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Karst aquifers are vital sources of groundwater for domestic and industrial use in many 

parts of the world. To sustain rising population throughout the southeastern United States, karst 

aquifers are increasingly exploited to provide the populace a clean and reliable water resource. 

The moldic Spring Garden Member of the Castle Hayne Limestone and the vuggy Miami 

Limestone Formation of the Biscayne aquifer systems are two highly productive karst aquifers 

that provide critical water resources to millions of people in eastern North Carolina and 

southeastern Florida, respectively. In order to improve our understanding of karst media, a 

detailed investigation of 2D porosity and pore geometry of Castle Hayne and Biscayne aquifers 

was undertaken using image and geospatial analysis. The goal of this study was to compare and 

contrast the pore structure of moldic and vuggy karst aquifers by quantifying 2D porosity and 

pore geometry in borehole televiewer, slabbed core, and thin-section images. GIS provided an 

integrated environment for statistical and geospatial analysis, making it the ideal tool for 

identifying and extracting pore structures from the digital images. Macropore area and perimeter 

were derived from televiewer, core and thin-section images. These geometric attributes were 

used to calculate a shape measure. The shape measure provided additional insight into the 



 

 

potential for interconnectivity and geometry of pores across the multiple scales of observation. 

Results show that both pore area and perimeter for the Castle Hayne and Biscayne aquifers can 

be described by exponential distributions. The moldic Castle Hayne aquifer has larger pore 

perimeters, when similar pore areas are compared to those extracted from the vuggy Biscayne 

aquifer. The complexity of shapes are essentially identical at smaller scales of observation for 

pores derived from both the Castle Hayne and Biscayne aquifers. However, as the scale of 

observation increases, the difference between the pore geometries of macropores from the Castle 

Hayne and Biscayne aquifers also increases. At the two largest scales of observation, pores from 

the Castle Hayne are more complex than pores with identical areas from the Biscayne. 

Results also reveal that the scale of measurement plays a critical role in interpreting 

quantitative macropore structure within karst aquifers, thus requiring an approach that takes into 

account the scale of measurement of the macropore geometry. As scale of observation increases 

from thin-section to borehole image, pore size and pore complexity increase considerably over 

several orders of magnitude. Such quantitative measures can lead to a better understanding of 

porosity structure in karst aquifers that can be useful for designing and running groundwater flow 

models and assessing transport mechanisms in karst media. Most importantly, this study provides 

a quantitative assessment of the distribution of macropore geometry in karst aquifers with 

different structures and porosity.   
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CHAPTER I: INTRODUCTION 

Overview  

This manuscript is a component of the requirements for the degree of Master of Science 

in Geology. The manuscript has been prepared in four parts: (1) General introduction (this 

section); (2) an independent article to be submitted to a peer-reviewed journal; (3) Additional 

insights and final synopsis; and (4) detailed supplementary material not included in the journal 

article but significant to the overall understanding of the material presented. As a result of the 

four part configuration of the manuscript, there may be repetition.  

Chapter I  

Chapter I presents the introduction, overview, and objectives of this thesis. 

Chapter II  

The body of the thesis is found within Chapter II, which is a self contained journal article titled: 

A Quantitative Investigation of Moldic and Vuggy Pore Structure in Karst Aquifers Using Image 

and Geospatial Analysis. This complete journal article will be submitted for publication.  

Chapter III 

Chapter III provides an overall summary including additional insights and applications to water 

resource management. 

Appendices 

Appendices A, B, and C include detailed supplementary material of the hydrogeology of the 

Castle Hayne aquifer system, Biscayne aquifer system, and methods of analysis including 

detailed data acquisition and image processing techniques. Appendices D through K include 

additional figures and tables. 
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Objectives 

The goal of this study is to quantitatively characterize and compare the geometry, statistical 

distribution and scaling properties of macropores from the Castle Hayne and the Biscayne 

aquifers at three scales of observation using digital imaging and spatial analysis techniques. The 

three scales of observation used are borehole, core, and thin-section. Specific objectives are to:  

 

 Employ multiple techniques to collect, manipulate, and analyze porosity from moldic and 

vuggy aquifers.  

 

 

 Quantitatively characterize porosity in borehole, core, and thin-section images of the 

Castle Hayne and Biscayne aquifer. 

 

 

 Compare and contrast porosity and pore geometry in the Biscayne and the Castle Hayne 

aquifers at three scales of observation (i.e. borehole, core, and thin-section images). 

 

 

 Investigate the scaling relations of porosity and pore geometry between the Castle Hayne 

and Biscayne aquifers.  

 

 

 

 

 

 

 

 

 



 

CHAPTER II: A QUANTITATIVE INVESTIGATION OF  

MOLDIC AND VUGGY PORE STRUCTURE IN KARST AQUIFERS USING IMAGE AND 

GEOSPATIAL ANALYSIS  

 

Abstract 

In order to improve our understanding of karst media, a detailed investigation of porosity 

and pore geometry was undertaken in the moldic Castle Hayne and the vuggy Biscayne aquifers 

using image and geospatial analysis. The goal of this study was to compare and contrast the pore 

structure of moldic and vuggy karst aquifers by quantifying porosity and pore geometry. Remote 

sensing and GIS software were used to classify high resolution optical televiewer, core, and thin-

section images. GIS provided an integrated environment for statistical and geospatial analysis, 

making it the ideal tool for identifying and extracting pore structure from the digital images. 

Results show that both pore area and perimeter for the Spring Garden Member of the Castle 

Hayne aquifer and Miami Limestone Formation of the Biscayne aquifer exhibit exponential 

distributions. In all sets of optical televiewer, core, and thin-section images, relatively small 

pores have the highest occurrence, whereas large pores occur less frequently. The moldic Castle 

Hayne aquifer has larger pore perimeters, when similar pore areas are compared to those 

extracted from the vuggy Biscayne aquifer. These results show that quantitatively interpreting 

macropore structure within karst aquifers requires an approach that takes into account the scale 

of measurement of the macropore geometry. Most importantly, this study provides a quantitative 

assessment of the distribution of macropore geometry in karst aquifers with different structures 

and porosity.   
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2.1 Introduction  

 

Carbonate aquifers are vital sources of groundwater for domestic and industrial use 

throughout the world. To sustain rising population throughout the southeastern United States, 

these aquifers are increasingly exploited to provide the populace clean and reliable water 

sources. The Castle Hayne and Biscayne aquifer systems are two highly productive carbonate 

aquifers that provide potable water to millions of people in eastern North Carolina and 

southeastern Florida, respectively. The highly complex internal structure of carbonate aquifers is 

a result of slightly acidic groundwater circulating through the limestone bedrock resulting in the 

development of dissolution features (White, 1988). Exposure to the circulating groundwater 

allows features to continue to develop and thus extend in size from dissolved fossils to large 

caves or caverns (Halihan et al., 2000; Clémens et al., 1999). The resulting enlargement of 

dissolution features may significantly influence the hydrologic properties of a formation by way 

of enhanced porosity and interconnectivity (Choquette and Pray, 1970).   

 

Figure 1. Classification system of a variety of basic pore types (Choquette and Pray, 1970). The 

fabric selective category is useful for stratigraphic analysis, while the non-fabric selective 

category has the greatest impact on fluid flow in carbonate rock systems. 



 

5 

 

The complex and heterogeneous character of carbonate aquifers is a direct result of this 

interconnectivity, which makes management of groundwater resources, development of 

protection strategies, and evaluation of potential contaminant transport exceedingly difficult 

(Mace and Hovorka, 2000; Taylor and Green, 2001; Scanlon et al., 2003; Smith et al., 2003, 

2005).  Evaluating and comparing carbonate aquifer systems often requires the use of data that 

are more difficult to obtain, such as quantitative measures of pore attributes and spatial 

distribution of porosity. This approach is important for understanding how hydrologic properties 

of karst aquifers are influenced by pore geometry and structure beyond the limitation of 

traditional aquifer characterization.  

Choquette and Pray (1970) broadly classified macropores using the term ‘vug’, which 

they defined as a secondary pore that is somewhat equant or not markedly elongated, large 

enough to see with the unaided eye and does not specifically conform in position or shape to 

particular fabric elements of the host rock (Fig. 1). A moldic pore is defined by Choquette and 

Pray (1970) as a secondary pore formed by the selective (complete or partial) removal, normally 

by solution, of a former constituent such as a shell or oolith (Fig. 1). Commonly, moldic pores 

serve as precursors to vugs, which, with continued dissolution, can represent solution 

enlargement of fabric-selective pores to such an extent that the precursor can no longer be 

recognized (Choquette and Pray, 1970). Choquette and Pray (1970) also identify channelized 

porosity as being regularly associated with fracture porosity as well as vug and solution-enlarged 

moldic porosity. Lucia (1995) later subdivided vug or ‘vuggy’ pore space into two groups 

depending on how the vugs are interconnected: (1) separate vugs could be defined as vugs 

interconnected only through the interparticle pore network, and (2) touching vugs, are defined as 

vugs that form an interconnected pore system. The term ‘conduit’ refers to solution enlarged 
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pathways in the form of pipes or channels with impervious irregular walls whose apertures 

exceed 1 cm and form a connected network (Jeannin, 2001; White 2002; Worthington, 2000). 

Solution features that function as large aperture, low tortuosity, interconnected pathways, 

undoubtedly influence direction and rates of groundwater flow (Dreiss, 1982, 1989).   

Analyzing the pore structure of karst media at a single scale of measurement (i.e. only 

thin-section) can provide lesser results because thin-sections are limited by size and do not 

account for the wide range in dimension of solution features present in karst aquifers. Core 

samples capture more features than thin-sections. However core analysis is largely dependent on 

the quality of core recovered which can be extremely low when drilling in karst formations. 

Digital borehole images provide a better representation of conduits and large dissolution features 

that could not be observed in thin-section or slabbed core. But as a result of image resolution, 

smaller scale features observed in thin-section and slabbed cores are hard to distinguish in 

borehole images, yet these features still affect the porosity and connectivity of the system. To 

effectively analyze and compare pore structures in karst, multiple scales of observation must be 

used to take into account the range of pore sizes.   

In this study, digital imaging and spatial analysis techniques were used to quantitatively 

characterize and compare the pore geometry, and distribution of macropores from the Castle 

Hayne and Biscayne aquifers at three scales of observation: thin-section, core, and digital 

borehole images. 

 

2.1.1 Geospatial image analysis  

Remote sensing and Geographic Information Systems (GIS) have been used in the past to 

produce data sets classifying land cover (Wen and Tateishi, 2001), to detect clear-cutting of 
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boreal forest (Smith and Askne, 2001), and to map riparian ecosystems (Bourgeau-Chavez et al., 

2007). All these demonstrate traditional applications of the technology. Image analysis 

techniques and GIS have more recently been used to quantitatively characterize and map 

porosity from digital borehole images (Cunningham et al., 2004a; Manda and Gross, 2006b). 

This non-traditional application of these methodologies is particularly useful for developing an 

understanding of karst aquifers (Cunningham et al., 2004a). Advances in computer processing 

abilities now make classification of digital images more appealing for analyzing porosity and 

pore geometry than other non-traditional techniques.  

Manda and Gross (2006b) successfully applied new techniques incorporating GIS and 

image analysis to quantitatively calculate vuggy and conduit porosity in high-resolution digital 

borehole images in the Biscayne aquifer. Similar techniques are applied here to the Castle Hayne 

aquifer in an effort to gain a better understanding of pore structure and geometry in the aquifer. 

The GIS techniques developed by other workers not only provided the framework for 

quantifying geometry, distribution, and scaling properties of macropores but also allowed for 

direct comparison of porosity structure in vuggy and moldic aquifers. 

 

2.1.2 Castle Hayne aquifer 

Spanning approximately 12,500 square miles (3,200 km²) (Fig. 2), the Castle Hayne 

aquifer is the most productive aquifer in North Carolina, providing withdrawals upwards of 140 

million gallons of water per day (530 million liters of water per day) (Lyke and Treece, 1988). In 

Craven County, North Carolina, USA the Castle Hayne aquifer is used for various industrial and 

agricultural purposes, whereas the majority of potable water for municipal and domestic use is 

supplied by the Cretaceous aquifer system. The stratigraphic section analyzed in this study 
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corresponds to the Spring Garden Member of the Castle Hayne Limestone (See Table 2, 

Appendix A). The limestone sequence was deposited in a low energy, shallow, tropical, marine 

basin during a middle Eocene transgressive sea (Thayer and Textoris, 1972, 1977; Ward and 

Blackwelder, 1978, 1980). Ward and Blackwelder (1978) redefined the limestone portion of the 

Castle Hayne formation as a sandy, molluscan-mold bio calcirudite. Thayer and Textoris (1977), 

using the Choquette and Pray (1970) classification scheme, described porosity as being primarily 

controlled by selective leaching of aragonite shells, that produces molds, vugs, and channels. 

Refer to Appendix A for supplementary materials describing the Castle Hayne aquifer.  

 

2.1.3 Biscayne aquifer 

The Biscayne aquifer spans approximately 6,400 square miles (16,500 km²) across Miami 

Dade, Broward, Palm Beach, and Monroe Counties in southeastern Florida, USA (Klein and 

Hull, 1978) (Fig. 2). The Biscayne aquifer is the principal water supply for Miami, Boca Raton, 

Pompano Beach, Fort Lauderdale, Hollywood, Miami Beach, and Homestead. In southeastern 

Florida, the subsurface is dominated by, semi-consolidated limestone and marl deposits of 

Pleistocene age associated with marine terraces that formed when the area was inundated by the 

sea at different times (Heath, 1984). The stratigraphic sections analyzed in this study correspond 

to the lower part of the Miami Limestone and the upper part of the Fort Thompson formations 

(See Table 3, Appendix B). Schroeder et al. (1958) and Parker et al. (1955) note that the marine 

limestone beds have been most affected by solution activity from percolating groundwater. As a 

result of dissolution, the highly permeable rock mass is riddled with secondary solution cavities 

as large as several feet (1m) in diameter. Consistent with Choquette and Pray’s (1970) 

classification scheme, Vacher and Mylroie (2002) describe the porosity of the Biscayne aquifer 

as ‘eogenetic’ karst experiencing meteoric diagenesis. Cunningham et al. (2009), building upon 
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the carbonate pore-space classification scheme of Lucia (1995, 1999), divided the pore systems 

of the Biscayne into two types: (1) matrix porosity (interparticle and separate vugs), and (2) 

touching-vug porosity (biogenic macroporosity). Refer to Appendix B for Biscayne aquifer 

supplementary material. 

 

Figure 2. Locations from which core samples and borehole images were derived (a) Map of 

eastern North Carolina showing the aerial extent of the Castle Hayne aquifer and study site in 

Craven County (westernmost extent of Castle Hayne aquifer North Carolina modified from 

Woods et al. 2000); (b) Map of southern Florida showing the aerial extent of the Biscayne 

aquifer and location of study site in northern Miami-Dade County, Florida (western extent of 

Biscayne aquifer modified from Manda and Gross, 2006b). 

 

2.2 Methods of Analysis 

2.2.1 Data acquisition  

The procedure for converting raw digital imagery to a format in which GIS can be used to 

extract data on pore geometry requires two primary steps: (1) acquisition of data at three scales 
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of observation from the two karst systems, and (2) processing of images for subsequent spatial 

analysis (Fig. 3). Dimensions of borehole images are 18 m or less in length by 0.2 m in 

circumference. Whereas core samples utilized are less than 0.1 x 0.3 m and thin-sections are 

approximately 0.4 x 0.7 m. 

