
ABSTRACT

MATHEMATICAL ASPECTS OF IMAGE PROCESSING

by

Samantha Kirk

April, 2014

Chair: Dr. Gail Ratcliff

Major Department: Mathematics

In this thesis, image processing is explored from a mathematical point of view.

After defining a digitized image, techniques for adjusting resolution are discussed.

Image transformations defined on a neighborhood centered about a pixel and their

relationships to convolution are considered. The Fourier transform and the discrete

Fourier transform are introduced in both one and two dimensions. Properties of the

Fourier transform are demonstrated with analysis of the power spectrum of an image.

A degradation model is used to study image restoration, in the cases where distortion

is due to noise and motion blur. Other approaches to image restoration employ the

processes of inverse and Wiener filtering.

MATHEMATICAL ASPECTS OF IMAGE PROCESSING

A Thesis

Presented to

The Faculty of the Department of Mathematics

East Carolina University

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts in Mathematics

by

Samantha Kirk

April, 2014

MATHEMATICAL ASPECTS OF IMAGE PROCESSING

by

Samantha Kirk

APPROVED BY:

DIRECTOR OF THESIS:

Dr. Gail Ratcliff

COMMITTEE MEMBER:

Dr. Chris Jantzen

COMMITTEE MEMBER:

Dr. Guglielmo Fucci

COMMITTEE MEMBER:

Dr. Alexandra Shlapentokh

CHAIR OF THE DEPARTMENT
OF MATHEMATICS:

Dr. Johannes Hattingh

DEAN OF THE
GRADUATE SCHOOL:

Dr. Paul Gemperline

ACKNOWLEDGEMENTS

I would especially like to thank my advisor Dr. Ratcliff for her guidance, patience,

and the opportunity to learn something new together. I would like to thank Dr.

Jantzen, Dr. Shlapentokh, and Dr. Fucci for donating their time to help me im-

prove my writing. Finally, I would like to thank my family for their support and

encouragement throughout my study.

TABLE OF CONTENTS

1 An Introduction to Image Processing . 1

1.1 Defining an Image . 2

1.2 The Resolution of a Digitized Image 3

2 Image Enhancement in the Spatial Domain 7

2.1 Point Processing . 7

2.1.1 Image Negatives . 8

2.1.2 Thresholding . 9

2.1.3 Gamma Correction . 10

2.1.4 Histogram Equalization . 12

2.2 Spatial Filtering . 15

2.2.1 Convolution . 16

2.2.2 Convolving Two Images . 18

2.2.3 Smoothing Masks . 21

2.2.4 Sharpening Masks . 24

3 Image Enhancement in the Frequency Domain 31

3.1 The Fourier Transform . 31

3.2 The Discrete Fourier Transform . 33

3.3 Fast Fourier Transform . 35

3.4 Properties of the Fourier Transform and the Power Spectrum 37

3.4.1 Viewing the Power Spectrum 38

3.4.2 The Translation Property . 40

3.4.3 The Rotation Property . 41

3.4.4 The Wavelength Property . 43

3.5 Filtering in the Frequency Domain 46

4 Image Restoration . 49

4.1 Types of Noise . 49

4.2 Noise Removal . 52

4.3 Circulant and Block-Circulant Matrices 54

4.4 Diagonalization of Circulant Matrices 58

4.5 Diagonalization of Block-Circulant Matrices 61

4.6 Inverse Filtering . 62

4.7 Wiener Filter . 64

MATLAB codes . 68

References . 71

CHAPTER 1: An Introduction to Image Processing

How do we represent an image mathematically? How do we convert from a continuous

image to a digital image taken with a camera? What are some transformations we

can apply to an image to enchance it? In this thesis, we will answer these questions

and others that occur when working in image processing. In Chapter 1, we start by

defining an image and learn how to create a digital image. We then look at how to

adjust the resolution (or quality) of a digital image by manipulating its dimensions

and gray values.

In Chapter 2, we apply various transformations to an image. The first transfor-

mations we consider are ones that depend only on the gray values. Some of these

transfomations include finding the negative of an image, using gamma correction to

brighten an image, and taking a gray valued image into a black and white image.

Next, we extend to transformations that involve a neighborhood of pixels. These

transformations are called spatial filtering and can be done through the use of convo-

lution. After we define the convolution of two images, we explore filtering techniques

that lead to blurring, finding edges, and sharpening an image.

In Chapter 3, we apply our filtering techniques to the frequency domain. We

open this chapter with a review of the continuous Fourier transform and some of

its properties. We then discuss the discrete Fourier transform and the relationship

between the continuous and discrete versions. Because of the amount of computation

the discrete Fourier transform takes we also consider the Fast Fourier transform which

image processing programs like MATLAB use to reduce calculation time. Next, we

consider properties of the Fourier transform and the power spectrum. Finally, we

apply some filters from the spatial domain to the frequency domain.

In Chapter 4, we consider images that are corrupted with blurring or noise and

2

techniques to restore them to their original quality. First, we give a degradation

model that describes how an image is corrupted. We then look at images where

only noise has been added. We find that if we have some knowledge about the type

of noise then we can make decisions on which filtering technique to use. Next, we

consider images with both blur and noise. We assume that the blurring is due to a

convolution operator and, by writing the degradation model in matrix notation, we

are led to filtering techniques such as inverse filtering and Wiener filtering that can

help us find an estimate for the original image.

1.1 Defining an Image

A black-and-white image is a two-dimensional, real-valued function, denoted by f ,

where the value of f(x, y) gives the intensity (or brightness) of the image at a point

in space. Since light is a form of energy we have 0 ≤ f(x, y) < ∞. For an image

to be represented in a camera f must be sampled both spatially and in amplitude.

Digitization of the spatial coordinates is called “image sampling” and digitization of

amplitude is called “gray-level quantization” [3].

Let D = {0, 1, ..., N − 1} × {0, 1, ...,M − 1} be the grid for the image and let

V = {0, 1, ..., G − 1} be the range of gray values. A digital image f : D → V is

created by taking equally spaced samples from an image and takes the form of an

N ×M matrix where

f =


f(0, 0) f(0, 1) f(0, 2) ... f(0,M − 1)
f(1, 0) f(1, 1) f(1, 2) ... f(1,M − 1)

.

.

.
f(N − 1, 0) f(N − 1, 1) f(N − 1, 2) ... f(N − 1,M − 1)

 .

Each element of the matrix is referred to as a pixel.

3

The resolution (or the amount of detail the image holds) depends on the number

of samples that are taken from the original image and the number of gray values.

Most images let V = {0, 1, 2, ..., 255} which gives an image a total of 256 gray values

ranging from 0 (black) to 255 (white). Another common grayscale is to allow 256

gray values to range between 0 (black) and 1 (white).

Color images are composed of three distinct images (or three two-dimenisional

arrays) where each image represents the intensity of one of three different colors. For

cameras and computer monitors the three colors used are red, green, and blue (the

primary colors of light). These images are referred to as RGB images. Color printers

use the secondary colors of light (or the primary colors of pigments) cyan, magenta,

and yellow and are called CMY images.

We will focus our attention on black and white images.

1.2 The Resolution of a Digitized Image

The process of storing a digitized image requires decisions to be made about the

values of N , M , and G. Common practice is to let these quantities be integer powers

of two. That is,

N = 2n,M = 2m, G = 2g

where n,m, g ∈ Z+. One bit of memory can store one of two choices, either 0 or 1.

Thus the number of bits required to store an image is given by

b = N ×M × g.

Since computers have a limited amount of storage space it is important to use the

least amount of memory possible while saving the image’s resolution. To reduce the

4

amount of storage space we can change the dimensions of the image or we can change

the number of gray values.

Figure 1.1 explores what happens when the dimensions of an image are changed

to save space. In (a) we have a 1024 × 1024 pixel image of a frog with 256 gray

values. This figure takes up 8,388,608 bits (or 1,048,576 bytes) of space. If we change

the dimensions to 128 × 128 pixels then we have an image that takes 131,072 bits

(or 16,384 bytes) of space. This change significantly decreases the amount of space

used by the image (1/63 of the original) yet the reduction in size results in a loss of

detail and an image that is an eighth of its original size. In (b) we have rescaled the

128× 128 image in order to compare its quality to the original. To resize the image,

pixels must be replicated to fill in the added columns and rows of the array. This

process produces a “checkerboard effect” [3] which becomes more pronounced if we

reduce our original image’s dimensions to 64× 64 pixels (c) or 32× 32 pixels (d).

