
USING HYBRID SCRUM TO MEET WATERFALL PROCESS DELIVERABLES

by

Emil Moster

May, 2013

Director of Thesis/Dissertation: Dr. Nasseh Tabrizi

Major Department: Department of Computer Science

 System Development Life Cycles (SDLCs) for organizations are often based

upon traditional software development models such as the waterfall model. These

processes are complex, heavy in documentation deliverables, and are rigid and less

flexible than other methods being used in modern software development.

 Consider by contrast, agile methods for software development. In essence, agile

methods recommend lightweight documentation and simplified process. The focus

shifts to completed software as the “measure of success” for delivery of product in

software projects, versus accurate and comprehensive documentation, and the

accomplishment of static milestones in a work breakdown structure.

 This thesis implements, explores, and recommends a hybrid agile approach to

Scrum in order to satisfy the rigid, document-laden deliverables of a waterfall-based

SDLC process. This hybrid Scrum is a balance of having enough documentation and

process - but not too much - to meet SDLC deliverables, while at the same time

focusing on timely product delivery and customer interactions that come from an agile

approach to software development.

!

!

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarShip

https://core.ac.uk/display/71975624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

!

!

USING HYBRID SCRUM TO MEET WATERFALL PROCESS DELIVERABLES

A Thesis

Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Emil Moster

May, 2013

!

!

© Emil Moster, 2013

!

!

USING HYBRID SCRUM TO MEET WATERFALL PROCESS DELIVERABLES

by

Emil Moster

APPROVED BY:

__DIRECTOR OF THESIS:

M.H. Nassehzadeh Tabrizi, PhD

___COMMITTEE MEMBER:

Junhua Ding, PhD

___COMMITTEE MEMBER:

Sergiy Vilkomir, PhD

___COMMITTEE MEMBER:

Karl Abrahamson, PhD

CHAIR OF THE DEPARTMENT

__OF COMPUTER SCIENCE:

Karl Abrahamson, PhD

_____________________________________DEAN OF THE GRADUATE SCHOOL:

Paul J. Gemperline, PhD

TABLE OF CONTENTS

CHAPTER Page

...LIST OF FIGURES iii

..CHAPTER 1: INTRODUCTION 1

...CHAPTER 2: RELATED WORK 3

...CHAPTER 3: CURRENT PROJECT BACKGROUND 11

..CHAPTER 4: HYBRID SCRUM METHODOLOGY 15

...CHAPTER 5: CONCLUSION 31

...REFERENCES 34

!

ii

LIST OF FIGURES

...1. The USCG SDLC 4

..2. Scrum Process Model 4

...3. ISD Production Promotion Process 5

...4. Hybrid Scrum Model 15

..5. Predefined Release Schedule 18

..6. The Release Backlog Inserted into the Process 21

..7. Sprint Planning Review Artifact 23

...8. Requirements Traceability to UATs 24

9. .. Sprint Review Artifact 26

...10. Requirements per Release 28

...........................11. Cumulative Requirements per Release, Baseline Revision 1 29

!

iii

CHAPTER 1: INTRODUCTION

 The United States Coast Guard (USCG) has a system development process

defined called the System Development Life Cycle (SDLC) [1]. The USCG SDLC is

based upon a waterfall process model which is defined and maintained by CG-6, by

authority of USCG Headquarters. CG-6 is the authoritative entity within the USCG for

Enterprise Information Systems. All system development projects which CG-6

undertakes must follow the SDLC. This process is complex, heavy in documentation

deliverables, and it is rigid and less flexible than other methods being used in modern

software development.

 Consider by contrast, agile methods for software development. In essence, agile

methods recommend lightweight documentation and simplified process. The focus

shifts to completed software as the “measure of success” for delivery of product in

software projects, versus accurate and comprehensive documentation and the

accomplishment of static milestones in a work breakdown structure (WBS).

 The Aviation Logistics Center Information Systems Division (ALC ISD), is one of

the three data centers for the USCG. It is investing in using agile methods - specifically

Scrum - to produce and deliver systems with projects, and it is incorporating agile

methods within its existing processes. Where the conflict between “becoming agile” and

“adhering to rigid process” occurs is where ALC ISD serves as the System Development

Agent (SDA) for the Coast Guard Logistics Information Management System (CG-LIMS)

project, and the Project Management Office (PMO) of this same project must adhere to

the SDLC. Scrum doesn’t fit neatly within the framework of the SDLC and it doesn’t

satisfy the expected deliverables of this waterfall process.

 These conflicts are evident in numerous ways throughout the project. Trying to

align SDLC milestones and deliverables with Scrum deliverables, trying to report

metrics from Scrum which satisfy SDLC requirements, and trying to align requirements

defined with the IEEE-830 standard [2] with user stories created to represent the work

completed in agile sprints are but a few of the challenges. The conflicts manifest

themselves in numerous ways, ranging from confusion within the PMO about how

success is measured, to frustration within the Development Team due to lack of

familiarity with new methods.

 This thesis implements, explores, and recommends a hybrid agile approach to

Scrum in order to satisfy the rigid, document-laden deliverables of the waterfall-based

SDLC process. This hybrid Scrum is a balance of having enough documentation and

process - but not too much - to meet SDLC deliverables, while at the same time

focusing on timely product delivery and customer interactions that come from an agile

approach to software development. The two need not be at odds and conflict with each

other; there can be a happy middle ground where quality, timely software products and

customer satisfaction are delivered, while at the same time satisfying the SDLC process

to ensure the proper safety, maintainability, and accountability of an enterprise system.

