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Automatic tongue, velum (i.e., soft palate), and pharyngeal movement tracking systems 

provide a significant benefit for the analysis of dynamic speech movements. Studies have been 

conducted using ultrasound, x-ray, and Magnetic Resonance Images (MRI) to examine the 

dynamic nature of the articulators during speech. Simulating the movement of the tongue, velum, 

and pharynx is often limited by image segmentation obstacles, where, movements of the velar 

structures are segmented through manual tracking. These methods are extremely time-

consuming, coupled with inherent noise, motion artifacts, air interfaces, and refractions often 

complicate the process of computer-based automatic tracking. Furthermore, image segmentation 

and processing techniques of velopharyngeal structures often suffer from leakage issues related 

to the poor image quality of the MRI and the lack of recognizable boundaries between the velum 

and pharynx during contact moments. Computer-based tracking algorithms are developed to 

overcome these disadvantages by utilizing machine learning techniques and corresponding 

speech signals that may be considered prior information. The purpose of this study is to illustrate 

a methodology to track the velum and pharynx from a MRI sequence using the Hidden Markov 

Model (HMM) and Mel-Frequency Cepstral Coefficients (MFCC) by analyzing the 
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corresponding audio signals. Auditory models such as MFCC have been widely used in 

Automatic Speech Recognition (ASR) systems. Our method uses customized version of the 

traditional approach for audio feature extraction in order to extract visual feature from the outer 

boundaries of the velum and the pharynx marked (selected pixel) by a novel method, The 

reduced audio features helps to shrink the search space of HMM and improve the system 

performance.  

Three hundred consecutive images were tagged by the researcher. Two hundred of these 

images and the corresponding audio features (5 seconds) were used to train the HMM and a 2.5 

second long audio file was used to test the model. The error rate was measured by calculating 

minimum distance between predicted and actual markers. Our model was able to track and 

animate dynamic articulators during the speech process in real-time with an overall accuracy of 

81% considering one pixel threshold. The predicted markers (pixels) indicated the segmented 

structures, even though the contours of contacted areas were fuzzy and unrecognizable.
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CHAPTER 1: INTRODUCTION 

 

Image segmentation is an integral part of computerized image analysis which consists of 

finding the contours of specific structural volumes or Regions of Interest (ROI) in a single image 

or sequence of images.  ROI identifies specific sections of an image to locate the search space 

and identifies rough estimations of the object figures and locations. Most studies have used 

machine learning techniques such as Nattkemper et al. (2005), and visual features have been 

used to feed a supervised or unsupervised training models to predict the structural location. 

Image segmentation is widely applied in many fields and involves the process of identifying a 

structure in time (e.g., velum during elevation for a vowel) and extracting the relevant details 

(e.g., nasal velar surface and relationship to posterior pharyngeal wall).  However, these 

algorithms often suffer from inextensibility and inaccuracy, as they are vulnerable in terms of the 

robustness in noisy environments. Dynamic Magnetic Resonance Imaging (MRI) is an imaging 

method that presents a great degree of noise. Thus, most powerful image processing algorithms 

are unable to work very well in medical image processing associated with MRIs.  

Automatic tongue, velum, and pharyngeal tracking systems provide a significant benefit 

for the analysis of dynamic speech movements. Traditionally, movements of the velopharyngeal 

structures require manual tracking for image segmentation. These methods are extremely time 

consuming and may conceivably demonstrate inter-rater variability. Studies have been conducted 

using ultrasound, x-ray, and MRI to examine the dynamic nature of the articulators during 

speech. Noise, motion artifacts, air interfaces, and refractions often complicate the process of 

computer-based automatic tracking. One method to overcome the errors associated with 

computer-based tracking algorithms is to utilize prior knowledge to train a machine learning 
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model. Many image segmentation algorithms work with some prior knowledge regarding the 

shape and/or location of target objects. In this study conventional approaches were utilized in 

ASR with some changes to convert the audio signal to the form of shape and figure. Speech 

recognition is a multidisciplinary in which many studies have been performed (Jelinek, 1998). 

These studies primarily have used MFCC (Ghitza, 1994; Han, Chan, Choy, & Pun, 2006; Li, 

Soong, & Siohan, 2000).  

The purpose is to create and evaluate a model for predicting velar and pharyngeal wall 

positioning during dynamic MRI through the analysis of the produced audio signals.  This study 

utilized MFCC for the audio feature extraction phase and the visual features, extracted by the 

researcher to feed a supervised HMM. The trained model was then used to predict the location of 

velar and pharyngeal structures based upon audio signals.   

The approach in this study differs from other machine learning and audio feature 

extraction techniques; however, they possess the same fundamentals. Speech detection as the 

conventional in (Yu & Kobayashi, 2003) is not a concern in this study, provided that speech 

detection directly affects the performance of speech recognition systems. Moreover, the 

proposed model predicts the location of structures with a constant ratio, whereas speech 

recognizers detect words from a given speech signal. This approach not only works for dynamic 

speech analysis, but it also is compatible for problems having two main characteristics:  

1. System needs time series based images (image sequence); and 

2. A synchronized associated audio.  

This thesis will unfold as follows:  
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 Chapter 2 will depict the overall picture about relevant algorithms and their applications 

in other fields. This chapter will also discuss why MFCC and HMM were chosen for this 

study. 

 Chapter 3 will cover the speech production process in human and signal representation 

methods. 

 Chapter 4 will discuss the audio feature extraction steps including pre-processing MFCC 

and post-processing. 

 Chapter 5 will explore the proposed model and will explain the technical aspects 

in detail. 

 Chapter 6 will present the prediction result and performance evaluation based 

upon two different approaches including accumulative minimum distance and 

inspection by researchers. 

 Chapter 7 will include the conclusion and will outline possible future works. 

  



 

 

CHAPTER 2: BACKGROUND 

 

Image segmentation and pattern recognition have often been involved with feature 

extraction, boundary detection, and signal processing problems. Although these areas have been 

improved dramatically within the past two decades, the combination of image processing and 

other similar areas leads us to broaden the discussion in this chapter. Moving beyond the 

technical issues caused by the noise, image segmentation depends upon the content (Levine, 

1969), so that the approach of segmentation may be drastically affected by the content of 

object(s) in the scene. Through this chapter related studies that contribute by using pattern 

recognition and feature extraction will be discussed, along with related works. 

During the 1950’s, the discussion about the differences between computers and people 

was a controversial topic. Although it is still an ongoing topic, even the most optimistic research 

could not predict the rapid growth of computers over the past decades. Polya heuristic principles 

(Newell, 1981), had discussed humans versus machines, in terms of performance, and his 

conclusion was that machines will never be able to “act” like a human. However, this idea was 

criticized by Greene (1959), and further studies have revealed that the Polya principle is not an 

accurate perception about computers, as the “meaning” behind the data plays the significant role 

in human and computer systems. Using the meaning behind the data leads computer systems to 

improve their performance, For example, Minsky (1961) used pattern recognition techniques to 

reduce the search space of the problem. Pattern recognition here represents a form of knowledge 

to improve the capability of the system by omitting inconceivable states in the search space. 

Recently, semantic concepts have being used to direct the search (Tang, Xu, & Dwarkadas, 

2003) by reducing the search space. Although the application of knowledge may be limited to 
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some specific problems, the general idea of using knowledge is rapidly extended in many areas 

like medical image processing (Clark et al., 1998). However, the crucial question is “How we 

extract knowledge from data?” and “How we apply the knowledge to solve the problem?”  

  To answer these questions, the difference between prior knowledge and feature 

extraction must first be distinguished. When people look at images, prior knowledge helps them 

to understand the concept or the meaning of the image. This exploration may be conducted by 

the segmentation of elements and objects on the scene. Segmentation utilizes the prior 

knowledge as well as the context of the image. For example, when a person looks at an island 

sunset; some objects, such as a microwave, may not be appropriate to be in the picture frame. 

Thus, the context of image restricts the availability of objects. Moreover, pre-knowledge about 

the shape, color, and figure of objects may lead the observer to segment the image (Comaniciu & 

Meer, 1997; Cremers, Rousson, & Deriche, 2007). These forms of pre-knowledge may be 

applicable for the human observer; Yet, in terms of computer segmentation, there is another issue 

that is introduced where the computer system needs some indicators, called “features,” from the 

original data whether spatially or temporally, where eventually they represent the characteristic 

of the data and make them unique and comparable. Various features extraction has been 

introduced in a wide spectrum of computer areas. For example, the application of feature 

extraction has been used for the prediction of the stock price index (Kim & Han, 2000) or 

algebraic feature extraction in image recognition problems (Hong, 1991). The features may be 

driven selectively based upon the content of problems; Thus, the deep understanding of problem 

characteristics would be a vital step. 

