these findings suggest the important 

role for LRs in modulating the endocannabinoid system and that the cannabinoid receptor 

subtypes are differentially modulated by LRs. 
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1.5. Therapeutic Potentials of GPR18 

The endocannabinoid system with its several endogenous and exogenous modulators plays 

a very important role in impacting human health and disease. Its therapeutic potential seems to 

encompass mental illness, pain management, cardiovascular disorders, metabolic disorders, 

obesity, osteoporosis, and liver disease and nicotine addiction. Abn CBD (a GPR18 agonist) was 

shown to produce peripheral vasodilation independent of both CB1R and CB2R involvement 

(Offertáler et al., 2003). Also the fact that GPR18 does not modulate the psychoactive effects of 

marijuana makes it a promising therapeutic target (Caldwell et al., 2013). An understanding of 

the physiology and pharmacology of GPR18 and its association with the well characterized 

cannabinoid receptors and ligands is vital to assess and manipulate the cannabinoid signaling 

system for the development of new therapeutics that will benefit human health. 
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1.6. Aims of Study 

Previous studies have provided substantial evidence for the existence of novel cannabinoid 

(CBD) receptors influencing the cardiovascular system (Offertáler et al., 2003). One such group 

of GPCRs, which is considered as putative CBD receptors, is the GPR18 (Kohno et al., 2006). 

No studies have examined the expression and function of centrally located GPR18 within central 

cardiovascular regulating nuclei and whether GPR18 is associated with lipid rafts in those areas. 

Also several studies have shown that reactive oxygen species (ROS) are produced endogenously 

in response to several stimuli and that excess amounts of ROS contributes to various pathologies 

like hypertension (Pilowsky and Goodchild, 2002; Kishi et al., 2004; Yoshitaka, 2008). Recently, 

it has been shown that GPR18 ligands possess antioxidant properties (Rimmerman et al., 2008a; 

Carroll et al., 2012). Therefore, the present studies tested the central hypothesis that activation 

of GPR18 by its lipid ligands in the rostral ventrolateral medulla (RVLM) of the brainstem 

elicits sympathoinhibition and hypotension by circumventing oxidative stress. Additionally, 

the current study tested the corollary hypothesis that enhancement of ERK1/2-Akt-neuronal 

nitric oxide synthase signaling and inhibition of cAMP in the RVLM constitute the 

molecular mechanisms for the GPR18-mediated hypotension. Finally, we complemented the 

in vivo findings with additional molecular studies by evaluating the potential role of lipid rafts 

in GPR18 signaling in nPC12 cells. The pharmacological, and subsequent ex vivo signal 

transduction and biochemical studies, were undertaken in conscious normotensive rats. 

Specific Aim 1 experiments first examined the expression of GPR18 in the RVLM and its spatial 

distribution within tyrosine hydroxylase immunoreactive (TH-ir) (pre-sympathetic) neurons. 
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Second, the studies under this aim evaluated the function of RVLM GPR18 and subsequently 

tested the hypothesis that the Abn CBD-evoked hypotensive response involves activation of rat 

RVLM GPR18. Studies under this aim also evaluated the spatial and functional crosstalk 

between GPR18 and CB1R in the RVLM. 

Rationale: There are no reports on the presence of GPR18 protein in the brainstem and 

specifically in the cardiovascular regulating nuclei like the RVLM. Therefore, the first objective 

of the studies outlined under this aim was to determine whether GPR18 is expressed in the 

RVLM. The preliminary hemodynamic studies have shown that activation of RVLM GPR18 

leads to hypotension, while its blockade led to a hypertensive response indicating that GPR18 

influences sympathetic tone. Also, we hypothesized that the negligible hypotensive effect caused 

by the endogenous GPR18 ligand NAGly in our preliminary studies could be due to concurrent 

activation of CB1R in the RVLM because the latter mediates sympathoexcitation (Ibrahim and 

Abdel-Rahman, 2011). Therefore the studies under this aim investigated the possible influence of 

CB1R in GPR18-mediated hypotension following microinjection of NAGly. Experiments 

performed under this aim extended the preliminary protein expression and cardiovascular 

responses, discussed above, using highly selective lipid ligands and addressing the following 

questions: 

1- Is GPR18 expressed within the RVLM and is it spatially localized within TH-ir neurons? 

2- Does intra-RVLM administration of GPR18 ligands produce dose-dependent cardiovascular 

effects? 
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3- What are the cardiovascular effects caused by intra-RVLM GPR18 activation (Abn CBD) in 

the presence or absence of the GPR18 antagonist, O-1918? 

4- Is GPR18 co-expressed with CB1R in the RVLM? 

5- Does prior blockade of RVLM CB1R (SR141716a) enhance the hypotensive effect caused by 

the endogenous GPR18 agonist NAGly? 

Specific Aim 2 studies tested the hypothesis that cAMP/Akt/ERK1/2/nNOS-dependent reduction 

in ROS generation in the RVLM underlies the GPR18 mediated sympathoinhibition and 

hypotension. 

Rationale: Activation of the peripheral ‘Abn-CBD’ receptor leads to vasodilation and 

hypotension through a Gi/o coupled receptor (Jarai et al., 1999; Kohno et al., 2006; McHugh et 

al., 2010). GPR18 belongs to the Gi/o coupled family of GPCRs, and NAGly or Abn CBD 

activation of GPR18, which is coupled to the Gi/o family (Kohno et al., 2006), enhances ERK1/2 

phosphorylation and PI3K/Akt signaling (Offertáler et al., 2003; Mo et al., 2004).  Reported 

studies including studies from this laboratory suggested a causal role for nitric oxide (NO) 

generation in the RVLM in hypotensive responses triggered by the activation of other receptors 

(Chan et al., 2001; Nassar and Abdel-Rahman, 2008).  While there are no reports that implicated 

GPR18 signaling in adiponectin (ADN) release, we reasoned such a link exists because an anti-

inflammatory role is a common denominator between GPR18 (Vuong et al., 2008) and ADN 

(Nanayakkara et al., 2012) signaling.  More pertinent to the present study are the findings that 

ADN serves an antioxidant role in the RVLM (see below), which explains its sympathoinhibitory 
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role (Chan et al., 2001; Konno et al., 2012; Nanayakkara et al., 2012). Together, these findings 

implicate RVLM NO and ADN in the GPR18-mediated hypotensive response, at least partly, via 

a reduction in neuronal oxidative stress (ROS) in the RVLM. The experiments under this aim 

determined, for the first time, if cAMP/Akt/ERK1/2/nNOS-dependent reduction in ROS 

generation in the RVLM is implicated in GPR18-mediated hypotension and elucidated the 

downstream signaling of GPR18 that led to a decrease in blood pressure by addressing the 

following questions: 

1- Does intra-RVLM GPR18 activation and inhibition increase and decrease ERK1/2, Akt and 

nNOS phosphorylation, respectively? 

2- What is the effect of ERK1/2 or Akt inhibition on the cardiovascular effects produced by 

intra-RVLM Abn CBD? 

3- What is the effect of nNOS/eNOS inhibition or adenylyl cyclase (AC) activation on the 

cardiovascular effects produced by intra-RVLM Abn CBD? 

4- What are the effects of intra-RVLM Abn CBD on ERK1/2, Akt and nNOS phosphorylation 

and adiponectin levels in the RVLM of rats pretreated with ERK1/2 inhibitor, PD98059 or the 

PI3K inhibitor, wortmannin or nNOS inhibitor, N
ω
-Propyl-L-arginine hydrochloride  (NPLA) or 

the AC activator, forskolin?  

5- What is the effect of intra-RVLM administration of GPR18 ligands on RVLM NO and ADN  

levels? 



16 

 

6- Does RVLM GPR18 activation reduce neuronal oxidative stress? 

Specific Aim 3 studies elucidated the role of lipid rafts (LR) in GPR18 signaling in nPC12 cells. 

Rationale: There is growing evidence that LRs and caveolae participate in the regulation of 

GPCR signaling by affecting both signaling selectivity and coupling efficacy (Chini and Parenti, 

2004). There is also evidence that CB1R binding/signaling, as well as anandamide (AEA) 

transport is controlled by LRs and caveolin-1 (Dainese et al., 2007; Bari et al., 2008). NAGly is 

synthesized from AEA and serves as an endogenous GPR18 ligand (Huang et al., 2001; Kohno 

et al., 2006). Additionally, AEA is a common endocannabinoid for both GPR18 and CB1R 

(Bradshaw et al., 2009). Based on these findings, we hypothesized that activation of GPR18 

causes receptor dissociation from (LR), which consequently leads to activation of PI3K/Akt-

ERK1/2-NOS pathway and inhibition of ROS signaling. However, as the methods for detecting 

lipid rafts are technically difficult to conduct in tissues, we used nPC12 cells, which are rat 

pheochromocytoma cells that are capable of differentiating into a neuronal phenotype (Okouchi 

et al., 2005). Another reason for conducting signaling studies in nPC12 cells is the limited tissue 

amounts obtained from the RVLM of treated and control rats, which made conducting some 

neurochemical studies difficult. For example, the GPR18 antagonist cannabidiol inhibited 

catalase activity in the liver (Usami et al., 2008). Such changes in major enzymes that control the 

oxidative state of the RVLM neurons might explain the expected reduced and enhanced ROS 

generation in the RVLM neurons following selective GPR18 activation and blockade, 

respectively. These and similar neurochemical studies could be conducted in drug or vehicle 

treated nPC12 cells. Nonetheless, it was imperative to conduct preliminary studies to ensure that 
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GPR18 is expressed in nPC12 cells and that signaling products of GPR18 activation are similar 

in nPC12 cells and RVLM. The association of GPR18 with LRs and the signaling pathways of 

the receptor in this model system were elucidated by addressing the following questions: 

1- Is GPR18 expressed in nPC12 cells? 

2- Is GPR18 co-expressed with CB1R in nPC12 cells? 

3- Does GPR18 associate with LRs or does it interact with these membrane microdomains only 

upon activation? 

4- What is the effect of LR disruption on GPR18 signaling in nPC12 cells? 

5- Does GPR18 activation enhance antioxidant (catalase and ALDH) and inhibit pro-oxidant 

(NADPH Oxidase) enzyme activity in nPC12 cells? 

The findings of the present study provide the first comprehensive in vivo and ex vivo evidence of 

the role of central GPR18 on the cardiovascular system in conscious normotensive rats, 

elucidating its role in central regulation of blood pressure. Further, our in vitro studies help to 

understand the role of lipid rafts in the signaling of the putative cannabinoid (CB) receptor 

GPR18. 

 

 



CHAPTER TWO- MATERIALS AND METHODS 

2.1. Preparation of the Rats 

Male Sprague-Dawley rats (300-350 g; Charles River Laboratories, Raleigh, NC) were 

used in the present study. Animals received buprenorphine (0.03 mg/kg) 30 min prior to 

anesthesia with i.p. ketamine (9 mg/100g) and xylazine (1 mg/100g). A 5-cm PE-10 tube 

connected to PE-50 tubing filled with heparinized saline (heparin 200 units/ml) was placed in the 

abdominal aorta via the left femoral artery for measurement of blood pressure (BP) and heart rate 

(HR) as in our previous studies (Zhang and Abdel-Rahman, 2002). The catheter was tunneled 

subcutaneously and exteriorized at the back of the neck between the scapulae, and plugged with 

stainless steel pins. Wounds were closed by surgical clips and swabbed with povidone-iodine 

solution.  

The implantation of the guide cannula into the RVLM was performed as described in our 

previous studies (Mao and Abdel-Rahman, 1995). Briefly, following anesthesia, the head of the 

animal was placed in stereotaxic frame (David Kopf Instruments, Tujunga, CA), and a 23-guage 

stainless steel guide cannula (Small Parts, Miami, FL, USA) was implanted unilaterally such that 

the tip of the guide cannula was positioned 2 mm above the RVLM (posterior -2.8 mm, lateral + 

2.0 mm, dorsoventral -0.5 mm) (Paxinos and Watson, 2005). The cannula was secured to the 

skull with dental cement (Durelon; Thompson Dental Supply, Raleigh, NC, USA). Each rat 

received buprenorphine (0.05 mg/kg s.c.) to control pain and penicillin G procaine (100,000 

U/kg i.p.). Animals were housed 5 days in separate cages to allow for recovery before 

conducting experiments. 
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2.1.1. Blood pressure (BP) and heart rate (HR) measurements.  

On the day of the experiment, the arterial catheter was flushed with heparinized saline (100 

IU/ml) and connected to a Gould-Statham (Oxnard, CA) pressure transducer. BP was recorded 

by ML870 (PowerLab 8/30) and analyzed by LabChart (v.6) pro software (ADInstruments, 

Colorado Springs, CO). Heart rate was computed from BP recording by the LabChart (v.6) blood 

pressure analysis module, and both variables were continuously recorded and stored for offline 

analysis. BP and HR were allowed to stabilize for at least 30 min. Microinjections of a constant 

volume (80nl) were made directly into the RVLM of unrestrained rats through a 30-guage 

stainless steel injector as described in our previous studies (Mao and Abdel-Rahman, 1994; 

Zhang and Abdel-Rahman, 2002).  

2.2. Cell Culture 

Rat pheochromocytoma cells (PC12 cells) (ATCC, Rockville, MD) were cultured, at 37
o
C 

with saturated air containing 5% CO2 , on Corning CellBind flasks in ATCC-formulated F-12K 

medium supplemented with horse serum (15%), fetal bovine serum (2.5%), penicillin (100U/ml) 

and streptomycin (100U/ml).  Cells were treated with NGF (50ng/ml) for 48hrs to initiate 

neuronal differentiation. Culture media was changed every 2 days. 

2.3. Immunohistochemistry 

The procedure reported in Current Protocols in Neuroscience for immunohistochemistry 

for light microscopy (Ince et al., 1997) was followed. Briefly, brains were fixed by transcardiac 

perfusion with 4% paraformaldehyde in phosphate-buffered saline (PBS) following a lethal dose 
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of ketamine-xylazine mixture. Brains were then transferred into 30% sucrose in PBS for 

infiltration until they sank. Brain sections that contained the RVLM (-12.8 to -11.8 mm relative 

to bregma) were cut serially at –24°C with a microtome cryostat (HM 505 E; Microm 

International GmbH, Walldorf, Germany) (Paxinos and Watson, 2005) as in a previous study 

from this laboratory (Zhang and Abdel-Rahman, 2005). Six to eight sections of the brain (20 μm) 

were collected in each well of a cell culture plate (12 wells; BD Biosciences, San Jose, CA) 

containing ice-cold PBS. The avidin-biotin complex method was used according to the 

manufacturer's instruction (Vectastain ABC kit; Vector Laboratories, Burlingame, CA) with 

minor modification (Ince et al., 1997). For immunohistochemical detection of GPR18, the 

RVLM sections of naïve rats were incubated with goat anti-GPR18 primary antibody (1:200; 

Santa Cruz; Dallas, TX). After rinsing with Tris-buffered saline (TBS), 3′-diaminobenzidine (in 

H2O) solution was added, and the sections were examined under a microscope (Nikon Diaphot 

300; Nikon, Tokyo, Japan) for the appearance of reddish brown staining. After dehydration the 

sections were sealed with Permount (Fisher Scientific Co., Pittsburgh, PA) and observed under 

the microscope. For GPR18, the immunoreactive neurons (brown stain) were identified in the 

RVLM.  

2.4. Immunofluorescence 

Colocalization studies were conducted according to the protocol used in previous reports 

(Wang and Abdel-Rahman, 2005; Matias et al., 2008; Worlein et al., 2011). Brains were fixed by 

transcardiac perfusion with 4% paraformaldehyde in Phosphate-buffered saline (PBS) following 

a lethal dose of ketamine-xylazine mixture. Brains were then transferred into 30% sucrose in 
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PBS for infiltration until they sank. Brain sections that contained the RVLM (-12.8 to -11.8 mm 

relative to bregma) were cut serially using vibrotome in to ice cold PBS. Free floating sections, 

prepared as above, were then washed with TBS for 15 min, and incubated for 3 hr in blocking 

buffer (1% bovine serum albumin, 5% normal donkey serum in TBS containing 0.1% Triton X-

100; TBST) at room temperature (RT) with continuous shaking. The sections were then 

incubated 48 hr at 4ºC with shaking in goat anti-GPR18 (1:200; Santa Cruz; Dallas, TX) and 

mouse anti-tyrosine hydroxylase (1:500; Abcam; Cambridge, MA) or mouse anti CB1R (1:200; 

Santa Cruz; Dallas, TX) mixture diluted in blocking buffer. After being washed 3X in TBST, 

immunofluorescence was revealed by incubation for 2 hr in Cy-3 conjugated donkey anti-goat 

and fluorescein isothiocyanate-conjugated donkey anti-mouse (1:200; Jackson Immunoresearch 

Laboratories Inc., West Grove, PA). Sections were washed in TBS in the dark and mounted on 

slides and cover slipped with Vectashield mounting medium containing DAPI as counterstain 

(Vector Laboratories, Burlingame, CA) and left in the dark overnight to harden. Images were 

acquired by multi-track acquisition mode to eliminate channels-cross talk using confocal laser 

microscopy (Carl Zeiss LSM 510, Thornwood, New York). Six sections per animal at the level 

of the RVLM were examined and representative images were edited by the Zeiss LSM Image 

Browser software (v 4.2) and Adobe Photoshop (v. CS4, Adobe Systems, San Jose, CA), where 

only image brightness and contrast were adjusted for clarity. Co-localization analysis was 

performed using Pearson’s correlation coefficient of the JACoP plugin in ImageJ. Negative 

controls (absence of primary or secondary antibody) were run simultaneously. 
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nPC12 cells were cultured on Lab-Tek Chamber slides coated with poly-L-lysine, washed 

with cold PBS and fixed with 4% paraformaldehyde for 30min. The cell membranes were 

permeabilized with 0.1% triton X-100 and non-specific binding was blocked by 1% bovine 

serum albumin and 5% normal donkey serum. The cells were incubated for 2.5 hrs with the 

respective primary antibody. The cells were then incubated with the corresponding secondary 

antibody (1:200; Jackson Immunoresearch Laboratories Inc., West Grove, PA) for 1 hr, mounted 

with Vectashield mounting medium containing DAPI as the counterstain (Vector Laboratories, 

Burlingame, CA) and left in the dark overnight to harden. Images were acquired using confocal 

laser microscopy (Carl Zeiss LSM 510, Thornwood, New York). Representative images were 

analyzed using the JACoP plugin in ImageJ software. 

2.5. Western Blot Analysis 

Animals received a lethal dose of ketamine-xylazine mixture (i.p.), and following 

decapitation, brains were removed, flash frozen in 2-methylbutane on dry ice, and stored at -

80°C until use. Brains were equilibrated to -20°C and coronal sections containing the RVLM 

were obtained with a cryostat (HM 505E; Microm International GmbH, Waldorf, Germany) 

according to atlas coordinates (Paxinos and Watson, 2005). Tissue from the RVLM was 

collected bilaterally using a 0.75 mm punch instrument as described in other studies (Ibrahim 

and Abdel-Rahman, 2011) from approximately -12.8 to -11.8 mm relative to bregma (Paxinos 

and Watson, 2005). Tissue was homogenized on ice by sonication in cell lysis buffer (20 mM 

Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium 

pyrophosphate, 1 mM β-glycerolphosphate, 1 mM activated sodium orthovanadate) containing a 
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protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN). Protein concentration in 

samples was quantified using a standard Bio-Rad protein assay system (Bio-Rad Laboratories, 

Hercules, CA). Protein extracts (20 μg per lane) were denatured at 97°C for 5 minutes, separated 

on NuPAGE Novex Bis-Tris 4 to 12% SDS-PAGE gels (Invitrogen, Carlsbad, CA) using MOPS 

NuPAGE running buffer, and electroblotted to nitrocellulose membranes using standard 

procedures. Nonspecific binding sites on the membranes were blocked at room temperature in 

wash buffer (10 mM Tris, 150 mM NaCl, 0.2% 0.5 M EDTA pH 8.0, 0.01% Triton X-100) 

containing 5% nonfat milk for 1 to 2 hours. The membranes were then incubated overnight at 

4°C with goat anti-GPR18 primary antibody (1:200; Santa Cruz; Dallas, TX) diluted in blocking 

solution. The blots were washed twice and then incubated for 60 min at room temperature with 

anti-rabbit IgG horseradish peroxidase-linked secondary antibody (1:2,000; GE Healthcare, 

Piscataway, NJ). After 4 more washes, protein was detected on the blots by enhanced 

chemiluminescence. Consistency in sample loading was confirmed by stripping the membranes 

with Blot Fresh Stripping Reagent (SignaGen, Gaithersburg, MD) and reprobing with rabbit anti-

actin antibody (1:2,000; Sigma; St. Louis, MO); all data were expressed as values normalized to 

actin.  