!

2

CHAPTER 2: RELATED WORK

 The USCG is not alone in it’s desire to become agile with software systems

development. In 2009, 76% of organizations reported using agile methods to

accomplish software development [3]. The software industry recognizes that there is

value to be gleaned by setting aside traditional, sequential development models such as

waterfall, and adopting one of the many agile process models such as Scrum, Extreme

Programming (XP), Crystal, and Agile Unified Process (AUP) to name a few. Waterfall,

with it’s heavy documentations requirements, rigidly structured sequential approach,

and phase exit reviews (PER) which gate the phase exits and entries has been the

cause of many a failed system development project. The Department of Homeland

Security (DHS) - the parent organization of the USCG - realized this and formed the

DHS Agile Working Group, who worked together to draft a whitepaper on using agile

methods in DHS [4]. Interestingly, this effort by DHS was happening simultaneously as

the USCG was beginning the CG-LIMS project. While DHS was formulating a proposal

for a solution to replace their waterfall Systems Engineering Life Cycle (SELC) with an

agile process based on Scrum, the USCG was also embarking on, empirically proving

how two processes - waterfall-based SDLC and agile Scrum (see Figures 1 and 2) -

could coexist.

Figure 1: The USCG SDLC

Figure 2: Scrum Process Model

 Since the USCG’s ALC ISD had already recognized the need to implement agile

methodologies in working projects to modernize its legacy systems, their teams had

!

4

more freedom to implement Scrum in a pure manner; unconstrained by having to

adhere to the rigid SDLC waterfall process. ALC ISDs support process (effectively their

own SDLC) is not based on a waterfall process (see Figure 3). It is an incremental

approach to software development, delivering incremental portions of software in three

month phases. While ISD was not using the waterfall process for its projects, it found

Figure 3: ISD Production Promotion Process

that building software increments in three month phases was still too long of a cycle

without delivering potentially shippable product to the customer. Customer reviews and

feedback were infrequent, and led to “mini-waterfall” pitfalls such as scope creep,

engineering delights, large amounts of rework due to developer/customer

misunderstandings, and delays in software deliveries.

!

5

 In the same respect that DHS could not completely drop its SELC and adopt

agile methodologies overnight [5], the USCG could not drop its SDLC and adopt Scrum

overnight. The USCG ALC ISD could, however, adopt agile Scrum into the

Development phase of its support process (see Figure 3) essentially overnight, as long

as the remainder of the process remained intact as required for its current ISO 9001

certification.

 As the DHS Agile Working Group continued to formulate its position in its draft

white paper, the working group benefited from one of its contributors being the Project

Manager for the CG-LIMS project. And so, while the working group was not embarking

on it’s own empirical study, they were getting empirical input from one of it’s contributors

who was “living the dream” day-in and day-out with the CG-LIMS project. DHS also

was not trying to come up with a solution to make waterfall SDLC and Scrum coexist;

rather they were preparing a solution to replace the waterfall SDLC with Scrum. This is

the primary difference between the effort at DHS and the CG-LIMS project.

 It was a given by June 2011 that ALC ISD would be developing the solution for

the CG-LIMS project, and it was expected that it would be using agile Scrum to

accomplish the project. It was not specifically determined, however, how Scrum would

be used to satisfy waterfall SDLC requirements. Lessons were taken from Cohn’s [6]

experience with making two process models coexist. He notes that most organizations

which have a sequential process implemented and choose to migrate to agile

methodologies will not be able to do so overnight, so they must coexist together if for

even a short while. Sliger [7] suggests three different ways that coexisting processes

interact: waterfall-up-front, waterfall-at-end, and waterfall-in-tandem. The CG-LIMS

!

6

project team chose to follow the waterfall-in-tandem scenario as it best satisfied the

need for continual benefits from agile methods, while continually keeping the SDLC

deliverables satisfied. It was not an option to give a “handshake” to the waterfall SDLC

at the beginning of the project and then wave goodbye to it, nor to put it off until the end

of the project. Cohn notes that this is the most difficult of the three approaches to take,

as one team works from the perspective of the sequential approach (in the case of CG-

LIMS, the PMO did this) and they prefer to communicate through meetings and

documents. The other team (the CG-LIMS Scrum Team) chose to communicate

informally but frequently to progressively define work and functionality - agility.

 While this was not optimal, it did satisfy this particular projects needs. Consider

what may have been an example of an optimal situation, by contrast, albeit a story of a

dark cloud with a silver lining. The Federal Bureau of Investigations (FBI) had a long-

delayed waterfall project - the Sentinel project [8] - which was plagued with many of the

challenges of an IT project gone awry: missed deadlines, budget overruns, and

shortfalls on promised features. The decision was made in September 2010 to turn the

project to agile methods, and the FBI credits this decision to do so as the ultimate

reason for completing the project. In the FBIs case, they did not have to make process

models coexist, and they turned their failing project around with overwhelming success

using agile methods only. Sentinel is now functioning bureau-wide as the FBIs digital

case management system. Their project not only delivered faster, but it was also within

budget for the project.

 One of the major complaints about large, failed waterfall projects is that too much

time is spent upfront on documentation which may not ever define an actual working

!

