
	
	

ABSTRACT

Overhauling Legacy Enterprise Software Applications with a
Concept Refinement Process Model

by

Daniel P. Knight

January 2013

Director of Thesis: Dr. Nasseh Tabrizi

Major Department: Computer Science
	

	
	
	

Currently, there are many legacy enterprise software applications in active deployment

that are outdated. These large legacy applications are rapidly becoming less practical for both the

organizations they service, and for the organizations responsible for servicing them. Due to this

problem, organizations utilizing legacy enterprise software applications are looking for feasible

methods for overhauling them. This thesis establishes a process model for refining the initial

concept associated with overhauling legacy enterprise software applications, and examines a case

study of that process as applied to a real-world legacy software system.

			

	

	

	

	

	

	

	

	
	

Overhauling Legacy Enterprise Software Applications with a
Concept Refinement Process Model

A Thesis

Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Daniel P. Knight

January 2013

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	
	
	
	
	

Copyright © 2013

Daniel P. Knight

	
	

Overhauling Legacy Enterprise Software Applications with a
Concept Refinement Process Model

by

Daniel P. Knight

APPROVED BY:

DIRECTOR OF THESIS: ___

M. H. Nassehzadeh Tabrizi, PhD

COMMITTEE MEMBER: ___

Junhua Ding, PhD

COMMITTEE MEMBER: ___

Sergiy Vilkomir, PhD

CHAIR OF THE DEPARTMENT OF COMPUTER SCIENCE:

__

Karl Abrahamson, PhD

DEAN OF THE GRADUATE SCHOOL:

__

Paul J. Gemperline, PhD

	
	

TABLE OF CONTENTS

List of Figures ..viii

List of Tables ...x

Chapter 1: Introduction ..1

Chapter 2: The Overhaul Concept Refinement Process Model3

2.1: Understand the Existing Issues ...6

2.2: Research Software Development Trends and Technology9

2.3: Identify Remedies for Existing Issues ..11

2.4: Collectively Analyze and Conceptualize Solutions12

2.5: Select a Solution to Refine ..13

2.6: Refine Solution with Rapid Prototyping ...15

2.7: Final Preparation for Software Development ...16

Chapter 3: Case Study ..18

3.1: Understanding the Existing Issues ..19

3.2: Researching Software Development Trends and Technology25

3.3: Identifying Remedies for Existing Issues ...26

3.4: Collectively Analyzing and Conceptualizing Solutions28

3.5: Selecting a Solution to Refine ..30

3.6: Refining Solution with Rapid Prototyping ...31

3.7: Final Preparation for Software Development ...39

3.8: Projected Benefits ...39

Chapter 4: Overhaul Concept Refinement Process Model Analysis41

4.1: Domain..44

	
	

4.2: Flow ..48

4.3: Sub Processes ..52

4.4: Artifacts ..55

4.5: Usability ..57

4.6: Repeatability ...57

4.7: Limitations ..58

4.8: Related Works ...59

4.9: Conclusion ..62

References ..63

Appendix A: Background Information ..66

A.1: Cloud Computing ...66

A.2: Service Oriented Architecture ..66

A.3: Representational State Transfer ...67

A.4: Mobile Web ...69

A.5: Hypertext Markup Language 5 ..70

A.6: JavaScript Object Notation ..71

A.7: Extreme Programming ...72

A.8: Classic Active Server Page Technology ..75

Appendix B: Service Central’s Client-Side JavaScript Object Constructor77

Appendix C: Service Central’s Server-Side VBScript URI Controller79

Appendix D: Service Central’s Collection Level HTTP Request87

Appendix E: Service Central’s Element Level HTTP Request91

Appendix F: Service Central’s Mobile App. Screenshots ...93

	
	

Appendix G: Service Central’s Friendly Web Service Interface101

Appendix H: Service Central’s URI Collections Hierarchy104

	
	

LIST OF FIGURES

Figure 1: Overhaul Concept Refinement Process Model ..5

Figure 2: Issue Discovery Process Model ..8

Figure 3: Research Planning Process Model ...10

Figure 4: Remedy Discovery Process Model ...12

Figure 5: Conception Process Model ...13

Figure 6: Solution Selection Process Model ..14

Figure 7: Rapid Prototyping Process Model ..15

Figure 8: Prototype Evaluation Process Model ...17

Figure 9: Legacy Architecture ...20

Figure 10: Symptoms Document ...21

Figure 11: Issues Document ...22

Figure 12: Cross Reference Document ..24

Figure 13: Research Plan Document ..26

Figure 14: Remedies Document...27

Figure 15: New High-Level Architectural Concept ...28

Figure 16: New High-Level Development Process Concept29

Figure 17: Prioritized Solutions Document ...31

Figure 18: Sample User Stories - Login ..32

Figure 19: Sample User Stories - Landing ...33

Figure 20: Sample CRC Card - Service ...34

Figure 21: Helicon Configuration File ...34

Figure 22: Sample Unit Test – Parse URI’s Collections & Elements35

	
	

Figure 23: Sample Unit Test – Parse URI’s Query String ...35

Figure 24: Integration Test 1 ..36

Figure 25: Integration Test 2 ..36

Figure 26: System Test 1 ...37

Figure 27: Code Snippet – AllRegs.html ...37

Figure 28: System Test 2 ...38

Figure 29: Code Snippet – Reg10.html..38

Figure 30: Enterprise Software Lifecycle Model ...48

Figure 31: Hierarchical Command Structure of the United States Marine Corps53

Figure 32: Hierarchical Structure of Strategies and Tactics54

Figure 33: Pragmatic REST Constraints ..69

Figure 34: Sample JSON Structure ..71

Figure 35: User Login Screen ..93

Figure 36: Main Menu Screen ...94

Figure 37: RMA (Return Material Authorization) Screen – RMA# 38295

Figure 38: RMA Screen, Entities Section – Two Entities for RMA# 38296

Figure 39: RMA Notes Screen, Notes Section - Modal Dialog for Select Note97

Figure 40: RMA Note Screen, Notes Section – “Add Note” Button98

Figure 41: RMA Add Note Screen ..99

Figure 42: RMA Note Screen, Notes Section – New Note Added100

Figure 43: FWSI Architecture ...103

Figure 44: URI Hierarchy ..104

	
	

LIST OF TABLES

Table 1: Service Central’s Projected Customer-Side Stakeholder Benefits 40

Table 2: Service Central’s Projected Development-Side Stakeholder Benefits40

Table 3: Aspects of Legacy Software Applications ..41

Table 4: Customer-Side Stakeholder Benefits ..42

Table 5: Development-Side Stakeholder Benefits ..42

Table 6: Risks in Overhauling Legacy Software Applications 43

Table 7: Risks Mitigated / Overhaul Concept Refinement Process Model Phase 44

	

	

CHAPTER 1: INTRODUCTION

Currently, there are many legacy enterprise software applications in active deployment

that were initially designed and built over a decade ago. Over time, many of these software

applications have grown to the point where they are too difficult to maintain, integrate with other

software applications, and configure to effectively meet customer requirements. According to an

article in the Journal of Systems and Software:

In the last decade, we have seen an increasing use of both the object-oriented paradigm
and distributed systems. As a result, there is increasing interest in migrating and
reengineering legacy systems to these new hardware technologies and software
development paradigms [1].

Legacy enterprise software applications, in many cases, cannot be easily replaced by modern

software applications because the organizations using them have become locked-in to them. One

reason for this is because they provide business critical functionality. According to an article in

Information and Software Technology, “Legacy systems typically form the backbone of the

information flow within organizations and are the main driver to consolidate information on their

business.” [2]. Additionally, organizations may become locked-in to legacy enterprise software

applications because migration to new applications is not feasible or possible [3]. This is because

data migrations are often highly complex, time consuming, error prone, and incomplete.

Unfortunately, an organization that is locked-in to a legacy enterprise software application is ill

suited to remain competitive because their software solution is built upon technology that has

become outdated. However, despite the aforementioned issues, legacy enterprise software

applications do continue to offer a limited amount of value because they perform necessary

business functions, even if they do not perform these functions as well or as diversely as they

could, or as they necessarily should.

2	
	 	

According to John R. Leary, “Even when precedents can be used to foster common

understanding of objectives and methods, large-scale systems pose exponentially greater

difficulty in communication than is the case in smaller systems.” [4]. Therefore, when a legacy

enterprise software application exceeds a certain age, size, and complexity threshold, the need to

migrate the software application to a different or more modern software architecture, built upon

modern technologies, may become a challenging necessity. This type of migration can be

considered an overhaul of the legacy enterprise software application.

 In order to successfully overhaul a legacy enterprise software application, a process must

be executed [5]. According to researchers at the University of Sannio Palazzo Bosco Lucarelli,

“Making a decision about how to evolve a legacy system cannot be made spontaneously; rather,

it requires a decisional framework that takes into account several factors including software

value, risk analysis, and cost estimation” [6]. The focus of this thesis is to present an Overhaul

Concept Refinement Process Model that can be used to help accomplish the overhaul of legacy

enterprise software applications.

 This thesis is organized as follows. First, we will present the Overhaul Concept

Refinement Process Model graphically in the form of a flowchart. Each node in the flowchart

will be sufficiently detailed in its own subsection in Chapter 2. Next, we will examine a case

study that exemplifies the utilization of the proposed process model in a real-word context.

Finally, this thesis will be concluded with a chapter committed to analyzing the Overhaul

Concept Refinement Process Model. In this chapter, subsections will be specifically devoted to

analyzing the model’s domain, organizational flow, and artifacts.

	

	

CHAPTER 2: THE OVERHAUL CONCEPT REFINEMENT PROCESS MODEL

 Unique problems require unique solutions. For example, the Chief Technology Officer

(CTO) of an organization that initially developed, and now maintains, a legacy enterprise

software application may determine that the organization’s legacy software application needs to

be overhauled to remain competitive. However, the CTO is not a technical expert on the legacy

software application, and therefore does not truly understand the full extent of the existing issues.

This renders him incapable of selecting a new Software Architecture and Software Development

Process that is appropriate (and necessary) to achieve his overhaul initiative. Therefore, the CTO

calls a meeting and announces to the software development, deployment, and maintenance staff

that they need to overhaul their legacy software application in order to remain competitive.

However, before they begin the full-scale software development effort necessary to attain the

overhauled software product, he needs his staff to provide him with confidence that the right

software product will be constructed via the most appropriate software development process, and

that it can be feasibly accomplished within a reasonable amount of time. In this example, the

CTO challenged his staff to refine his overhaul concept of their organization’s legacy enterprise

software application to determine what needs to be built, how it needs to be developed, and

whether or not it can be feasibly accomplished. This is the type of unique problem that the

Overhaul Concept Refinement Process Model intends to help solve.

Every software application lifecycle begins with a conception phase, in which the most

high-level concept of a software application is conceived. The concept is then refined to a

necessary level, where it becomes a worthy prospect for realization via a software development

process [5]. It is within the conception phase of the software application’s lifecycle that our

4	
	 	

proposed Overhaul Concept Refinement Process Model exists. The purpose of the process

model is to facilitate the refinement of a specific type of initial concept that is often encountered

by software development organizations that support legacy enterprise software applications, and

to evolve that initial concept to a level of maturity that makes it worthy of realization. The

specific initial concept that we are referring to is the perception that a particular legacy software

application need be overhauled. That is, some large business critical software application that is

currently servicing an organization has become outdated and needs to be overhauled to remain

competitive.

 A typical software lifecycle model consists of the following high-level phases:

1. Conception
2. Requirements
3. Design
4. Implementation
5. Testing
6. Deployment
7. Maintenance
8. Retirement

A software lifecycle model that includes an overhaul may have the following phases [5]:

Initial:

1. Conception
2. Requirements
3. Design
4. Implementation
5. Testing
6. Deployment
7. Maintenance

Overhaul:

8. Conception
9. Requirements
10. Design
11. Implementation
12. Testing
13. Deployment

5	
	 	

14. Maintenance

The primary difference between phases 1 and 8, in the above list, is that phase 1 is extensively

focused on the functions of a software application (i.e., what the software will do), while phase 8

should be focused on enhancing non-functional elements of the existing software application and

how it can perform its present functions more effectively. When overhauling an existing software

application verses developing a new software application, much less effort must be expended

gathering and identifying all necessary functional requirements via communication with the end-

users, customers, and other stakeholders. This is because during an overhaul, the existing

software application acts as roadmap for the identification and documentation of the functional

requirements. Therefore, the general idea is to expend a suitable amount of effort establishing a

workable concept from which a high quality software product can be created. Overhauling is not

an overall restoration effort; overhauling is an overall quality improvement effort that aims to

ensure the product’s ongoing value. Figure 1 illustrates the high-level phases and flow of the

Overhaul Concept Refinement Process Model. It is not a Software Development Process. It

precedes the execution of a Software Development Process and enables the confident selection of

a practical Software Architecture and Software Development Process that is best suited to the

problem and concept.

	

Understand the
Existing Issues

Research Software
Development

Trends &
Technology

Identify Remedies
for Existing Issues

Collectively
Analyze &

Conceptualize
Solutions

Select a Solution
to Refine

Refine Solution
with Rapid
Prototyping

Final Preparation
for Software
Development

Figure 1: Overhaul Concept Refinement Process Model

6	
	 	

The	 next	 seven	 sections	 (2.1	 –	 2.7)	 will	 each	 examine	 a	 phase	 of	 the	 Overhaul	Concept	

Refinement	Process	Model.	

	

2.1 Understand the Existing Issues

The first phase in the Overhaul Concept Refinement Process Model involves thoroughly

comprehending the legacy software application’s existing issues as a team. Issues are

problematic elements of a software application and its lifecycle. While certain intrinsically

obvious issues will always be the compelling force behind the initiation of the overhaul process,

many issues that must be understood by the entire team should be discovered through

collaborative investigation. Issues are not limited to a legacy software application’s functional

capabilities. Issues are found in both the functional and non-functional elements of the legacy

software application [7].

Functional elements of a software application are those that directly translate to its

features. For example, many software applications have a login feature that authenticates and

then authorizes an end-user to additional features. Non-functional elements are those that do not

directly translate to features. For example, usability, reliability, supportability, availability,

scalability, portability and performance are all non-functional elements of a software application.

Unfortunately, many issues can be found within these difficult to remedy, non-functional

elements, which are primarily responsible for determining the overall quality of the software

application [8].

A software application’s functional elements only determine a certain amount of its

value; its non-functional elements are also a factor in determining value. For example, a

particular software application performs a specific function, and this function has a certain value

7	
	 	

to a specific organization, but the software application and its function are not easily scalable

(i.e., the software application cannot feasibly be scaled up if the organization grows or scaled

down if the organization shrinks). Therefore, the software application’s overall value to the

organization is limited by the organization’s size. As the organization’s size changes over time,

the software application’s value can diminish because it is no longer suitable for the new size of

the organization. Due to the high impact of non-functional elements on a software application’s

value, it is important to identify and remedy those issues. Also, remedying issues within the non-

functional category will increase the software application’s overall quality and value.

Due to the size and complexity of legacy software applications, it is often impractical to

exhaustively identify and document every issue, and attempting to do so is not the objective of

this phase [7]. It is, however, important to collaboratively identify and document the major

issues. To do this, use the Issue Discovery Process Model illustrated in Figure 2.

	

8	
	 	

	

	

The steps in this model are:

1. Model – Construct architectural views of the critical architectural elements.
2. Symptoms – List symptoms gathered from stakeholders.
3. Examination – Investigate the architectural views and symptoms to find issues.
4. Identification – Make the determination that an element is problematic for a

documentable reason.
5. Record – Write a short description of the issue, briefly explain why it is an issue, and list

each symptom it is causing.
6. Rank – Review all recorded issues and assign a severity ranking to each.

The output of this process should be:

1. A set of models that describe critical architectural elements from certain viewpoints.
2. A Symptoms document listing each reported symptom, and stakeholder group that

reported the symptom.
3. An Issues document listing and describing each identified issue.
4. A Symptoms/Issues cross reference document, linking symptoms to issues.

Model

Symptoms

Examination

Identification

Record

Rank

Figure	2:	Issue	Discovery	Process	Model

9	
	 	

The goal is not to exhaustively identify and document all issues; this would be infeasible in

most contexts. The goal is to understand the high-level issues with the existing architecture,

technology, ongoing development process, and all relevant support processes. The above process

should ideally identify no more than 25 - 50 high-level issues. If the list gets too long, the

elements under examination may be too low-level. The issues list should be short enough that a

single person could reasonable comprehend the list and attain an overall understanding of what

the issues are without having to refer to long lists of low-level issues.

All of the documents output by this phase of the Overhaul Concept Refinement Process

Model will be used as inputs to subsequent phases of the process, but the most important

documents are the Issues document and the models that depict critical architectural views. These

documents substantiate the necessity of overhauling the legacy software application under

process.