For adiponectin measurements, RVLM punches obtained from treatment or control groups, 

were simultaneously blocked (1 hr) with Odyssey blocking buffer (LICOR Biosciences; Lincoln, 

NE) and incubated with a mixture of mouse monoclonal anti-actin antibody (1:1000) and rabbit 

polyclonal anti-adiponectin antibody (1:1000) overnight. All antibodies were purchased from 

Cell Signaling Technology (Danvers, MA). After washing with PBS, the membranes were 
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incubated for 1 hr with a mixture of IRDye680-conjugated goat anti-rabbit and IRDye800-

conjugated goat anti-mouse (1:10,000; LICOR Biosciences; Lincoln, NE). Membranes were 

washed with PBS containing 0.1% Tween 20 and bands representing adiponectin and actin were 

visualized simultaneously using an Odyssey Infrared Imager and analyzed with Odyssey 

application software v.3 (LICOR Biosciences; Lincoln, NE). All data are presented as mean 

values of integrated density ratio of adiponectin normalized to actin (Komura et al., 2013).  

Freshly subcultured nPC12 cells were processed with or without drug treatment and total 

cell lysates were used to evaluate the expression of ERK1/2 and pERK1/2 or Akt and pAkt using 

western blot analysis. Homogenized protein extracts were run on 12% SDS-PAGE gel 

(Invitrogen, Carlsbad, CA) and electroblotted to nitrocellulose membranes. Blots were blocked 

with Odyssey blocking buffer and incubated overnight at 4ºC with rabbit anti-ERK1/2 or rabbit 

anti-Akt and mouse anti-pERK1/2 or mouse anti-pAkt (1:500). The blots were then washed with 

rinse buffer and incubated at room temperature with donkey anti-rabbit and donkey anti-mouse 

IgG secondary antibody (1:10,000). Following additional washes the blots were detected using 

an Odyssey Infrared Imaging system and analyzed with Odyssey application software v.3 

(LICOR Biosciences). All data are presented as mean values of integrated density ratio of 

phosphorylated protein normalized to its corresponding total protein. 

2.6. Dot Blotting 

The dot blot technique was employed to detect and analyze the proteins present in the 

sample. It differs from the western blot in that the protein samples are spotted through circular 

templates directly onto the nitrocellulose membrane instead of being separated 
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electrophoretically. This technique was preferred over western blotting because the amount of 

protein required is much smaller given the small size of the RVLM tissue. A 96 well Bio-dot 

Microfiltration Apparatus (Bio-Rad Laboratories, Inc., Hercules, CA) was used and the samples 

were loaded in the wells and directly separated by vacuum filtration on to nitrocellulose 

membrane. The membrane was then washed with 1x PBS and allowed to dry.  The membranes 

were blocked for 1 hr with Odyssey blocking buffer (LICOR Biosciences Lincoln, NE), and 

incubated with primary and secondary antibodies according to the experimental design (see 

Methods under individual experiments) and visualized simultaneously using an Odyssey Infrared 

Imager and analyzed with Odyssey application software v.3 (LICOR Biosciences). All data are 

presented as mean values of the integrated density ratio of phosphorylated protein normalized to 

its corresponding total protein or to actin. 

2.7. Quantification of Reactive Oxygen Species 

2.7.1. Dihydroethidium (DHE) Staining for ROS Detection.  

For measurement of ROS, fresh unfixed brainstem sections (20 µm) were incubated with 10 

µM dihydroethidium (DHE) (Molecular Probes, Grand Island, NY) at 37°C in the presence of 

5% CO2 in a moist chamber for 30 min.  Positive and negative controls were used to validate the 

assay (see experimental groups and protocols).  Images were visualized with a Zeiss LSM 510 

microscope.  Three-five images were acquired from each of the 5-6 brainstem sections for each 

experimental condition.  Quantification was conducted using Image J software (NIH) and 

changes in total fluorescence intensity, normalized to control, were calculated as reported (Collin 

et al., 2007). 
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2.7.2. Measurement of Reactive Oxygen Species by DCFH-DA.  

RVLM specimens from treated and control groups were homogenized in PBS. The 

homogenate was centrifuged (14,000 rpm) for 20 min. Protein in the supernatant was quantified 

using a Bio-Rad protein assay system. 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) 

(Molecular Probes) was dissolved in DMSO (12.5 mM) and kept at -80°C in the dark. It was 

freshly diluted with 50 mM phosphate buffer (pH 7.4) to 125 µM before the experiment. DCFH-

DA was added to the RVLM homogenate supernatant (10 µl) in a 96-well microtiter plate for a 

final concentration (25 µM). 2′, 7′-Dichlorofluorescein (DCF) was used for a 6-point standard 

curve. Quantification was conducted by examining fluorescence intensity using a microplate 

fluorescence reader at excitation 485 nm/emission 530 nm. Kinetic readings were recorded for 

30 min at 37°C.  ROS level was calculated by relative DCF fluorescence per µg protein. Positive 

and negative controls were used to validate the assay as in previous studies from this laboratory 

(McGee and Abdel-Rahman, 2012). 

Freshly sub-cultured cells were exposed to 5μM DCFH-DA for 30min after which they were 

subjected to appropriate drug treatment for 2hrs. The cells were washed with PBS, trypsinized 

and collected in Eppendorf tubes. The fluorescence was measured using a flow cytometer. 

2.8. Measurement of Nitrate/Nitrite Level 

RVLM punches were obtained from the rats of different experimental groups and 

homogenized in 300 µl phosphate buffered saline (PBS). The homogenate was centrifuged 

(14,000 rpm) for 20 min and the protein in the supernatant was quantified using a Bio-Rad 
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protein assay system. The supernatant, 140 µl, was ultra-filtered using Amicon Centrifugal Filter 

Units (10 kDa) and centrifuged (14,000 rpm) for 1 hour.  The NOx content was measured using a 

Nitrate colorimetric assay kit (Catalog # 780001) according to manufacturer’s instructions 

(Cayman Chemical Company; Ann Arbor, MI) and as detailed in reported studies (Misko et al., 

1993; El-Mas et al., 2009). 

2.9. Measurement of cAMP 

cAMP-Glo Max Assay kit (Promega V1681) was used to measure cAMP in treated nPC12 

cells. Cell lysates were subjected to the assay as per the manufacturer’s instructions (Promega, 

Madison, WI) and luminescence was determined with a luminometer and used as a measure of 

cAMP produced. For each sample: the change in relative luminescence units (ΔRLU) = RLU 

(untreated sample) – RLU (treated sample) was calculated. Using this ΔRLU value and the linear 

equation generated from the standard curve, the cAMP concentration was calculated from the 

linear formula from the graph. 

2.10. Quantification of Catalase Activity 

Colorimetric measurement of catalase generated as a result of drug treatment was measured 

following instructions for the Catalase assay kit obtained from Sigma Aldrich (St. Louis, MO).  

One RVLM punch from the rat brain was sonicated in 25 l PBS. For cells, 1ml of PBS was 

added to 100 cm
2
 Petri dish and the cells were gently scraped and collected into centrifuge tubes 

after drug treatment for 30 min. The tissue/cell suspension was centrifuged at 4
o
C, 5000 rpm for 

5 min. The supernatant was collected, the amount of the protein in the sample was quantified 
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using a Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA) and catalase activity was 

measured as per the manufacturer’s instructions (Sigma Aldrich; St. Louis, MO). The absorbance 

of the samples was measured at 520nm. 

2.11. Quantification of NADPH oxidase Activity 

NADPH oxidase activity was measured by a fluorescence assay using Amplex Red 

(Molecular Probes, OR) dissolved in buffer, pH 7.4 (105 mM K-MES, 30 mM KCl, 10 mM 

KH2PO4, 5 mM MgCl2-6H2O, 0.5 g/L BSA), Superoxide dismutase (7500 U/ml), Horseradish 

peroxidase (300 U/ml)  and the addition of NADPH (10 mM). Hydrogen peroxide was used to 

generate a 7-point standard curve. Quantification was conducted by examining fluorescence 

intensity using the Fluoromax-3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) at 

excitation (530 nm)/emission (590 nm).  Cell suspension samples (50 µg/25 µl) were added to 

200 µl Amplex Red, 2 µl Superoxide dismutase and 2 µl horseradish peroxidase.  Baseline 

measurements were taken for five minutes and NADPH (10 µl) was added and readings were 

recorded for an additional 5 minutes.   

2.12. Quantification of Aldehyde Dehydrogenase (ALDH) Activity 

Freshly sub-cultured nPC12 cells were scraped in 1xPBS and homogenized using a syringe. 

The cell suspension was centrifuged at 4
o
C and 5000rpm for 4min. The supernatant was 

collected for protein assay and ALDH activity measurement. The final volume of the assay 

mixture (200 µl) comprised of 50 µg/25 µl protein or 25 µl of 1xPBS (Blank), 4 µl of 300 µM 6-

Methoxy-2-naphthaldehyde in 166.4 µl of 1xPBS. The fluorescence of this mixture was read at 
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excitation 310nm and emission 360nm for 7min before adding 1.3 µl of 11.4 mM NAD. After 

this addition the fluorescence of this assay mixture was read at 310nm/360nm every 5 min for 45 

min and ALDH activity was calculated from the fluorescence values. 

2.13. Lipid Raft Labeling 

nPC12 cells were cultured on Lab-Tek Chamber slides coated with poly-L-lysine, washed 

with cold PBS and fixed with 4% paraformaldehyde for 30 min. The cell membranes were 

permeabilized with 0.1% triton X-100 and non-specific binding was blocked using 1% bovine 

serum albumin and 5% normal donkey serum. The cells were incubated for 2.5 hr with goat anti-

GPR18 (1:200). The cells were then incubated with fluorescein isothiocyanate-conjugated 

donkey anti-goat (1:200; Jackson Immunoresearch Laboratories Inc., West Grove, PA) for 1 hr, 

mounted with Vectashield mounting medium containing DAPI as counterstain (Vector 

Laboratories, Burlingame, CA) and left in dark overnight to harden. Vybrant Alexa Fluor 488 

lipid raft labeling kit (Molecular Probes, Eugene, OR) was used to label lipid rafts in accordance 

with the manufacturer’s instructions. Images were acquired using confocal laser microscopy 

(Carl Zeiss LSM 510, Thornwood, New York). Representative images were analyzed using 

JACoP plugin in ImageJ software. 



CHAPTER THREE - THE NOVEL ENDOCANNABINOID RECEPTOR GPR18 IS 

EXPRESSED IN THE ROSTRAL VENTROLATERAL MEDULLA AND EXERTS A 

TONIC RESTRAINING INFLUENCE ON BLOOD PRESSURE 

3.1. Abstract 

Systemic administration of the GPR18 agonist, abnormal cannabidiol (Abn CBD), lowers 

blood pressure (BP). Whether GPR18 is expressed in the CNS and plays a role in BP control is 

not known despite the presence of an abundance of the GPR18 ligand N-arachidonoyl glycine 

(NAGly) in the CNS. Therefore, we first determined if GPR18 is expressed in the 

presympathetic tyrosine hydroxylase (TH) immunoreactive (ir) neurons of the brainstem 

cardiovascular regulatory nuclei. Second, we investigated the impact of GPR18 activation and/or 

blockade on BP and heart rate (HR) and neurochemical modulators of sympathetic activity/BP. 

Immunofluorescence findings revealed GPR18 expression in TH-ir neurons in the rostral 

ventrolateral medulla (RVLM). Intra-RVLM GPR18 activation (Abn CBD) and blockade (O-

1918) elicited dose-dependent reductions and elevations in BP, respectively, along with 

respective increases and decreases in HR in conscious male Sprague-Dawley rats. RVLM 

GPR18 activation increased neuronal adiponectin (ADN) and NO and reduced reactive oxygen 

species (ROS) levels while GPR18 blockade reduced neuronal ADN and increased oxidative 

stress (ROS) in the RVLM. Finally, we hypothesized that the negligible hypotensive effect 

caused by the endogenous GPR18 ligand NAGly could be due to concurrent activation of CB1R 

in the RVLM. Our findings supported this hypothesis because NAGly-evoked hypotension was 

doubled following RVLM CB1R blockade (SR141716).  These findings are the first to 

demonstrate GPR18 expression in the RVLM, and to suggest a sympathoinhibitory role for this 
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receptor. The findings yield new insight into the role of a novel cannabinoid receptor (GPR18) in 

central BP control. 

3.2. Introduction 

Endogenous and exogenous cannabinoids exert complex cardiovascular effects due, at least 

partly, to their activation of diverse cannabinoid receptors (CBR) and their location within the 

cardiovascular system and different brain nuclei (Randall et al., 2004).  The two classical CBRs 

(CB1R and CB2R) are implicated in behavior and cardiovascular regulation (Randall et al., 

2002). However, the cardiovascular responses might be confounded by the use of anesthetics 

because cannabinoids (CBDs) produce hypotension in anesthetized animals (Varga et al., 1995), 

which is consistent with vasorelaxation in vitro (Jarai et al., 1999), but produce pressor responses 

in conscious rats (Gardiner et al., 2002; Ibrahim and Abdel-Rahman, 2011). Further, many 

studies implicated several novel receptors in the diverse cardiovascular effects of synthetic and 

natural cannabinoids (Offertáler et al., 2003). For example, abnormal cannabidiol (Abn CBD) 

caused mesenteric vasodilation and hypotension in mice lacking CB1/CB2 receptors via the 

activation of a novel CB receptor (Jarai et al., 1999). This new Gi/Go coupled receptor, which 

mediates endothelium-dependent vasodilation (Begg et al., 2005; Mackie and Stella, 2006), has 

been named the endothelial ‘anandamide receptor’ or the ‘Abn CBD’ receptor. Recent findings 

indicate that N-arachidonoyl glycine (NAGly), Abn CBD and Δ
9
tetrahydrocannabinol (THC) 

(McHugh et al., 2011) act as selective agonists while O-1918, an analog of cannabidiol (CBD), 

acts as an antagonist at this receptor (Offertáler et al., 2003; McHugh et al., 2010).  
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Recent studies have identified the orphan G protein-coupled receptor GPR18 as the ‘Abn 

CBD’ receptor and NAGly as its endogenous ligand (Kohno et al., 2006; McHugh et al., 2010; 

McHugh, 2012). It is possible that Abn CBD and O-1918 might act via another putative 

cannabinoid receptor, GPR55 (Johns et al., 2007; Godlewski et al., 2009). However, more recent 

studies showed that although GPR18 and GPR55 share some ligands, they do not respond to 

them in the same manner or with the same efficacy (McHugh et al., 2010; Okuno and Yokomizo, 

2011).  

 GPR18 is found in humans, rodents and canine (Gantz et al., 1997), and its mRNA is most 

abundantly expressed in testis, spleen and brain stem among other tissues (Vassilatis et al., 

2003). Although GPR18 mRNA is expressed in human and rodent brainstem  (Vassilatis et al., 

2003) and NAGly is abundant in the brain (Huang et al., 2001), there are no studies on the 

expression and function of GPR18 in brainstem cardiovascular/sympathetic activity regulating 

nuclei. Notably, NAGly or Abn CBD activation of GPR18, which is coupled to the Gi/o family 

(Kohno et al., 2006), enhances ERK1/2 phosphorylation and PI3K/Akt signaling (Offertáler et 

al., 2003) as well as glycinergic transmission in the nervous system (Jeong et al., 2010). Further, 

NAGly causes vasorelaxation via NO release in rat small mesenteric arteries (Kishi et al., 2001) 

and N-palmitoyl glycine (a palmitic acid conjugate of NAGly) increases the levels of NO 

(Rimmerman et al., 2008a). Whether these signaling effects result in functional changes in 

sympathetic activity and ultimately in BP has not been investigated. Notably, the findings that 

the endogenous GPR18 ligand, NAGly, has the potential to increase anandamide (AEA) (an 

endogenous CB1R agonist) (Burstein et al., 2002), and that central CB1R activation increases BP 
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(Ibrahim and Abdel-Rahman, 2012a) might influence the final BP response mediated by NAGly 

activation of RVLM GPR18.  

The main objectives of the present study were to determine if GPR18 is expressed in RVLM 

presympathetic neurons, and to elucidate its role in central control of BP. To achieve these goals, 

we conducted integrative dose-response studies that permitted measurements of BP and HR 

responses caused by direct activation and/or blockade of the RVLM GPR18 in conscious rats. 

We also investigated the possibility that concurrent activation of RVLM CB1R, which mediates 

sympathoexcitation, might explain the dampened hypotensive response produced by the 

endogenous GPR18 ligand NAGly. Finally, the integrative pharmacological studies were 

complemented with ex vivo neurochemical studies to elucidate the molecular mechanisms 

implicated in the central GPR18-mediated hypotensive response. 
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3.3. Materials and Methods 

3.3.1. Preparation of the Rats.  

Male Sprague-Dawley rats (300-350 g; Charles River Laboratories, Raleigh, NC) were 

used in the present study. All rats were housed two per cage in a room with controlled 

environment at a constant temperature of 23 ± 1
O
C, humidity of 50 ± 10%, and a 12 hr light/dark 

cycle. Food (Prolab Rodent Chow, Prolab RMH 3000; Granville Milling, Creedmoor, NC) and 

water were provided ad libitum. All surgical, postoperative care and experimental procedures 

were performed in accordance with, and approved by, the Institutional Animal Care and Use 

Committee and in accordance with the Guide for the Care and Use of Laboratory Animals 

(Institute for Laboratory Animal Research, 2011). Arterial catheterization, intra-RVLM 

cannulation and blood pressure measurements were performed as reported in previous studies 

from this laboratory (Mao and Abdel-Rahman, 1995; Zhang and Abdel-Rahman, 2002). 

3.3.2. Western Blot and Neurochemical Studies.  

Animals received a lethal dose of ketamine/xylazine mixture (i.p.), and following 

decapitation, brains were removed, flash frozen in 2-methylbutane on dry ice, and stored at -

80°C until use as detailed in chapter 2.  
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3.3.3. Immunohistochemistry.  

The procedure reported in Current Protocols in Neuroscience for immunohistochemistry 

for light microscopy (Ince et al., 1997) was followed as detailed in chapter 2.  

3.3.4. Immunofluorescence.  

Co-localization studies were conducted according to the protocol used in previous reports 

(Wang and Abdel-Rahman, 2005; Matias et al., 2008) and as detailed in chapter 2.  

3.3.5. Measurement of Nitrate/Nitrite.  

RVLM punches were obtained from the rats of different experimental groups and 

homogenized in 300 µl phosphate buffered saline (PBS). The homogenate was centrifuged 

(14,000 rpm) for 20 min and the protein in the supernatant was quantified using Bio-Rad protein 

assay system. The supernatant, 140 µl, was ultra-filtered using Amicon Centrifugal Filter Units 

(10 kDa) and centrifuged (14,000 rpm) for 1 hour.  The NOx content was measured using a 

Nitrate colorimetric assay kit (Catalog # 780001) according to manufacturer’s instructions 

(Cayman Chemical Company; Ann Arbor, MI) and as detailed in reported studies (Misko et al., 

1993; El-Mas et al., 2009). 

3.3.6. Dihydroethidium (DHE) Staining for ROS Detection.  

For measurement of ROS, fresh unfixed brainstem sections (20 µm) were incubated with 

10 µM dihydroethidium (DHE) (Molecular Probes, Grand Island, NY) at 37°C in the presence of 

5% CO2 in a moist chamber for 30 min.  Positive and negative controls were used to validate the 
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assay (see experimental groups and protocols).  Images were visualized with a Zeiss LSM 510 

microscope.  Three-five images were acquired from each of the 4 brainstem sections/RVLM for 

each experimental condition.  Quantification was conducted using Image J software (NIH) and 

changes in total fluorescence intensity, normalized to control, were calculated as reported (Collin 

et al., 2007). 

3.3.7. Measurement of Reactive Oxygen Species by DCFH-DA.  

RVLM specimens from treated and control groups were homogenized in PBS. The 

homogenate was centrifuged (14,000 rpm) for 20 min. Protein in the supernatant was quantified 

using a Bio-Rad protein assay system. 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) 

(Molecular Probes) was dissolved in DMSO (12.5 mM) and kept at -80°C in the dark. It was 

freshly diluted with 50 mM phosphate buffer (pH 7.4) to 125 µM before experiment. DCFH-DA 

was added to RVLM homogenate supernatant (10 µl) in a 96-well microtiter plate for a final 

concentration (25 µM). 2′, 7′-Dichlorofluorescein (DCF) was used for a 6-point standard curve. 

Quantification was conducted by examining fluorescence intensity using a microplate 

fluorescence reader at excitation 485 nm/emission 530 nm. Kinetic readings were recorded for 

30 min at 37°C.  ROS level was calculated by relative DCF fluorescence per µg protein. Positive 

and negative controls were used to validate the assay as in previous studies from this laboratory 

(McGee and Abdel-Rahman, 2012). 
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3.4. Experimental Groups and Protocol 

3.4.1 Experiment 1: Anatomical expression of GPR18 in the RVLM.  

Coronal sections were obtained from naïve rats (n=5) and used for detecting GPR18 protein 

by immunohistochemistry and by Western blotting as described under methods.  Positive (testis 

and spleen) and negative (liver) controls, based on reported studies (Gantz et al., 1997), were 

simultaneously run with RVLM GPR18 to confirm the Western blot findings. Further, we used 

the GPR18 blocking peptide, recommended by the manufacturer, to verify the GPR18 antibody 

specificity. Spatial distribution of GPR18, in relation to tyrosine hydroxylase (TH)-ir neurons, in 

the RVLM was investigated using dual labeling immunofluorescence in brainstem sections 

containing the RVLM as described in the methods and in previous studies from this laboratory to 

verify the co-localization of the c-Fos immuno-reactive cell nucleus and TH-ir neurons in the 

RVLM (Ibrahim and Abdel-Rahman, 2011).   