7

system. If and when it does, the documentation will be obsolete as the requirements

most likely have changed. The Agile Manifesto [9] states that “[we] value working

software over comprehensive documentation.” McMichael and Lombardi [10], using

agile methods while working on Primavera Systems quality management system noted

there were significant concerns with violating this principle, but they provided just

enough documentation to be a useful reference; to help with enforcing the existing

process, but no more than that. This was the approach the CG-LIMS Scrum Team took

as well; just enough documentation to satisfy the SDLC process needs. Again, not an

optimal solution as Scrum would forego documentation to this extent, but one that would

prevent the inevitable roadblock that the team would meet at the first PER requiring

satisfactory documentation. While some might think that developers implementing agile

methods would be completely averse to accomplishing documentation for the system, a

field survey of software professionals actually showed the opposite [11]. Respondents

in the survey actually noted that, had they had the time, and resources were assigned to

tasks appropriately, they would have rather spent more time in planning and

documentation versus coding and debugging. This gives credence to the fact that

documentation is recognized as being good and necessary; but only the right

documentation lends value to the project. If it does not bring specific value, then it is not

necessary.

 Members of the CG-LIMS Scrum Team and the PMO had previous experience

with delivering a developed enterprise system and the customer interactions necessary

to be successful with this. For this reason, the team knew that Scrum would provide

that type of interaction again, which would be necessary for success. Saving customer

!

8

interaction for only a few touch points that waterfall SDLC would provide - System

Requirements Generation, Preliminary Software Review, Critical Software Review, and

Final Software Acceptance Review - [12] would be disastrous to the project. As the CG-

LIMS project has proven and continues to prove, constant customer interaction

throughout all the steps of the process does not inhibit or encumber the Scrum Team,

but rather liberates them to develop a solution that quickly and ultimately satisfies the

customer. Essentially, the customer cannot find issues with that which they’ve defined

all along the way, and to which they’ve contributed in the decision-making. Mann and

Maurer [13] showed in a 2 year study of the industry that Scrum provided an increase in

customer satisfaction, primarily due to being involved throughout the process of

developing functionality. The customers appreciated more involvement throughout, in

comparison to their previous roles, which were only limited to acceptance testing.

 Without a specific implementation of a hybrid Scrum model which exercised team

agility, yet also met waterfall SDLC documentation requirements, the CG-LIMS Team

deemed it necessary to take lessons learned from current industry studies, standards,

and best practices regarding agile software development, and others’ experience with

navigating waterfall SDLC processes, and to create a hybrid Scrum model which

satisfied both camps. While DHS had not actually implemented their agile framework

which was being proposed, it was convenient for the CG-LIMS Team to leverage

concepts that DHS had proposed in formulating and implementing its hybrid Scrum

model. Some elements brought specific, realized value to the the hybrid Scrum model,

while others were yet to be realized. So the hybrid Scrum model specifically benefited

from the research done by DHS, and in turn the CG-LIMS Team empirically gained data

!

9

and vetted some of the concepts for DHS. What also came to light during this research

and as a result of the actual implementation of the hybrid Scrum model is that not only

does it facilitate the coexistence of two process models - Scrum and waterfall - but it

also serves the purpose of method organizations can use for migration from waterfall to

Scrum methodology. Cohn [6] notes that many organizations cannot completely drop

the existing processes that they’ve had in place for years; they need an incremental

transition which eases the burden and cost of taking their organization from waterfall to

Scrum (or to other agile methods). And so hybrid Scrum is offered up as a solution to

facilitate this transition, where it may be a period of many years that the organization

must take in proving out the viability of Scrum in eventually replacing their waterfall

process.

!

10

CHAPTER 3: CURRENT PROJECT BACKGROUND

3.1 ALMIS - The Existing Legacy System

 The Asset Logistics Management Information System (ALMIS) is an organically

developed conglomerate of various systems, both old and new, which have been

loosely integrated over years to meet the specific needs of the USCG fleet and

personnel. The fleet includes airplanes, helicopters, boats, cutters, unmanned aerial

vehicles (UAVs), and Digital Global Positioning System (DGPS) towers; currently well

over 1,000 complex assets are maintained in ALMIS. The existing user base is over

16,000 customers performing various tasks and duties related to logistics management

within the system.

 Asset configuration management and scheduled maintenance management are

supported by the Asset Configuration Management System (ACMS) subsystem. ACMS

is a two-part system: a “green screen” character-based application, and a thick-client

graphical user interface (GUI) application. The system uses a combination of Ingres

Applications By Forms (ABF), Ingres Open Rapid Object Application Development

(OpenROAD), and the Ingres Relational Database Management System (RDBMS).

Supply chain management, including inventory control, purchasing and requisition,

financial management, and transportation are supported by the Asset Maintenance

Management Information System (AMMIS) subsystem. AMMIS is primarily based upon

Ingres ABF and Ingres RDBMS. Both of these subsystems are over 20 years old, and

have reached the end of their sustainable life cycles. They are in need of replacement

with a modern system.