5

Figure 1.1

(a) 1024× 1024 (b) 128× 128

(c) 64× 64 (d) 32× 32

Another way to save memory is to change the number of gray values. In Figure

1.2 (a) we have a 400 × 400 rose with 256 gray values. In (b) we have reduced the

number of gray values to 32 while keeping the dimensions of the image the same. This

reduction has saved us 48,000 bytes of space. However, now there is an insufficient

number of gray values to represent the smooth transitions in the image. The resulting

jumps in gray values leave us with an effect called false contouring [3]. In (c) and

(d) we have reduced the gray values to 8 and 4 which makes false contouring more

noticable.

6

Figure 1.2

(a) 256 gray values (b) 32 gray values

(c) 8 gray values (d) 4 gray values

CHAPTER 2: Image Enhancement in the Spatial Domain

In this chapter we consider image transformations in the spatial domain. This refers

to operations that directly affect the pixels of an image. Spatial domain processes are

denoted by the expression

g = Tf (2.1)

where f is the input image, g is the output image, and T is an operator on f defined

over a specific square neighborhood centered about each pixel (x, y).

Figure 2.1

2.1 Point Processing

We begin by considering intensity transformations where T operates on a neighbor-

hood of size 1 × 1 centered about the pixel (x, y). That is, the value of g at (x, y)

depends only on the intensity value of f at (x, y) and no other pixels around it. Thus

8

we can simplify the equation in (2.1) to

s = T (r)

where r is the intensity of f and s is the intensity of our output image g.

2.1.1 Image Negatives

Suppose we have an image f with L gray values. That is, let r = 0, 1, ..L− 1. The

negative of an image is found by using the transformation function

s = (L− 1)− r

as shown in Figure 2.2 (a). If our image has 256 gray values then s = 255 − r. In

Figure 2.2 (b) we have an image of a train with its negative (c).

9

Figure 2.2

(a)

(b) (c)

2.1.2 Thresholding

Thresholding is taking a grayscale image and converting it to an image with only two

gray values (black and white). To threshold an image we choose a value m ∈ [0, L−1]

where

s =

{
L− 1 if r ≥ m

0 if r < m .

In Figure 2.3 (a) we have the graph of the thresholding function and in (b) we have a

parrot with 256 gray values. If we choose m = 102 then all gray values greater than

102 are mapped to white and all gray values less than 102 are mapped to black. We

10

can see the results of thresholding with the given m in (c). Thresholding can also be

used to find edges of objects.

Figure 2.3

(a)

(b) (c)

2.1.3 Gamma Correction

Sometimes we have an image that has been overexposed (too bright) or underexposed

(too dark) to light. Gamma correction is a nonlinear intensity transformation that

11

allows us to change the brightness of an image. Assuming that are gray-values range

from 0 to 1, the formula for gamma correction is:

s = crγ

where c is a constant and γ > 0. By adjusting the gamma value we can manipulate

the contrast of images. In Figure 2.4 we explore what happens when c = 1 but γ

changes. When γ = 1 we get the identity transformation s = r. Thus the input image

is the same as the output image. When γ = 0.5 we have s = r0.5 which increases all

gray values and hence lightens the image. When γ = 2 we have s = r2 and the gray

values are decreased.

Figure 2.4

In Figure 2.5 (a) we have an underexposed image of a sailboat. If we let γ = 0.5,

as in (b), our result is a brighter image that is much easier to see. However, if we let

γ = 2 we get a result (c) that is much darker than our original image.

12

Figure 2.5

(a) Original image (b) γ= 0.5 (c) γ=2

2.1.4 Histogram Equalization

A histogram is a graph that shows the distribution of gray levels in an image. His-

tograms fall into four basic categories: dark, bright, low-contrast, or high-contrast as

shown in Figure 2.6. Histogram equalization is a way to stretch a dark, bright, or

low-contrast histogram into a high-contrast histogram.

13

Figure 2.6

(a) Bright Histogram (b) Dark Histogram

(c) Low-Contrast Histogram
(d) High-Contrast Histogram

Let us start by assuming that T is a monotonically increasing continuous function

from [0, 1] to [0, 1]. Since s = T (r) we can write r = T−1(s). If we are given a random

variable X with probability distribution function f then the probability distribution

function of T (X) is

q(s) = p(r)

∣∣∣∣drds
∣∣∣∣ .

14

Consider the transformation function s =
∫ r
0
p(w)dw. Then

ds

dr
=

d

dr

∫ r

0

p(w)dw = p(r).

Thus

q(s) = p(r)

∣∣∣∣drds
∣∣∣∣ = p(r)

∣∣∣∣ 1

p(r)

∣∣∣∣ = 1

which is a uniform density distribution. Therefore if we find the transformation

function equal to the cumulative distribution function of X we will be able to produce

a probability density function that is uniform [3].

For the discrete case we can perform histogram equalization by letting

p(r) =
n(r)

N

where r ∈ {0, 1, ..., L− 1}, n(r) is the number of occurrences of the gray level r and

N is the total number of pixels. Then the cumulative distribution function is given

by

s = T (r) =
k∑
j=0

p(r)

where k = 0, 1, ..., L− 1.

In Figure 2.7 (a) we have a low-contrast image of a boy and in (b) we have the

histogram of the image. When histogram equalization is applied to the image we

obtain the result in (c). We can see in (d) that histogram equalization has stretched

the orginal histogram and created an image which is more balanced and easier to see.

Also notice that (d) is not quite uniform due to the discrete nature of the function

[4].

15

Figure 2.7

(a) (b)

(c) (d)

2.2 Spatial Filtering

We now consider an operator defined on an 8-neighborhood centered about the pixel

(x, y) as shown in Figure 2.8. The linear operations in this section consist of multi-

plying each pixel in the neighborhood by a defined coefficient and then summing the

16

results to obtain a response at the point (x, y). These coefficients are arranged in a

matrix called a mask or filter.

Figure 2.8

To perform spatial filtering we apply the mask to the original image through con-

volution. Let us begin by defining convolution for continuous and discrete functions.

2.2.1 Convolution

The convolution of two continuous functions f and g is given by

(f ∗ g)(x) =

∫ ∞
−∞

f(a)g(x− a)da.

For example, let

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
and g(x) =

{1
2

if 0 ≤ x ≤ 1

0 otherwise
.

17

Then

(f ∗ g)(x) =

∫ 0

∞
f(a)g(x− a)da+

∫ 2

0

f(a)g(x− a)da+

∫ ∞
1

f(a)g(x− a)da

=

∫ 0

∞
0da+

∫ 1

0

f(a)g(x− a)da+

∫ ∞
2

0da

=

∫ 1

0

f(a)g(x− a)da.

Now when 0 < x ≤ 1 we have

∫ 1

0

f(a)g(x− a)da =

∫ x

0

f(a)g(x− a)da =
1

2
a|x0 =

1

2
x.

When 1 < x ≤ 2 we have

∫ 1

0

f(a)g(x− a)da =

∫ x−1

1

f(a)g(x− a)da =
1

2
a|1x−1 = −1

2
x+ 1.

Thus

(f ∗ g)(x) =


1
2
x 0 < x ≤ 1

−1
2
x+ 1 1 < x ≤ 2

0 otherwise.

Now let f and g be two periodic functions on a domain of size M . The discrete

convolution of f and g is given by

(f ∗ g)(x) =
M−1∑
m=0

f(m)g(x−m)

for x = 0, 1, ...M − 1.

18

If we were to take M samples from the functions

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
and g(x) =

{1
2

if 0 ≤ x ≤ 1

0 otherwise

and convolve them we would see that discrete and continuous convolution are basically

the same with the exception that displacements take place which correspond to the

space between the samples taken and that summation replaces integration [3].