3.4.2. Experiment 2: Functional role of RVLM GPR18 in BP and HR regulation.  

There are no reported studies on the effect of the activation or blockade of RVLM GPR18 

on blood pressure in conscious or even anesthetized rats.  Therefore, we conducted preliminary 

studies in conscious instrumented rats to identify a dose range for the effect of microinjected 

GPR18 agonist Abn CBD on BP.  Thereafter, 4 groups of conscious unrestrained rats (n=5-6) 

were employed for investigating the dose-BP/HR responses elicited by intra-RVLM 

microinjections of the GPR18 agonists NAGly (0.5, 1, 2 or 4 µg) or Abn CBD (0.2, 0.4 or 0.8 

µg) or the antagonist O-1918 (0.2, 0.4, 0.8 µg); control rats received an equal volume (80 nl) of 
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vehicle (methyl acetate). Following stabilization of BP and HR at baseline, the rats in a particular 

group received intra-RVLM microinjections of only the GPR18 agonist or antagonist, and 

control rats received equal amount of the vehicle (Fig.3.1). Three additional groups of rats (n=6 

each) were included to determine the involvement of baroreflexes in the tachycardic and 

bradycardic response observed following Abn CBD and O-1918 microinjection, respectively. 

Vagal (atropine 1 mg/kg; i.v.) and β-adrenergic receptor blockade (propranolol 1 mg/kg; i.v.), 

which abolishes baroreflex mediated bradycardia and tachycardia, according to an established 

protocol (Coleman, 1980), was induced in all rats.  Thirty min after atropine and propranolol 

administration, the rats in a particular group received intra-RVLM Abn CBD (0.2, 0.4 or 0.8 µg), 

O-1918 (0.2, 0.4, 0.8 µg) or an equal volume of vehicle (Fig. 3.1).   

3.4.3. Experiment 3: Effect of O-1918 on the BP and neurochemical responses 

elicited by intra-RVLM Abn CBD.  

Based on the dose-response findings of experiment 2, 0.4 µg of Abn CBD or O-1918 (80 nl) was 

utilized in this experiment to test the hypothesis that enhancement of adiponectin and NO 

generation in the RVLM underlie the GPR18-mediated hypotensive response. The effects of 

RVLM GPR18 activation (Abn CBD) on BP and neurochemical responses were investigated in 

the absence or presence of the selective GPR18 blockade (O-1918) in four groups of conscious 

male rats (n=5-6 each). After stabilization of BP and HR at baseline, the rats in a particular group 

received intra- RVLM vehicle or Abn CBD (0.4 µg) 30 min after methyl acetate (vehicle) or O-

1918 (0.4 µg). BP and HR were monitored after Abn CBD administration and the animals were 

euthanized during the hypotensive response in the Abn CBD group and the corresponding time 
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in the O-1918 + Abn CBD group (Fig.3.3). The brains were collected and processed for 

neurochemical studies. 

3.4.4. Experiment 4: Effect of microinjecting ADN into the RVLM on BP, NO and 

ROS levels.  

In this experiment, we investigated the impact of microinjecting ADN into the RVLM, on 

mean arterial pressure and heart rate. Animals in this experiment received increasing doses of 

adiponectin (0.25, 0.5, 1, 2, 4 pmol); (Fig. 3.4) the doses were based on adding two lower and 

two higher doses than the reported 1 pmol ADN microinjected into the area postrema (Fry et al., 

2006). Neurochemical effects of ADN were investigated in the brains collected after the 

conclusion of the cardiovascular studies; the contralateral (untreated) RVLM tissues were used 

as controls. 

3.4.5. Experiment 5: Effect of RVLM CB1R blockade on the cardiovascular effects of 

NAGly.  

In this experiment, we investigated the impact of CB1R blockade, with the selective blocker 

SR141716, (Hohmann et al., 2005), on the BP response elicited by intra-RVLM NAGly because 

NAGly regulates AEA (CB1R agonist) levels (Huang et al., 2001; Burstein et al., 2002).  Four 

groups of conscious rats (n = 5-6 each) received one of the following intra-RVLM treatment 

combination: (i) DMSO (solvent for SR141716) + Vehicle; (ii) SR141716 (0.1 µg) + Vehicle; 

(iii) DMSO + NAGly (1 µg) or (iv) SR141716 + NAGly. SR141716 or DMSO was administered 

into the RVLM 30 min before NAGly or vehicle (Fig. 3.5) and the dose of SR141716 was based 
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on reported studies (Hohmann et al., 2005). DMSO was diluted in ACSF (1:16) and this 

DMSO/ACSF mixture had no effect on BP, which is consistent with our previous findings 

(Nassar et al., 2011). The BP and HR measurements continued for 30 min after which the rats 

were euthanized and the brains were collected and stored at -80
o
C for subsequent biochemical 

studies. 

3.4.6. Drugs.  

Abn CBD, NAGly, O-1918 and SR141716 were purchased from Cayman Chemical (Ann 

Arbor, MI). Methyl acetate, propranolol hydrochloride, atropine sulfate and dimethyl sulfoxide 

were purchased from Sigma Aldrich (St. Louis, MO). Adiponectin was purchased from Phoenix 

Pharmaceuticals (Burlingame, CA). Sterile saline was purchased from B. Braun Medical (Irvine, 

CA). DMSO was used as the vehicle for SR141716. Methyl acetate was used as the vehicle for 

Abn CBD, O-1918, and NAGly and was tested in at least three animals without any significant 

changes in MAP and HR from the basal levels.  

3.5. Data Analysis and Statistics  

All values were expressed as mean ± S.E.M change from their respective baselines. The 

dose response curves were analyzed using repeated measures ANOVA using SPSS 16.0 

statistical package for Windows (SPSS Inc., Chicago, IL) for differences in treatment trends. All 

other statistical analyses were done using a one-way or repeated-measures ANOVA with 

Bonferroni post hoc test and Student’s t test, Prism 5.0 software (GraphPad Software Inc., San 

Diego, CA) was used to perform statistical analysis and P < 0.05 was considered significant. 



41 

 

3.6. Results 

3.6.1. Expression of GPR18 in tyrosine hydroxylase immunoreactive neurons in the 

RVLM. Western blot (Fig. 3.6A) and immunohistochemical (Fig. 3.6B) findings revealed the 

expression of GPR18 in RVLM neuronal tissues. Positive and negative controls using tissues 

rich in (testis and spleen), or devoid of (liver), GPR18 verified the GPR18 findings (Fig. 3.6A). 

Further, dual labeled immunofluorescence findings revealed the localization of GPR18 in 

tyrosine hydroxylase-ir neurons of the RVLM (Fig. 3.6C).  

3.6.2. Activation of RVLM GPR18 causes a hypotensive response. These studies were 

conducted to elucidate the functional role of RVLM GPR18 in BP control. Compared with the 

vehicle (methyl acetate), intra-RVLM microinjection of the GPR18 agonist Abn-CBD caused 

dose-related reductions in BP along with tachycardic responses (Figs. 3.7A, B). On the other 

hand, microinjection of the GPR18 antagonist O-1918 caused dose-dependent increases in BP 

along with bradycardic responses (Figs. 3.7A, B). Prior autonomic blockade with atropine and 

propranolol (1 mg/kg each) had no significant effect on the dose-related reductions and elevations 

in BP caused by Abn CBD and O-1918, respectively, but fully abrogated the associated HR 

responses (Figs. 3.7 C, D).  Notably, however, intra-RVLM microinjection of the endogenous 

GPR18 agonist NAGly caused small (P>0.05) hypotensive (-5 ± 1 mmHg; n=6) and inconsistent 

HR responses (Figs. 3.7E, F). BP and HR values prior to Abn CBD or NAGly were not 

significantly different (Table 3.1). Compared to the vehicle control, RVLM GPR18 activation 

(Abn CBD) increased ADN and NO levels while blockade (O-1918) reduced ADN level (Figs. 

3.7A, B) in the RVLM. 
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3.6.3. Intra-RVLM ADN reduces BP and lowers ROS and elevates NO levels in 

RVLM. ADN caused dose-dependent reductions (-2 ± 2 to -12 ± 1 mmHg; n=4) in BP (Fig. 3.9 

A), but not in HR; however, slight increases in HR of the control group resulted in significant 

differences in HR at the 0.25 and 1 pmol doses (Fig. 3.9 B). Compared to the control, ADN 

increased NOx (Fig. 3.9 C) and reduced ROS (Fig. 3.9 D) levels in the RVLM. 

3.6.4. RVLM CB1R blockade unmasks NAGly-evoked hypotension. This experiment 

was conducted to determine if concomitant NAGly (indirect) activation of RVLM CB1R masks 

the GPR18-mediated hypotensive response. Fig. 3.10A shows co-localization of GPR18 and 

CB1R in the presympathetic neurons of the RVLM of naïve rats inferring a potential interaction 

between the two receptors.  Pharmacologic studies showed that selective RVLM CB1R blockade 

with SR141716 (0.1 µg) caused a modest but significant (P<0.05) BP reduction (-8 ± 2 mmHg; 

n=6) while HR was not significantly changed (Figs. 3.10 B and C). Further, despite gradual 

return of BP to baseline level within 30 min of SR141716 administration, prior CB1R blockade 

significantly (P<0.05) enhanced the hypotensive response (-11 ± 1 mmHg; n=6) caused by intra-

RVLM NAGly (Fig. 5B). The effect of SR141716 at CB1R lasts at least 2hrs as reported in a 

different model system (Jarbe et al., 2010). Therefore, NAGly-evoked hypotension was not a 

result of the additive hypotensive responses caused by NAGly and SR141716 (Fig. 3.10 B). HR 

was not influenced by any of the treatments (Fig. 3.10C). Neurochemical findings showed that 

SR141716/NAGly treatment significantly increased ADN and NO levels (Figs. 3.8 A, B) and 

reduced ROS levels (Fig. 3.13 A) in the RVLM compared to NAGly alone. 
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3.6.5. O-1918 abrogated Abn CBD evoked hypotension and neurochemical responses. 

To confirm the involvement of GPR18 in Abn CBD evoked BP and RVLM neurochemical 

responses, Abn CBD was microinjected after the GPR18 antagonist O-1918. Intra-RVLM O-

1918 (0.4 µg) abrogated (P<0.05) the reduction in BP (Figs. 3.11A, B) and the increases in 

RVLM ADN (Fig. 3.8A) and NO levels (Fig. 3.8B) caused by intra-RVLM Abn CBD (0.4 µg). 

The selected Abn CBD and O-1918 doses were based on the dose-response curves for these 

drugs (Figs. 3.7A, B). Notably, at the time of Abn CBD or its vehicle administration, the BP of 

O-1918 pretreated rats had declined towards pretreatment level (Fig. 3.11A), which rules out 

functional antagonism as a potential reason for O-1918 abrogation of the hypotensive effect of 

Abn CBD. Importantly, O-1918 blockade of GPR18 (Abn CBD)-mediated responses was 

evident for at least 1 hr (Caldwell et al., 2013). The HR responses were not significantly different 

among the different treatment groups during the observation period (Fig. 3.11B).  

3.6.6. GPR18 activation reduces ROS generation in the RVLM. Given the established 

link between ROS generation in the RVLM and sympathoexcitation/pressor response (Kishi et 

al., 2004), this experiment was conducted to determine the impact of GPR18 activation (Abn 

CBD) or blockade (O-1918) on RVLM ROS level in neuronal tissues collected during the BP 

responses caused by these interventions. Compared with vehicle, Abn CBD significantly 

(P<0.05) reduced (Fig. 3.13A) while O-1918 significantly (P<0.05) increased ROS levels in the 

RVLM (Figs. 3.13A, B). Further, O-1918 abrogated the reduction in RVLM ROS caused by Abn 

CBD (Figs. 3.13A); these neurochemical responses paralleled the BP responses described above 

(Figs. 3.11A, B).  
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Figure 3.1. Timeline for surgical procedures and experimental protocols for experiment 3.2. 
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Figure 3.2. Timeline for surgical procedures and experimental protocols for experiment 3.2. 
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Figure. 3.3. Time line for surgical procedures and experimental protocols for experiment 3.3. 
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Figure 3.4. Time line for surgical procedures and experimental protocols for experiment 3.4. 
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Figure. 3.5. Time line for surgical procedures and experimental protocols for experiment 3.5. 
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Table 3.1. MAP (mmHg) and HR (beats/min) values immediately before intra-RVLM 

administration of the GPR18 agonists or their vehicles. 
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Group n MAP HR 

Vehicle  5 110 ± 5 364 ± 12 

Abn CBD 6 100 ± 8 376 ± 9 

NAGly 6 113 ± 2 327 ± 20 

O-1918 6 108 ± 3 343 ± 7 

Atropine/Propranolol + Vehicle 6 120 ± 5 353 ± 8 

Atropine/Propranolol + Abn CBD 6 120 ± 11 342 ± 24 

Atropine/Propranolol + O-1918 6 113 ± 5 340 ± 16 

ADN 4 111 ± 5 336 ± 17 

DMSO/Vehicle 5 109 ± 7 325 ± 24 

DMSO/NAGly 6 115 ± 5 356 ± 17 

SR141716/Vehicle 6 107 ± 6 352 ± 12 

SR141716/NAGly 6 110 ± 8 360 ± 22 

Vehicle/Vehicle 5 108 ± 5 351 ± 9 

Vehicle/Abn CBD 6 113 ± 4 362 ± 13 

O-1918/Vehicle 6 117 ± 6 345 ± 18 

 O-1918/Abn CBD 6 112 ± 7 366 ± 12 
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Figure 3.6. Expression of GPR18 in the rat RVLM 

(A) Expression of GPR18 (38kDa) in the rat RVLM compared with testes and spleen (positive 

controls) and liver (negative control). (B) Immunohistochemical staining showing the expression 

of GPR18 in the RVLM of perfused naïve rat brains. (C) Dual labeled immunofluorescence of 

perfused naïve rat brains showing co-expression of GPR18 and Tyrosine Hydroxylase (TH) 

expressing neurons in the RVLM. 
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Figure 3.7. Effect of intra-RVLM Abn CBD or O-1918 on MAP and HR in conscious male rats 

Effect of intra-RVLM Abn CBD or O-1918 (0.2, 0.4 or 0.8 µg) (A, B) on mean arterial pressure 

(MAP) and heart rate (HR) in conscious male rats. (C, D) Effect of vagal and beta adrenergic 

blockade with atropine (1mg/kg) and propranolol (1mg/kg), respectively, on the MAP and HR 

elicited by intra-RVLM Abn CBD or O-1918 (0.2, 0.4 or 0.8 µg). Effect of the endogenous 

ligand of GPR18, NAGly (0.5, 1, 2 or 4 µg) (E, F) on the MAP and HR. Values are mean ± 

S.E.M. of 5-6 observations. *P < 0.05 vs. control (Vehicle). 
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Figure 3.8. Effect of GPR18 activation and blockade on ADN and NOx levels 

Western blots and total nitrate/nitrite levels in the RVLM (NOx content; index of NO) showing 

the effects of NAGly (1 µg), Abn CBD (0.4 µg), O-1918 (0.4 µg), or O-1918 (0.4 µg)/Abn CBD 

(0.4 µg) or SR141716 (0.1µg)/NAGly (1 µg) treatment on adiponectin (ADN) expression (A) 

and nitrate/nitrite (NOx) level (B) in the RVLM. Values are mean ± S.E.M. of 5-6 observations. 

*P < 0.05 vs. vehicle; #P < 0.05 vs. Abn CBD; ^P < 0.05 vs. NAGly values.  
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Figure 3.9. Effect of intra-RVLM adiponectin on MAP and HR 

Effect of intra-RVLM adiponectin, ADN (0.25, 0.5, 1, 2 and 4 pmol) (A, B) on mean arterial 

pressure and heart rate in conscious male rats (n=4), compared with values obtained from vehicle 

(ACSF)-treated rats (n=3). Total nitrate/nitrite levels (NOx; index of NO) (C)  and DCFH-DA 

measured ROS (D) in the RVLM following ADN microinjection, compared with the 

corresponding values in the contralateral (control) RVLM. *P < 0.05 vs. contralateral RVLM 

levels. 



63 

 

 



64 

 

Figure 3.10. Co-expression of GPR18 with CB1R and time course changes in MAP and HR 

caused by NAGly in the presence of SR141716 

(A) Dual labeled immunofluorescence of perfused naïve rat brains showing co-expression of 

GPR18 and CB1R in the RVLM neurons. Time course changes in ΔMAP (B) and ΔHR (C) 

caused by intra-RVLM microinjection of DMSO/Vehicle, DMSO/NAGly (1 µg), SR141716 

(0.1µg)/Vehicle and SR141716 (0.1µg)/NAGly (1 µg). The animals in each group received intra-

RVLM microinjections of either DMSO (diluted 1:16 in ACSF) or SR141716 (0.1µg) at -30 min 

followed by vehicle (methyl acetate) or NAGly (1 µg) at time “0”. Pretreatment with SR141716 

(CB1R blockade) uncovered NAGly (GPR18)-mediated hypotension. Values are means ± 

S.E.M. of 5 observations. *P < 0.05 compared with the corresponding control value.  
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Figure 3.11. Time course of changes in MAP and HR following intra-RVLM microinjection of 

Abn CBD or O-1918 

(A, B) Time course of changes in MAP and HR following intra-RVLM microinjection of 

vehicle/Abn CBD (0.4 µg), O-1918 (0.4 µg)/vehicle or O-1918 (0.4 µg)/Abn CBD (0.4 µg), 

compared with corresponding vehicle/vehicle values. The animals in each group received intra-

RVLM microinjections of either vehicle (methyl acetate) or O-1918 (0.4 µg) at -30 min followed 

by vehicle (methyl acetate) or Abn CBD (0.4 µg) at time “0”. Pretreatment with O-1918 

abrogated the hypotensive effect produced by Abn CBD and the associated tachycardic response. 

The bar graphs (C-F) depict the area under the curve (AUC) data generated from the time-course 

values over the pretreatment (-30 to 0 min) and treatment (0-30 min) period. Compared with 

vehicle, the two groups that were pretreated with O-1918 exhibited significant elevations in BP 

and reductions in HR. Treatment with Abn CBD caused significant reduction in BP and increase 

in HR, and these responses were abrogated in O-1918 pretreated rats. Values are mean ± S.E.M. 

of 5-6 observations. *P < 0.05 vs. vehicle.  
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Figure 3.12. Time course changes in MAP and HR caused by intra-RVLM Abn CBD or O-1918 

using 1-min time intervals 

The time course changes in BP and HR caused by intra-RVLM Abn CBD (A, C) or O-1918 (B 

and D) microinjection (0.4µg), presented in Figure 3.11, have been reanalyzed using 1-min time 

intervals during the 30 min observation period. Abn CBD caused a hypotensive response that 

started within 2-3 min, and reached its nadir at approx. 20 min before it started to recover.  The 

reduction in BP was associated with increases in HR with a maximum response achieved at 

approx. 15 min. Regression analysis was conducted to determine if the increases in the HR 

(independent variable) are inversely related to the decreases in BP, which is expected if the HR 

response is mediated, at least partly, via the baroreflex response. The significant inverse 

relationship (C) is consistent with the involvement of a baroreflex component in the tachycardic 

response that accompanied the hypotensive response caused by intra-RVLM Abn CBD (A).  

Notably, however, the tachycardic response started to dissipate before the hypotensive response 

reached its nadir (A), which contradicts a “purely” baroreflex mediated tachycardia. This finding 

might infer a counterbalancing effect of the central sympathoinhibitory effect of Abn CBD 

against the baroreflex mediated tachycardia. More studies are needed to investigate this 

possibility.  Applying the same time-course and regression analysis criteria to data generated 

with O-1918 (0.4µg) revealed a pressor response that started within 2-3 min, and reached its 

peak at approx. 20 min (B).  A bradycardic response was closely associated with (B), and 

inversely related to (D), the pressor response. S.E bars are omitted in A and B for clarity.  
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Figure 3.13.  Effect of GPR18 activation or blockade on RVLM ROS levels 

(A) Effect of vehicle, NAGly (1µg), Abn CBD (0.4 µg), O-1918 (0.4 µg), O-1918 (0.4 µg)/Abn 

CBD (0.4 µg) and SR141716 (0.1µg)/NAGly (1µg) on RVLM ROS levels shown by 

Dihydroethidium (DHE) staining visualized with confocal microscopy. Values are mean ± S.E.M 

(n=5-6 rats). *P < 0.05 vs. vehicle values; #P < 0.05 vs. Abn CBD; ^P < 0.05 vs. NAGly values. 

(B) DCFH-DA measured ROS levels in terms of relative fluorescence units (RFU) in the RVLM 

following treatment with vehicle, Abn CBD (0.4 µg), O-1918 (0.4 µg) and O-1918 (0.4 µg) /Abn 

CBD (0.4 µg). The values of NAGly (1 µg) were not significantly different from the control and 

are not shown for clarity. Values are mean ± S.E.M (n=5-6 rats). *P < 0.05 vs. vehicle values; #P 

< 0.05 vs. Abn CBD.  