 Operations, mission tracking, training and qualifications, and unscheduled

maintenance are supported by the Electronic Asset Logbook (EAL) subsystem. EAL is

a web-based system which has been developed on a combination of Microsoft Active

Server Page (ASP) pages and Personal Home Page (PHP) pages. Decision support

needs including reporting, dimensional analysis, and business intelligence (BI) in all

business areas are supported by the Decision Support System (DSS) subsystem. DSS

is programmed and maintained using the IBM COGNOS BI Suite. Since both of these

subsystems are based upon current technology, there is not an immediate need to

replace either of them with a modern system.

 Technical Information Management is currently accomplished with multiple

subsystems for various needs. Arbortext is the system used to Author the content for

technical information used in ALMIS. Asset Technical Information Management System

(ATIMS) is currently the system which is used to accomplish content management of

technical information. Technical Manual Application System (TMAPS) is a Department

of Defense (DoD)-owned system which is used by the USCG to store and deliver

technical documentation used in logistics management for USCG assets. The USCG

pays an annual fee to DoD in order to use the TMAPS system.

 Each of these subsystems, while related by business processes implemented

around the subsystems, are not directly integrated with each other from a technical

aspect. A single, main database is used for the ACMS, AMMIS, and EAL subsystems,

but data structure overlap and reuse is minimal where business processes actually

overlap. The DSS subsystem uses a separate, synchronized reporting database to

offload report processing from the transactional database. ATIMS and TMAPS use

!

12

separate databases entirely. So from the perspective of system integration, efficiency,

and reduction of waste, the legacy system does not employ the optimal model. It is

quite disparate when compared with Commercial-Off-The-Shelf (COTS) logistics

systems which are offered on the market today.

 Giving consideration to this architecture and it’s lack of efficiency, the cost and

effort to maintain this aging system warrant the decision made by the USCG to acquire

and implement a new logistics system - a COTS solution - which would replace the

legacy system.

3.2: CG-LIMS - The New Replacement System

 The Coast Guard Logistics Information Management System (CG-LIMS) project

began in 2008 as a major acquisition for the USCG [14]. CG-LIMS is a technology

refresh of ALMIS, and would be a Commercial-Off-The-Shelf (COTS)-based enterprise

logistics system using the Oracle E-Business Suite, which will replace the existing

logistics system. The new system will provide the same support as the existing system

for asset lifecycle configuration management and maintenance management, supply

chain management, technical information management, and decision support, without

all the inefficiencies or shortcomings identified with the legacy system.

 While CG-LIMS is a COTS-based system solution, it is still an enterprise logistics

system, and requires significant configuration in order to implement it with the specific

business of the U.S. Coast Guard. Additionally, there is significant software

development which must be done in order to interface the system with legacy data, and

to migrate/convert this data into usable data - with integrity - into CG-LIMS. So while

the configuration and development effort on the part of the Development Team is

!

13

minimal compared to a completely organic solution which is built from the ground up,

there is still significant software development and configuration which must be

accomplished within the project, in a controlled and phased implementation.

 In June 2011, the CG-LIMS project was presented to ALC ISD as a project in

which ISD would be the System Support Agent (SSA) as well as the System

Development Agent (SDA). This was done for several reasons: ISD is physically

collocated in proximity to a nucleus of the logistics customers, ISD has first-hand

experience in implementing new system solutions for logistics management in the

USCG, and ISD has experience in agile development. As ISD accepted the project, it

officially kicked off on January 17, 2012 with a new Scrum Team - the CG-LIMS

Development Team - comprised of existing Developers, Analysts, and a ScrumMaster.

Additionally, Subject Matter Expert (SME) Consultants were hired with specific expertise

in the COTS product to be implemented. Their role would be to begin delivering the first

products of the COTS implementation using agile methodologies to gain customer and

stakeholder confidence early, and to continually deliver in a high but sustainable pace

for the life of the project. Given these expectations, and the known encumbrance of the

governance from the USCG SDLC, the viable solution was to define and implement a

hybrid solution which leveraged agile methods, and satisfied waterfall deliverables as

well.

!

14

CHAPTER 4: HYBRID SCRUM METHODOLOGY

 Based on the desired results for the CG-LIMS project, and considering the given

constraints of satisfying the USCGs existing waterfall SDLC, a hybrid Scrum

methodology was implemented in order to leverage the full benefits of an agile

approach to software development while providing acceptable conformance to the

governance of the SDLC. The hybrid Scrum model is depicted in Figure 4. In this

model, the modified or additional elements of the hybrid Scrum model which are not

Figure 4: Hybrid Scrum Model

part of Scrum-proper are highlighted in yellow. The deliverables of the waterfall SDLC

which they satisfy are referenced in the blue oval callouts. Aydin, et. al [15] note that

many organizations tailor what is necessary with agile methods in order to meet the

needs of their organization, and to still implement agile methods. Optimally, the CG-

LIMS Scrum Team would be tailoring Scrum to meet the needs of the project purely for

efficiency and quality sake. This hybrid approach, however, is for coexistence sake; to

be able to satisfy both processes for the foreseeable life of the project.

 The hybrid Scrum methodology proceeds as follows:

• Release Planning - a hybrid process element - is a series of planning sessions

conducted prior to each release cycle. Planning is initially accomplished with IEEE

830 requirements only.

• Predefined Release Schedule - a hybrid artifact - is a regularly refined product of each

Release Planning. At a high level, this shows the entire release schedule for the

project.

• Product Backlog - a hybrid artifact - is a change to the normal Scrum Product Backlog.

It is populated with IEEE 830 Requirements, and it is groomed each release cycle

through the Release Planning.

