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CHAPTER 1: STATISTICAL PROCESS CONTROL AND CONTROL CHARTS 

Overview of Statistical Process Control 

 In a wide variety of applications, it is desirable that some particular process 

results in reliably similar products. These products will have one or more variable which 

must remain within acceptable ranges or tolerances in order to be considered viable. 

Processes that result in these reliable similar products are said to be “in-control.” 

 Processes do not remain in-control indefinitely; at some time after the process 

begins, something will affect a change in the process which results in unacceptable 

products. The agent of this change is referred to as an “assignable cause.” Once an 

assignable cause occurs, the process status becomes “out-of-control.” 

 Out-of-control processes are undesirable. They result in the generation of 

waste/scrap, they take away from the production of viable products, and they require 

costly fixes to process equipment. It is therefore desirable to implement some program 

of monitoring to ascertain the control status (in-control or out-of-control) of a process. 

This program usually relies on assumed or known statistical properties (distribution, 

parameters) for the variables to be controlled and assignable causes which may occur 

coupled with a sampling regimen. The overall program is referred to as statistical 

process control (SPC). 

Control Charts 

 One particular tool for the implementation of SPC is the control chart. A control 

chart is a graphic representation of sequential sample statistics coupled with a rule or 

rules to indicate whether the sample statistics are likely coming from an in-control or 

out-of-control process. A process engineer will plot sequential sample statistics on the 
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graph according to pre-determined chart parameters. After each statistic is plotted, it is 

checked against the rule or rules of the chart. If chart indicates the process is in-control, 

the process is allowed to continue; if the chart indicates the process is out-of-control, a 

signal is generated and the process is stopped while a search for an assignable cause 

is carried out. 

 Control charts were originally developed by Walter Shewart during the first half of 

the 20th century. These so-called Shewart Charts, also known commonly as Xbar 

charts, plot the sample mean of fixed size samples at regular intervals; e.g. the sample 

mean of a sample of size 10 every hour. The chart has upper and lower control-limits 

drawn at thresholds which are deemed significantly unlikely (at some prescribed level of 

significance) for a process which is in-control; e.g., 3 standard deviations away from the 

process mean in either direction. A signal is generated when the sample mean falls 

either above the upper control limit or below the lower control limit.1 

 Since the sample statistic is a measure of a random variable, there is always a 

chance that the plotted statistic will fall outside of the control limits when the underlying 

process is actually in-control. When this occurs, i.e., a signal is generated when no 

assignable cause exists, it is said that a false signal has occurred. False signals are 

undesirable as they stop an in-control process, wasting time and money while a search 

for a non-existent assignable cause is carried out. 

CUSUM Control Charts 

 As process engineers required more sensitive analysis of the process control 

status, ever more sophisticated rules and charts were developed. One type of control 

chart, developed by Page during the mid 20th, century was called the cumulative sum 

                                            
1
 Nelson, Lloyd S. Control Charts. Wiley, 2005 
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(CUSUM) chart. This chart plots sequential sums of the sample statistic and compares 

the result to some threshold of allowable change in the overall trend of the sum. 

Because the chart uses a sequential sum, information from previous samples is 

combined with information from current samples, giving a so-called "head-start" on the 

detection of assignable causes. 

 The original chart proposed by Page plots a sum of sequential sample scores,   , 

at regular intervals. The sample scores are chosen so that the expected value of      

for an in-control process, and the expected value of      for an out-of-control process. 

When the distance between the most recent plotted statistic and the minimum plotted 

statistic is greater than some control-limit, a signal is generated. This is summarized by 

the following2: 

 

(1)    ∑   
 
    

 

 The plotted statistic is (1), and a signal is generated if       {  }        

An example chart follows. 

                                            
2
 Page, E. S. "Continuous Inspection Schemes." Biometrika 41.1/2 (1954): 100-15. 
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Fig. 1 When the process is in-control, the plotted sums will tend to move along the path 
given by (=); when the process is out-of-control the plotted sums will tend to move along 
the path given by (-).3 
 
From the above chart it appears that an assignable cause likely occurred between the 

seventh and eighth sample, and a signal was generated by plotting the eleventh sample 

statistic. 

Refinements to the CUSUM chart 

 One refinement to the CUSUM chart is proposed by Barnard; by subtracting the 

expected score,   , from each sample score,   , the expected value of the sample 

statistic becomes zero. Hence the CUSUM,   , will tend to remain around zero. The 

plotted statistic is then given as the following: 

 

(2)    ∑ (     )
 
    

 

                                            
3
 Page, E. S. "Continuous Inspection Schemes." Biometrika 41.1/2 (1954): 100-15. 
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 A "V" shaped cut-out of half angle   is superimposed a distance   from the most 

recently plotted statistic. If any portion of the segments joining the plotted statistics fall 

outside the arms of the so-called V-mask or their extensions, either above the upper 

arm or below the lower arm, a signal is generated.4 The figure below illustrates a typical 

CUSUM chart with such V-masking. 

 

Fig. 2 The plotted statistic is centered around 0 and a superimposed V-mask is added 
to determine the control status of the process.5 
 
 A recently proposed refinement to the CUSUM control chart is given by Wu and 

Yang represented by (3). The first plotted statistic is 0. Subsequent sample scores are 

standardized by subtracting their expected value and dividing the result by the standard 

deviation; this standardized result is known as the z-score. This z-score is added to the 

previous plotted statistic and a reference value,  , is subtracted. The plotted statistic is 

the maximum between this number and 0.6  

 

(3)    {
         
    {  (     |  |   )}        

 

                                            
4
 Barnard, G. A. "Control Charts and Stochastic Processes." Journal of the Royal Statistical Society. 

Series B (Methodological) 21.2 (1959): 239-71. 
5
 Ibid 

6
 Wu, Zhang, et al. "A CUSUM Chart using Absolute Sample Values to Monitor Process Mean and 

Variance".IEEE , 2009. 414-418. 



  

6 
 

 

 In-control process will result in a plotted statistic,    , so that     .  Shifts in the 

controlled variable resulting from a process running out-of-control will tend to increase 

the plotted statistic until it crosses some the control-limit,  . When     , a signal is 

generated. 

Variable Sample Size and Interval Control Charts 

 For all of the schemes presented previously there has been either an implicit or 

explicit assumption that sample sizes and the intervals at which the samples are taken 

are both constants. Charts which follow these assumptions are referred to as fixed 

sample size and sampling interval (FSSI) charts. The appeal of these charts is their 

simplicity. 

 Other schemes exist, however, which allow for the sample size, sampling 

interval, or both to vary based on the most recent data from our chart. These are 

referred to alternatively as variable sample size (VSS), variable sample interval (VSI), or 

variable sample size and sample interval (VSSI). These charts allow the process 

engineer to take larger samples, more frequent samples, or both, when recent data 

indicates that the process may be out-of-control, even if a signal has not been 

generated. The advantages of each strategy are as follows. 

 By taking larger sample sizes, the process engineer increases the certainty that 

the plotted statistic is close to the true underlying parameter for the variable in question. 