2.2 Research Software Development Trends and Technology

The second phase in the Overhaul Concept Refinement Process Model is to research

software development trends and the capabilities of newer, more current technology. This phase

is critical because it empowers the construction of a new design concept for the software

application being overhauled. Without a firm grasp on current software development trends and

modern technology, the development of a competitive modern software application is essentially

impossible. Additionally, research may further enable identification and documentation of

existing issues (Phase 1 of the Overhaul Concept Refinement Process Model) by revealing issues

that were previously unrealized.

10	
	 	

While researching software development trends and modern technology, it is always

important to avoid jumping to an early conclusion. For example, an appealing new software

architecture may grab the attention of a developer, but it would be unadvisable for the developer

to prematurely conclude the research process because they think they have just found the single

solution that will resolve all or most of the existing issues. Be thorough. Understand the major

driving forces behind the current software development trends, and understand the actual

capabilities that modern technologies bring to the table. However, avoid spending an exorbitant

amount of time on a single research item because this may result in missed opportunities to

explore other research items. Researching modern technology can be an open-ended process,

therefore, controlling the scope of the research and executing it in a timely manner is the only

feasible option.

To define an adequate domain of research and to promote identification of research items,

use the Research Planning Process Model (see Figure 3).

		

The steps in this model are:

1. Review – Analyze all documents created in Phase 1 of the Overhaul Concept Refinement
Process Model.

Review

Brainstorm

Select

Plan

Figure	3:	Research	Planning	Process	Model

11	
	 	

2. Brainstorm – Consider the existing system’s architectural constraints and documented
issues, and then begin to brainstorm areas of research interest.

3. Select – Identify and document pertinent research items.
4. Plan – Allocate a specific amount of time to each selected research item and establish an

overall deadline for completing the research. Additionally, determine how the research
will be documented.

The output of this process should be a Research Plan document listing research items each

designated with a time allocation, and an ultimate deadline for the overall research effort.

When executing the Research Plan, stick to the plan. However, while executing research, it

is possible to stumble across relevant subject matter that is worthy of further investigation, but

was not included in the Research Plan. If this happens, make note of the subject matter and then

proceed with the research per the Research Plan, unless the subject matter is exceptional and

worthy of altering the Research Plan immediately to accommodate. Situations worthy of

altering the Research Plan should be handled carefully; the decision to alter the Research Plan

should be made quickly via a collaborative effort by the appropriate project stakeholders, but the

decision should not be made lightly.

2.3 Identify Remedies for Existing Issues

The third phase in the Overhaul Concept Refinement Process Model builds on the

knowledge and documentation accumulated during the preceding phases. The objective of this

phase is to identify and document potential remedies for each issue that was documented in

Phase 1. Remedies are solutions capable of mitigating issues.

In order to identify potential remedies, it is necessary first to understand the existing

issues, and research modern software development trends and technologies (Phases 1 and 2 of

the Overhaul Concept Refinement Process Model). To identify potential remedies for the

documented issues, use the Remedy Discovery Process Model (see Figure 4).

12	
	 	

	

	

The	steps	in	this	process	are:	

1. Select an issue from the Issues document.
2. Utilize knowledge gleaned from your research to list potential remedies for the selected

issue.
3. Briefly describe how each potential remedy will eliminate or mitigate the issue.
4. Rank each remedy’s level of difficultly, cost, and time to implement (high, medium, or

low).

The output of this process is a document that associates ranked potential remedies with the

documented issues.

2.4 Collectively Analyze and Conceptualize Solutions

The fourth phase in the Overhaul Concept Refinement Process Model is to collectively

analyze all documents created in the preceding steps and begin to formulate overall architectural

design concepts and development process concepts. It is not the goal of this phase to form

completely architected solutions, but rather it is about conceptualizing potential high-level

architectures and development processes, given a well formed understanding of the existing

issues, modern development trends, and potential remedies. Primarily, the goal of this phase is to

Select

Utilize

Describe

Rank

Figure	4:	Remedy	Discovery	Process	Model

13	
	 	

conceptualize what the existing software could become and how it could be achieved. To

produce these outputs, use the Conception Process Model (see Figure 5).

	

	

The	steps	in	this	process	are:	

1. Review all documentation from previous phases.
2. Brainstorm design concepts with team members.
3. Collaboratively draft high-level graphical models of potential software architectures

and/or software development processes.
4. Output all initial drafts to next overall phase in the Overhaul Concept Refinement

Process Model.

The potential outputs of this process are:

1. High-level graphical models of potential Software Architectures.
2. High-level graphical models of potential Software Development Processes.

2.5 Select a Solution to Refine

The fifth phase in the Overhaul Concept Refinement Process Model is to select a solution

to refine. The preceding phase of the Overhaul Concept Refinement Process Model may have

resulted in:

1. One Architectural Concept and One Development Process Concept
2. One Architectural Concept and Multiple Development Process Concepts
3. Multiple Architectural Concepts and One Development Process Concept

Review

Brainstorm

Model

Output

Figure	5:	Conception	Process	Model	

14	
	 	

4. Multiple Architectural Concepts and Multiple Development Concepts

At this stage, selection of a single architectural concept coupled with a single development

process concept, may be impractical. It may be necessary to select multiple pairings of

architectural and development process concepts for further refinement via rapid prototyping, in

order to discover the best single pairing of architectural and development process concepts.

Keep in mind, the primary goal of the Overhaul Concept Refinement Process Model is to

arrive at a well formed architectural and development process concept that is mature enough for

successful implementation. Many software projects are canceled because the initial concept was

poor, but the realization of its poorness was not discovered until well into implementation. To

select a solution(s) to refine, use the Solution Selection Process Model (see Figure 6).

	

	

The	steps	in	the	process	are:	

1. Collaboratively review each draft and determine if it is worthy of further investigation.
2. Select and list the drafted models that are worthy of further investigation.
3. Prioritize the list.

The output of this phase is a prioritized list of architectural concepts paired with a development

process.

Review

Select

Prioritize

Figure	6:	Solution	Selection	Process	Model

15	
	 	

2.6 Refine Solution with Rapid Prototyping

The sixth phase in the Overhaul Concept Refinement Process Model is to refine potential

solutions via rapid prototyping. Multiple solutions may be selected for refinement via rapid

prototyping, if time and budget allows. A prototype is a preliminary model of a software

application that implements a subset of the end product’s features, and enables customers and

developers to examine critical aspects of the proposed software application [5]. Furthermore,

prototyping helps validate whether or not a proposed software application can be successfully

developed, given the selected architectural concept and development process concept.

Prototyping should not be restricted to the software product, but should include the

development process itself. The process of developing software is critical and must be

considered with great care. Therefore, prototyping a development process tailored specifically to

the new architectural design concept is beneficial. Ideally, the prototype process should be

implemented during the development of the prototype software product. The quality of the

process used to develop a software product impacts the quality of the product.

	

	

	

	

	

	

	

	

	

Prototype	
Design/Plan	

New	Architectural	
Design	Concept	

New	
Development	

Process	Concept	

Subset	of	
Existing	

Functionality		

Testing	
Prototype	
System	

Figure	7:	Rapid	Prototyping	Process	Model	

16	
	 	

The Rapid Prototyping Process Model (see Figure 7) illustrates the usage of the new

architectural design concept, new development process concept, and a subset of the existing

software application’s functionality to develop prototypes of the software product and its

development process. Furthermore, the model illustrates a feedback loop to enable iterative

refinement of the prototypes. Prototyping is complete when the prototypes (i.e., development

process prototype and software product prototype) adequately substantiate (or fail to

substantiate) the new architectural design concept and development process concept. If the

prototypes do not substantiate the new design concepts, creation of new design concepts may be

necessary.

 During prototyping, do not make compromises in order to get the prototype working

more quickly. For example, do not use an inappropriate programming language, operating

system, or inefficient algorithm because of familiarity or simplicity of demonstration. Over time

these types of compromises become inappropriately familiar to developers, which may lead to

them becoming an integral part of the system’s new design. It is imperative to construct

prototypes without compromising the original design intent [5].

2.7 Final Preparation for Software Development

The seventh phase in the Overhaul Concept Refinement Process Model is to evaluate the

final prototyped development process and software product, and determine if the project can be

feasibly pursued. To evaluate the prototypes, use the Prototype Evaluation Process Model (see

Figure 8).

17	
	 	

	

	

The	steps	in	this	process	are:	

1. Estimate the resources and cost necessary to implement the full-scale software overhaul
effort.

2. Compare the estimated resources and cost to the available resources and budget.
3. Determine if the project can continue (or in what limited capacity it could continue).

If it is determined that the project will continue, begin the process of gathering the necessary

resources and organizing the project. Answer these questions using the prototyped development

process as a basis [9, 10]:

1. How will the overhaul project team be structured?
2. What tools will be used to enable project management?
3. How will the overall project plan be documented, and how will it be used to measure the

project’s overall progress and ensure the project remains within budget?

Estimate

Compare

Determine

Figure	8:	Prototype	Evaluation	Process	Model

	

	

CHAPTER 3: CASE STUDY

 Service Central® is an enterprise-level post-sales service and support software application

developed via loosely implemented Extreme Programming methodologies. It is a client-server

software application that is primarily built upon the following Web technologies, programming

languages, and markup technologies:

 Microsoft’s classic ASP (Active Server Page) Web technology implemented in VBScript
for server-side computation

 JavaScript for client-side computation
 HTML
 XML

Additionally, Service Central uses Microsoft’s SQL Server for its “system database” and IBM’s

DB2 (typically on an IBM AS/400 midrange) for its “application database”.

Service Central is a highly functional (but poorly documented) software application that

has evolved via continuous development efforts over the past decade. It consists of millions of

lines of code spanning multiple programming languages, and hundreds of complex database

tables (and views) that are spread across two types of database management systems, each of

which implement a unique version of SQL.

Extreme Programming techniques have facilitated a certain degree of Service Central’s

success, in terms of helping to flexibly meeting customer requirements. However, loosely

defined Extreme Programming methodologies have not been conducive to producing adequate

system documentation; nor has it brought a great degree of scalability, maintainability,

portability, or performance to Service Central.

Unfortunately, as evident by Service Central, Extreme Programming can easily become

too extreme, if it is not appropriately defined and implemented from the beginning of the

19	
	 	

software lifecyle model. That is, documentation (including source code comments) becomes

nearly non-existent, and Unit Testing and Acceptance Testing become the only levels of software

testing. This exposes too many Integration level and System level defects to customers and end-

users during acceptance testing and production usage of the system. However, Extreme

Programming can be successful if it is strictly defined and implemented to the established

definition.

 The subsequent sections in this chapter will examine the details of each phase in the

Overhaul Concept Refinement Process Model as they have been applied to Service Central by its

overhaul concept refinement team. Each section in this chapter will provide examples of the

artifacts that are output from each phase of the Overhaul Concept Refinement Process Model.

Additionally, code snippets and screenshots from the prototype produced by the execution of the

overhaul process on Service Central are included in the appendices. Appendix G defines a new

type of architectural style that was created during the execution of the overhaul process on

Service Central. The	 next	 seven	 sections	 (3.1	 –	 3.7)	 will	 each	 examine	 a	 phase	 of	 the	

Overhaul	Concept	Refinement	Process	Model	as	it	was	applied	to	Service	Central.	

3.1 Understanding the Existing Issues

The first phase of the Overhaul Concept Refinement Process Model is to understand the

existing issues. Service Central’s overhaul concept refinement team executed the Issue Discovery

Process Model against Service Central and produced the following artifacts:

1. A model that illustrates the critical architectural elements of the existing state of Service
Central.

2. A Symptoms document listing each reported symptom, and stakeholder group that
reported the symptom.

3. An Issues document listing and describing each identified issue.
4. A Symptoms/Issues cross reference document, linking symptoms to issues.

20	
	 	

The first step of the Issue Discovery Process Model requires the creation of an architectural

model that illustrates the important features of Service Central’s existing architecture. In

accordance with this requirement, Service Central’s overhaul concept refinement team analyzed

the existing architectural components and created an architectural model that illustrated Service

Central’s architectural state from a bird’s eye view (see Figure 9).

	

	

	

	

	

	

	

Service Central's Legacy Architecture is cumbersome to deploy to new customers because

every customer requires their own dedicated Web server and Application Database. Additionally,

the legacy architecture results in Service Central's source code being deployed to many different

locations and platforms. This results in various customers being at different release levels of the

software and introduces many other undesirable situations. For example, as Service Central's

customer base grows, delivery of upgrades becomes more difficult because the upgrades must be

distributed to more systems on a wider variety of platforms.

After creating the architectural model of the Legacy Architecture, Service Central’s overhaul

concept refinement team proceeded to the second step of the Issue Discover Process Model. The

second step resulted in the creation of a Symptoms Document (see Figure 10). The Symptoms

Document was very simple to construct and only listed five major symptoms as gathered from

Customer	
	
	
	
	
	
	
	
	

Clients	
Customer’s	Web	Server	

(Home	of	SC’s	source	code)	

Customer’s	
IBM	Mainframe	
(Home	of	SC’s	
Application	

Data)	

Figure	9:	Legacy	Architecture	

21	
	 	

various project stakeholders. During the process of gathering symptoms, it was discovered that

many stakeholders would actually report issues (instead of symptoms) from which the symptoms

could be derived/abstracted by the overhaul concept refinement team. For example, end-users

would report that Service Central’s graphical user interface was unattractive and that its response

time was slow. These reported issues had to be translated to their actual symptoms. For example,

“unattractive” translated to “difficult to sale” and “difficult to use”. Also, Service Central’s

overhaul concept refinement team determined to only include the major symptoms. In fact, the

symptoms that were listed in the Symptoms Document were umbrella symptoms, capable of

suitably covering the lower level symptoms that were reported by stakeholders.

Service Central - Symptoms Document

 Symptom Stakeholder Group

1 Difficult to modify source code. Developers

2 Difficult to install and upgrade. Developers

3 Slow to load screen and data. End-Users

4 Difficult to use. End-Users

5 Difficult to sale. Marketing

	

	

Once the Symptoms Document was complete, Service Central’s overhaul concept

refinement team proceeded with steps 3-6 of the Issue Discover Process Model, by first

investigating the Legacy Architecture and the symptoms listed in the Symptoms Document, in an

Figure	10:	Symptoms	Document	

22	
	 	

attempt to discover issues within Service Central. When issues were discovered, they were

recorded in an Issues Document. Finally, once all issues were listed, they were analyzed by

Service Central’s overhaul concept refinement team, and each was assigned a severity ranking

that was also recorded in the Issues Document.

As with the Symptoms Document, the Issues Document only captured the major issues

(see Figures 10 & 11). The goal was not to exhaustively identify and rank all existing issues, but

to identify and rank the high-level issues.

Service Central - Issues Document

 Issue Severity Ranking

1 Spaghetti code throughout code modules High

2 Distributed source code across customers Medium

3 Unnecessary data being loaded Medium

4 Poor documentation Medium

5 Unattractive user interface High

6 Poor development process High

7 Old coding technology Medium

8 Not user configurable Low

9 Lacking open APIs Medium

	

	
Figure	11:	Issues	Document	

23	
	 	

	 Finally, Service Central’s overhaul concept refinement team constructed a Cross

Reference Document (see Figure 12). In order to create this document, Service Central’s

overhaul concept refinement team had to analyze the Symptoms Document and the Issues

Document and determine the issues that could be categorized under each symptom. The Cross

Reference Document captured each symptom from the Symptoms Document and linked it with all

of its underlying issues from the Issues Document.

24	
	 	

Service Central – Cross Reference Document

 Symptom No. Issue No.

1 Symptom 1 Issue1

2 Symptom 1 Issue 4

3 Symptom 1 Issue 6

4 Symptom 1 Issue 7

5 Symptom 2 Issue 2

6 Symptom 2 Issue 4

7 Symptom 2 Issue 7

8 Symptom 2 Issue 8

9 Symptom 3 Issue 1

10 Symptom 3 Issue 3

11 Symptom 3 Issue 7

12 Symptom 4 Issue 4

13 Symptom 4 Issue 5

14 Symptom 4 Issue 8

15 Symptom 4 Issue 9

16 Symptom 5 Issue 4

17 Symptom 5 Issue 5

	 Figure	12:	Cross	Reference	Document

25	
	 	

3.2 Researching Software Development Trends and Technology

 Upon completion of the first phase of the Overhaul Concept Refinement Process Model,

Service Central’s overhaul concept refinement team proceeded to the second phase. The

objective of the second phase was to create and execute a Research Plan Document (see Figure

13). In order to accomplish these objectives, Service Central’s overhaul concept refinement

team, executed the Research Planning Process Model.