 

 



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

3.7. Discussion 

The following are the most important findings of the present study, which is the first to 

elucidate the function of RVLM GPR18 in conscious rats: (i) GPR18 is expressed in the TH-ir 

(presympathetic) neurons of the RVLM; (ii) activation and blockade of RVLM GPR18 causes 

dose-dependent reduction and elevation in MAP, respectively; (iii) GPR18 blockade (O-1918) 

abrogated Abn CBD-evoked hypotension; (iv) concomitant CB1R activation dampens the 

hypotensive response caused by the endogenous GPR18 ligand NAGly; (v) RVLM GPR18 

activation increases ADN and NOx, and reduces ROS levels in the RVLM while its blockade 

produced the opposite neurochemical responses; (vi) Intra-RVLM ADN reduced BP and RVLM 

ROS, and increased RVLM NOx. Collectively, the findings identify novel sympathoinhibitory 

role for RVLM GPR18 mediated, at least partly, by reducing oxidative stress in the RVLM.   

While GPR18 mRNA is expressed in humans and mice (Vassilatis et al., 2003), these data 

are the first to demonstrate GPR18 protein expression in the RVLM of rats (Figs. 3.6A, B). 

Further, GPR18 is spatially located within the RVLM TH-ir neurons (Fig. 3.6C), which 

modulate  sympathetic activity (Sved et al., 2003; Guyenet, 2006) inferring GPR18 involvement 

in central control of sympathetic tone and MAP.  To elucidate the RVLM GPR18 functional role, 

we microinjected a selective GPR18 agonist or antagonist into the RVLM of conscious rats. Abn 

CBD causes CB1R/CB2R-independent peripheral vasodilation (Randall et al., 2004; Johns et al., 

2007); in the latter study, Abn CBD was administered i.v. in anesthetized mice in much higher 

doses (30 mg/kg). Differences in the route of administration, dose, and anesthesia might explain 

the differences in the onsets and durations of the hypotensive responses and HR responses in the 
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two studies. Here, we report the first evidence that intra-RVLM Abn CBD caused dose-

dependent hypotensive response (Fig. 3.7A).  This response was GPR18-mediated because it was 

abrogated (Fig. 3.11A) by O-1918, a selective GPR18 antagonist (McHugh et al., 2010). Further, 

intra-RVLM O-1918 elicited dose-related pressor response (Fig. 3.7A). Prior cardiac vagal and 

adrenergic blockade virtually abolished the HR, but not the BP, responses caused by GPR18 

activation or blockade (Figs. 3.7C, D), which suggest that the HR responses are mediated, at 

least partly, via cardiac baroreflex responses.  

It is imperative to comment on the complexity of the observed HR responses.  While the 

reciprocal relationships between HR and BP responses elicited by Abn CBD or O-1918 (Figs. 

3.7 and 3.12) support the involvement of the baroreceptors in the HR responses, it is notable that 

atropine and propranolol also block baroreceptor-independent cardiac responses. It is highly 

unlikely that Abn CBD produced direct chronotropic effects because it was microinjected into 

the RVLM in substantially lower doses than those used systemically (Johns et al., 2007). 

Nonetheless, it is possible that the central sympathoinhibitory effect of intra-RVLM Abn CBD 

might have dampened the tachycardic response. This possibility might explain the plateaued 

tachycardic response despite the dose-dependent hypotensive response caused by Abn CBD (Fig. 

3.7), and the decline of the tachycardic response from its peak before the hypotensive response 

reached its nadir (Fig. 3.12). Collectively, these findings suggest that RVLM GPR18 exerts a 

tonic restraining sympathoinhibitory influence on BP, and that such a central effect might 

contribute to the complexity of the observed HR responses.  
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 The finding that intra-RVLM NAGly, the endogenous GPR18 ligand (Kohno et al., 2006), 

only modestly reduced BP (Fig. 3.7E) might: (i) cast doubt about the biological significance of 

RVLM GPR18, and (ii) infer that Abn CBD mediated hypotension was a consequence of local 

redox changes in the RVLM rather than direct agonism at RVLM GPR18. Notably, NAGly can 

inhibit the enzyme fatty acid amide hydrolase (FAAH) leading to increased AEA levels (Huang 

et al., 2001; Burstein et al., 2002). AEA may then activate central CB1Rs, which mediate the 

sympathoexcitation/pressor response (Ibrahim and Abdel-Rahman, 2011), and ultimately 

counterbalance the GPR18-dependent reduction in BP caused by NAGly.  In support of this 

notion are the following findings: (i) GPR18 and CB1R are co-localized in RVLM neurons (Fig. 

3.10A), which partly agrees with our findings that demonstrated CB1R expression in RVLM TH-

ir neurons (Ibrahim and Abdel-Rahman, 2011); (ii) the ability of intra-RVLM SR141716 (CB1R 

blockade) to lower BP (Fig. 3.10B) is consistent with a sympathoexcitatory/pressor function for 

central CB1R (Ibrahim and Abdel-Rahman, 2011); (iii) while NAGly alone had no effect on 

ADN, NOx or ROS levels, prior CB1R blockade (SR141716) uncovered the NAGly ability to 

increase ADN and NO (Figs. 3.8 A, B), and to reduce ROS levels (Fig. 3.13A) in the RVLM 

along with lowering BP (Fig. 3.10B). These novel findings replicated the redox and BP effects of 

Abn CBD (Figs. 3.8, 3.13A). Together, these data support the conclusion that the reductions in 

RVLM oxidative stress and BP are caused by Abn CBD direct agonism at GPR18 and suggest a 

functional role for GPR18-CB1R interaction in the RVLM in modulating the local redox state 

and BP. It is imperative to comment on the pharmacological perspectives of our study because 

the endogenous GPR18 ligand NAGly lowered BP only following blockade of CB1R, which 

might infer that CB1R blockade is required for uncovering the GPR18-mediated responses.  Our 
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present findings argue against generalizing this notion because the GPR18 agonist Abn CBD, 

which does not interact with CB1R directly or indirectly (Jarai et al., 1999; Offertáler et al., 

2003), lowered BP without prior CB1R blockade. 

It is important to comment on the complexity of RVLM NOS-derived NO in BP regulation 

because NO is implicated in GPR18-evoked hypotension (this study) and CB1R-mediated 

hypertension (Ibrahim and Abdel-Rahman, 2012). Findings of the latter agree with a 

sympathoexcitatory role for RVLM NO (Chan et al., 2003). It is likely that the RVLM NO effect 

on BP depends on the source of NO, and its effect on local sympathoinhibitory (GABA) and 

sympathoexcitatory (L-glutamate) neuromodulators. For example, while GABA inhibition is 

implicated in the NO-dependent CB1R-mediated pressor response (Ibrahim and Abdel-Rahman, 

2012b), eNOS-derived NO mediates increases in RVLM GABA level, and hypotension (Kishi et 

al., 2001; Kishi et al., 2002). More studies are warranted to delineate the mechanisms of the 

differential role of RVLM NO in modulating sympathetic activity/BP, and to investigate the 

possibility that GPR18-dependent NO generation enhances RVLM GABA release/signaling in 

future studies.  

A common anti-inflammatory role for ADN (Nanayakkara et al., 2012) and GPR18 (Vuong 

et al., 2008) infers a role for ADN in GPR18 signaling. We present the first evidence that GPR18 

activation in the RVLM increases ADN (Figs. 3.8A) along with findings that support a 

functional role for ADN in GPR18 signaling because RVLM GPR18 blockade (O-1918): (i) 

reduced RVLM ADN (Fig. 3.8A) and elevated BP; (ii) abrogated the GPR18 (Abn CBD)-

mediated BP and neurochemical responses (Figs. 3.8, 3.11). Next, we show, for the first time, 
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that ADN produced dose-dependent reductions in BP (Fig. 3.9A), increased RVLM NOx (Fig. 

3.9C), and reduced RVLM ROS levels (Fig. 3.9D). The ADN doses were based on a reported 

microinjected dose of ADN in area postrema (Fry et al., 2006). In the latter study, ADN caused 

modest pressor response and inconsistent changes in HR. Differences in the neuroanatomical 

targets, and use of anesthesia in the reported study might account for the differences in BP 

responses. Further, a very recent study (Song et al., 2013) showed that the active (globular) ADN 

fraction replicates ADN-evoked neuroprotection via a reduction in oxidative stress. Together, 

these findings implicate RVLM ADN in the GPR18-mediated reductions in neuronal oxidative 

stress (ROS) in the RVLM and BP.    

We reasoned that the GPR18-mediated neurochemical responses, discussed above, would 

ultimately reduce BP via ROS reduction in RVLM because enhanced and suppressed ROS 

production in the RVLM leads to elevation and reduction in BP, respectively (Kishi et al., 2004; 

Yoshitaka, 2008). Using two different methods, we showed that activation of RVLM GPR18 

reduced neuronal ROS while its blockade increased neuronal ROS and abrogated the GPR18-

mediated ROS reduction (Fig. 3.13). These redox findings, which paralleled the ADN (Fig. 

3.8A) and BP (Figs. 3.11A, B) responses, reinforce a well-established role for oxidative stress in 

RVLM neurons in sympathoexcitation and BP elevation. Further, the findings lend credence to 

our conclusion that ADN-dependent reduction in RVLM ROS plays a crucial role in GPR18-

mediated hypotension.  

In summary, the present study yields new insight into the role of the novel cannabinoid 

receptor GPR18 in central (RVLM) control of BP. We present the first evidence that RVLM 
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GPR18 mediates reductions in oxidative stress and BP in conscious rats. The neurochemical 

findings suggest that increases in ADN and NO and reduced ROS production in the RVLM play 

significant role in GPR18-mediated hypotension. In the RVLM, CB1R serves a counterbalancing 

role against GPR18, which explains the negligible hypotensive response caused by the 

endogenous GPR18 ligand NAGly in our model system.  Future studies are warranted to 

delineate the GPR18 signaling implicated in the neurochemical effects described in this study, 

and to investigate the role of GPR18 signaling in hypertension. Such studies will advance our 

knowledge of the role of endocannabinoids in the neural control of BP and might lead to the 

development of novel antihypertensive drugs.  



CHAPTER FOUR - MOLECULAR MECHANISMS UNDERLYING ROSTRAL 

VENTROLATERAL MEDULLA GPR18-MEDIATED HYPOTENSION IN CONSCIOUS 

NORMOTENSIVE RATS 

4.1. Abstract 

The endocannabinoid receptor GPR18 is expressed in tyrosine hydroxylase-

immunoreactive (TH-ir) neurons in the rostral ventrolateral medulla (RVLM), and its direct 

activation (abnormal cannabidiol; Abn CBD) and blockade (O-1918) lowers and elevates blood 

pressure (BP), respectively, in conscious rats. However, the molecular mechanisms for GPR18 

regulation of BP are not fully understood. We hypothesized that the RVLM PI3K/Akt-ERK1/2-

nNOS and adenylyl cyclase-cAMP networks play pivotal roles in GPR18 modulation of 

oxidative stress and BP via local adiponectin (ADN). Intra-RVLM GPR18 activation (Abn CBD; 

0.4 μg) enhanced RVLM Akt, ERK1/2 and nNOS phosphorylation and ADN level, during the 

hypotensive response, and prior GPR18 blockade (O-1918) produced the opposite effects, and 

abrogated Abn CBD-evoked responses in conscious Sprague Dawley rats. Inhibition of RVLM 

PI3K/Akt (wortmannin), ERK1/2 (PD98059) or nNOS (N
ω
-propyl-L-arginine, NPLA) or 

activation of adenylyl cyclase (forskolin) virtually abolished the intra-RVLM Abn CBD-evoked 

hypotension. Further, wortmannin, PD98059, NPLA or forskolin abrogated GPR18-mediated 

increases in RVLM Akt, ERK1/2, nNOS phosphorylation and ADN levels, along with increased 

ROS generation. Our integrative and neurochemical findings implicate the RVLM PI3K/Akt-

ERK1/2-nNOS/ADN and cAMP in GPR18 modulation of RVLM redox state and BP in 

conscious rats. 



79 

 

4.2. Introduction 

Several novel cannabinoid (CB) receptors mediate the diverse cardiovascular effects of 

synthetic and natural cannabinoids (Offertáler et al., 2003). One putative cannabinoid receptor, 

the “Abnormal Cannabidiol” (Abn CBD) receptor, is GPR18 (Kohno et al., 2006; McHugh et al., 

2010). This novel G-protein coupled CB receptor is distinct from the typical CB1R and CB2R 

because: 1) N-arachidonoyl glycine (NAGly), an endogenous metabolite of the endocannabinoid, 

anandamide, acts as a selective agonist at GPR18 (McHugh et al., 2010); 2) Abn CBD, a 

synthetic isomer of the phytocannabinoid, cannabidiol (CBD), causes GPR18-dependent 

vasorelaxation of isolated mesenteric arteries (McHugh et al., 2010); 3) the GPR18 antagonist O-

1918 attenuates Abn CBD-mediated vasorelaxation in a CB1R/CB2R-independent manner 

(Offertáler et al., 2003; McHugh et al., 2010). Although GPR18 mRNA is detected in human and 

mice brainstem (Vassilatis et al., 2003), and NAGly is abundant in the brain (Huang et al., 2001), 

our recent findings (Penumarti and Abdel-Rahman, 2014) are the first to demonstrate: (i) GPR18 

protein expression in TH-ir RVLM neurons, which modulate the sympathetic activity (Sved et 

al., 2003; Kishi et al., 2004; Guyenet, 2006); (ii) activation and blockade of intra-RVLM GPR18 

lowers and elevates BP, respectively, suggesting a restraining influence for RVLM GPR18 on 

sympathetic tone and BP.  

The molecular mechanisms of the RVLM GPR18 modulation of central sympathetic tone 

and BP are not known. Activation of GPR18 (Abn CBD) in the periphery leads to vasodilation 

and a decrease in BP (Offertáler et al., 2003) and the endogenous GPR18 agonist, NAGly, causes 

vasodilation via NO release (Kishi et al., 2001). GPR18 belongs to the Gi/o coupled GPCRs 
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family, and its activation in vitro causes inhibition of cAMP production (Kohno et al., 2006), 

activation of ERK1/2 (Alexander, 2012) and Akt (McCollum et al., 2007). Notably, the role of 

the PI3K-Akt-ERK1/2 pathway in modulating the redox state in the RVLM and subsequently BP 

remains controversial because enhanced ERK1/2 phosphorylation and elevated NO levels in the 

RVLM mediate the sympathoexcitation/pressor response (Ibrahim and Abdel-Rahman, 2012b; 

Ibrahim and Abdel-Rahman, 2012a; Chan and Chan, 2014) or sympathoinhibition/hypotension 

(Zhang and Abdel-Rahman, 2005; Nassar and Abdel-Rahman, 2008; Chan and Chan, 2014). 

These responses are ROS-dependent because brainstem ROS elevation (Kishi et al., 2004; 

Hirooka, 2008; Yoshitaka, 2008), and inhibition (Zanzinger and Czachurski, 2000; Campese et 

al., 2004) are implicated in elevation and reduction in BP, respectively. It is likely that 

downstream signaling molecules triggered by the activation of the PI3K-Akt-NOS pathway 

determine the final redox state and the ultimate BP response caused by the activation of different 

receptors in the RVLM. Here, we hypothesized that RVLM ADN generation, due to local PI3K-

Akt-nNOS activation or cAMP inhibition, underlies GPR18-medited hypotension. ADN confers 

neuroprotection via reduced oxidative stress (Song et al., 2013), and our preliminary findings 

showed that intra-RVLM ADN lowers BP and increases NO and decreases ROS levels in RVLM 

(Penumarti and Abdel-Rahman, 2014). Therefore, experiments undertaken in this study focus on 

elucidating the molecular mechanisms implicated in RVLM GPR18 modulation of local redox 

state and BP. Selective GPR18 agonists and antagonist along with other pharmacologic 

interventions were directly microinjected into the RVLM of conscious unrestrained rats, and 

molecular studies were conducted in RVLM tissues to complement the integrative findings.  
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4.3. Materials and Methods 

Male Sprague-Dawley rats (Charles River Laboratories, Raleigh, NC), 11 to 12 weeks 

old, were used in this study. After vascular catheterization and intra-RVLM cannulation, the rats 

were housed individually in separate cages in a room with controlled environment. The 

temperature was maintained at 23 ± 1
o 

C, 50 ± 10% humidity and a 12 hr light/dark cycle. Food 

(Prolab Rodent Chow; Granville Milling, Creedmoor, NC) and water were provided ad libitum. 

All surgical and experimental procedures are detailed in the supplement and were conducted in 

accordance with and approved by the East Carolina University Institutional Animal Care and 

Use Committee and in accordance with the Guide for the Care and Use of Laboratory Animals 

(Institute for Laboratory Animal Research, 2011). These surgeries were performed as reported in 

our previous studies (Zhang and Abdel-Rahman, 2002; Penumarti and Abdel-Rahman, 2014). On 

the day of the experiment the arterial catheter was flushed with heparin in saline (200 U/ml) and 

connected to a Gould-Statham (Oxnard, CA) pressure transducer and BP of unrestrained rats was 

measured as mentioned in our previous studies (Nassar et al., 2011; Ibrahim and Abdel-Rahman, 

2012a).  

4.3.1. Intravascular Catheterization and Intra-RVLM Cannulations 

These surgeries were performed as reported in previous studies (Zhang and Abdel-

Rahman, 2002) and detailed in the Materials and Methods chapter. 
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4.3.2. Western Blotting 

Animals were euthanized and following decapitation, brains were removed, flash frozen 

in 2-methylbutane on dry ice, and stored at −80°C until use. Brains were equilibrated to −20°C 

and sectioned with a cryostat (HM 505E; Microm International GmbH, Waldorf, Germany) to 

the rostral ventrolateral medulla (RVLM) according to atlas coordinates. Tissue from the RVLM 

was collected bilaterally using a 0.75 mm punch instrument as described in other studies 

(Ibrahim and Abdel-Rahman, 2011) from approximately -12.8 to -11.8 mm relative to bregma 
2 

from treatment and control groups. Tissue was homogenized on ice by sonication in cell lysis 

buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 

2.5 mM sodium pyrophosphate, 1 mM β-glycerolphosphate, 1 mM activated sodium 

orthovanadate) containing a protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN). 

Protein concentration in samples was quantified using a standard Bio-Rad protein assay system 

(Bio-Rad Laboratories, Hercules, CA). Protein extracts (20 μg per lane) were denatured at 97°C 

for 5 minutes, separated on NuPAGE Novex Bis-Tris 4 to 12% SDS-PAGE gels (Invitrogen, 

Carlsbad, CA) using MOPS NuPAGE running buffer, and electroblotted to nitrocellulose 

membranes using standard procedures. The membranes were blocked for 1 hr with Odyssey 

blocking buffer (LICOR Biosciences Lincoln, NE) and incubated with a mixture of rabbit anti-

ERK1/2 or rabbit anti-Akt and mouse anti-pERK1/2 or mouse anti-pAkt (1:500) overnight. All 

of the antibodies were purchased from Cell Signaling Technology (Danvers, MA). After washing 

the membranes with PBS, they were incubated for 1 hr with a mixture of IRDye680-conjugated 

goat anti-rabbit and IRDye800-conjugated goat anti-mouse (1:10,000; LICOR Biosciences). 
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Membranes were washed with PBS containing 0.1% Tween 20 and bands representing total and 

phosphorylated proteins were visualized simultaneously using an Odyssey Infrared Imager and 

analyzed with Odyssey application software v.3 (LICOR Biosciences). All data are presented as 

mean values of the integrated density ratio of phosphorylated protein normalized to its 

corresponding total protein. 

4.3.3. Dot Blotting 

The dot blot technique was employed to detect and analyze the proteins present in the 

sample. It differs from the western blot in that, the protein samples are spotted through circular 

templates directly on to the nitrocellulose membrane instead of being separated 

electrophoretically. This technique was employed to permit multiple protein level measurements 

in the limited amount of RVLM tissue in the groups that received pharmacologic interventions to 

inhibit local kinases of NOS. A 96 well Bio-dot Microfiltration Apparatus (Bio-Rad 

Laboratories, Inc., Hercules, CA) was used and the samples were loaded in the wells and directly 

separated by vacuum filtration on to nitrocellulose membrane. The membrane was then washed 

with PBS and allowed to dry.  The membranes were blocked for 1 hr with Odyssey blocking 

buffer (LICOR Biosciences Lincoln, NE) and incubated with primary and secondary antibodies 

as described for Western Blotting and visualized simultaneously using an Odyssey Infrared 

Imager and analyzed with Odyssey application software v.3 (LICOR Biosciences). All data are 

expressed as mean values of the integrated density ratio of phosphorylated protein normalized to 

its corresponding total protein.  
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4.3.4. Measurement of Reactive Oxygen Species by DCFH-DA.  