 

Figure 3. Flow chart outlining data collection and processing procedures for geospatial analysis 

of digital borehole, slabbed core samples, and thin section images (Modified from Manda and 

Gross, 2006b) 

 

At both study sites digital images of borehole walls were acquired by using the OBI-40 

slimhole optical televiewer manufactured by Advanced Logic Technology (ALT). Data from the 

Biscayne aquifer were acquired from a well that was drilled by the United States Geological 

Survey (USGS) in early 2000, to understand and characterize the stratigraphy and hydrogeology 
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of the Biscayne aquifer. Test corehole G-3770 was drilled to a depth of approximately 25.0 m in 

Northern Miami Dade County (Fig. 2). Polyvinyl Chloride (PVC) casing was set to a depth of 

2.4 m which allowed the optical televiewer to image the 15.3 m of open hole. Core recovery was 

˂  50% attributable to the presence of solution cavities.  

Previous researchers (Manda and Gross, 2006b) converted optical televiewer and core 

images recovered from G-3770 to binary format that were used as source images for GIS 

analysis in this study. Thin-sections acquired from the core retrieved from well G-3770 were 

used in this project.  

In the late 1990’s, 17 pumping and observation wells were drilled for the city of New 

Bern to understand the hydrogeologic framework underlying the inactive Martin Marietta- 

Glenburnie quarry. Research conducted in this study focused on one of these wells (MM-PW5), 

which is a six-inch borehole, located in the southeast corner of the quarry (Fig.2). MM-PW5 was 

drilled to a depth of approximately 21 m and PVC casing was set to a depth of approximately 9 

m. The rest of the well is an open borehole allowing the optical televiewer to image 12 m of the 

borehole. The highest clarity section of the image between 11.8 m and 16.2 m was selected for 

analysis. Cores were retrieved between the depths of 11.4 and 13.3 m and 18.3 to 19.1 m. 

Previous researchers slabbed cores and produced thin-sections from 0.5 m intervals.  

Optical televiewer image logs are particularly valuable as they provide continuous 

uninterrupted views of the inside of the well bore. Use of WellCad software allowed the resulting 

borehole wall image to be exported as a depth-calibrated image file. Following the procedures 

outlined by Manda and Gross (2006b) cores acquired from MM-PW5 were slabbed and the flat 

surfaces were polished to reduce irregularities and roughness introduced by the sawing process. 

The cores were then painted with an orange water-soluble block printing ink to amplify the 
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difference between macropores and matrix. Thin-sections from both core sets were impregnated 

with blue epoxy by previous researchers, using a method similar to the one implemented by 

Friedman (1959). The blue epoxy enhanced the difference between the macropores and matrix, 

just as the orange block printing ink did to the core samples. Except that in the case of the thin 

sections, the blue color represented pores, whereas in the core samples the orange color 

represented matrix. Examples of core and thin-section images from the Biscayne and Castle 

Hayne aquifers are shown in Figure 4. Refer to Appendix C data acquisition for supplementary 

materials. 

 

Figure 4. Examples of painted cores and thin-sections impregnated with blue epoxy: (a) Castle 

Hayne core; (b) Castle Hayne thin-section; (c) Biscayne core; (d) Biscayne thin-section. 

 

2.2.2 Image processing and spatial analysis  

Converting images of boreholes, slabbed core, and thin-section into a format that could 

be examined and manipulated in GIS was essential to obtain accurate information for image 

analysis. The method for converting digital images to a binary classified image format suitable 

for GIS analysis consisted of:  image mosaic, rectification/calibration, noise removal, image 

enhancement, binary classification, and filtering (Fig. 3). Converting images to a GIS ready 

format followed procedures presented by Manda and Gross (2006b). 
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Using ERDAS Imagine® 9.3, two copies of the same optical televiewer image were 

placed side by side to create a double image. The double image was important for measuring the 

correct geometry of pores that intersect the edges of the borehole images. The borehole image is 

a 360° view, a pore that is truncated by the edge is actually continuous across to the other side of 

the image, which is not the case in slabbed core and thin-section images. During the rectification 

procedure images were resampled to a smaller cell size using the nearest-neighbor method to 

more accurately mimic features found on the original image during the classification procedure. 

The ISODATA (Iterative Self Organizational Data Analysis) algorithm was used to generate 25 

classes for the unsupervised classification (ERDAS, 2010a). Each of the 25 classes was recoded 

to a specific matrix or macropore value based on comparison of a single computer-generated 

class to original raw image, the resulting binary image consisted of two values, one matrix and 

the other macropores (Fig. 5). Refer to Manda and Gross (2006b) for specific classification 

procedures. 

Obtaining pore-attribute information from the binary classified images required 

conversion to a vector format line (Fig. 5). Vector analysis in ArcMap® 9.3 provided a means to 

identify and characterize pores based on purely geometric parameters (Fig. 5). See Appendix C 

for supplementary material on image processing and spatial analysis. 

2D porosity is here defined as the percentage of surface area occupied by macropores 

within a rectangular window. After generating a rectangle with the dimensions of interest 

ArcMap field calculator was used to calculate the total area of all macropores within the window. 

Once the area of macropores within the rectangle was determined, simply dividing by the area of 

the rectangle gave a percent area covered by macropores (i.e. the porosity). This porosity 

calculation procedure was repeated for each image at the three scales of observation.  
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Figure 5. (a) Photograph of thin-section from the Biscayne aquifer; (b) Vector file of thin-section 

from the Biscayne aquifer; (c) Example of pore within the thin-section from which geometric 

attributes can be extracted (i.e. area, perimeter, and a shape index). 

 

2.3 Results 

The effects of image resolution were first considered before analyzing geometric 

attributes derived from images of different dimensions. This is important because geometric 

attributes were extracted at three scales of observation where the resolution of the images 

determines the minimum pore sizes that can be detected with accuracy. Therefore, minimum 

pore areas used for televiewer, core and thin-section images were 4.00 cm², 0.001 cm², and 1.0 x 

10
-5

 cm², respectively. The minimum pore values determined were used as the threshold base 

line for the majority of subsequent quantitative analysis. When evaluating the true shape of 

pores, only pores that did not intersect the edge of the image were included in the analysis of 

pore geometry. Pores that intersect the edge of an image will possess a false shape because the 

pore in the image is truncated by an artificial boundary. Thus, truncated pores do not represent 

true areas, perimeters, and shapes of pores (Fig. 6). However, these pores were included in the 

calculation for porosity. 
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Figure 6. Extracting pores with only true geometries for analysis (a) Thin-section from the 

Biscayne aquifer after completed image processing (b) Example of pore which could not be 

included in pore geometry analysis because of the false edge that occurs where the pore 

intersects the boundary of the image. 

 

2.3.1 Validation of image analysis techniques         

The image analysis techniques presented are completely dependent on the strength of 

image classification; poor classification could lead to inaccurate representation of the original 

environment as a consequence of improper class designation. An accuracy assessment for the 

classification process, common in remote sensing analysis (Congalton, 1991), was performed by 

comparing accuracy of the classified binary image to the original image. The accuracy 

assessments for all binary classified images utilized in the study have mean kappa coefficients 

and overall accuracy of over 0.80 and 90%, respectively. These results show that the image 

analysis method is valid and results obtained from classified images will be accurate to at least 

90 percent, which falls well within the range of acceptable accuracies for remotely sensed 

images (Congalton, 1991; Campbell, 1996; Lillesand, 2004). 
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2.3.2 Pore area, perimeter, and shape index distributions  

In the optical televiewer images from the Biscayne and Castle Hayne aquifers, pores with 

the smallest areas (i.e. < 25cm²) have the highest occurrence whereas relatively larger pores 

occur less frequently. The distribution of pore areas from the Castle Hayne aquifer televiewer 

image ranges from ~4 cm  to ~609 cm², with a mean of ~20 cm² (Fig. 7a). Pore areas derived 

from the Biscayne aquifer televiewer image range from ~4 cm² to ~1469 cm², with a mean of 

~32 cm² (Fig. 7b). The Biscayne televiewer image had a relatively higher number of moderately 

sized pores (50-100 cm²) compared to the Castle Hayne televiewer image (Fig. 7a, 7b).  

For pores derived from Castle Hayne aquifer core images (Fig. 7c), the pore areas range 

from 0.001 cm² to 7.01 cm² with a mean of 0.040 cm², whereas the pore areas from Biscayne 

aquifer core images range from 0.001 cm² to 5.84 cm², with a mean of 0.012 cm² (Fig. 7d). 

Similar to the optical televiewer images there were very few large pores and a very large number 

of relatively small pores (< 0.10 cm²) in the core images. In general pore areas from the Biscayne 

aquifer were smaller than those from the Castle Hayne aquifer core images. 

The pore areas from all Castle Hayne aquifer thin-section images (Fig. 7e) range from 

1.40 x 10
-5

 cm² to 0.805 cm², with a mean of 2.22 x 10
-3

 cm², whereas the pore areas from the 

Biscayne aquifer thin-section images (Fig. 7f) range from 4.00 x 10
-5

 cm² to 0.397 cm², with a 

mean of 2.43 x 10
-3

 cm². Relatively small pore areas of less than 0.001 cm² occurred most 

frequently in both images. Mean pore areas are similar in both sets of thin-section images. 
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Figure 7. Histogram of areas of pores derived from  (a) televiewer image of the Castle Hayne; (b) 

televiewer image of the Biscayne; (c) core images of the Castle Hayne; (d) core images of the 

Biscayne; (e) thin-section images of the Castle Hayne; (f) thin-section images of the Biscayne. 

(All pore area histograms can be found in Appendix K) 
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Pore perimeters extracted from optical televiewer images also follow an exponential 

distribution, with small perimeters occurring at the highest frequency and large perimeters 

occurring less frequently. The pore perimeters from the Castle Hayne aquifer televiewer image 

(Fig. 8a) range from 18.20 cm to 2554.18 cm with a mean of 99.98 cm. In the Biscayne aquifer 

televiewer image, perimeters of pores range from 8.00cm to 2789.36 cm, with a mean of 55.88 

cm (Fig. 8b). In the Castle Hayne televiewer image, mean pore perimeter was nearly twice that 

of the mean pore perimeter of the Biscayne televiewer image. 

The distribution of pore perimeter from all core images of the Castle Hayne aquifer (Fig 

8c) ranges from 0.019 cm to 82.01 cm with a mean of 0.843cm. Distribution of all pore 

perimeters from Biscayne aquifer cores images (Fig 8d) range from 0.10 cm to 49.56 cm, with a 

mean of 0.44 cm. Pore perimeters from both aquifer cores follow a exponential distribution. 

The Castle Hayne core images had a higher number of pores with moderate perimeters (2 cm-4 

cm) compared to Biscayne core images resulting in a mean pore perimeter of the Castle Hayne 

nearly twice that of mean pore perimeter of Biscayne core images.  

The distribution of pore perimeter from all Castle Hayne aquifer thin-section images (Fig. 

8e) ranges from 0.016 cm to 13.38 cm with a mean of 0.139 cm. In all the Biscayne aquifer thin-

section images pore perimeter ranges from 0.008 cm to 17.64 cm, with a mean of 0.156 cm (Fig. 

8f). The exponential distribution observed in pore areas holds true in corresponding pore 

perimeters in images from all three scales of observation.  
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Figure 8. Histogram of perimeters of pores derived from (a) televiewer image of the Castle 

Hayne; (b) televiewer image of the Biscayne; (c) core images of the Castle Hayne; (d) core 

images of the Biscayne; (e) thin-section images of the Castle Hayne; (f) thin-section images of 

the Biscayne. (All pore area histograms can be found in Appendix K) 
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Porosity affects the physical properties of rocks (e.g. strength, density and permeability); 

however, this is greatly influenced by the geometry of pores within the media (Anselmetti and 

Eberli, 1993; Lucia, 1995). Elongated or interconnected pores have different effects on physical 

properties than simple round pores (Wikens et al., 1991). Pore area and perimeter measurements 

were used to compute, a shape measure that describes the complex nature of pore shapes in 

carbonate rocks): 

 

Where γ is the shape index, P is the perimeter and A is the area of the pore (Anselmetti et al., 

1998). The shape index has a range from one to infinity; a shape index of one would represent a 

circle and higher values indicate an increase in complexity of the shape. Shape index is 

associated with the connectivity of the pore because complex, branching pore geometries are 

more likely to form connected pore networks (Anselmetti et al., 1998).  

The shape index from the televiewer image of the Castle Hayne (Fig. 9a) ranges from 

2.39 to 29.2 (mean = 5.39). In the televiewer image of the Biscayne, the shape index ranges from 

1.04 to 20.5 (mean = 2.70) (Fig. 9b). In both optical televiewer images, pores displayed an 

exponential distribution illustrating that the majority of macropores are simple in shape (shape 

index of 2-4). In the televiewer image of the Castle Hayne aquifer, the majority of pores have 

shape indices between 2 and 6, while the majority of pores in the Biscayne televiewer image 

have shape indices between 1 and 4. Mean shape index of pores derived for the televiewer image 

of the Castle Hayne aquifer is nearly twice as large as that derived from the Biscayne aquifer. 

This shows that macropores in the Castle Hayne aquifer are more complex than pores in the 

Biscayne aquifer.  
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The mean shape index of the pores derived from core images of the Castle Hayne aquifer 

(1.49) is slightly higher than that derived from core images of the Biscayne aquifer (1.46) (Figs. 

9c & d). The histograms for the shape indices derived from the Biscayne and Castle Hayne 

aquifers show that there are more macropores with simple shapes captured in the Biscayne 

aquifer than the Castle Hayne aquifer. In the core images of both aquifers, simple pores occur at 

a high frequency whereas complex pores occur at low frequency. This shows that moldic pores 

are slightly more complex than vuggy pores, however, there are more vuggy pores captured at 

the same scale of observation. 

The shape indices from thin-section images of the Castle Hayne and Biscayne aquifers 

averaged 1.31 (Figs. 9e & f). Similar to what was observed in the core and televiewer images, 

pores with relatively simple shapes occur at the highest frequency whereas complex pores occur 

at the lowest frequency. Histograms of shape indices for both sets of thin-sections are similar in 

shape suggesting that at this scale of observation, macropore structures of the Castle Hayne and 

Biscayne aquifers are not that different. 

 

2.3.3 Pore geometry variations  

Scatter plots of pore area versus perimeter cross plots derived from the optical televiewer 

images of the Castle Hayne and Biscayne aquifers (Fig. 10a), there is a positive relationship 

between pore area and pore perimeters: big pores are associated with large pore perimeters. The 

line of best fit for the Castle Hayne televiewer has a steeper slope than the Biscayne televiewer, 

which illustrates pore areas in the Castle Hayne aquifer have larger pore perimeters than similar 

Biscayne aquifer pore areas. 
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Figure 9. Histogram of pore shape index derived from (a) televiewer image of the Castle Hayne; 

(b) televiewer image of the Biscayne; (c) core images of the Castle Hayne; (d) core images of the 

Biscayne; (e) thin-section images of the Castle Hayne; (f) thin-section images of the Biscayne. 
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Figure 10. Pore area vs. perimeter (a) from data derived from televiewer images; Pore area vs. 

shape index (b) from data derived from televiewer images; Pore area vs. perimeter (c) from data 

derived from core images; Pore area vs. shape index (d) from data derived from core images; 

Pore area vs. perimeter (e) from data derived from thin-section images; Pore area vs. shape index 

(f) from data derived from thin-section images. 
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Scatter plots of pore area versus shape index derived from televiewer images (Fig. 10b) 

show there is a positive relationship between pore area and shape index in both the Castle Hayne 

and Biscayne aquifer plots, although the Castle Hayne televiewer line of best fit has a steeper 

slope than the Biscayne televiewer. The line of best fit with a steeper slope suggests that as pore 

area increases in Castle Hayne televiewer, the complexity of the shape will increase more rapidly 

compared to Biscayne televiewer pore areas.  