We can extend both continuous and discrete convolution into two-dimensions. For

the continuous case we have

(f ∗ g)(x, y) =

∫
R2

f(a, b)g(x− a, y − b)da db

and for the discrete case we have

(f ∗ g)(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n)g(x−m, y − n).

Now we are ready to consider the convolution of two images f and g.

2.2.2 Convolving Two Images

Convolution of two images is the same as convolving two discrete periodic functions

f and g on a domain of size M in the x direction and size N in the y direction. In

spatial filtering we call the function g the filter. Since f and g are periodic we can

compute (f ∗g)(1, 1) by repositioning g in such a way that g(0, 0) is in the (1, 1) spot.

Figure 2.9 shows an example of repositioning g when M = N = 4.

19

Figure 2.9

(a) g (b) Repositioned g

Our focus will be when g has only 9 non-zero entries arranged in a 3 × 3 grid as

shown in Figure 2.10 (a). For 2-D convolution we have:

w(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n)g(x−m, y − n) (2.2)

Now to convolve f with g we need to first find g(x−m, y − n). This corresponds to

a flip in both the x and y direction. Notice that we can use the periodicity of g again

to obtain the result shown in Figure 2.10 (b).

20

Figure 2.10

(a) (b)

Now to convolve the two functions we place our mask g on top of our image f in

such a way that g(0, 0) is on top of f(1, 1). We will then multiply all numbers that

are on top of one another and add them together. Our result will be the entry in

our output image w(1, 1). Notice that since g has only 9 non-zero entries we do not

need to worry about the rest of g multiplying f . We can just focus our on attention

on the 3 × 3 grid (Figure 2.11 (a)). By using the periodicity of g we can shift our

non-zero entries one unit to the right as shown in (b). We then multipy the numbers

that overlap, add them together, and put our result in w(1, 2). We continue to shift

our mask to the right one unit at a time, multiplying overlapping entries together

and summing them, until we get to the end of the first row. We then shift our mask’s

nonzero entries down one row, where g(0, 0) is placed on top of f(2, 1), and repeat

the process until we reach the end of the image.

21

Figure 2.11

(a) (b)

(c) (d)

We will now consider the different types of masks that are useful in spatial image

enhancement.

2.2.3 Smoothing Masks

Sometimes we want to remove fine details from an image or make a noisy image easier

to see. We can use smoothing masks to accomplish this goal. To smooth an image we

22

need to use a mask with only positive coefficients whose sum equals one. The fillter

g =
1

9

[
1 1 1
1 1 1
1 1 1

]

is an example of a smoothing mask that takes a 3×3 neighborhood of pixels and aver-

ages them. If we want to increase the amount of blurring in an image we can increase

the size of the neighborhood. For instance, we can average a 5 × 5 neighborhood of

pixels by letting

g =
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .
If we want to average a 7× 7 neighborhood then

g =
1

49


1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

 .

In Figure 2.12 we can compare the amount of blurring in an image to the size of

the averaging filter. In (a) we have an image of the Eiffel Tower [7]. In (b) a 3 × 3

averaging filter is used to blur the image. Visually there is not much of a difference

between (a) and (b) but if we increase the size of the averaging filter to 7× 7 (c) or

15× 15 (d) the blurring is more pronounced.

23

Figure 2.12

(a) Original Image (b) 3× 3

(c) 7× 7 (d) 15× 15

If we want to clear an image of noise (unwanted intensities in an image brought

on by camera defects or the aging of an image) but reduce the amount of blurring we

can give pixels that are closer to the center more weight than pixels that are farther

away. For instance, we can let

g =
1

16

[
1 2 1
2 4 2
1 2 1

]
.

24

This is called a weighted average filter or a Gaussian filter.

Another way to increase the amount of blurring (rather than change the dimen-

sions of the filter) is to give heavier weights to pixels that are further away from the

center than pixels that are closer. An example of this is the filter

g =
1

16

[
3 1 3
1 0 1
3 1 3

]
.

2.2.4 Sharpening Masks

Certain types of filters can find edges and sharpen images. In order to find an edge

we need to find transitions in image intensity. These transitions can be detected by

what is called a derivative filter. A derivative filter finds the rate of change between

neighboring pixels. One way to estimate this change is to let

∂f

∂x
∼= f(x+ 1, y)− f(x, y) and

∂f

∂y
∼= f(x, y + 1)− f(x, y).

In terms of a filter this would be

∂f

∂x
=

[
0 0 0
0 −1 0
0 1 0

]
and

df

dy
=

[
0 0 0
0 −1 1
0 0 0

]
.

If we want to find edges in both the x and y direction we can use the magnitude of

the gradient

| 5 f | ∼=
∣∣∣∣∂f∂x

∣∣∣∣+

∣∣∣∣∂f∂y
∣∣∣∣

Another way to estimate the derivative is to subtract f(x, y− 1) from f(x, y + 1)

for all x values in a 3 × 3 neighborhood. This derivative can be written in the form

25

of a mask (called a Prewitt filter) where

df

dx
=

[−1 −1 −1
0 0 0
1 1 1

]
. (2.3)

Similarly, we can let

df

dy
=

[−1 0 1
−1 0 1
−1 0 1

]
.

First order derivatives tend to produce thicker edges than second order derivatives.

Second order derivatives also tend to have a better response to fine detail which make

them better for sharpening images. We can estimate the second derivative by the

formula:

d2f

dx2
∼= f(x+ 1, y) + f(x− 1, y)− 2f(x, y).

To find the edges in both the x and y direction we can use the Laplacian which is

given by

4f =
d2f

dx2
+
d2f

dy2
.

We could write this as a filter where

4f ∼=

[
0 1 0
0 −2 0
0 1 0

]
+

[
0 0 0
1 −2 1
0 0 0

]
=

[
0 1 0
1 −4 1
0 1 0

]

In Figure 2.13 we can compare the effects of finding edges with the Prewitt gradient

filter (b) against the Laplacian (c) on an image of a panda [6].

26

Figure 2.13

(a) Original

(b) Prewitt (c) Laplacian

We can use edge detection methods to sharpen an image. Once we find the edges

of an image we can subtract them from the original image to create a sharper result.

We can also extend the Laplacian to the diagonal neighbors by using the filter

g =

[
1 1 1
1 −8 1
1 1 1

]
.

27

One other way to boost the amount of sharpening is to multiply the Laplacian

by a positive constant c before subtracting it from the original image. The right c

to choose depends on the viewer but a constant too small will have little to no effect

while a constant that is too big may oversharpen the image and create an unwanted

result.

In Figure 2.14 (a) we have an image of the moon. In (b) we filtered the image with

the Laplacian and subtracted the result from the original image. In (c) we subtracted

the image filtered with the extended Laplacian from the original image. Notice that

using the extended Laplacian provides us with a sharper image than (b) since it takes

into account the diagonal edges. Finally, in (d) we have multiplied the Laplacian by

5 and then subtracted it from the original image. This has increased the sharpening

effect but it has also enhanced the noise in the image (the white specks surrounding

the moon). Since derivative filters find transitions in image intensity values it makes

sense that the noise would be amplified. In order to reduce the noise we can choose

a smaller c or blur the original image with a smoothing filter before applying the

Laplacian (or extended Laplacian) filter.

28

Figure 2.14

(a) Original Image (b) Laplacian

(c) Extended Laplacian (d) Laplacian Boost

We can also sharpen an image by using a process called unsharp filtering. When

we blur an image with a smoothing filter we decrease the fine details of the original

image. Thus subtracting the blurred image from the original will leave us with edges

and fine details. We can take those edges and add them back to the original to create

a sharper image as shown in Figure 2.15 [8].

29

Figure 2.15: Unsharp Masking

(a)

(b) (c)

In Figure 2.16 we have applied unsharp filtering to an image of the Cape Lookout

Lighthouse [5]. In (a) we have the original image and in (b) we have a blurred image

obtained by using a 3× 3 averaging filter. In (c) we have the difference between the

original image and the blurred image (multiplied by 1.5 for the edges to be easier to

see). Finally in (d) we have added the edges back to the original image and we have

a sharper effect.