Guyon et al. (2006), introduced the different dimensions of feature extraction and feature 

selection principles in the book Feature Extraction: Foundations and Applications (Guyon, 
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Gunn, Nikravesh, & Zadeh, 2006), that would be helpful to be briefly explained here.  The 

feature extraction pre-processing steps are explained by introducing some notations: “Let x be a 

pattern vector of dimension n, x = [x1, x2… xn]. The components x1 of this vector are the original 

features. x is a vector of transformed features of dimension n” (Guyon et al., 2006) the pre-

process transformation would be the following steps: 

Standardization: Regardless of the content of patterns and their calculations, they have to 

be in the same scale and format. For example, temperature may be a component in Celsius and 

the other component would be in Fahrenheit. Several mathematical operators would be 

applicable for both of them but they may not be meaningful before being transformed into a 

unified format.  

Normalization: The image contrast would be a good example to introduce the 

normalization pre-processing. In medical image processing, different wave absorption causes 

different image contrasts. So, the normalization pre-process would be the conversion image 

contrast into a specific range. 

Signal enhancement: One of the most important factors is the signal-to noise ratio which 

may be improved by applying filters and smoother algorithms.   

Extraction of local features: There are many different algorithms that have been invented 

about local feature extraction including synthetic and structural methods. 

Linear and non-linear space embedding methods: In the real world,  a large dimension of 

data is involved. Data reduction usually contributes to the loss of useful information, yet the 

system is unable to work with a large scale of data; Consequently,   the dimension of data has to 

be reduced to a reasonable volume, with a minimal amount of lost information. Principal 
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Component Analysis (PCA: Jolliffe, 1986), and Multidimensional Scaling (MDS: Kruskal, 

1964), are examples of space embedding methods.  

Non-Linear expansions: Due to the problem complexity, the feature dimensions have to 

be extended. This process is the reversed version of previous item. In these cases, the direct 

features extracted are not sufficient for a proper training; Therefore, the features have to be 

expanded by some indirect methods. 

Feature discretization: Basically, continuous data is not well-formatted for many 

algorithms; Thus, according to the designated learning machine, data may need to be discretized. 

For example HMM originally works with discrete data, provided that the Gaussian Mixture 

Model (GMM) works with continuous data.    

Guyon et al., (2006) believes that feature selection may involve data reduction in the 

feature set, the main data, and the performance consideration. Initially, to illustrate how much 

data reductions have had an adverse influence on the main data, a mechanism is required to 

visualize features and main data to evaluate the effect of data reduction and the probable loss of 

useful data. 

 In this sense, Nilsson (1969) introduces three feature extraction facts, consisting of the 

following: 1) There is no straight-forward instruction or algorithm to extract features and it 

deeply depends upon the nature of problems; 2) Designing a feature extraction is a practical 

process involving different policies and considerations; and 3) Biological prototypes such as 

humans would inspire researchers to invent a new feature extraction approach. Consequently, 

finding attributes that describe the differences and characteristics of the source may be variant 

for the given problems and constraints.  However, this challenge is an integral part of feature 
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extraction, and some studies split it into microanalysis and macro-analysis referring to local and 

global processing respectively (Brice & Fennema, 1970). Underneath all of this categorization, 

several subcategories have been introduced such as smoothing, line operation, contour, edge 

detection, curvature detection, and normal representation. Handwriting recognition is the best 

example to find the application of those feature extraction methods in order to recognize isolated 

characters. The feature extraction is the most important section of a handwriting recognizer. Due 

Trier et al. (1996) reported a wide spectrum of feature extraction methods in handwriting 

problem (Due Trier, Jain, & Taxt, 1996). Optical Character Recognition (OCR) was introduced 

and then the topic was diverged on feature extraction methods that have been contributed to 

improve OCR performance. Although the proposed algorithms revolve around the pattern 

recognition in image processing, feature extraction is a broad concept beyond of those topics. 

For instance, audio feature extraction is a well-established area and the result of several 

successful studies are available as on-shelf products, for example Apple1 iOS 6 has been 

enhanced by a powerful speech recognizer system and one of the most important parts of its units 

is audio feature extraction, since the audio signal basically is meaningless for the system. 

Therefore, some specifications have to be extracted from the audio signal as a set of features. 

These audio features represent those properties of audio signal to enable a classifier to determine 

utterance words.   

ASR is found on the top of feature extraction concretes to convert human speech into a 

sequence of text in real-time. However, spoken words may be the same for different speakers, 

and in terms of signal analysis they may be completely different. Even one speaker may generate 

different form of signals for one specific word. So the system should recognize patterns of words 

                                                           
1
 Apple Company: http://www.apple.com/ios/siri/ 

http://www.apple.com/ios/siri/
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by analyzing the signal. Some ASR systems have been adapted from human auditory models 

such as perceptual linear predictive (Hermansky, 1990). In this sense, the human auditory system 

is closely explored and some characteristics of the model are adapted to design a new computer 

model. MFCC is another example of audio feature extraction that will be discussed in this 

chapter and in chapter 4 in detail. There is a mutual collaboration between human auditory 

system studies and ASR systems and thereby the influence of ASR systems on human auditory is 

noticeable and vice versa. Aside from feature extraction based upon the human auditory model, 

the ASR advanced methods have been utilized as tools in speech therapy or audio perception 

studies such as usage of ASR for voice therapy assessment (Kitzing, Maier, & Åhlander, 2009), 

the application of ASR in pronunciation training (Dalby & Kewley-Port, 1999), and a proper 

replacement for human expert to evaluate the speech by using ASR systems (Riedhammer et al., 

2007). The significant influence of audio feature extraction in speech therapy is rapidly 

increasing as a result of the invention of more accurate computer data acquisition systems. On 

the other side of this collaboration, there is a bulk of studies that have been inspired by the 

human auditory model. For example, Holmberg (2006), introduced a simplified model based 

upon the human auditory model and then compared the proposed model with other resemblance 

models such as PLP and MFCC (Holmberg, Gelbart, & Hemmert, 2006).   

Although ASR systems are well-established, they still have some issues with images in 

noisy environments. Consequently, pre-knowledge information may reduce the effect of noise 

and may improve the performance. This pre-knowledge information may be found in different 

forms, but this chapter specifically discusses various methods in audio-visual fusion systems, as 

this approach is close to the proposed solution in this thesis.  The book, “Hearing by Eye Two” 

fundamentally explores the models of audio-visual fusion systems (Campbell & Dodd, 1980). 
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The basic idea behind of audio-visual systems is applying visual features to improve the machine 

learning performance in presence of noise and distractions. Audio-visual speech recognition 

looks like human hearing mechanism in a crowded place. We usually concentrate on lips of 

speaker when we are in a noisy place and we use visual information to improve the hearing result 

by lips reading.  Campbell and Dodd (1980) introduced four different models of audio-visual 

integration including direct identification model, separate identification, dominant recording 

model and motor recording model. Through the direct identification model which is adapted 

from Klatt (1979) research, the facial specifications feed the classifier.  Separate identification 

models have to be coded separately for a specific phonemic feature and then it uses a fusion 

model to find the phonetics. The Dominant recording model introduces an audio signal as the 

dominant modality and then visual features are extracted separately and fused. Prediction is 

merely based upon an/the auditory model. The Motor recording model is based upon Campbell’s 

categorization “both input are projected into an amodal (neither auditory nor visual) common 

space and fused in the space” (Campbell & Dodd, 1980); the visual features based upon some of 

vocal cavity structures configurations are classified and the system introduces a mapping 

between words and figures. This model has to consider many different combinations of 

structures provided that some of them are visible (e.g. lips) and that some of them are not visible, 

such as the velum and certain factors, such as velocity and trajectory, also play the significant 

role in these systems. Zeng (2009), illustrates an audio-visual fusion expansion method in 

behavioral science and psychology studies to investigate on human behaviors (Zeng, Pantic, 

Roisman, & Huang, 2009). As previously discussed, audio-visual speech recognitions are ASR 

systems that are tuned by a set of visual features as a result of better performance in the presence 

of noise, because using visual features is a way to compensate for the adverse influence of the 
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noise on the extracted audio features.  Although MFCC as audio feature extraction has been used 

in ASR and audio-visual speech recognition systems, it has been a widely accepted algorithm in 

music analysis. To classify different genres of music, there are two approaches that have been 

introduced, consisting of standard feature extraction methods as the classical approach, such as 

Zero-crossing, and considering the human auditory perception, such as MFCC. McKinney & 

Breebaart (2003), reported the performance of both categories of feature extractions. In this 

study, low-level signal properties, MFCC, psychoacoustic features have been discussed and they 

introduced a new method called “auditory filter-bank temporal envelopers” (AFTE) were 

evaluated in five different music genres. The authors extended the evaluation by dividing 

Popular Music into seven different sub-groups. The classifiers were the same for all feature 

extractors. However, the performance of the classifiers depends upon the genre of music, and 

this study reveals that the AFTE has better performance overall. This study is an example of 

MFCC usage in music analysis. In terms of music analysis, Logan claims that MFCC does not 

affect the prediction adversely (Logan, 2000). Also MFCC may be used in musical instrument 

recognition (Krishna & Sreenivas, 2004), or finding similar music based upon audio signal 

analysis (Logan & Salomon, 2001). Consequently, MFCC has been recognized as the dominant 

audio feature extraction method in both human voice and music fields. Another piece of this 

puzzle is classifiers, which is an extensive topic, as classification is not limited to audio signals 

or image classification.   