The effect has two-fold benefits: it decreases the chance of a (false) signal if the 

process is actually in-control, and increases the chance of a (true) signal if the process 

is actually out-of-control. 
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 Alternatively, by sampling more frequently, the amount of time which elapses 

between a process running out-of-control and a signal being generated is decreased. 

This decreases the time spent out-of-control. Less time spent out-of-control means less 

scrap/waste is generated and less time is wasted producing unacceptable products. 

 An example of a simple VSSI chart would be a two-stage Xbar chart with control 

limits, warning limits, sample size  {     } and sampling interval   {     }. If the 

plotted statistic (sample mean) falls within the warning limits, the sampling size and 

interval take on values       respectively. If the plotted statistic falls outside the warning 

limits but within the control limits, then the sample size and interval take on values       

respectively. 

 Carolan et al. offer tweak on such a chart by proposing a continuously variable 

sampling interval. A linear map from a maximum sampling interval to a minimum 

sampling interval is created which depends upon the relative extremity of the previous 

sample statistic to the extremity of the control limit. Hence sampling interval is a strictly 

decreasing function of extremity of most recent sample as summarized below: 

 

(4)        {    
 (  )  (|    |)

 (  )    
} 

 

Here    represents the     sampling interval,   represents the minimum 

allowable sampling interval,   represents the maximum allowable sampling interval,    

represents the standardized score of the upper control-limit,     represents the 

standardized score of the (   )  , i.e. previous, sample statistic, and   is the 

standard normal distribution’s cumulative density function (CDF).  By combining this 
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continuously variable sampling interval with a two-stage sample size Xbar chart, 

Carolan et al. report economic savings over other similar VSSI Xbar charts.7 

Extension of VSSI to CUSUM charts 

 This work extends the advances of Carolan et al. to CUSUM control charts. 

Under a control chart scheme similar to that mentioned in Wu and Yang, maps are 

created from the extremity of the CUSUM relative to the control limit (hereafter referred 

to as the “alarm boundary”) to both sampling size and sampling interval. A shape 

parameter for each map is introduced which influences the rate at which the control 

chart moves from its maximum sampling interval to minimum sampling interval or from 

its minimum sampling size to its maximum sampling size. 

 Using the notion of long-run hourly cost (LRHC) discussed in the next chapter as 

a measure of control chart economic performance, competing charts are compared and 

chart parameters are optimized. A comparative study of such “economically designed” 

CUSUM charts to similarly designed Xbar charts under Carolen et al.’s scheme is 

undertaken. Economic savings are discovered and reported.

                                            
7
 Carolan, CA, J.F. Kros, and S.E. Said. "Economic Design of Xbar Control Charts with Continuously 

Variable Sampling Intervals." QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL 26.3 
(2010): 235-45. 



 

 

CHAPTER 2: ECONOMIC DESIGN AND LONG RUN HOURLY COST (LRHC) 

Economic Design of Control Charts 

 Economic design of control charts refers to the directed selection of chart 

parameters with the goal of optimizing some economic measure of performance for the 

associated chart. The economic measure of chart performance is up to the “designer,” 

and is based on whatever economic quality is desired. These may be minimum 

expected sampling cost, minimum expected false signal costs, etc. The economic 

measure used herein for economic design will be an all-encompassing metric of 

expected process monitoring cost over time referred to as long-run hourly cost (LRHC). 

 LRHC is an account of the expected total cost of running a control chart from the 

time the process begins in-control until a true signal is generated, an assignable cause 

is located and repaired, and the chart begun again divided by the expected total time for 

the same. The time frame between the fixing of assignable causes is referred to as a 

cycle of the chart. Let    be the random total cost of completing a cycle of some chart 

and    be the random total time for the same, finally let  ( ) be the expected value. 

LRHC is then given as the following: 

 

(5)       
 (  )

 (  )
 

 

 As various parameters of our CUSUM chart result in different associated LRHCs, 

we compare LRHCs of competing control charts under a set of assumed constraints 

and the chart with the minimum LRHC is preferred. This is what we refer to as the 

economic design of the CUSUM chart. A computer search algorithm for the R/S-Plus 
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statistical environment, detailed in Appendix B, is used to carry out the design process 

via Markov techniques described in the next chapter. 

Discussion of LRHC Components 

 The expected total cost,  (  ), will depend upon the following cost components: 

 Sampling Costs 

 Out-of-control Costs 

 False-Signal Search Costs 

 Assignable Cause Repair Costs 

Let    represent the cost associated with sampling one unit,    represent the hourly cost 

of an out-of-control process,    represent the cost of searching for a false signal, and    

represent the hourly cost of repairing an assignable cause. If  ( ) represents the 

expected total number of samples over one cycle of the chart,  (    ) represents the 

expected time out-of-control over one cycle,   ( ) represents the expected number of 

false signals,    represents the expected time to determine a signal is false, and    

represents the expected time for repairing a true signal, then expected total cost per 

cycle is the following: 

 

(6)  (  )     ( )     (    )     ( )     

  

Similarly if  (  ) is the expected time the process is in operation over one cycle, 

noting that the process stops whenever a true or false signal is generated while a 

search for an assignable cause is carried out, then the expected total time for one cycle 

is the following: 
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(7)  (  )   (  )     ( )     

 

Combining these results, we see that LRHC becomes: 

 

(8)      
   ( )    (    )    ( )     

 (  )    ( )   
 

 

 We assume {                 } to be known for some processes. We discuss the 

calculation of  ( ),  (    ),  ( ), and  (  ) in Chapter 4; these calculations require 

the use of Markov techniques discussed in Chapter 3 and are controlled by the 

selection of chart parameters.



 

 

CHAPTER 3: MARKOV CHAINS AND USEFUL PROPERTIES 

Markov Chains and the Transition Probability Matrix 

 Consider a system which randomly transitions between states on a defined state 

space. Such a system will be considered a Markov chain if the distribution of the next 

state in the sequence depends only on the current state, and is independent of the 

sequence of previous states. More formally, let            be a sequence of random 

variables. This sequence is a Markov chain if 

  (      |                             )     (      |     ) 

The values which each random variable may take come from some set   which 

represents the state space of the Markov chain. For our purposes we consider only 

finite state spaces. 

If our state space is constituted by   possible states,   {              }, and 

    represents the probability that our Markov chain currently in state    will next be in 

state   , we can organize an     matrix,  , such that        . Since these entries are 

probabilities,         for all     {      }. This matrix is referred to as the 

Transition Probability matrix for our associated Markov chain because its entries are the 

probabilities of undergoing a transition from one state to another. Since each row 

represents all possible transitions from some state  , the sum of any row of our matrix   

will be 1. 

 

(9) ∑      
 

   
 

 

Our matrix will have the following form: 
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11 12 1 1

21 22 2 2

1 2

1 2

1 2

1

2

i m

i m

i i ii im

m m mi mm

state i m

p p p p

p p p p

P

i p p p p

m p p p p

  

The matrix   forms the basis of all Markov analysis and as such is the backbone of our 

model here. 

Transient and Recurrent States 

 Within a Markov chain, we can classify two useful types of states: those to which 

we will eventually return once we leave, and those for which there is a chance we may 

not return once we leave. These types of states are called recurrent and transient 

respectively. Formally, if    represents the probability that, starting in state  , our Markov 

chain will ever re-enter state  , then   is a recurrent state if      and transient if     . 