Scatter plots of pore area versus perimeter derived from core images (Fig. 10c) show a 

positive relationship between pore area and pore perimeter, with the Castle Hayne and Biscayne 

aquifers having very similar slopes. In both the Castle Hayne and Biscayne core images, as pore 

area increases, pore perimeters increase at comparable rate. The slope of the best-fit line for the 

cores belonging to the Castle Hayne aquifer is slightly higher than the Biscayne cores. However, 

on the area versus shape index scatter plots (Fig. 10d), the best-fit lines diverge and the Castle 

Hayne has a much steeper slope. Figure 10d shows positive relationship between pore area and 

shape index in both the Castle Hayne and Biscayne aquifers core images. Despite the similarity 

of pore areas and perimeters (Figure 10c), scatter plots of pore area versus shape index of cores 

illustrate that pores in the Castle Hayne are more complex than those derived from the Biscayne.  

Scatter plots of pore area versus perimeter derived from thin-section images (Fig. 10e) 

again demonstrate a positive relationship between areas pore perimeters. In both sets of thin-

sections, as pore area increases pore perimeter increases at comparable rates. The best-fit line of 

the Castle Hayne has a steeper slope than the best-fit line of the Biscayne, but in area versus 

shape indexes scatter plots (Fig. 10f) the slopes of best-fit lines are fairly similar. Scatter plots 

derived from thin-sections shows a positive relationship between pore area and shape index. 
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2.3.4 2D porosity analysis  

Using the methods summarized in Section 2.2, the overall mean 2D porosity was 

calculated for the optical televiewer, core, and thin-section images. Computation of the porosity 

takes into account all pore space including truncated pores that intersect the edges of the images. 

The mean porosity from the televiewer image of the Castle Hayne was lower than the mean 

porosity from the televiewer image of the Biscayne (Table 1). The porosity calculated from all 

Castle Hayne core images, however, was higher than the porosity from Biscayne core images. 

Mean porosity from the thin-sections of the Castle Hayne was higher than mean porosity from 

the thin-sections of the Biscayne.  

Highest mean porosity generated from the Castle Hayne at a single scale of observation 

was the mean thin-section porosity (40%). Porosity generated from the Castle Hayne had an 8% 

deviation across the three scales of observation. In the Biscayne, the televiewer image generated 

the highest porosity (39%) from a single scale of observation and the variation in porosity was 

16% across the three scales of observation. The lowest mean porosity (23%) was calculated from 

cores of the Biscayne aquifer, this low porosity is possibly a result of the poor core recovery of 

highly porous sections. 

 

Table 1. Mean 2D porosities acquired from optical 
televiewer, core and thin section images of the Castle 
Hayne and Biscayne Aquifers (range in parentheses) 

Scale of Observation Castle Hayne 
 

Biscayne 
 Optical Televiewer 32% 

 
39% 

 

     Core Images 36% (25-51%) 
 

23% (6-65%) 
 

     Thin-section Images 40% (20-64%) 
 

38% (5-68%) 
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2.4 Discussion 

Karst aquifers are highly heterogeneous systems; this holds true in the Castle Hayne and 

Biscayne units evaluated in this study, and becomes more evident during quantitative evaluation 

of porosity at multiple scales of observation. The following section discusses the distribution of 

macropore geometries and effects of scale on pore geometry attributes.  

 

2.4.1 Influence of scale of observation on pore characteristics 

 Based on geospatial analysis, porosity structures were broken into two main categories: 

‘macropore’ and ‘conduit.’ Any dissolution feature larger than the minimum pore area (4.00 cm²) 

and not continuous from one end of the televiewer image to the other was designated 

‘macropore.’ Conduits are continuous features spanning the entire width of the televiewer image. 

From the 5 m, Castle Hayne televiewer, vector analysis eliminated only one potential conduit 

whereas nine potential conduits were revealed by analysis of televiewer images from the 

Biscayne aquifer, with aperture measurements from a minimum of 1 cm to a maximum of 159 

cm. Because of their potential for increased interconnectivity, conduits contribute large 

volumetric flow rates and the highly heterogeneous distribution of conductivity in karst aquifers 

(Atkinson, 1977; White, 2002).  In order to compare pore geometries at three scales, conduits 

were removed from GIS layers because they did not contain true pore geometries. Eliminating 

conduits meant the largest scale features that account for a lot of the permeability and water flow 

were not included in pore shape analysis. Note, that the conduits were included in the calculation 

of overall porosity at the three scales of observation. Area and perimeter were the two geometric 

attributes derived from televiewer, core and thin-section images for use in this study.      

 In televiewer, core and thin-section images, macropores with the smallest areas have the 
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highest occurrence, intermediate pores occur at a moderately low frequency, while relatively 

large pores occur at the lowest frequency This observed  exponential distribution holds true for 

corresponding pore perimeters in images from all three scales of observation.  

After eliminating conduits, areas of macropores derived from televiewer images of the 

Castle Hayne and Biscayne aquifer are similar. However, pore perimeters derived from images 

of the Castle Hayne aquifer are nearly twice that of the Biscayne aquifer. In the Castle Hayne 

aquifer, intermediate-to-large macropores were interpreted as moldic pores that have coalesced 

to form larger pores. In contrast, pores with similar areas derived from televiewer images of the 

Biscayne aquifer could be described as non-fabric selective touching vugs owing to the simple 

structure of a vuggy pore. In the Castle Hayne aquifer, molds commonly form by dissolution 

through the selective leaching of aragonite shells (Thayer and Textoris, 1977). As dissolution 

continues, pores become enlarged and begin to interconnect. As moldic pores coalesce, the 

perimeters become higher than enlarging and interconnecting vugs with similar areas (Fig. 10a). 

It is expected that the shape index will increase at a similar rate to that of the perimeters and as 

expected (Fig. 10b). For pores with identical areas, macropores derived from the Castle Hayne 

aquifer are more complex than macropores derived from the Biscayne aquifer.  

Comparable to the televiewer images, molds and vugs show similar pore areas in core 

images but the resulting mean pore perimeter for moldic pores calculated from core images is 

nearly twice that of the vuggy pores. As pore areas increase, the complexity of the pore shape 

index increases more dramatically in the Castle Hayne than for the Biscayne core images, even 

though pore areas are similar. At the intermediate scale of observation there were pores that 

intersected both sides of the image; these ‘conduits’ were not included in the geometry analysis 

but were included in overall porosity measurements. More of the coalesced pores were present in 
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the larger, more intact, Castle Hayne cores, probable due to poor core recovery from the 

Biscayne aquifer where drilling-induced disaggregation of vuggy intervals is common.  

At the smallest scale of observation (thin-section), separate molds and vugs in both sets 

of thin-section images have very similar pore areas and perimeters. The result is nearly identical 

mean shape measures, which in both cases, indicates low complexity of pore shapes. Thin-

sections are limited by their size and because of this; larger dissolution features were not 

observed at the smallest scale of observation. The complexity of shapes is also identical at 

smaller scales of observation for pores derived from both the Castle Hayne and Biscayne 

aquifers. However, as the scale of observation increases, the difference between the pore 

geometries of macropores from images of both aquifers increases. At each scale of observation, 

moldic pores are more complex than vuggy pores with identical areas (Fig. 10). As moldic pores 

become larger and coalesce through dissolution, they will become more complex in shape than 

coalescing vuggy pores of a similar area. 

After quantifying pore geometries at three scales of observation, it becomes evident that 

the scale at which macropores are extracted is a critical factor in quantitative analysis. Figure 11 

illustrates the distribution of pore attributes across the three-scales of observation between the 

two aquifers. In the box plots (Fig. 11), mean area and perimeters for both aquifers are in the 

upper percentiles of the data, believed to be a direct result of the large outliers distorting the 

results. The outliers are low in numbers but large enough in size to skew the mean values away 

from the median areas and perimeters. As the scale of observation increases, pore size increase 

considerably over several orders of magnitude. Therefore, when extracting pore attributes, it is 

most important to consider scale of observation because that will affect the size and distribution 

of pore structure.  
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Figure 11. (a) Box plots of all pore areas found within Castle Hayne and Biscayne samples; (b) 

Box plots of all pore perimeters found within Castle Hayne and Biscayne samples; (c) Box plots 

of all pore shape indexes found within Castle Hayne and Biscayne samples. Red line equal to the 

mean value, upper/lower adjacents are 5/95% percentile, and upper/lower hinges are 25/75%. 

See Appendix D for statistics associated with this figure. 
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2.4.2 Implementing geospatial analysis for 2D porosity measurements  

The mean porosity generated from the televiewer images falls within the ranges given by 

Cunningham et al. (2004a, 2004b) and Bolster et al. (2001) for the Biscayne and the ranges given 

by Winner and Coble (1989) and Thayer and Textoris (1977) for the Castle Hayne. In televiewer 

images, ‘conduits’ were included for the porosity calculation. With more conduits present in the 

Biscayne aquifer televiewer image the resulting porosity was higher than the Castle Hayne 

aquifer televiewer image, which has a smaller quantity of ‘conduits’. The mean porosity obtained 

from televiewer images is a good estimate of aquifer scale porosity because the value is 

calculated from a continuous image that reflects the heterogeneous nature of karst aquifers more 

than just cores. This is most evident in Biscayne aquifer core images where porosity is calculated 

at approximately 23 percent. This is a significantly lower porosity than that generated from the 

televiewer image and is a direct effect of disaggregation of the vuggy intervals in which core 

recovery is low. As a result, cores analyzed were those found to be most intact, and therefore, 

least porous. Porosity from cores of the Castle Hayne aquifer was approximately 36%, which 

falls within Winner and Coble (1989) and Thayer and Textoris (1977) porosity ranges for the 

Castle Hayne aquifer.  

GIS provides an alternative to traditional point-counts for identifying and calculating 

pore space, which can be imprecise for a variety of reasons (Demirmen, 1971). The overall, 

mean, porosity calculated from Castle Hayne thin-section images was approximately 40%, 

higher than the total porosity measured by Baum (1981) and Quinn (1988), who provided  

porosity estimates of 32 and 36%, respectively. The mean porosity generated from Biscayne 

thin-section images falls in the range of porosities for the Biscayne aquifer. All values are good 
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estimates of porosity at a particular scale but for overall aquifer porosity, the best estimate is 

porosity generated from largest-scale televiewer images.  

 

2.4.3 Multi-scale geospatial analysis 

As a result of the heterogeneous character of karst aquifers, hydraulic properties, 

including porosity, vary greatly as a function of scale (Whitaker and Smart, 2000; White 2006). 

Therefore, implementing a multi-scale, geospatial, porosity- and pore-structure analysis provides 

benefits which complement other techniques applied to karst formations, such as (1) Models 

which completely rely on laboratory-derived porosity and, (2) traditional, wire-line porosity logs 

(i.e. sonic, density, neutron, and magnetic resonance). Models for karst aquifers that rely solely 

on laboratory-derived measurements for porosity may provide misleading results because the 

quality of core recovered is usually extremely low when drilling in karst formations. Drilling can 

cause disaggregation of the highly vuggy zones, only allowing the most intact core to be 

recovered. The results will be a possible underestimation of the total porosity because larger 

solution features and highly vuggy zones are completely disregarded. Traditional wire-line logs 

offer continuous porosity readings, but fail to identify differences in macropore geometries with 

any level of precision when evaluating multiple formations, compared to that of vector image 

analysis (Manda and Gross, 2006b). The analysis presented in this paper is derived from a single 

well at each study site. Because of the limited data set, any inference as to the hydraulic 

significance of macropores at the aquifer scale is impracticable. Therefore, future work must 

involve applying the techniques outlined to multiple wells in each aquifer to account for the 

highly heterogeneous character laterally across karst formations.  
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2.5 Conclusion 

Cunningham and Sukop (2011) concluded that the major challenge confronting the 

evaluation of groundwater flow in karst aquifers is characterizing and simulating the complex 

geometry of porosity networks. This research addresses their concerns of representing karst 

aquifer heterogeneity, by implementing a multi-scale approach to the quantitative investigation 

of pore structure and porosity. 

 This study presents an example of how quantitative measures of pore attributes and 

structure may be used to compare karst media with different porosity characteristics at multiple 

scales of observation. Using digital imaging and GIS spatial-analysis techniques to quantitatively 

characterize macropore structure and calculate porosity from the Castle Hayne and Biscayne 

aquifers, allowed for an unprecedented quantitative analysis of pore structure in karst aquifers. 

GIS provided the integrated environment for geospatial analysis without the need for 

programming, thus making it the ideal tool for identifying and extracting pore attributes from 

classified digital images of karst media. Thin-sections were limited by size and were often 

smaller than a single large macropore observed on a core image. Also, core analysis was largely 

dependent on quality of core recovery which was difficult in highly vuggy zones found in the 

Biscayne aquifer. Optical televiewers were ideal because they provided a continuous image of 

the borehole wall; therefore overcoming the difficulties which exist in analyzing large scale 

macropores utilizing thin-sections and cores. However, due to image resolution, smaller-scale 

macropores still significant to porosity were overlooked when only using optical televiewers for 

analysis. Thus, to truly quantitatively analyze, understand, and compare macropore structure 

within karst aquifers, multiple scales of observation must be included in analysis to overcome the 

unique challenges confronting the evaluation of groundwater flow in karst aquifers. 



 

CHAPTER III: SUMMARY 

3.1 Additional insight and application to groundwater management 

This research presents the next step in the development of a more accurate quantitative 

understanding of porosity in karst media by comparing karst aquifers with different porosity 

characteristics using quantitative measures of pore attributes and structure. As more quantitative 

data are gathered about macropore structure, an enhanced understanding of the flow dynamics in 

karst aquifers can be attained. In order to effectively access current and future water demands 

and evaluate potential contamination using groundwater modeling, more refined modeling 

parameters, including porosity and pore geometry must be acquired.  

Source-water protection and predictive strategies become exceedingly difficult when 

parameters used to model flow cannot fully appreciate the complex nature of karst media, 

especially when most data available comes from whole core or core plug samples representing a 

single scale of observation (Renken et al., 2008). Data from well tests and tracer tests are only 

adequate when attempting to completely characterize the complex internal flow structure in 

karst. In order to determine suitable parameters for modeling, Worthington (1999), suggests a 

comprehensive approach which integrates multiple sources of information, along with 

measurements of the porosity and permeability of unfractured rock.  

Porosity is the percent of the volume of the rock that is open pore space, and primarily 

determines the amount of water that the rock can contain. On the other hand, permeability is a 

measure of the degree to which pore spaces are interconnected, and the size of the 

interconnections (Heath, 1970). Both porosity and permeability are dependent on the structure of 

the macropores present within the material. Low porosity usually results in low permeability, but 

high porosity does not necessarily imply high permeability. The multiple flow regimes (e.g. 
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conduit and interparticle) observed in both aquifers affect the porosity, but most importantly 

illustrate the exceptionally heterogeneous permeability found in karst terrains (White, 2002).  

The research community is conscious of the fact that traditional Darcian-based, 

numerical, groundwater flow-models struggle to account for the non-Darcian, multi-porosity 

components of flow in karst aquifers (Taylor and Greene, 2001, Hill et al., 2010). Generally two 

types of groundwater flow are present in karst terranes, diffuse (slow, laminar flow) and conduit 

(rapid, turbulent flow). The slower diffuse flow occurs predominantly in primary openings, 

where conduit flow occurs generally in secondary openings (Mull et al., 1988). Worthington 

(1999) examined four karst aquifers across North America, and found that in all four cases 

approximately 90% of the aquifer storage is in the matrix and approximately 90% of the flow is 

in channels. Although flow through karst aquifers may be dominated by conduits where present, 

in the absence of conduits other fabric- and non-fabric selective porosity may dominate or in 

some cases porosity could occur in both forms where both are well developed (Martin and Dean, 

1991). 