RVLM specimen from treated and control groups were homogenized in PBS. The 

homogenate was centrifuged (14,000 rpm) for 20 min. Protein in the supernatant was quantified 

using a standard Bio-Rad protein assay system. 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) 

(Molecular Probes) was dissolved in DMSO (12.5 mM) and kept at -80°C in the dark. It was 

freshly diluted with 50 mM phosphate buffer (pH 7.4) to 125 µM before experiment. DCFH-DA 

was added to RVLM homogenate supernatant (10 µl) in a 96-well microtiter plate for a final 

concentration (25 µM). 2′, 7′-Dichlorofluorescein (DCF) was used for a 6-point standard curve. 

Quantification was conducted by examining fluorescence intensity using a microplate 

fluorescence reader at excitation 485 nm/emission 530 nm. Kinetic readings were recorded for 

30 min at 37°C.  ROS level was calculated by relative DCF fluorescence per µg protein. Positive 

and negative controls were used to validate the assay as in our previous studies (McGee and 

Abdel-Rahman, 2012).                       

4.4. Experimental Groups and Protocols 

4.4.1. Experiment 1: Effect of RVLM GPR18 activation or blockade on ERK1/2, Akt 

and nNOS phosphorylation in conscious male SD rats.  

Recent studies from this laboratory showed that activation (Abn CBD) of GPR18 produced 

a hypotensive response while blocking (O-1918) the receptor caused a pressor effect (Worlein et 

al., 2011). In the experiment reported herein, we used the tissues collected at the end of the 

cardiovascular studies in the recent study (Worlein et al., 2011) to test the hypothesis that an 
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enhanced phosphorylation of ERK1/2 (pERK1/2), Akt (pAKT), and nNOS (p-nNOS) in the 

RVLM contributes to the GPR18 (Abn CBD)-mediated hypotensive response. Five groups of 

rats (n=5-6 each) that received one of the following treatments – vehicle (methyl acetate), 

NAGly (1 μg), Abn CBD (0.4 μg), O-1918 (0.4 μg) or O-1918 (0.4 μg)/Abn CBD (0.4 μg) were 

used in this experiment. We measured the ratio of RVLM pERK1/2, pAKT, and p-nNOS to their 

corresponding total proteins in the RVLM of animals treated with intra-RVLM GPR18 ligands 

or vehicle as detailed under methods.  

4.4.2. Experiment 2: Effect of intra-RVLM inhibition of ERK1/2, PI3K/Akt or NOS 

inhibition on Abn CBD-mediated hypotensive response.  

The objective of these experiments, and the complementary ex vivo experiments (see 

below), was to support a causal role for the GPR18 (Abn CBD)-induced enhancement of the 

phosphorylation of Akt, ERK1/2 and nNOS in RVLM and the hypotensive response. Therefore, 

we investigated the BP and HR responses elicited by intra-RVLM Abn CBD in the absence or 

presence of pharmacologic inhibitors of PI3K/Akt (wortmannin; 100 nmol), ERK1/2 (PD98059; 

50 μmol) (Alessi et al., 1995; Seyedabadi et al., 2001), eNOS (L-NIO; 100 pmol) (El-Mas et al., 

2009) or nNOS  (N
ω
-Propyl-L-arginine hydrochloride  NPLA); (250 pmol) (El-Mas et al., 2009). 

DMSO was used as the vehicle for all kinase inhibitors, while saline was the vehicle for NOS 

inhibitors.  DMSO was diluted in ACSF (1:16) and this DMSO/ACSF mixture had no effect on 

BP, which is consistent with our previous findings (Nassar et al., 2011). The rats in each group 

(n=6 unless specified) received one of the following treatment combinations: DMSO + vehicle 

(n=3), DMSO + Abn CBD (n=3), saline + vehicle (n=3), saline + Abn CBD (n=3), wortmannin 
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+ vehicle, wortmannin + Abn CBD, PD98059 + vehicle, PD98059 + Abn CBD, L-NIO + 

vehicle, L-NIO + Abn CBD, NPLA + vehicle, NPLA + Abn CBD. The respective pretreatment 

(DMSO, saline, wortmannin, PD98059, L-NIO or NPLA) was microinjected into the RVLM 30 

min prior to Abn CBD (0.4 μg) or vehicle injection. All intra-RVLM injections were of equal 

volume (80nl). At the end of 30 min cardiovascular measurements after Abn CBD or vehicle 

injection, the rats were euthanized and brains were collected and stored at -80
o
C for biochemical 

measurements. 

4.4.3.    Experiment 3: Effect of intra-RVLM activation of adenylyl cyclase on Abn CBD-

mediated hypotensive response.  

We investigated the effect of intra-RVLM adenylyl cyclase (AC) activation (forskolin; 50 

μmol) (McHugh et al., 2010) on the GPR18-mediated hypotensive response in 4 groups of 

conscious male rats (n=3-6). The rats in each group received one of the following treatment 

combinations: DMSO + vehicle (n=3), DMSO + Abn CBD (n=3), forskolin + vehicle (n=6), 

forskolin + Abn CBD (n=6). Forskolin or an equal volume of DMSO (vehicle for forskolin) was 

administered 30 min prior to microinjection of Abn CBD (0.4 μg) or its vehicle (methyl acetate). 

At the end of 30 min cardiovascular measurements after Abn CBD or vehicle injection, the rats 

were euthanized and brains were collected and stored at -80
o
C for biochemical measurements. 
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4.4.4. Experiment 4: Effect of Akt-ERK1/2-nNOS inhibition or increased cAMP on GPR18-

mediated molecular events in the RVLM.   

Ex vivo biochemical studies were conducted in RVLM tissues collected from treatment and 

control animals employed in the integrative (in vivo) cardiovascular studies. In these studies, we 

investigated the changes in RVLM pERK1/2, pAKT, p-nNOS, ADN and ROS levels caused by 

intra-RVLM Abn CBD in the absence or presence of inhibitors of ERK1/2 (PD98059) or 

PI3K/Akt (Wortmannin), nNOS (NPLA) or activation of adenylyl cyclase (forskolin) using Dot 

Blot and DCFH-DA assay (ROS).  

4.4.5. Drugs 

Abn CBD, NAGly and O-1918 were purchased from Cayman Chemical (Ann Arbor, MI). 

Methyl acetate, wortmannin, PD98059, forskolin and dimethyl sulfoxide were purchased from 

Sigma Aldrich (St. Louis, MO). L-NIO and NPLA were purchased from Tocris Biosciences 

(Ellisville, MO) and dissolved in sterile saline. Sterile saline was purchased from B.Braun 

Medical (Irvine, CA). DMSO was used as the vehicle for PD98059, wortmannin and forskolin. 

Methyl acetate was used as the vehicle for Abn CBD, O-1918, NAGly. Methyl acetate and 

DMSO were tested in at least three animals without any significant changes in MAP and HR 

from the basal levels. All intra-RVLM injections were of equal volume (80nl). 

4.5. Data Analysis and Statistics 

All values were expressed as mean ± S.E.M change from their respective baselines. All 

other statistical analyses were done using a one-way or repeated-measures ANOVA with 
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Bonferroni post hoc test and Student’s t test, Prism 5.0 software (GraphPad Software Inc., San 

Diego, CA) was used to perform statistical analysis and P < 0.05 was considered significant. 

4.6. Results 

4.6.1. Intra-RVLM Abn CBD Increased RVLM ERK1/2, Akt and nNOS 

phosphorylation. Intra-RVLM GPR18 activation (Abn CBD; 0.4 μg/animal) increased ERK1/2, 

nNOS and Akt phosphorylation in the RVLM (Fig. 4.2). The endogenous GPR18 ligand, 

NAGly, only increased RVLM Akt phosphorylation, and the increase was much smaller than 

that caused by Abn CBD (Fig. 4.2). By contrast, RVLM GPR18 blockade (O-1918, 0.4 

μg/animal) reduced RVLM Akt, ERK1/2 and nNOS phosphorylation, and abrogated Abn CBD 

enhancement of ERK1/2, nNOS and Akt phosphorylation (Fig. 4.2). 

4.6.2. Intra-RVLM PI3K/Akt, ERK1/2 or nNOS Inhibition Attenuated Abn CBD 

evoked Hypotensive Response. Time-course (Figs. 4.3-4.5 A & B) and area under the curve 

(AUC) data (Figs. 4.3-4.5 C & D) showed that, compared to the DMSO/vehicle (methylacetate) 

or saline/vehicle, pretreatment with the PI3K/Akt inhibitor, wortmannin (100 nmol), the ERK1/2 

inhibitor, PD98059 (50 μmol), or the nNOS inhibitor, NPLA (250 pmol), caused a significant 

elevation in BP (Figs. 4.3-4.5 A). The BP subsided toward control level before subsequent Abn 

CBD or vehicle administration (Figs. 4.3-4.5 A). Prior inhibition of RVLM PI3K/Akt (Figs. 4.3 

A & C), ERK1/2 (Fig. 4.4 A & C) or nNOS (Fig. 4.5 A & C), but not eNOS (L-NIO; 100 pmol) 

(Fig. 4.5 A & C), attenuated (P<0.05) Abn CBD (0.4 μg) mediated hypotensive response. RVLM 

eNOS inhibition (L-NIO) had no effect on BP or on the Abn CBD-evoked hypotension (Fig. 4.5 

A & C). The changes in HR in the different treatment groups were not significantly different. 
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However, when the HR responses were expressed as AUC, a significant bradycardic response 

occurred when Abn CBD was administered following DMSO, but not following saline (Figs. 

4.3-4.5 B).  

4.6.3. Increased RVLM cAMP levels abrogate GPR18-mediated Hypotension. Intra-

RVLM activation of adenylyl cyclase/elevation of cAMP levels by forskolin (50 μmol) 

significantly increased BP (Figs. 4.6 A & C), but had no effect on HR (Figs. 4.6 B & D). 

Forskolin pretreatment abrogated central GPR18-mediated hypotensive (Figs. 4.6 A & C) and 

bradycardic (Fig. 4.6 D) responses.  

4.6.4. Akt-ERK1/2-nNOS inhibition or Increased cAMP Abrogates GPR18-mediated 

molecular events in the RVLM. Dot blot analysis was used to permit multiple measurements of 

the targeted proteins as well as ADN and ROS levels in the limited amount of RVLM tissues 

collected from treatment and control groups. Importantly, this methodology was verified by the 

resemblance of the Western (Fig. 4.2) and dot (Fig. 4.7) blot data for Akt, ERK1/2 and nNOS. 

Intra-RVLM pretreatment with wortmannin, NPLA, PD98059 or forskolin significantly 

(P<0.05) attenuated the GPR18 (Abn CBD)-mediated increases in ERK1/2, Akt, nNOS 

phosphorylation, and in ADN levels in the RVLM (Fig. 4.7 A-D). These neurochemical 

findings paralleled the BP responses (Figs. 4.3-4.6). While RVLM GPR18 activation had no 

effect on the low basal ROS levels (Fig. 4.7 E), RVLM GPR18 blockade significantly increased 

local ROS levels and abrogated the Abn CBD-mediated hypotension in our recent study 

(Penumarti and Abdel-Rahman, 2014). Similarly, inhibition of Akt, ERK1/2, or nNOS 
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phosphorylation or elevation of cAMP abrogated GPR18-mediated hypotension (Figs. 4.3-4.6), 

and resulted in significant elevation in ROS levels in the RVLM (Fig. 4.7 E).  
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Figure 4.1. Time line for surgical procedures and experimental protocols for cardiovascular 

measurements. 
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Table 4.1. MAP (mmHg) and HR (beats/min) values before pharmacological intervention. 

Values of Mean Arterial Pressure (MAP, mmHg) and Heart Rate (HR, beats/min) at the end of 

pretreatment (time=30min) and immediately before treatment with the indicated intervention or 

its vehicle. 
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Pretreatment/Treatment n MAP HR 

DMSO/Vehicle 3 121 ± 3    359 ± 10 

Saline/Vehicle 3 116 ± 5    372 ± 8 

DMSO/Abn CBD 3 111 ± 8    363 ± 7 

Saline/Abn CBD 3 113 ± 7    330 ± 18 

PD98059/Vehicle 6 115 ± 3 324 ± 11 

PD98059/Abn CBD 6 120 ± 1 367 ± 12 

Wortmannin/Vehicle 6 118 ± 5 328 ± 14 

Wortmannin/Abn CBD 6 117 ± 6 349 ± 16 

NPLA/Vehicle 6 123 ± 5     342 ± 9 

NPLA/Abn CBD 6 114 ± 5 361 ± 11 

L-NIO/Vehicle 6 122 ± 9 335 ± 10 

L-NIO/Abn CBD 6 119 ± 2 357 ± 13 

Forskolin/Vehicle 6 112 ± 7 345 ± 17 

Forskolin/Abn CBD 6 109 ± 8 376 ± 15 
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Figure 4.2. Effect of GPR18 ligands on pERK1/2, pAkt and p-nNOS levels 

Effects of NAGly (1 μg), Abn CBD (0.4 μg), O-1918 (0.4 μg) or O-1918 (0.4 μg)/Abn CBD (0.4 

μg) on ERK1/2 (A), nNOS (B) and Akt (C) phosphorylation compared to total protein. Data are 

presented as the integrated density ratio of the phosphorylated protein to its total protein and 

expressed as percent of control (vehicle). Values are mean + S.E.M. of 5-6 observations. *P < 

0.05 vs. vehicle; #P < 0.05 vs. Abn CBD. Veh, vehicle (methylacetate); NAG, NAGly; AbC, 

Abn CBD. 
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Figure 4.3. Effect of intra-RVLM wortmannin on GPR18 mediated sympathoinhibition 

Time course changes in mean arterial pressure (MAP) (A) and heart rate (HR) (B) following 

intra-RVLM Abn CBD (0.4 μg) or equal volume of vehicle in conscious rats pretreated, 30min 

earlier, with the PI3K/Akt inhibitor wortmannin (100 nmol) or equal volume of its vehicle 

(DMSO). C and D, area under the curve (AUC) values generated from the time course data, 

show that inhibition of Akt phosphorylation (wortmannin) abrogates the GPR18 (Abn CBD)-

mediated hypotensive response. The values of the two groups that received the same 

pretreatment (DMSO or wortmannin) were combined for clarity; n = 6 for all groups except 

DMSO/Vehicle and DMSO/Abn CBD groups (n = 3, each). *P < 0.05 vs. control (vehicle); #P < 

0.05 vs. Abn CBD. DM, DMSO; Veh, vehicle (methylacetate); AbC, Abn CBD; Wort, 

wortmannin. 
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Figure 4.4. Effect of intra-RVLM PD98059 on GPR18 mediated sympathoinhibition 

(A) Mean arterial pressure (MAP), and (B) heart rate (HR) changes following intra-RVLM 

microinjections of either DMSO (diluted 1:16 in ACSF) or PD98059 (50 μmol) at 0 min and 

subsequent vehicle (methyl acetate) or Abn CBD (0.4 μg) microinjection. Pretreatment with 

PD98059 abrogated the GPR18 (Abn CBD)-mediated hypotensive response. Panels C-D depict 

the area under the curve (AUC) data generated from the time-course values over the pretreatment 

(0 to 30 min) and treatment (30-60 min) periods. Compared with vehicle, PD98059 caused 

significant elevation in BP (Figs. A & C). Abn CBD caused significant reduction in BP, and this 

response was abrogated in PD98059 pretreated rats (Figs. A & C). All pretreatment groups that 

received the same drugs were combined for clarity; n = 6 for all groups except DMSO/Vehicle 

and DMSO/Abn CBD groups (n = 3, each). *P < 0.05 vs. control (vehicle); #P < 0.05 vs. Abn 

CBD. DM, DMSO; Veh, vehicle (methylacetate); AbC, Abn CBD; PD, PD98059. 
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Figure 4.5. Effect of intra-RVLM nNOS and eNOS inhibition on GPR18 mediated hypotension 

Changes in (A) mean arterial pressure (MAP), and (B) heart rate (HR) following intra-RVLM 

microinjections Abn CBD (0.4 μg) or equal volume of vehicle in conscious male Sprague-

Dawley rats pretreated, 30 min earlier, with L-NIO (selective eNOS inhibitor; 100 pmol) or 

NPLA (selective nNOS inhibitor; 250 pmol). Pretreatment with NPLA, but not L-NIO, virtually 

abolished the GPR18 (Abn CBD)-mediated hypotensive response, which rules out eNOS 

involvement in GPR18 signaling. C and D depict the area under the curve (AUC) data generated 

from the time-course values over the pretreatment (0 to 30 min) and treatment (30-60 min) 

periods. All pretreatment groups that received the same drugs were combined for clarity; n = 6 

for all groups except Saline/Vehicle and Saline/Abn CBD groups (n = 3, each). *P < 0.05 vs. 

control (vehicle); #P < 0.05 vs. Abn CBD. Sal, saline; Veh, vehicle (methylacetate); AbC, Abn 

CBD. 
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Figure 4.6. Effect of intra-RVLM adenylyl cyclase activation on GPR18 mediated 

sympathoinhibition 

Changes in (A) mean arterial pressure (MAP), and (B) heart rate (HR) following intra-RVLM 

microinjections Abn CBD (0.4 μg) or equal volume of vehicle in conscious male Sprague-

Dawley rats pretreated, 30 minutes earlier, with forskolin (cAMP elevation; 50 μmol). C and D 

depict the area under the curve (AUC) data generated from the time-course values over the 

pretreatment (0 to 30 min) and treatment (30-60 min) periods. All pretreatment groups that 

received the same drugs were combined for clarity; n = 6 for all groups except DMSO/Vehicle 

and DMSO/Abn CBD groups (n = 3, each).  *P < 0.05 vs. control (vehicle); #P < 0.05 vs. Abn 

CBD. DM, DMSO; Veh, vehicle (methylacetate); AbC, Abn CBD; Forsk, forskolin. 
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Figure 4.7. Effects of forskolin, NPLA, PD98059 or wortmannin pretreatments on pERK1/2, 

pAkt, p-nNOS, ADN and ROS levels in the RVLM 

Dot blots showing the effects of Abn CBD alone or following pretreatment with forskolin, 

NPLA, PD98059 or wortmannin on pERK1/2 (A), pAkt (B), p-nNOS (C) and ADN (D) levels in 

the RVLM. Data are presented as integrated density ratio of the phosphorylated protein to its 

total protein and expressed as percent of control (vehicle). Values are mean + S.E.M. of 3-6 

observations. *P < 0.05 vs. vehicle; #P < 0.05 vs. Abn CBD values. (E) RVLM ROS levels 

following treatment with Abn CBD in the absence or presence of forskolin, NPLA, PD98059 or 

wortmannin. Values are mean + S.E.M. of 3-6 observations. *P < 0.05 vs. vehicle; #P < 0.05 vs. 

Abn CBD values. Veh, vehicle (methylacetate); AbC, Abn CBD; Wort, wortmannin; PD, 

PD98059; Forsk, forskolin. 
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Figure. 4.8. Proposed GPR18 signaling in the RVLM 

Schematic presentation of the proposed mechanisms for the neurochemical (RVLM) and blood 

pressure responses elicited by activating central GPR18. This model is based on the present and 

our reported findings (Penumarti and Abdel-Rahman, 2014). Activation of intra-RVLM GPR18 

inhibits cAMP leading to enhanced ADN, pERK1/2 and pAkt production, which causes increase 

in p-nNOS and NO production and decrease in ROS generation, eventually leading to 

hypotension. 
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4.7. Discussion 

We elucidated the molecular mechanisms that underlie the sympathoinhibitory/ 

hypotensive response elicited by RVLM GPR18 activation in conscious rats. The following are 

the most important findings of the present study: 1) activation of RVLM GPR18 (Abn CBD) 

increased ADN and pAkt, pERK1/2 and p-nNOS levels in the RVLM; 2) prior blockade of 

RVLM GPR18 (O-1918) abrogated the GPR18-mediated enhancements of RVLM Akt, ERK1/2 

and nNOS phosphorylation; 3) pharmacological inhibition of RVLM PI3K/Akt, ERK1/2 or 

nNOS or elevation of cAMP increased local ROS level, and attenuated the GPR18-mediated 

hypotension as well as the increases in ADN level and in Akt, ERK1/2 and nNOS 

phosphorylation in the RVLM. Together, these findings suggest a pivotal role for the 

Akt/ERK1/2/nNOS/ADN signaling pathway and inhibition of cAMP as a molecular mechanism 

for GPR18-mediated reduction in BP in conscious unrestrained rats. 

The balance between mediators and suppressors of oxidative stress in the RVLM plays a 

major role in BP control and hypertension (Fridovich, 1978; Kishi et al., 2004; Chan et al., 2006; 

Yoshitaka, 2008). While overexpression of some NOS isoforms in NTS and RVLM suppresses 

sympathetic activity and BP as well as local ROS level (Nassar and Abdel-Rahman, 2008; 

Kimura et al., 2009; Chan and Chan, 2014), little is known about the role of RVLM ADN in BP 

control. Notably, ADN confers neuroprotection by reducing oxidative stress (Song et al., 2013). 