 Recurrent states are just that: states which re-occur over and over again. 

Transient states on the other hand are states which occur only a finite number of times 

over the horizon of the Markov chain. Eventually, our Markov chain no longer transitions 

back to any of the transient states. It is then of interest to calculate the expected number 

of times a transient state will be visited before our chain is “absorbed” into some 

recurrent state or states. 

Expected visits to Transient States 

 To calculate the expected number of visits to transient states over the horizon of 

our Markov chain, we perform some basic matrix calculations. First we define a matrix 
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   which is the matrix of transition probabilities between transient states, formed by 

removing any recurrent states from our matrix  . Let   {  } such that    is transient. 

 Next, we define the matrix   to be the matrix of expected visits to each state, i.e. 

        represents the total number of times a Markov chain currently in   will visit state 

 . If we condition on the first transition from   to some state  , then the expected number 

of visits to state   is 

 

(10)         ∑                      {
        
        

 

 

This translates into the following matrix equation: 

(11)         

 

Solving for   yields: 

 

(12)   (    )
   

 

 We now have the matrix    whose elements     comprise the expected number of 

visits to a transient state   given that we start in state  . For example, the sum of the first 

row of this matrix would be the total number of visits to transient states over the horizon 

of a Markov chain given that our chain starts in state   . 

A Numerical Example 

As an example, consider a Markov chain which undergoes transitions between 

four states. Let the following transition probability matrix represent the Markov chain: 
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1 2 3 4

1 1/ 4 1/ 4 3/8 1/ 4

2 1/ 2 0 1/ 2 0

3 2 / 5 2 / 5 1/10 1/10

4 0 0 0 1

state

P   

 

Here, state 4 is what is referred to as an absorbing state; once our process 

enters state four, it remains there. Thus state four is a recurrent state. The other states 

are all transient states. To calculate the number of visits to the transient states, we need 

to eliminate the recurrent states from our transition probability matrix, resulting in the 

modified matrix of transient state probabilities: 

 

1 2 3

1 1/ 4 1/ 4 3/8

2 1/ 2 0 1/ 2

3 2 / 5 2 / 5 1/10

T

state

P   

 

We now calculate the matrix of visits to transient states, S, by subtracting this 

matrix from the identity matrix and inverting the result: 

 

  

[
 
 
 
 
   

 

 
 

 

 
 

 

 

 
 

 
    

 

 

 
 

 
 

 

 
  

 

  ]
 
 
 
 
 
  

 

[
 
 
 
 
  

  

  

  

  

 
  

  

  

  

 
  

  

   

  ]
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Reading across the top row has the interpretation that if our process starts in 

state one, we would expect to be in state one 8 times, state two 66/13 times, and state 

three 80/13 times, before being absorbed into state four. 

Applications of Markov Chains to CUSUM Control Charts 

 The control chart we examine is a CUSUM chart, and as such the distribution of 

the next CUSUM statistic depends only upon the current statistic. Hence we can model 

our control chart as a Markov chain. As every cycle of our CUSUM chart ends with a 

true signal, the state which represents a true signal is a recurrent state; once we have 

received a true signal, we never return to any of the previous states during the same 

cycle. Hence all the other stages of the CUSUM chart are represented as transient 

states. 

 Thus, the calculation of the expected visits to transient states plays a critical role 

in our LRHC calculations. Note that this calculation tells us how many false signals 

occur, and also plays a critical role, along with our sampling intervals and sample sizes, 

in calculating the expected time out-of-control, expected number of samples, and 

expected time the process is operating. Further details on these calculations are located 

in Chapter 4 and Appendix A.



 

 

CHAPTER 4: A MARKOV MODEL OF CUSUM CONTROL CHART ECONOMIC 

PERFORMANCE 

Model Assumptions and Justification 

 In order to model our CUSUM chart using the Markov techniques discussed in 

the previous chapter, we make three assumptions about our process: 

 

A1. When our process is in-control, our samples come from a  (   ) distribution where 

    are known  

 

A2. When our process is out-of-control, our samples come from a  (      ) 

distribution where       are known 

 

A3. The amount of time,  , until our process shifts out-of-control is a random variable 

with    (      ) distribution where   is known 

 

A1 and A2 are assumptions which allow us to take advantage of the CDF of the 

standard normal distribution. A3 is assumed because of the memoryless property of the 

exponential distribution. The memoryless property of the exponential distribution allows 

us to say that the chance our process will shift out-of-control over the next time interval 

given that it has yet to shift out-of-control is the same as the probability that it would shift 

out-of-control over that interval if the process had just started. This assumption allows 

us calculate the probability of a control status change independently of the elapsed 

time. 
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Finally, even though our CUSUM statistics will come from continuous 

distributions, in order to take advantage of the Markov techniques outlined in Chapter 3 

we must model the CUSUM as proceeding in discrete steps. The following section 

outlines how this is done using the chart parameters under the control of the designer. 

The CUSUM Chart and Associated Design Parameters 

 Our CUSUM chart will make use of nine design parameters which are under the 

control of the designer: 

  The alarm boundary 

   The step size by which our CUSUM statistic may increase or decrease. This 

value must divide   to an integer. 

  The reference value to be subtracted from our CUSUM statistic 

     The minimum sample size 

     The maximum sample size 

   The shape parameter which determines the rate at which we move from our 

minimum sample size to our maximum sample size 

     The minimum sampling interval 

     The maximum sampling interval 

   The shape parameter which determines the rate at which we move from our 

maximum sampling interval to our minimum sampling interval 

Our CUSUM statistic will be the following: 

 

(13)    {
         

   {  (  ⌊
     |  |  

  
⌋)}         
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Here    is the standardized sample mean of the     sample and ⌊ ⌋ is the floor function. 

In this way, our CUSUM will proceed in discrete steps of size   , always rounded down 

to the nearest integer multiple of   . A signal will be generated if     . 

VSSI Using Maps to break the ‘Curse of Dimensionality’ 

As we have seen in previous work, allowing the sample size and interval to vary 

as the plotted statistic becomes more extreme is economically advantageous. Note that 

by using the parameters outlined above, our CUSUM breaks up into   
 

  
   discrete 

levels. If we attempted let each of these levels have its own, independently controllable, 

associated sample size and sampling interval, we would quickly run into issues of 

computational complexity. 

For instance consider a chart with alarm boundary     and step size        . 

We then have 301 individual states, each with their own associated, independently 

controllable sample and sampling interval, for a total of 602 parameters which must be 

optimized just for those two facets (sample size and interval) alone. This so called 

‘curse of dimensionality’ quickly causes our design algorithm to become computationally 

complex, begging for a simplification. 

As a solution to the ‘curse of dimensionality’ we propose two maps from the 

extremity of the most recent statistic: one to a sample size and another to a sampling 

interval. As an extension, we allow non-linear maps by the addition of two rate 

parameters,  ,   , one for each map. Consider the following possible mappings. 
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Fig. 3 By altering     ,      and    we can generate an infinite number of mappings 
from our CUSUM sum level   to a sample size. 
 