• User Story Workshop - a normal Scrum process element.

• Release Backlog - a hybrid artifact - is an additional backlog which is used to define

the scope of the current release. It is populated by the Scrum Team and PMO in

User Story Workshops, and it serves the purpose that a Product Backlog serves in

normal Scrum.

• Sprint Planning Session - a normal Scrum process element.

• Sprint Planning Review Artifact - a hybrid artifact - is a product of the Sprint Planning

Session which captures the scope of the current sprint which was just captured.

!

16

• Sprint Backlog - a normal Scrum process element.

• Sprint and Daily Scrums - are normal Scrum process elements.

• Traceable UAT Artifact - a hybrid artifact - is a clearly defined UAT for each user story

which is used to test features and trace their verification from the signed UAT back

to the IEEE 830 requirements which they satisfy.

• Sprint Review - a normal Scrum process element.

• Sprint Review Artifact - a hybrid artifact - is a product of the Sprint Review which

captures the satisfactory accomplishment and acceptance of each of the stories in

the sprint, with traceability back to original IEEE 830 requirements.

• Shippable Product - a normal Scrum process element.

 The overarching concern of the PMO is that, as the Agile Manifesto states [9],

“[valuing] individuals and interactions over processes and tools”, and “[valuing] working

software over comprehensive documentation.” Doing so will produce a product which

customers feel that they “own” because they took part in the development, rather than

being brought in at certain touch points in the project to provide blind reviews and

feedback. Doing so will also generate product faster, putting smaller increments in the

customers hands sooner than later, rather than waiting until the end of a multi-year

project to “turn on the switch” of a complete system. This way customer confidence is

increased, as well as continued support by customers and sponsors alike as feedback

comes in throughout the duration of the project, rather than at the end. Thus, working

with the constraints of the waterfall SDLC and taking this hybrid Scrum approach was

imperative to the PMO (Product Owner) in being successful.

!

17

4.1 Predefined Release Schedule

 Normally, an agile approach to development does not plan the entire project out

from start to finish as in traditional software development models. The traditional WBS

which lays out milestones, tasks, dependencies, resource loading, and predecessors is

abandoned for the creation of a Product Backlog of features. The challenge which the

PMO faced, and specifically the Project Manager (an O-6 Captain) who answers to an

Executive Steering Committee (ESC) made of flag-level officers, was to present a

forward looking plan, and report progress to-date in a manner which instilled confidence

in the success and continued funding of the project. This meant presenting an end-to-

end sequential plan of releases scheduled for the entire project. While this is not

optimal, there is still a way to accomplish the scheduling of releases and still remain

agile.

 Reference Figures 4 and 5 for this discussion. The high level release schedule

FY	 2012 FY	 2013 FY	 2014 FY	 2015
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul

Inventory Mgmt	
Warehousing
Release 4

Internal	
Requistions
Release 5

New	 Buys	 &	
Repair Activity
Release 6

CO
NF

IG
UR

AT
IO
N

Transportation	
&	 Distribution
Release 7

Library	
Management	
Release	 7

Master	
Configuration
Release 1

Unit	
Configuration
Release 2

Unit	 (O-‐level)	
Maintenance
Release 3

Depot (D-‐level)	
Maintenance
Release 4

Parts	 Repair

Release 5

UCM
Integration
Release 6

HC144 #2314
Maintained	 in	 CG-‐LIMS

Content Mgmt	
(Workflows)
Release 5

Content	
Integration
Release 6

Figure 5: Predefined Release Schedule

depicted satisfies the need for this type of planning for oversight and governance

purposes. The Scrum Team and PMO participate in Release Planning sessions prior to

!

18

each release cycle begins in order to accomplish high level planning based upon the

IEEE 830 requirements already defined for the project. In these sessions, which

normally encompass a weeks worth of meetings, the IEEE 830 requirements are

reviewed for relevancy to anticipated scope for the oncoming release, and initially

prioritized into the release if they are relevant. Focus is concentrated on the oncoming

release, with less attention paid to requirements being specifically “bucketed” into future

releases. Future releases are discussed, but in increasing generality as releases lay

out into the future. From this effort, a high level release schedule like the one that

displayed in Figure 5 is produced. IEEE 830 requirements primarily make up the

Product Backlog, along with the occasional epic, but not the normal user stories

represented in normal Scrum implementations.

 This divergence from the Scrum approach does not violate any agile principles;

in combination with the Release Backlog, this solution still satisfies agility by keeping

the focus on the closest work to current day - the oncoming release. Granted, a picture

based on the team’s best guesstimates is painted of the entire project end-to-end, and

this picture can change as clarity of the scope of each release comes into view through

the project, but it satisfies a specific deliverable for the waterfall SDLC - the Project

Management Plan. The primary difference between an end-to-end WBS for a traditional

project and the predefined release schedule for the hybrid Scrum approach is that no

firm expectations are specifically promised for later releases beyond the next one which

is upcoming. Team and Stakeholders alike are educated on the concept of having the

“furious four” variables of a project - Time, Budget, Quality, and Scope [16]. The high

level release schedule being defined as it is suggests that time and budget are

!

19

generally going to be fixed, and quality is always expected, so that can be considered

fixed as well. This leaves scope to be leveraged each release to the Product Owner’s

satisfaction. The scope of future releases isn’t known or considered relevant beyond

the oncoming release. The defined scope for a release can be determined when it is

relevant to the team; just before the future release is about to become the oncoming

release.