Machine learning problems involve a series of input to train the model and to notice the 

correlation between input patterns and the desired output (Guyon et al., 2006). The model 

represents the association between the input pattern and the output which is called “learning 

machine” where basically it is a function to mimic the system behavior by optimal input 



12 
 

dimension. The “learning process” is divided into three categories based upon how the system is 

trained. The classes may be predefined in supervised models; in contrast, classes are unlabeled in 

unsupervised models. There is the third category of learning which is called reinforcement 

learning. In this learning model, a function evaluates the accuracy of the classifier to illustrate 

how the system works accurately without any further information. The system has to improve the 

performance by analyzing the function feedback gradually through the process. Supervised 

classification is one of the most famous classification categories that have been conducted in 

intelligent systems (Kotsiantis, Zaharakis, & Pintelas, 2007). Decision trees are the simplest form 

of classification by representing possible classes as the leaves of a tree and accordingly, each 

branch may have a different weight. The crucial point of a decision tree is finding the best root 

(starting point), as finding the proper root may contribute to the improvement of the performance 

of the classifier. The decision tree may be converted to a form of Disjunctive Normal Form 

(DNF) rules wherein some problems, it would be a suitable solution with a reasonable error rate 

and speed. They are appropriate methods for “single feature at each internal node” (Kotsiantis et 

al., 2007). Another category of learning machines is working based upon the sum of perceptions 

over the graph. If the result was more than the threshold the output would be 1; otherwise, it 

would be 0. The trained model will find the best label for the input sequence during the testing 

phase. Through the linear classifiers, the purpose is to find a line to separate different instances. 

In the case of two dimensional inputs, a plane would separate classes; However, this method is 

unable to satisfy more than two dimensional inputs. Therefore, a nonlinear approach would be 

the solution for instance; the Artificial Neural Network (ANN) would be introduced to overcome 

this problem. In a multi-layer ANN, input data passes through the input layer, a set of neurons 

connecting to the hidden layer of network, and the output would be addressed by the output layer 
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receiving data from hidden layers. The combination of hidden layers is variant but the input 

should be the same as the input vector dimension, and the output layer has to be the same as the 

output vector dimension (Hagan, Demuth, & Beale, 1996). The weights of the net may be 

adjusted by the training set. Super Vector Machines (SVM) is another classifier that solves the 

problem of “maximizing the margin and largest possible distance between the separate 

hyperplanes” (Kotsiantis et al., 2007). A SVM is a proper learning mechanism for larger number 

of features. The performance of SVM is not affected by input dimension; Consequently, this 

method is a very suitable approach for complicated and nonlinear problems. SVM may suffer 

from misclassified instances contributing to misclassification or in some cases; It may not be 

able to introduce a solid separator for those overlapped classes (Konstantinos Veropoulos, 

Campbell, & Cristianini, 1999). SVM have been widely used in tissue image segmentation and 

cancer diagnosis; for example, Cataldo et al, proposed a cancer cell segmentation method based 

upon a supervised SVM classifier. With a breast cancer diagnosis, Geraldo et al. used several 

measurements, such as Geary’s coefficient and Moran’s index (Moran, 1950), to train a SVM 

classifier, and then they measured the accuracy of the system (Braz Junior, Cardoso de Paiva, 

Corrêa Silva, & Cesar Muniz de Oliveira, 2009). There are several studies such as (Junior, Paiva, 

Silva, & de Oliveira, 2009), (Nunes, Silva, & Paiva, 2010), (Wang, Zhu, & Liang, 2001), and (K 

Veropoulos, Cristianini, & Campbell, 1999), that reveal that SVM is a pivot point of many 

studies revolving around diagnosis classification problems. The last classification approach that 

needs to be discussed is HMM. Basically, HMM may be continuous or discrete classifiers, but 

there are several other versions that have been introduced that work with continuous data with 

different architecture such as the GMM. HMM, the same as other models is a powerful classifier 

that has been applied in a variety of studies. One of the most dominant applications of HMM is 
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when it is used in ASR systems. Aside from speech recognition, HMM is a proper model in 

brain-computer interfacing such as (Obermaier, Guger, Neuper, & Pfurtscheller, 2001), and 

(Chiappa & Bengio, 2004) studies.  

One question may arise: Why was HMM was designated for this thesis? Some reports 

have repeatedly proven that HMM performance is better than SVM such as in (Yi-Lin & Gang, 

2005). Yi-Lin et, al. classified five emotions by both HMM and SVM. They achieved 98.9% 

accuracy for female subjects and 100% accuracy for male subjects in terms of prediction emotion 

based merely upon audio signals and using HMM, providing that SVM was less accurate. In 

some studies, such as (Jianjun, Hongxun, & Feng, 2004), a hybrid SMV/HMM improves the 

performance by compensating for their drawbacks. The hybrid model has been evaluated on 

various standard data sets and the result shows that the hybrid model performed better than the 

GMM; However, the difference was not significant. Moreover, in this proposed study audio 

signal as pre-knowledge will be used to convert audio features into a set of visual features where 

these features may be used as ROI for other image segmentation methods, or they may be 

independently applied in tracking systems. Consequently, HMM would be the best choice for the 

model. Besides that, HMM is the appropriate model for temporal problems, considering that the 

analysis of audio signal and video are temporal topics. For visual feature extraction, the features 

were extracted by the researcher manually. The proposed model combined the audio-visual 

features to train the model in order to predict the location of velum and pharyngeal wall based 

upon the audio input signal. In chapters 4 and 5, the internal mechanism of HMM and changes 

made to ASR systems for compatibility purposes will be discussed. In addition, the visual feature 

extraction mechanism will be discussed in the following chapters but before that, the human 

auditory model as the initial point and the target of this study, has to briefly be reviewed.



 

 

CHAPTER 3: SPEECH PRODUCTION AND SIGNAL REPRESENTATION 

3.1 The Respiratory System and Sound Production 

 

“Speech,” in technical terms, refers to the acoustic presentation of language (articulation, 

fluency and voice); but moving beyond the language concepts, speech is a mechanism by which 

the respiratory organs perform as the provider of speech (Forney Jr, 1973), which creates air 

pressure and the mechanical process of vibrating the outgoing air that generates sounds. Air is 

supplied by the lungs surrounded by the rib cage and the diaphragm muscle. The rib cage rises 

when the diaphragm muscle contracts (Sharp, Goldberg, Druz, & Danon, 1975). Therefore, the 

size of the rib cage is increased and the air flows to the lungs, which is called inhalation. 

Exhalation is the reverse process of inhalation, by shrinking the size of the rib cage and 

respectively, the lungs (Nilsson & Ejnarsson, 2002). However, the respiratory process is a semi-

involuntary mechanism and the duration of exhalation and inhalation in breathing are the same; 

the duration of exhalation may be different based upon the situation (i.e. speaking).   

 

3.1.1 Vocal Fold 

 

The vocal tract is the channel that mainly consists of the phonatory system (or larynx) 

which is connected to the trachea, and moves up to the nasal cavity. The larynx prevents food 

and liquids from aspirating into the lungs and additionally, it plays a significant role in speech 

production. The vocal cord is an opening with two horizontal membranes across the larynx 

opening. During exhalation, the airflow coming out from larynx is manipulated by the vibration 

of these muscles. However, the vocal cord produces a buzzing sound, and other organs (i.e. Lips, 
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tongue, jaw, velum, and pharyngeal wall) in the vocal tract modulate the sound to produce 

variant sounds (Peterson & Barney, 1952). The vocal fold has three different states: voiced, 

voiceless, and breathing states. During the breathing state, the vocal fold is open and both of its 

muscles are relaxed, allowing the vocal fold’s muscles to block the airflow path partially during 

the voice production, allows airflow to pass through the glottis (Nilsson & Ejnarsson, 2002). 