While the above figure illustrates a continuous map for sample size, we of course 

must introduce integer rounding as sample sizes may only be integers. However, by 

controlling only three parameters, we are able to create in infinite number of possible 

maps which satisfy the need for greater sample sizes as we approach the alarm 

boundary. Similarly consider the following possible mappings for sampling interval. 
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Fig. 4 By altering     ,      and     we can generate an infinite number of mappings 
from our CUSUM sum level,  , to a sampling interval. 
 
 Again using only three parameters we are able to create an infinite number of 

possible mappings for sampling intervals which satisfy the need for shorter sampling 

intervals with more extreme plotted statistics. Here, time is continuous, as is our 

mapping; however in practice this continuity will be limited by the precision desired and 

available to the process engineer. 

Modeling the CUSUM as a Markov Chain 

Note that by using the parameters outlined above our CUSUM breaks up into 

  
 

  
   discrete levels. Consider also that we have two control states, either in-

control or out of-control. Thus we will model our CUSUM control chart as a two 

dimensional Markov chain with    discrete states, (   ), where   {             
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    } represents the sum-level and   {   } represents the control status with 

  indicating “in-control”   indicating “not in-control/out-of-control.” Also note that the 

states (   ) and (   ) correspond to “False Signal” and “True Signal,” respectively. 

We represent out transition probability matrix, , generically as follows:



 

2
3
 

state (0,I) (Δs,I) (2Δs,I) … (b-Δs,I) FALΔsE (0,N) (Δs,N) (2Δs,N) … (b-Δs,N) TRUE

(0,I) p (0,I),(0,I) p (0,I)(Δs,I) p (0,I),(2Δs,I) … p (0,I),(b-Δs,I) p (0,I),(b,I) p (0,I),(0,N) p (0,I)(Δs,N) p (0,I),(2Δs,N) … p (0,I),(b-Δs,N) p (0,I),(b,N)

(Δs,I) p (Δs,I),(0,I) p (Δs,I)(Δs,I) p (Δs,I),(2Δs,I) … p (Δs,I),(b-Δs,I) p (Δs,I),(b,I) p (Δs,I),(0,N) p (Δs,I)(Δs,N) p (Δs,I),(2Δs,N) … p (Δs,I),(b-Δs,N) p (Δs,I),(b,N)

(2Δs,I) p (2Δs,I),(0,I) p (0,I)(Δs,I) p (Δs,I),(2Δs,I) … p (Δs,I),(b-Δs,I) p (Δs,I),(b,I) p (2Δs,I),(0,N) p (0,I)(Δs,N) p (Δs,I),(2Δs,N) … p (Δs,I),(b-Δs,N) p (Δs,I),(b,N)

… … … … … … … … … … … … …

(b-Δs,I) p (b-Δs,I),(0,I) p (b-Δs,I)(Δs,I) p (b-Δs,I),(2Δs,I) … p (b-Δs,I),(b-Δs,I) p (b-Δs,I),(b,I) p (b-Δs,I),(0,N) p (b-Δs,I)(Δs,N) p (b-Δs,I),(2Δs,N) … p (b-Δs,I),(b-Δs,N) p (b-Δs,I),(b,N)

FALΔsE 1 0 0 … 0 0 0 0 0 … 0 0

(0,N) 0 0 0 … 0 0 p (0,N),(0,N) p (0,N)(Δs,N) p (0,N),(2Δs,N) … p (0,N),(b-Δs,N) p (0,N),(b,N)

(Δs,N) 0 0 0 … 0 0 p (Δs,N),(0,N) p (Δs,N)(Δs,N) p (Δs,N),(2Δs,N) … p (Δs,N),(b-Δs,N) p (Δs,N),(b,N)

(2Δs,N) 0 0 0 … 0 0 p (2Δs,N),(0,N) p (0,N)(Δs,N) p (Δs,N),(2Δs,N) … p (Δs,N),(b-Δs,N) p (Δs,N),(b,N)

… … … … … … … … … … … … …

(b-Δs,N) 0 0 0 … 0 0 p (b-Δs,N),(0,N) p (b-Δs,N)(Δs,N) p (b-Δs,N),(2Δs,N) … p (b-Δs,N),(b-Δs,N) p (b-Δs,N),(b,N)

TRUE 0 0 0 … 0 0 0 0 0 … 0 1
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 The transition probability matrix above can be thought of as having 4 distinct 

quadrants: one in which the transitions are between in-control states, one with 

transitions from in-control states to out-of-control states, one with transitions between 

out-of-control states, and one with transitions from out-of-control states to in-control 

states. However once an assignable cause occurs, our process does not randomly 

return to in-control; thus all of the transition probabilities in this later quadrant are 0.  

Also, once we have reached a true signal, we never re-enter any other state 

within the same cycle, effectively absorbing our Markov chain in the state “True Signal.” 

Conversely after a false signal we will automatically restart our sum-level at zero and 

our process is still in-control. Hence we have two transitions for which the probability is 

guaranteed to be 1: from (   ) to (   ) and from (   ) to (   ). 

 This leaves three types of control transitions as noted above, each with three 

types of sum-level transitions: to a sum-level of zero, strictly between zero and  , and   

or greater, for a total of nine cases which must be considered in order to complete our 

transition probability matrix. We outline the general formulas for each of these nine 

cases in the following section. 

Formulas and Derivations of Nine Transition Probability Cases 

  Brief derivations of the formulas for the nine remaining cases of transition 

probabilities follow. Full derivations can be found in Appendix A. 

Case 1: (   )  (   )       

Description: From any in-control sum-level to sum-level zero, remaining in-control. 

Formula:   ( (      )     ) (     ) 
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Here   is the standard normal CDF, (      )     {        }, and    is the 

sampling interval associated with the     sum-level. 

 

 Case 1 is calculated as the probability that we remain in-control over the 

sampling interval    multiplied by the probability that the next sum lands in the target 

area. Our target area is anything less than   , since we will round it down to 0 and 

anything less than 0 will round that up to zero. The chance we remain in-control is the 

chance that our time to failure occurs after sampling interval. Hence, we need to 

calculate   (  | |      )    (    ), given    (   ) and      (      ). This 

is   (    )    (| |  (      )  ) which is (     )      (  (      )  )      . 

 

Case 2: (   )  (   )         

Description: In-control state to non-zero in-control state 

Formula: (     )  ( ((    ) )   (  ))   

Here         and the other notes above still apply. 

 

For Case 2, our target is not as wide. We calculate instead the chance of landing 

between our target sum-level and the next highest sum-level; since we are staying 

within control, we again calculate the chance that our failure occurs after our sampling 

interval. This is represented by   (    )    (    | |        ). Rearranging 

yields (     )    ((     )  | |  ((     )    )
 
). This result can be simplified 

by letting        ; (     )      (     (    ) ) . Again, using   to represent 

the standard normal CDF yields the above formula for case 2. 
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Case 3: (   )  (   )     a.k.a. ”FALSE” 

Description: In-control state false signal (cross alarm boundary in-control) 

Formula: [ (   (     ))](     ) 

Here b is the alarm boundary and the other notes above still apply. 