 First, Service Central’s overhaul concept refinement team reviewed the four documents

created during the previous phase and brainstormed over these documents to identify pertinent

research items. Upon identification of a research item, it was added to the Research Plan

Document. After all of the pertinent research items were listed, each was considered distinctly

and a specific amount of research time was allocated. Finally, the time allocations of each

research item were summed and the total was recorded in the Research Plan Document.

 Once the Research Plan Document was completed, Service Central’s overhaul concept

refinement team executed research per its specifications. During the research phase, Service

Central’s overhaul concept refinement team not only gleaned knowledge on the research items

specified in the plan, but also acquired an extended understanding of the documented symptoms

and issues. This additional understanding of the symptoms and issues would later prove

beneficial when attempting to conceptualize new potential architectures for Service Central.

26	
	 	

Service Central – Research Plan Document

 Research Item Time Allocation (hours)

1 Cloud Computing 16

2 HTML5 10

3 Service Oriented Architectures (SOA) 20

4 JavaScript Object Notation (JSON) 10

5 Server-Side Programming Languages 20

6 Agile Software Development Models 40

7 Mobile Web Development 20

8 User Interface Design 10

9 Databases 16

Total = 162 Man-hours of research

	

3.3 Identifying Remedies for Existing Issues

Upon completion of the second phase of the Overhaul Concept Refinement Process

Model, Service Central’s overhaul concept refinement team proceeded to the third phase. The

objective of the third phase was to create a Remedies Document (see Figure 14). In order to

accomplish this objective, Service Central’s overhaul concept refinement team, executed the

Remedy Discovery Process Model.

Figure	13:	Research	Plan	Document	

27	
	 	

Service Central’s overhaul concept refinement team implemented the Remedy Discovery

Process Model by first selecting issues, one at a time, from the Issues Document and utilizing

knowledge gleaned from the second phase to identify potential remedies for each issue. Each

remedy identified was listed in the Remedies Document. Once all remedies were identified, they

were ranked based on importance.

Service Central - Remedies Document

 Remedies Issue No. Ranking

1 Implement Service Orient Architecture Issue 1 High

2 Migrate Service Central to the Cloud Issue 2 Medium

3 Use JSON to pass only required data Issue 3 Medium

4 Establish an Agile documentation process Issue 4 Medium

5 Use HTML5 and the JQuery library Issue 5 High

6 Implement Scrum or Extreme Programming Issue 6 High

7 Incrementally migrate services coded in C# Issue 7 Medium

8 Decouple front-end from back-end via SOA Issue 8 Low

9 Use SOA and create a RESTful interface Issue 9 Medium

	

	

Figure	14:	Remedies	Document

28	
	 	

3.4 Collectively Analyzing and Conceptualizing Solutions

Upon completion of the third phase of the Overhaul Concept Refinement Process Model,

Service Central’s overhaul concept refinement team proceeded to the fourth phase. The

objectives of the fourth phase were to collectively analyze all of the documents created during

preceding phases, begin to formulate overall architectural design concepts and development

process concepts, and to output high-level graphical models of these concepts.

In order to accomplish these objectives, Service Central’s overhaul concept refinement

team, executed the Conception Process Model. During the execution of that process, Service

Central’s overhaul concept refinement team first collaboratively drafted a New High-Level

Architectural Concept in the form of a graphical model (see Figure 15). Once the New High-

Level Architectural Concept was created, a New High-Level Development Process Concept was

derived (see Figure 16) and based on the New High-Level Architectural Concept.

	 	

	

	

	

	

	

	

	

	

	

Mobile	or	
Desktop	

Clients	Across	
Customers	

Service	Central’s	
Source	Code	&	Application	Data	

Figure	15:	New	High‐Level	Architectural	Concept	

29	
	 	

	 The New High-Level Architectural Concept was a cloud-based service oriented

architecture [11, 12]. It was established because it is a popular style being successfully

implemented by comparable modern software products, and it best facilitated the remedies listed

in the Remedies Document. For example, cloud-based service orient architectures are well suited

for being incrementally developed and offer the potential to support massive scalability [13, 14].

Furthermore, they resolve the issue of having the source code distributed across many customers;

this greatly reduces the difficulty of upgrading all Service Central customers simultaneously.

	

 The New High-Level Development Process Concept was established based on Extreme

Programming methodologies. Service Central’s overhaul concept refinement team drafted this

development process model because Extreme Programming methodologies align well with a

product that must be built incrementally over time [15, 16].

Planning

Design

CodingTesting

Deployment	
&	Feedback

Figure	16:	New	High‐Level	Development	Process	Concept	

30	
	 	

3.5 Selecting a Solution to Refine

Upon completion of the fourth phase of the Overhaul Concept Refinement Process

Model, Service Central’s overhaul concept refinement team proceeded to the fifth phase. The

objective of the fifth phase was to create a Prioritized Solutions Document that listed the

potential architectural concepts associated with their development process concept (see Figure

17). Moreover, this prioritized list identifies the solution to select for further refinement via rapid

prototyping by establishing a solution as being highest in priority [5].

Service Central’s overhaul concept refinement team had only created a single New High-

Level Architectural Concept and New High-Level Development Process Concept during the

preceding phase. However, upon creation of the Prioritized Solutions Document, it was

determined that the single architectural concept could be teased apart into similar concepts, one

being explicitly for mobile clients and the other for desktop clients [17]. The determination to

identify two separate architectural concepts should technically have been accomplished in the

preceding phase, but happened during the fifth phase simply by chance. The idea was conceived

during the fifth phase, and Service Central’s overhaul concept refinement team collaboratively

determined to tease apart the single architectural concept into two concepts, documenting them

as separate solutions in the Prioritized Solutions Document.

31	
	 	

Service Central - Solutions Document

 Architectural Concept Development Process

1 Mobile Web App via SOA Extreme Programming

2 Desktop App via SOA Extreme Programming

	

3.6 Refining Solution with Rapid Prototyping

During the sixth phase of the Overhaul Concept Refinement Process Model, a prototype

development process and a prototype mobile Web application were created for the highest

priority solution identified in the Prioritized Solutions Document. First, the development process

was defined as follows [15]:

1. The Software product will be created iteratively; each iteration will produce deliverable
software. (No software will be delivered to the customer during development of
prototype product. An internal review between developers will occur at the end of each
iteration.)

2. Each iteration will consist of five phases:
a. Planning

i. Express requirements as short unambiguous user stories, and derive the
user stories from use cases that exist within the current product.
Additionally, each use case will be examined for efficiency before being
translated into user stories.

ii. Assess user stories.
iii. Group user stories.
iv. Use project velocity to commit to iteration specific delivery date.

b. Design
i. K.I.S.S. principle (Keep It Simple Stupid).

ii. Use Class Collaborator Cards and graphical models to express user
stories in design terms.

iii. Create unit tests.
c. Coding

i. Code to the unit tests.
ii. Execute unit tests regularly.

Figure	17:	Prioritized	Solutions	Document

32	
	 	

iii. Comment source code sufficiently to enable all developers to easily
understand the code.

iv. Create documentation of configurable code modules and complex
integration interfaces.

d. Testing
i. Execute integration level tests.

ii. Execute system level tests.
iii. Have end-users perform acceptance tests (No acceptance test during

development of prototype product).
e. Deployment & Feedback (Deployment will not occur during development of the

prototype product.)
i. Deliver new functionality to the customer’s production environment.

ii. Measure the project’s velocity.
iii. Document the lessons learned during the iteration.
iv. Document all functionality added during the iteration.

Once the prototype development process was defined, it was implemented on Service

Central in order to develop a prototype mobile Web application. Figures 18 and 19 are examples

of user stories that were created during the planning phase of the first development iteration.

Login

 End‐users must be presented with a login screen that requires the entry of predefined

security credentials. Upon subsequent arrivals at the login screen (via re‐launching the

application), the End‐User’s previously authenticated credentials should automatically populate

the input fields, requiring the end‐user to only press the “submit” button to login.

	

	

	

	

	

	

Figure	18:	Sample	User	Stories	‐	Login		

33	
	 	

Landing (Main Menu)

 Upon authentication of the End‐user login credentials, the end‐user should arrive at a

common menu that allows quick selection of the desired Service Central document type or

service. There should be menu items for: Tickets, Work Orders, RMAs, Quotes, Product

Registrations, and User’s Messages.

	

	

During the design phase of the first development iteration, an architectural style was

defined (see Appendix G). In adherence to the newly defined architectural style, the following

technologies were selected for the various layers of the style:

1. Client Layer
i. HTML5 & JQuery Mobile (for creation of the graphical user interface).

2. Façade Layer
i. Helicon (software that bolts onto Microsoft’s IIS Server 2003 to intercept HTTP

requests and rewrite the request to the correct URI controller).
ii. VBScript URI controller (it examines the HTTP requests directed to it by Helicon

and determines the correct service to invoke in order to generate the appropriate
HTTP response).

3. Service Layer
i. VBScript Services (they instantiate the necessary objects that are used for

performing CRUD against database objects).
4. Class Layer

i. VBScript Public Classes (for interaction with particular database objects).
5. Database Layer

i. Microsoft’s SQL Server 2008 (for storing system and application level data).

Figure	19:	Sample	User	Stories	‐	Landing		

34	
	 	

Furthermore, CRC cards were created for some initial classes (see Figure 20).

Service	

Security Credentials
URI
JSON
Version
Error Message
Make HTTP GET Request
Make HTTP POST Request
Make HTTP PUT Request
Make HTTP DELETE Request	

Security	

	

	

Next, during the coding phase of the first development iteration, Helicon® was installed

and configured to intercept HTTP requests and appropriately redirect those requests to a URI

controller. Here is how Helicon’s httpd.config file was implemented in order to rewrite HTTP

requests to the URI controller:

Helicon ISAPI_Rewrite configuration file
Version 3.1.0.95

RewriteEngine On

Don't apply files/directories that actually exist at the host location
RewriteCond %{REQUEST_FILENAME} !‐f
RewriteCond %{REQUEST_FILENAME} !‐d

Prefix with FURI {ServiceDomain} "/sc" (see both instances of sc below)
RewriteRule ^/sc/([a‐z0‐9./]+)$ /sc/URIController.asp [L,NC]

	

Additionally, during the coding phase, an initial URI controller was constructed (see

Appendix C for the implemented source code of the URI controller). The initial URI controller

directly embedded the service and class layers of the architectural style. The goal of the first

Figure	20:	Sample	CRC	Card	‐	Service		

Figure	21:	Helicon	Configuration	File

35	
	 	

development iteration was to validate the concept of the URI controller. In alignment with that

goal, a client-side JavaScript object constructor that is responsible for instantiating specific

services (that exist on the server-side) and establishing a common means of interfacing with

services from within the client-side code, was created (see Appendix B for the implemented

source code of the client-side JavaScript object constructor) [18, 19, 20, 21].

However, before any code was written, unit tests were always defined (see Figures 22

and 23).

Unit Test: Parse URI’s Collections & Elements

Parse URI into an array type VBScript variable that sequentially stores the URI’s
collections and elements. Unit test of parse URI http://testdomain.com/sc/regs/1/notes/2
should result in the URI’s collections and elements being storied in an array where the array’s
index of:

0 = “regs”
1 = “1”
2 = “notes”
3 = “2”

		

	

Unit Test: Parse URI’s Query String

Parse URI’s query string into an array type VBScript variable that sequentially stores the
URI’s query string’s key/value pairs. Unit test of parse URI’s query string
http://testdomain.com/sc/regs/?SysId=S1&UserId=Smith should result in the URI’s query string
elements being storied in an array where the array’s index of:

0 = “SysId=S1”
1 = “UserId=Smith”

	

	

Figure	22:	Sample	Unit	Test	–	Parse	URI’s	Collections	&	Elements

Figure	23:	Sample	Unit	Test	–	Parse	URI’s	Query	String

36	
	 	

These types of unit tests were continuously created, coded to, and tested against during the

iteration’s coding phase.

During the testing phase of the first development iteration, a set of integration and system

level tests were executed that validated the system implemented functioned as anticipated. The

tests were executed as follows [7, 22]:

Integration Level Tests

 Figure 24 and Figure 25 exemplify the integration level tests executed.

Test 1

Procedure: Browse to http://5.221.208.53/sc/regs?Sysid=S1 in Internet Explorer.

Expected Result: An Internet Explorer window containing a JSON structure that contains
an array of all the Registration Requests from the REGSREQS database file that is located
in the SQL Server database named ServCentral.

Actual Result: The actual result matched the description of the expected result. (See
Appendix D for details of GET request to URI http://5.221.208.53/sc/regs?Sysid=S1).

Test 2

Procedure: Browse to http://5.221.208.53/sc/regs/10?Sysid=S1 in Internet Explorer.

Expected Result: An Internet Explorer window containing a JSON structure that contains
the Registration Request # 10 from the REGSREQS database file that is located in the
SQL Server database named ServCentral.

Actual Result: The actual result matched the description of the expected result. (See
Appendix E for details of GET request to URI http://5.221.208.53/sc/regs/10?Sysid=S1).

Figure	24:	Integration	Test	1

Figure	25:	Integration	Test	2	

37	
	 	

System Level Tests

Figure 26 and Figure 28 exemplify the system level tests executed. Figure 27 and Figure

29 show the HTML source code of the URLs browsed to in the system level tests.

Test 1

Procedure: Browse to http://testdomain.com/AllRegs.html in Internet Explorer.

Expected Result: An Internet Explorer window titled “All Registrations” containing a
JSON structure that contains an array of all the Registration Request from the REGSREQS
database file that is located in the SQL Server database named ServCentral.

Actual Result: The actual result matched the description of the expected result. (See
Appendix D for HTTP response body of GET requests to URI
http://5.221.208.53/sc/regs?Sysid=S1).

<html>
 <head>
 <title>All Registrations</title>
 <script src="service.js"></script>
 <script>
 //Create instant of Service object
 var objAllRegs = new Service("http://5.221.208.53/sc/regs?Sysid=S1");

 //Make HTTP GET request
 objAllRegs.get();

 //Print to screen the returned JSON string
 document.write(objAllRegs.JSONString);
 </script>
 </head>
 <body> </body>
</html>

	

	

	

	

Figure	27:	Code	Snippet	–	AllRegs.html	

Figure	26:	System	Test	1	

38	
	 	

Test 2

Procedure: Browse to http://testdomain.com/Reg10.html in Internet Explorer

Expected Result: An Internet Explorer window titled “Registration # 10” containing a
JSON structure that contains the Registration Request # 10 from the REGSREQS
database file that is located in the SQL Server database named ServCentral.

Actual Result: The actual result matched the description of the expected result. (See
Appendix E for HTTP response body of GET requests to URI
http://5.221.208.53/sc/regs/10?Sysid=S1).

	

<html>
 <head>
 <title> Registration # 10</title>
 <script src="service.js"></script>
 <script>
 //Create instant of Service object
 var objAllRegs = new Service("http://5.221.208.53/sc/regs/10?Sysid=S1");

 //Make HTTP GET request
 objAllRegs.get();

 //Print to screen the returned JSON string
 document.write(objAllRegs.JSONString);
 </script>
 </head>
 <body> </body>
</html>

	

Finally, during the feedback phase of the first development iteration, it was noted that the

source code needed to contain more descriptive commenting and that all user stories, CRC cards,

and unit test should be captured on a digital medium instead of physical paper cards. Also, it was

documented that the URI controller would need to be refactored and extended to include a

hierarchical data structure that captures all of Service Central’s collections, and that a mechanism

Figure	29:	Code	Snippet	–	Reg10.html

Figure	28:	System	Test	2	

39	
	 	

would need to be created to traverse the hierarchical structure of collections in order to invoke

the appropriate external service (see Appendix H for a diagram of the initial collections

hierarchy) [18, 21, 22].

The results of the first development iteration were extremely positive and indicative of a

well selected architectural concept and development process. Subsequent development iterations

further validated the architectural concept and development process, and ultimately sufficient

prototypes for both were completed (see Appendix F for screenshots of the final prototype).

3.7 Final Preparation for Software Development

During the seventh phase of the Overhaul Concept Refinement Process Model, Service

Central’s overhaul concept refinement team evaluated the prototyped development process and

prototyped software product, and determined that the overhaul project would continue. However,

due to a lack of necessary resources (i.e., developers and tools), it was determined that the

continuation of the overhaul project would require a three month period to acquire the

appropriate resources for the project, and to create a fully defined high-level project plan.

3.8 Projected Benefits

Service Central’s overhaul concept refinement team has projected significant benefits to

customer-side stakeholders and development-side stakeholders (see Tables 1 and 2). These

projected benefits are the direct results of the Overhaul Concept Refinement Process Model.

40	
	 	

 Benefit

1 Service technicians will be able to collect digital signatures in the field.

2 Service technicians will be able to record labor hours in the field.

3 Maintenance costs will be reduced due to higher quality software.

4 Response time to incidents will be reduced.

5 Upgrades will happen automatically.

6 Initial installation process will be eliminated because the software will reside in the
cloud.

 Benefit

1 Maintenance costs will be reduced due to the higher degree of maintainability of the
source code and its overall quality.