The surrounding area among the lips, teeth, velum, and larynx are called the “vocal 

tract,” as shown in Figure 3.1, and it may be merged with the nasal cavity through the velum. 

The output frequency may be manipulated by various configurations of the tongue, lips, and 

velum. Even the shape, movement, and velocity of tongue and velum dramatically affect the 

output frequency. The velum is a biological valve that has an important role in speech production 

by controlling the connection of the nasal cavity and vocal tract. The velum merges the nasal 

cavity and vocal tract when necessary and it excludes the nasal cavity from the vocal tract to pass 

air flow to the vocal cavity. As a result of the smaller size of the vocal folds and the higher 

frequency of vibration, female and children generally have higher pitched voices (Nilsson & 

Ejnarsson, 2002). 

 

Figure 3.1 Human Vocal System 
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The lungs’ pressure is increased by the diaphragm, and air flows from the lungs to the 

vocal folds.  When the air pressure decreases behind the vocal cords, as a result of the elasticity 

of the fold and Bernoulli Effect, muscles move back into place (Bellman, 1956). In contrast, the 

difference in pressure of both sides of the vocal cords forces muscles to be opened and therefore, 

air flows up to the vocal cavity. Due to the air pressure reduction, vocal cords smoothly revert 

back to the normal position. The frequency of vibration (rushed opening and closing) in women 

is generally more than that in men, and it is another reason for the higher pitch in most women.    

Figure 3.2 accounts for the discrete-time speech production model. The Impulse 

Generator and Random Noise Generator in this model play the role of the excitation generator or 

lungs in the biological version (Benesty, 2008).  The impulse generator excites the glottal filter 

(e.g. vocal cords) (Howard, 1960). u[n] is the input of the vocal tract and G is the gain of voice 

volume. A time-varying Digital Box may be used with different filters based upon the model. 

For example, according to the human anatomy, the vocal tract and lips/jaw filters may be 

considered filters that manipulate output signals and finally, S[n] is the output speech signal of 

the model.  
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Random Noise 
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Digital filter 

G 

V/U Switch 

u [n] 
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Figure 3.2 Discrete-Time Speech Production Model (Benesty, 2008) 

 

3.2 Signal Representation 

 

There are two major signal representations based upon time or frequency domain. In 

computer speech processing, however, three various states may be considered: voiced, voiceless, 

and silence. Although, there is no clear boundary among these states, there have been several 

studies in this area to recognize voice boundary from silence and voiceless states (Bachu, 

Kopparthi, Adapa, & Barkana; Qi & Bao, 2006; Radmard, Hadavi, Ghaemmaghami, & Nayebi, 

2011). In the silence state, there is no speech signal. Voiced sound is the representation of the 

vocal cords’ oscillatory vibration and its modeled unvoiced sounds are very similar to noises 

(Benesty, 2008).  

As shown in Figure 3.3, a sample of a speech signal was selected to demonstrate the three 

different states of a speech signal. The first selected section indicates silence mode; the next is 

unvoiced, as shown in the larger plot, and this section accounts for random noise. The last 

marked section is voiced with a high amplitude value.  The combination of these three types of 

produced signals introduces different types of vocal presentations, such as a whisper.   
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Figure 3.3 Silence, Unvoiced and Voiced Signals 

 

 

Given the speech signal in Figure 3.4, the Spectrogram is the spectral representation of 

sound frequency in Figure 3.5. In order to calculate the spectrogram in time and frequency 

domain in this study; as shown in Table 3.1, nwin is the Hamming Windowing length and it is 

the same as nfft (Fast Fourier Transform length). fs variable is the sampling frequency of input 

signal. The Noverlap variable shows the segment overlapping where it is at 50% of nwin 

variable. 
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Figure 3.4 Speech Ware 

 

Figure 3.5 Corresponding Spectrogram 

 

[y, fs]=wavread(„sound.wav'); 

nwin = 512;  

noverlap = 256;  

nfft = 512;  

spectrogram(y, nwin, noverlap, nfft,  'yaxis'); 

colorbar 

Table 3.1 Spectrogram MATLAB Code 
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3.3 Chapter Summary 

 

There are several studies that have been published involving the physiological aspect of 

speech structures. The lungs, as the supplier of airflow for producing speech play a crucial role; 

Moreover, the vocal cords vibrate when airflow exits through the vocal cords and it produces a 

voice. The vocal tract generates sound by deforming the tongue, lips, and velum. The nasal 

cavity adds another tube to lead airflow through the nasal and oral cavities.   

Most studies about the vocal tract explore the dynamic movement of the articulatory 

structure of the oral cavity, since there are no moving organs within the nasal cavity; that said, in 

the oral cavity, (vocal tract) parts are movable and their composition produces different sounds. 

Thus, studies on the vocal tract are time consuming, and they require the analysis of signal 

production and the trajectory of structures.  

This chapter has covered the basic process of voice production from the physiological 

standpoint. This study will focus on the velum and pharyngeal wall movement prediction during 

speech production.  

  



 

 

CHAPTER 4: AUDIO FEATURE EXTRACTION AND HIDDEN MARKOV MODEL 

 

In this chapter, some well-known methods and algorithms are adapted from ASR 

systems, mainly audio feature extraction algorithms and the HMM. Based upon the nature of this 

study, certain steps were changed in the audio feature extraction algorithm in order to achieve the 

proper audio feature vectors synchronizing with the visual features. In order to design and train a 

model, the HMM will be described in this chapter with an example describing a prediction based 

upon observations. Along with the example, the Forward-Backward algorithm will be explored 

since it is the foundation of design, training, and prediction phases.   

The HMM will be described and three issues in this model will be discussed. The HMM 

will be used in a wide spectrum of problems associated with prediction and learning. This 

chapter is an introduction of this model.  

Although feature extraction is the foundation of this stud and ASR systems, the output of 

ASR and this study is completely different showing in Table 4.1. Regardless of utterance length, 

ASR produces corresponding words provided that in this proposed model the output length is a 

coefficient of utterance length.   
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Table 4.1 the Proposed Model Output and ASR System Output 

 

There are two differences between the proposed model and ASR systems:  

1. Voice Activation Detection (VAD) plays a significant role in the ASR system in 

order to segment each “word” in the signal stream, provided that in this study, 

there is no “word” at this point and the system should conceivably predict the 
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figure and location of structures, regardless of whether that speaker is speaking or 

not. 

2. In ASR Systems, the HMM absorbs the effect of the various lengths of signals 

representing words (Table 4.1), but in this study, 40 predicted locations per 

second are generated without considering utterance states (voiced/ voiceless/ 

silence). 

However, while both of these systems use the same tools and algorithms, there is a 

significant gap between these studies in terms of generating more accurate results.  

There are many audio feature extraction methods that have been developed based upon 

the type of input signals. Some of the features may work properly with certain specific training 

models while some do not. Basically, the audio feature extraction is achieved by selecting some 

specifications and properties of audio signals. These extracted features demonstrate one or more 

than one characteristic of the input signal, and depending upon the utterance/signal generator, 

different audio feature extraction methods may be applicable. Still, choosing the ideal one is 

always a challenging task. The majority of audio feature extraction work is based upon linear 

coded signals and most well-known methods are adapted from this approach. MFCC, one of the 

most dominant audio feature extraction methods, is categorized in cepstral domain where 

features are calculated in a short time (steady feature) between 10-30 ms in length. Most audio 

feature extraction methods are the sequence of components transferring the features from one 

domain to another domain (Liu, Wang, & Chen, 1998). The design of a new method is a 

complicated process, since the signal characteristic plays the crucial role in the design of such 

methodology. Moreover, transferring from one domain to another may potentially affect the 

interpretation of features.  
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4.1 Audio Feature Extraction 

 

Temporal domain is a time based domain that considers waveform changes through time, 

and is the base of feature extraction methods and in later steps, is converted to other domains as 

shown in Figure 4.1. However, feature extraction is about the quantifying audio signals to some 

vectors, as it always has been involved with the noise issue. To achieve noise removal, certain 

pre steps must be performed before the feature extraction state. Cleaning the signal and noise 

removal are the main purposes of the pre-processing, and then the filtered signals must pass 

through the Frame Blocking, Windowing, FFT, Mel-Frequency Wrapping, and Cepstrum, and 

finally, post-processing is performed, preparing and readying the feature vectors.  