30

Figure 2.16

(a) (b)

(c) (d)

CHAPTER 3: Image Enhancement in the Frequency Domain

All the filtering processes we have seen so far in the spatial domain can also be applied

to an image’s frequency domain. Let us start with a review of the Fourier Transform

and some of its properties.

3.1 The Fourier Transform

Let f be an integrable function on R. The Fourier transform of f is defined by the

equation

F (u) = Ff(u) =

∫ ∞
−∞

f(x)e−2πiuxdx.

The Fourier transform extends from L1 ∩ L2 to L2. The inverse Fourier transform:

f(x) =

∫ ∞
−∞

F (u)e2πiuxdu

extends to L2 where F is an isometry. The following theorem lists some basic prop-

erties of the Fourier transform [2].

Theorem 3.1. Suppose f ∈ L1(R).

(1) For any a ∈ R, let (Taf)(x) = f(x− a) and (Maf)(x) = e2πiaxf(x). Then

F(Taf) = M−a(Ff) and F(Maf) = Ta(Ff).

(2) If g ∈ L1 then

F(f ∗ g)(u) = F (u)G(u).

32

Proof. For the first part of (1) we have

F(Taf)(u) =

∫ ∞
−∞

e−2πiuxf(x− a)dx.

Let z = x− a. Then dz = dx and

F(Taf)(u) =

∫ ∞
−∞

e−2πiu(z+a)f(z)dz = e−2πiau
∫ ∞
−∞

e−2πiuzf(z)dz = M−a(Ff)(u).

For the second part of (1), we have

F(Maf)(u) =

∫ ∞
−∞

e−2πiuxe2πiaxf(x)dx =

∫ ∞
−∞

e−2πix(u−a)f(x)dx = Ta(Ff)(u).

For (2),

F(f ∗ g)(u) =

∫ ∞
−∞

e−2πiux
(∫ ∞
−∞

f(a)g(x− a)da

)
dx

=

∫ ∞
−∞

e−2πiux
(∫ ∞
−∞

e−2πiua+2πiuaf(a)g(x− a)da

)
dx

=

∫ ∞
−∞

∫ ∞
−∞

e−2πiuaf(a)e−2πiu(x−a)g(x− a)dadx.

Let z = x− a. Then

F(f ∗ g)(u) =

∫ ∞
−∞

e−2πiuaf(a)da

∫ ∞
−∞

e−2πiuzg(z)dz

= F (u)G(u).

33

We can extend the Fourier transform for a vector ~x ∈ Rn where:

F (~u) =

∫
Rn
f(~x)e−2πi<~u,~x>d~x

and the inverse Fourier transform is:

f(~x) =

∫
Rn
F (~u)e2πi<~u,~x>d~u

3.2 The Discrete Fourier Transform

Let f be a real-valued function that is N -periodic. The discrete Fourier transform is

defined by

Ff(u) = F (u) =
1√
N

N−1∑
x=0

f(x)e−2πi
ux
N

for u = 0, 1, 2, ..., N − 1. The inverse discrete Fourier transform is given by

f(x) =
1√
N

N−1∑
u=0

F (u)e−2πi
ux
N

for x = 0, 1, 2, ..., N − 1.

The discrete Fourier Transform shares a number of properties with the continu-

ous Fourier transform. Like the continuous Fourier transform, the discrete Fourier

transform converts discrete convolution into multiplication.

Theorem 3.2. Let f and g be two real-valued functions that are N-periodic on Z.

Then F(f ∗ g) =
√
NF (u)G(u).

34

Proof. By definition of discrete convolution, (f ∗ g)(x) =
∑N−1

l=0 f(l)g(x− l). Thus

F(f ∗ g)(u) =
1√
N

N−1∑
x=0

e−2πi
ux
N (f ∗ g)(x)

=
1√
N

N−1∑
x=0

e−2πi
ux
N (

N−1∑
l=0

f(x− l)g(l))

=
1√
N

N−1∑
x=0

N−1∑
l=0

e−2πi
ux
N f(x− l)g(l)

=
1√
N

N−1∑
l=0

g(l)
N−1∑
x=0

e−2πi
ux
N f(x− l).

Now let z = x− l. Then

F(f ∗ g)(u) =
1

N

N−1∑
l=0

g(l)
N−1−l∑
z=−l

e−2πi
u(z+l)
N f(z)

=
1√
N

N−1∑
l=0

e−2πi
ul
N g(l)

N−1−l∑
z=−l

e−2πi
uz
N f(z)

=
1√
N

N−1∑
l=0

e−2πi
ul
N g(l)

N−1∑
z=0

e−2πi
uz
N f(z)

=
√
N(

1√
N

N−1∑
l=0

e−2πi
ul
N g(l))(

1√
N

N−1−l∑
z=−l

e−2πi
uz
N f(z))

=
√
NG(u)F (u).

Similarly to the continuous Fourier transform, the discrete Fourier transform can

be extended to the two-variable case. The discrete Fourier transform pair is

35

F (u, v) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−2πi(
ux
M

+ vy
N

)

for u = 0, 1, 2, ...,M − 1, v = 0, 1, 2, ..., N − 1 and

f(x, y) =
1√
MN

M−1∑
u=0

N−1∑
y=0

F (u, v)e2πi(
ux
M

+ vy
N

)

for x = 0, 1, 2, ...,M − 1, y = 0, 1, 2..., N − 1.

3.3 Fast Fourier Transform

Consider again the one dimensional discrete Fourier transform

F (u) =
1√
N

N−1∑
x=0

f(x)e−2πi
ux
N

for u = 0, 1, 2, ..., N−1. In practice, the discrete Fourier transform takes considerable

time to compute. Let us define an “elementary operation” to be a multiplication of

two complex numbers followed by the addition of two complex numbers.To compute

each F (u) there are N − 1 elementary operations. Since u ranges from 0 to N − 1

the computational time is proportional to N2. If N is large then N2 is enormous

and the transform may become computationally unmanageable. One way to reduce

the computation time is to rearrange and reduce the discrete Fourier transform in a

certain way called the fast Fourier transform.

To reach the fast Fourier transform, let us begin by assuming N = 2n where n is

a positive integer. Doing so allows us to express N as N = 2M where M = 2n−1. We

use the notation FN when performing the discrete Fourier transform on a space of N

36

points. Substituting N = 2M into the discrete Fourier transform we get

F2M(u) =
1√
2M

2M−1∑
x=0

f(x)e−2πi
ux
2M

=
1√
2

[
1√
M

M−1∑
x=0

f(2x)e−2πi
u(2x)
2M +

1√
M

M−1∑
x=0

f(2x+ 1)e−2πi
u(2x+1)

2M

]

=
1√
2

[
1√
M

M−1∑
x=0

f(2x)e−2πi
ux
M +

1√
M

M−1∑
x=0

f(2x+ 1)e−2πi
ux
M e−πi

u
M

]

Define

F even
M (u) =

1√
M

M−1∑
x=0

f(2x)e−2πi
ux
M

and

F odd
M (u) =

1√
M

M−1∑
x=0

f(2x+ 1)e−2πi
ux
M

for u = 0, 1, ...,M − 1. Then

F (u) =
1√
2

[
F even
M (u) + F odd

M (u)e−πi
u
M

]
(3.1)

where u = 0, 1, .., N/2 − 1. Since e−2πi
(u+M)
M = e−2πi

u
M and e−2πi

(u+M)
2M = −e−πi uM we

have

F (u+M) =
1√
2

[
F even
M (u)− F odd

M (u)
]

(3.2)

where u+M = N/2, ..., N . Thus the N -point fast Fourier transform can be obtained

from using both (3.1) and (3.2). The number of operations required to use the fast

Fourier transform is proportional to N log2N . Comparing this to the discrete Fourier

transform, we can see that the fast Fourier transform has a computational advantage

of N
log2N

.

37

To find the inverse fast Fourier transform of

f(x) =
1√
N

N−1∑
u=0

F (u)e2πi
ux
N

notice that

f(u) =
1√
N

N−1∑
x=0

F (x)e−2πi
ux
N (3.3)

which is in the form of the fast Fourier transform. Thus we can take the complex

conjugate of F , apply the fast Fourier transform, and take the complex conjugate of

f to find the inverse fast Fourier transform.