2 Deployment effort will be greatly reduced because the software will reside in the cloud.

3 Sales will increase because of new functionality, and higher quality.

4 Strategic development will be increased due to freeing up the development resources
previously used to deploy, upgrade, and maintain the legacy system.

5 Its new SOA will simplify the enhancement process by reducing the degree of coupling
between components.

6 Service Central will remain competitive with newer software applications and continue
to support existing customers more successfully.

Table	1:	Service	Central’s	Projected	Customer‐Side	Stakeholder	Benefits	

Table	2:	Service	Central’s	Projected	Development‐Side	Stakeholder	Benefits	

	

	

CHAPTER 4: OVERHAUL CONCEPT REFINEMENT PROCESS MODEL ANALYSIS

Overhauling a legacy software application can potentially enhance two aspects of the

legacy software application: the functional and non-functional aspects (refer to Table 3).

 Aspect Description

1 Functional The features made available to its end-users.

2 Non-Functional (Quality) The quality of its features and non-function aspects. For
example, quality characteristic include: usability, reliability,
supportability, availability, scalability, portability,
performance, maintainability and etc.

The aim of an overhaul is to enhance these two aspects of the legacy software application by

adding new functionality and/or removing obsolete functionality, and by improving its quality

characteristics. In doing so, the customer-side stakeholders and the development-side

stakeholders will benefit in substantial ways (refer to Tables 4 & 5). However, overhauling a

legacy enterprise software application can be risky and difficult (refer to Table 6). In order to

successfully overhaul a legacy software application, the risks must be mitigated. The Overhaul

Concept Refinement Process Model aims to mitigate risks involved, thereby enabling the

realization of the benefits by the stakeholders (refer to Table 7).

Table 3: Aspects of Legacy Software Applications

42	
	 	

 Benefit Description

1 Increased Functionality Additional features end-users can utilize to perform more
functions.

2 Increased Quality The functions can be executed more quickly and with
increased accuracy. The software application is more
learnable.

3 Lower Maintenance Cost Maintenance costs are reduced due to higher quality
software.

4 Quicker Response Time to
Incidents

Due to an increased degree of maintainability, customers
can more quickly receive responses to incidents reported to
software support.

5 Easier to Upgrade Manual upgrade processes can be replaced by automated
upgrades, making upgrades easier, more consistent, and
less expensive.

6 Easier to Implement Initial setup and installation processes can be simplified,
resulting in shorter and less expensive initial
implementations.

 Benefit Description

1 Lower Maintenance Cost Maintenance costs are reduced due to the higher degree of
maintainability of the source code and its overall quality.

2 Easier to Deploy Manual deployment to new customers may be automated,
stimulating growth.

3 Easier to Sell More functionality, higher quality, and modern technology
can increase sales.

4 Enables More Strategic
Development

Less time spent maintaining, deploying, and upgrading can
free up time to continuously improve and optimize the
software application via continuous strategic development.

5 Easier to Enhance New component architecture can simplify the enhancement
process.

6 More Competitive The product can remain competitive with new software
applications and continue to support existing customers.

Table 4: Customer-Side Stakeholder Benefits

Table 5: Development-Side Stakeholder Benefits

43	
	 	

 Risk Description

1 Incomplete
Understanding of
Existing Issue

The development team may have an incomplete or inaccurate
understanding of the legacy system’s issues, resulting in poor
decisions regarding the overhaul process.

2 Insufficient
Knowledge of
Technology

The development team may lack the knowledge necessary to
successfully overhaul the legacy system, and select or design an
appropriate development process.

3 ἀnappropriate
Architecture

A poor architecture may have a severe impact on the legacy
system’s functionality and quality characteristics, and
negatively impact the overall success of the overhaul project.

4 Ineffective
Development Process

An ineffective development process may have a severe impact
on the legacy system’s functionality and quality characteristics,
and negatively impact the overall success of the overhaul
project.

5 Incorrect Toolset The wrong tools may cause the overhaul project to be canceled
or exceed budget and schedule constraints.

6 Incomplete
Functionality

The legacy system may lose functionality during the process of
being overhauled.

7 Premature Selection The premature selection of a programming language, system
architecture, development process, or toolset may have a severe
impact on the overhaul project’s overall success.

8 Inaccurate Timeline An inaccurate project timeline could ruin the project’s and
legacy system’s success.

9 Reduced
Quality

The legacy system’s quality may be reduced by a poorly
designed and implemented architecture or development process.

	

	

	

	

	

	

	

	

	

Table 6: Risks in Overhauling Legacy Software Applications

44	
	 	

 Risks Mitigated
(from Table 6)

Description

Phase 1 1, 6 Involves thoroughly comprehending the legacy software
application’s existing issues as a team [31, 32].

Phase 2 2, 5 Involves researching software development trends and the
capabilities of newer, more current technology [32].

Phase 3 1, 2, 3, 4, 7 Involves the identification and documentation of potential
remedies for each issue that was documented in Phase 1 [31].

Phase 4 3, 4, 6, 7 Involves collectively analyzing all documents created in the
preceding steps and beginning to formulate overall
architectural design concepts and development process
concepts [33, 34].

Phase 5 3, 4, 7 Involves selecting the best potential solution to refine. [32, 34]

Phase 6 2, 3, 4, 5, 6, 7, 8, 9 Involves refining potential solutions via rapid prototyping of
the development process and architectural concepts [5, 32, 34].

Phase 7 5, 6, 7, 8, 9 Involves evaluating the final prototyped development process
and software product to determine if the project can be feasibly
pursued [5, 26, 32, 34].

	

4.1 Domain

The Overhaul Concept Refinement Process Model was created for legacy enterprise

software applications. Enterprise software applications are business-oriented software

applications that typically perform business functions such as customer information

management, employee information management, order processing, inventory management, and

etc. They typically reside on servers or mainframes and provide services to many end-users

simultaneously. In this thesis, the phrase “legacy enterprise software applications” refers to

enterprise software applications that where originally built and deployed more than a decade ago

and have been subjected to maintenance, but not regular overall product evolution or upgrade.

Maintenance, in this context, refers to miscellaneous repairs or modifications made to the

software application, post-deployment, without the intent of altering the overall architecture,

technology, or quality of the software application. Enterprise software applications are not

Table 7: Risks Mitigated / Overhaul Concept Refinement Process Model Phase

45	
	 	

single-user software applications, such as Microsoft Word 2010, Microsoft Windows 8, Adobe

Reader, or Google SketchUp. Single-user software applications like these are typically executed

on personal computers and undergo regular and planned overall product evolution. For example,

every few years Microsoft releases a new version of the Windows operating system and Google

releases the latest version of SketchUp.

A typical software lifecycle model has the following phases: Conception, Requirements,

Design, Implementation, Testing, Deployment, Maintenance, and Retirement. A typical

definition of a Software Development Process includes the following phases: Conception,

Requirements, Design, Implementation, Testing and Deployment. This thesis argues that all

software application lifecycles must begin with conception of the software product, but Software

Development Processes are only required after conception and therefore should not include a

Conception phase (see Figure 30). First there must be a concept, and then a Software

Development Process, in order to develop (realize) the concept. It is inappropriate for a Software

Development Process to include a Conception phase because Software Development Processes

do not enable the conception of a software product. They enable the construction of a software

product based on a concept that was conceived during the Conception phase of the software

lifecycle model. For the purposes of this thesis, the Conception phase will be understood as

being separate from and preceding the Software Development Process and belonging to the

software lifecycle model (see Figure 30).

Software Development Processes aim to ensure software applications are built the right

way. The Overhaul Concept Refinement Process Model aims to mitigate the risk of building the

incorrect software product via an inappropriate Software Development Process. In other words,

it aims to ensure the software concept is valid before using a Software Development Process to

46	
	 	

correctly build the software product. Some Software Development Processes attempt to guide

the selection of architectural styles, but this is inappropriate. This does not mean that Software

Development Processes should not explicitly state the type of Software Architecture they are best

suited to develop (e.g. IMB’s Rational Unified Process recommends and is best suited for

component style architectures). The selection of Software Architecture should precede the

selection of the Software Development Process. The Software Development Process should not

be used to determine the architectural style of a software application. The problem/concept being

solved/realized should dictate the architectural style, and then the combination of

problem/concept and architectural style should dictate the Software Development Process. This

is because particular combinations of problem/concept and architectural style are most

effectively realized via certain Software Development Processes. For example, problem/concept

“X” is best solved/realized through implementing architectural style “Y” which is best developed

by implementing Software Development Process “Z”. Consider building a bridge to span two

land masses. The physical conditions (the problem) are most suitable for a suspension bridge

(the architectural style) which requires a specific building process (the development process)

created for suspension bridge construction. The specific nature of the problem must dictate the

architectural style required; and these taken together determine the development process

employed.

There is not a single Software Development Process that is capable of optimally handling

every software development situation. Every situation is unique and must be handled

accordingly. For example, software development situation “A” requires the development of a

safety critical software application. Therefore, the Cleanroom Software Development Process

47	
	 	

that focuses on defect prevention rather than defect removal may be a more appropriate Software

Development Process than the Extreme Programming Software Development Process.

There are software development organizations that mandate the use of the Rational

Unified Process (RUP) to develop software, but RUP is not always suitable for every software

development situation. Software development organizations that have predetermined the

Software Development Process they will use on all of their software development projects are at

risk of using an ineffective Software Development Process on certain software development

projects. Therefore, software development organizations need a process model that can help

them refine the concept of the software product and guide them in the selection of the

architectural style and Software Development Process, case by case. The Overhaul Concept

Refinement Process Model is that type of process model, designed specifically for Overhaul

concepts of legacy enterprise software applications.

Figure 30 outlines the hierarchical Software Lifecycle Model of enterprise software

applications for the purpose of this thesis. It is read from left to right and from top to bottom, and

illustrates that the “Software Lifecycle” has 5 potential high-level phases: Conception,

Development, Maintenance, Overhaul, and Retirement. Each second level phase implies a

strategy to be implemented via tactics illustrated in the third level of the hierarchical structure.

Although “Concept Refinement” (shown in the third level) is a tactic (child) of “Conception”

(shown in the second level), it is the all-embracing strategy of the Overhaul Concept Refinement

Process Model, which in turn implements its own tactics to achieve “Concept Refinement” and

ultimately “Conception”. Therefore, “Concept Refinement” is the domain of the Overhaul

Concept Refinement Process Model. The clouds depicted to the far right of Figure 30 specify

which third level tactics must be planned, monitored, and controlled (managed) to be effective.

48	
	 	

They are depicted as clouds because the specifics of the management activities are beyond the

scope of the Software Lifecycle Model.

4.2 Flow

This section analyzes the rationale of the organizational flow of the Overhaul Concept

Refinement Process Model. The Overhaul Concept Refinement Process Model is a high-level

So
ft
w
ar
e	
Li
fe
cy
cl
e	
	

Conception

Mental	
Conception

Initiative

Concept	
Refinement

Managed

Development

Requirements

Detailed	Design

Implementation Managed

Testing

Deployment

Maintenance

Patch

Enhance Managed

Customize

Overhaul Subsequent	
Software	Lifecyle

Retirement Retire Managed

Figure	30:	Enterprise	Software	Lifecycle	Model

49	
	 	

process model that can be used to refine a specific type of abstract concept. Its means of concept

refinement and its ultimate output are necessarily high-level (i.e., more abstract than Software

Development Processes, but less abstract than the initial concept). It is comprised of seven

phases that are executed sequentially. Listed below (in order of execution) are the seven phases

of the Overhaul Concept Refinement Process Model:

1. Understand the Existing Issues
2. Research Software Development Trends and Technology
3. Identify Remedies for Existing Issues
4. Collectively Analyze and Conceptualize Solutions
5. Select a Solution to Refine
6. Refine Solution with Rapid Prototyping
7. Final Preparation for Software Development

Figure 1 illustrates the flow listed above. Furthermore, it illustrates the potential feedback loops

that exist between Phase 2 and Phase 1, and Phase 6 and Phase 5. In other words, the result of

Phase 2 may further enable activities in Phase 1, and the result of Phase 6 may require Phase 5 to

be repeated.

 The initial concept that leads to the overhauling of a legacy enterprise software

application is typically born from the realization of critical issues (problems) present in the

existing software system. Therefore, the objective of Phase 1 is to understand the existing issues

(problems) of the software application as a team. In order to effectively solve a problem, the

problem must first be understood. For example, consider a simple math problem where some

positive integers summed equal some greater positive integer. The solution (the greater positive

integer) cannot be reasonably determined if both lesser positive integers are unknown to the

problem solver. This rationale applies to refining an initial overhaul concept. Before a solution

can be determined, the problem must be understood.

50	
	 	

 Phase 2 of the Overhaul Concept Refinement Process Model focuses on researching items

that apply to the problem being solved. For example, consider a medical doctor treating a

patient’s condition. The particular circumstances relating to the patient’s condition may suggest a

variety of types of antibiotics for treatment. As new drugs become available on a regular basis,

the treating physician may need to research the benefits and drawbacks of each potential

antibiotic in order to provide the best treatment. The rationale illustrated in this example is

similar to that of the Overhaul Concept Refinement Process Model. Phase 2 (Research) is

required to aid in the later determination of the best possible solution. Research brings new

knowledge to the team, and in turn, enables better understanding of the problem, which further

enables problem solving. Moreover, research may uncover existing issues that were previously

unknown. Phase 2 must follow Phase 1 because the output of Phase 1provides the guidance

necessary to select research items in Phase 2.

 Phases 1 and 2 of the Overhaul Concept Refinement Process Model brought a common

knowledge of the existing issues to the team, and armed them with the necessary knowledge to

begin Phase 3 (identifying potential high-level remedies for the issues discovered and

documented in Phase 1). The order of these Phases is important. The identification of potential

remedies for issues (Phase 3) cannot precede Phase 1. This is because remedies for issues cannot

be determined before the issues themselves are identified. Moreover, Phase 3 cannot precede

Phase 2 because Phase 2 provides the means by which remedies can be assigned to an issue.

Therefore, it can be concluded that Phase1 must precede Phase 2, and Phase 2 must precede

Phase 3.

 Phase 4 of the Overhaul Concept Refinement Process Model examines the documentation

created in Phase 3 and uses the information in that documentation to begin to effectively

51	
	 	

conceptualize overall solutions to the problem. Therefore, Phase 3 must precede Phase 4. The

overall solutions conceptualized in Phase 4 must consist of an architectural style that is

appropriate for the problem, as well as a Software Development Process that is optimal for the

combination of problem and architectural style.

 The overall conceptualized solutions conceived in Phase 4 are the input required by

Phase 5 of the Overhaul Concept Refinement Process Model. Therefore, Phase 4 must precede

Phase 5. Phase 5 assesses the overall conceptualized solutions created in Phase 4 and determines

the order in which they would most likely solve the overall problem. This enables the selection

of the best possible overall solution to further refine via Phase 6.

 Phase 6 of the Overhaul Concept Refinement Process Model implements the Software

Development Process selected in Phase 5 to rapidly construct a prototype in the selected

architectural style. To do this, a subset of the existing legacy software system’s functionality is

recreated via the Software Development Process and is implemented in the new architectural

style. Phase 5 must precede Phase 6 because Phase 6 implements the selected overall

conceptualized solution as determined in Phase 5. If Phase 6 fails to substantiate the selected

overall conceptualized solution (architectural style and Software Development Process) then

Phase 5 can be repeated and another overall conceptualized solution can be selected for further

refinement via Phase 6. Moreover, it is important to note that the Rapid	 Prototyping	 Process	

Model is iterative in nature and can be executed multiple times to further refine and optimize the

architectural style and Software Development Process as necessary.

 Phase 7 of the Overhaul Concept Refinement Process Model uses the knowledge gleaned

from executing Phases 1 – 6 to scope and plan the overhaul software development project.

Therefore, Phases 1 – 6 must precede Phase 7 because Phase 7 cannot be executed until Phase 6

52	
	 	

has substantiated the practicality of the refined overhaul concept. Furthermore, Phase 7 is the

final phase in the Overhaul Concept Refinement Process Model and is intended to be followed

by the execution of a well-planned Software Development Process that transitions the concept

into a concrete reality (i.e., a successfully overhauled enterprise software application).

4.3 Sub Processes

This section will analyze the rationale of the sub processes of the Overhaul Concept

Refinement Process Model. Bear in mind, the sub processes are tactical guidelines that are

intended to help achieve the overall strategy of the specific Overhaul Concept Refinement

Process Model phase within which it resides. Each sub process is comprised of steps, which in

turn are detailed via descriptions. The steps are the tactics of the sub process and the steps’

descriptions are the tactics of the distinct steps. The tactics necessary to appropriately implement

each step, per its description, must be determined collaboratively by the overhaul concept

refinement team. These objectively established low-level tactics are therefore objective only to

the particular concept refinement team that established them.