 

Figure 4.1 Audio Feature Extractions 

 

 

4.2 Preprocessing 

 

This step prepares the audio signal for feature extraction through changing sampling rate, 

noise removal, and Pre-emphasis blocks in the pre-processing chain. The previously mentioned 

block sequence occurs with VAD in order to determine the endpoint of utterance. Determination 

Pre-processing Frame 

Blocking 
Windowing FFT 

Mel-Frequency 

Wrapping 
Cepstrum Post-Processing 

Signal 
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Feature 

 Vectors  
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of utterance speech has been a big challenge for speech recognizers, because incorrect endpoints 

may contribute to the dramatic reduction of the recognizer performance. To overcome this issue, 

Short-Term Energy estimation, Short Term Power, and Zero-Crossing are generally applied. This 

block was not applicable in this study; however, speech recognizers need to detect utterance 

speech duration in order to determine the best-fit word for the specific chunk input signal, 

provided that the proposed model will predict certain markers over the boundary of the velum 

and pharyngeal wall regardless of whether the speaker is talking or not. In other words, the work-

unit of the proposed system is “time,” while speech recognizers accept signals and then split the 

input stream to chunk of utterance speech; finally, they determine the most possible 

corresponding ”words.” Thus, Figure 4.2 demonstrates the pre-processing block for the system: 

 

Figure 4.2 Proposed Pre-processing Blocks 

 

4.2.1 Sample Rating 

 

There are several studies that have been done about the impact of sample rating on 

training models (Ssnderson & Paliwal, 1997). Two important factors impact training models 

involving the length of vectors and the sampling rate. However, both factors affect training, and 

the type of training model may be the third factor. With respect to the MFCC, the ideal range of 

sampling rate is between 14K and 16K. In this study, a 16K sampling rate was designated for the 

feature extraction phase. As a result of the changing of the sample rate of the input signal, the 

Set Sample 

Rating 
Noise Removal Pre-emphasis 

Signal 

S(n) 
S’(n) 



27 
 

Audacity
2
 software, an open-source application under the GNU General Public License, was 

used. 

After opening the audio file in Audacity, it should be converted to a mono signal. 

Audacity implements the conversion by selecting tracks > Stereo Track to Mono. After running 

the command from the menu, both left and right signals are merged into the mono format. For 

the next step, the sampling rate should be changed to 16,000Hz. The mono signal has to be 

converted to the 16K Hz by Selecting tracks > Resampling > 16000 Hz.  

 

4.2.2 Noise Removal 

 

Fourier analysis is the core algorithm for Audacity noise removal. The noise removal phase 

has two internal steps including picking the noise segment and noise removal based upon a 

threshold. In the first step, a chunk of noise (silence section) should be segmented as the 

frequency spectrum of the noise; then, selected background noise is compared with the input 

signal and any tones that are not louder than the segmented would be reduced in terms of 

volume. 

 

4.2.3 Pre-emphasis Digital Filter 

 

The pre-emphasis digital filter improves the signal quality in order to minimize the noise 

ratio by reducing the difference between high and low amplitude frequencies. Generally, 

Eq.4.1consists of two parts: 

                                                           
2
 http://audacity.sourceforge.net/ 
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 ( )   ( )     (   )                                                     (4.1) 

Where X(n) is the input signal at n and a is a constant (between 0.95 and 0.98), in the finite 

impulse response (Saramäki, 1993). Eq.4.2 and Eq.4.3 formulas represent Finite Impulse 

Response (FIR) filter: 

 ( )                                                                      (4.2) 

 [ ]  ∑     [   ]
 
                                                (4.3) 

In this study, 0.95 was designated to be the constant (a) of the filter. 

 

4.3 Frequency Cepstral Confidents 

 

The audio feature extraction techniques are widely expanded in many areas associated with 

audio signals and classification problems. For example, Short Time Energy and Zero-Crossing 

Rate are widely used in the short-time analysis of speech signals, music, and silence recognition. 

Short-Time Energy represents the amplitude variation over time. Energy function values in a 

voiced speech signal are significantly higher than in an unvoiced speech signal making it a 

remarkable feature extraction method for voice recognition problems. MFCC works more 

accurately in human voice frequency (Ghitza, 1994). MFCC, one of the most well-known audio 

feature extraction methods as was discussed in chapter 2, has been widely used in speech 

recognition studies. The Mel-Frequency Scale reflects the human ear perception and imitates the 

hearing process of humans by utilizing the Mel-Warped Frequency Scale. Low frequency 

resolution plays a significant role in the formants capturing process. Close spaced overlapping 
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triangles in low frequency region of MFCC and fewer numbers of triangular filters in the high 

frequency region create a better resolution in low frequency.  

 

4.3.1 Frame Blocking  

 

Frame blocking selects the frame size and based on m samples separation. In this study, 

for a 16KHz sampling rate, 20 ms was assumed stationary and consequently, and therefore, the 

frame length would be 320 samples. Overlapping decreases the separation factor to 120 samples 

by considering 62.5% overlap rate.  

As show in Figure 4.3, m is the length of the new part of the block and additionally, 

length-m is the overlap of the block; therefore the step of blocking is m. 

 

Figure 4.3 Frame Blocking 

4.3.2 Hamming Windowing 

 

Length 

m 

Length 

m 

. . . 



30 
 

Hamming Windowing is used to cancel the effect of signal discontinuity at both sides of 

blocks. The corresponding Eq.4.4 for the Hamming Window calculation is: 

 ( )               (
   

    
)                                                   (4.4) 

Hamming Window is a bell-shape in which the vertical axis demonstrates amplitude and 

the horizontal axis accounts for number of samples in each block (length). The result of applying 

the Hamming Window is that the beginning and end point of each block gradually are converged 

to zero, thereby reducing the adverse consequence of signal discontinuity effect.  

 

4.3.3 Fast Fourier Transform and Feature Extraction 

 

In this phase, the corresponding features should be extracted from the blocks. There are a 

myriad of algorithms that have been invented to extract features from audio signals such as linear 

prediction (Makhoul, 1975) and Mel-cepstrum methods. Many studies have revealed that Mel-

cepstrum has a better performance than other methods (Qingzhong, Sung, & Mengyu, 2009), 

(Pearce, 2000), because this approach is able to mimic the human auditory model better than 

other approaches. With the Mel-cepstrum feature extraction, the next step would involve the 

calculation of the Fast Fourier transformation (FFT) for each block and then calculated the Mel-

Wrapping and then the corresponding cepstrum.  

 

4.3.4 Fast Fourier Transform and Mel-Frequency Cepstral Coefficients 
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FFT is the optimal way to calculate the Discrete Fourier Transform (DFT: Bracewell & 

Bracewell, 1986), where DFT accounts for the frequency of a discrete signal in the frequency 

domain format. Basically, it converts discrete signals into the corresponding frequency domain 

(Oppenheim, Schafer, & Buck, 1999).  

However, since there are several implementations of FFT that are already available, the 

representations relative spectra (RASTA) speech processing package (Hermansky, 1990; 

Hermansky & Morgan, 1994), was used in this study. The author proposed several audio feature 

extraction algorithms such as: MFCC and perceptual linear predictive (PLP) Cepstra, and the 

implementations are established based upon Malcolm Shaney’s Auditory Toolkit (Slaney, 1998), 

one of the most well-known auditory model implementations. In the next chapter, the way in 

which the RASTA package was applied to extract audio features will be explained.  

 

4.3.5 Audio Feature Discretization  

 

The audio feature should be discretized in order to be compatible with the HMM, as the 

HMM is a discrete model. As a result of the discrete audio feature extracted, a histogram with 

400 columns was utilized, and then corresponding column numbers were replaced by actual 

values.    

4.4 Hidden Markov Model  

 

The HMM is a probabilistic model presenting a sequence of observations (Ghahramani, 

2001). Time is an important factor in HMM, as the observations are meaningful during that time. 

However, time may be demonstrated in many different ways, and most studies use it in equal 
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time intervals. These observations are discrete values describing the prediction results. As time 

passes, the system transitions from one state to another and these transitions between visited 

states generate a sequence of states. According to the Markov Chain property, the last state of a 

subsequence is the only factor affecting the probability of the next state.  In other words, the 

probability of a sequence is described by the conditional probability of the current and the next 

states.  

 

4.4.1 Hidden Markov Model through Example 

 

The following section describes the basic concepts of the HMM with an example in order 

to help the reader to better understand HMM. However, since this example does not illustrate the 

entire aspects of the model, it can be helpful to describe on a small scale. In this study, the audio 

feature vectors are observations and the markers are the hidden states. Due to the huge size of 

HMMs in this study, this example is introduced to illustrate the mechanism of HMM.  

There is a prisoner who wishes to know what the weather is outside, but his prison cell 

does not have a window. While he is unable to observe the weather changes directly, his prison 

cell is located in front of a vending machine, and the correctional officer visits the vending 

machine every day and selects a cup of hot café or a bottle of orange juice or a bar of chocolate. 