 

 Calculating Case 3 requires our sum-level to reach above the boundary while our 

control status remains in-control. Here we calculate the   (  | |     )    (    ). 

Rearranging yields (     )   (| |       ). Using the complement rule, doubling to 

account for the absolute value, and using   to represent the standard normal CDF gives 

us the above formula for case 3. Here we do not bring the right hand term up to zero 

because   is necessarily greater than   and   is positive so       must be positive. 

 

Case 4: (   )  (   )       

Description: In-control state to state zero out-of-control  

Formula:[ ((      )  √   )   ( (      )  √   )](       ) 

Here    is the sample size associated with sum-level i,   is the standardized mean shift, 

and all previous notes still apply. 

 

Case 4 represents a shift out-of-control during the sampling interval. This shift 

will be reflected in the distribution of our standardized sample statistic, i.e., 

   (√     ) instead of    (   ). To correct for this, we subtract √    off of every 

standardized statistic. However this means we are no longer comparing points that are 
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symmetric about the mean, and must compute each portion separately; before we could 

compute once and double the result. The other change is represented by the probability 

that our exponential time to failure will be less than the sampling interval. Combining 

these concepts allows us derive the above formula for case 4.  

 

Case 5: (   )  (   )        

Description: In-control state to non-zero out-of-control state 

Formula:  ( ((    )  √   )   ( (  )  √   ))  ( (   √   )   ( (  

 )  √   )) (       ) 

 

 As in Case 2, we must include the calculation of our mean shift and the 

probability that our process shifts out-of-control before we begin sampling again. The 

complication introduced by the shift is compounded by the introduction of a non-zero 

value for  ; simplifying by letting         cleans up the formula a bit yielding the 

above for case 5. 

 

Case 6: (   )  (   )      a.k.a. "TRUE" 

Description: In-control state to true signal (cross alarm boundary and go out-of-control) 

Formula: [(   (      √   ))  ( (       √   ))] (       )  

 

 Case 6 requires that our plotted statistic fall above the boundary and that the 

process goes out-of-control. Again recall we must add an amount of √    to our 
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standardized score. This ends up subtracting from both sides; our probabilities will be 

two sided and not symmetric so we must calculate each individually. Finally we multiply 

by the probability that our process shift occurs before the next sample is taken. Letting 

  represent the standard normal CDF generates the above formula for case 6. 

  

Case 7: (   )  (   )       

Description: out-of-control state to state zero out-of-control 

Formula:[ ((     )  √   )   ( (     )  √   )] 

 

Case 8: (   )  (   )        

Description: out-of-control state to non-zero out-of-control state 

Formula: ( ((   )  √   )   ( (  )  √   ))  ( (   √   )   ( (   )  

√   )) 

 

Case 9: (   )  (   )     a.k.a. "TRUE" 

Description: out-of-control state to true signal (cross alarm boundary) 

Formula: [(   (      √   ))  ( (       √   ))]  

 

Cases 7-9 mimic the changes between states of cases 4-6, however we are remaining 

out-of-control; once we are out-of-control, the chance that our next sample is out-of-

control is 100%, so we do not need to multiply by any factor relating to the control status 

of the process. 
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LHRC Calculations Revisited 

 Since we have our Markov model which can generate the transition probability 

matrix for any set of the nine given parameters, we can now more explicitly calculate the 

expected values of  ( ),  (  ),  ( ), and  (    ) as mentioned in Chapter 2 using 

the useful Markov chain properties discussed in Chapter 3. 

 Recall that our Markov chain is made up of    discrete states where   
 

  
  . 

Only the final state, ‘True Signal,’ represented by our two dimensional index (   ) is 

recurrent, the remaining states are transient. Removing this state results in our    

matrix which will be a (    ) (    ) matrix of transient states. We then calculate 

our matrix of visits to transient states,  , as outlined in Chapter 3. Since our process 

begins at 0 and in-control, (   ), the first row of this   matrix gives the expected number 

of visits to every state for a cycle of the chart. 

 To calculate the  ( ) it is enough to check the entry in the   matrix column 

corresponding to state (   ), ‘False Signal,’ which is     . This entry is precisely the 

expected number of visits to the state ‘False Signal’ for a cycle of the chart. 

 To calculate  (  ), the expected time the process is in operation, we calculate 

the sum of the product of the number of visits to the states in which our process is 

operating with the corresponding sampling interval. The states for which the process is 

operating correspond to states (   ) so that   {               } and   {   }. Let 

 (   ) represent the number of visits to the state (   ). We have 

 

(14)  (  )  ∑ ∑  (   )  
    
     {   }  
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Notice we exclude states where the sum-level (first dimension index,  ) is  ; these 

states correspond to signals, which stops our process. The number of visits to these 

states is in the first row of the   matrix, corresponding to entries      through       , and 

       through        . 

 Similarly we calculate the total number of samples,  ( ), using the same 

transient states mentioned above. This time we sum the product of those same  (   ) 

with the sample size corresponding to sum-level  . We have 

 

(15)  ( )  ∑ ∑  (   )  
    
     {   }  

 

 Finally, to calculate expected time out-of-control,  (    ), we subtract the 

expected time until an assignable cause occurs from the expected time the process is in 

operation. By A3, the time until an assignable cause occurs is an exponentially 

distributed random variable with rate  , hence the expected value for this random 

variable is 
 

 
. We have 

 

(16)  (    )   (  )  
 

 
 (∑ ∑  (   )  

    
     {   } )  

 

 
 

 

 Thus LRHC (8) calculation becomes: 

 

(8)      
   ( )    (    )    ( )     

 (  )    ( )   
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(17)      
  (∑ ∑  (   )  

    
     {   } )   ((∑ ∑  (   )  

    
     {   } ) 

 

 
)    (   )     

(∑ ∑  (   )  
    
     {   } )    (   )   

 

 

Economic Design by Algorithmic Programming Using our Markov Model 

 The economic design of our CUSUM control chart is carried out by an 

appropriately written computer search algorithm. This search algorithm takes the 

feasible parameters input by the process engineer along with the known process 

constants, i.e. costs, false signal search and true signal repair time, and rate of 

assignable causes, along with an initial set of parameter values and uses the Markov 

model outline previously to calculate the LRHC for those best guess parameters. 

 Then, allowing the first parameter to vary within its parameter space and holding 

all others constant, the computer program checks the LRHC of all possible values for 

this first parameter. Whenever a lesser LRHC is encountered, the ‘best guess’ for this 

parameter is updated to the value which resulted in the lesser LRHC. Once all values of 

this first parameter have been search over, the computer program moves on to the next 

parameter, holding the others constant. This process is repeated until all parameters 

have been searched over one time. 

 At this point, the computer program compares the LRHC that it started with from 

its initial ‘best guess’ parameters and the LRHC of this first pass of updated ‘best guess’ 

parameters. If the LRHC’s are the same, then the algorithm has reached at least a 

locally optimal point. If the LRHC’s are different, the algorithm begins again with these 

updated ‘best guess’ parameters and searches again. This is continued until an optimal 

set of parameters is found. These parameters, along with the LRHC of the CUSUM 
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control chart are reported to the process engineer, who can then set up and use the 

control chart to monitor the control status of the process. 