 Any information that assists in identifying the location and constraints of features that 

control fluid flow is highly sought-after. Cunningham et al. (2004b) and Manda and Gross 

(2006a, b) have pioneered the application of optical televiewers for identifying vuggy porosity 

and evaluating the spatial distribution and internal structure of karst conduits in southeastern 

Florida. Currently, researchers are applying innovative technologies to characterize the spatial 

distribution of porosity and permeability within the Biscayne aquifer to get beyond previous 

limitations in predictive simulation of groundwater flow (Cunningham and Sukop, 2011). 

Permeability in karst aquifers is exceedingly difficult to measure with traditional methodologies 

because a permeameter cannot account for multiple flow regimes. They are also unable to 
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measure large permeability values; therefore, the affects of conduits are poorly accounted for 

(Cunningham and Sukop, 2011). Traditionally applied to small-scale, computational modeling of 

fluid-flow, Lattice Boltzmann Methods (LBMs) have been integrated to overcome the challenges 

of modeling karst hydraulics in larger-scale characterization (Sukop et al., 2008). LBMs have the 

ability to simulate inertial flow, incorporate conduit geometries, and solve multiple flow regimes 

making it a particularly attractive tool for numerical modeling of flow in karst aquifers (Sukop et 

al., 2008). However, only preliminary research has been completed applying LBMs to borehole 

imagery from the Biscayne aquifer to simulate aquifer-scale groundwater flow (Sukop et al., 

2008; Cunningham and Sukop, 2011).  

The ability to use quantitative pore attributes and porosity measurements to characterize 

the spatial distribution of permeability and model groundwater flow across multiple scales of 

observation is the critical point in geospatial analysis of karst media in both the Castle Hayne and 

Biscayne aquifers.  

 

3.2 Future work 

This project has laid the groundwork for future researchers who wish to advance the 

quantitative understanding of hydraulic properties of the Castle Hayne aquifer. By converting 

optical televiewer, slabbed core, and thin-section images to a geospatial format, researchers can 

use these data to overcome the challenges facing of evaluating karst aquifers. The next step will 

be examining the quantitative relationship between porosity and permeability at multiple scales 

of observation. Advancing the understanding of hydraulic properties and the spatial distribution 

of porosity and permeability will undoubtedly improve modeling of groundwater flow by way of 
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more accurate quantitative input data with the ultimate goal of enhancing management of 

groundwater resources and evaluation of potential for contaminant transport.  

 

3.3 Closing summary and conclusions   

This study utilized digital imaging and spatial analysis techniques to quantitatively 

characterize and compare the geometry, distribution, and scaling properties of macropores from 

the Castle Hayne and the Biscayne aquifer at three scales of observation. This quantitative 

perspective of pore structures is achieved through a combination of image analysis techniques 

and GIS. The major advantage of using the Manda and Gross (2006b) image-processing 

procedures over other methods was the ability to integrate GIS for data extraction. This provided 

the environment for geostatistical and geospatial analysis without the need for programming 

which makes it the ideal tool for identifying and extracting pore attributes from classified digital 

images.  

The image-processing techniques allowed study of the Castle Hayne aquifer using 

quantitative methods not yet utilized by previous researchers, and presented the first results of 

porosity extracted using an optical televiewer image. Also, no previous research has extracted 

moldic pore geometries from the Castle Hayne aquifer using classified images at multiple scales 

of observation. Performing a detailed quantitative assessment of macropore geometry and 

porosity on a vital aquifer here in eastern North Carolina allowed direct comparisons with 

another prolific karst aquifer – The Biscayne of southeastern Florida which has different 

structures and porosity.  
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Major observations of the project are as follows: 

 Porosity derived from optical televiewer and thin-section images were similar between 

the two karst aquifers. The porosity from the optical televiewer images gave the best 

representation of the heterogeneous character of the aquifers. 

 Porosity derived from core images of the Biscayne aquifer was significantly lower than 

porosity derived from core images of the Castle Hayne aquifer. 

 Macropore areas and perimeters derived at all three scales of observation displayed 

exponential distributions. 

 Moldic pores of the Castle Hayne aquifer had similar areas to vuggy pores of the 

Biscayne aquifer. However, the perimeters of the moldic pores were larger than the 

perimeters of vuggy pores. 

 As the scale of observation increases, pore size increases considerably over several orders 

of magnitude. 

 Conduits were present in optical televiewer images of both aquifers. However, more 

conduits were present in the images of the Biscayne aquifer compared to the images of 

the Castle Hayne aquifer. 

 The largest pores in the Castle Hayne aquifer were associated with interconnecting 

moldic pores that were highly complex in shape. The largest pores in the Biscayne 

aquifer were associated with conduits and interconnecting vugs that were not as complex 

as the moldic pores from the Castle Hayne aquifer. 
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Location and Setting 

Spanning approximately 12,500 square miles the CHAS is the most productive aquifer in 

the eastern North Carolina Coastal Plain, providing withdrawals upwards of 140 million gallons 

of water per day (Lyke and Treece, 1988). In Craven County the CHAS is used for various 

industrial and agricultural purposes, while the majority of potable water for municipal and 

domestic use is supplied by the Cretaceous aquifer system. Investigation within Craven County 

of the CHAS focused on an area north of the City of New Bern, including the inactive Martin 

Marietta Glenburnie quarry (Fig. 12). The Martin Marietta Glenburnie property is currently 

owned by the City of New Bern. The now abandoned excavation pits are currently filled with 

water. A majority of the surrounding area is natural wetlands with some residential development 

to the west and south of the property. 

 

 

Figure 12. Map of eastern North Carolina showing the aerial extent of the Castle Hayne aquifer 

and study site in Craven County. (Westernmost extent of Castle Hayne aquifer North Carolina 

Modified from Woods et al. 2000). 



 

50 

 

Previous Studies  

Investigation into the hydrogeologic framework beneath Craven County, and collection 

of data on the CHAS has been ongoing for well over 60 years. The groundwater system 

surrounding the Wilmington-New Bern area was initially investigated in a study by Legrand 

(1960) in which he described the underlying geology and identified the Castle Hayne aquifer as a 

major groundwater resource. Heath et al. (1970) published early work investigating the basic 

geology, hydraulic properties, and water chemistry of the CHAS found in the Coastal Plain of 

North Carolina. At the same time (Bain 1970) had conducted a comprehensive investigation of 

the hydrogeology of New Hanover County (South of Craven County)  in which he described in 

detail the lithology, thickness, lateral occurrence, hydraulic characteristics, water levels, and 

water quality of the Castle Hayne limestone aquifer and surrounding units.  

These researchers focused primarily on the hydrologic character of the aquifer, omitting 

detailed petrologic information, until Thayer and Textoris (1972 and 1977) published articles 

providing insight into petrology, diagenesis, and depositional environments of the limestone 

units. Based on outcrops at the former Superior Stone Company Quarry (Martin Marietta 

Glenburnie) in New Bern, their research revealed that the Castle Hayne Limestone is Middle to 

Upper Eocene in age. Thayer and Textoris (1972) subdivided the Castle Hayne into three major 

units and estimated porosity and permeability values for each.  

Ward and Blackwelder (1980) further evaluated the Castle Hayne Formation exposed in 

outcrops in the Martin Marietta Glenburnie quarry (Fig. 14). Bain and Palmer (1987) later 

investigated the hydraulic properties of the CHAS, determining thicknesses and various aquifer 

parameters such as hydraulic conductivity, transmissivity, and storativity values.  
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Study Area Geology 

The North Carolina Coastal Plain (40,000 km² in area) (Fig 13) is underlain by a gently 

eastward dipping, and eastward thickening sedimentary wedge composed of sand, clay, silt, 

limestone, and shell material. The marine and transitional sedimentary deposits that overlie the 

Pre-Cambrian crystalline basement range in age from Late Cretaceous to Pliocene (Legrand, 

1960; Winner and Coble, 1996). The thickness of the sedimentary wedge ranges from zero along 

the Fall Line to more than 10,000 feet at Cape Hatteras (Richards, 1950).  

From bottom to top, the geologic formation present in the subsurface of the New Bern 

area of Craven County are the Cretaceous Cape Fear, Black Creek, and Peedee, the Paleocene 

Beaufort, the Eocene Castle Hayne, the Oligocene River Bend, and the Pliocene Yorktown 

formations (Table 2). The most pertinent formations to this project are the River Bend and the 

Castle Hayne formations. 

  Thayer and Textoris (1972 and 1977), along with Ward and Blackwelder (1978 and 

1980), provided comprehensive description of the geologic units exposed inoutcrops from the 

former Superior Stone Company quarry, now inactive Martin Marietta Glenburnie quarry, 

northwest of the City of New Bern (Fig. 4). The studies indicated that the thick Castle Hayne 

limestone sequence was deposited in a low energy, shallow, tropical, marine basin by a middle 

Eocene transgressive sea. Ward and Blackwelder (1978) redefined the limestone portion of the 

Castle Hayne formation as a size-sorted, cross-bedded, bryozoan hash and divided the unit into 

three members based on facies relationships, and petrologic and faunal evidence. The three new 

members to the Castle Hayne Formation defined by Ward and Blackwelder (1978) are: New 

Hanover Member, Comfort Member, and Spring Garden Member. 
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Geologic interpretations of the study area, according to Ward and Blackwelder (1980), and 

including the redefined Castle Hayne Formation are summarized as follows: 

 The New Hanover Member consists of cobble to pebble sized, sandy, calcareous clasts, 

generally sub-rounded to well-rounded, and contains molluscan molds of nautiloid 

cephalpods, gastropods, along with various other bivalve species. 

 A sharp contact allows the New Hanover Member to be easily delineated from the 

underlying Peedee Formation, a gray mold and cast siliceous limestone.  

 The abrupt, uneven contact between the New Hanover Member and overlying Comfort 

Member, a bryozoan-echinoid bicalcarenite is easily distinguishable. 

 The Comfort Member unconformably overlies the New Hanover Member throughout the 

region. 

 The Spring Garden Member in Craven County is a tan to gray sandy, molluscan-mold 

biocalcirudite, it is most prevalent in the study area surrounding the Martin Marietta 

quarry in New Bern, where up to 6 meters of the limestone is exposed. 

 The upper surface of the Spring Garden Member is a thin phosphate layer containing 

Oligocene aged oysters and barnacles which serves as the contact between the base of the 

River Bend Formation. 

 The River Bend Formation consists of molluscan-mold biocalcirudite ranging in age from 

middle Oligocene to late Oligocene interpreted to be an inner shelf deposit that formed 

below wave base. 

 The River Bend Formation overlies the Eocene Castle Hayne Formation at the Martin 

Marietta quarry in New Bern. 
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Hydrologic properties  

The term CHAS collectively combines all aquifers present in the Castle Hayne, River 

Bend, and Beaufort Formations, creating the single most productive aquifer in eastern North 

Carolina (Winner and Coble, 1989). However in the study area below the Martin Marietta 

Quarry in New Bern the Castle Hayne aquifer consists of the Castle Hayne and River Bend 

Formation and generally described as a sandy, molluscan-mold limestone. The Castle Hayne 

aquifer can be further subdivided into upper and lower portions. The upper portion of the aquifer 

is dominated by moldic limestone and the lower portion aquifer is dominated by sand.  This 

upper limestone portion of the aquifer commonly has much higher porosity and permeability 

then the lower portion because of dissolution and further enlargement of pore space (Winner and 

Coble, 1989; Thayer and Textoris, 1977). Geophysical work below Craven County generally 

shows decreasing permeability towards the base of the aquifer due to introduction of more 

continuous clay layers. (Winner and Coble, 1989). The upper portion moldic limestone higher 

zones of porosity and permeability are attributed to diagenetic processes. 

Thayer and Textoris (1972) listed four major diagenetic processes found in the upper 

moldic limestone: 1) aragonites converting to low-Mg calcite, 2) solution of aragonitic 

pelecypod and gastropod shells to form molds, 3) solution and enlargement, and 4) infilling with 

low-Mg calcite spar. Thayer and Textoris (1977) also suggest that the primary packing of shells 

and the amount of infilling of calcite controls the porosity and permeability.  

Thayer and Textoris (1977) using rock slab samples collected from the near 30ft of 

exposed limestone outcrops at the New Bern quarry subdivided the Castle Hayne Limestone 

(CHL) into three major units major units (from base upward): The first unit comprises sand, 

pelecypod-mold biomicudite with pseudospar matrix. The second unit comprises sandy, 



 

54 

 

pelecypod-mold biosparite and biosparrudie. The third unit consists of sandy, pelecypod-mold 

biomicrudite with pseudospar matrix. The porosities and permeabilities for each unit of the CHL 

from base upward are : 1) porosity in the first unit ranges from16-30 percent (mean porosity = 25 

percent), whereas permeability ranges from 1.97 x 10
-10

 m
2
 to 1.18 x 10

-6 
m

2
) porosity in the 

second unit ranges from 9-25 percent (mean porosity = 17 percent), whereas permeability ranges 

from 9.73 x 10
-9

 m
2
 to 1.70 x 10

-6
 m

2
 ;3) porosity in the third unit ranges from 30-42 percent 

(mean porosity = 34 percent) and permeability ranges from 1.96 x 10
-7

 m
2
 to 5.14 x 10

-6
 m

2
. 

Narkunas (1980) completed a groundwater evaluation in the Central Coastal Plain and 

calculated transmissivity, storage coefficient, and specific capacity for the CHAS. Transmissivity 

was calculated from data collected during eleven aquifer test and ranged from 6,100 to 12,100 

ft
2
/day and averaged 8,700 ft

2
/day. Storage coefficient ranged from 2.6 x 10

-3
 to 7.4 x 10

-5
 

averaging 1.3 x 10
-3

 estimated based on data collected from two aquifer test. Using 24 hour 

pump test data from 20 six-inch wells specific capacity values calculated ranged from 0.61 

gpm/ft to 22.73 gpm/ft and averaged 9.54 gpm/ft. Lautier (1998) performed similar aquifer tests 

indicating transmissivity ranges of 212 to 9930 ft
2
/day and hydraulic conductivity ranges of .42 

to 31 ft/day. Lautier (2001) also found that higher transmissivity and hydraulic conductivity 

values came where well screens were exclusively in the upper limestone portion of the aquifer 

and lower values came from well screens entirely in the lower non-limestone portion of the 

aquifer.  

Recharge for the Castle Hayne aquifer occurs form of  leakage through the overlaying 

confining beds, previous researchers have calculated recharge values as low as 200,000 

(gal/day/mi
2
) (Floyd, 1969) to as high as 382,000 (gal/day/mi

2
) (DeWiest et al., 1969). Narkunas 

1980 groundwater evaluation of the CHAS estimated recharge to average 240,000 (gal/day/mi
2
).  
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Figure 14. Topographic map of southeast corner of the former Martin Marietta Glenburnie 

Quarry showing general study area and well PW5 location. 



 

APPENDIX B: BISCAYNE AQUIFER BACKGROUND 
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Location and Setting 

The Biscayne aquifer spans approximately 6,437 square miles across Miami-Dade, 

Broward, Palm Beach, and Monroe Counties (Klein and Hull, 1978) and is the principal water 

supply for Miami, Boca Raton, Pompano Beach, Fort Lauderdale, Hollywood, Miami Beach, and 

Homestead. Major population centers are located in the coastal area of Miami-Dade and Broward 

counties, which are flanked by the Atlantic Ocean to the East and key agricultural and 

conservation areas associated with the Florida Everglades to the West (Fig. 15). The Biscayne 

aquifer underlies all major municipalities in the coastal region of southeast Florida and most of 

the Everglades up to the Broward-Palm Beach county line (Schroder et al. 1958). 