The prisoner observes the correctional officer’s choices each day and surmises that there is a 

direct correlation between his choices and the daily weather. Therefore, the observations are the 

vending choices and the hidden states are the actual weather conditions (cold or warm).The 

prisoner has created a HMM, displayed below in Figure 4.4:  
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Figure 4.4 Weather Prediction Model 

 

According to Figure 4.4, the prisoner may surmise what the weather may be based upon 

the observation from the vending machine. There are two types of transition in this diagram that 

describe the transition between hidden states observations and internal transition between hidden 

states.  A set of states is defined by {S1, S2, …, Sn} and in this example the set of hidden states is 

{warm, cold}. The probability of each sequence depends upon the condition probability of its 

current and the previous states showing in Eq.4.5.  

P(Sk| S1, S2, S3, … ,Sk-1)  = P(Sk| Sk-1)                                        (4.5) 

The starting point of the calculation is still unclear, as the probability of starting from 

state i and state j are different. Consequently, an initial state is needed to determine the 

probability of the next visiting state. In this example, the prisoner connects a point at the top 

level as an initial state π = P(Si), as is shown in Figure 4.5. 
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Figure 4.5 Weather Prediction Model with an Initial State 

 

According to the Figure 4.5, the state transition probability matrix would be as follows: 

(
        
        

)              

The transition probability for cold weather if yesterday was cold is shown by Eq.4.6: 

P(Cold | Cold) = 0.85                                                     (4.6) 

The initial state would be similar to a matrix showing the transition from initial state to the 

hidden states.  
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According to the Markov chain property, the generic format is found by Eq.4.7: 

P(S1, S2, S3, … ,Sk) = P(Sk| S1, S2, S3, … ,Sk-1) P(S1, S2, S3, … ,Sk-1) = … 

= P(Sk|Sk-1) P(Sk-1|Sk-2) P(Sk-2|Sk-3) … P(S2|S1) P(S1)                              (4.7) 

This formula estimates the probability of a sequence of hidden states; yet, the 

observations have not been considered, and another matrix may determine the transition 

probability from hidden state to visible states called the emission probability matrix.  

(
            
            

)  

The generated observation matrix above displays the transition between hidden and 

observation states. In which the above matrix, the sum of horizontal probability values in each 

line is equal to one.  

The prisoner example did not involve the concept of training, because it was assumed 

that the prisoner knew the transition probabilities for both matrices. Most problems did not 

provide pre-knowledge, thus the learning issue was a concern. The Forward-Backward algorithm 

calculates M model properties with a sequence of observations and corresponding states. In this 

study, discretized audio features plays the role of prisoner’s observations and location of markers 

are hidden states, consequently; according to Figure 4.5 in this proposed model, the bottom 

nodes represent observation (discretized audio vectors) and middle nodes illustrate hidden states 

(markers). 

 

4.4.2 Evaluation, Decoding and Learning Problems in Hidden Markov Model 
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Assuming the model M and the observation sequence O = {O1, O2, O3, … , ON,}, where 

Oi  observation set V={V1, V2, …, Vk}, estimates the most probable sequence. Computing the 

probability for all hidden states with the assumed observation sequence is an exponential 

complexity problem. In order to overcome this issue, dynamic programming may be applied to 

reduce it to cubic time complexity. Hence, the best way to compute it is with the Forward-

Backward algorithm (Yu & Kobayashi, 2003), though this approach may also applicable for 

determining the most likely sequence of hidden states through a given sequence of observations. 

The Viterbi algorithm (Forney Jr, 1973) is another well-known algorithm for solving the 

decoding problem by using the Forward-Backward algorithm. In this study, a Forward-Backward 

algorithm was applied to estimate the emission and transaction matrices. The Viterbi algorithm 

was applied for finding the most likelihood sequence of states.     

 

4.4.2.1 Evaluation and estimating the Hidden Markov Model matrices 

 

The Forward-Backward algorithm (Yu & Kobayashi, 2003) used was a perfect example 

of dynamic programing (Bellman, 1956; Howard, 1960) and is described briefly below:  

Assumptions as known:  

 Emission probability: P(Vk| Sk) 

 Transition probability distribution: P(Sk| Sk-1) 

 Initial states: P(S1) 

Notations: 

 S = (S1, S2, S3, … ,Sn) 

 Si:j = (Si, Si+1, Si+2, … ,Sj) 
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This algorithm should calculate P(Sk| V1:n), and is split into two parts, which consist of the 

Forward algorithm which calculates P(Sk| V1:k)  ∀ K = 1,…,n. and the Backward algorithm which 

computes P(Vk+1:n| Sk)  ∀ K = 1,…,n and consequently Eq.4.8: 

P(Sk| V1:n)  P(Sk, V1:n) = P(Vk+1:n| Sk , V1:k) P(Vk| S1:k)           (4.8) 

Given Sk, V1:k and Vk+1:n are conditionally independent, therefore Eq.4.9: 

P(Sk| V1:n) = P(Vk+1:n| Sk) P(Vk| S1:k)             (4.9) 

As is shown in the above formula, P(Sk| V1:n) is the multiplication of Forward and Backward 

algorithms. 

 

4.4.2.2 Forward Algorithm 

 

As shown in Eq.3.8, the purpose of the Forward algorithm is computing P(Sk , V1:k) in Eq.4.10.  

P(Sk , V1:k) = ∑  (            )
 
              

∑  (  |              ) (  |           ) (           )             
 
     (4.10) 

Due to Sk and Sk-1 are conditionally independent of Sk-1 ,     and     , thus Eq.4.11: 

P(Sk , V1:k) = ∑  (  |  ) (  |    ) (           )
 
                               (4.11) 

Here as assumed, the first part is the emission probability, the second part is Transition 

Probability, and the last part is   (  ). So the above formula is re-defined by Eq.4.12:  

 P(Sk , V1:k)  ∑  (  |  ) (  |    )    (    )          
 
                           (4.12) 

As called P(Sk , V1:k). =   (  ) and then the recursion would be Eq.3.13 and Eq.4.14: 

  (  )   ∑  (  |  ) (  |    )    (    )             
 
                            (3.13) 

  (  )    (     )   (  |  )                                                      (3.14) 
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4.4.2.3 Backward Algorithm 

 

This algorithm is exactly the same as the Forward algorithm, just in the opposite direction 

where Eq.3.15 and Eq.3.16 illustrate computing P(Vk+1:n |Sk) for all of the rest of the values from 

k to the end: 

 (      |  )   ∑  (           |  )              
 
                               (4.15) 

 (      |  )  ∑  (      |            ) (    |       )
 
     (    |  )              (4.16) 

Due to Vk+2 is conditionally independent of Sk ,        given Sk+1 thus Eq.4.17 would be: 

 (      |  )  ∑  (      |    ) (    |       )
 
     (    |  )                      (4.17) 

In order for Vk+1 is conditionally independent of Sk given Sk+1 thus in Eq.4.18: 

 (      |  )= ∑  (      |    ) (    |    )
 
     (    |  )                            (4.18) 

Then  (    |  ) is called βk (Vk) defining in Eq.4.19. The same as the above: 

  (  )   ∑  (    |    ) (    |  )    (  )             
 
                             (4.19) 

 

4.4.3 Decoding of the Model 

 

One of the most well-known algorithms used for HMM decoding has been the Viterbi 

algorithm (Forney Jr, 1973; Hagenauer & Hoeher, 1989). The Forward-Backward algorithm has 

been applicable in decoding so that the basic idea of this algorithm has been as a recursive 

process for finding the most probable sequence of hidden states where the sigma in Forward 

recursion formula was removed and the highest probability was determined to be the answer.  

To compute the most likely sequence             ( | ) should be calculated where 

            ( | ) and S = (S1, S2, S3, … ,Sn) and V = (V 1, V 2, V 3, … , V n).   
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       ( ) (   )       [ ( )     (   )] if  ( )                          (   )  

                          And      ( | )        (   ).  

Based upon the Markov Chain property Eq.4.20 is written:  

  (  )            (         )             (  |  )  (  |    ) (             )      (4.20) 

Then  ( ) is used in Eq.4.21: 

  (  )            [  (  |  )  (  |    )         
 (             )]                  (4.21) 

So recursively, the max may be calculated and determined, as the equation is the 

multiplication of emission probability, transition probability, and recursion part (    (    )). 

 

4.4.4 Learning Issue and Estimation of Hidden Markov Model Parameters  

 

In this study, Maximum Likelihood (Gales, 1998; Leggetter & Woodland, 1995), was 

applied to estimate the model parameters, mainly consisting of transition and emission matrices. 