Consider the hierarchical command structure of the United States Marine Corps shown in

Figure 31. Here, “Commander and Chief (President)” is the highest level and “Captain” is the

lowest level. During a war, the strategies and tactics implemented to win the war are also

hierarchical and are realized differently at different levels of the command structure. For

example, consider the hierarchical structure illustrated by Figure 32. The Commander and

Chief’s tactic level item for being a successful leader is “Win Country A”. However, “Win

Country A” is the strategy level item to the Marine Corps Generals. The tactic level items for the

Marine Corps Generals are “Win Region A” and “Win Region B”. Therefore, the “Win Region”

53	
	 	

level items are the strategy level items to the Marine Corps Colonels, and in turn, the tactic level

items for the Marine Corps Colonels are the “Win City” level items. Therefore, “Win City” level

items are the strategy level items to the Marine Corps Captains which make their tactic level

items the “Win Field” level items. This example illustrates how strategies are implemented

through tactics, and how tactics at one level become the strategies for the levels below.

Commander	and	Chief	

(President)

General

Colonel

Captain

Figure	31:	Hierarchical Command Structure of the United States Marine Corps

54	
	 	

In the Enterprise	 Software	 Lifecycle	 Model,	 “Concept	 Refinement”	 is	 a	 tactic	 of	

“Conception”.	 This	 thesis	 defines	 the	Overhaul Concept Refinement Process Model as being a	

tactic	 for	 “Concept	 Refinement”	 of	 a	 legacy	 enterprise	 software	 application	 that	 is	 being	

overhauled.	 The	 tactics	 of	 the	 Overhaul Concept Refinement Process Model are its seven

phases (e.g., Understand the Existing Issues). The tactics of the phases are the sub processes that

exist within the distinct phases (e.g., Issue	 Discovery	 Process	 Model). The tactics of the sub

processes are the steps of the sub processes (e.g., Model). The tactics of the steps are their

individual descriptions (e.g., “Construct architectural views of the critical architectural

elements.”).	Objectively	 establishing	and	executing	 the	 tactics	of	 the	 sub	processes’	 steps’	

descriptions	 is	 the	 responsibility	 of	 the	 overhaul	 concept	 refinement	 team.	 Outlining,	

examining,	 and	 exemplifying	 the	 tactics	 of	 these descriptions is beyond the scope of this

Win	
Country	A

Win	
Region	A

Win	City	
A

Win	Field	
A

Win	Field	
E

Win	City	
B

Win	Field	
B

Win	Field	
F

Win	
Region	B

Win	City	
C

Win	Field	
C

Win	Field	
G

Win	City	
D

Win	Field	
D

Win	Field	
H

Figure	32:	Hierarchical Structure of Strategies and Tactics	

55	
	 	

thesis. It is not the objective of this thesis to develop or detail activities such as Modeling,

Brainstorming, Analyzing, Selecting, Reviewing, Ranking, or Recording, because the tactics

involved in these low-level activities (as compared to higher level “Concept Refinement”

activities) are well examined and outlined in other published works, and can be considered to

belong to the common knowledge of the software engineering discipline. 	

4.4 Artifacts

This section analyzes the general rationale behind the artifacts of the Overhaul Concept

Refinement Process Model. The artifacts of the Overhaul Concept Refinement Process Model are

listed below.

1. Models that describe critical architectural elements from certain viewpoints.
2. A Symptoms document listing each reported symptom, and stakeholder group that

reported the symptom.
3. An Issues document listing and describing each identified issue.
4. A Symptoms/Issues cross reference document, linking symptoms to issues.
5. A Research Plan document listing research items each designated with a time allocation,

and an ultimate deadline for the overall research effort.
6. A document that associates ranked potential remedies with the documented issues.
7. High-level graphical models of potential Software Architectures.
8. High-level graphical models of potential Software Development Processes.
9. A prioritized list of architectural concepts paired with a development process.
10. A prototype software product.

The artifacts of the Overhaul Concept Refinement Process Model are necessarily defined at a

level of abstraction consistent with the sub process responsible for creating them. Objectively	

establishing	 and	 executing the	 tactics	 of	 the	 sub	 processes’	 steps’	 descriptions	 is	 the	

responsibility	 of	 the	 overhaul	 concept	 refinement	 team.	 Therefore,	 a	 lower	 level	

description	 and	 detailed	 implementation	 process	 of	 the	 artifacts	 created	 by	 those	 sub	

processes	should	only	be	defined	by	the	overhaul	concept	refinement	team.		Moreover,	it	is	

their	responsibility	to	design	and	construct	the	artifacts	in	such	a	way	as	to	be	objective	to	

56	
	 	

their	 team	 and	 the	 high‐level	 strategy	 behind	 them.	 For	 example,	 consider	 the	 Issues	

document	created	in	the	case	study	found	in	Chapter	3.	To	an	outsider	(i.e.,	someone	that	

was	 not	 a	member	 of	 Service	 Central’s	 overhaul	 concept	 refinement	 team)	 the	 wording	

used	 to	 describe	 the	 issues	 in	 their	 Issues	 document	 may	 appear	 to	 be	 subjective	 (e.g.,	

“Spaghetti code throughout code modules”).	 However,	 the	 issues’	 descriptions	 are	 not	

subjective	because	the	entire	team	held	a	common	understanding	of	the	detailed	meaning	

behind	 each	 issue’s	 description.	 Something	 is	 subjective	 if	 it	 comes	 forth	 from	 a	 single	

individual’s	 opinion	 or	 interpretation	 [35].	 Objective	 is	 the	 exact	 opposite	 of	 subjective	

[35].	Therefore,	by	definition,	it	can	be	concluded	that	the	wording	used	in	the	case	study’s	

Issues	 document	 is	 objective	 because	 each	 issue’s	 description	 held	 a	 common	

understanding	 among	 the	 entire	 overhaul	 concept	 refinement	 team.	 Furthermore,	

members	of	 the	overhaul	 concept	 refinement	 team	were	 the	only	people	 responsible	 for	

analyzing	 or	 working	 with	 the	 Issues	 document	 (and	 all	 other	 artifacts)	 during	 the	

execution	of	the	Overhaul Concept Refinement Process Model.

The Issues document	 created	 in	 the	 case	 study	 exemplifies	 the	 efficiency	 and	

effectiveness	 of	 using	 objectively	 established	 high‐level	 documentation.	 For	 example,	

consider	high‐level	computer	programming	languages	(e.g.,	C++).	They	bring	efficiency	and	

effectiveness	to	 the	construction	of	software	applications	that	pure	 low‐level	binary	code	

cannot.	 This	 rationale	 applies	 to	 artifacts	 created	 during	 the	 execution	 of	 the	Overhaul

Concept Refinement Process Model, but only if the abstraction of the details are objectively

established. 						

57	
	 	

4.4 Usability

This section briefly examines usability, which is an important quality attribute of the

Overhaul Concept Refinement Process Model. Usability refers to how easily a process model can

be learned and used by an organization. The case study found in Chapter 3 is concrete evidence

that the Overhaul Concept Refinement Process Model is usable. Furthermore, it exemplifies the

usability of the Overhaul Concept Refinement Process Model by illustrating the potential

simplicity of its artifacts (i.e., Symptoms document, Issues document, and etc.). Service

Central’s overhaul concept refinement team needed only a few hours to study the process model

before implementing it against Service Central, which speaks to its usability. However, the

degree to which the Overhaul Concept Refinement Process Model is usable cannot be objectively

stated without an explicitly defined, objectively established metric. The establishment of this

metrics is beyond the scope of this thesis, but that fact the Overhaul Concept Refinement Process

Model has been used and only required a few hours to learn is notable [23, 24, 25].

4.5 Repeatability

This section briefly examines repeatability, which is an important quality attribute of the

Overhaul Concept Refinement Process Model. Repeatability describes the degree to which a

process can be repeated. The extensive documentation of the Overhaul Concept Refinement

Process Model found in Chapter 2 is concrete evidence that the Overhaul Concept Refinement

Process Model is repeatable because it is documented. To further substantiate this claim, upon

completion of the of the initial execution of the Overhaul Concept Refinement Process Model,

Service Central’s overhaul concept refinement team determined (based on their experience and

process documentation) that the process model could be repeated on Service Central in the

58	
	 	

future, if it ever needed to be overhauled again. However, the degree to which the Overhaul

Concept Refinement Process Model is repeatable cannot be objectively stated without an

explicitly defined, objectively established metric. The establishment of this metrics is beyond the

scope of this thesis, but that fact the Overhaul Concept Refinement Process Model is

documented, has been used, and has been determined to be repeatable by a software development

organization is notable [23, 24, 25].

4.6 Limitations

The Overhaul Concept Refinement Process Model requires personnel with technical

expertise on the existing legacy software application. Without these individuals, the ability to

effectively use the Overhaul Concept Refinement Process Model is greatly diminished. For

example, Service Central’s overhaul concept refinement team included two experts on Service

Central’s technical implementation. These two engineers brought the necessary depth of

understanding on many of Service Central’s existing issues to the overhaul concept refinement

team. Technical experts with adequate technical knowledge are necessary to sufficiently bring

understanding of the legacy system’s issues to the entire overhaul concept refinement team

because the Overhaul Concept Refinement Process Model basis many of its processes off of the

assumption that the entire team has an accurate understanding of the existing issues (Phase 1).

In addition, the Overhaul Concept Refinement Process Model is intended to focus on a

single legacy software application at a time. If an organization has many legacy systems that

need to be overhauled simultaneously, a separate instance of the Overhaul Concept Refinement

Process Model must be implemented for each legacy system (refer to Figure 30). This requires a

59	
	 	

well-defined management approach in order to adequately support the parallel executions of the

Overhaul Concept Refinement Process Model.

4.7 Related Works

The following sections briefly examine process models related to overhauling software

applications. Each section will illustrate how the Overhaul Concept Refinement Process Model

integrates with the related process and how it is different.

IBM’s Rational Unified Process

The Rational Unified Process (RUP®) created by IBM attempts to be a comprehensive

framework for developing software. IBM claims that RUP improves software development

project performance with proven, adaptable processes [36]. IBM promotes RUP with the

following highlights [36]:

 “Enhances productivity with industry-proven configurable techniques and practices to fit
individual project needs.”

 “Supports team collaboration and individual practitioners with context-sensitive guidance
across geographies and functions.”

 “Enables early risk mitigation using iterative processes centered around business
priorities and stakeholder needs.”

 “Promotes organizational transformation with comprehensive education services and an
extensive consultant and partner ecosystem.”

RUP is widely recognized as being a Software Development Process because its 4 high-level

process phases (i.e., Inception, Elaboration, Construction, and Transition) approximately map to

the high-level phases of the widely known Waterfall development process model. The Waterfall

process model’s phases are Conception, Requirements, Design, Implementation, Testing, and

Deployment.

60	
	 	

 The Overhaul Concept Refinement Process Model, unlike RUP, is not a comprehensive

framework for developing software. Furthermore, it does not aim to be a “one size fits all” type

of process model like RUP. The Overhaul Concept Refinement Process Model has a much more

specific domain than that of RUP and its goals and strategies are different. The goal of RUP is to

enable a software development organization to design, construct, test, and deploy a successful

software product effectively. The goal of the Overhaul Concept Refinement Process Model is to

refine a specific type of concept, conceived by a specific type of organization, for a specific

category of software, to a point that enables realization of the concept by means of a managed

Software Development Process. Even though RUP and the Overhaul Concept Refinement

Process Model’s sub processes’ steps may share similar tactics (e.g., modeling), this does not

mean these tactics will be implemented in the exact same way or for the same reason. At their

strategy levels, comparing RUP to the Overhaul Concept Refinement Process Model is

analogous to comparing an apple to an orange. However, referring to Figure 30, it is possible for

the Overhaul Concept Refinement Process Model to have been executed during the “Conception”

phase of an enterprise software application’s lifecycle and RUP to have been executed during the

“Development” phase.

TmaxSoft's Re-architecting Process

According to TmaxSoft, “Re-architecting is the process of integrating your legacy

applications into SOA-based (service oriented architecture) open system deployments.”

TmaxSoft's “Re-architecting” process model is advertised to be a 5-step “legacy modernization

pathway”. The 5 steps of TmaxSoft’s Re-architecting process are listed below [37].

61	
	 	

1. Analyze the target legacy system – “Experienced TmaxSoft re-architecting engineers
work with the administrators and developers of the target legacy system to fully map out
the target system and determine the architecture requirements of the new system.”

2. Design the architecture/logic for the new system – “TmaxSoft re-architecting
engineers draw up plans for the architecture of the new system. Then the business logic
within the target system is further analyzed and the logic is separated into two groups:
that which can simply be replaced by the common logic modules provided by ProFrame
framework, and that which needs to be redeveloped.”

3. Develop the new system – “Following the plans determined in Step 2, ProFrame is
installed as the framework for the new system, providing a base upon which the re-
architected business logic will operate. ProFactory is then installed and used to redevelop
the business logic from the legacy system as a series of independent, reusable modules.
ProFactory provides a range of tools for building these logic modules in an intuitive,
graphic manner. This greatly reduces the need for coding in business logic re-
development. ProFactory is then used to link together the redeveloped business modules
and the modules provided by the ProFrame framework. This recreates the logic flow from
the original legacy system. This is again a visual process in which GUI tools are used to
link together the various modules. The new system will be fully grounded in SOA
concepts, making it far more flexible and transparent than the original legacy system.”

4. Test the new system – “The new system should be tested and tuned. These include
business logic tests, service reliability tests, performance tests, consistency tests, etc.”

5. Train the local developers/users – “Training is actually undertaken during all steps of
the re-architecting process. TmaxSoft engineers teah the client's developers and system
users how to best use the ProFrame framework and develop/modify business logic using
the GUI provided.”

The advertised benefits of TmaxSoft's “Re-architecting” process model are listed below [37].

1. “Re-architecting connects legacy business logic with modern technologies and concepts.”
2. “Re-architecting can evolve legacy applications into SOA-based deployments.”
3. “The new system will require less time spent coding when modifying or developing

logic.”
4. “By being based on SOA concepts and built on an advanced framework, the new system

will be flexible, transparent, and reliable.”
5. “The new system will be expandable without the danger of a 'spaghetti architecture'

emerging.”

TmaxSoft’s Re-architecting process model is a proprietary process of TmaxSoft and is intended

to be executed by TmaxSoft engineers. Its goal is to overhaul legacy enterprise software

applications by re-architecting them into SOA-based software deployments. It is a type of

Software Development Process specifically designed for overhauling legacy enterprise software

application in a predetermined architectural style (i.e., SOA).

62	
	 	

 The Overhaul Concept Refinement Process Model could (in a certain situation) drive the

selection of TmaxSoft’s Re-architecting process as the most appropriate development solution

for a software development organization that has an initiative to overhaul their legacy enterprise

software application. Referring to Figure 30, it is possible for the Overhaul Concept Refinement

Process Model to be executed during the “Conception” phase of an enterprise software

application’s lifecycle and TmaxSoft’s Re-architecting process to be executed during the

“Development” phase.

4.8 Conclusion

In conclusion, the Overhaul Concept Refinement Process Model is usable and repeatable

[26]. Moreover, as illustrated in Chapter 3, it can be used to refine the new overall architectural

and software development concepts associated with overhauling a legacy enterprise software

application. If an idea or concept is poor, it “fails fast” in the rapid prototyping phase, which

prevents resources being wasted on developing a product based on a poor concept. The

Overhaul Concept Refinement Process Model extends the typical conceptualization phase of an

enterprise software lifecycle model of a typical legacy system by providing an essential

mechanism for refining the overhaul concept of the legacy system.

	

	

	

REFERENCES

[1] M. A. Serrano, D. L. Carver, and C. M. Oca. “Reengineering legacy systems for distributed
environments.” The Journal of Systems and Software. vol. 64, pp. 37-55, 2002.

[2] M. Colosimo, A. Lucia, G. Scanniello, G. Tortora. “Evaluating legacy system migration
technologies through empirical studies.” Information and Software Technology. vol. 51, pp. 433-
447, 2009.

[3] K. Jamsa, “Securing the Cloud,” in Cloud Computing: SaaS, PaaS, IaaS, Virtualization,
Business Models, Mobile Security, and More, Burlington, MA, Jones & Bartlett Learning, 2012,
ch. 9, pp. 127-139.

[4] J. R. Leary. "An Architectural Basis for Evolving Software Systems." J. Systems Software.
vol. 30, pp. 27-43, 1995.

[5] E. J. Braude and M. E. Bernstein, “Software Process,” in Software Engineering: Modern
Approaches, 2nd ed. John Wiley & Sons, Inc., 2011, ch. 3, pp. 32-62.