 

Figure 15. Map of southern Florida showing the aerial extent of the Biscayne aquifer and 

location of study site in northern Miami-Dade County, Florida 
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Previous Studies  

 In-depth studies of Dade and Broward counties began in the early 1900’s when Sanford 

(1909) first described and named surficial limestones while investigating the basic surface 

geology of southeast Florida. As the United States Army Corp of Engineers began to dig new 

drainage canals across the everglades to supply water in order to facilitate population growth, 

Sellard (1919) collected the first data on geologic formations present in the subsurface. Cooke 

and Mossom (1929), using cored material from test wells, continued describing the limestone 

formations which contained freely circulating water. Parker and Cooke (1944) then provided 

geologic descriptions and correlations with discussion of groundwater occurrence.  

The Biscayne aquifer was named and defined by Parker (1951) as the hydrologic unit of 

water-bearing rocks that carries unconfined ground water in southeastern Florida. As more 

comprehensive investigations continued on the Biscayne aquifer, Parker et al. (1955) re-defined 

the aquifer in further detail, naming and defining the following formations: (1) Tamiami 

Formation, (2) Caloosahatchee Marl, (3) Fort Thompson Formation,(4) Anastasia Formation, (5) 

Key Largo Limestone and, and (6) Pamlico Sand (Table 3). Parker et al. (1955) investigatedthe 

Biscayne aquifer and provided essential information on the occurrence, movement, and quality 

of water in the subsurface.  

Schroeder et al. (1958), with the United States Army Corps of Engineers, drilled shallow 

test holes across Dade County and Broward County to provide additional description and contour 

the thickness of the Biscayne aquifer across the region. These descriptions have been continually 

modified and improved by more comprehensive studies of the Biscayne aquifer by Klein et al. 

(1975) and; Klein and Hull (1978). Other comprehensive ground water reports by Fish (1988) 

examine water quality, factors that affect water quality, hydraulic characteristics of the surficial 
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aquifer. Later, Fish and Stewart (1991) investigative report provided greater insight into not only 

the framework of the surficial aquifer but principal hydraulic characteristics and the distribution 

of these characteristics throughout the sediments. Fish and Stewart (1991) analyzed drill cores 

and aquifer- test data, and provided accurate hydraulic conductivity, specific capacities, and 

transmissivity in local areas to reveal trends and patterns of the surficial-aquifer system. Recently 

Cunningham el al. (2004b) combined tools such as ground-penetrating radar, borehole 

geophysical logs, cycolotratigraphy, imaging of karst features, and whole-core analysis allowing 

for high resolution profiling of geologic contacts and hydrogeologic units. Thus providing the 

most accurate and up to date assessment of the aquifers hydrogeologic framework. 

 

Study Area Geology 

The Southeast Coastal Plain is an area of about 212,000 km
2
 predominantly in Florida, 

southern Georgia, Alabama, and South Carolina. Most of the area, including the southern 

peninsula of Florida is a nearly flat plain less than 10 meters above sea level (Heath, 1987). The 

peninsula of Florida is the exposed eastern portion of the Floridan Plateau which resembles a 

massive horst separating the Atlantic Ocean and the Gulf of Mexico (Parker et al. 1955). The 

igneous and metamorphic rock composing the core of the Floridan Plateau are overlain by 

unconsolidated deposits of Pleistocene age consisting of limestone, sand, gravel, clay, and shell 

beds that range in thickness from about 4,000 feet in central Florida to more than 15,000 feet in 

southern Florida (Parker et al. 1955). In southeastern Florida the subsurface is dominated by 

semi consolidated limestone and marl deposits associated with marine terraces that formed when 

the area was inundated by the sea at different times (Heath, 1984). 
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From oldest to youngest, the geologic formations found in the subsurface of southeastern 

Florida are the: Eocene age Lake City limestone, Avon Park limestone and Ocala limestone; 

Oligocene age Suwannee Limestone; Miocene age Tampa Limestone, Hawthorn formation, and 

Tamiami formation; Pliocene age Caloosahatchee marl, Fort Thompson formation, Key largo 

limestone, Anastasia formation, Miami Oolite, and Pamlico sand; Holocene age Lake Flirt marl 

(Parker et al. 1955) (Table 3). The full stratigraphic sequence given above is not present at any 

one place; the most relevant formations to this project will be the Miami limestone and Fort 

Thompson formation. 

The Miami Limestone (formerly Miami Oolite) is described by Schroeder et al. (1958) as 

the surface rock that blankets nearly all of Dade County, parts of eastern and southern Broward 

County, and the southern mainland of Monroe County. Occurring not only on the mainland, the 

Miami limestone can be found in the southern keys from Big Pine Key to the Marquesas Keys 

(Hoffmeister and Multer, 1968). The northern extent of the Miami Limestone can be found in 

Palm Beach County, where it grades laterally northward into the Anastasia Formation. A visible 

contact between the Miami limestone and the underlying Fort Thompson formation can be found 

along numerous cut walls of everglades canals (Parker et al. 1955). Hoffmeister and Multer 

(1968) concluded the Miami limestone consists of two distinct faces, an oolitic facies and a 

broyozon facies. The oolite facies is typically a white-to-yellowish, massive, cross-bedded, 

oolitic limestone containing varying amounts of sand, usually in solution holes (Schroeder et al. 

1958). Hoffmeister and Multer (1968) describe the bryozoan facies as, consisting of white to 

orange gray, poorly to well indurated, sandy, fossiliferous limestone, consisting of varying 

amounts of skeletal material including: corals, echinoids, mollusks, and alge.  

 



 

63 

 

Schroeder et al. (1958) identify the Fort Thompson Formation as the alternating fresh-

water and marine limestone and marl bed which unconformably overlies the Tamiami 

Formation, or where present the Caloosachatchee marl and underlies the Miami limestone 

unconformably. The Formation is generally separated into two parts, based on the hydrologic 

characteristic of the rock. The northern portion of the formation which underlies the upper 

Everglades area to the northwest of Broward County is generally much lower in permeability. 

The southern portion of the formation in the Dade-Broward County area is composed of light 

gray to cream, fossiliferous, marine, sandy limestone, calcareous sandstone, with thin beds of 

hard freshwater limestone (Parker et al., 1955). Schroeder et al., (1958) and Parker et al., (1955) 

both note the marine limestone beds in formation have been most affected by solution activity 

from percolating ground water. The result of solution is a very highly permeable rock mass 

riddled with secondary solution cavities, as much as several feet in diameter. The solution 

cavities can also be found filled or partially filled with younger fine to medium quartz sand. A 

vast majority of fossils in the formation are not found in their original form, but instead 

preserved has molds and casts with secondary deposits of calcite crystals within the concavities 

of the shells (Schroeder et al., 1958). 

 

Hydrologic properties  

The Biscayne aquifer is currently defined by (Fish, 1988) as that part of the surficial 

aquifer system comprised of Pleistocene aged sediments (from land surface downward) of the 

Pamlico Sand, Miami Oolite, Fort Thompson Formation, Anastasia Formation, Key Largo 

Limestone as well as upper most permeable portions of the Pliocene Tamiami Formation (Fig. 
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17).  According to Fish and Stewart (1991) these units collectively form an unconfined aquifer 

system which provides the majority of the potable water to southeastern Florida. 

Fish and Stewart (1991) estimated transmissivity values averaging 300,000 ft
2
/day, with 

values decreasing to less than 75,00 ft
2
/day west of Dade County and over 900,000 ft

2
/day to the 

southeast of Broward County . The extremely high transmissivity values are usually associated 

with thick section of the Fort Thompson formation within the aquifer. Hydraulic conductivities 

for the entire Biscayne aquifer range over seven orders of magnitude; from more than 10,000 

ft/day for highly permeable marine limestones in the Fort Thompson to about 0.001 ft/day or less 

for dense, green clay of the Key Largo Formation (Fish and Stewart, 1991). Calculated values of 

specific capacity for production wells in Dade County range from just over 100 (gal/min)/ft up to 

7,410 (gal/min)/ft (Fish and Stewart, 1991). 

Fish (1988) reported porosities of samples determined by laboratory tests to range from 

37 to 48%, while Manda and Gross (2006b) found core samples displayed a much wider range of 

porosities (10-48%). Similar to that of Cunningham et al., (2004a,b) with porosity measured 

from core samples ranging between 6% and 49% and analysis of digital borehole wall images 

produced a 5-45% range with occasional spike of 100% in larger solution cavities. 

The average daily pumpage from the Biscayne aquifer in 1950 was estimated to be 

roughly 130 million gallons (Schroder et al., 1958). By 1975, daily pumpage of the surficial 

aquifer had already reached over 500 million gallons for public water-supply and another 165 

million gallons daily for irrigation (Klein and Hull 1978). The unconfined aquifer is recharged 

primarily by precipitation and infiltration from canals that drain surface water directly from 

conservation areas developed in the Everglades (Heath, 1984).  
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Data Acquisition 

In early 2000, in an effort to better understand and characterize the stratigraphy and 

hydrogeology of the Biscayne aquifer, the United States Geological Survey (USGS) drilled two 

wells (FPL1 and FPL2) at a study site in northern Miami-Dade County. Onsite geologists 

collected caliper, gamma, full-waveform sonic (FWS), resistivity, acoustic and optical televiewer 

logs in each well. The USGS provided optical televiewer logs and cores collected from FPL1 to 

the 2004 Florida International University research project in which, Alex Manda and Michael 

Gross successfully converted optical televiewer images (Appendix E) and core images 

(Appendix F) into a classified binary format. The binary images were used as source images in a 

GIS for accurate data extraction and spatial analysis. Though not analyzed in the 2004 research 

project, thin sections were created from the core retrieved at well FPL1; which Alex Manda has 

generously provided for use in this project. In order to compare the CHAS at three scales of 

observation, to the Biscayne aquifer data set collected from well FPL1, a CHAS study site had to 

be selected based on the ability to provide optical televiewer images, slabbed core, and thin 

sections from a single well. 

In the late 1990’s, a City of New Bern project was designed to predict the hydrologic 

implications of disposing 4 to 6 mgd of tertiary-treated wastewater effluent into the former 

Martin Marietta Glenburnie Quarry with the goal of using the groundwater system as a natural 

infiltration system. In order to develop an understanding of the hydrogeologic framework 

underlying the quarry, 17 pumping and observation wells were installed throughout the site.  

After the wells were drilled, onsite geologist recovered core and collected resistivity and gamma 

geophysical logs for each well. CHAS research will focus principally on one production well 

(PW5), which is a six-inch open borehole well, located in the southeast corner of the Martin 
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Marietta Glenburnie Quarry (Fig. 15). Returning to the Martin Marietta Glenburnie quarry site in 

July of  2010, ECU geologists ran caliper, resistivity, temperature, heat pulse, downhole video, 

and optical televiewer logs on well PW5 (Fig. 18). Optical televiewer logs were particularly 

valuable as they supply the most detailed information by allowing for direct viewing of the 

inside of the well bore from high resolution digital images (ALT). Analogous processing 

techniques used in successfully generating binary images from optical televiewer images of the 

Biscayne aquifer were applied to optical televiewer images of the CHAS, this in turn allowed for 

a direct comparison of lithologic features from borehole images in each system. 

 

 

 

Figure 18. Alex Culpepper (left) and field assistant Nick Desimone (right) lowering OBI-40 

optical televiewer in well (PW5) at Martin Marietta Glenburnie Quarry. 
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In 2001, Dr. Richard Spruill provided the core collected from well PW5 during the 1998 

City of New Bern groundwater investigation to East Carolina University for graduate research 

and petrographic analysis. The PW5 core was slabbed and thin sections were produced at 0.5m 

intervals between depths of 37.5 to 43.5 feet and 60 to 62 feet, orientated both parallel and 

perpendicular to bedding. Use of these previously collected cores and thin sections in 

conjunction with the optical televiewer images of well PW5 provided the three scales of 

observation from a single well in which to compare to the Biscayne FPL1 well. 

Slabbed PW5 core samples were photographed with a Nikon D300 digital camera (Fig.19 

and 24; Appendix G) and carefully processed using similar methods to those implemented in 

Manda’s 2004 successful analysis of slabbed Biscayne core collected from well FPL1. 

Collecting and processing the CHAS PW5 core images using methods similar to those employed 

by previous researchers allowed for direct comparison of the binary images in a GIS with 

previously analyzed Biscayne core images. 

Thin sections had been created by previous researchers from both CHAS (PW5) core and 

Biscayne (FPL1) core but neither had previously been photographed or processed. In order to 

quantitatively compare binary thin sections images in a GIS; photographs of Biscayne (FPL1) 

thin sections (Appendix H) and CHAS (PW5) thin sections (Fig. 20; Appendix I), photographs 

were taken with a Nikon D300 digital camera and processed in the same way as optical 

televiewer and core images. As a result, the complete data set contains information from three 

scales of observation; optical televiewer, slabbed core, and thin section images for both the 

Biscayne and CHAS. This section describes the methodology and tools implemented in 

converting optical televiewer, core, and thin sections into a GIS appropriate format for data 

extraction and spatial analysis.  
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Figure 19. Example of CHAS core after being sawed in half to give a cross sectional view of the 

rock.  

 

 

Figure 20. Example of CHAS thin section used in analysis.  



 

72 

 

Tools and software packages employed  

 Imaging with optical televiewers is most frequently employed in the study of fractured- 

rock aquifers where the continuous and orientated 360° images of the borehole wall allow for 

greater ease in defining the character, relation, and orientation of lithological and structural 

features (Williams and Carole, 2004). More recently, imaging with optical televiewers in 

limestone aquifers has been employed because the optical images that allow for direct viewing of 

the borehole wall character can be exported to more robust software programs allowing for 

detailed analysis of lithological and structural information (Manda and Gross 2006b).  The OBI-

40 slimhole optical televiewer (OTV) (Fig. 21) manufactured by Advanced Logic Technology 

(ALT) of Luxemburg (ALT Website) is the latest and most powerful tool used to obtain optical 

images of borehole walls. 

 

 

Figure 21. OBI 40 slimhole optical telviewer (developed by ALT) used to generate a continuous 

and orientated 360° color image of the borehole wall. 
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The approximate length of the OBI 40 is 1.7m, diameter is 40mm, and its approximate weight is 

7 kilograms. The tool consists of a ring of LED lights used to illuminate the borehole, a charged 

coupling device (CCD) camera, and conical reflector housed in a transparent cylindrical window. 

The conical prism system on the tool focuses a 360° slice of the borehole wall into the 

lens of the charge-coupled device (CCD) camera which measures the intensity of the color 

spectrum in red, green, and blue (RGB). The optical image scan is digitized downhole then sent 

up the logging cable as digital signal. Vertical and horizontal resolutions are user-defined at the 

time of logging, with vertical set to depth (e.g. 0.5, 1, or 2mm) and horizontal set to 180, 360, or 

720 pixels per line. For the CHAS PW5 image, the vertical and horizontal resolutions were set to 

1mm and 720 pixels/360° respectively. For both Biscayne FPL1 and FPL2 images, the vertical 

and horizontal resolutions were .3mm and 720 pixels/360°. The logging speed for OTV images 

is dependent on the selected vertical and horizontal, cable type, and system design (Williams and 

Johnson, 2000).  

Typical logging speeds for most systems range from 1m/min to no more than 3m/min for 

1mm and 720 pixels per line data. OTV logging of PW5 was run at a constant 0.8m/min. Within 

the tool, a three-axis magnetometer and three accelerometers permit borehole wall images to be 

orientated providing true three-dimensional location of measurement. OBI-40 slimhole OTV has 

the ability to accurately image boreholes ranging in size from 1.75” to 24” depending on 

borehole conditions (ALT website). 