Further, we showed that RVLM GPR18 activation increases local ADN levels and presented the 

first evidence that intra-RVLM ADN reduces RVLM ROS and BP (Penumarti and Abdel-

Rahman, 2014). The present Western blot findings (Fig. 4.2) infer important role for enhanced 
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Akt, ERK1/2 and nNOS phosphorylation in RVLM GPR18-mediated hypotension. While this 

link is consistent with findings that implicated RVLM Akt-ERK1/2-nNOS activation in the 

hypotensive responses (El-Mas et al., 2009; Kastenmayer et al., 2012), it was important to 

establish a causal role for such neurochemical responses in GPR18-mediated hypotension.  Here, 

we show that inhibition of the Akt-ERK1/2-nNOS pathways or elevation of cAMP production 

abrogates the GPR18-mediated increase in ADN levels (Fig. 4.7 D) and elevated RVLM ROS 

levels (Fig. 4.7 E). These neurochemical findings support the contribution of the PI3K/Akt-

ERK1/2-nNOS-ADN signaling, acting in conjunction with the adenylyl cyclase/cAMP system, 

in GPR18 modulation of RVLM redox state and BP (Fig. 4.8). It is important to comment on the 

limited ability of NAGly, the endogenous GPR18 agonist (McHugh et al., 2010), to reproduce 

the neurochemical effects of the synthetic agonist Abn CBD (Fig. 4.2). Interestingly, the present 

findings might lend credence to our hypothesis that concurrent NAGly direct or indirect 

activation of the physiologically antagonistic CB1R might explain the inability of intra-RVLM 

NAGly to lower BP in our recent study (Penumarti and Abdel-Rahman, 2014). Further, the 

present neurochemical findings might suggest molecular mechanisms for the RVLM GPR18 

tonic restraining influence on BP, which manifests as increases in RVLM ROS level and BP 

following GPR18 blockade (Penumarti and Abdel-Rahman, 2014). Therefore, it was important to 

elucidate the role of these molecular mechanisms and the type of NOS isoform implicated in 

GPR18 modulation of RVLM redox state and BP.  

We focused on RVLM ERK1/2 and its activator, PI3K/Akt, because their 

phosphorylation leads to nNOS and eNOS phosphorylation and NO generation (El-Mas et al., 
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2009; Kastenmayer et al., 2012), and GPR18 activation increases ERK1/2 phosphorylation in 

BV-2 microglia and HEK 293 cells (McHugh et al., 2010). It is imperative, however, to discuss 

the puzzling role of the RVLM ERK1/2-NOS pathway because its activation leads to 

contradictory redox and BP effects. For example, ERK1/2 phosphorylation in the RVLM via 

angiotensin II AT1R (Chan et al., 2007; de Oliveira-Sales et al., 2010) or the classical 

cannabinoid receptor CB1R (Ibrahim and Abdel-Rahman, 2012a) activation leads to BP 

elevation.  On the other hand, and in agreement with the present findings (Fig. 4.2 A, and Figs. 

4.4-4.5), the activation of another Gi/o-coupled receptor, α2-adrenergic receptor in the brainstem 

increased ERK1/2 phosphorylation and reduced BP (Zhang and Abdel-Rahman, 2005; Nassar 

and Abdel-Rahman, 2008). Our findings (Fig. 4.2) are consistent with the involvement of 

pERK1/2, PI3K/Akt, and nNOS in GPR18 signaling in other tissues (Mukhopadhyay et al., 

2002; Zhang and Abdel-Rahman, 2005; McCollum et al., 2007; McHugh et al., 2010), and infer 

their contribution to the GPR18-mediated hypotension.  

The second objective of this study was to elucidate the potential causal role of Akt-

ERK1/2-nNOS activation in the RVLM in the hypotensive response caused by intra RVLM-

GPR18 activation. Since ERK1/2 phosphorylation can be triggered by pAkt (Hong et al., 2012) 

or can trigger Akt phosphorylation (Ramakrishnan et al., 2012) and both pAkt and pERK1/2 

enhance eNOS and nNOS phosphorylation (El-Mas et al., 2009; Kastenmayer et al., 2012), we 

extended our pharmacological studies to elucidate the roles of pAkt and the NOS isoform 

implicated in the investigated phenomenon.  
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We focused on the constitutive NOS isoforms, nNOS and eNOS for two reasons. First, as 

discussed earlier, eNOS and/or nNOS phosphorylation (activation) is triggered by pAkt and 

pERK1/2. Second, although overexpression of iNOS in NTS and RVLM decreases BP (Kimura 

et al., 2005), iNOS is an unlikely contributor to the rapidly developing (10-15 min) GPR18-

mediated hypotension here (Fig. 4.3) and in our recent study (Penumarti and Abdel-Rahman, 

2014). We showed that activation (Abn CBD) and blockade (O-1918) of RVLM GPR18 

enhanced and reduced nNOS phosphorylation (p-nNOS levels) in the RVLM (Fig. 4.2 B). 

Equally important, selective nNOS (NPLA), but not eNOS (L-NIO), inhibition virtually 

abolished GPR18-mediated hypotension (Fig. 4.5). Equally important, NPLA abrogated GPR18-

mediated nNOS phosphorylation and elevation of ADN level in the RVLM (Fig. 4.7D). These 

pharmacological (Fig. 4.5) and molecular (Fig. 4.7B) findings support a causal role for p-nNOS 

in GPR18-mediated hypotension, at least partly, via Akt and ERK1/2 activation.  The latter 

notion is supported by the ability of PI3K/Akt (wortmannin) or ERK1/2 inhibition (PD98059) to 

abrogate nNOS phosphorylation (Fig. 4.7B) and the hypotensive response (Figs. 4.3 & 4.4) 

caused by RVLM GPR18 activation.  

Finally, we reasoned that a reduction in local cAMP levels, which occurs following 

activation of the Gi/o coupled receptor GPR18 in BV-2 microglia and HEK 293 cells (McHugh 

et al., 2010) might contribute to the GPR18-mediated hypotension. This hypothesis is supported 

by the findings that activation of other Gi/o coupled receptors in the brainstem lowers BP (Zhang 

and Abdel-Rahman, 2005). We were not able to measure cAMP levels in the limited amounts of 

tissues collected from the RVLM. An alternate, and reported approach (Mason and Matthews, 
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2012) for testing our hypothesis, was the use of forskolin to activate AC and generate cAMP 

(Edwards and Paton, 1999). We show that intra-RVLM forskolin (cAMP elevation) virtually 

abolished the hypotension (Fig. 4.6) and the increases in phosphorylation of Akt, ERK1/2 and 

nNOS and in ADN level in RVLM (Fig. 4.7) caused by GPR18 activation (Abn CBD). These 

neurochemical responses suggest that: (i) cAMP dampens the Akt-ERK1/2-nNOS-ADN 

signaling in the RVLM, and (ii) reduction in cAMP contributes to the increases in 

phosphorylation of Akt, ERK1/2 and nNOS and ADN level and ultimately the hypotensive 

response caused by RVLM GPR18 activation.  

In conclusion, the present study yields new insight into the RVLM signaling pathways 

implicated in GPR18-mediated sympathoinhibition/hypotension. We provide the first evidence 

that the RVLM PI3K/Akt-ERK1/2-nNOS/ADN signaling and cAMP and ROS levels play key 

roles in GPR18 modulation of BP in the RVLM (Fig. 4.8). Future studies are warranted to 

delineate the role of GPR18 in conditions like hypertension to develop novel antihypertensive 

therapeutics that target the central GPR18 signaling. 



CHAPTER FIVE - GPR18 SIGNALING AND ITS INTERACTION WITH LIPID RAFTS 

IN DIFFERENTIATED PC12 CELLS 

5.1. Abstract 

Our previous studies demonstrated the expression of the cannabinoid receptor, GPR18, in 

tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the rostral ventrolateral medulla 

(RVLM), and suggested an important function for RVLM GPR18 in blood pressure (BP) 

regulation. The latter is supported by the dose-related reductions and elevations in BP caused by 

GPR18 activation by the agonist, abnormal cannabidiol (Abn CBD), and blockade by O-1918, 

respectively, in conscious normotensive rats. Also, activation of the RVLM PI3K/Akt-ERK1/2-

nNOS-ADN signaling network and inhibition of cAMP and ROS production play a causal role in 

GPR18-mediated hypotension. Evidence suggests that lipid rafts (LR) participate in the 

regulation of GPCRs as well as cannabinoid 1 receptor (CB
1
R) binding and signaling. In the 

present study, we tested the hypothesis that GPR18 signaling is influenced by its interaction with 

lipid rafts in differentiated PC12 (nPC12) cells. Our studies show that GPR18 is co-expressed 

with CB1R in nPC12 cells. Activation of GPR18 by Abn CBD/n-arachidonoyl glycine (NAGly) 

in nPC12 cells increased pAkt, pERK1/2, pnNOS, NO, ADN levels and decreased cAMP and 

ROS levels. In contrast, GPR18 blockade (O-1918) produced the opposite effects and culminated 

in higher cellular oxidative stress. Additionally, confocal imaging findings show that GPR18 is 

associated with LRs. Activation of GPR18 (Abn CBD or NAGly) dislodged it from the LRs and 

this response was abrogated by prior GPR18 blockade (O-1918). Furthermore, cholesterol 

depletion by methyl-β-cyclodextrin (MβCD) enhanced GPR18 signaling and uncovered O-1918-
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mediated GPR18 blockade in nPC12 cells. Our findings characterize LR-mediated intracellular 

mechanisms governing GPR18 signaling in nPC12 cells.  

5.2. Introduction 

The plasma membrane is a phospholipid bilayer that is highly disorganized and is 

composed of microdomains called Lipid Rafts (LRs) (Herkenham et al., 1991). These lateral 

platforms enriched in cholesterol, sphingolipids, plasmenylethanolamine and arachidonic acid 

are resistant to solubilization with non-ionic detergents (Herkenham et al., 1991; Pike, 2003).  

Caveolae are funnel shaped invaginations of membrane proteins called caveolins and are a 

subtype of lipid rafts (Fielding and Fielding, 1997; Czarny et al., 1999). These microdomains 

participate in a number of cellular functions including cell signaling, cellular protein trafficking 

and membrane transport (Moffett et al., 2000; Gaus et al., 2003; Wilson et al., 2004) and play a 

very important role in health and disease (Jin et al., 2011). 

Lipid rafts/caveolae are the microdomain regions of localization of several physiologically 

important GPCRs (Becher et al., 2004; Chini and Parenti, 2004; Insel et al., 2005) and it is well 

known that the activity of several GPCRs is modulated by LRs (Dainese et al., 2007). LRs and 

caveolae participate in the regulation of GPCR signaling by affecting both signaling selectivity 

and coupling efficacy (Chini and Parenti, 2004). 

Our previous studies in male normotensive rats demonstrated the expression of GPR18 in 

the rostral ventrolateral medulla (RVLM) of the brainstem, and indicate that Abn CBD mediated 

sympathoinhibition is due to enhanced ADN levels, ERK1/2, PI3K/Akt phosphorylation, p-
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nNOS-derived NO release and a reduction in ROS generation (Penumarti and Abdel-Rahman, 

2013). There is growing evidence suggesting that endocannabinoid uptake and signaling through 

the cannabinoid receptors are highly dependent on the composition and integrity of lipid rafts 

(Biswas et al., 2003; Bari et al., 2005b; Bari et al., 2006; Rimmerman et al., 2008b). Anandamide 

(an endogenous cannabinoid and a precursor of NAGly) and its metabolites accumulate into lipid 

rafts and these detergent resistant membrane microdomains play an important role in the cellular 

processing and regulation of AEA function (Sarker and Maruyama, 2003; McFarland et al., 

2004; Bari et al., 2005a). NAGly is synthesized from AEA and serves as an endogenous GPR18 

ligand (Kohno et al., 2006). Additionally, AEA is a common endocannabinoid for both GPR18 

and CB1R (Bradshaw et al., 2009). There is also evidence that CB1R binding/signaling, as well 

as anandamide (AEA) transport is controlled by LRs and caveolin-1 (Dainese et al., 2007; Bari et 

al., 2008). CB1R signaling through AC and MAPK is doubled following disruption of LRs 

indicating the importance of the integrity of LRs in CB1R signaling (Bari et al., 2005b; Bari et 

al., 2006). Interestingly in the case of CB1R, agonist-induced endocytosis is dependent on 

LRs/caveolae and it is this process that counteracts desensitization of the receptor by facilitating 

its recycling and reactivation (Wu et al., 2008). In contrast, LR disruption does not influence 

CB2R signaling or binding (Potts et al., 2000; Bari et al., 2005a; Bari et al., 2006).  One recent 

publication on the interaction of GPR55 (a putative cannabinoid receptor) with LRs showed that 

activation of GPR55 leads to localization of the receptor in the LRs and that this association is 

essential for proper GPR55 signaling (Li et al., 2005). Taken together these findings suggest an 

important role for LRs in modulating the endocannabinoid system and that the cannabinoid 

receptor subtypes are differentially modulated by LRs. 
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Based on these findings, we hypothesized that activation of GPR18 causes receptor 

dissociation from lipid rafts, which consequently leads to activation of PI3K/AKT-ERK1/2-

nNOS-ADN pathway and inhibition of ROS signaling. As the methods of detecting lipid rafts are 

technically difficult to conduct in tissues, we used nPC12 cells, which are rat pheochromocytoma 

cells that are capable of differentiating into a neuronal phenotype upon treatment with nerve 

growth factor (NGF) (Okouchi et al., 2005). Another reason for conducting signaling studies in 

nPC12 cells is the limited amount of tissue obtained from the RVLM of treated and control rats, 

which made conducting some neurochemical studies difficult. For example, the GPR18 

antagonist, cannabidiol, inhibited catalase activity in the liver (Usami et al., 2008). Such changes 

in major enzymes that control the oxidative state of the RVLM neurons might explain the 

expected reduced and enhanced ROS generation in the RVLM neurons following selective 

GPR18 activation and blockade, respectively. The first objective of the present study was to 

determine if GPR18 is expressed in differentiated nPC12 cells and to replicate some of the 

molecular responses observed in RVLM neurons.  Thereafter, we conducted molecular and 

neurochemical studies to elucidate the role of lipid rafts in GPR18 signaling and regulation of the 

redox state of nPC12 cells. 
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5.3. Materials and Methods 

5.3.1. Cell Culture and Treatment.  

Rat pheochromocytoma cells (PC12 cells) (ATCC, Rockville, MD) were cultured, at 37
o
C 

with saturated air containing 5% CO2, on Corning CellBind flasks in ATCC-formulated F-12K 

medium supplemented with horse serum (15%), fetal bovine serum (2.5%), penicillin (100U/ml) 

and streptomycin (100U/ml). Cells were incubated with NGF (50ng/ml) for 48 hr to initiate 

neuronal differentiation, and culture medium was changed every 2 days as in previous studies 

(Zhang et al., 2001).  

Freshly sub-cultured nPC12 cells were incubated with the vehicle (methyl acetate, 

control) or one of the following treatments: NAGly (1 µM), Abn CBD (1 µM), O-1918 (1 µM), 

O-1918 (1 µM) + NAGly (1 µM), O-1918 (1 µM) + Abn CBD (1 µM). The concentrations of the 

GPR18 ligands were based on reported studies in other in vitro model systems (McHugh et al., 

2010). In subsequent studies the GPR18 agonists Abn CBD or NAGly were incubated in the 

absence or presence of reported concentrations of the following pharmacologic interventions: 

Forskolin (0.1 µM) (Van Sickle et al., 2005), PD98059 (0.1 µM) (Javanmardi et al., 2005), 

NPLA (0.1 µM), wortmannin (0.1 µM) (Nattie and Li, 1990) for 1 hr at 37
o
C before scraping the 

cells for conducting the Western or dot blot studies. For lipid raft disruption studies, the cells 

were pre-incubated for 30 min at 37
o
C with 2.5 mM MβCD (dissolved in dH2O) (Karlsson et al., 

2006) before the exposure to GPR18 ligands. 
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5.3.2. Immunofluorescence.  

nPC12 cells were cultured on Lab-Tek Chamber slides coated with poly-L-lysine, washed 

with cold PBS and fixed with 4% paraformaldehyde for 30 min. The cell membranes were 

permeabilized with 0.1% triton X-100 and non-specific binding was blocked by 1% bovine 

serum albumin and 5% normal donkey serum. The cells were incubated for 2.5 hr with the 

respective primary antibody: goat anti-GPR18 (1:200; Santa Cruz; Dallas, TX) or mouse anti 

CB1R (1:200; Santa Cruz; Dallas, TX) mixture diluted in blocking buffer. The cells were then 

incubated with the corresponding secondary antibody Cy-3 conjugated donkey anti-mouse and 

fluorescein isothiocyanate-conjugated donkey anti-goat (1:200; Jackson Immunoresearch 

Laboratories Inc., West Grove, PA) for 1 hr, mounted with Vectashield mounting medium 

containing DAPI as a counterstain (Vector Laboratories, Burlingame, CA) and left in the dark 

overnight. Images were acquired using confocal laser microscopy (Carl Zeiss LSM 510, 

Thornwood, New York). Images were analyzed using the JACoP plugin in ImageJ software. 

5.3.3. Western Blotting.  

nPC12 cells incubated with the vehicle or the pharmacologic interventions mentioned 

above were processed for the measurements of phosphorylated ERK1/2 (pERK1/2) or Akt 

(pAkt) in relation to the corresponding total protein. Homogenized protein extracts were run on 

12% SDS-PAGE gel (Invitrogen,Carlsbad, CA) and electro blotted to nitrocellulose membranes. 

Blots were blocked with Odyssey blocking buffer and incubated overnight at 4ºC with goat anti-

GPR18 primary antibody (1:200; Santa Cruz; Dallas, TX) or rabbit anti-ERK1/2 or rabbit anti-

Akt and mouse anti-pERK1/2 or mouse anti-pAkt (1:500) diluted in blocking solution. The blots 
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were then washed with rinse buffer and incubated at room temperature with donkey anti-goat or 

donkey anti-rabbit and donkey anti-mouse IgG secondary antibody (1:10,000). Following 

additional washes the blots were detected using an Odyssey Infrared Imaging system and 

analyzed with Odyssey application software v.3 (LICOR Biosciences). All data are presented as 

mean values of integrated density ratio of phosphorylated protein normalized to its 

corresponding total protein. 

5.3.4. Measurement of ROS (DCFH-DA).  

Freshly sub-cultured cells were exposed to 5 μM DCFH-DA for 30 min after which they 

were incubated with:  methyl acetate (vehicle, control), NAGly (1 µM), Abn CBD (1 µM), O-

1918 (1 µM), O-1918 (1 µM) + NAGly (1 µM), O-1918 (1 µM) + Abn CBD (1 µM) for 2 hr. 

The cells were washed with PBS, trypsinized and collected in Eppendorf tubes. The fluorescence 

was measured using a flow cytometer. 

5.3.5. Nitrate/Nitrite Assay.  

The NOx content was measured with a colorimetric assay kit in accordance with 

manufacturer’s instructions (Cayman Chemical Company, Ann Arbor, MI). First, 10 μl enzyme 

cofactor and 10 μl nitrate reductase were added to 80 μl sample mixture, incubated at room 

temperature for 3 hr. Following incubation, 50 μl Griess Reagent R1 and R2 (Cayman Chemical 

Company, Ann Arbor, MI) were added to each well, and read the absorbance at 540 nm. 
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5.3.6. Measurement of cAMP.  

cAMP-Glo Max Assay kit (Promega V1681) was used to measure cAMP in treated nPC12 

cells. Cell lysates were subjected to the assay as per the manufacturer’s instructions (Promega, 

Madison, WI) and luminescence was determined with a luminometer and used as a measure of 

cAMP produced. For each sample: the change in relative luminescence units (ΔRLU) = RLU 

(untreated sample) – RLU (treated sample). Using this ΔRLU value and the linear equation 

generated from the standard curve, the cAMP concentration was calculated using the linear 

formula from the graph as in reported studies (Bari et al., 2005b). 

5.3.7. Quantification of Catalase Activity.  

Colorimetric measurement of catalase activity was conducted in accordance with 

manufacturer’s instructions (Sigma Aldrich, St. Louis, MO) and as reported in our recent studies 

(Bari et al., 2006). Briefly, 1 ml of PBS was added to 100 cm
2
 petri dish and the cells were 

gently scraped and collected into centrifuge tubes after drug treatment for 30 min. The cell 

suspension was centrifuged at 4
o
C, 5000 rpm for 5min. The supernatant was collected for 

measurements of catalase activity and protein using Bio-Rad protein assay (Bio-Rad 

Laboratories, Hercules, CA). The absorbance of the samples was measured at 520 nm. 

5.3.8. Quantification of NADPH Oxidase Activity.  

NADPH oxidase activity was measured by a fluorescence assay using Amplex Red ( 

Molecular Probes, OR) dissolved in buffer, pH 7.4 (105 mM K-MES, 30 mM KCl, 10 mM 

KH2PO4, 5 mM MgCl2-6H2O, 0.5 g/L BSA), Superoxide dismutase (7500 U/ml), Horseradish 
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peroxidase (300 U/ml)  and addition of NADPH (10 mM). Hydrogen peroxide was used to 

generate a 7-point standard curve. Quantification was conducted by examining fluorescence 

intensity using the Fluoromax-3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) at 

excitation (530 nm)/emission (590 nm).  Cell suspension samples (50 μg/25 μl) were added to 

200 µl Amplex Red, 2 µl Superoxide dismutase and 2 µl horseradish peroxidase.  Baseline 

measurements were taken for five minutes and NADPH (10 µl) was added and readings were 

recorded for an additional 5 min as in our recent studies (Biswas et al., 2003).   