An Example of our CUSUM Chart in Operation 

 It may be conceptually helpful to consider the following example of our CUSUM 

chart in operation. Consider the following CUSUM chart with alarm boundary b = 1.5, 

step size s = 0.25, and reference value a = 0.75. Our first plotted statistic will be 0 at 

time 0. 

 

Fig. 5 At time 0, our sum begins at 0 

 

 We then wait some amount of time (the sampling interval associated with being 

in sum-level zero), call it h0, and then will sample at some specified sample size 

(associated with being in sum-level zero) n0. Imagine our standardized sample statistic, 

z1¸is -0.62. We take the floor of (
  |     |     

    
), which is -1, and multiply this by s to get   

-0.25. Since this is less than 0, we again plot 0. 



  

33 
 

 

Fig. 6 After waiting some amount of time, we will plot our next CUSUM statistic; in our 
example, this statistic turns out to be 0 again. 
 

 Since we are still in sum-level zero, we again wait h0 time units before taking our 

sampling of size n0. Now, suppose our sample statistic, z2, is 1.68. We repeat the 

process above to find that our next plotted statistic is     ⌊
(  |    |     )

    
⌋ which is 0.75. 

We then plot the statistic 0.75 at time 2h0.
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Fig. 7 After waiting the predetermined amount of time, we sample again. Our CUSUM 
statistic has increased to 0.75. Since we have moved closer to the alarm boundary, we 
may wish to take a larger sample sooner than if we had remained at zero. 
 

 Our sum-level has now increased to 0.75, which is closer to the alarm boundary; 

we may be concerned that an assignable cause has occurred, but we have not been 

given a signal to action. Instead, we now change our sampling interval to the 

predetermined interval associated with sum-level 0.75, call it h0.75. After waiting this 

amount of time, we conduct another sample, this time of size n0.75. Imagine now that our 

standardized statistic, z3, turns out to be 0.32. Again we plot     ⌊
(     |    |     )

    
⌋ which 

is 0.25. We then plot 0.25 at time 2h0+h0.75. 
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Fig. 8 Having waited the predetermined amount of time due to our last sample, we 
sample again and find that our CUSUM statistic has fallen back to 0.25. Perhaps the 
previous sample was just an anomaly. 

 

We proceed in this fashion until our plotted statistic lands at or above the alarm 

boundary. At that time a signal to action is generated and we investigate for an 

assignable cause. If no cause is found, the signal was a false signal and the sum is 

started again at 0. If an assignable cause is found, it is removed and the process is 

restarted again on a new chart. 

 



 

3
6
 

CHAPTER 5: COMPARATIVE STUDY AND RESULTS 

Preliminary Investigation 

 Some initial test cases designed by the computer search algorithm using 

constants in the study by Carolan et al. indicate few important generalities. First, the 

optimal parameter for    is always the smallest possible value. This observation is 

reasonable because the smaller the value of   , the better the approximation of a 

continuous state space for our Markov Chain. The minimum value of    is restricted by 

the computer processing memory. In our investigation, the minimum feasible value of    

is 0.005. All economically designed CUSUM charts in our investigation use this value of 

  . 

 A surprising result of the preliminary investigation is that for the sampling interval, 

given by the map         (         ) (  (
 

    
)
  

) the minimum feasible value 

of    is always optimal. Notice that the smaller   , the closer the map becomes to a 

discrete step function given piecewise as: 

 

(18)    {
            
             

 

 

This result is unexpected in light of the Carolan et al. study which uncovered 

benefits utilizing a continuous, linear map from statistic extremity to sampling interval. 

An explanation of this is that because of the reference value which our CUSUM 

subtracts off of each statistic, our optimal design will hold our plotted statistic at sum-

level zero almost until an assignable cause occurs; thus, any extremity in the plotted 

statistic is taken as ‘warning’ similar to the 2-stage Xbar chart discussed in Chapter 1. 
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Because of this, the above piecewise function for sampling interval is implemented in 

the design algorithm and lesser LRHC costs are discovered as a result. This eliminates 

the need for the parameter   , hence it is not included in the results reported here. 

Another preliminary finding is that the minimum sampling interval,     , is always 

chosen so for the minimum feasible value. This is expected since the sooner a sample 

is taken after receiving evidence the process may be out-of-control, the sooner the 

process engineer will likely receive a True Signal, decreasing the costly time spent out-

of-control. Hence all CUSUM control charts economically designed by the search 

algorithm chart have           hours. 

Comparison Scenarios 

To gauge the impact of improvements afforded by our CUSUM chart design 

algorithm, we use the sixteen scenarios found in Carolan et al. for comparison. These 

scenarios are outlined below in Table 1.
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  Constants 

S 
c 
e 
n 
a 
r 
i 
o 

                   (   )   

1 $ 2.00  $    500.00  $1,500.00  $1,000.00  2 1 100 0.5 

2 $ 5.00  $    500.00  $1,500.00  $1,000.00  2 1 100 0.5 

3 $ 2.00  $ 1,500.00  $1,500.00  $1,000.00  2 1 100 0.5 

4 $ 5.00  $ 1,500.00  $1,500.00  $1,000.00  2 1 100 0.5 

5 $ 2.00  $    500.00  $3,000.00  $1,000.00  5 1 100 0.5 

6 $ 5.00  $    500.00  $3,000.00  $1,000.00  5 1 100 0.5 

7 $ 2.00  $ 1,500.00  $3,000.00  $1,000.00  5 1 100 0.5 

8 $ 5.00  $ 1,500.00  $3,000.00  $1,000.00  5 1 100 0.5 

9 $ 2.00  $    500.00  $1,500.00  $1,000.00  2 1 100 1 

10 $ 5.00  $    500.00  $1,500.00  $1,000.00  2 1 100 1 

11 $ 2.00  $ 1,500.00  $1,500.00  $1,000.00  2 1 100 1 

12 $ 5.00  $ 1,500.00  $1,500.00  $1,000.00  2 1 100 1 

13 $ 2.00  $    500.00  $3,000.00  $1,000.00  5 1 100 1 

14 $ 5.00  $    500.00  $3,000.00  $1,000.00  5 1 100 1 

15 $ 2.00  $ 1,500.00  $3,000.00  $1,000.00  5 1 100 1 

16 $ 5.00  $ 1,500.00  $3,000.00  $1,000.00  5 1 100 1 

 

Table 1. 16 comparative scenarios 

Key: 

   Cost per sample 

   Hourly out-of-control cost 

   Hourly false signal search costs 

   Hourly assignable cause repair costs 

   Mean time searching for a false signal 

   Mean time repairing a true signal 

 (   ) Expected hours until assignable cause occurs 

  Size process mean shift due to assignable cause 
 

 By loading these above scenarios into the computer search algorithm, the 

following parameters in Table 2 below are found to be optimal for a CUSUM chart as 

described in Chapter 4.
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  Optimized Parameters Results 