[6] C. Pahl. "Adaptive development and maintenance of user-centric software systems."
Information and Software Technology. vol. 46, pp. 973-986, 2004.

[7] D. Graham, E. V. Veenendaal, I. Evans, R. Black, “Testing Throughout the Software Life
Cycle,” in Foundations of Software Testing, Revised ed. Prentice Hall, C&C Offset, China,
2009, ch. 2, pp. 35-56.

[8] E. J. Braude and M. E. Bernstein, “Principles of Requirements Analysis,” in Software
Engineering: Modern Approaches, 2nd ed. John Wiley & Sons, Inc., 2011, ch. 10, pp. 230-244.

[9] E. J. Braude and M. E. Bernstein, “Project Management,” in Software Engineering: Modern
Approaches, 2nd ed. John Wiley & Sons, Inc., 2011, ch. 7, pp. 140-167.

[10] J. Henry, “Write Your Plan,” in Software Project Management: A Real-World Guide to
Success, Pearson Education, Inc., 2004, ch. 8, pp. 157-174.

[11] K. Jamsa, “Introducing Cloud Computing,” in Cloud Computing: SaaS, PaaS, IaaS,
Virtualization, Business Models, Mobile Security, and More, Burlington, MA, Jones & Bartlett
Learning, 2012, ch. 1, pp. 1-16.

[12] K. Jamsa, “Mobile Cloud Computing,” in Cloud Computing: SaaS, PaaS, IaaS,
Virtualization, Business Models, Mobile Security, and More, Burlington, MA, Jones & Bartlett
Learning, 2012, ch. 14, pp. 203-216.

64	
	 	

[13] R. Daigneau and I. Robinson, “From Objects to Web Services,” in Service Design Patterns:
Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services, Pearson Education,
Inc., 2012, ch. 1, pp. 1-11.

[14] K. Jamsa, “Service-Oriented Architecture,” in Cloud Computing: SaaS, PaaS, IaaS,
Virtualization, Business Models, Mobile Security, and More, Burlington, MA, Jones & Bartlett
Learning, 2012, ch. 11, pp. 161-176.

[15] S. Tariq, M. Nazir, and F. Saleemi. (2012, Feb.) “Enhancement of XP for Cloud Application
Development.” Journal of Emerging Trends in Computing and Information Sciences. [on-line]
Available: http://www.cisjournal.org [Nov. 04, 2012].

[16] S. Mitchell, J. Owen, and K. Warr. (2004, Aug.) “An adventure in Extreme Programming.”
IBM WebSphere Developer Technical Journal. [on-line] Available:
http://www.ibm.com/developerworks/websphere/techjournal/0408_mitchell/0408_mitchell.html
[Nov. 04, 2012].

[17] G. R. Frederick and R. Lal, “Introduction to Mobile Web Development,” in Beginning
Smartphone Web Development: Building JavaScript, CSS, HTML and Ajax-based Applications
for iPhone, Android, Palm Pre, BlackBerry, Windows Mobile, and Nokia S60, Apress, 2009, ch.
1, pp. 1-14.

[18] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, “Introduction to Services,” in SOA
with REST: Principles, Patterns & Constraints for Building Enterprise Solutions with REST,
Prentice Hall, 2011, ch. 3, pp. 23-30.

[19] R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures.” Ph.D. dissertation, Computer Science Dept., Univ. of California, Irvine, CA,
2000.

[20] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, “REST Constraints and Goals,” in
SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions with
REST, Prentice Hall, 2011, ch. 5, pp. 51-66.

[21] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, “Service-Orientation with REST,”
in SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions with
REST, Prentice Hall, 2011, ch. 7, pp. 93-126.

[22] G. R. Frederick and R. Lal, “Testing a Mobile Web Site,” in Beginning Smartphone Web
Development: Building JavaScript, CSS, HTML and Ajax-based Applications for iPhone,
Android, Palm Pre, BlackBerry, Windows Mobile, and Nokia S60, Apress, 2009, ch. 10, pp. 259-
272.

[23] E. J. Braude and M. E. Bernstein, “Software Architecture,” in Software Engineering:
Modern Approaches, 2nd ed. John Wiley & Sons, Inc., 2011, ch. 18, pp. 438-475.

65	
	 	

[24] K. Jamsa, “Application Scalability,” in Cloud Computing: SaaS, PaaS, IaaS, Virtualization,
Business Models, Mobile Security, and More, Burlington, MA, Jones & Bartlett Learning, 2012,
ch. 19, pp. 277-290.

[25] A. Terazzi, A. Giordano, G. Minuco. “How can usability measurement affect the re-
engineering process of clinical software procedures?” International Journal of Medical
Informatics. vol. 52, pp. 229-234, 1998.

[26] K. Tahera, R.N. Ibrahim, P.B. Lochert. “A fuzzy logic approach for dealing with qualitative
quality characteristics of a process.” Expert Systems with Applications. vol. 34, pp. 2630-2638,
2008.

[27] G. R. Frederick and R. Lal, “The Future of the Mobile Web,” in Beginning Smartphone Web
Development: Building JavaScript, CSS, HTML and Ajax-based Applications for iPhone,
Android, Palm Pre, BlackBerry, Windows Mobile, and Nokia S60, Apress, 2009, ch. 13, pp. 303-
314.

[28] A. Freeman, “Putting HTML5 in Context,” in The Definitive Guide to HTML5, Apress,
2011, ch. 1, pp. 1-2.

[29] Introducing JSON. [on-line] Available: http://www.json.org/ [Nov. 12, 2012].

[30] E. J. Braude and M. E. Bernstein, “Agile Software Processes,” in Software Engineering:
Modern Approaches, 2nd ed. John Wiley & Sons, Inc., 2011, ch. 4, pp. 63-79.

[31] S. Dong, M. Johar, R. Kumar. “Understanding key issues in designing and using knowledge
flow networks: An optimization-based managerial benchmarking approach.” Decision Support
Systems. vol. 53, pp. 646-659, 2012.

[32] J. A. Robinson, “Researching possible solutions,” in Software Design for Engineers and
Scientists, Newnes, 2004, ch. 11, pp. 255-275.

[33] J. A. Robinson, “Design methodology,” in Software Design for Engineers and Scientists,
Newnes, 2004, ch. 9, pp. 235-243.

[34] J. A. Robinson, “Detailed design and implementation,” in Software Design for Engineers
and Scientists, Newnes, 2004, ch. 13, pp. 288-297.

[35] Subjective. [on-line] Available: http://dictionary.reference.com/browse/subjective [Dec. 26,
2012].

[36] IBM Rational Unified Process (RUP). [on-line] Available: http://www-
01.ibm.com/software/awdtools/rup/ [Dec. 26, 2012].

[37] Re-architecting. [on-line] Available: http://us.tmaxsoft.com/ [Dec. 26, 2012].

	

	

APPENDIX A: BACKGROUND INFORMATION

This appendix provides background information on various topics that were touched

upon in the case study presented in Chapter 3.

A.1 Cloud Computing

Currently, cloud computing is a phenomenon in the computer science, business, and

personnel computing realms. The phrase “cloud computing” refers to the abstraction of Web-

based computing resources and services that enable software developers to create, deploy, and

maintain complex distributed hypermedia applications on virtualized remote resources. In a

nutshell, cloud computing removes the necessity of having data, software applications, and

computing resources on local devices (i.e., laptops, smartphones, and desktops). Instead of being

local to client devices, these resources exist within the “cloud” and are accessed via the Internet.

The massive Internet infrastructure that has evolved over recent decades is the primary

mechanism that has made cloud computing possible. As a result, cloud computing is enabling

people and software systems to access, store, and process data on a massive scale [11, 12].

A.2 Service Oriented Architecture

A Service Oriented Architecture (SOA) is an architectural style that is prevalent among

modern software applications. SOA aims to deliver software applications that are scalable,

interoperable, maintainable, and highly performant. A service is a software program that makes

available its functionality through a technical interface. A service’s technical interface is

67	
	 	

typically called a service contract, and is comprised of the service capabilities. For example, a

Work Order service may publish a service contract that expresses service capabilities like:

 Get Existing Work Order
 Create New Work Order
 Update Existing Work Order
 Delete Existing Work Order

A service consumer is a software program that accesses and invokes a service and consumes the

service’s capabilities. A SOA establishes and constrains the characteristics of how and for what

purpose services, service contracts, service capabilities, and service consumers can be

implemented and how they relate to each other [13, 14, 18].

A.3 Representational State Transfer

Representational State Transfer (REST) is an architectural style for distributed

hypermedia systems (e.g., Web applications). The REST style architecture was introduced and

defined in 2000 by Dr. Roy Fielding in his doctoral dissertation [19]. Although REST has

become a buzzword among API (application program interface) developers, very few software

applications have been built that fully comply with Fielding’s definition of REST. According to

Fielding:

The name “Representational State Transfer” is intended to evoke an image of how a well-
designed Web application behaves: a network of Web pages (a virtual state-machine),
where the user progresses through the application by selecting links (state transitions),
resulting in the next page (representing the next state of the application) being transferred
to the user and rendered for their use [19].

Fielding’s REST constraints are:

1. Client-server
2. Stateless server
3. Cache
4. Uniform interface

68	
	 	

a. Identification of resources (resource identifier identifies the specific resource
involved in an interaction between components)

b. Manipulation of resources through representations (resource representation
represents the state of a resource for transfer between components)

c. Self-descriptive messages contain all the information necessary to complete
transformations

d. Hypermedia as the engine of application state
5. Layered system
6. Code-On-Demand (optional)

Many software developers believe that Fielding’s explicit definition of REST is too difficult to

adhere to in real-world software development. As a result, the term “pragmatic REST” has

become popular for describing software applications that implement a subset of Fielding’s

constraints. While Fielding’s definition of REST has driven the development of many software

applications that partially comply with the formal constraints of the REST style, only a small

percentage of software applications fully comply with all of Fielding’s constraints [19, 20, 21].

 The first three constraints as illustrated in Figure 33 are the three constraints many Web

API developers adhere to and refer to as pragmatic REST.

69	
	 	

	

	

A.4 Mobile Web

The Mobile Web is a rapidly growing digital medium. It can be thought of as being the

traditional Internet translated for use by mobile devices (i.e., smart phones, feature phones,

tablets, etc.). Developing software for the Mobile Web has a unique set of best practices; this is

why a distinction is made between the Desktop Web and the Mobile Web [17].

The popularity of the Mobile Web is obvious to nearly everyone who owns a mobile

device. The Mobile Web is a phenomenon sweeping the planet; people are using mobile devices

to perform tasks that would traditionally require a desktop computer with a high bandwidth

Internet connection. The emergence of widespread accessibility to information is partially due to

Figure	33:	Pragmatic	REST	Constraints	

70	
	 	

the Mobile Web. Its realization is facilitating the development of new ways to do business,

communicate, play, and many other activities [17].

While software development standards for the Mobile Web are immature, they are

emerging and will undoubtedly become well established in the coming years. Moreover, tools

and tool kits are surfacing that make software development for the Mobile Web more readily

achievable by mainstream software developers. For example, JQuery Mobile is a popular

JavaScript library that expedites client-side software development of Mobile Web applications

[17].

The Mobile Web puts data in people’s hands while they are on the go. It is new, but

rapidly maturing. Adoption of device standards by manufacturers and software development

standards by software developers looks promising. The Mobile Web is becoming the

predominate digital medium for information sharing among the planet’s general population [27].

A.5 Hypertext Markup Language 5

HTML is an acronym for Hypertext Markup Language. HTML originated in the early

1990s and has become the primary method for marking up data for interpretation by mainstream

Web browsers. That is, Web browsers translate HTML documents into the graphical user

interfaces (GUIs) presented to end-users of Websites [28].

HTML5 is more than just the latest HTML specification. HTML5 is used by many

software developers to refer to a set of related Web technologies: HTML, CSS (Cascading Style

Sheets), and JavaScript. The HTML5 specification strongly relies on the existence of CSS and

JavaScript, and therefore cannot be teased apart from them. Each of the fundamental core

technologies behind HTML5 plays a specific role. The HTML is the semantic markup of a

71	
	 	

Webpage’s content, CSS applies presentation characteristics to the semantic HTML document,

and JavaScript is the client-side programming language that can dynamically alter the HTML

and style on the fly [28].

Moreover, HTML5 intrinsically embraces multimedia content unlike its previous

versions. With HTML5, video and audio clips are supported natively in the browser and do not

require third-party plugins (e.g., Adobe Flash). HTML5 also introduces user defined attributes

for HTML elements and many new input types. These powerful new features enable highly

dynamic Webpages to be constructed more quickly and with fewer defects than ever before [28].

A.6 JavaScript Object Notation

JavaScript Object Notation (JSON) is a data-interchange format that is based on a subset

of the JavaScript programming language. It has become widely popular among many API

developers because it is very easy to read, generate, and parse. In many cases, JSON is being

used instead of more heavyweight data-interchange technologies like XML [29]. Figure 34 is a

snippet of JSON.

	
{
 "Results":[
 {
 "Success":"Ok",
 "TicketNo":"580",
 "RmaNo":"432",
 "NumberOfEntityLines":"2 of 2",
 "NumberOfNoteLines":"3 of 3",
 "ErrorMessage":""
 }
}

	
	

Figure	34:	Sample	JSON	Structure	

72	
	 	

A.7 Extreme Programming

Extreme Programming, introduced by Kent Beck in the mid-90s, is a type of Agile

software development model that has many strengths and some substantial weaknesses [30].

Agile software development models have become popular among many software developers and

organizations. Unfortunately, due to the rapid wide-scale adoption of Agile software

development models, many software developers and organizations have implemented Agile

methodologies poorly; others have implemented Agile models with success, helping to define

paths to successful implementations of Agile models.

Agile software development methods, like Extreme Programming, are considered to be

“lightweight” methods, when compared with their predecessors [15, 16, 30]. The birth of Agile

software development can be attributed to the flaws inherent in traditional, “heavyweight”,

software development models (e.g., the Waterfall model). This is because, with respect to

documentation, traditional software development models are heavily focused on comprehensive

documentation, whereas Agile software development models often strive to position the

implementation and deployment of working software over the comprehensive documentation of

the software. That is, when using traditional software development models, large amounts of

project resources are consumed creating, managing, and adhering to documentation artifacts.

Agile software development models, on the other hand, focus on working continuously with

customers and end-users to quickly and adequately manage complex changing requirements, and

strive to continuously deliver working software to the end-users as frequently as possible.

Extreme Programming places specific emphasis on four general Agile software

development characteristics [30]:

1. Communication – the continuous communication between developers and customers.

73	
	 	

2. Simplicity – the constant selection of the simplest design.
3. Courage – the courage to commit to rapid delivery of functionality.
4. Feedback – feedback loops incorporated throughout development activities.

It is from these four core Agile software development characteristics that the Extreme

Programming model is derived. The Extreme Programming process model has four primary

phases that are executed iteratively [15, 16]:

1. Planning
2. Design
3. Coding
4. Testing

Additionally, each iteration ends in new completed functionality delivered to the customer.

Extreme Programming’s planning phase follows this process [15, 16]:

8. Create user stories.
9. Assess user stories.
10. Group user stories.
11. Commit to iteration specific delivery date.
12. Use project velocity to determine delivery dates for subsequent iterations.

User stories are the primary focus of the planning phase of an iteration. A user story is a

system requirement expressed in as few unambiguous sentences as possible, and is written by the

customer from the perspective of the end-user. Furthermore, user stories are informal statements

of the requirements that are prioritized by the customer. Often, user stories are written on small

paper cards and then stacked in order of priority. Once user stories have been established they

are assessed and grouped for development in distinct development iterations. User stories are

grouped based on likeness, effort, priority, and etc. Additionally, project velocity, calculated

based on results of previous iterations, can be used to establish delivery dates of the iteration.

The design phase of the Extreme Programming model emphasizes the K.I.S.S. principle

(Keep It Simple Stupid). This principle is encouraged by the use of CRC (Class Responsibility

Collaborator) cards. These cards are divided into 3 sections: one section for the class’s name, one

74	
	 	

section for the class’s responsibilities, one section for the class’s collaborators. A class represents

entities of similarity and can be named (e.g., employee). A responsibility is something the class

knows or does (e.g., name, salary, address, eats lunch). A collaborator is another class, interacted

with by the class being defined, and is necessary to fulfill the class’s responsibilities (e.g., lunch).

CRC cards are a simple tool that can be used to quickly create an object-oriented design.

However, when a design has a high complexity level, a spike solution may be used in the design

phase to refine the design. The phrase “spike solution” is Extreme Programming’s proprietary

name for prototype [15].