4.2 The Release Backlog

 The Release Backlog is a new element of the hybrid Scrum methodology. Scrum

normally employs two backlogs - the Product Backlog and the Sprint Backlog. The

need to be able to transition IEEE 830 requirements into epics and eventually user

stories is facilitated by having this new backlog. See Figure 6 for the placement of the

Release Backlog in the process defined for the CG-LIMS project.

!

20

Figure 6: The Release Backlog Inserted into the Process

 Only the current release is considered close enough and relevant enough to give

detail to, so the Scrum Team and PMO conduct User Story Workshops for the current

release to create, prioritize, and estimate epics and stories from the IEEE 830

requirements in the Product Backlog. These go into the Release Backlog, and define

the more detailed scope of the oncoming or current release. The Release Backlog is

populated each release cycle; as it runs empty for the current release, it is filled from the

Product Backlog in User Story Workshops prior to the next release cycle. The Release

Backlog is prioritized and groomed in the same manner as the Product Backlog in

!

21

normal Scrum is. When it is time to plan a sprint, the Scrum Team selects from the

Release Backlog versus the Product Backlog.

 The Release Backlog, with its detailed information captured for each user story,

represents functional requirements defined for the system. They are more detailed than

the IEEE 830 requirements for the project, referencing specific features and business

functionality which will be delivered in the given release. This satisfies the Functional

Requirements deliverable in the waterfall SDLC process, for the Design PER.

4.3 Sprint Planning Review Artifact

 The Sprint Planning Review Artifact is a signed document that is created after

each Sprint Planning Session to represent the stories and work scoped into the current

sprint. It captures notes relevant to the execution of the stories, and also defines the

acceptance criteria which the development team will satisfy for each story in the sprint

(see Figure 7). In hybrid Scrum, this artifact in addition to the Release Backlog satisfies

the Functional Requirements documentation for the waterfall SDLC, where there is no

element of normal Scrum which satisfies this deliverable otherwise.

!

22

Figure 7: Sprint Planning Review Artifact

4.4 Traceable UAT Artifact

 In the hybrid Scrum approach, IEEE 830 requirements which are kept in the

Product Backlog must trace forward to the UATs which are performed to verify that

requirements are met, and likewise, the UATs must trace backwards to the requirements

which they satisfy. This traceability is accomplished through multiple steps in the hybrid

Scrum model. First, IEEE 830 requirements in the Product Backlog are decomposed in

User Story Workshops into epics, and then eventually into the multiple user stories

which develop and implement the features for the given requirement (see Figure 8).

The number of epics and eventually user stories which represent the features of the

requirement are dependent on each requirement. In the CG-LIMS project, requirements

!

23

have decomposed to as few as one story, and as many as twelve stories. Note in

Figure 8 that as epics and stories are created, they are assigned the UID for the

Figure 8: Requirements Traceability to UATs

requirement in the Product Backlog. As stories are worked in respective sprints, the

UATs for those stories are written as well. UATs, likewise, are given the UID of the

requirement to which they trace so as to have end-to-end traceability for satisfaction of

requirements. Considering there may be two or more stories and their UATs which trace

to a given requirement, status of the completion of stories and their UATs must be

tracked in order to determine when a requirement is completely satisfied by the related

UATs. Based on priorities and logical grouping, some requirements may carry over

multiple sprints before they are completed fully. The CG-LIMS Team utilizes IBM

!

24

DOORS as their Requirements Management tool/repository, so a status flag denoting

that a requirement is complete, based upon the stories being defined for a given

requirement is set on the requirement when it is decomposed to all of its related stories.

This way, it can be traced in the tool that a requirement is complete when the UATs are

captured for each of the stories.

 Normally, the Scrum approach to creating user stories is to conduct a User Story

Workshop where brainstorming and other methods are used to draw features out of

Product Owners and customers during the session. Our method uses the IEEE 830

requirements as a basis for defining features, and Product Owners and customers lend

input into the creation of epics and user stories which come from the requirements.

Furthermore, testing in a purely Scrum approach would not develop significant testing

artifacts. Testing would be satisfied by simply scribing constraints to be met and

validations to be confirmed on the back of index cards. This would not satisfy the

waterfall SDLC requirement for a Test and Evaluation Master Plan (TEMP), but UATs

which trace through user stories to requirements do. And so the TEMP deliverable

which is required for the PER of the Development and Testing phase is satisfied.

4.5 Sprint Review Artifact

 Scrum has a sprint review “ceremony” where the Scrum Team reviews the work

that has been completed with the customers, Product Owner, and stakeholders to

demonstrate developed features. This is a normal meeting, but the results of the review

and demonstration are not normally tracked in an artifact. The hybrid Scrum approach

creates the Sprint Review Artifact (see Figure 9) which itemizes the stories completed,

notes regarding the review of the stories, and positive confirmation that acceptance

!

25

criteria was met for each story of the sprint. This artifact supports the traceability of the

completion of stories/UATs, as it is signed as well and held as a project artifact.

Additionally, it supports System Documentation deliverable for the PER of the

Implementation waterfall SDLC phase. It does not stand alone in this purpose,

Figure 9: Sprint Review Artifact

however. Significant documentation captured from COTS documentation, story details,

and specifications written in developing interface solutions all provide the necessary

detail to satisfy system documentation needs.