S 
c 
e 
n 
a 
r 
i 
o 
 

                        
LRHC 
CUSUSM 

LRHC 
Xbar 

Savings 

1 2.97 1.38 3.65 19 27 0.37  $    39.95   $   40.28  0.83% 

2 2.40 1.35 6.00 19 23 0.29  $    56.94   $   57.13  0.33% 

3 3.08 1.37 2.10 19 34 0.71  $    62.43   $   62.91  0.77% 

4 2.52 1.36 3.35 19 26 0.49  $    91.83   $   92.19  0.39% 

5 3.64 1.41 3.75 20 31 0.45  $    40.45   $   40.58  0.32% 

6 3.13 1.39 6.15 20 26 0.26  $    58.06   $   57.89  -0.29% 

7 3.90 1.39 2.15 20 43 0.86  $    63.19   $   63.22  0.05% 

8 3.29 1.39 3.45 20 30 0.52  $    93.33   $   93.19  -0.15% 

9 3.40 1.45 2.10 6 11 0.93  $    25.27   $   25.41  0.57% 

10 2.95 1.44 3.35 6 9 0.97  $    33.94   $   34.28  1.00% 

11 3.60 1.43 1.05 5 16 0.99  $    36.95   $   37.50  1.48% 

12 3.17 1.42 1.65 5 11 0.85  $    51.79   $   52.71  1.74% 

13 4.31 1.43 1.85 5 14 0.86  $    25.36   $   25.76  1.53% 

14 3.93 1.41 2.95 5 10 0.73  $    34.12   $   34.55  1.24% 

15 4.18 1.45 1.05 5 19 0.95  $    37.27   $   37.69  1.11% 

16 3.88 1.43 1.65 5 13 0.85  $    52.32   $   53.11  1.48% 

*         for all scenarios;           for all scenarios 

Table 2. Results for economically designed CUSUM control chart vs. similar Xbar chart 

Key: 

  The standardized score of the alarm boundary 

  The reference value which will be subtracted from our CUSUM statistic 

     The maximum sampling interval 

     The minimum sample size 

     The maximum sample size 

   The shape parameter which determines the rate at which we move from our 
minimum sample size to our maximum sample size 
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Summary of Results 

 Our economically designed CUSUM control charts perform better, having lower 

LRHCs than similarly designed Xbar charts with continuously variable sampling 

intervals, under all scenarios except scenarios 6 and 8. These two scenarios both have 

the higher cost per sample ($5).  

 Savings for the CUSUM chart range from -0.29% to 1.74% with an average 

savings of 0.78%. Optimal alarm boundaries range from 2.40 to 4.31 standard 

deviations with an average of 3.4 standard deviations. Reference values were fairly 

close together, ranging from 1.35 to 1.45 standard deviations with an average of 1.41 

standard deviations. Maximum sampling intervals range from 1.05 to 6.15 hours with an 

average of 2.89 hours. Minimum sample sizes range from 5 to 20 with an average of 

12.4. Maximum sample sizes range from 9 to 43 with an average of 21.4. The shape 

parameter,   , for the map from minimum sample size to maximum sample size ranges 

from 0.26 to 0.99 with an average of 0.69. 
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APPENDIX A: DERIVATION OF TRANSITION PROBABILITY FORMULAS 

 

1. Case: (   )  (   )     

Formula:   ( ((   )    )     ) (     ) 
Derivation-Given: 

  {               } 
    
       

  
 ̅   

  √  

  (   ) 

   [                 ]                   (  
 

    
)
  

          (   ) 

            (   ) 

            

 (   )(   )    (    | |        )    (    |     ( )) 

*   (  | |  (      ) ) (  (   )) 

    (  | |  (      ) ) (  (   )) 

    (    (      ) )     ( (      )     ) (  (   )) 

  ( (      )   ( ))(  (   )) 
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2. Case: (   )  (   )     

Formula:   ( ((    ) )   (  )) (     ) where         

Derivation- Given: 

  {               } 
  {             } 
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  √  

  (   ) 
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            (   ) 
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   (  | |  (    ) ) (  (   )) 

    (   | |  (    ) ) (  (   )) 

    ( (    )     (  ))     (     (    ) ) (  (   )) 

*  ( (    )   (  ))(  (   )) 

*((    )                                      (    )) 
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3. Case: (   )        

Formula: [ (   (     ))](     ) where b is the alarm boundary 

Derivation- Given: 

  {               } 
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  √  
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4. Case: (   )       

Formula: [(   (      √   ))  ( (       √   ))] (       )  

Derivation- Given: 

  {               } 

   
 ̅  

  √  
  (√     ),   
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  √  
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)
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            (   ) 
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 [  (      √     )    (         √   )](    (   )) 

 [(   (      √   ))   (       √   )] (       )  
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5. Case: (   )  (   )     

Formula:[ ((      )  √   )   ( (      )  √   )](       ) 

Derivation- Given: 

  {               } 
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  √  
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6. Case: (   )  (   )     

Formula: (
( ((    )  √   )   ( (  )  √   ))

 ( (   √   )   ( (    )  √   )) 
) (       ) 

Derivation- Given: 

  {               } 
  {             } 
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  √  
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√   )) (    (   )) 

  *((    )                                      (    )) 
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7. Case: (   )  (   )     

Formula:[ ((      )  √   )   ( (      )  √   )] 

Derivation- Given: 

  {               } 
    
       

   
 ̅  

  √  
  (√     ),   
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8. Case: (   )  (   )     

Formula: ( ((    )  √   )   ( (  )  √   ))  ( (   √   )   ( (  

  )  √   )) 

Derivation- Given: 

  {               } 
  {             } 
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* [ ((    )  √   )   ( (  )  √   )  ( (   √   )   ( (    )  

√   ))  

  *((    )                                      (    )) 
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9. Case: (   )       

Formula: [(   (      √   ))  ( (       √   ))]  

where b is the alarm boundary 
Derivation- Given: 
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APPENDIX B: R/S-PLUS ECONOMIC DESIGN SEARCH ALGORITHM 

Parameter.Search<-function(x,y,z){ 
 
v<-x[1,1:ncol(x)] 
 
#store individual parameters 
 
b<-v[1] 
s<-v[2] 
a<-v[3] 
hmin<-v[4] 
hmax<-v[5] 
h.alpha<-v[6] 
nmin<-v[7] 
nmax<-v[8] 
n.alpha<-v[9] 
 
#store ranges of parameters 
 
b.values<-y[1,2:(1+y[1,1])] 
s.values<-y[2,2:(1+y[2,1])] 
a.values<-y[3,2:(1+y[3,1])] 
hmin.values<-y[4,2:(1+y[4,1])] 
hmax.values<-y[5,2:(1+y[5,1])] 
halpha.values<-y[6,2:(1+y[6,1])] 
nmin.values<-y[7,2:(1+y[7,1])] 
nmax.values<-y[8,2:(1+y[8,1])] 
nalpha.values<-y[9,2:(1+y[9,1])] 
 
#store constants 
 
lambda<-z[1] 
delta<-z[2] 
false.time<-z[3] 
true.time<-z[4] 
sample.cost<-z[5] 
hrly.ooc.cost<-z[6] 
hrly.false.cost<-z[7] 
hrly.true.cost<-z[8] 
 
starting.values<-
c(b,s,a,hmin,hmax,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sample.
cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
 