The East Carolina, geophysical, logging trailer is equipped with the most current Mount 

Sopris Instrument/Advanced Logic Technology (MSI/ALT) MARIX acquisitions systems, 

widely considered the industry standard in slim line borehole geophysical logging equipment 

(Fig. 22). The 4MXA-1000 winch system manufactured by MSI is spooled with 500m of 0.125’ 
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single-conductor wireline which acts as the data conduit between the sonde and data collector. 

The winch has the ability to supply precise depth records of the sonde using an optical encoder 

attached to the sheave wheel. The MATRIX data collector (Fig. 22) coordinates the image and 

orientation sampling of the OTV with depth information from the winch to the laptop computer 

loaded with MSLog data acquisition software. The Windows based MSLog program provides an 

easy-to-use, on-screen graphical user interface for controlling the electronic components of the 

acquisition hardware. 

 

 

 

Figure 22. Interior of ECU geophysical logging trailer with tools and instruments employed 

during well logging. Alex Culpepper pictured operating winch using MATRIX software.  
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Wellcad® 4.3 (ALT) software was used to display, edit, and analyze well data from 

borehole logs in addition to exporting the OTV images in usable (.bmp) format. The images were 

mosaiced in Adobe Illustrator ® CS4. Erdas Imagine® 9.3 to perform all other image processing 

(rectification, calibration, enhancement, noise correction, classification, filtering, accuracy 

assessment, and conversion to a GIS format). ArcView® 9.3 was the preferred software to serve 

as the platform for visualization, management, and data acquisition during spatial analysis. 

Further data manipulation was performed in Microsoft Excel and plotted using Sigma Plot® 

11.0. 

 

Core sample preparation 

A majority of the core acquired from the PW5 borehole had been slabbed by previous 

researchers, i.e. it was sawed in half giving a cross sectional view of the rock. The core was then 

labeled and the flat surface was polished to eliminate imperfections from sawing. Hand polishing 

with the grinding wheel and 220 grit silicon carbide successfully removed any fabric introduce 

by sawing and ensured the flat surface was completely planar. Painting the flat surface with an 

orange, water-soluble, block-printing ink using a rubber roller amplified the difference between 

macropores and matrix (Fig. 23). A copy stand was employed to photograph the core samples 

ensuring that the flat painted face of each core sample would remain aligned and orientated 

correctly with the digital camera (Fig. 24). To guarantee samples are photographed precisely 

horizontally and vertically, a small double axis bubble level was employed before 

photographing. Samples were photographed first as non- painted cores for sample identification 

then photographed a second time after the flat surface was painted. Photographs were 

downloaded directly from the camera to the PC using Nikon (software) for further manipulation.  
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Figure 23. Unpainted and painted surfaces of slabbed core with orange printing ink that amplifies 

the difference between macropores and matrix. 

 

 

Figure 24. Copy stand employed to photograph core samples to ensure the flat surface would 

aligned and orientated correctly with digital camera. 
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Thin section preparation 

Thin sections for both aquifers were made from samples impregnated with blue epoxy 

normally used to permit identification of carbonate minerals, which are difficult to distinguish 

due to their similar physical characteristics (Friedman, 1959). For the purpose of this study, the 

blue epoxy was used to enhance the difference between the macropores and matrix, just as the 

orange block printing ink did for the core samples. However, in this case the color represents 

pore spaces whereas in the painted core, the color represents the matrix. Next photographs of the 

multiple thin sections were made using a digital camera, enabling downloading into a computer 

for digital analysis. 

 

Image Processing 

Converting raw borehole, slabbed core, and thin section images into a format that could 

be examined and manipulated GIS was essential in obtaining accurate information for image 

analysis. Conversion of the raw, borehole, slabbed core, and thin section images to the binary 

classified image format suitable for GIS analysis required the following procedures: image 

mosaic, rectification/calibration, noise removal, image enhancement, binary classification, and 

filtering. A flow chart describing the general outline for image processing and conversion to 

appropriate GIS format is shown in Figure 25. Individual procedures highlighted in the Figure 25 

flow chart are explained in more detail in the following section and are illustrated in Figure 29. 

 

Image Mosaic 

Two copies of the raw televiewer image were placed side by side to form a double image 

(Fig. 26) with the intention of eliminating any edge effect problem caused by examining a 360º 
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image of the borehole wall in planar view. When bisecting a 360 º image the pores at the edges 

were cut and lose their true areas, perimeters, and shape. With the goal of not only quantifying 

porosity, but also acquiring data characteristics related to pore geometry, image mosaics were 

necessary to account for all pores in the televiewer image. Slabbed core and thin section images 

did not require the image mosaic procedure because the entire sample was captured in the raw 

image. 

 

 

GIS- Image Processing
(ERDAS Imagine)

OBI-40 Optical Televiewer Nikon D300 Digital Camera

WellCad Software Package Nikon Capture NX Software Package

Optical Televiewer Images Core and Thin Section Images

Raw Image (Depth Calibrated) Raw Image

Mosaic Raw Image (Double Image)

Data Acquisition

Rectification and Resampling 

Noise Correction and Image Enhancement 

Classification (unsupervised classification)

Filtering (majority filter)

Recoding (25 classes to 2 classes: pore & matrix)

Classified Binary Image (perform accuracy assessment) 

GIS- Spatial Analysis
ERSI ArcMap

Raster Image (Spatial Analyst – raster to feature)

Vector Image
(conversion from raster to vector allows for analysis of pores as individual polygons)

 

Figure 25 . Flow chart showing general image processing procedure and conversion of raw 

images to a GIS usable format. 
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Figure 26. Flow chart of general image processing procedure and conversion of raw images to a 

GIS usable format. 
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Image geometric correction 

Image geometric correction was a necessary processing procedure for removing the 

inherent geometric distortions from any input image and calibrating the data radiometrically. 

Geometric modification was accomplished through image rectification and restoration in which 

distortion was removed and the output image is made to have the desired projection properties, 

appropriate orientation, and uniform scale (ERDAS, 2010a).  As a result individual picture 

elements (e.g. pixels) are converted form row/column to the proper planimetric format (e.g. 

latitude/longitude) (Gao, 2008; Mather & Magaly, 2011). However, in this case output format 

was converted to a (x,y) location not a (lat/long) location designated from a map projection, this 

allowed the geometrically corrected output image to be used in the accurate extraction of 

distance, polygon area, and directional information within the desired (x,y) coordinate system 

(Chandra & Ghosh, 2005). The vertical dimension of the optical televiewer image was 

determined from the minimum and maximum depths the tool reached (cm). Because the 

horizontal dimension of the raw image was collected in azimuthal direction (0°, 180°, 90°, 360°), 

the corrected length (cm) was derived from background caliper measurements (Fig. 27).The 

histogram for the diameter of well PW5 derived from caliper measurements taken at 0.005m 

intervals is shown in Figure 29. The histogram reveals that the mean diameters are close to the 

background caliper measurements, but should not be selected over the mode as the 

measurements used in calibrating the image because the data would be slightly skewed. The 

corrected horizontal dimension calculated from background diameter measurements was 51.33 

cm/360° and the vertical dimension was 773 cm. The vertical and horizontal dimension values 

will be applied as control points on the four corners of the image, because degree of distortion in 

the imagery was low, a basic first-order polynomial transformation utilizing the nearest 
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Figure 27. The diameter of well pw5 plotted as a bar graph. Vertical line represents mode of 

background diameter measurements to be used for calibration. 
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neighbor resampling algorithm was carried out. Computation of the root mean square (RMS) 

error was necessary to determine how well the transformation accounted for distortion.  RMS 

error is a measure which represents the difference between the original control points and the 

new control point locations calculated by the transformation process (ERDAS, 2010b; Campbell, 

1996). RMS error for each of the ground control point was kept at less than or equal to one 

during rectification, which is critical for rectification to be considered satisfactory (Campbell, 

1996). 

 

 

Figure 28. Borehole diameters calculated from caliper log for PW5. The diameter provided by 

caliper was used to calculate a circumference needed for image rectification.  

 

 

Initial resolution for PW5 OTV image was 64.0 mega pixels (18239 x 3588 pixels), 

before resampling to a smaller output cell size of 0.01 cm. The resulting number of pixels from 

the resampled image was 793.0 mega pixels (77301 x 10264 pixels). A smaller cell size of 
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0.005cm was used to more accurately mimic features found on the original image during the 

classification process. Initial resolution for CHAS cores images averaged 7.0 mega pixels (2774 

x 2571 pixels) before being resampled to a new smaller output cell size of 0.005cm. The 

resulting number of pixels from the resampled images averaged 9.3 mega pixels (3094 x 3014 

pixels).  Before resampling procedure CHAS and Biscayne thin section image resolution 

averaged  0.8 mega pixels (980 x 674 pixels) and 1.0 mega pixels (1158 x 761 pixels), 

respectively. After resampling to a smaller output cell size of 0.001 cm, the resulting number of 

pixels for the CHAS and Biscayne thin sections averaged 17.3 mega pixels (5150 x 3360 pixels) 

and 24.0 mega pixels (5946 x 3806 pixels), respectively. 

The nearest-neighbor re-sampling algorithm determines a new pixel value by 

interpolating between the existing pixels to obtain an estimate of the new pixel value based off 

closest pixel value from the original uncorrected image (Verbyla, 2002). During the rectification 

process the nearest-neighbor re-sampling algorithm was implemented to upscale the amount of 

pixels from the original distorted image. Nearest-neighbor re-sampling was selected over bilinear 

or bicubic because it is the faster re-sampling method; also nearest-neighbor assignment does not 

change any of the values of cells from the original image. Nearest-neighbor assignment should 

be used for data where each value represents a class, member, or classification because smaller 

pixels will more accurately mimic features found on the original image during the classification 

process. (ERDAS, 2010a; Lillesand et al. 2004).  

Image rectification is required for developing GIS data bases for GIS modeling, creating 

accurate scaled photomaps, extract accurate distance and area measurements, changing pixel grid 

to fit a map projection system, and performing any other analyses requiring precise geographic 

locations (ERDAS, 2010b).  A total of (four) control points was sufficient for the first order 
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polynomial used with all images. The minimum number of control points to be used in the 

transformation was determined by  

,  

 

Where, t is the order of the polynomial (ERDAS, 2010a). 

 

Noise correction and image enhancement 

At irregular intervals line-oriented noise problems occurred in the form of vertical lines 

running across optical televiewer images. Removing lines of flawed pixels required execution of 

a replace bad lines function in Erdas Imagine (ERDASa , 2010). The flawed pixel was replaced 

with the average of the values of the pixels from both sides of the flawed pixel. Any orientated 

noise problems leading to flawed pixels would have lead to inaccurate classification and had be 

corrected before the classification procedure could begin. No flawed pixels were detected in 

CHAS core images or either set of thin section images. 

Before classification, the image was enhanced through contrast manipulation in order to 

aid in classification and promote individual features during visual interpretation post 

classification. A 2.5 standard deviation general contrast stretch was carried out on the optical 

televiewer image in an attempt to balance pixel brightness and reduce effects of eccentricity 

during logging.  A 0.5 standard deviation general contrast stretch was applied to CHAS core and 

both sets of thin sections. This method increased the distinction of features by promoting the 

contrast of the resulting image.  
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Classification 

The rectified and enhanced image was subjected to an unsupervised classification where 

classes and assignment of specific pixels was performed by the computer. Using the parametric 

classifier Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA), 

unsupervised classification sorted pixels according to statistical association, then interpreted the 

pixels into classes or categories (ERDAS, 2010a, b), based on spectral distance between 

candidate pixel and spectral mean of each existing signature (Jensen 2000).  

Comparison of unsupervised and supervised classification indicates that an unsupervised 

classification method has advantages when classifying heterogeneous classes in high-resolution 

digital images (Rogan and Yool, 2001). Thirty separate classes were chosen for classification 

because there would be more separation of classes that were distinctly similar also sampling 

could be done more efficiently (Rogan and Yool, 2001). Separating into 30 classes increased 

confidence that pore and matrix would be classified correctly (Zhou and Robinson, 2001). 

Results showed too low of a class output will likely result in poor separation between pore and 

matrix because the image has been oversimplified. To high of a class output would not 

noticeably change the division between pixels but would result in more time spent recoding with 

no net gain in separation between pore and matrix classification. 

 

Recoding and filtering 

After the thirty initial classes had been appointed, they were recoded to two classes: 

matrix and pore.  In order to achieve this, the classified image was laid over the original image 

with all designated classes “turned off” by setting their opacity to zero to allow visual inspection  
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of each class. Starting with a single class and then “turning it on” by setting the opacity to one 

allowed for visual inspection of that single class with the original image as its background. If a 

majority of features in that single class coincide with what has been designated matrix in the 

original image, it was designated ‘matrix’. Alternatively, if that single class features coincide 

with what has been designated pore space in the original image it was designated as ‘macropore’. 

This process was repeated for all 30 classes until each has been recoded to either matrix or 

macropore class. Optical televiewer, slabbed cores, and thin section images were all be subjected 

to the same “macropore or matrix” recoding based off comparison of single classes to original 

raw image for reference to guarantee the most accurate recoding (Fig. 29).  

The recoded binary image was then filtered by applying a 3x3 majority statistical filter. 

The filter operation smoothes out the features in the binary image to more closely imitate pores 

from the original image.  

 

Accuracy Assessment 

Accuracy measures the agreement between a standard assumed to be correct and a 

classified image with known quality (Campbell, 1996) and assists in defining the “correctness” 

of an image classification. A 50 point random sampling accuracy assessment was carried out on 

all binary borehole, core and thin section images in ERDAS Imagine. Random points were 

placed on the original image; the user visual inspected then inputted values corresponding to 

those of the two classes (pore or matrix). The software then compares the user inputted values 

from the original image to those determined from the recoded image and gives a measure of 

agreement between the two images as an overall classification percent and a kappa coefficient 
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(Jenson, 1996; Campbell, 1996). Kappa (ĸ) is defined by a measure of the difference between 

observed agreement between two images .Chrisman (1980) and others simplified the equation as, 

 

where “Observed” designate the accuracy reported in the error matrix and “expected” designates 

the correct classification to be projected by change agreement between the two images. The 

overall classification accuracy and kappa coefficients for the CHAS borehole image were 90% 

and 0.78 respectively; CHAS core had an overall accuracy of 96% and a kappa coefficient of .85. 

Thin sections images from CHAS and Biscayne had an overall accuracy’s of 98% and 97% 

respectively with kappa coefficients of 0.91 and 0.92 respectively. Conventionally, a kappa of 

0.61- 0.80 is strong agreement and more then 0.8 is complete agreement, the kappa coefficients 

are greater than 0.80 and thus signify complete agreement (Fleiss, 1981). Previously classified 

images of Biscayne core had an overall classification accuracy and kappa coefficient of 90% and 

0.77; while Biscayne borehole images had an accuracy of 88% and a kappa coefficient of 0.76. 

 

Vector conversion 

 In ArcGIS, the binary image was converted to a vector format (Fig. 29); the pore attribute 

was converted to a particular value (e.g., 1) and the matrix attribute was also converted to a 

particular value (e.g., 2) allowing for individual attributes to be analyzed separately. In the 

attribute table for each image new fields were added for area and perimeter calculations. Using 

ArcGIS field calculator, VBA (Visual Basic for Applications) statements were uploaded to 

extract area and perimeter measurements for each individual polygon for a selected attribute 
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(e.g., 1-pore or 2-matrix). The full attribute table was the export to Excel and SigmaPlot for 

analysis and data manipulation. 