Extreme Programming’s coding phase involves 3 key tasks [15]:

1. Creating unit tests before coding.
2. Coding to the unit tests.
3. Executing unit tests regularly.

The unit tests created serve as detailed requirements for the programmers during code

implementation. Generally speaking, programmers will execute multiple unit tests against new or

refactored code on a daily basis. When a programmer’s code successfully passes its associated

unit test, the programmer moves on to the next task. Additionally, to further ensure high quality

software, the Extreme Programming model recommends “pair programing”. Pair programing is

a software programing technique that requires two programmers to simultaneously work on the

same code at the same time from a single work station. In practice, one programmer types the

code while the other programmer monitors and makes recommendations. Also, the programmers

are required to switch roles routinely; each programmer performs each role 50% of the time.

Although unit tests are routinely executed during the coding phase, Extreme

Programming dedicates a phase strictly to testing. During the testing phase, unit tests, integration

tests, system tests, and acceptance tests are all possibilities. However, typical implementations of

the Extreme Programming model focus the majority of the testing phase on acceptance testing

75	
	 	

performed by the customer. The customer performs tests against the software to determine

whether the requirements were sufficiently implemented in the new iteration. If the customer’s

acceptance testing uncovers issues, feedback is provided to the development team immediately,

enabling the development team to address the issues as quickly as possible [22, 30].

All in all, the Extreme Programming model embraces these fundamental principles and

practices: customer involvement, incremental delivery, people over process, embrace change,

maintain simplicity, incremental planning, small releases, simple design, test-first development,

refactoring, pair programming, collective ownership, continuous integration, sustainable pace,

on-site customer [15, 16, 30].

A.8 Classic Active Server Page Technology

Classic Active Server Page (ASP) technology was Microsoft’s first server-side scripting

engine technology for dynamic generation of Web pages. Software applications built with classic

ASP technology are often frighteningly difficult to maintain because their source code is

typically a jumbled mess (i.e., spaghetti code). Spaghetti code is a derogatory term for source

code having an overly complex and/or tangled control flow structure. Additionally, many classic

ASP code modules are a mish-mash (i.e., a confused mixture) of programming languages. For

example, a typical classic ASP code module may contain:

 Client-side code (JavaScript)
 Server-side code (VB Script)
 CSS (Cascading Style Sheets for style definition of Graphical User Interface elements)
 HTML

The various types of components found in classic ASP code modules are often highly

dependent on each other. That is, they are contingent on or determined by each other. This high

level of dependency between components results in source code that is highly brittle and difficult

76	
	 	

to maintain. A seemingly simple change to one small piece of the source code is often infeasible

because that one small piece of source code can directly impact many dependent components.

Therefore, the number of man-hours required to implement a change in a classic ASP code

module is often greatly amplified because changes must be implemented throughout the source

code to counteract or support a change made in another area. While classic ASP code modules

of a limited scope can be quite powerful and easy to maintain, they quickly become

unmanageable once they exceed a certain size/complexity threshold [23].

	

	

APPENDIX B: SERVICE CENTRAL’S CLIENT-SIDE JAVASCRIPT

OBJECT CONSTRUCTOR

 function Service(strURI, objJSON, strJSON, intVersion){
 //Properties
 this.URI = strURI;
 this.JSON = objJSON;
 this.JSONString = strJSON;
 this.Version = intVersion;
 this.Error = "";

 //Methods

 //get
 this.get = function (){
 var http = new HTTPRequest();

 var getData = "JSON=" + encodeURIComponent(this.JSONString)

 http.open("GET", this.URI, false);
 http.setRequestHeader("Content‐type", "application/json");
 http.setRequestHeader("Content‐length", getData.length);
 http.setRequestHeader("Connection", "close");
 http.send(getData);

 var strResponseMsg = http.responseText;

 try{
 this.JSON = eval('(' + strResponseMsg + ')');
 this.JSONString = strResponseMsg;
 }
 catch(err){
 this.Error = {"Msg" : err, "ResponseText" : strResponseMsg };
 }
 }

 //post
 this.post = function (){
 var http = new HTTPRequest();

 var postData = "JSON=" + encodeURIComponent(this.JSONString);

 http.open("POST", this.URI, false);
 http.setRequestHeader("Content‐type", "application/json");
 http.setRequestHeader("Content‐length", postData.length);
 http.setRequestHeader("Connection", "close");
 http.send(postData);

 var strResponseMsg = http.responseText;

 try{
 this.JSON = eval('(' + strResponseMsg + ')');
 this.JSONString = strResponseMsg;
 }
 catch(err){

78	
	 	

 this.Error = {"Msg" : err, "ResponseText" : strResponseMsg };
 }

 }

 //put
 this.put = function (){
 var http = new HTTPRequest();

 var putData = "JSON=" + encodeURIComponent(this.JSONString);

 http.open("PUT", this.URI, false);
 http.setRequestHeader("Content‐type", "application/json");
 http.setRequestHeader("Content‐length", putData.length);
 http.setRequestHeader("Connection", "close");
 http.send(putData);

 var strResponseMsg = http.responseText;

 try{
 this.JSON = eval('(' + strResponseMsg + ')');
 this.JSONString = strResponseMsg;
 }
 catch(err){
 this.Error = {"Msg" : err, "ResponseText" : strResponseMsg };
 }
 }

 //delete
 this.delete = function (){
 var http = new HTTPRequest();

 http.open("DELETE", this.URI, false);
 http.setRequestHeader("Content‐type", "application/json");
 http.setRequestHeader("Connection", "close");
 http.send();

 var strResponseMsg = http.responseText;

 try{
 this.JSON = eval('(' + strResponseMsg + ')');
 this.JSONString = strResponseMsg;
 }
 catch(err){
 this.Error = {"Msg" : err, "ResponseText" : strResponseMsg };
 }
 }
 }

	

	

	

APPENDIX C: SERVICE CENTRAL’S SERVER-SIDE VBSCRIPT URI CONTROLLER

<%
option explicit

Server.ScriptTimeout = 1800 ' Set Script timeout to 30 minutes

'=============================
' Variables
'=============================

'‐‐ Common

Dim strMySysDBName ' System ODBC Datasource Name
Dim strMyAppDBName ' Application ODBC Datasource Name
Dim strMyAdmDBName ' Administration ODBC Datasource Name

Dim objConnSys ' System Database Connection
Dim objConnApp ' Application Database Connection

Dim objCommand ' Database Command
Dim objRS ' Result Set
Dim strSQL ' SQL Statement
Dim intNoOfRecords ' Number of records affected

Dim strSysId
Dim strLangId
Dim bFirstTime

%>

 <!‐‐ #INCLUDE FILE="dbname.inc" ‐‐>
 <!‐‐ #INCLUDE FILE="common.inc" ‐‐>
 <!‐‐ METADATA TYPE="typelib" FILE="C:\Program Files\Common Files\System\ado\msado15.dll" ‐‐>

<%

'==
' Get Passed Data
'==

strSysId = Request.Form("SysId")

If SysIsEmpty(strSysId) Then

 strSysId = Request.Querystring("SysId")

End If

strLangId = Request.QueryString("LangId")

If SysIsEmpty(strLangId) Then

 strLangId = SysGetLangId()

End If

80	
	 	

'==
' Connect to database
'==

Call SysConnectSystemDB()

SysSetSessionSysId(strSysId)

Session.Contents("LangId") = strLangId

Call SysConnectApplicationDB()

Dim strRequestMethod
Dim astrURI

strRequestMethod = UCase(Request.ServerVariables("REQUEST_METHOD"))

astrURI = Split(LCase(CStr(Request.ServerVariables("HTTP_X_REWRITE_URL"))), "?", 2)

Dim astrURIBase
Dim intURIBaseLength

astrURIBase = Split(LCase(CStr(astrURI(0))), "/")
intURIBaseLength = UBound(astrURIBase)

Dim i
Dim bBeyondSc
Dim bAtCollection
Dim strUriBaseElemType
Dim aCollections(100)

Dim c
c = 0

bBeyondSc = False
bAtCollection = False

For i = 0 To intURIBaseLength

 If bBeyondSc And bAtCollection Then

 bAtCollection = False
 '‐‐strUriBaseElemType = "Collection: "

 Else

 bAtCollection = True
 '‐‐strUriBaseElemType = "Element: "

 End If

 If bBeyondSc And Len(CStr(astrURIBase(i))) > 0 Then

 '‐‐Response.Write(strUriBaseElemType & astrURIBase(i) & "
")
 aCollections(c) = astrURIBase(i)
 c = c + 1

81	
	 	

 End If

 If astrURIBase(i) = "sc" Then

 bBeyondSc = True
 bAtCollection = True

 End If

Next

If strRequestMethod = "POST" Or strRequestMethod = "PUT" Then

 Function BytesToStr(bytes)

 If Request.TotalBytes > 0 Then

 Dim Stream
 Set Stream = Server.CreateObject("Adodb.Stream")
 Stream.Type = 1 'adTypeBinary
 Stream.Open
 Stream.Write bytes
 Stream.Position = 0
 Stream.Type = 2 'adTypeText
 Stream.Charset = "iso‐8859‐1"
 BytesToStr = Stream.ReadText
 Stream.Close
 Set Stream = Nothing

 Else

 BytesToStr = ""

 End If

 End Function

 '‐‐‐Response.Write("
Post Data:
")

 Dim strRequestBody
 Dim astrRequestBody
 Dim intRequestBodyLength

 strRequestBody = BytesToStr(Request.BinaryRead(Request.TotalBytes))

 astrRequestBody = Split(LCase(CStr(strRequestBody)), "&")
 intRequestBodyLength = UBound(astrRequestBody)

 For i = 0 To intRequestBodyLength

 If Len(CStr(strRequestBody)) > 0 Then

 Dim astrRequestBodyElements

 astrRequestBodyElements = Split(LCase(CStr(astrRequestBody(i))), "=")

 Response.Write("RequestBody Key: " & astrRequestBodyElements(0) & "
")

82	
	 	

 If CLng(UBound(astrRequestBodyElements)) > CLng(0) Then

 Response.Write("RequestBody Value: " & unescape(astrRequestBodyElements(1)) & "
")

 End If

 End If

 Next

End If

Dim aProdRegReqsCollections(4)

aProdRegReqsCollections(0) = "REGS"
aProdRegReqsCollections(1) = "Integer"
aProdRegReqsCollections(2) = "NOTES"
aProdRegReqsCollections(3) = "Integer"

Dim intCollectionsLength

intCollectionsLength = UBound(aCollections)
bAtCollection = True

For i = 0 To 3

 If Len(CStr(aCollections(i))) > 0 Then

 If bAtCollection Then

 bAtCollection = False

 If UCASE(aCollections(i)) = aProdRegReqsCollections(i) And i = c‐1 Then

 If i = 0 Then

 RegistrationResource strRequestMethod, ""

 Else

 Response.Write("{""JSON for Registration # " & aCollections(1) & "'s collection of notes""}
")

 End If

 End If

 Else

 bAtCollection = True

 If IsNumeric(aCollections(i)) Then

 aCollections(i) = CInt(aCollections(i))

 End If

 If UCase(CStr(TypeName(aCollections(i)))) = UCase(aProdRegReqsCollections(i)) And i = c‐1 Then

83	
	 	

 If i = 1 Then

 RegistrationResource strRequestMethod, aCollections(i)

 Else

 Response.Write("{""JSON for Registration # " & aCollections(1) & "'s note"":" & aCollections(i) & "}
")

 End If

 End If

 End If

 End If

Next

Sub RegistrationResource(strRequestMethod,lngRequestNo)

 Select Case strRequestMethod

 Case "GET"

 %>
 {
 "ProdRegReqData":
 [
 <%
 '==
 ' Build SQL Statement
 '==

 strSQL = "Select "
 strSQL = strSQL & " REQUESTNO "
 strSQL = strSQL & " ,SYSID "
 strSQL = strSQL & " ,STATUS "
 strSQL = strSQL & " ,STATUSTEXT "
 strSQL = strSQL & " ,CRTDATE "
 strSQL = strSQL & " ,STSDATE "
 strSQL = strSQL & " ,PURDATE "
 strSQL = strSQL & " ,PRODUCTID "
 strSQL = strSQL & " ,SERIALNO "
 strSQL = strSQL & " ,UNIQSERIAL "
 strSQL = strSQL & " ,METER "
 strSQL = strSQL & " ,USERID "
 strSQL = strSQL & " ,ROLEID "
 strSQL = strSQL & " ,RCONO "
 strSQL = strSQL & " ,RCUSTNO "
 strSQL = strSQL & " ,RCUSTTYPE "
 strSQL = strSQL & " ,RCUSTTYPEN "
 strSQL = strSQL & " ,REMAIL "
 strSQL = strSQL & " ,OWNNAME "
 strSQL = strSQL & " ,OWNADD1 "
 strSQL = strSQL & " ,OWNADD2 "
 strSQL = strSQL & " ,OWNADD3 "
 strSQL = strSQL & " ,OWNCITY "

84	
	 	

 strSQL = strSQL & " ,OWNSTATE "
 strSQL = strSQL & " ,OWNZIP "
 strSQL = strSQL & " ,OWNCTRYID "
 strSQL = strSQL & " ,OWNCONTACT "
 strSQL = strSQL & " ,OWNPHONE "
 strSQL = strSQL & " ,OWNFAX "
 strSQL = strSQL & " ,OWNEMAIL "
 strSQL = strSQL & " ,CONSUMERNO "
 strSQL = strSQL & " from REGSREQS where 1=1 "

 If Not SysIsEmpty(lngRequestNo) and SysIsNumeric(lngRequestNo) Then

 strSQL = strSQL & " and REGSREQS.REQUESTNO=" & lngRequestNo

 End If

 strSQL = strSQL & " order by REQUESTNO"

 '==
 ' Execute SQL
 '==

 Set objRS = objConnApp.Execute(strSQL)

 Dim lngProdRegReqRequestNo
 Dim strProdRegReqSysId
 Dim strProdRegReqStatus
 Dim strProdRegReqStatusText
 Dim strProdRegReqCrtDate
 Dim strProdRegReqStsDate
 Dim strProdRegReqPurDate
 Dim strProdRegReqProductId
 Dim strProdRegReqSerialNo
 Dim strProdRegReqUniqSerial
 Dim lngProdRegReqMeter
 Dim strProdRegReqUserId
 Dim intProdRegReqRCoNo
 Dim intProdRegReqRCustNo
 Dim strProdRegReqRCustType
 Dim intProdRegReqRCustTypeN
 Dim strProdRegReqREmail
 Dim strProdRegReqOwnName
 Dim strProdRegReqOwnAdd1
 Dim strProdRegReqOwnAdd2
 Dim strProdRegReqOwnAdd3
 Dim strProdRegReqOwnCity
 Dim strProdRegReqOwnState
 Dim strProdRegReqOwnZip
 Dim strProdRegReqOwnCtryId
 Dim strProdRegReqOwnContact
 Dim strProdRegReqOwnPhone
 Dim strProdRegReqOwnFax
 Dim strProdRegReqOwnEmail
 Dim intProdRegReqConsumerNo
 Dim strProdRegReqDescription

 bFirstTime = true

85	
	 	

 Do While Not objRS.EOF

 lngProdRegReqRequestNo = SysXMLReplaceSpecialChars(objRs("REQUESTNO"))
 strProdRegReqSysId = SysXMLReplaceSpecialChars(objRs("SYSID"))
 strProdRegReqStatus = SysXMLReplaceSpecialChars(objRs("STATUS"))
 strProdRegReqStatusText = SysXMLReplaceSpecialChars(objRs("STATUSTEXT"))
 strProdRegReqCrtDate = SysXMLReplaceSpecialChars(objRs("CRTDATE"))
 strProdRegReqStsDate = SysXMLReplaceSpecialChars(objRs("STSDATE"))
 strProdRegReqPurDate = SysXMLReplaceSpecialChars(objRs("PURDATE"))
 strProdRegReqProductId = SysXMLReplaceSpecialChars(objRs("PRODUCTID"))
 strProdRegReqSerialNo = SysXMLReplaceSpecialChars(objRs("SERIALNO"))
 strProdRegReqUniqSerial = SysXMLReplaceSpecialChars(objRs("UNIQSERIAL"))
 lngProdRegReqMeter = SysXMLReplaceSpecialChars(objRs("METER"))
 strProdRegReqUserId = SysXMLReplaceSpecialChars(objRs("USERID"))
 intProdRegReqRCoNo = SysXMLReplaceSpecialChars(objRs("RCONO"))
 intProdRegReqRCustNo = SysXMLReplaceSpecialChars(objRs("RCUSTNO"))
 strProdRegReqRCustType = SysXMLReplaceSpecialChars(objRs("RCUSTTYPE"))
 intProdRegReqRCustTypeN = SysXMLReplaceSpecialChars(objRs("RCUSTTYPEN"))
 strProdRegReqREmail = SysXMLReplaceSpecialChars(objRs("REMAIL"))
 strProdRegReqOwnName = SysXMLReplaceSpecialChars(objRs("OWNNAME"))
 strProdRegReqOwnAdd1 = SysXMLReplaceSpecialChars(objRs("OWNADD1"))
 strProdRegReqOwnAdd2 = SysXMLReplaceSpecialChars(objRs("OWNADD2"))
 strProdRegReqOwnAdd3 = SysXMLReplaceSpecialChars(objRs("OWNADD3"))
 strProdRegReqOwnCity = SysXMLReplaceSpecialChars(objRs("OWNCITY"))
 strProdRegReqOwnState = SysXMLReplaceSpecialChars(objRs("OWNSTATE"))
 strProdRegReqOwnZip = SysXMLReplaceSpecialChars(objRs("OWNZIP"))
 strProdRegReqOwnCtryId = SysXMLReplaceSpecialChars(objRs("OWNCTRYID"))
 strProdRegReqOwnContact = SysXMLReplaceSpecialChars(objRs("OWNCONTACT"))
 strProdRegReqOwnPhone = SysXMLReplaceSpecialChars(objRs("OWNPHONE"))
 strProdRegReqOwnFax = SysXMLReplaceSpecialChars(objRs("OWNFAX"))
 strProdRegReqOwnEmail = SysXMLReplaceSpecialChars(objRs("OWNEMAIL"))
 intProdRegReqConsumerNo = SysXMLReplaceSpecialChars(objRs("CONSUMERNO"))
 strProdRegReqDescription=SysXMLReplaceSpecialChars(SysGetMEMOField(5468, lngProdRegReqRequestNo,