#########-Begin Long Run Hourly Cost Function-########## 
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LRHC<-
function(b,s,a,hmin,hmax,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,s
ample.cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost){ 
 
r<- round(b/s) 
m <-(2*(r))+1 
P <- matrix(0,m,m) 
states <- seq(0,b-s, by=s) 
rownames(P) <- c((0:((r)-1))*s,"False",(0:((r)-1))*s) 
colnames(P) <- c((0:((r)-1))*s,"False",(0:((r)-1))*s) 
hrange<-(hmax-hmin) 
nrange<-(nmax-nmin) 
hmin.long<-rep(hmin,(length(states)-1)) 
h <- c(hmax,hmin.long) 
n <- nmin + nrange*(states/(b-s))^n.alpha 
n <- round(n) 
P[1:length(states),1] <- 2*(pnorm(a-states+s)-0.5)*exp(-
h*lambda)*as.integer(states<=a+s) 
P[(r+1),1] <- 1 
P[1:length(states),r+2] <- (pnorm(a-states-sqrt(n)*delta+s)-pnorm(-a+states-
sqrt(n)*delta-s))*(1-exp(-h*lambda))*as.integer(states<=a+s) 
P[(r+2):m,(r+2)] <- (pnorm(a-states-sqrt(n)*delta+s)-pnorm(-a+states-sqrt(n)*delta-
s))*as.integer(states<=a+s) 
P[1:length(states),r+1] <- 2*(1-pnorm(b-states+a))*exp(-h*lambda) 
for(j in 2:(r))  { 
q <- states[j] - states + a 
q.sum.s <- pmax(0,q+s) 
q <- pmax(0,q) 
shift <- sqrt(n)*delta 
P[1:length(states),j] <- 2*(pnorm(q.sum.s)-pnorm(q))*exp(-h*lambda) 
P[1:length(states),j+r+1] <- (pnorm(q.sum.s-shift)-pnorm(q-shift)-pnorm(-q.sum.s-
shift)+pnorm(-q-shift))*(1-exp(-h*lambda)) 
P[(r+2):m,j+r+1] <- (pnorm(q.sum.s-shift)-pnorm(q-shift)-pnorm(-q.sum.s-shift)+pnorm(-
q-shift)) 
} 
I<-diag(1,m) 
PT<-I-P 
T<-solve(PT)  
#Finds "identity minus P" and inverts 
 
transitions<-T[1,1:m]   
#The first row of the above matrix is the 
#number of visits to the transient states 
 
times<-c(h,false.time,h)  
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#Represents the time per visit in each state  
#(in-control, false, out-of-control) as given by sampling interval 
 
samples<-c(n,0,n)  
#Represents the number of samples per state 
#(in-control, false, out-of-control) as given by sample size n 
 
visit.lengths<-c(times*transitions,true.time)    
#vector of time per visit x visits to each state,  
#including time searching for assignable cause 
 
samples.cost.total<-sum(samples*transitions*sample.cost)  
#total cost of all samples,  
#samples per transition x transitions x cost per sample 
 
cycle.time.total<-sum(visit.lengths)     
#Total cycle length 
#sum of all state visit lenghts 
 
ooc.time.total<-(sum(visit.lengths[((r)+2):m])+sum(visit.lengths[1:(r)]))-(1/lambda) 
#Out-of-control time total 
 
ooc.cost.total<-ooc.time.total*hrly.ooc.cost   
#hourly out-of-control costs x time spent out-of-control 
 
false.cost.total<-visit.lengths[(r)+1]*hrly.false.cost  
#total costs of searching for phantom cause 
 
cycle.cost.total<-
sum(samples.cost.total,ooc.cost.total,false.cost.total,hrly.true.cost*true.time)  
#adds all costs for the cycle 
 
L.R.H.C<-(cycle.cost.total/cycle.time.total)  
#total cost per cycle/total hours per cycle 
 
return(L.R.H.C) 
} 
############-End Long Run Hourly Cost Function-############ 
 
startingLRHC<-do.call(LRHC,as.list(starting.values)) 
referenceLRHC<-startingLRHC 
 
################-Begin Search Algorithm-################### 
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for(i in b.values){b.optimum<-
LRHC(i,s,a,hmin,hmax,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sa
mple.cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(b.optimum<=referenceLRHC) 
{referenceLRHC<-b.optimum  
b<-i}} 
 
for(i in s.values){s.optimum<-
LRHC(b,i,a,hmin,hmax,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sa
mple.cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(s.optimum<=referenceLRHC) 
{referenceLRHC<-s.optimum 
s<-i}} 
 
for(i in a.values){a.optimum<-
LRHC(b,s,i,hmin,hmax,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sa
mple.cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(a.optimum<=referenceLRHC) 
{referenceLRHC<-a.optimum 
a<-i}} 
 
for(i in hmin.values){hmin.optimum<-
LRHC(b,s,a,i,hmax,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sample
.cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(hmin.optimum<=referenceLRHC) 
{referenceLRHC<-hmin.optimum 
hmin<-i}} 
 
for(i in hmax.values){hmax.optimum<-
LRHC(b,s,a,hmin,i,h.alpha,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sample.
cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(hmax.optimum<=referenceLRHC) 
{referenceLRHC<-hmax.optimum 
hmax<-i}} 
 
for(i in halpha.values){halpha.optimum<-
LRHC(b,s,a,hmin,hmax,i,nmin,nmax,n.alpha,lambda,delta,false.time,true.time,sample.c
ost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(halpha.optimum<=referenceLRHC) 
{referenceLRHC<-halpha.optimum 
h.alpha<-i}} 
 
for(i in nmin.values){nmin.optimum<-
LRHC(b,s,a,hmin,hmax,h.alpha,i,nmax,n.alpha,lambda,delta,false.time,true.time,sample
.cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(nmin.optimum<=referenceLRHC) 
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{referenceLRHC<-nmin.optimum 
nmin<-i}} 
 
for(i in nmax.values){nmax.optimum<-
LRHC(b,s,a,hmin,hmax,h.alpha,nmin,i,n.alpha,lambda,delta,false.time,true.time,sample.
cost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(nmax.optimum<=referenceLRHC) 
{referenceLRHC<-nmax.optimum 
nmax<-i}} 
 
for(i in nalpha.values){nalpha.optimum<-
LRHC(b,s,a,hmin,hmax,h.alpha,nmin,nmax,i,lambda,delta,false.time,true.time,sample.c
ost,hrly.ooc.cost,hrly.false.cost,hrly.true.cost) 
if(nalpha.optimum<=referenceLRHC) 
{referenceLRHC<-nalpha.optimum 
n.alpha<-i}} 
 
#################-End Search Algorithm-################### 
 
final.values<-c(b,s,a,hmin,hmax,h.alpha,nmin,nmax,n.alpha,referenceLRHC) 
initial.values<-c(starting.values[1:9],startingLRHC) 
results<-rbind(final.values,initial.values) 
colnames(results)<-
c("b","s","a","hmin","hmax","h.alpha","nmin","nmax","n.alpha","LRHC") 
rownames(results)<-c("1-Pass Optimal Parameters","Initial Parameters") 
 
return(results) 
} 
 