As in the one dimensional case, we can decompose the discrete Fourier transform

for two dimensions by using

F (u, v) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−2πi(
ux
M

+ vy
N

)

for u = 0, 1, 2, ...,M − 1, v = 0, 1, 2, ..., N − 1. Notice that we can separate the

transform into

F (u, v) =
1√
M

M−1∑
x=0

e−2πi
ux
M

1√
N

N−1∑
y=0

f(x, y)e−2πi
vy
N .

Thus we can apply the fast Fourier transform first to the row vectors and then to the

column vectors.

3.4 Properties of the Fourier Transform and the Power Spectrum

In our study of image processing we would like to visually understand the effects the

Fourier transform has on an image. In order to apply the Fourier transform, an image

38

can be extended to a periodic function on Z × Z. Since we cannot display complex-

valued functions as a single image we can instead display the power spectrum |F |.

Analysis of the power spectrum of an image gives us some interesting properties.

3.4.1 Viewing the Power Spectrum

We can find the complex conjugate of the Fourier transform F by

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e2πi(ux+vy)dx.

Since f is a real-valued function, we have

F (u, v) =

∫ ∞
−∞

f(x, y)e2πi(ux+vy)dx

=

∫ ∞
−∞

f(x, y)e−2πi(−ux−vy)dx

=F (−u,−v).

Thus |F (u, v)| = |F (u, v)| = |F (−u,−v)|, which implies that the power spectrum is

symmetric about the origin. We also have |F (u, v)| → 0 as (u, v)→∞.

In the discrete case, |F (u, v)| = |F (u+M, v+N)| and in general, we expect that

as u, v increase then |F (u, v)| becomes small. Thus the values of the discrete Fourier

transform are the largest around the origin and decrease as we approach the middle of

its period in the x and y direction. Since we defined an image using matrix notation,

we need to rearrange the matrix of the power spectrum as shown in Figure 3.1 to

better analyze its properties. That is, we place (0, 0) in the center of the image and

use periodicity to arrange the other entries.

39

Figure 3.1

(a) Original Image (b) Power Spectrum

The range of values for the power spectrum is so large that only the brightest

parts are visible in the image. To fix this we can use a transformation function G

where

G(u, v) = c log(1 + |F (u, v)|)

and c is a scaling constant.

In Figure 3.2 (a) we have an image of a hexagon. In (b) we have the image

of the power spectrum of the hexagon and in (c) we have repositioned the power

spectrum so that the origin is in the center. Finally in (d) we have applied the

function G(u, v) = log(1 + |F (u, v)|) to the transform. This exercise illustrates the

phenomenon that the Fourier transform of an image tends to have its largest values

around the origin.

40

Figure 3.2

(a) Original Image (b) Power Spectrum

(c) Recentered Power Spectrum (d) Logged Power Spectrum

3.4.2 The Translation Property

We saw in the one-dimensional continuous case that F(Taf) = M−a(Ff). If we take

the absolute value of F(Taf) we get

|F(Taf)(u)| =
∣∣e−2πiau∣∣ ∣∣∣∣∫ ∞

−∞
e−2πiuzf(z)dz

∣∣∣∣ = |F (u)|.

41

Therefore if we translate an image and take the absolute value of the Fourier transform

we end up with the same image of the power spectrum as if we did not translate the

image at all.

This property also holds for the discrete two-dimensional case. In Figure 3.3 (a)

and (b) we have an image of a rectangle and its logged power spectrum. In (c) we

have translated the rectangle and in (d) we show its power spectrum. Notice that (b)

and (d) are the exact same image.

3.4.3 The Rotation Property

Let x and u be vectors in R2. Let A be a 2 × 2 rotational matrix. Then AT = A−1

and detA = 1. Thus

F(fA)(u) =

∫
R2

e−2πiuxf(Ax)dx

=

∫
R2

e−2πiuA
TAxf(Ax)dx

Here we use a change of variables, letting z = Ax and dz = | detA|dx. Thus

F(fA)(u) =

∫
R2

e−2πiuA
T zf(z)dz

=

∫
R2

e−2πiAuzf(z)dz

=Ff(Au)

To illustrate the rotation property, in Figure 3.3 (e) we applied a rotation matrix to

our image of a square and then took the Fourier transform (f). If we compare (f)

with (b), we notice that the Fourier transform is also rotated.

42

Figure 3.3

(a) Original Image (b) Power Spectrum

(c) Translated Image (d) Translated Image’s Power Spectrum

(e) Rotated Image (f) Rotated Image’s Power Spectrum

43

3.4.4 The Wavelength Property

Let us find the Fourier transform of the function f(x) = 1 where 0 < x < a (as

pictured in Figure 3.4).

Figure 3.4

Then

F [f(x)] =

∫ ∞
−∞

e−2πiuxf(x)dx =

∫ a

0

e−2πiuxdx

= − 1

2πiu
e−2πiux|a0 =

−1

2πiu
(e−2πiua − 1)

=
−1

2πiueπiau
(e−πiua − eπiau) =

1

πueπiau
(eπiua − e−πiau)

2i
.

Since sin(x) = eix−e−ix
2i

, we can see that

F [f(x)] =
1

πueπiau
(eπiua − e−πiau)

2i

=
1

πueπiau
sin(πau)

=
a

eπiau
sin(πau)

πau
=

a

eπiau
sinc(au).

Now to see the power spectrum, we need to take the magnitude of the Fourier trans-

44

form. That is,

|Ff(u)]| =
∣∣∣ a

eπiau
sinc(u)

∣∣∣ = a| sinc(au)|.

In Figure 3.5, we show three cases where a = 1, a = 2, and a = 1/2. If we let the

wave length be denoted by λ, we can see that λ = 1
a
.

Figure 3.5

In Figure 3.6 (a) we demonstrate the wavelength property with a 128× 128 pixel

image of a circle. Notice that we have two gray values, where 0 = black and 1 = white.

Therefore we have a function f where f(x, y) = 1 when (x − 64)2 + (y − 64)2 < r2

(where r is the radius of the circle) and f(x, y) = 0 otherwise. The length of our

interval a = 2r is the same in each direction. In (b) we have the image of the

centered power spectrum. In (c) we have a circle but with a smaller radius and in (d)

we have the centered power spectrum. Notice the wavelength between (b) and (d)

has lengthened since r has decreased.

45

Figure 3.6

(a) Original Image (b) Power Spectrum

(c) Circle with Reduced Radius (d) Power Spectrum

46

3.5 Filtering in the Frequency Domain

By using the fact that convolution is multiplication on the frequency side we can blur

an image using one of the averaging filters we saw earlier. In Figure 3.7 (a) we have

an image made of 3 gray-values and in (b) we have the logged power spectrum. In

(c) we take the 15× 15 averaging filter

g(x, y) =
1

225


1 1 1
1 1 1
.
.
.
1 1 1


and find the centered power spectrum of the Fourier transform G. In (d) we multiply

the Fourier transform of f with g and then take the absolute value. Lastly, we take

the inverse Fourier transform and obtain the image seen in (e).

47

Figure 3.7

(a) Original Image (b) |F |

(c) |G| (d) |FG|

(e) Blurred Image

In Figure 3.8 we apply the Prewitt filter we saw in equation (2.3) to an image of

Big Ben [1]. In (a) we have the original image, in (b) we have the power spectrum of

the image, in (c) we have the power spectrum of the Laplacian. In (d) we multiply the

48

Fourier transform of f with g and show the power spectrum of that result. Finally in

(e) we take the inverse Fourier transform of F times G and obtain the edges of the

original image.

Figure 3.8

(a) Big Ben (b) |F | (c) |G|

(d) |FG| (e) Edges of Big Ben

CHAPTER 4: Image Restoration

In this chapter we take degraded images and try to restore them as closely as possible

to their original quality. The idea behind image degradation is that we have some

operator H that operates on an image f along with a noise term n that is added to

produce a degraded image g as shown in Figure 4.1 [8]. It is assumed that we do

not know the exact original image but we try to form an estimate f̂ that is as close

as possible to the original image. For simplification purposes, we assume that H is

a linear, translation invariant operator. Nonlinear and space variant operators often

have no known solution or are computationally unmanageable [8]. We first consider

images with degradation due to noise only (H is the identity operator) and then

consider images with both noise and blurring.