4.6 Requirements metrics tracked

 Metrics which are innate to Scrum are the Sprint Burndown, Team Velocity, and

the Release Burndown. Consider the metrics which are not normally tracked in Scrum -

!

26

those metrics which are innate to a waterfall process model. Requirements defined with

the IEEE 830 standard are not normally a part of Scrum. IEEE 830 requirements are

tracked in the hybrid Scrum approach, however. It is necessary to track requirement

completion to satisfy the waterfall SDLC and its customers; the normal way to track

progress in Scrum - story point completion - only provides value to the Scrum Team.

 While it is necessary to track requirements completed per sprint and per release,

it is not necessary to track requirements completed in a daily Sprint Burndown; this level

of granularity is too low to provide value. Likewise, it is not necessary to track Team

Velocity based upon requirements completion. Team Velocity is used for planning

purposes by the Scrum Team and the PMO, and there is no value for tracking velocity

with a second unit of measure.

 Requirements traceability through user stories to UATs and back facilitates the

ability to make the jump from points to system requirements counts. UATs are

completed for stories which are based upon points, and these trace to requirements

which are the target unit. Another adaptation made to facilitate requirements completion

based upon story completion was giving partial credit for requirements completed. As

demonstrated in Figure 8, stories, and thus UATs can be completed successfully, but a

single story or even multiple stories may not constitute satisfying a requirement

completely. If a given system requirement was decomposed to four user stories and

four UATs, the decision could be made to give partial credit for a requirement

completion if some, but not all of the stories were complete. This allowed the PMO to

report progress being made from sprint to sprint even if only in 1/2 credit units (the

!

27

consensus was that giving less than 1/2 credit was not valuable in improving the

tracking of requirements completion progress).

 The first metric tracked in hybrid Scrum is Requirements per Release (see Figure

10). As project success is ultimately measured in requirements from the ORD being

Figure 10: Requirements per Release

completed, this metric uses requirements as the unit of measure. As requirements trace

directly to stories and UATs, and stories are planned for releases, requirements planned

can be tracked. Likewise, as stories are completed for a release, and their UATs are

signed off, the requirements which trace to these stories and UATs are also tracked for

completion. In this manner, the traceability which is a hybrid Scrum artifact provides the

!

28

mechanism for accomplishing this waterfall deliverable, simply by doing the normal

activities of Scrum.

 The second metric which tracks requirements is Cumulative Requirements

accomplished. This chart, shows planned and actual completed requirements per

Figure 11: Cumulative Requirements per Release, Baseline Revision 1

release, and additionally, it shows the desired cumulative total of requirements through

the extent of the project. This particular chart shows an actual change to the baseline

requirements for the project - Revision 1. Re-baselining requirements is a waterfall

process activity, yet the metrics for such activities can still be shown in relation to the

progress of the Scrum Team in a hybrid Scrum approach.

!

29

 As simple as the two new metrics may seem in this hybrid Scrum approach, there

is measurable value in communicating to project Sponsors and Stakeholders the

progress made in the project in terms to which they can relate - completed

requirements. This is especially the case when governance directed in the SDLC

requires that progress be measured a certain way. These metrics are not arbitrary

either; they are directly correlated and traceable to the work being accomplished with

agile methods.

 And so it is clearly demonstrated that the hybrid Scrum methodology has

significant, tangible elements which provide specific value in a situation where the

disparity between two coexisting processes could be considered otherwise

insurmountable. Changes in the normal Scrum process afford the team the activities

which accommodate waterfall activities and deliverables; just enough to be able to

satisfy requirements and PERs, but not so much as to make hybrid Scrum

unrecognizable as an agile methodology. Additional document artifacts are

implemented in a manner which minimizes the disruption to the agility of the team, while

satisfying waterfall SDLC process requirements, and specifically satisfying project

Sponsors and stakeholders.

!

30

CHAPTER 5: CONCLUSION

 Defining and implementing a hybrid Scrum methodology was quintessential to

the success of the project in the case study. While the existing SDLC was in place and

in force in organization, it was also evident at the beginning of the project that if the

project team did not deliver successes quickly, the project was in jeopardy of being

cancelled. In this respect, the organization’s policies made it it’s own worst enemy.

Taking a waterfall approach to development would not have generated the successes

early enough to keep the project off the chopping block. Out of necessity was born the

hybrid Scrum methodology. To date, the project has not completed, but it continues to

track successfully from release to release. Features continue to be delivered, and

customers on the ground level who use the CG-LIMS in day to day activities appreciate

the attention spent in customer interaction; a benefit of agile methods. In the same

vein, Product Owner, Sponsor, and Stakeholder appreciate the visibility and

participatory role they play in Scrum and hybrid Scrum activities, as well as the

confidence that the standard to which they know the project is ultimately held - the

SDLC process - is being satisfied. The benefits of the hybrid Scrum approach are being

realized: regular and frequent customer interaction, potentially shippable product being

delivered every two weeks, and substantive releases being delivered every six months.

With the transparency that the Scrum Team provides to all teams and Stakeholders,

surprises are minimized, deficiencies are detected early and addressed, and Scrum

Team morale is high, contributing to a high operations tempo at a sustainable pace.