 

Sample 
Name 

Overall Classification 
Accuracy (%) 

Kappa 
Coefficient  

h-1 96.00 0.914 

h-2 100.00 1.000 

h-3 92.00 0.822 

h-4 98.00 0.923 

h-5 94.00 0.842 

h-6 90.00 0.800 

h-7 94.00 0.866 

h-8 100.00 1.000 

hr-1 96.00 0.911 

hr-2 96.00 0.905 

hr-3 94.00 0.868 

hr-4 92.00 0.827 

hr-5 96.00 0.811 

hr-6 98.04 0.847 

hr-7 98.00 0.926 

hr-8 98.00 0.912 

 

Table 4. Overall classification and kappa coefficients from Castle Hayne slabbed (half) core 

images. Average classification is 95.75% and kappa coefficient is 0.87 signifying agreement 

between classified and original image. 

 

Porosity 

2D porosity is here defined as the percentage of surface area occupied by macropores 

within a rectangular window. After generating a rectangle with the dimensions of interest 

ArcMap field calculator was used to calculate the total area of all macropores within the window. 

Once the area of macropores within the rectangle was determined, simply dividing by the area of 

the rectangle gave a percent area covered by macropores (i.e. the porosity). This porosity 

calculation procedure was repeated for each image within the three scales of observation.  
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The area of the polygon area was calculated, then divided by the total pore area within that 

particular polygon giving the percent area covered by macropores (e.g. percent porosity). 

 

Shape Measure 

The ability to measure shape and orientation of pores from digital images would allow for 

the investigation into geometry of pores found in the CHAS. The quantification of shape 

measures, although difficult, would provide useful insight into how a pore’s geometry influences 

porosity in moldic sedimentary rocks. A shape index that describes the complex nature of pore 

shapes in carbonate rocks was presented by Anselmetti et al., (1998) based on measurements of 

pore area and perimeter. The shape index that will be applied to analyze data is expressed as:  

 

Where γ is the shape index, P is the perimeter and A is the area of the pore (Anselmetti et al., 

1998). ArcMap provides the necessary function tools needed to obtain measurements of pore 

area and perimeter. The shape index has a range from one to infinity; a shape index value of  one 

would represents a circle with the eccentricity of zero, or perfect circle and the higher positive 

values from one indicate an increase in complexity of the shape (Fig. 31). Pore shape was plotted 

against pore area to study how pore shape varies with size in the karst limestones. 

 

Figure 31. Left to right starting with simple pore with low shape index increasing to a complex 

pore with high shape index



 

 

 

APPENDIX D: PORE GEOMETRY BOX PLOT STATISTICS 
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CHAS 
OTV 

Biscayne 
OTV 

CHAS 
Core 

Biscayne 
Core 

CHAS Thin 
Section 

Biscayne Thin 
Section 

Mean 20.03 32.38 0.04 0.01 2.22E-03 2.43E-03 

Median 6.65 9.14 0.01 0.01 1.19E-04 1.19E-04 

Std. Dev 53.03 90.48 0.19 0.09 2.05E-02 1.55E-02 

Std. Err 3.85 3.41 0.00 0.00 3.63E-04 2.60E-04 

Min 4.01 4.00 0.00 0.00 1.40E-05 4.00E-06 

Max 608.60 1469.00 7.01 5.84 8.05E-01 3.97E-01 

 

Table 5. Statistics of pore area (cm²) distribution for pore areas derived from optical televiewer, core and 

thin-sections. 

 

 

 

CHAS 
OTV 

Biscayne 
OTV 

CHAS 
Core 

Biscayne 
Core 

CHAS Thin 
Section 

Biscayne Thin 
Section 

Mean 99.98 55.88 0.84 0.44 0.14 0.16 

Median 38.60 24.41 0.37 0.24 0.05 0.07 

Std. Dev 232.80 137.19 2.34 0.97 0.51 0.48 

Min 18.20 8.21 0.02 0.10 0.02 0.01 

Max 2554.18 2789.36 82.01 49.56 13.38 17.64 

 

Table 6. Statistics of pore  perimeter (cm) distribution for pore areas derived from optical televiewer, core 

and thin-sections. 
 

 

 

CHAS 
OTV 

Biscayne 
OTV 

CHAS 
Core 

Biscayne 
Core 

CHAS Thin 
Section 

Biscayne Thin 
Section 

Mean 5.39 2.70 1.49 1.46 1.31 1.31 

Median 4.39 2.33 1.43 1.30 1.20 1.21 

Std. Dev 3.49 1.51 0.44 0.50 0.31 0.34 

Std. Err 0.25 0.06 0.00 0.00 0.00 0.01 

Min 2.39 1.04 1.02 0.89 0.93 1.09 

Max 29.21 20.53 8.74 11.98 6.20 8.75 

 

Table 7. Statistics of pore shape index distribution for pore areas derived from optical televiewer, core 

and thin-sections. 

 



 

 

 

APPENDIX E: OTV IMAGES UTILIZED IN STUDY 
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APPENDIX F: PHOTOGRAPHS OF BISCAYNE CORE UTILIZED IN STUDY
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1-12      `       1-15 
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2-4             2-6 

      

 

2-11               3-1 

        

 

3-2                3-3 
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3-12              3-15 

        

 

4-4                4-7 

        

 

4-15                5-5 
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5-10               5-12 

        

 

6-3               6-6 

          

 

6-10               6-13 

        

 



 

 

 

APPENDIX G: PHOTOGRAPHS OF CHAS CORE UTILIZED IN STUDY 
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H-1              H-2 

 
       

H-3                       H-4               H-5 

  
 

H-6        H-7 

 

H-8                          HR-1                         HR-2 

   

 HR-3    HR-4                         HR-5   HR-6  
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HR-7             HR-8               Q1_A              Q1_B 

                               
       

Q2_A                  Q2_B         Q3_A  

                               

Q3_B          Q4_A                       Q4_B 

                            
 

Q5_A                   Q5_B                          Q6_A 

               
 

Q6_B                 Q7_A                    Q7_B 
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Q8_A     Q8_B                             Q9_A    

                       

Q9_B               Q10_A            Q10_B 

                      

Q11_A             Q11_B                          Q12_A  

               

 Q12_B                Q13_A          Q13_B 

             

Q14_A        Q14_B                         Q15_A 
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Q15_B                 Q16_A            Q16_B  

                                    
 

Q17_A       Q17_B     Q18_A 

                      
 

Q18_B                   Q19_A    Q19_B 

                      
 

Q20_A      Q20_B            Q21_A  

                
 

Q21_B           Q22_A            Q22_B 
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Q23_A         Q23_B     Q24_A 

              
 

Q24_B           Q25_A    Q25_B 

             
 

Q26_A            Q26_B     Q27_A 

             

Q27_B         Q28_A           Q28_B 

                     
 

Q29_A      Q29_B 

    



 

 

 

APPENDIX H: PHOTOGRAPHS OF BISCAYNE THIN SECTIONS USED IN STUDY 
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APPENDIX I: PHOTOGRAPHS OF CHAS THIN SECTIONS UTILIZED IN STUDY 
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APPENDIX J: ACCURACY ASSEMENT REPORTS 
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Accuracy assement for the CHAS Core  

Sample Name Overall Classification Accuracy (%) Kappa Coefficient  

h-1 96.00 0.91 

h-2 100.00 1.00 

h-3 92.00 0.82 

h-4 98.00 0.92 

h-5 94.00 0.84 

h-6 90.00 0.80 

h-7 94.00 0.87 

h-8 100.00 1.00 

hr-1 96.00 0.91 

hr-2 96.00 0.90 

hr-3 94.00 0.87 

hr-4 92.00 0.83 

hr-5 96.00 0.81 

hr-6 98.04 0.85 

hr-7 98.00 0.93 

hr-8 98.00 0.91 

q1a 92.00 0.73 

q1b 92.00 0.82 

q2a 94.12 0.74 

q2b 96.08 0.78 

q3a 92.00 0.83 

q3b 96.00 0.91 

q4a 96.00 0.86 

q4b 92.16 0.67 

q5a 96.00 0.81 

q5b 94.00 0.77 

q6a 96.00 0.65 

q6b 94.12 0.71 

q7a 94.00 0.87 

q7b 100.00 1.00 

q8a 96.08 0.77 

q8b 94.00 0.87 

q9a 96.00 0.83 

q9b 98.00 0.91 

q10a 98.00 0.92 

q10b 100.00 1.00 

q11a 96.08 0.78 

q11b 98.00 0.91 

q12a 94.14 0.76 

q12b 98.00 0.88 
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q13a 96.00 0.78 

q13b 94.22 0.74 

q14a 96.00 0.82 

q14b 94.00 0.79 

q15a 98.00 0.93 

q15b 98.67 0.93 

q16a 98.00 0.92 

q16b 98.00 0.91 

q17a 94.00 0.80 

q17b 96.00 0.85 

q18a 98.08 0.85 

q18b 98.00 0.66 

q19a 96.10 0.81 

q19b 94.00 0.76 

q20a 100.00 1.00 

q20b 94.00 0.79 

q21a 96.00 0.81 

q21b 96.00 0.89 

q22a 96.00 0.87 

q22b 94.00 0.81 

q23a 96.00 0.88 

q23b 94.00 0.81 

q24a 98.00 0.91 

q24b 98.00 0.91 

q25a 96.08 0.83 

q25b 96.00 0.80 

q26a 100.00 1.00 

q26b 94.00 0.79 

q27a 92.00 0.82 

q27b 94.00 0.85 

q28a 100.00 1.00 

q28b 94.00 0.76 

q29a 98.00 0.94 

q29b 94.00 0.81 

Average 95.86 0.85 
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Biscayne Core 

Sample Name Overall Classification Accuracy (%) Coefficient 

1_6 94.23 0.86 

1_10 92.69 0.81 

1_12 90.00 0.76 

1_15 91.15 0.82 

1_19 82.69 0.64 

2_3 88.46 0.77 

2_4 95.38 0.91 

2_6 90.00 0.68 

2_11 85.38 0.70 

3_1 92.31 0.85 

3_2 93.46 0.87 

3_3 94.23 0.87 

3_12 86.15 0.71 

3_15 89.62 0.78 

4_4 93.08 0.68 

4_7 86.15 0.85 

4_15 92.69 0.85 

5_5 96.15 0.92 

5_10 93.46 0.87 

5_12 90.00 0.80 

6_3 85.00 0.69 

6_6 88.08 0.71 

6_7 83.46 0.59 

6_10 82.69 0.65 

6_13 85.38 0.71 

Average 89.68 0.77 
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CHAS Thin-section 

Sample Name Overall Classification Accuracy (%) Kappa Coefficient  

37-5 98.00 0.96 

38-5 98.00 0.95 

39-0 96.00 0.85 

39-5 100.00 1.00 

40-0 98.00 0.91 

40-5 98.00 0.92 

62-0 98.00 0.93 

62-5 100.00 1.00 

63-0 96.00 0.85 

63-5 96.00 0.84 

64-0 98.00 0.92 

64-5 98.00 0.92 

Average 97.83 0.92 

 

 

 

BISCAYNE Thin-section 

Sample Name Overall Classification Accuracy (%) Kappa Coefficient  

1-1b_f 96.00 0.87 

1-6b_f 98.00 0.93 

1-10b_f 98.00 0.93 

1-19b_f 100.00 1.00 

2-3b_f 98.00 0.94 

2-4b_f 96.00 0.85 

2-11b_f 98.00 0.93 

3-3b_f 100.00 1.00 

4-4b_f 98.00 0.85 

4-15b_f 100.00 1.00 

5-5b_f 98.00 0.83 

5-8b_f 98.00 0.92 

5-15b_f 96.00 0.85 

6-13b_f 98.00 0.93 

Average 98.00 0.92 

 



 

 

 

APPENDIX K: PLOTS OF PORE AREA AND PERIMETER DISTRIBUTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

119 

 

Plots of pore area and perimeter distribution from CHAS core samples 
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HR-8 
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Statistics from plots of pore area and perimeter distribution from CHAS core samples 

H-1 Area (cm²) Perimeter (cm) 

 

H-2 Area (cm²) Perimeter (cm) 

Mean 0.0361 0.7686 

 

Mean 0.057 1.0195 

Median 4.43E-03 0.2822 

 

Median 5.76E-03 0.3464 

Std. Dev 0.1554 2.0829 

 

Std. Dev 0.3011 3.6802 

Std. Err 4.54E-03 0.0609 

 

Std. Err 0.0106 0.1293 

95% Conf 8.91E-03 0.1194 

 

95% Conf 0.0208 0.2538 

99% Conf 0.0117 0.1571 

 

99% Conf 0.0273 0.3339 

Size 1171 1171 

 

Size 810 810 

Total 42.24 900.0134 

 

Total 46.1494 825.7817 

Min 1.70E-05 0.0189 

 

Min 1.70E-05 0.0189 

Max 2.8722 49.3791 

 

Max 5.3894 71.5922 

Min. Pos 1.70E-05 0.0189 

 

Min. Pos 1.70E-05 0.0189 

       

       

       H-3 Area (cm²) Perimeter (cm) 

 

H-4 Area (cm²) Perimeter (cm) 

Mean 0.0376 0.8262 

 

Mean 0.0485 0.9717 

Median 5.94E-03 0.3593 

 

Median 6.36E-03 0.3887 

Std. Dev 0.1529 2.2043 

 

Std. Dev 0.1844 2.4401 

Std. Err 5.30E-03 0.0765 

 

Std. Err 6.77E-03 0.0895 

95% Conf 0.0104 0.1501 

 

95% Conf 0.0133 0.1757 

99% Conf 0.0137 0.1974 

 

99% Conf 0.0175 0.2312 

Size 831 831 

 

Size 743 743 

Total 31.2618 686.6016 

 

Total 36.0706 722.0053 

Min 1.70E-05 0.0189 

 

Min 1.70E-05 0.0189 

Max 3.2916 47.1615 

 

Max 3.4183 43.2677 

Min. Pos 1.70E-05 0.0189 

 

Min. Pos 1.70E-05 0.0189 

       

       

       H-5 Area (cm²) Perimeter (cm) 

 

H-6 Area (cm²) Perimeter (cm) 

Mean 0.0155 0.4712 

 

Mean 0.0507 1.0566 

Median 2.82E-03 0.2202 

 

Median 0.0106 0.4742 

Std. Dev 0.0846 1.5511 

 

Std. Dev 0.1637 2.1674 

Std. Err 2.92E-03 0.0536 

 

Std. Err 4.19E-03 0.0555 

95% Conf 5.74E-03 0.1052 

 

95% Conf 8.22E-03 0.1088 

99% Conf 7.55E-03 0.1384 

 

99% Conf 0.0108 0.1431 

Size 837 837 

 

Size 1527 1527 

Total 12.9647 394.3727 

 

Total 77.491 1613.3706 

Min 1.70E-05 0.0189 

 

Min 2.60E-03 0.1938 

Max 2.1675 39.8265 

 

Max 1.6271 25.8873 

Min. Pos 1.70E-05 0.0189 

 

Min. Pos 2.60E-03 0.1938 
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H-7 Area (cm²) Perimeter (cm) 

 

H-8 Area (cm²) Perimeter (cm) 

Mean 0.04 0.8743 

 

Mean 0.0639 1.2257 

Median 6.32E-03 0.4023 

 

Median 0.0129 0.5614 

Std. Dev 0.2407 2.5941 

 

Std. Dev 0.2765 3.2623 

Std. Err 6.40E-03 0.069 

 

Std. Err 7.32E-03 0.0864 

95% Conf 0.0126 0.1353 

 

95% Conf 0.0144 0.1694 

99% Conf 0.0165 0.178 

 

99% Conf 0.0189 0.2228 

Size 1414 1414 

 

Size 1427 1427 

Total 56.5004 1236.2365 

 

Total 91.1496 1749.1297 

Min 1.02E-03 0.1231 

 

Min 3.28E-03 0.2142 

Max 6.4082 60.2095 

 

Max 7.0054 82.0094 

Min. Pos 1.02E-03 0.1231 

 

Min. Pos 3.28E-03 0.2142 

       

