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Introduction

Underwater sounds include steady-state vessel noise, tran-
sient animal calls, and impulsive pile driving sounds. We
developed a finite difference time domain (FDTD) model
(Yee, 1966; Botteldooren, 1994; Sakamoto et al., 2002) us-
ing sample grids of sound pressure and velocity in alternat-
ing time steps to model sound propagation in very shal-
low water (depth ≤ 10 m). Since this is a time domain
method it is particularly useful for modeling the propaga-
tion of transient and impulsive sounds. In this presentation,
we compare propagation predicted by our model for single-
frequency sources to the RAM model (Collins, 1995) and
discuss sound propagation calculations for various tran-
sient sounds.

The Finite Difference Time Domain
(FDTD) Method

We approximate the linearized acoustic differential equa-
tions as finite difference equations. Spatial coordinates are
computed on a grid (e.g., x1, x2, x3, ...), and time t is taken
in discrete steps (e.g., t1, t2, t3, ...). Time derivatives are
approximated as finite differences of time

∂p(x, t)

∂t
→ ∆p(x, t)

∆t
=

p(x, t2)− p(x, t1)

t2 − t1
, (1)

and spatial derivatives are approximated as finite differ-
ences of spatial coordinates

∂p(x, t)

∂x
→ ∆p(x, t)

∆x
=

p(x2, t)− p(x1, t)

x2 − x1
. (2)

The resulting finite difference propagation equations are
solved for the time evolution of the acoustic parameters
pressure and particle velocity, each of which depends on
the spatial variations of the other parameter.

In an approach known as leapfrogging, spatial variations
of pressure are used to calculate changes to the particle
velocity, and spatial variations in particle velocity are used
to calculate changes to the pressure. In the leapfrogging
scheme, the particle velocity spatial grid points are halfway
between the pressure grid points (see Figure 1), and the
pressure and particle velocity values are computed 1/2
time-step apart. The calculation alternates between par-
ticle velocity and pressure changes in each 1/2 time-step.
We assume the seafloor to be an equivalent fluid and use its
sound speed and density in the time-increment equations.

We use perfectly matched layers (PMLs; Teix-
eira and Chew, 1997) to eliminate numerical re-
flections from the ends of the grid space. We
assume a pressure-release surface and terminate
the grid with a PML in the other directions.
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Figure 1: The grid used for FDTD calculations. Pressure p
and the velocity component vr and vz values are separated
by a half grid-space to simplify finite difference calculations
involving each variable. In the leapfrogging technique spa-
tial differences in particle velocities result changes to the
pressure values in between them, and spatial differences in
pressures result in changes to the particle velocity values
between them.

3D and 2D Implementations

We have developed implementations of our FDTD model
in both two dimensional (2D) cylindrical coordinates and
three dimensional (3D) Cartesian coordinates. The 2D im-
plementation assumes axial symmetry to reduce the num-
ber of grid points resulting in faster computation times and
smaller data sets. The 3D implementation allows asym-
metrical geometries at the cost of a geometric increase in
computation time and data storage requirements.

Impulse Propagation

We use the FDTD impulse propagation method (Sakamoto
et al., 2002) to propagate a pressure impulse (see Figure
2) from the source position(s) throughout the grid to the re-
ceiver positions. This propagated impulse response signal

contains all geometrical, reflective, and diffractive effects on
the signal for all frequencies below the Nyquist frequency
associated with the time step ∆t. We then convolve the im-
pulse response signal at the desired receiver position with
the source signal function to obtain the propagated signal at
the receiver position. This technique works for both steady-
state and transient signals.

Figure 2: The impulsive function (Sakamoto et al., 2002)
used for the source in our FDTD propagation calculations.
The pressure increases from zero to the maximum over 12
grid spaces in a sinusoidal function.

Comparison to RAM

To validate our model, we compared FDTD propagation cal-
culations to those made using a split-step parabolic equa-
tion calculation with the freely available Range-dependent
Acoustic Model (RAM) program (Collins, 1995). Figures 3–
5 are examples of these calculations for a 5 m deep uniform
ocean (sound speed 1536 m/s, density 1700 kg/m3) over a
sandy bottom (sound speed 1024 m/s, density 2035 kg/m3).
There is very good agreement between the FDTD calcula-
tions and the RAM calculations for all geometries.
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Figure 3: Comparison of sound propagation calculations
by our FDTD and the RAM. All calculations are for a 250 Hz
constant frequency source at depth 2.38 m in a flat 5.00 m
deep ocean. (A) Receiver at depth zr = 0.998 m. (B) Re-
ceiver at depth zr = 2.23 m. (C) Receiver at depth zr =
2.84 m.

Discussion and Conclusion

Our FDTD approach compares well with the RAM calcu-
lations. The FDTD holds promise for modeling the prop-
agation of transient sounds in very shallow estuaries and
rivers. We used an earlier version of this model to calculate
the propagation of transient Cynoscion regalis (weakfish)
sounds in very shallow water with both level and sloped
seabeds (Sprague and Luczkovich, 2012b) and to calcu-
late the propagation of weakfish sounds in order to esti-
mate numbers of calling fish in aggregations (Sprague and
Luczkovich, 2012a). Another application of our model is
to use motion of a vibrating pile as the source function to
calculate the propagation of the pressure and particle ve-
locity produced during pile driving. In the future, we would
like to implement a poroelastic substrate model for more re-
alistic investigations of the water-substrate interactions for
transient sounds.
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Figure 4: Comparison of sound propagation calculations
by our FDTD and the RAM. All calculations are for a 500 Hz
constant frequency source at depth 2.38 m in a flat 5.00 m
deep ocean. (A) Receiver at depth zr = 0.998 m. (B) Re-
ceiver at depth zr = 2.23 m. (C) Receiver at depth zr =
2.84 m.
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Figure 5: Comparison of sound propagation calculations by
our FDTD and the RAM. All calculations are for a 1000 Hz
constant frequency source at depth 2.38 m in a flat 5.00 m
deep ocean. (A) Receiver at depth zr = 0.998 m. (B) Re-
ceiver at depth zr = 2.23 m. (C) Receiver at depth zr =
2.84 m.
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