Figure 4.1

4.1 Types of Noise

Let us consider image restoration where the only degradation present is noise. That

is, the operator acting on f is the identity operator

g = If + n.

50

Two common types of noise are Gaussian noise and impulse noise. Gaussian noise

is easy to work with mathematically and a good model for camera sensor noise that

comes from poor lighting and high temperatures. The probability distribution func-

tion of Gaussian noise is

P (x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 ,

where −∞ < x < ∞. Impulse noise occurs when there is malfunctioning of the

camera’s sensor cells, memory failure, or errors in image digitization [8]. This type

of noise produces one of two colors, black or white. Often referred to as “salt and

pepper noise,” the probability distribution function is given by

P (x) =

{
Pa for x = a
Pb for x = b
0 otherwise,

where b > a and Pa + Pb = 1.

By looking at the histogram of a noisy image we can often determine the type of

noise that has been added to an image. In Figure 4.2 (a) and (b) we see an image and

its histogram. Notice that the histogram shows that the image has three gray values.

In (c) and (d) we have added Gaussian noise to the image and show its histogram.

We can see that now the histogram takes on a Gaussian curve. Finally, in (e) and

(f) we have the original image with added impulse noise and its histogram. In (f)

we have the three original gray values and two additional gray values (or impulses)

where 0 = black and 255 = white.

51

Figure 4.2

(a) (b)

(c) (d)

(e) (f)

52

4.2 Noise Removal

If we have a set of N still images that contain noise we can reduce the noise effects

by averaging the images. The formula for image averaging is

gN(x, y) =
1

N

N∑
i=1

fi(x, y).

As N increases, the variance of the noise in gN decreases by 1
N

. In Figure 4.3 (a) we

have one image of Saturn that has been subjected to random Gaussian noise where

µ = 0 and σ2 = 0.5. After averaging five of these noisy images we have the result

given in (b). If we average 20 or 100 noisy images, as in (c) and (d), we obtain a

clearer image.

Figure 4.3

(a) Noisy Image (b) Average of 5 images

(c) Average of 20 images (d) Average of 100 images

53

Knowing the noise distribution of an image can help us choose the best filter to

reduce the noise. An image corrupted with Gaussian or uniform noise responds well

to averaging filters while an image with impulse noise responds best to the median

filter. In Figure 4.4 (a) we have an image of a cameraman and in (b) 20% of the

image hase been corrupted with impulse noise. In (c) a 3×3 averaging filter has been

applied to try to clean the image while in (d) a 3× 3 median filter is used. A median

filter takes a 3× 3 neighborhood of pixels and selects the median. It is obvious that

the median filter does a better job of filtering when it comes to impulse noise.

Figure 4.4

(a) Original Image (b) Corrupted Image

(c) 3× 3 Averaging (d) 3× 3 Median Filtering

54

Another impulse reducing filter is to take the minimum value of a 3× 3 window if

we want to reduce only salt noise (or take the maximum value if we want to reduce

pepper noise). We can also find both the maximum and mininum in a 3 × 3, add

them together and divide by two. This type of filter is called the midpoint filter.

When an image has several gray values, sometimes we cannot clearly see the noise

distribution. In this case we look for areas of pixels in an image that have near

uniform gray values. In each of these sections we find the histogram and compute the

mean and standard deviation. We then average the means and the deviations to find

a noise model that matches closely to the histogram. Once we find our noise model

we can then choose the best filter to reduce the noise. Another option is to use trial

and error when selecting filters.

4.3 Circulant and Block-Circulant Matrices

We have defined the degradation model of an image by the formula

g = Hf + n.

The linear operator H is translation-invariant if and only if H is a convolution oper-

ator. Suppose that we have two real-valued functions f and h that are M -periodic

(notice that if f has a shorter period than h then we can extend f with zeros until

its period is equal to the period of h). We define the convolution of the functions f

and h by

g(x) = (f ∗ h)(x) =
M−1∑
m=0

= f(x)h(x−m)

for x ∈ {0, 1, 2, ...,M − 1}.

55

We can use matrix notation to represent the convolution

g = Hf + n

where

f =


f(0)
f(1)
.
.
.

f(M − 1)

 , g =


g(0)
g(1)
.
.
.

g(M − 1)

 and n =


n(0)
n(1)
.
.
.

n(M − 1)


and

H =



h(x1 − 0) h(x1 − 1) h(x1 − 2) ... h(x1 −M + 1)
h(x2 − 0) h(x2 − 1) h(x2 − 2) ... h(x2 −M + 1)
h(x3 − 0) h(x3 − 1) h(x3 − 2) ... h(x3 −M + 1)

.

.

.
h(xM − 0) h(xM − 1) h(xM − 2) ... h(xM −M + 1)


where xi ∈ {0, 1, 2, ..M − 1} and i ∈ {1, 2, 3, ...M}. That is,

H =



h(0) h(−1) h(−2) ... h(−M + 1)
h(1) h(0) h(−1) ... h(−M + 2)
h(2) h(1) h(0) ... h(−M + 3)
.
.
.

h(M − 1) h(M − 2) h(M − 3) ... h(0)

 .

Since h is periodic, we have h(x) = h(x+M) and can write

H =



h(0) h(M − 1) h(M − 2) ... h(1)
h(1) h(0) h(M − 1) ... h(2)
h(2) h(1) h(0) ... h(3)
.
.
.

h(M − 1) h(M − 2) h(M − 3) ... h(0)

 .

We call this matrix a circulant matrix since the rows are related by a circular shift to

the right. That is, the last element in each row is the first element in the following

56

row.

We can extend the one-dimensional degradation model to two-dimensions. Let f

and h be two digitized images of size M×N . Then the convolution of these functions

is given by

g(x, y) =
M−1∑
m=0

N−1∑
n=0

= f(m,n)h(x−m, y − n)

for x ∈ {0, 1, 2, ...,M−1} and y ∈ {0, 1, 2, ..., N−1}. Here we can use matrix notation

to represent the degradation model

g = Hf + n

where we stack the rows of the M ×N matrix

f =


f(0, 0) f(0, 1) f(0, 2) ... f(0, N − 1)
f(1, 0) f(1, 1) f(1, 2) ... f(1,M − 1)
.
.
.

f(M − 1, 0) f(M − 1, 1) f(M − 1, 2) ... f(M − 1, N − 1)

 ,

g =


g(0, 0) g(0, 1) g(0, 2) ... g(0, N − 1)
g(1, 0) g(1, 1) g(1, 2) ... g(1,M − 1)
.
.
.

g(M − 1, 0) g(M − 1, 1) g(M − 1, 2) ... g(M − 1, N − 1)


and

n =


n(0, 0) n(0, 1) n(0, 2) ... n(0, N − 1)
n(1, 0) n(1, 1) n(1, 2) ... n(1,M − 1)
.
.
.

n(M − 1, 0) f(M − 1, 1) n(M − 1, 2) ... n(M − 1, N − 1)


in such a way that

57

f =



f(0, 0)
f(0, 1)
.
.
.

f(0, N − 1)
f(1, 0)
f(1, 1)
.
.
.

f(1, N − 1)
.
.
.
.
.

f(M − 1, N − 1)



, g =



g(0, 0)
g(0, 1)
.
.
.

g(0, N − 1)
g(1, 0)
g(1, 1)
.
.
.

g(1, N − 1)
.
.
.
.
.

g(M − 1, N − 1)



, and n =



n(0, 0)
n(0, 1)
.
.
.

n(0, N − 1)
n(1, 0)
n(1, 1)
.
.
.

n(1, N − 1)
.
.
.
.
.

n(M − 1, N − 1)



.

To determine the structure of H, let us fix the x value. Since we need to sum over

all y values, let

Hj =



h(j, y1 − 0) h(j, y1 − 1) h(j, y1 − 2) ... h(j, y1 −N + 1)
h(j, y2 − 0) h(j, y2 − 1) h(j, y2 − 2) ... h(j, y2 −N + 1)
h(j, y3 − 0) h(j, y3 − 1) h(j, y3 − 2) ... h(j, y3 −N + 1)

.