Consequently, maximizing the probability of a given arbitrary sequence would be the purpose. 

No analytical solution was introduced to solve the maximum likelihood problem for the whole 

model, but there were several algorithms which were applied to find one of the local maximums 

by iterative calculations. Obviously, there was no guarantee that a designated local maximum 

was the explicit maximum.   



 

 

CHAPTER 5: THE MODEL 

 

5.1 Magnetic Resonance Imaging
3
 

 

A fast-gradient echo FLASH (Fast Low Angle Shot) multi-shot spiral technique was used 

to acquire 15.8 frames per second (fps) of the midsagittal image plane during the production of 

”ansa.” The speech sample was chosen to represent movements of the velum between fully 

lowered (i.e., nasal), elevated (i.e., consonants), and transitions between both positions. A 

metronome beat of 2 Hz was played over head phones to control the rate of the speech tasks (one 

syllable per beat). This imaging speed allowed for at least one full image during each lowered 

and each elevated production to analyze the data for a nasal and oral sound. 

The imaging sequence used a time-efficient acquisition of a six-shot spiral pulse 

sequence with an alternating TE between 1.3 and 1.8 ms to allow for dynamic estimation and 

correction of the magnetic field map. Saturation bands were used to suppress the signal from 

regions outside of the area of interest and to provide greater separation between higher fat 

concentrations areas such as the cheeks. Fast frame rates were achieved through the use of an 

optimized acquisition strategy coupled with an image reconstruction method that corrected for 

effects caused by imperfections in the magnetic field in the oropharyngeal region (Sutton, 

Conway, Bae, Seethamraju, & Kuehn, 2010).  

                                                           
3
 Images were provided by Department of Communication Sciences & Disorders at East Carolina 

University. Data acquisition and the corresponding information were reported in (Perry, Kuehn, 

Sutton, & Gamage, in press). The author and Computer Science Department at East Carolina 

University did not participate in data acquisition process.   
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 Images were reconstructed with an output time-driven sliding window process at 

40 frames per second (fps). This process allowed data to have a minimal amount of interpolation 

across time and uses the native frame rate (15.8 fps) to interpolate images to the desired output 

rate. The sliding window reconstruction process minimized redundant information in adjacent 

time points and minimizes temporal blurring (Sutton et al., 2009).  

Acquisition simulation software provided by the vendor of the MRI scanner provided 

timing data which was used to align the audio speech recordings with the dynamic images. This 

software allowed for accurate simulations of sequence timing using the exact acquisition 

protocol, providing information about the actual time location of data acquisition events with 10s 

accuracy. 

 

5.2 Feature Extraction and Audio Signal 

 

In chapter 3, the audio feature extraction was explained. The audio features were 

extracted from the stream of audio signal after conducting noise cancelation filters. Despite the 

speech recognizers, the audio signal was not segmented by VAD. Consequently, the audio was 

synchronized by visual features extracted. Figure 5.1 demonstrates the training process of the 

proposed model including two paths for audio and visual feature extraction. Both paths were 

used for the training purpose, provided that Figure 5.2 accounts for the prediction process based 

on audio signal analysis.    

MRIs were imported into a visual and motion graphic software program
4
 where the 

images sequence of entire 45 seconds was cropped to select a region of 7.5 seconds sequence. 

                                                           
4
 Adobe After Effects, CS 6, Adobe Systems 
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The audio and the image sequences were isolated from 7.5 video at 16 KHz and 40 frames per 

second respectively in order to produce a number of frames per second to be a factor of 1:400 

sampling rate. The audio feature extraction was accomplished by using MFCC. 
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The MFCCs are short term spectral-based features (Li et al., 2000) where the Mel-scale is 

chosen close to the human auditory system (Slaney, 1998).  In this study, the final acoustic 

feature dimension was 39, including MFCC coefficient transformations (with 13 elements) and 

the first and the second derivatives (13 elements for each derivative).  The extracted audio 

features were discretized and labeled in 400 distinct classes from 1 to 400.  

 

5.3 Visual Feature Extraction by Proposed Tagging Method 

 

Visual features were extracted using the MR images sequence by selecting four markers 

along the nasal surface of the velum and three markers along the posterior pharyngeal wall. One 

stationary pivot point was placed at the posterior nasal spine (PNS). As shown in Figure 5.3, the 

markers were positioned so that the third marker was located at the velar knee, and fewer 

markers were used along the uvula as a result of the lack of significance in this region during 

speech production. Figure 5.4 demonstrates corresponding labels of tags over the velum and 

pharyngeal wall. 
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Figure 5.3 Selected Markers along the Nasal Surface and Posterior Pharyngeal Wall 

 

 

Figure 5.4 Velar Markers Demonstrated by Letter V and Pharyngeal Wall Labeled by Letters Ph 

 

In order to keep a consistent distance between each marker, a circular tracking tool was 

created to identify markers along the length of the velum using the initial marker placed at PNS. 

The program was designed to then draw a circle with a 13 pixels radius around the initial 
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stationary pivot-point. The second marker was then marked at the intersection of the circle with 

the nasal velar surface. This method, as shown in Figure 5.5, demonstrated the repetition of this 

process to identify every positioned marker along the velar surface. 

 

Figure 5.5 Makers at the Intersection of the Circle with Nasal Velar Surface 

 

Anterior and posterior pharyngeal wall movements were calculated in the horizontal (x-

axis) dimension (Figure 5.6). The first horizontal line was placed 24 pixels below of PNS. The 

second and third lines were placed 48 and 96 pixels below the first line respectively. Horizontal 

lines were created to marker out pharyngeal markers with the same distance. The closest on the 

intersection of pharyngeal wall and each line was tagged by the researcher.  

 

Figure 5.6 Pharyngeal Wall Markers 
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Three hundred sequential images were tagged by the researcher and the result was a table 

that consisted of 300 tuple (rows), including 7 markers (4 velar and 3 pharyngeal), and 14 

columns. Each marker demonstrated movement in both the x and y-axis, yielding two values for 

each marker. For each marker, the x-value was multiplied by 1000 and then the corresponding y-

value was added to create the concatenation of the x and y columns. This new set of numbers 

was labeled from 1 to n which represented the total distinct classes for the compounded location 

of the x and y-axis for the marker across the speech sample. In order to reduce the number of 

classes and simplify the model (e.g. HMM), each class of the set equaling less than 10% of total 

samples, was merged with the next class iteratively. 

 

5.4 Creating Hidden Markov Models 

 

The HMM was used (L. Rabiner, 1989) to predict the velar and pharyngeal wall 

boundaries. The audio feature extracted was the observation (inputs) of HMM and visual features 

were considered to be the internal hidden states (outputs) of the HMM. In contrast to linear left 

to right HMM in speech recognition systems (Ghitza, 1994), the topology of the model 

developed in this study did not follow a linear pattern. Two parameters of the model consisted of 

transition and emission matrices (L. Rabiner, 1989) that were estimated based upon the visual 

and audio features. The transition probability matrix found the path from a hidden state at time t 

by providing the hidden state at time t-1. For each possible element of the class (N elements), 

there were N possibilities to transition from t-1 to t.  Thus, the N×N matrix was estimated for 

each marker by using the corresponding number of possibilities (hidden states).  

  The number of audio features (observations) was the same for all HMM trainings. The 
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emission matrix was N×400 for each marker (Table 5.1).  The HMM parameters were estimated 

for each marker using Matlab
5
 software. To prevent the transition probability from being zero, all 

zero-elements in emission and transition matrices were replaced by a small number (e =10
-7

).  

The models were trained using a 200 audio feature data set and 100 samples were set aside for 

testing. The Viterbi algorithm (Forney, 1973), was then applied to predict the most likely 

sequence of hidden states.  

 V1 V2 V3 V4 Ph1 Ph2 Ph3 

Hidden States 4 8 18 15 3 2 2 

Table 5.1 Number of Hidden States for Markers 

                                                           
5
 http://www.mathworks.com/products/matlab/ 



 

 

CHAPTER 6: RESULTS 

 

The location and shape of the velum and pharyngeal wall were predicted at 2.5 seconds 

for one set of images and the results were analyzed using two distinct methods, namely 

accumulative minimum distance and evaluation by inspection. The former evaluation method 

was a mathematical approach to accumulate minimum distances between prediction and the 

actual corresponding markers tagged by the researcher. Although the proposed tagging method 

in this paper avoided arbitrary tagging by the researcher, it was not sufficient to prevent 

researcher introduced errors in tagged images. In other words, for one specific image, more than 

one set of markers has been introduced. Although the alternative set of markers may be 

acceptable, the current method does not support multi-markers, requiring the researcher to 

choose just one of the alternative markers. Consequently, the accumulative minimum distance 

may not represent an accurate measurement, where the actual acceptable prediction may be at 

least equal or greater than accumulative minimum distance. To overcome the inaccuracy issue, 

one pixel threshold was assumed, because the prediction residual of less than one pixel was not 

visible in the visualization phase. 