5.3.9. Quantification of ALDH Activity.  

Following incubation with the vehicle or the pharmacological interventions, discussed 

above, nPC12 cells were scraped in 1xPBS and homogenized using a syringe. The cell 

suspension was centrifuged at 4
o
C and 5000 rpm for 4 min. The supernatant was collected for 

protein assay and ALDH activity measurement. The final volume of the assay mixture (200 µl) 

comprised of 50 µg/25 µl protein or 25 µl of 1xPBS (Blank), 4 µl of 300 µM 6-Methoxy-2-

naphthaldehyde in 166.4 µl of 1xPBS. The fluorescence of this mixture was read at excitation 

310 nm and emission 360 nm for 7 min before adding 1.3 µl of 11.4 mM NAD. After this 

addition, the fluorescence of this assay mixture was read at 310 nm/360 nm every 5 min for 45 

min and ALDH activity was calculated from the fluorescence values as in our reported studies 

(El-Mas and Abdel-Rahman, 2011). 
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5.3.10. Lipid Raft Labeling. 

LR labeling studies were conducted in nPC12 cells because such studies were unfeasible in 

RVLM sections. nPC12 cells were cultured on Lab-Tek Chamber slides coated with poly-L-

lysine, washed with cold PBS and fixed with 4% paraformaldehyde for 30 min in the absence or 

presence of the pharmacological interventions discussed above. The cell membranes were 

permeabilized with 0.1% triton X-100 and non-specific binding was blocked by 1% bovine 

serum albumin and 5% normal donkey serum. The cells were incubated for 2.5 hr with goat anti-

GPR18 (1:200). The cells were then incubated with fluorescein isothiocyanate-conjugated 

donkey anti-goat (1:200; Jackson Immunoresearch Laboratories Inc., West Grove, PA) for 1 hr, 

mounted with Vectashield mounting medium containing DAPI as counterstain (Vector 

Laboratories, Burlingame, CA) and left in dark overnight to harden. Vybrant Alexa Fluor 488 

lipid raft labeling kit (Molecular Probes, Eugene, OR) was used to label lipid rafts in accordance 

with the manufacturer’s instructions. Images were acquired using confocal laser microscopy 

(Carl Zeiss LSM 510, Thornwood, New York). Representative images were analyzed using the 

JACoP plugin in ImageJ software as reported (Sarnataro et al., 2005). 

5.3.11. Drugs.  

Abn CBD, NAGly and O-1918 were purchased from Cayman Chemical (Ann Arbor, MI). 

Methyl acetate, methyl beta cyclodextrin, wortmannin, PD98059, forskolin and dimethyl 

sulfoxide were purchased from Sigma Aldrich (St. Louis, MO). NPLA were purchased from 

Tocris Biosciences (Ellisville, MO) and dissolved in sterile saline. Sterile saline was purchased 
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from B. Braun Medical (Irvine, CA). DMSO was used as the vehicle for PD98059, wortmannin 

and forskolin. Methyl acetate was used as the vehicle for Abn CBD, O-1918 and NAGly.   

5.4. Data Analysis and Statistics   

All values are expressed as mean ± S.E.M change from their respective baselines. The 

dose-response curves were analyzed using repeated measures ANOVA using SPSS 16.0 

statistical package for Windows (SPSS Inc., Chicago, IL) for differences in treatment trends. All 

other statistical analyses were done using a one-way or repeated-measures ANOVA with 

Bonferroni post hoc test and Student’s t test, Prism 5.0 software (GraphPad Software Inc., San 

Diego, CA) was used to perform statistical analysis and P < 0.05 was considered significant. 

5.5. Results 

5.5.1. Co-expression of GPR18 with CB1R in nPC12 cell.  

Western blot (Fig. 5.1.A) and immunoflourescent (Fig. 5.1.B) findings revealed the 

expression of GPR18 in differentiated PC12 cells. The GPR18 band was absent in a membrane 

pre-incubated with the immunizing protein (Fig. 5.1.A). Further, dual labeled 

immunofluorescence findings revealed the co-expression of GPR18 with CB1R (Fig. 5.1.C), 

which was quantified and presented as the Pearson’s Correlation Coefficient in the presence and 

absence of GPR18 primary antibody (Fig.5.1.D). 
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5.5.2. GPR18 modulates Akt-ERK1/2-nNOS-ADN signaling and cAMP level in nPC12 

cells.  

GPR18 activation (Abn CBD, NAGly) increased ERK1/2, Akt, nNOS phosphorylation and 

ADN levels in nPC12 cells (Figs. 5.2. A-D). In contrast, GPR18 blockade (O-1918) reduced Akt, 

ERK1/2, nNOS phosphorylation and ADN levels, and abrogated Abn CBD/NAGly enhancement 

of pERK1/2, pnNOS and ADN levels (Figs. 5.2. A-D). Compared to the vehicle control, nPC12 

GPR18 activation (Abn CBD or NAGly) increased NO and decreased cAMP levels while 

blockade (O-1918) decreased NO and increased cAMP levels (Figs. 5.2. E & F). 

5.5.3. GPR18 Activation Reduces ROS Generation in nPC12 cells. 

 This experiment was conducted to determine the impact of GPR18 activation (NAGly/Abn 

CBD) or blockade (O-1918) on ROS levels in nPC12 cells. Compared with vehicle, NAGly or 

Abn CBD significantly (P<0.05) reduced (Fig. 5.3) while O-1918 significantly (P<0.05) 

increased ROS levels, measured by flow cytometry using DCFH-DA (Fig. 5.3). Further, O-1918 

abrogated the reduction in ROS caused by NAGly or Abn CBD (Fig. 5.3). GPR18 activation 

(Abn CBD or NAGly) caused a significant increase in catalase, (Fig. 5.4. A) ALDH activity (Fig. 

5.4. B) and decreased NADPH oxidase activity (Fig. 5.5. A). On the other hand, GPR18 

blockade (O-1918) produced the opposite effects (Figs. 5.4.A-B & 5.5.A). Further, pretreatment 

with O-1918 or inhibition of PI3K/Akt-ERK1/2-nNOS/ADN signaling or increasing cAMP 

levels abrogated the increases in catalase and ALDH activity (Figs. 5.4. C-E) and decrease in 

Nox activity (Figs. 5.5. B & C) produced by Abn CBD and/or NAGly. These in vitro findings 
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paralleled the in vivo responses described in our previous studies (Penumarti and Abdel-

Rahman, 2013) and Chapter 3 and 4. 

5.5.4. Interaction of GPR18 with Lipid Rafts Following Ligand Binding in nPC12 cells.  

There are no reported studies on the cellular localization of GPR18 and how such 

localization is impacted by GPR18 activation or blockade. This experiment was conducted to 

study the effect of GPR18 ligands on the intracellular localization of GPR18. Confocal 

microscopy analysis revealed GPR18 association with lipid rafts under basal conditions, and a 

reduction in such association following receptor activation (Abn CBD or NAGly) (Fig. 5.6. A-

F). We also found that prior GPR18 blockade (O-1918) abolished (P<0.05) the reduction in 

GPR18 association with LRs caused by the GPR18 agonist (Abn CBD or NAGly). Confocal 

microscopy analysis of GPR18 association with LR following LR disruption with methyl beta 

cyclodextrin (MβCD) revealed decreased GPR18-LR association in the presence of vehicle and 

antagonist treatment whereas association seems to have increased in the presence of the agonist 

(Fig. 5.7).  

5.5.5. Effect of MβCD on GPR18-dependent Signaling Pathways.  

To evaluate the role of lipid raft integrity in GPR18 function, we perturbed the LR 

composition with MβCD (2.5 mM) and subsequently quantified the effects of GPR18 activation 

or blockade on the following signaling products in nPC12 cells: pERK1/2, pAkt, pnNOS, ADN, 

cAMP and ROS after cellular incubation with GPR18 ligands: control (methyl acetate), NAGly 

(1µM), Abn CBD (1µM), O-1918 (1µM). MβCD depletes membrane cholesterol and is widely 
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used to disrupt the integrity of lipid rafts (Karlsson et al., 2006). It is noteworthy that the 

presence of MβCD exacerbated (P<0.05) the increase in pERK1/2, pAkt, pnNOS, ADN and 

decrease in cAMP and ROS levels caused by Abn CBD or NAGly and significantly (P<0.05) 

uncovered the inhibition of pERK1/2-pAkt-pnNOS-ADN pathway and increase in cAMP and 

ROS levels caused by O-1918 (Fig. 5.8). 
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Figure 5.1. GPR18 expression in nPC12 cells 

(A) (i) Expression of GPR18 (38kDa) in nPC12 cells. (ii) Absence of GPR18 band in the 

presence of immunizing peptide (B) Immunoflourescent staining showing the expression of 

GPR18 in nPC12 cells. (C) Dual labeled immunofluorescence of nPC12 cells showing co-

expression of GPR18 and CB1R. (D) Quantification of degree of co-localization obtained using 

Pearson’s Correlation Coefficient analysis in the presence and absence of GPR18 primary 

antibody. 
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Figure 5.2. Effect of the different ligands on GPR18 signaling in nPC12 cells 

Western blots, cAMP and total nitrate/nitrite (NOx content; index of NO) levels in nPC12 cells 

showing the effects of NAGly (1µM), Abn CBD (1µM), O-1918 (1µM), O-1918 (1µM) + 

NAGly (1µM) or O-1918 (1µM) + Abn CBD (1µM) or forskolin (0.1 µM) + NAGly (1µM), 

PD98059 (0.1 µM) + NAGly (1µM), NPLA (0.1 µM) + NAGly (1µM), wortmannin (0.1 µM) + 

NAGly (1µM), forskolin (0.1 µM) + Abn CBD (1µM), PD98059 (0.1 µM) + Abn CBD (1µM), 

NPLA (0.1 µM) + Abn CBD (1µM), wortmannin (0.1 µM) + Abn CBD (1µM) treatment on 

pERK1/2 (A), pAkt (B), p-nNOS (C), adiponectin (ADN) (D), cAMP (E) expression and 

nitrate/nitrite (NOx) level (F) in nPC12 cells. Values are mean ± S.E.M. of 5-6 observations. *P 

< 0.05 vs. vehicle; #P < 0.05 vs. Abn CBD; ^P < 0.05 vs. NAGly values.  
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Figure 5.3. Effect of GPR18 activation or blockade on ROS levels in nPC12 cells 

DCFH-DA measured ROS levels in terms of mean fluorescence units in nPC12 cells using Flow 

cytometry following treatment with NAGly (1µM), Abn CBD (1µM), O-1918 (1µM), O-1918 

(1µM) + NAGly (1µM) or O-1918 (1µM) + Abn CBD (1µM). Values are mean ± S.E.M (n=5-6 

observations). *P < 0.05 vs. vehicle values; #P < 0.05 vs. Abn CBD; ^P < 0.05 vs. NAGly 

values. 
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Figure 5.4. Effect of GPR18 activation or blockade on catalase and ALDH activity in nPC12 

cells 

Measurement of catalase and ALDH enzyme activity in nPC12 cells showing the effects of (A-

B) NAGly (1µM), Abn CBD (1µM), O-1918 (1µM), O-1918 (1µM) + NAGly (1µM) or O-1918 

(1µM) + Abn CBD (1µM) or (C-D) forskolin (0.1 µM) + NAGly (1µM), PD98059 (0.1 µM) + 

NAGly (1µM), NPLA (0.1 µM) + NAGly (1µM), wortmannin (0.1 µM) + NAGly (1µM), or (E-

F) forskolin (0.1 µM) + Abn CBD (1µM), PD98059 (0.1 µM) + Abn CBD (1µM), NPLA (0.1 

µM) + Abn CBD (1µM), wortmannin (0.1 µM) + Abn CBD (1µM) treatment. Values are mean ± 

S.E.M. of 5-6 observations. *P < 0.05 vs. vehicle; #P < 0.05 vs. Abn CBD; ^P < 0.05 vs. NAGly 

values.  
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Figure 5.5. Effect of GPR18 activation or blockade on NADPH oxidase activity in nPC12 cells 

Measurement of NADPH oxidase activity in nPC12 cells showing the effects of (A) NAGly 

(1µM), Abn CBD (1µM), O-1918 (1µM), O-1918 (1µM) + NAGly (1µM) or O-1918 (1µM) + 

Abn CBD (1µM) or (B) forskolin (0.1 µM) + NAGly (1µM), PD98059 (0.1 µM) + NAGly 

(1µM), NPLA (0.1 µM) + NAGly (1µM), wortmannin (0.1 µM) + NAGly (1µM), or (C) 

forskolin (0.1 µM) + Abn CBD (1µM), PD98059 (0.1 µM) + Abn CBD (1µM), NPLA (0.1 µM) 

+ Abn CBD (1µM), wortmannin (0.1 µM) + Abn CBD (1µM) treatment. Values are mean ± 

S.E.M. of 5-6 observations. *P < 0.05 vs. vehicle; #P < 0.05 vs. Abn CBD; ^P < 0.05 vs. NAGly 

values.  
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Figure 5.6. Effect of drug treatment on association of GPR18 with lipid rafts in nPC12 cells 

Confocal microscopy showing the effect of drug treatment on association of GPR18 with lipid 

rafts in nPC12 cells. GPR18 exists in rafts at basal conditions (A). Activation of GPR18 (Abn 

CBD/ NAGly) caused its dissociation from the LR (B-C) and this response was abrogated by 

prior GPR18 blockade (O-1918) (D-F). Quantification of degree of co-localization obtained 

using Pearson’s Correlation Coefficient analysis (G). Values are mean ± S.E.M. of 5-6 

observations.  
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Figure 5.7. Effect of lipid raft disruption and drug treatment on association of GPR18 with lipid 

rafts in nPC12 cells 

Confocal microscopy showing the effect of the LR disrupter methyl beta cyclodextrin (MβCD) 

and drug treatment on association of GPR18 with lipid rafts in nPC12 cells. GPR18 exists is 

displaced from the rafts in the presence of MβCD. Quantification of degree of co-localization in 

the presence and absence of MβCD and different GPR18 ligands obtained using Pearson’s 

Correlation Coefficient analysis (G). Values are mean ± S.E.M. of 10-12 observations. *P < 0.05 

vs. control; & P < 0.05 vs. Control + MβCD; @ P < 0.05 vs. treatment + MβCD values. 
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Figure 5.8. Effect of lipid raft disruption on GPR18 signaling in nPC12 cells 

Western blots, cAMP and ROS levels in nPC12 cells showing the effects of control (methyl 

acetate), NAGly (1µM), Abn CBD (1µM) or O-1918 (1µM) treatment on pERK1/2 (A), pAkt 

(B), p-nNOS (C), adiponectin (ADN) (D), cAMP (E) expression and ROS levels (F) in nPC12 

cells in the presence and absence of MβCD (2.5mM). Values are mean ± S.E.M. of 5-6 

observations. *P < 0.05 vs. control; & P < 0.05 vs. Control + MβCD; @ P < 0.05 vs. treatment + 

MβCD values. 
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Figure 5.9. Schematic representation of the biochemical responses elicited by activating GPR18 

in nPC12 cells 

This model is based on the present and our reported findings (Penumarti and Abdel-Rahman, 

2013). Activation of GPR18 displaces it from lipid rafts, inhibits cAMP leading to enhanced 

ADN, pERK1/2 and pAkt production, which causes increase in p-nNOS and NO production and 

decrease in ROS generation by increasing antioxidant enzymes (ALDH, catalase) and reducing 

levels of pro-oxidant enzymes (NADPH oxidase). 
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5.6. Discussion 

We investigated the molecular mechanisms that underlie GPR18 activation in 

differentiated PC12 cells and the intracellular localization of GPR18 and its association with 

lipid rafts in order to elucidate how the presence of its ligands affect GPR18 trafficking in nPC12 

cells. The following are the most important findings of the present study: 1) GPR18 is expressed 

in and is associated with CB1R in nPC12 cells; 2) activation of GPR18 in nPC12 cells increased 

ADN, NO levels and the phosphorylation of Akt, ERK1/2 and nNOS and decreased cAMP 

levels; 3) activation of GPR18 decreased ROS level possibly through increasing antioxidant 

enzymes (catalase, ALDH) and decreasing pro-oxidant enzymes (NADPH oxidase); 4) prior 

blockade of GPR18 (O-1918) abrogated GPR18-mediated enhancements of pAkt, pERK1/2 or 

pnNOS or ADN levels; 5) GPR18 is associated with LRs in basal conditions and migrates out of 

LRs upon activation; 6) disrupting the LRs (MβCD) uncovers the effect of O-1918 and causes an 

increase in pAkt, pERK1/2 or pnNOS or ADN and a decrease in cAMP and ROS levels 

comparable with agonist treatment. Together, these findings suggest a pivotal role for LRs in 

GPR18-mediated cAMP-Akt-ERK1/2-nNOS-ADN signaling in nPC12 cells. 

While previous studies confirm the expression of GPR18 in several in-vitro model 

systems (McHugh et al., 2010; Qin et al., 2011), these are the first data to demonstrate the 

presence of this receptor protein in differentiated PC12 cells (Figs. 5.1. A-B). Our dual labelled 

immunofluorescence studies show that GPR18 is co-expressed with CB1R in nPC12 cells (Fig. 

5.1. C), which might explain the antagonistic interaction between CB1R and GPR18 in the 

RVLM in our recent study (Penumarti and Abdel-Rahman, 2013). 
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Our previous studies indicated that activation and blockade of intra-RVLM GPR18 

caused an increase and decrease in blood pressure (BP), respectively, and that RVLM PI3K/Akt-

ERK1/2-nNOS and adenylyl cyclase-cAMP networks play pivotal roles in GPR18 modulation of 

oxidative stress and BP via local adiponectin (ADN) release (Penumarti and Abdel-Rahman, 

2013). Owing to the tissue scarcity in our in vivo model, we selected differentiated PC12 cells to 

further elucidate the signaling mechanisms of GPR18. Our in vivo studies (Penumarti and Abdel-

Rahman, 2013) and other in vitro studies have shown that GPR18 is a Gi/o coupled receptor, 

activation of which leads to a decrease in adenylyl cyclase activity causing a decrease in cAMP 

levels and an increase in pERK1/2, pAkt and NO levels (Kishi et al., 2001; Offertáler et al., 

2003; Mo et al., 2004). In this study we tested the hypothesis that activation of GPR18 in nPC12 

cells triggers a similar signaling pathway. Our biochemical findings show that activation of 

GPR18 in nPC12 cells enhanced Akt, ERK1/2 and nNOS phosphorylation and increased ADN 

level while decreasing cAMP levels (Fig. 5.2.) and prior GPR18 blockade (O-1918) abrogated 

these responses. Our in-vitro studies are in line with our previous in-vivo findings (Penumarti 

and Abdel-Rahman, 2013) in normotensive rats indicating that GPR18 signals through the 

PI3K/Akt-ERK1/2-nNOS/ADN pathway.  

We have previously shown that reduction in ROS through activation of PI3K/Akt-

ERK1/2-nNOS/ADN pathway plays a crucial role in GPR18 mediated hypotension in 

normotensive rats (Penumarti and Abdel-Rahman, 2013) NAGly (endogenous GPR18 agonist) 

possesses anti-inflammatory properties (Institute for Laboratory Animal Research, 2011). 

Further, Δ
9
tetrahydrocannabinol (THC) (GPR18 agonist) exhibits antioxidant properties through 
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a PPARγ pathway in models of Parkinson’s disease (Carroll et al., 2012), and the GPR18 

antagonist, cannabidiol, inhibited catalase activity in the liver (Usami et al., 2008). The link 

between oxidative stress and the endocannabinoid system is controversial. While, CB2R and its 

ligands decrease oxidative stress (Farlow et al., 1984; Dampney et al., 1987), other studies on 

CB1R indicate its ability to increase oxidative injury and inflammation in several model systems 

(Hokfelt T. et al., 1984; Pilowsky et al., 1986; Guyenet et al., 1989).  Based on this evidence we 

sought to investigate the effect of GPR18 activation or blockade on ROS generating in nPC12 

cells to further characterize GPR18 signaling in this model system. Our studies revealed that 

GPR18 activation reduced while its blockade (O-1918) significantly (P<0.05) increased ROS 

levels (Fig. 5.3.). Further, O-1918 abrogated the reduction in ROS caused by NAGly or Abn 

CBD (Fig. 5.3.). GPR18 activation (Abn CBD or NAGly) caused a significant increase and 

decrease in catalase, ALDH and NADPH oxidase activity, respectively. Further, its blockade (O-

1918) produced the opposite effects (Figs. 5.4. & 5.5.) and, similar to the inhibition of PI3K/Akt-

ERK1/2-nNOS/ADN signaling or increasing cAMP levels, abrogated the increase in catalase, 

ALDH activity and the decrease in Nox activity caused by Abn CBD or NAGly (Figs. 5.4. & 

5.5.). These results suggest a major role for the PI3K/Akt-ERK1/2-nNOS-ADN signaling acting 

in conjunction with the adenylyl cyclase/cAMP system in GPR18 modulation of redox state. 