.

.
h(j, yN − 0) h(j, yN − 1) h(j, yN − 2) ... h(j, yN −M + 1)


where yi ∈ {0, 1, 2, ...N − 1} and i ∈ {1, 2, 3, ..., N}. Substituting our yi values and

taking advantage of the periodicity of h we obtain:

Hj =



h(j, 0) h(j,N − 1) h(j,N − 2) ... h(j, 1)
h(j, 1) h(j, 0) h(j,N − 1) ... h(j, 2)
h(j, 2) h(j, 1) h(j, 0) ... h(j, 3)
.
.
.

h(j,N − 1) h(j,N − 2) h(j,N − 3) ... h(j, 0)

 .

58

a circulant matrix. Since convolution sums over all x values,

H =


H0 HM−1 HM−2 ... H1

H1 H0 HM−1 ... H2

H2 H1 H0 ... H3

.

.

.
HM−1 HM−2 HM−3 ... H0

 .

Thus the dimension of H is MN×MN . We call each Hj a block and H is a circulant

matrix. Therefore we call H a block-circulant matrix.

4.4 Diagonalization of Circulant Matrices

Let us consider again our M ×M circulant matrix

H =



h(0) h(M − 1) h(M − 2) ... h(1)
h(1) h(0) h(M − 1) ... h(2)
h(2) h(1) h(0) ... h(3)
.
.
.
h(M − 1) h(M − 2) h(M − 3) ... h(0)

 .

Let us also define a scalar function λ by

λ(k) = h(0) + h(M − 1)ek
2πi
M + h(M − 2)e2k

2πi
M + ...+ h(1)e(M−1)k

2πi
M

and a vector w by

w(k) =



1

ek
2πi
M

e2k
2πi
M

.

.

.

e(M−1)k
2πi
M



59

for k = 0, 1, 2, ...,M − 1. Then

Hw(k) =


h(0) h(M − 1) h(M − 2) ... h(1)
h(1) h(0) h(M − 1) ... h(2)
h(2) h(1) h(0) ... h(3)
.
.
h(M − 1) h(M − 2) h(M − 3) ... h(0)





1

ek
2πi
M

e2k
2πi
M

.

.

.

e(M−1)k
2πi
M



=



∑M−1
j=0 h(M − j)ejk 2πi

M∑M−1
j=0 h(M − j + 1)ejk

2πi
M∑M−1

j=0 h(M − j + 2)ejk
2πi
M

.

.

.∑M−1
j=0 h(M − j − 1)ejk

2πi
M



=



(1)(
∑M−1

j=0 h(M − j)ejk 2πi
M)

(ek
2πi
M)(

∑M−1
j=0 h(M − j + 1)e(j−1)k

2πi
M)

(e2k
2πi
M)(

∑M−1
j=0 h(M − j + 2)e(j−2)k

2πi
M)

.

.

.

(e(M−1)k
2πi
M)
∑M−1

j=0 h(M − j − 1)e(j−M+1)k 2πi
M


=



(1)λ(k)

(ek
2πi
M)λ(k)

(e2k
2πi
M)λ(k)

.

.

.

(e(M−1)k
2πi
M)λ(k)


= λ(k)w(k)

This implies that w(k) is an eigenvector of H and λ(k) is the corresponding eigenvalue.

Let us form a matrix W whose columns are w(k) for all k ∈ {0, 1, ...,M − 1}. That

is, let

W =
1√
M

[w(0) w(1) w(2) ... w(M − 1)] .

We can find a particular element w(k, j) in the matrix by letting

w(k, j) =
1√
M
ekj

2πi
M

60

for k, j ∈ {0, 1, 2, ...,M − 1}. The inverse of W is given by

W−1(k, j) =
1√
M
e−kj

2πi
M .

Note that W is symmetric and unitary, hence W−1 = W . For example, suppose

k, j ∈ {0, 1, 2}. Then

W =
1√
3

1 1 1

1 e
2πi
3 e2(

2πi
3

)

1 e2(
2πi
3

) e4(
2πi
3

)


and

W−1 =
1√
3

1 1 1

1 e−
2πi
3 e−2(

2πi
3

)

1 e−2(
2πi
3

) e−4(
2πi
3

)

 .
Due to the orthogonality of the complex numbers, we know that ejk

2πi
M ∗ e−kj 2πiM = 1.

Notice that WW−1 = I where I is the identity matrix.

We can express H as

H = WΛW−1 (4.1)

or we can write

Λ = W−1HW,

where Λ is a diagonal matrix with Λ = diag[λ(0), λ(1), ..., λ(N −1)] which shows that

H can be diagonalized.

Recall that

g = h ∗ f + n = Hf + n

and we know

Fg = (Fh)(Ff) + Fn

61

when we apply the discrete Fourier transform. Since g = Hf + n, we can replace H

by (4.1) to get

g = WΛW−1f + n.

So

W−1g = ΛW−1f +W−1n.

Notice that W−1 is in fact the discrete Fourier transform, so the diagonalization of

the matrix H is equivalent to the discrete Fourier transform taking convolutions to

products.

4.5 Diagonalization of Block-Circulant Matrices

We can diagonalize block-circulant matrices in a similar fashion, where W is a matrix

of size MN ×MN such that

W (j,m) =
1√
MN

wM(j,m)wN(k, n)

where

wM(j,m) = ejm
2πi
M and wN(k, n) = ekn

2πi
N .

We can also define the inverse matrix W−1 by

W−1(j,m) =
1√
MN

w−1M (j,m)w−1N (k, n)

where

w−1M (j,m) = e−jm
2πi
M and w−1N (k, n) = e−kn

2πi
N .

62

Just like the case with the circulant matrices, we can show WW−1 = I where I is

the identity matrix and that the elements of W−1 are the elements of the discrete

two-dimensional Fourier transform.

4.6 Inverse Filtering

We said that the degradation model of an image is

g = Hf + n

where H is a translation-invariant operator that operates on an unknown function f ,

n is the noise, and g is the output function. Our objective is to find a function f0

that closely approximates f . In practice, H is assumed to be a convolution operator.

When H is unknown it can be estimated using a point source. When n is unknown

we can sample uniform areas of the image and find the standard deviation and mean.

Statistics for the noise give us the L2-norm ||n||2 = E(n2) = σ2 +µ2. We want to find

a function f0 that reduces the noise as much as possible. That is, since

g −Hf = n

we want to find an f0 that minimizes

||g −Hf0||2 = ||n||2

where

||n||2 = n · n and ||g −Hf0||2 = (g −Hf0) · (g −Hf0).

63

We can think of this as minimizing the function T where

T (f) = ||g −Hf ||2.

If we assume f0 minimizes T (f) then

(∂fT)(f0) = ∂f (g −Hf)(g −Hf)|f=f0 = 0.

Notice that

∂fH|f0 = lim
t→0

H(f0 + tf)−H(f0)

t

and since H is linear we have ∂fH = limt→0H
(

(f0+tf−f0)
t

)
= H(f). So

∂fT (f0) =∂f (g −Hf̂)T (g −Hf̂)|f=f0

=− 2HT (g −Hf0).

Since ∂fT (f0) = 0, we have

0 =− 2HT (g −Hf0)

=g −Hf0

and therefore

f0 = H−1g.

In equation (4.1) we saw that H can be written as H = WΛW−1. So

f0 = H−1g = (WΛW−1)−1g = WΛ−1W−1g

64

thus

W−1f0 = Λ−1W−1g.

Since the elements of W−1 are the elements in the discrete Fourier transform and

Λ = H we can re-express this formula as

F0 =
G

Fh
.

This image restoration approach is referred to as inverse filtering. Note that compu-

tational difficulties occur when H is close to zero. Since our degradation model (with

the discrete Fourier transform applied) is

G = Fh+N

then

G

Fh
= F +

N

Fh

and

F0 = F +
N

Fh
.

If Fh is close to zero the term N
H

would dominate the restoration result F−1F̂ [3].