 

6.1 Accumulative Minimum Distance 

 

Figures 6.1 - 6.4 demonstrate the residual of the velar prediction result. Each point in the 

graphs accounts for the average error per pixel of five consecutive marker predictions. Assuming 

the threshold for these graphs, no error was introduced in V1 prediction, while V2, V3, and V4 

were predicted with a different level of error. The error in V1 was dramatically less than other 
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markers located on the velar surface, because four hidden states were defined for V1 (distinct 

classes in Table 5.1), provided that V2, V3, and V4 were defined by 8, 18, and 15 hidden states 

respectively. Hence, having fewer hidden states contributed to less residual in the prediction 

result.   

 

Figure 6.1 Average Errors for each Five Consecutive Predictions for V1 Marker 

 

 

Figure 6.2 Average Errors for each Five Consecutive Predictions for V2 Marker 
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Figure 6.3 Average Errors for each Five Consecutive Predictions for V3 Marker 

 

 

Figure 6.4 Average Errors for each Five Consecutive Predictions for V4 Marker 

 

Due to minor movement of the pharyngeal wall, the residual prediction introduced a 

maximum of one pixel error; consequently, there was no error displayed in pharyngeal wall 

prediction when assuming the one pixel threshold.   

Figure 6.5 is an accumulative graph of error values for four markers located on the 

velum, where the vertical axis demonstrates the sum of error per pixels through the velum 

markers, and the horizontal axis accounts for the error rate average for the last 10 consecutive 
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marker errors. However, since one pixel error was assumed to be the threshold for each marker, 

in Figure 6.5, the threshold was not applied because of better visibility. 

 

Figure 6.5 Velum Predictions Accumulative Error and Spectrogram with Formants 

 

The visible error in the visualization phase actually would be those values by more than 

four pixels in the graph. This evaluation presents 81% accuracy considering one pixel threshold 

for 4 markers on velum.  

Conceivably, there are two different interpretations regarding error variation:  
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 A correlation between audio signal amplitude and error rate: 

 As shown in Figure 6.5, there is a correlation between accumulative error and audio 

signal amplitude where the higher the amplitude generated, the higher the residual 

introduced.  

 Higher velocity of velum causes a high error rate during speech production: 

In order to produce high amplitude signals, the velum must move very fast and it has to 

have contact with the pharyngeal wall in a very short duration. This velocity and high 

level of deformability within such a short duration may be the cause of the growth in 

error rate. Thus, the second interpretation introduces two concerns regarding the issue, 

including a fewer number of samples during the velum closure, and a variety of 

movements and figures in a very short duration.  

The distribution of a training set for all classes did not follow the uniform distribution 

pattern, and therefore there is a variety of numbers of training sets for classes while the 

proposed model had the same policy for any input stream. In other words, classes in low 

amplitude domain had a higher number of training samples and they were trained well 

provided that high amplitude samples suffered from a low number of samples. 

Unbalanced training sets may be one of the reasons, but the error rate also was 

exacerbated by the high level of deformability of the velum during high amplitude voice 

production. This phenomenon dramatically fragmented these small numbers of samples 

to different classes. Consequently, these classes were not trained well. The performance 

of the HMM has been improved in many studies with a variety of signals and noises, so 

the fewer numbers of sampling and normal distribution of training samples (exponential 
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shaped) would be the cause of the high error rate in some parts of the prediction.  

 

6.2 Evaluation by Inspection 

 

This method was evaluated by comparing the location of superimposed predicted 

structure figures over the velum and pharyngeal wall. The compared researcher markers and 

predicted markers were determined where the result was either pass or fail. However, in the 

superimposed set of prediction images, where research markers were included and the predicted 

markers were not located on those markers (Table 6.1), the whole predicted figures were 

acceptable because the several combinations of markers were conceivable for a single image. 

The result of the inspection was an 83% acceptance rate.  

Marked by Researcher Superimposed predictions 

  

Table 6.1 Manual Markers vs. Superimposed Predicted Markers 
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Marked by Researcher (continue) Superimposed predictions (continue) 

  

  

Table 6.1 Manual Markers vs. Superimposed Predicted Markers (Continue) 
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Marked by Researcher Superimposed predictions 

  

 

 

 

Table 6.1 Manual Markers vs. Superimposed Predicted Markers (Continue)  

 

  



 

 

CHAPTER 7: CONCLUSION AND FUTURE WORKS   

 

This chapter discusses the effect of the image tagging policy in terms of performance 

improvement of the model and the use of seven classifiers to improve the flexibility and 

reusability of the system.  The last section of this chapter discovers a potential reason for the 

introduction of error and proposes a potential solution for future works. 

 

7.1 Image Tagging and Search Space Reduction 

 

Velum and pharyngeal wall trajectories were captured and quantified by using markers in 

the sequence of MR image. These markers were used for training the predictive model and the 

accuracy of the model was further evaluated by comparing the distances between the actual and 

the predicted markers. Arbitrary tagging of markers on the velum and pharyngeal wall may have 

contributed to a deterioration of the prediction results because of the increase in search space. 

Moreover, the system was expected to introduce a one-to-one map to demonstrate the correlation 

between a chunk of audio signal and a set of markers. In order to reduce the search space, a 

circular tagging method developed, was implemented to maintain an equal distance between 

consecutive markers along the velum boundary.  This method decreased search space dimensions 

significantly and it improved the marker probability densities in the circumference.  

To reduce observation variation, each instance (value) of X and Y having equal or less 

than 10 percent of all records were merged with the adjacent group. This process was performed 

iteratively to merge all instances in which there were less than or equal to 10 percent of all of the 

records. Thus, the model was limited to 100 observations (markers) because it had at most 10 
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distinct instances for X and at most the same number for Y. The combined circular method and 

data reduction contributed to a drastic reduction in the number of observations, and as shown in 

Table 4.1, the model with the largest number of observations was determined to be 18. Although 

data reduction occasionally resulted in the loss of some useful information, in this study, data 

reduction was achieved by merging less frequently inserted instances (markers) resulting from 

human error or from the low-quality of the images.  

 

7.2 Hidden Markov Model and Flexibility Concerns 

 

In order to predict a high level of structure deformability, seven markers were selected to 

describe the shape of the structures. Each marker, in terms of movement, had different trajectory 

characteristics. The markers located close to the hard palate had less movement than the others 

on the spine of velum. Prediction of all markers in one HMM created a large number of hidden 

states and all parameters may not be trained very well (Geiger, Schenk, Wallhoff, & Rigoll, 

2010). As a result of the reduction from the HMM complexity, each marker was modeled by 

separate HMMs. The final prediction was generated by a combination of individual marker 

predictions. The Audio signal as the sequence of observation was common for all seven models 

and the hidden states were designed for each marker individually based upon the corresponding 

combination of X and Y ranges. 

Using a set of templates to describe the location and figure of structure was an alternative 

to be considered as hidden states. The benefit of this alternative was simplicity, as the only one 

HMM is able to handle these templates. The training is very simple and there are no jitters in the 
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prediction model, because the model just finds the most similar template to the actual 

configuration among few choices; Yet, this model is able to work with a specific utterance. The 

main advantage of using several classifiers is that, they are able address different combination of 

markers, regardless of the signal content.   

 

7.3 Amplitude Vulnerability and Future Works 

 

 As shown in Figure 7.1, there is a correlation between high amplitude signals and error 

rates. Figure 6.1 reveals the distribution of input speech signal amplitude. However, the most 

frequent amplitude is on the zero column and its neighbors, during low amplitude speech 

production, but the velum had fewer movements in comparison to high amplitude and this 

movement required more time (had a longer duration) because of low velocity. Consequently, 

there were more samples of low amplitude moments (audio and video samples) and it created a 

well-trained model for low amplitude signals. A uniform sample distribution may solve the 

problem, but as a result of choosing HMM, training should be conducted considering sequence 

and time. The best solution to satisfy both conditions would be chunking an audio signal to the 

smaller segments where there would be a fairer sample distribution. In other words, the input 

signal should be trimmed where low and high amplitude is balanced. Another future study 

conceivably would be adding a post processing phase and designing a smoother filter such as a 

Kalman filter (Welch & Bishop, 1995) to make the prediction more accurate and to remove 

jitters.      
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Figure 7.1 Speech Amplitude Histogram 
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