 We have investigated the cellular distribution of GPR18 and its association with lipid 

rafts in order to elucidate how the presence of GPR18 ligands and the intracellular cholesterol 

levels affect GPR18 trafficking and signaling in nPC12 cells. Agonist binding and cholesterol 

depletion reduce CB1R-LRs association (Potts et al., 2000). Association of GPR18, a putative 
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cannabinoid receptor with LRs has not been investigated. Thus, we analyzed whether GPR18 

exists in lipid rafts at basal conditions or requires receptor activation. Interestingly, incubation 

with GPR18 agonist significantly decreased the cell surface distribution of GPR18, which 

assumed a more diffuse cytoplasmic localization, suggesting that the presence of the agonist 

modifies the interaction of GPR18 with LRs (Fig. 5.6). However the presence of the antagonist, 

O-1918 did not displace GPR18 from the rafts (Fig. 5.6). Also, this association seems to be 

dependent on membrane cholesterol as prior MβCD exposure decreased the GPR18-raft 

association in the presence of the antagonist (Fig.5.7). Further studies are needed to elucidate the 

enhanced signaling by the agonist in the presence of LR disruption although our confocal 

findings show an increased association of GPR18 with LR in the cytoplasm. However, it must be 

noted that that enhanced association is intracellular and not on the cell surface. These findings 

show for the first time that GPR18 is associated with LRs and agonist interaction displaces it 

from the raft domain suggesting the role of LRs as cellular devices for intracellular trafficking of 

GPR18. 

Lipid rafts compartmentalize cellular membrane processes and form large platforms 

involved in protein and lipid processing, transport and signaling (Aicher et al., 2001; El-Mas and 

Abdel-Rahman, 2004; Drake et al., 2005). Because raft domains play an integral role in CB1R 

(Potts et al., 2000; Bari et al., 2008) and GPR55 (another putative cannabinoid receptor) 

signaling (Li et al., 2005), we sought to elucidate the impact of LR disruption by cholesterol 

depletion on GPR18 signaling. One of the most important functional and structural components 

of lipid rafts is cholesterol (Herkenham et al., 1991; Drake et al., 2005) and its depletion alters 
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raft composition, function and subsequently the signaling of receptors associated with LRs such 

as CB1R (Potts et al., 2000; Bari et al., 2008). According to our findings, pretreatment of nPC12 

cells with MβCD enhanced the signaling of GPR18 agonist (Abn CBD or NAGly) and 

uncovered the effect of the antagonist (O-1918) (Fig. 5.8). These findings are consistent with 

reported findings on the effect of MβCD on CB1R (Padley et al., 2003), but differ from GPR55 

(decreased signaling following raft disruption) (Li et al., 2005) or CB2R (unaffected by LR 

disruption) (Potts et al., 2000; Bari et al., 2005a; Bari et al., 2006). Thus, the trafficking and 

signaling of the different cannabinoid receptors are distinctly controlled by lipid rafts. Here, we 

show for the first time that lipid rafts serve as favorable platform to regulate GPR18 signaling. 

Together, these data establish functional significance of GPR18 cholesterol-dependent plasma 

membrane localization in regulating GPR18 signaling in nPC12 cells.  

In conclusion, the present study yields new insight into the intracellular localization of 

GPR18 and its association with lipid rafts in nPC12 cells. We provide first evidence that Akt-

ERK1/2-nNOS/ADN signaling and cAMP and ROS levels play key roles in GPR18 signaling. 

These studies also support the concept that GPR18 trafficking and signaling by lipid rafts 

critically depends on the ligand and membrane cholesterol content in nPC12 cells (Fig. 5.9.). 

Further detailed analysis will be necessary to understand the role of lipid rafts in modulating the 

interaction of GPR18 and CB1R and the pathophysiological importance of such an interaction.



CHAPTER SIX-GENERAL DISCUSSION AND SUMMARY 

The main goal of the current study was to elucidate the role of the novel cannabinoid 

receptor GPR18 in central regulation of BP. Following demonstration of the expression of 

GPR18 in RVLM TH-ir neurons, which regulate sympathetic activity , subsequent studies 

elucidated the mechanisms implicated in the central GPR18-evoked sympathoinhibition/ 

depressor response in SD rats and to investigate the cellular distribution of GPR18 and the role 

of lipid rafts in GPR18 trafficking and signaling in nPC12 cells. In pursuit of this goal, we 

characterized the centrally-elicited hemodynamic effects of GPR18 in conscious SD rats. We 

have also demonstrated the expression of GPR18 (protein) in nPC12 cells by: (i) detecting the 

band at 38 kDa (Figs. 3.6. & 5.1 A); (ii) immunohisto/cytochemical imaging in the RVLM and 

nPC12 respectively (Figs. 3.6. & 5.1 B); (iii) dual-labeling immunofluorescence, which revealed 

its expression in the C1 area within the RVLM (Fig. 3.6 C). Intra-RVLM administration of Abn 

CBD dose-dependently decreased MAP and increased HR, suggesting a GPR18-mediated 

inhibition of central sympathetic tone in conscious rats (Fig. 3.7). Notably, the depressor 

response elicited by central Abn CBD administration is consistent with reported in vitro findings 

that Abn CBD causes vasodilation in a CB1/CB2R independent manner (Jarai et al., 1999). This 

response was GPR18-mediated because it was abrogated (Fig. 3.11) by O-1918, a selective 

GPR18 antagonist (McHugh et al., 2010). Further, intra-RVLM blockade of GPR18 (O-1918) 

elicited dose-dependent increase in MAP and a decrease in HR (Fig. 3.7). The tachycardic 

response to Abn CBD plateaued and declined before the hypotensive response reached its nadir, 

which could be due to the offsetting effect of the central inhibitory effect of intra-RVLM Abn 

CBD on the baroreflex-mediated tachycardia (Figs. 3.7, 3.12). Collectively, these findings 

suggest that RVLM GPR18 exerts tonic restraining sympathoinhibitory influence on BP, and that 
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such central effect might contribute to the complexity of the observed HR responses.  

Cannabinoid-evoked hemodynamic responses are dramatically compromised by the use of 

anesthesia hence our studies were conducted in conscious rats to circumvent this negative impact 

(Lake et al., 1997; Gardiner et al., 2001). 

In the second part of this study, we provided evidence for the contribution of the 

PI3K/Akt-ERK1/2-nNOS-ADN signaling, acting in conjunction with the adenylyl cyclase/cAMP 

system, in GPR18 modulation of redox state in the RVLM of rats as well as in nPC12 cells (Figs. 

4.2-4.7). Activation of RVLM GPR18 (Abn CBD) increased ADN and pAkt, pERK1/2 and p-

nNOS levels in the RVLM (Fig. 4.2) while prior blockade of RVLM GPR18 (O-1918) abrogated 

the enhancements of RVLM Akt, ERK1/2 and nNOS phosphorylation (Fig. 4.2). This is 

consistent with findings that implicated RVLM Akt-ERK1/2-nNOS activation in hypotensive 

responses (El-Mas et al., 2009; Kastenmayer et al., 2012) and that activation of other Gi/o 

coupled receptors in the brainstem lowers BP (Zhang and Abdel-Rahman, 2005). Also, GPR18 

activation increases Akt and ERK1/2 phosphorylation and decreases cAMP levels in BV-2 

microglia and HEK 293 cells (McHugh et al., 2010). Further, pharmacological inhibition of 

RVLM PI3K/Akt, ERK1/2 or nNOS or elevation of cAMP increased local ROS level, and 

attenuated the GPR18-mediated hypotension as well as the increases in ADN level and in Akt, 

ERK1/2 and nNOS phosphorylation in the RVLM (Figs. 4.3-4.6). Together, these findings 

suggest a pivotal role for the Akt/ERK1/2/nNOS/ADN signaling pathway and inhibition of 

cAMP as a molecular mechanism for GPR18-mediated reduction in BP in conscious unrestrained 

rats. Our studies in nPC12 cells are in line with, and extended, our in-vivo findings in 
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normotensive rats indicating that GPR18 signals through the PI3K/Akt-ERK1/2-nNOS/ADN 

pathway even in this in-vitro model system (Fig. 5.2). Our findings (Figs. 4.2 & 5.2) are 

consistent with the involvement of pERK1/2, PI3K/Akt, and nNOS in GPR18 signaling in other 

tissues (Mukhopadhyay et al., 2002; Zhang and Abdel-Rahman, 2005; McCollum et al., 2007; 

McHugh et al., 2010), and infer their contribution to the GPR18-mediated signaling. 

A common anti-inflammatory role for ADN (Nanayakkara et al., 2012) and GPR18 

(Vuong et al., 2008) might infer a role for ADN in modulating central sympathetic tone and in 

GPR18 signaling. A very recent study (Song et al., 2013) showed that the active (globular) ADN 

fraction replicates ADN-evoked neuroprotection via a reduction in oxidative stress. Further, 

CB1R agonist WIN55,212-2 reduces ADN while blocking the receptor with rimonabant was 

shown to increase ADN levels in adipocytes (Sarker and Maruyama, 2003; McFarland et al., 

2004; Bari et al., 2005a; Rimmerman et al., 2008b). Here we present the first evidence that 

GPR18 activation in the RVLM as well as in nPC12 cells results in an increase in ADN and a 

decrease in ROS levels (Figs. 3.8 A & 5.2 D) along with findings that support a functional role 

for ADN in GPR18 signaling because RVLM GPR18 blockade (O-1918): (i) reduced RVLM 

ADN (Fig. 3.8 A) and elevated BP; (ii) abrogated the GPR18 (Abn CBD)-mediated BP and 

neurochemical responses (Figs. 3.8, 3.11). Next, we show, for the first time, that ADN produced 

dose-dependent reductions in BP (Fig. 3.9A), increased RVLM NOx (Fig. 3.9C), and reduced 

RVLM ROS levels (Fig. 3.9D). Together, these findings implicate RVLM ADN in the GPR18-

mediated reductions in neuronal oxidative stress (ROS) in the RVLM and BP.    
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The inability of intra-RVLM NAGly, the endogenous GPR18 ligand, to reproduce the BP 

and neurochemical effects of the synthetic agonist Abn CBD was puzzling and cast doubt on the 

physiological role of GPR18. However, it must be remembered that NAGly direct or indirect 

activation of the physiologically antagonistic CB1R might explain its inability to lower BP in our 

model system. In support of this notion are the following findings: (i) GPR18 and CB1R are co-

localized in RVLM neurons (Fig. 3.10A), which partly agrees with our findings that 

demonstrated CB1R expression in RVLM TH-ir neurons (Ibrahim and Abdel-Rahman, 2011); (ii) 

the ability of intra-RVLM SR141716 (CB1R blockade) to lower BP (Fig. 3.10B) is consistent 

with a sympathoexcitatory/pressor function for central CB1R (Ibrahim and Abdel-Rahman, 

2011); (iii) while NAGly alone had no effect on ADN, NOx or ROS levels, prior CB1R blockade 

(SR141716) uncovered NAGly ability to increase ADN and NO (Figs. 3.8 A, B), and to reduce 

ROS level (Fig. 3.13A) in the RVLM along with lowering BP (Fig. 3.10B). These novel findings 

replicated the redox and BP effects of Abn CBD (Figs. 3.8, 3.13A). Interestingly, in nPC12 cells 

the effects of NAGly on GPR18 signaling was comparable to that of Abn CBD (Fig. 5.2) and did 

not seem to be affected by CB1R signaling although our studies show that GPR18 is also co-

expressed with CB1R in nPC12 cells (Fig. 5.1 C). This may be due to the involvement of an 

alternate signaling pathway that circumvents the effect of CB1R in this system. Together, these 

data support the conclusion that the reductions in RVLM oxidative stress and BP are caused by 

Abn CBD direct agonism at GPR18 and suggest a functional role for GPR18-CB1R interaction in 

the RVLM and nPC12 cells in modulating the local redox state.  
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Oxidative stress in the RVLM plays a major role in BP control and hypertension 

(Fridovich, 1978; Kishi et al., 2004; Chan et al., 2006; Yoshitaka, 2008). The link between 

oxidative stress and the endocannabinoid system is contrasting. While, CB2R and its ligands 

decrease oxidative stress (Farlow et al., 1984; Dampney et al., 1987), other studies on CB1R 

indicate its ability to increase oxidative injury and inflammation in several model systems 

(Hokfelt T. et al., 1984; Pilowsky et al., 1986; Guyenet et al., 1989). NAGly (endogenous 

GPR18 agonist) possesses anti-inflammatory properties (Institute for Laboratory Animal 

Research, 2011). Further, Δ
9
tetrahydrocannabinol (THC) (GPR18 agonist) exhibits antioxidant 

properties through a PPARγ pathway in models of Parkinson’s disease (Carroll et al., 2012) and 

the GPR18 antagonist cannabidiol inhibited catalase activity in the liver (Usami et al., 2008). In 

this study we show that activation of RVLM GPR18 reduced neuronal ROS while its blockade 

increased neuronal ROS and abrogated the GPR18-mediated ROS reduction (Fig. 3.13). These 

redox findings, which paralleled the ADN (Fig. 3.8A) and BP (Figs. 3.11A, B) responses, 

reinforce a well-established role for oxidative stress in RVLM neurons in sympathoexcitation 

and BP elevation. Further, the findings lend credence to our conclusion that ADN-dependent 

reduction in RVLM ROS plays a crucial role in GPR18-mediated hypotension. Owing to the 

tissue scarcity in our in vivo model, we selected differentiated PC12 cells to further elucidate the 

signaling mechanisms of GPR18. Our studies in nPC12 cells revealed that GPR18 activation 

reduced while blockade (O-1918) significantly (P<0.05) increased ROS levels (Fig. 5.3.). 

Further, O-1918 abrogated the reduction in ROS caused by NAGly and Abn CBD (Fig. 5.3.). 

GPR18 activation (Abn CBD or NAGly) caused a significant increase and decrease in catalase, 

ALDH and NADPH oxidase activity respectively while its blockade (O-1918) produced the 
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opposite effect (Figs. 5.4. & 5.5.). Further, pretreatment with O-1918 or inhibition of PI3K/Akt-

ERK1/2-nNOS/ADN signaling and increasing cAMP levels abrogated the increase in catalase, 

ALDH activity and attenuated the decrease in Nox activity produced by Abn CBD and/or NAGly 

(Figs. 5.4. & 5.5.). These results indicate the contribution of the PI3K/Akt-ERK1/2-nNOS-ADN 

signaling acting in conjunction with the adenylyl cyclase/cAMP system and pro-/anti-oxidant 

enzymes in GPR18 modulation of redox state. 

We have investigated the cellular distribution of GPR18 and its association with lipid rafts 

in order to elucidate how the presence of GPR18 ligands and the intracellular cholesterol levels 

affect GPR18 trafficking and signaling in nPC12 cells. Agonist binding and cholesterol depletion 

were shown to decrease raft association of CB1R (an important member of the endocannabinoid 

system) (Potts et al., 2000). There are no reports on the potential association of GPR18 with lipid 

rafts. Therefore, we investigated if such association exists in nPC12 cells. Interestingly, GPR18 

agonists significantly decreased the cell surface distribution of GPR18, which assumed a more 

diffuse cytoplasmic localization, indicating that the presence of the agonist modifies the 

interaction of GPR18 with lipid rafts (Fig. 5.6.). However, the GPR18 antagonist, O-1918, did 

not displace GPR18 from the rafts (Fig. 5.6.). These findings show for the first time that GPR18 

is associated with LRs and agonist interaction displaces it from the raft domain suggesting the 

role of LRs as cellular devices for intracellular trafficking of GPR18 (Fig. 5.7). Further, prior 

cholesterol depletion by MβCD decreases the association of GPR18 with rafts in the presence of 

vehicle and antagonist treatment (Fig. 5.8) indicating the importance of integrity of the raft for 

GPR18 trafficking. 
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We further sought to analyze whether disruption of rafts by cholesterol depletion affects 

GPR18 signaling. One of the most important functional and structural components of lipid rafts 

is cholesterol (Herkenham et al., 1991; Drake et al., 2005) and its depletion alters raft 

composition, function and subsequently the signaling of receptors like CB1R (Potts et al., 2000; 

Bari et al., 2008). Our studies indicate that pretreatment of nPC12 cells with MβCD enhanced the 

signaling of GPR18 agonists (Abn CBD/NAGly) and uncovered the effect of the antagonist (O-

1918) (Fig. 5.8.). Interestingly, this response is similar to the effect of MβCD on CB1R (Padley 

et al., 2003) but differs from GPR55 (decreased signaling following raft disruption) (Li et al., 

2005) or CB2R (unaffected by LR disruption) (Potts et al., 2000; Bari et al., 2005a; Bari et al., 

2006). Thus, the trafficking and signaling of the different cannabinoid receptors are distinctly 

controlled by lipid rafts. Here, we show for the first time that lipid rafts serve as a favorable 

platform to regulate GPR18 signaling. Together, these data establish functional significance of 

GPR18 cholesterol-dependent plasma membrane localization in regulating GPR18 signaling in 

nPC12 cells.  

In summary, the present study yields new insight into the role of the novel cannabinoid 

receptor GPR18 in central (RVLM) control of BP. We present the first evidence that RVLM 

GPR18 mediates reductions in oxidative stress and BP in conscious rats. In the RVLM, CB1R 

serves a counterbalancing role against GPR18, which explains the negligible hypotensive 

response caused by the endogenous GPR18 ligand NAGly in our model system. The present 

neurochemical findings provide first evidence that the RVLM PI3K/Akt-ERK1/2-nNOS/ADN 

signaling and cAMP and ROS levels play key roles in GPR18 modulation of BP in the RVLM 
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(Fig. 6.1). The results of our in-vitro studies highlight the intracellular localization of GPR18 and 

its association with lipid rafts in nPC12 cells. We provide first evidence that Akt-ERK1/2-

nNOS/ADN signaling and cAMP and ROS levels play key roles in GPR18 signaling. These 

studies also support the concept that GPR18 trafficking and signaling by lipid rafts critically 

depends on the ligand and membrane cholesterol content in nPC12 cells (Fig. 5.9.).  

LIMITATIONS 

1. Most of the agents that were used as ligands for GPR18 are either lipids or lipid 

derivatives. Notably the endogenous agonist (NAGly) is highly lipophilic and could be 

degraded by fatty acid amide hydrolase (FAAH). Accurate dosing can be assured by 

pretreating the animals with a FAAH (hydrolyses NAGly) (Bezuglov et al., 2006) 

inhibitor like PF-622 or URB597.  

2. The present studies rely heavily on examination of changes in nitric oxide levels and 

ROS generation with the use of DHE fluorescence assay. However, quantification with 

intensity histogram alone may be inadequate. Therefore, biochemical approaches such as 

the nitrite/nitrate colorimetric assay and DCF were implemented to support the data 

obtained from DHE fluorescence assay.  

3. The double labeling co-localization studies might not precisely and conclusively 

demonstrate the association between the proteins of interest. This limitation could be 

resolved by using a new technique, fluorescence resonance energy transfer (FRET), 

which is frequently used to explore protein-protein interaction. Also, the identification of 

lipid rafts using the cholera toxin-B (CTB) has a drawback of changing the functionality 
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of the membrane because it works by crosslinking the gangliosides (GM1) inside the 

membrane. In order to address this question, alternative method of LR identification can 

be utilized in future studies.  

4. The use of MβCD, as a lipid raft disruptor, has the drawback of extracting other 

membrane components of the cells and subjecting them to a stress situation, which might 

confound the result. This pitfall can be overcome by replenishing the cells with 

cholesterol, which should reverse the effects of drug treatment indicating that the results 

are not artifacts. 
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Figure. 6. 1. Schematic presentation of the major findings of the study and proposed future 

studies. See details in the text. 
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FUTURE DIRECTIONS 

The present findings suggest a novel role for brainstem cAMP-PI3K/Akt-ERK1/2-

nNOS/ADN signaling in the central GPR18-evoked depressor response. Importantly, the 

findings established a causal link between suppression of brainstem ROS generation and the 

sympathoinhibitory/depressor response elicited by central GPR18 activation (Fig.6.1). Notably, 

in vivo and in vitro findings associated the enhanced PI3K/Akt-ERK1/2-nNOS/ADN signaling 

with modulation of ROS generation in normotensive rats. Therefore, it will be interesting to 

determine whether the expression or signaling of GPR18 is altered in hypertensive rats. Since 

ERK1/2 phosphorylation can be triggered by pAkt (Hong et al., 2012) or can trigger Akt 

phosphorylation (Ramakrishnan et al., 2012) and both pAkt and pERK1/2 enhance nNOS 

phosphorylation (El-Mas et al., 2009; Kastenmayer et al., 2012). Further studies are needed to 

elucidate the signaling pathways between PI3K/Akt and ERK1/2. Further detailed analysis will 

be necessary to understand the role of lipid rafts in modulating the interaction of GPR18 and 

CB1R and the pathophysiological importance of such an interaction in in-vivo models. Also, 

future studies are warranted to delineate the role of GPR18 in conditions like hypertension to 

develop novel antihypertensive therapeutics that target the central GPR18 signaling. Such studies 

will advance our knowledge of the role of endocannabinoids in the neural control of BP and 

might lead to the development of novel antihypertensive drugs.  
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