0, 0, 0, 0, 0, 0, 0))

 If Not bFirstTime Then

 Response.Write ","

 End If
 %>

 {
 "RequestNo" : "<%= lngProdRegReqRequestNo %>",
 "SysId" : "<%= strProdRegReqSysId %>",
 "Status" : "<%= strProdRegReqStatus %>",
 "StatusText" : "<%= strProdRegReqStatusText %>",
 "CrtDate" : "<%= strProdRegReqCrtDate %>",
 "StsDate" : "<%= strProdRegReqStsDate %>",
 "PurDate" : "<%= strProdRegReqPurDate %>",
 "ProductId" : "<%= strProdRegReqProductId %>",
 "SerialNo" : "<%= strProdRegReqSerialNo %>",
 "UniqSerial" : "<%= strProdRegReqUniqSerial %>",
 "Meter" : "<%= lngProdRegReqMeter %>",
 "UserId" : "<%= strProdRegReqUserId %>",
 "RCoNo" : "<%= intProdRegReqRCoNo %>",
 "RCustNo" : "<%= intProdRegReqRCustNo %>",

86	
	 	

 "RCustType" : "<%= strProdRegReqRCustType %>",
 "RCustTypeN" : "<%= intProdRegReqRCustTypeN %>",
 "REmail" : "<%= strProdRegReqREmail %>",
 "OwnName" : "<%= strProdRegReqOwnName %>",
 "OwnAdd1" : "<%= strProdRegReqOwnAdd1 %>",
 "OwnAdd2" : "<%= strProdRegReqOwnAdd2 %>",
 "OwnAdd3" : "<%= strProdRegReqOwnAdd3 %>",
 "OwnCity" : "<%= strProdRegReqOwnCity %>",
 "OwnState" : "<%= strProdRegReqOwnState %>",
 "OwnZip" : "<%= strProdRegReqOwnZip %>",
 "OwnCtryId" : "<%= strProdRegReqOwnCtryId %>",
 "OwnContact" : "<%= strProdRegReqOwnContact %>",
 "OwnPhone" : "<%= strProdRegReqOwnPhone %>",
 "OwnFax" : "<%= strProdRegReqOwnFax %>",
 "OwnEmail" : "<%= strProdRegReqOwnEmail %>",
 "ConsumerNo" : "<%= intProdRegReqConsumerNo %>",
 "Description" : "<%= strProdRegReqDescription %>"
 }

 <%
 bFirstTime = false

 objRS.MoveNext

 Loop

 objRS.Close
 objRS = ""

 %>
]

 }

 <%

 Case "POST"

 '‐‐ Code here to create new product registration request

 Case "PUT"

 '‐‐ Code here to update an existing product registration request

 Case "DELETE"

 '‐‐ Code here to delete an existing product registration request

 Case else

 End Select

End Sub
%>

	

	

APPENDIX D: SERVICE CENTRAL’S COLLECTION LEVEL HTTP REQUEST

HTTP request headers for GET request of http://5.221.208.53/sc/regs?SysId=S1:

Request: GET /sc/regs?sysid=S1 HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Accept‐Language: en‐US
User‐Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)
Accept‐Encoding: gzip, deflate
Host: 5.221.208.53
Connection: Keep‐Alive

	
HTTP response headers for GET request of http://5.221.208.53/sc/regs?SysId=S1:

Response: HTTP/1.1 200 OK
Date: Tue, 06 Nov 2012 22:25:17 GMT
Server: Microsoft‐IIS/6.0
X‐Powered‐By: ASP.NET
Content‐Length: 23987
Content‐Type: text/html
Cache‐contro: private

	
HTTP response body for GET request of http://5.221.208.53/sc/regs?SysId=S1:

{
 "ProdRegReqData":[
 {
 "RequestNo":"1",
 "SysId":"S1",
 "Status":"0",
 "StatusText":"",
 "CrtDate":"11/21/2007 11:24:12 AM",
 "StsDate":"11/21/2007 11:24:12 AM",
 "PurDate":"11/1/2007",
 "ProductId":"P‐0001",
 "SerialNo":"1234567",
 "UniqSerial":"1234567",
 "Meter":"0",
 "UserId":"MICKEY",
 "RCoNo":"1",
 "RCustNo":"300",
 "RCustType":"1",
 "RCustTypeN":"4",
 "REmail":"mary.higgins@hotmail.com",
 "OwnName":"Joe Owner",
 "OwnAdd1":"123 Blueberry Lane",
 "OwnAdd2":"",
 "OwnAdd3":"",
 "OwnCity":"Lenoir",
 "OwnState":"NC",
 "OwnZip":"28645",
 "OwnCtryId":"USA",
 "OwnContact":"Frank Smith",
 "OwnPhone":"(111)222‐3333",

88	
	 	

 "OwnFax":"(111)222‐3334",
 "OwnEmail":"frank.smith@anywhere.com",
 "ConsumerNo":"59",
 "Description":""
 },
 {
 "RequestNo":"4",
 "SysId":"S1",
 "Status":"0",
 "StatusText":"test",
 "CrtDate":"",
 "StsDate":"2/23/2012",
 "PurDate":"",
 "ProductId":"P‐0001",
 "SerialNo":"1234567",
 "UniqSerial":"",
 "Meter":"0",
 "UserId":"DONALD",
 "RCoNo":"1",
 "RCustNo":"0",
 "RCustType":"1",
 "RCustTypeN":"0",
 "REmail":"",
 "OwnName":"sally",
 "OwnAdd1":"123",
 "OwnAdd2":"",
 "OwnAdd3":"",
 "OwnCity":"grand",
 "OwnState":"MI",
 "OwnZip":"49417",
 "OwnCtryId":"USA",
 "OwnContact":"joe",
 "OwnPhone":"1234567",
 "OwnFax":"",
 "OwnEmail":"Joe@test.com",
 "ConsumerNo":"78",
 "Description":""
 },
 {
 "RequestNo":"5",
 "SysId":"S1",
 "Status":"1",
 "StatusText":"",
 "CrtDate":"",
 "StsDate":"2/24/2012",
 "PurDate":"",
 "ProductId":"P‐0004",
 "SerialNo":"777‐888‐999",
 "UniqSerial":"",
 "Meter":"0",
 "UserId":"GKNIGHT",
 "RCoNo":"1",
 "RCustNo":"300",
 "RCustType":"1",
 "RCustTypeN":"4",
 "REmail":"",
 "OwnName":"joe blow",
 "OwnAdd1":"12345",

89	
	 	

 "OwnAdd2":"",
 "OwnAdd3":"",
 "OwnCity":"holland",
 "OwnState":"MI",
 "OwnZip":"49417",
 "OwnCtryId":"USA",
 "OwnContact":"joe",
 "OwnPhone":"123",
 "OwnFax":"",
 "OwnEmail":"",
 "ConsumerNo":"79",
 "Description":""
 },
 {
 "RequestNo":"6",
 "SysId":"S1",
 "Status":"1",
 "StatusText":"",
 "CrtDate":"5/10/2012",
 "StsDate":"5/16/2012",
 "PurDate":"5/10/2012",
 "ProductId":"1600980‐005",
 "SerialNo":"393",
 "UniqSerial":"393",
 "Meter":"0",
 "UserId":"",
 "RCoNo":"1",
 "RCustNo":"400",
 "RCustType":"1",
 "RCustTypeN":"1",
 "REmail":"bestbuy@bestnet.com",
 "OwnName":"Tom Jones",
 "OwnAdd1":"13503 Toms Street",
 "OwnAdd2":"",
 "OwnAdd3":"",
 "OwnCity":"Grand Haven",
 "OwnState":"MI",
 "OwnZip":"49417",
 "OwnCtryId":"USA",
 "OwnContact":"Joe",
 "OwnPhone":"616 844 2121",
 "OwnFax":"",
 "OwnEmail":"crow@rmb.com",
 "ConsumerNo":"0",
 "Description":""
 },
 {
 "RequestNo":"10",
 "SysId":"S1",
 "Status":"1",
 "StatusText":"",
 "CrtDate":"5/16/2012",
 "StsDate":"5/18/2012",
 "PurDate":"5/18/2012",
 "ProductId":"101388",
 "SerialNo":"876",
 "UniqSerial":"876",
 "Meter":"0",

90	
	 	

 "UserId":"",
 "RCoNo":"0",
 "RCustNo":"0",
 "RCustType":"",
 "RCustTypeN":"0",
 "REmail":"0",
 "OwnName":"Hartford Enterprises",
 "OwnAdd1":"1740 Celia Creek Rd.",
 "OwnAdd2":"",
 "OwnAdd3":"",
 "OwnCity":"New York",
 "OwnState":"NY",
 "OwnZip":"10019",
 "OwnCtryId":"USA",
 "OwnContact":"John Wilkins",
 "OwnPhone":"(111) 222‐3333",
 "OwnFax":"",
 "OwnEmail":"JohnW@hartfordent.net",
 "ConsumerNo":"1",
 "Description":""
 }	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

APPENDIX E: SERVICE CENTRAL’S ELEMENT LEVEL HTTP REQUEST

HTTP request headers for GET request of http://5.221.208.53/sc/regs/10?SysId=S1:

Request: GET /sc/regs/10?sysid=S1 HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Accept‐Language: en‐US
User‐Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)
Accept‐Encoding: gzip, deflate
Host: 5.221.208.53
Connection: Keep‐Alive

	
HTTP response headers for GET request of http://5.221.208.53/sc/regs/10?SysId=S1:

Response: HTTP/1.1 200 OK
Date: Tue, 06 Nov 2012 22:08:26 GMT
Server: Microsoft‐IIS/6.0
X‐Powered‐By: ASP.NET
Content‐Length: 1281
Content‐Type: text/html
Cache‐contro: private

	
HTTP response body for GET request of http://5.221.208.53/sc/regs/10?SysId=S1:

{
 "ProdRegReqData":[
 {
 "RequestNo":"10",
 "SysId":"S1",
 "Status":"1",
 "StatusText":"",
 "CrtDate":"5/16/2012",
 "StsDate":"5/18/2012",
 "PurDate":"5/18/2012",
 "ProductId":"101388",
 "SerialNo":"876",
 "UniqSerial":"876",
 "Meter":"0",
 "UserId":"",
 "RCoNo":"0",
 "RCustNo":"0",
 "RCustType":"",
 "RCustTypeN":"0",
 "REmail":"0",
 "OwnName":"Hartford Enterprises",
 "OwnAdd1":"1740 Celia Creek Rd.",
 "OwnAdd2":"",
 "OwnAdd3":"",
 "OwnCity":"New York",
 "OwnState":"NY",
 "OwnZip":"10019",
 "OwnCtryId":"USA",
 "OwnContact":"John Wilkins",
 "OwnPhone":"(111) 222‐3333",

92	
	 	

 "OwnFax":"",
 "OwnEmail":"JohnW@hartfordent.net",
 "ConsumerNo":"1",
 "Description":""
 }
]
}

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

APPENDIX F: SERVICE CENTRAL’S MOBILE APP. SCREENSHOTS

Figures 35 – 42 are screenshots of Service Central’s prototyped mobile application.

	

Figure 35:	User Login Screen

	

	

	

	

	

	

94	
	 	

Figure 36:	Main Menu Screen

95	
	 	

Figure 37:	RMA (Return Material Authorization) Screen – RMA# 382

96	
	 	

Figure 38:	RMA Screen, Entities Section – Two Entities for RMA# 382

97	
	 	

Figure 39:	RMA Notes Screen, Notes Section - Modal Dialog for Select Note

98	
	 	

Figure 40:	RMA Note Screen, Notes Section – “Add Note” Button

99	
	 	

Figure 41:	RMA Add Note Screen

100	
	 	

Figure 42:	RMA Note Screen, Notes Section – New Note Added

	

	

APPENDIX G: SERVICE CENTRAL’S FRIENDLY WEB SERVICE INTERFACE

 Friendly Web Service Interface (FWSI) is an architectural style that can be applied to

Service Oriented Architectures (SOAs) [14]. It expands upon a subset of Dr. Roy Fielding’s

REST constraints and introduces the concept of Friendly Uniform Resource Identifiers (FURIs)

[19].

The primary constraints of FWSI are:

1. Must use Hypertext Transfer Protocol (HTTP) to interact with Web service via four
HTTP methods:

a. GET (read resource)
b. POST (create resource)
c. PUT (update resource)
d. DELETE (delete resource)

2. The HTTP response status from a Web service must always be status 200 (i.e., ok).
3. All HTTP request messages are JSON.
4. All HTTP response messages are JSON.
5. Resources are either collections made up of elements or a specific element within a

collection.
6. Errors on the service-side must be caught, handled, and returned in the HTTP

response body as a JSON formatted error message. Error messages should be as
verbose and descriptive as possible.

7. FURI conform to the following syntax:
a. http://{DomainName}/{ServiceDomain}/{CollectionResource}/{ElementRes

ource}/{CollectionResource}/{ElementResource}?{QueryStringKey}={Quer
yStringValue}&{QueryStringKey}={QueryStringValue}

b. Example FURI:
http://5.221.208.53/sc/rmas/1/notes/2?userid=mantle&Password=1232ds3&Sy
sid=S1
Mapping:
{DomainName} = 5.221.208.53 (IP address in)
{ServiceDomain} = sc
{CollectionResource} = rmas
{ElementResource} = 1
{CollectionResource} = notes
{ElementResource} = 2
{QueryStringKey} = userid
{QueryStringValue} = mantle
{QueryStringKey} = Password
{QueryStringValue} = 1232ds3
{QueryStringKey} = Sysid

102	
	 	

{QueryStringValue} = S1
c. Example of FURI with JSON template request:

http://5.221.208.53/sc/rmas/1/notes.template?userid=mantle&Password=1232
ds3&Sysid=S1

The character string “.template” can be appended to the last collection
resource (e.g., {CollectionResource}.template) of an HTTP GET type request.
This will provide a JSON template of an element within the collection.

103	
	 	

As illustrated in figure 43, FWSIs are realized across the client and service façade layers.

The service façade layer is the realization of FURIs, which enables the client (service consumer)

to easily send JSON formatted HTTP messages of the GET, POST, PUT, and DELETE types

and expect to receive HTTP responses that allows contain JSON formatted data in the response

body.

	

	

	

	

	

	

	

	

	

	

	

	

	
	

	

	

	

	

	

Web	Server	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Client	

Service	Facade	

Service	
1	

Service	
2	

Service	
3	

Database	
Server	
	
	
	
	

App.	Data	

Class	1	 Class	2	 Class	3	

Figure 43: FWSI Architecture

	

	

APPENDIX H: SERVICE CENTRAL’S URI COLLECTIONS HIERARCHY

	

Service	Central

Environment	AA

Ticket	100

Incidents	

Entities

Problems

Notes

Attachments

RMAs

Entities

Problems

Notes

Attachments

Quotes

Entities

Problems

Steps

Labor

Stocked	Parts

Non‐Stocked	
Parts

Expenses

Services

Components

Notes

Attachments

Work	Orders

Entities

Problems

Steps

Labor

Stocked	Parts

Non‐Stocked	
Parts

Expenses

Services

Components

Notes

Attachments

Ticket	101

Environment	BB

Ticket	100

Figure 44: URI Hierarchy

	

	

	