       

       HR-1 Area (cm²) Perimeter (cm) 

 

HR-2 Area (cm²) Perimeter (cm) 

Mean 0.0358 0.7649 

 

Mean 0.0271 0.6792 

Median 5.21E-03 0.313 

 

Median 4.07E-03 0.2917 

Std. Dev 0.1527 1.8528 

 

Std. Dev 0.0935 1.4295 

Std. Err 5.81E-03 0.0705 

 

Std. Err 3.94E-03 0.0602 

95% Conf 0.0114 0.1384 

 

95% Conf 7.74E-03 0.1183 

99% Conf 0.015 0.1821 

 

99% Conf 0.0102 0.1557 

Size 691 691 

 

Size 563 563 

Total 24.7067 528.5784 

 

Total 15.2806 382.3876 

Min 1.70E-05 0.0189 

 

Min 1.70E-05 0.0189 

Max 2.6233 23.3432 

 

Max 1.151 20.1728 

Min. Pos 1.70E-05 0.0189 

 

Min. Pos 1.70E-05 0.0189 

       

       

       HR-3 Area (cm²) Perimeter (cm) 

 

HR-4 Area (cm²) Perimeter (cm) 

Mean 0.0529 0.9124 

 

Mean 0.0531 1.0059 

Median 5.53E-03 0.3459 

 

Median 5.86E-03 0.3473 

Std. Dev 0.2203 2.3031 

 

Std. Dev 0.1949 2.5411 

Std. Err 0.0108 0.1126 

 

Std. Err 0.0102 0.1328 

95% Conf 0.0212 0.2214 

 

95% Conf 0.02 0.2612 

99% Conf 0.0279 0.2915 

 

99% Conf 0.0264 0.344 

Size 418 418 

 

Size 366 366 

Total 22.0972 381.3642 

 

Total 19.4529 368.1414 

Min 1.70E-05 0.0189 

 

Min 1.60E-05 0.0187 

Max 3.0104 27.3531 

 

Max 1.6893 22.8367 

Min. Pos 1.70E-05 0.0189 

 

Min. Pos 1.60E-05 0.0187 
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HR-5 Area (cm²) Perimeter (cm) 

 

HR-6 Area (cm²) Perimeter (cm) 

Mean 0.0245 0.566 

 

Mean 0.0322 0.6562 

Median 2.35E-03 0.2359 

 

Median 2.21E-03 0.2246 

Std. Dev 0.1198 1.2485 

 

Std. Dev 0.1345 1.5719 

Std. Err 6.55E-03 0.0682 

 

Std. Err 0.0108 0.1263 

95% Conf 0.0129 0.1342 

 

95% Conf 0.0213 0.2494 

99% Conf 0.017 0.1767 

 

99% Conf 0.0282 0.3293 

Size 335 335 

 

Size 155 155 

Total 8.1975 189.6172 

 

Total 4.9884 101.711 

Min 1.60E-05 0.0187 

 

Min 1.70E-05 0.0189 

Max 1.8428 16.0487 

 

Max 1.1037 14.0599 

Min. Pos 1.60E-05 0.0187 

 

Min. Pos 1.70E-05 0.0189 

       

       

       HR-7 Area (cm²) Perimeter (cm) 

 

HR-8 Area (cm²) Perimeter (cm) 

Mean 0.0288 0.7246 

 

Mean 0.0208 0.5688 

Median 4.93E-03 0.3303 

 

Median 3.14E-03 0.2808 

Std. Dev 0.129 1.7933 

 

Std. Dev 0.0987 1.2701 

Std. Err 5.40E-03 0.0751 

 

Std. Err 3.85E-03 0.0495 

95% Conf 0.0106 0.1475 

 

95% Conf 7.55E-03 0.0972 

99% Conf 0.014 0.1941 

 

99% Conf 9.94E-03 0.1278 

Size 570 570 

 

Size 659 659 

Total 16.4026 413.009 

 

Total 13.7237 374.8382 

Min 1.70E-05 0.0189 

 

Min 1.70E-05 0.0189 

Max 2.4102 28.6549 

 

Max 1.9181 19.2902 

Min. Pos 1.70E-05 0.0189 

 

Min. Pos 1.70E-05 0.0189 
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Plots of pore area and perimeter distribution from Biscayne core samples 
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1-15 
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2-4 
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3-1 
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3-12 
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4-7 
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5-10 
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6-13 
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Statistics from plots of pore area and perimeter distribution from Biscayne core samples 

1_6 Area (cm²) Perimeter (cm) 

 

1_10 Area (cm²) Perimeter (cm) 

Mean 0.0115 0.4525 

 

Mean 7.14E-03 0.3768 

Median 2.00E-03 0.24 

 

Median 2.00E-03 0.22 

Std. Dev 0.0678 0.9738 

 

Std. Dev 0.0208 0.5509 

Std. Err 2.14E-03 0.0307 

 

Std. Err 6.66E-04 0.0176 

95% Conf 4.20E-03 0.0602 

 

95% Conf 1.31E-03 0.0346 

99% Conf 5.52E-03 0.0792 

 

99% Conf 1.72E-03 0.0455 

Size 1007 1007 

 

Size 976 976 

Total 11.602 455.7 

 

Total 6.973 367.72 

Min 1.00E-03 0.1 

 

Min 1.00E-03 0.1 

Max 1.877 21.88 

 

Max 0.376 9.96 

Min. Pos 1.00E-03 0.1 

 

Min. Pos 1.00E-03 0.1 

       

       

       1_12 Area (cm²) Perimeter (cm) 

 
1_15 Area (cm²) Perimeter (cm) 

Mean 0.0117 0.4591 

 
Mean 0.0142 0.5455 

Median 2.00E-03 0.24 

 
Median 4.00E-03 0.32 

Std. Dev 0.04 0.7819 

 
Std. Dev 0.0438 0.9224 

Std. Err 1.33E-03 0.0261 

 
Std. Err 1.91E-03 0.0402 

95% Conf 2.62E-03 0.0512 

 
95% Conf 3.75E-03 0.0789 

99% Conf 3.45E-03 0.0673 

 
99% Conf 4.93E-03 0.1039 

Size 900 900 

 
Size 527 527 

Total 10.487 413.16 

 
Total 7.503 287.46 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 0.652 11.86 

 
Max 0.734 14.84 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 

       

       

       1_19 Area (cm²) Perimeter (cm) 

 
2_3 Area (cm²) Perimeter (cm) 

Mean 7.88E-03 0.4656 

 
Mean 0.0238 0.7432 

Median 4.00E-03 0.32 

 
Median 2.00E-03 0.22 

Std. Dev 0.0131 0.4561 

 
Std. Dev 0.2295 4.0718 

Std. Err 3.48E-04 0.0121 

 
Std. Err 7.48E-03 0.1327 

95% Conf 6.83E-04 0.0237 

 
95% Conf 1.47E-02 0.2604 

99% Conf 8.98E-04 0.0312 

 
99% Conf 0.0193 0.3424 

Size 2201 2201 

 
Size 942 942 

Total 11.19 661.2 

 
Total 22.432 700.06 

Min 2.00E-03 0.16 

 
Min 1.00E-03 0.1 

Max 0.252 6.78 

 
Max 5.837 102.62 

Min. Pos 2.00E-03 0.16 

 
Min. Pos 1.00E-03 0.1 
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2_4 Area (cm²) Perimeter (cm) 

 
2_6 Area (cm²) Perimeter (cm) 

Mean 0.017 0.5965 

 
Mean 3.82E-03 0.2654 

Median 4.00E-03 0.32 

 
Median 1.00E-03 0.16 

Std. Dev 0.0661 1.2343 

 
Std. Dev 0.0107 0.3679 

Std. Err 3.19E-03 0.0595 

 
Std. Err 3.96E-04 0.0136 

95% Conf 6.26E-03 0.1169 

 
95% Conf 7.78E-04 0.0268 

99% Conf 8.24E-03 0.1538 

 
99% Conf 1.02E-03 0.0352 

Size 431 431 

 
Size 729 729 

Total 7.322 257.1 

 
Total 2.787 193.5 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 1.26 22.68 

 
Max 0.162 5.58 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 

       

       

       2_11 Area (cm²) Perimeter (cm) 

 
3_1 Area (cm²) Perimeter (cm) 

Mean 6.07E-03 0.3318 

 
Mean 0.0261 0.7785 

Median 2.00E-03 0.2 

 
Median 3.00E-03 0.26 

Std. Dev 0.0193 0.4977 

 
Std. Dev 0.1119 1.8935 

Std. Err 6.05E-04 0.0156 

 
Std. Err 3.91E-03 0.0661 

95% Conf 1.19E-03 0.0306 

 
95% Conf 7.67E-03 0.1298 

99% Conf 1.56E-03 0.0403 

 
99% Conf 0.0101 0.1707 

Size 1016 1016 

 
Size 820 820 

Total 6.164 337.08 

 
Total 21.381 638.4 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 0.349 8 

 
Max 1.483 22.3 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 

       

       

       3_2 Area (cm²) Perimeter (cm) 

 
3_3 Area (cm²) Perimeter (cm) 

Mean 0.0234 0.617 

 
Mean 0.0146 0.5568 

Median 2.00E-03 0.24 

 
Median 3.00E-03 0.28 

Std. Dev 0.1043 1.6105 

 
Std. Dev 0.063 1.2551 

Std. Err 4.14E-03 0.0639 

 
Std. Err 1.91E-03 0.038 

95% Conf 8.12E-03 0.1255 

 
95% Conf 3.74E-03 0.0746 

99% Conf 0.0107 0.1651 

 
99% Conf 4.92E-03 0.0981 

Size 635 635 

 
Size 1089 1089 

Total 14.83 391.78 

 
Total 15.884 606.34 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 1.132 19.68 

 
Max 1.714 30.58 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 
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3_12 Area (cm²) Perimeter (cm) 

 
3_15 Area (cm²) Perimeter (cm) 

Mean 0.0157 0.5479 

 
Mean 7.99E-03 0.4012 

Median 2.00E-03 0.26 

 
Median 2.00E-03 0.22 

Std. Dev 0.0734 1.0987 

 
Std. Dev 0.0264 0.6986 

Std. Err 2.80E-03 0.042 

 
Std. Err 8.04E-04 0.0213 

95% Conf 5.50E-03 0.0824 

 
95% Conf 1.58E-03 0.0418 

99% Conf 7.24E-03 0.1084 

 
99% Conf 2.07E-03 0.0549 

Size 685 685 

 
Size 1077 1077 

Total 10.769 375.3 

 
Total 8.608 432.1 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 1.494 18.9 

 
Max 0.407 9.04 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 

       

       

       4_4 Area (cm²) Perimeter (cm) 

 
4_7 Area (cm²) Perimeter (cm) 

Mean 0.0156 0.6313 

 
Mean 0.0174 0.5312 

Median 6.00E-03 0.4 

 
Median 3.00E-03 0.26 

Std. Dev 0.0915 1.3572 

 
Std. Dev 0.1407 1.7587 

Std. Err 3.14E-03 0.0465 

 
Std. Err 5.52E-03 0.069 

95% Conf 6.15E-03 0.0913 

 
95% Conf 1.08E-02 0.1355 

99% Conf 8.10E-03 0.12 

 
99% Conf 0.0143 0.1782 

Size 2255 2255 

 
Size 650 650 

Total 13.317 537.88 

 
Total 11.3 345.3 

Min 3.00E-03 0.22 

 
Min 1.00E-03 0.1 

Max 2.074 31.8 

 
Max 3.513 41.86 

Min. Pos 3.00E-03 0.22 

 
Min. Pos 1.00E-03 0.1 

       

       

       4_15 Area (cm²) Perimeter (cm) 

 
5_5 Area (cm²) Perimeter (cm) 

Mean 0.018 0.622 

 
Mean 9.68E-03 0.4284 

Median 3.00E-03 0.32 

 
Median 3.00E-03 0.28 

Std. Dev 0.0946 1.516 

 
Std. Dev 0.0423 0.6798 

Std. Err 3.34E-03 0.0535 

 
Std. Err 1.58E-03 0.0254 

95% Conf 6.56E-03 0.105 

 
95% Conf 3.10E-03 0.0498 

99% Conf 8.62E-03 0.1381 

 
99% Conf 4.07E-03 0.0655 

Size 803 803 

 
Size 718 718 

Total 14.431 499.44 

 
Total 6.947 307.62 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 2.014 27.44 

 
Max 1.031 14.46 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 
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5_10 Area (cm²) Perimeter (cm) 

 
5_12 Area (cm²) Perimeter (cm) 

Mean 8.21E-03 0.385 

 
Mean 0.0283 0.6021 

Median 3.00E-03 0.24 

 
Median 2.00E-03 0.22 

Std. Dev 0.0277 0.512 

 
Std. Dev 0.2612 2.7647 

Std. Err 1.05E-03 0.0194 

 
Std. Err 1.20E-02 0.1273 

95% Conf 2.07E-03 0.0381 

 
95% Conf 2.36E-02 0.2501 

99% Conf 2.72E-03 0.0502 

 
99% Conf 0.0311 0.3291 

Size 695 695 

 
Size 472 472 

Total 5.706 267.58 

 
Total 13.354 284.18 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 0.471 5.84 

 
Max 4.661 49.56 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 

       

       

       6_3 Area (cm²) Perimeter (cm) 

 
6_6 Area (cm²) Perimeter (cm) 

Mean 0.0124 0.3919 

 
Mean 0.0105 0.5078 

Median 2.00E-03 0.18 

 
Median 4.00E-03 0.32 

Std. Dev 0.0868 0.9419 

 
Std. Dev 0.0509 0.8125 

Std. Err 4.55E-03 0.0494 

 
Std. Err 1.36E-03 0.0217 

95% Conf 8.95E-03 0.0971 

 
95% Conf 2.67E-03 0.0427 

99% Conf 0.0118 0.1278 

 
99% Conf 3.51E-03 0.0561 

Size 364 364 

 
Size 3004 3004 

Total 4.523 142.64 

 
Total 14.663 708.92 

Min 1.00E-03 0.1 

 
Min 2.00E-03 0.16 

Max 1.495 10.56 

 
Max 1.506 17.12 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 2.00E-03 0.16 

       

       

       6_7 Area (cm²) Perimeter (cm) 

 
6_10 Area (cm²) Perimeter (cm) 

Mean 5.56E-03 0.3228 

 
Mean 5.30E-03 0.3373 

Median 2.00E-03 0.2 

 
Median 2.00E-03 0.22 

Std. Dev 0.0172 0.3923 

 
Std. Dev 0.0125 0.401 

Std. Err 4.54E-04 0.0103 

 
Std. Err 3.64E-04 0.0116 

95% Conf 8.90E-04 0.0202 

 
95% Conf 7.13E-04 0.0228 

99% Conf 1.17E-03 0.0266 

 
99% Conf 9.38E-04 0.03 

Size 1686 1686 

 
Size 1191 1191 

Total 8.041 466.5 

 
Total 6.308 401.68 

Min 1.00E-03 0.1 

 
Min 1.00E-03 0.1 

Max 0.338 4.48 

 
Max 0.171 4.36 

Min. Pos 1.00E-03 0.1 

 
Min. Pos 1.00E-03 0.1 
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6_13 Area (cm²) Perimeter (cm) 

    Mean 0.0135 0.4529 

    Median 2.00E-03 0.24 

    Std. Dev 0.1065 0.962 

    Std. Err 3.03E-03 0.0273 

    95% Conf 5.93E-03 0.0536 

    99% Conf 7.80E-03 0.0705 

    Size 1239 1239 

    Total 16.703 561.18 

    Min 1.00E-03 0.1 

    Max 2.734 20.22 

    Min. Pos 1.00E-03 0.1 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