4.7 Wiener Filter

In this section we reconsider the degradation model

g = Hf + n

65

where we want to find a f0 that estimates the image subject to the constraint

||g −Hf0||2 = ||n||2

and a smoothing condition which minimizes

||Pf0||2 = ||p ∗ f0||2

where p is a Laplacian filter. This optimization problem is solved using Lagrange

multipliers. For simplicity we present the solution in one dimension. We need

5f (||Pf ||2) − λ 5f (||g − Hf0||2) = 0 at f = f0. Thus each directional deriva-

tive of (||Pf ||2−λ||g−Hf0||2) must be zero at f0. Computing directional derivatives

of a linear operator P at f0, we obtain

∂f (||Pf ||2)|f0 =
∂

∂t

∣∣∣∣
0

||P (f0 + tf)||2

=
∂

∂t

∣∣∣∣
0

(P (f0 + tf) · P (f0 + tf))

=
∂

∂t

∣∣∣∣
0

((Pf0 + tPf) · (Pf0 + tPf)

=
∂

∂t

∣∣∣∣
0

(Pf0 · Pf0 + 2tPf0 · tPf + t2Pf · Pf)

=2Pf0 · Pf

Here we regard f, f0 as vectors and P as a matrix. Thus the Lagrange multiplier

condition becomes

Pf0 · Pf − λ(g −Hf0) ·Hf = 0

66

for all f . Thus

(P TPf0 − λHTg + λHTHf0) · f = 0

for all f and hence

(P TP + λHTH)f0 − λHTg = 0.

Thus

(HTH +KP TP)f0 = HTg

where K is a constant. Apply the Fourier transform, using Hf = h∗f and Pf = p∗f

(FhFh+KFpFp)F0 = FhG

we obtain the Wiener filter

F0 =
FhG

|Fh|2 +K|Fp|2
.

Now K is chosen to minimize the noise ||n||2 = ||Fn||2 ∼= ||G − (Fh)F0||2 using

an iterative technique or through experimentation.

In Figure 4.5 (a) we have a picture of a tire. In (b) a motion blur is simulated

through convolution with Gaussian noise that has µ = 0 and σ2 = 0.0001. In (c)

inverse filtering is applied to restore the image. In (d) the Wiener filter is applied,

producing a much clearer result.

67

Figure 4.5

(a) Original Tire (b) Tire with Noise and Motion Blur

(c) Tire Restored with Inverse Filtering (d) Tire Restored with Wiener Filtering

68

MATLAB codes

1. Image Negative
i=imread(‘tire.tif’);
i=255-i;
figure; imshow(i2);

2. Thresholding
i=imread(‘saturn.png’);
imshow(i);
i=rgb2gray(i); % use if you need to covert an RGB image to black and white.
figure; imshow(i)
i=mat2gray(i); %coverts image from [0, 255] to [0,1]
level=.7; % thresholding value you can adjust
i2=im2bw(i, level);
figure; imshow(i2);

3. Gamma Correction i=imread(‘cameraman.tif’);
imshow(i);
i=mat2gray(i);
I=imadjust(i, [], [], 1); % identity function where gamma=1
figure; imshow(I);
I2=imadjust(i, [], [], .5); % gamma= 0.5 brightens image
figure; imshow(I2);
I3=imadjust(i, [], [], 2); % gamma=2 darkens image
figure; imshow(I3)

4. Histogram Equalization
i=imread(‘pout.tif’);
imshow(i);
figure; imhist(i);
figure; histeq(i);

5. Smoothing Filter
i=imread(‘coins.tif’);
imshow(i);
f=(1/9)*[1 1 1; 1 1 1; 1 1 1]
conv=imfilter(i,l);
figure; imshow(conv);

6. Laplacian Filter
i=imread(‘moon.tif’);
i=im2double(i);

69

imshow(i);
f=[0 1 0; 1 -4 1; 0 1 0]
conv=imfilter(i,f);
figure; imshow(conv, []); title(‘Edges found by the Laplacian’);
I=i-conv;
figure; imshow(I); title(‘Sharpened Image’);
f2=[1 1 1; 1 -8 1; 1 1 1]
conv2=imfilter(i,f2);
figure; imshow(conv2, []); title(‘Edges found by the Extended Laplacian’);
I2=i-conv2;
figure; imshow(I2); title(‘Sharpened Image 2’);
f3=f*7;
conv3=imfilter(i, f3);
figure; imshow(conv2, []); title(‘Edges found by Laplacian Boost’);
I3=i-conv3;
figure; imshow(I3); title(‘Over Sharpened Image’);

7. Fourier Transform of an Image
i=imread(‘coins.png’);
imshow(i); title(‘Original Image’);
I=fft2(i);
S=abs(I);
figure; imshow(S, []); title(‘Fourier Transform’);
Ic=fftshift(I);
Sc=abs(Ic);
figure; imshow(Sc,[]); title(‘Centered Fourier Transform’);
S2=log(1+Sc);
figure; imshow(S2, []); title(‘Logged Centered Fourier Transform’);

8. Adding Noise to an Image
f=imread(‘cameraman.tif’);
g=imnoise(f, ‘gaussian’, 0, 0.02); % first number is the mean, second number is
the variance
g2=imnoise(f, ’salt & pepper,’ .1); % .1 corresponds to the percent of the image
affected with noise
imshow(f);
figure; imhist(f); title(‘Original Histogram’);
figure; imshow(g); title(’Gaussian Noise’);
figure; imshow(g2); title(’Salt & Pepper Noise’);
figure; imhist(g); title(‘Noisy Gaussian Histogram’);
figure; imhist(g2); title(‘Noisy Salt & Pepper Histogram’);

8. Wiener Filter

70

close all;
C=imread(‘tire.tif’);
C=im2double(C);

%%Adding Motion Blur%%
LEN =40;
THETA = 11;
PSF = fspecial(‘motion’, LEN, THETA);
blur = imfilter(C, PSF, ‘conv’, ‘circular’);
%%Using Weiner to Restore Image%%
wnr1 = deconvwnr(blur, PSF, 0);

%%Adding Noise to Blurred Image%%
noise mean = 0;
noise var = 0.0001;
blurred noisy = imnoise(blur, ‘gaussian’, ... noise mean, noise var);

%%Using Weiner to Restore Image with K=0%%
wnr2 = deconvwnr(blurred noisy, PSF);

%%Restoring Image with Estimated K%%
signal var = var(C(:));
wnr3 = deconvwnr(blurred noisy, PSF, noise var / signal var);

%%Images without Noise%%
imshow(C); title(‘Tire’);
figure; imshow(blur); title(‘Motion-Blurred Image’);
figure; imshow(wnr1); title(‘Restored Image’);
i=abs(wnr1-C);
figure; imshow(i);
%%Images with Noise%%
figure; imshow(blurred noisy); title(‘Motion-Blurred Image with Added Noise’);
figure; imshow(wnr2); title(‘Restored Image with K=0’);
figure; imshow(wnr3); title(‘Restored Image with Estimated K’);

REFERENCES

[1] Diliff (2006). Clock Tower-Palace of Westminster, London-September 2006.
Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Clock Tower -
Palace of Westminster, London - September 2006.jpg.

[2] Folland, G. (1992). Fourier Analysis and its Applications. Wadsworth &
Brooks/Cole Mathematics. Brooks/Cole Publishing Company, California.

[3] Gonzalez, R. and Woods, R. (1993). Digital Image Processing. Addison-Wesley
Publishing Company.

[4] Gonzalez, R. and Woods, R. (2004). Digital Image Processing using MATLAB.
Prentice Hall.

[5] Guard, U. S. C. (2013). USCG Cape Lookout. Public Domain. Wikimedia Com-
mons, http://commons.wikimedia.org/wiki/File:USCGCape Lookout.jpg.

[6] Jcwf (2006). Panda Closeup. Public Domain. Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:Panda closeup.jpg.

[7] Murugappan, S. (2012). Eiffel Tower at Night. Public Domain. Wikimedia Com-
mons, http://commons.wikimedia.org/wiki/File:Eiffel tower at night WLM.JPG.

[8] Sapiro, G. (2013). Image and Video Processing: From Mars to Hollywood with a
Stop at the Hospital. Duke University.