 Key to the success of the hybrid Scrum approach is to clearly define what

deliverables from the waterfall process are required, and then clearly defining how the

team will accomplish meeting and delivering them. A highly disciplined Scrum Team is

also a key to success; adopting agile methodologies, and leaving behind inefficiencies

of “the way it has always been done” takes dedication from team members and

management alike. In the hybrid Scrum implementation used for CG-LIMS, six specific

methods or artifacts were modified or added in order to meet the specific needs of the

USCG SDLC, but as hybrid Scrum is applied in organizations in need of the same

results, other methods may be modified as well in order to meet other specific

organizational needs.

 Another specific benefit of the experience of this implementation is the realization

that not only does hybrid Scrum provide a means for two disparate processes - Scrum

and waterfall - to coexist for an organization, but it also provides a transitory mechanism

for organizations to migrate from a waterfall process to Scrum in an incremental

approach. Organizations can’t always afford to “flip the switch” and turn off a waterfall

process overnight and to turn on an agile Scrum approach the next day. Inhibitors to

doing so could include budgetary reasons, organization logistics, training, and political

reasons. As with most successful process change implementations in IT organizations,

success does not volunteer organically; it usually is carried to the forefront by a

champion who will be ever-vigilant in overcoming minor setbacks for the bigger wins

which come with patience and perseverance. Based on the experience of implementing

hybrid Scrum with the CG-LIMS project, it is easy to envision other entities having

champions who use hybrid Scrum to transition their own organizations from waterfall to

Scrum.

!

32

 While the study is conclusive in its limited scope, one major shortcoming is just

that - its limited scope. A further, more thorough study may reveal even more value to

be gleaned in satisfying more SDLC/waterfall deliverable requirements with additional

modifications or improvements to the hybrid Scrum approach. This thesis does

conclude that combining the two approaches - Scrum and waterfall - can be

accomplished, and even show success with both processes.

!

33

REFERENCES

[1] “Command, Control, Communications, Computers and Information Technology
(C4&IT) System Development Life Cycle (SDLC) Policy” - Commandant Instruction
5230.66A, United States Coast Guard, 11 December 2009, http://www.uscg.mil/
directives/ci/5000-5999/CI_5230_66A.pdf

[2] “IEEE Recommended Practice for Software Requirements Specifications” - IEEE
Standard 830-1998, IEEE, 1998, http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=5841.

[3] “Scaling Agile: An Executive Guide”, Ambler, IBM agility@scale Whitepaper, 2010,
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/
scaling_agile_an_executive_guide10.

[4] “Agile Methodologies in DHS (Draft)”, Schwartz, et al. (DHS Agile Working Group),
2011.

[5] “Homeland Security Tackles Agile Development”, Hoover, Information Week
Government, February 28, 2012, http://www.informationweek.com/government/
enterprise-architecture/homeland-security-tackles-agile-developm/232601660.

[6] “Chapter 19: Coexisting with Other Approaches”, Cohn, Succeeding with Agile:
Software Development Using Scrum, Addison-Wesley, 2010.

[7] “Bridging the Gap: Agile Projects in the Waterfall Enterprise”, Sliger, Better Software,
July/August 2006, pp. 26-31.

[8] “FBI's Sentinel Project: 5 Lessons Learned”, Foley, Information Week Government,
August 3, 2012, http://www.informationweek.com/government/enterprise-applications/
fbis-sentinel-project-5-lessons-learned/240004888.

[9] “The Agile Manifesto”, The Agile Alliance, 2001, http://www.agilemanifesto.org.

[10] “ISO 9001 and Agile Development”, McMichael and Lombardi, Proceedings of the
Agile 2007 Conference, IEEE Computer Society, 2007, pp. 262-265.

[11] “Empirical Studies in Software Development Projects: Field Survey and OS/400
Study”, Phan, Vogel, and Nunamaker, Information & Management, Volume 28, Issue 4,
April 1995, pp. 271-280, http://www.sciencedirect.com/science/article/pii/
037872069400046L.

[12] “Managing the Development of Large Software Systems”, Royce, IEEE Computer
Society Press, 26 August 1970, http://dl.acm.org/citation.cfm?id=41765.41801.

http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://dl.acm.org/citation.cfm?id=41765.41801
http://dl.acm.org/citation.cfm?id=41765.41801

[13] “A Case Study on the Impact of Scrum on Overtime and Customer Satisfaction”,
Mann and Maurer, Proceedings of the Agile Development Conference, IEEE Computer
Society, pp. 70-79, http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1609806&isnumber=33795.

[14] “Coast Guard Logistics Management Information System”, USCG, http://
www.uscg.mil/acquisition/cglims/.

[15] “An Agile Information Systems Development Method in Use”, Aydin, Harmsen,
Slooten, and Stegwee, Turkish Journal of Electrical Engineering and Computer Science,
Volume 12, Issue 2, 2004, pp. 127-138, http://journals.tubitak.gov.tr/elektrik/issues/
elk-04-12-2/elk-12-2-5-0404-6.pdf.

[16] “The Furious Four”, Rasmusson, The Agile Samurai, The Pragmatic Bookshelf,
2011.

!

35

http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://www.uscg.mil/acquisition/cglims/
http://www.uscg.mil/acquisition/cglims/
http://www.uscg.mil/acquisition/cglims/
http://www.uscg.mil/acquisition/cglims/
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf

