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Several lines of research have revealed a relationship between reading disorders 

(RD) and auditory temporal processing deficits. That is, subtle, yet rapid changes within 

an acoustic message are more difficult for individuals with RD to perceive than for those 

individuals with normal reading abilities, which negatively impacts accurate speech 

perception and, in turn, phonological processing and decoding abilities (Cestnick & 

Jerger, 2000; De Jong et al, 2000; Fink et al., 2006; Walker et al., 2006).  However, 

researchers investigating a pansensory temporal processing deficit theory of RD have 

found conflicting evidence supporting the relationship between visual temporal 

processing and reading, specifically in regards to the magnocellular deficit theory of 

dyslexia (Chase & Jenner, 1993; Farmer & Klein, 1993; Lehmkuhle et al., 1993; 

Lovegrove, 1993). The purpose of the current study was to further investigate the 

relationship between pansensory processing deficits and subtypes of reading disorders.  

Participants included 27 children (ages 10-13) divided into three reading ability groups 

(i.e., normal reading, dysphonetic, and dysphoneidetic) based on performance the 



   

Woodcock Reading Mastery Test-Revised and the WRMT-R and Word/Nonword Test.  

Experimental tasks included gap detection, duration discrimination, and duration 

temporal order judgment tasks presented in both the auditory and visual modalities. 

When controlling for verbal ability (PPVT-IVT), due to significant group differences, 

both RD groups (dysphonetic and dysphoneidetic deficits) demonstrated a poorer 

performance when compared to the control group on both the within- and between-

channel gap paradigms of the auditory gap detection task.  No significant differences 

were found between normal, dysphonetic, and dysphoneidetic readers on any of the 

visual temporal processing tasks.  The current study failed to support the pansensory 

deficit of RD when reading groups were dichotomized across experimental tasks.  

However, when considering reading abilities as a continuum several significant 

correlations between performance on auditory and visual experimental tasks and reading 

decoding standardized measures were found suggesting that pansensory temporal 

processing is strongly associated with reading abilities. Results suggest that auditory 

temporal processing abilities are closely linked to phonological decoding skills in 

addition to sight-word recognition abilities for the young adolescents having reading 

disorders.   
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CHAPTER I 

LITERATURE REVIEW 

Introduction to the Literature 

The prevalence of reading disability in school-aged children ranges from 

approximately 3 to 9 percent, with some reports estimated as high as 17%, and accounts 

for almost 75 percent of referrals for learning disability (Lehmkuhle, Garzia, Turner, 

Hash, & Baro, 1993; Temple, 2002).  Reading disorders (RD), or dyslexia, manifest as 

uneven development of reading and spelling achievement when compared to the 

individual’s age and normal IQ, impaired phonological and visual/lexical processing 

abilities, and poor performance on tasks assessing rapid automatized naming (Bellis, 

2003; Torgeson, Wagner, & Raschotte, 1994; Wolf & Bowers, 1999).  These deficits, in 

turn, inhibit the achievement of automatic and fluent reading, which often leads to 

secondary deficits in comprehension (Catts & Kamhi, 1999).  In attempts to explain the 

causes of RD, researchers have taken a wide approach to examining several theories or 

hypotheses regarding reading disorders, from neurobiological bases of developmental 

reading disorder, language development and processing, to sensory temporal processing 

deficits.  Neuroimaging and behavioral research studies have provided evidence to 

support inter-hemispheric differences in reading between normal and poor readers as well 

as have identified subtypes of RD based on specific deficits in accessing the mental 

lexicon (Joseph, Noble, & Eden, 2001; Lovegrove, 1993; Shaywitz & Shaywitz, 2005; 

Temple, 2002; Wolf & Bowers, 1999).  Current researchers continue to investigate the 

causative role of auditory and visual processing deficits on RD, attempting to identify 
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predictive variables on reading achievement (Bellis, 2003; Catts, Fey, Tomblin, & Zhang, 

2002; Chase & Jenner, 1993; Torgeson et al., 1994).   

 Researchers have investigated the association between phonological processing 

and temporal processing in the auditory and visual fields, striving to answer the question 

of whether reading disorders are language specific or stem from a generalized temporal 

processing disorder (Ben-Artzi, Fostick, & Babkoff, 2004).  Several hypotheses regarding 

the relationship between sensory deficits and reading disorders have been posited 

including an auditory temporal processing hypothesis and a visual temporal processing 

hypothesis.  The auditory temporal processing hypothesis assumes that underlying 

deficits in the ability to correctly identify and discriminate rapid yet subtle temporal cues 

in an acoustic signal leads to difficulty with phonological awareness and decoding 

abilities.  Thus, deficits in auditory temporal processing may manifest as the inability to 

segment acoustic events into individual phonetic units.  At present, evidence exists 

supporting the argument that RD stems from not only core deficits in phonological 

processing and naming speed but is associated with an auditory temporal processing 

deficit as well (Shaywitz & Shaywitz, 2005; Wolf & Bowers, 1999).  Another hypothesis, 

the visual temporal processing hypothesis, suggests that disturbances existing in the 

magnocellular pathway result in decreased sensitivity to rapid transitions of visual stimuli.  

It has been suggested that readers with visual processing deficits are unable to achieve 

automaticity and fluency in reading and/or decoding due to improper coding of letter 

position, impaired whole-word pattern recognition, or poor visual attention (Au & 

Lovegrove, 2007; Lovegrove, 1993; Ramus, 2003; Samuels, 1987).  Lassus-Sangosse, 



23 

 
 

  

N’guyen-Morel, and Valdois (2008) argued that while auditory deficits alone play a role 

in RD, visual deficits may occur as another expression of a sensory temporal processing 

deficit but would have no impact on reading achievement.  Thus, only a handful of 

studies indicate a relationship between visual temporal processing and RD.  Due to these 

equivocal findings, the hypothesis that RD stems from a pansensory temporal processing 

deficit currently remains debated (Bretherton & Holmes, 2003; Farmer & Klein, 1993; 

Heim, Freeman, Eulitz, & Elbert, 2001).  

This literature review focuses on several models of reading development, which 

will attempt to link reading abilities to underlying phonological processing and 

visual/lexical skills and to auditory and visual temporal processing capabilities.  

Behavioral and neuroanatomical studies are reviewed to highlight differences in 

phonological and orthographic processing abilities between normal readers and 

individuals with RD.  Neuroimaging studies in conjunction with evoked-related potential 

measures provide evidence supporting timing differences in the brain regions activated 

during temporal processing and reading tasks.  Auditory and visual temporal processing 

abilities in normal readers and individuals with RD are also reviewed to provide evidence 

that subtypes of reading disorder exhibit deficits in one or both of these processing 

abilities.  Theories regarding a general temporal processing deficit are also explored. 

Sensory Systems 

Auditory Temporal Processing 

 Auditory temporal processing refers to the ability of the auditory system to 

receive and analyze temporal cues within an acoustic signal.  The ability to perceive the 
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temporal properties of a signal, such as duration, sequence, or rhythm is crucial for the 

localization of sounds in the environment, perception of voice onset time (VOT), 

sequencing series of stimuli, and discriminating duration and frequency patterns all of 

which are critical skills in the understanding of spoken language (Bellis, 2003; Chermak 

& Musiek, 1997; Hirsh, 1959; Mody, Studdert-Kennedy, & Brady, 1997).  However, 

temporal processing also involves the process of identifying or discriminating rapidly 

changing stimuli, or the perception of rate (Mody, et al., 1997).  Several general models 

have been developed to describe auditory processing based on hierarchical stages: 

detection, perceptual analysis, and higher-level cognitive capabilities, all of which allow 

the listener to correctly extract and interpret meaning (Chermak & Musiek, 1997). Thus, 

hearing is not solely based on the identification and discrimination of sounds, but on the 

successful analysis of the information embedded in the signal (Phillips, 1999).  Deficits 

in auditory temporal processing and patterning manifest themselves as difficulty in 

recognizing acoustic contours and exhibiting poor reading (Bellis, 2003).  Various 

measures of temporal processing, including both behavioral and electrophysiological, 

have been utilized to identify possible deficits in the coding of temporal stimuli.  

Included among these measures are gap detection, word recognition in noise, and 

temporal order judgment tasks. 

 It has been suggested that gap detection tasks offer a closer look at the speech 

perception process.  The inability to detect subtle changes in an acoustic signal has been 

assumed to interfere with the identification of phonological cues during speech 

perception (Boets, Wouters, van Wieringen, & Ghesquiere, 2006; Phillips, 1999).  
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Speech perception requires attention to the temporal characteristics of speech, such as 

voice onset time, formant structures and transitional properties.  These temporal 

characteristics provide cues necessary for phonological decoding.  Gap detection tasks 

measure the listener’s ability to detect continuity changes in a signal by assessing the 

timing mechanism of the auditory system.  A typical gap detection paradigm consists of 

the insertion of a silent period in ongoing stimuli.  Two typical gap detection paradigms 

are used to measure auditory temporal acuity: (1) within-channel and (2) between-

channel.  Within-channel paradigms consist of leading and trailing markers of a gap with 

the same acoustic features.  Since the acoustic features of the stimuli are similar, the same 

set of peripheral auditory neurons is stimulated.  Therefore, a judgment made of temporal 

order is “actually the detection of discontinuity in the activity aroused in the neural or 

perceptual channel(s) representing stimulus content” (Phillips, 1999, p. 345).  In contrast, 

between-channel stimuli have leading and trailing markers that differ between one or 

more of the acoustic dimensions, such as duration or frequency.  Thus, a judgment of 

temporal order is based on the “relative timing of the offset of the activity in the channel 

representing the leading marker and the onset of the activity in the channel activated by 

the trailing marker” (Phillips, 1999, p. 346).  Therefore, gap detection tasks not only 

assess temporal order judgment based on the effects of manipulating the leading and 

trailing markers, but the timing mechanism of the auditory system is also assessed when 

the inter-stimulus interval (ISI) between markers is manipulated as well.   

Several researchers have investigated the effects of ISI and the acoustic nature of 

the stimulus on the perception of temporal cues (Hirsh, 1959; Phillips, 1999; Wright, 
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Lombardino, King, Puranik, Leonard, & Merzenich, 1997).  Hirsh (1959) studied the 

effects of interstimulus intervals in gap detection tasks.  Based on the premise that speech 

sounds must be discriminated from one another and judged in regards to order, Hirsh 

investigated three effects of interstimulus interval time and auditory perception.  Hirsh 

found that two milliseconds (ms) was the minimum amount of time required to detect two 

separate sounds instead of one and that this minimum amount of time was independent of 

the frequency or complexity of the signal.  As for the third effect, Hirsh found that in 

order for the normal listeners to correctly judge temporal order, or identify which sound 

came first, the interstimulus interval had to increase to approximately 17 ms, therefore, 

the minimum interstimulus interval required to detect one versus two signals is not 

enough time to correctly perceive temporal order. 

 With regard to the effects of interstimulus intervals and gap paradigm on auditory 

processing, Phillips (1999) suggested that the between-channel paradigm might more 

closely imitate temporal processing during normal speech perception due to the fact that 

gaps of two ms do not occur in human speech and that this paradigm more closely 

resembled VOT in spoken language.  Through several studies examining the effects of 

interstimulus intervals during the between-channel paradigm, Phillips and colleagues 

(1997, 1999, 2000) found that normal gap detection thresholds were consistently longer 

in the between-channel paradigm.  This gap detection threshold has been found to 

correspond to the “perceptual boundary between voiced and voiceless consonants” (Bellis, 

2003).  This finding indicates that disorders in processing the between-channel paradigm 

may offer insight into VOT characteristics and rapid auditory processing (Phillips, 1999).   
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Elangovan (2005) investigated the role of auditory mechanisms in phonetic 

distinctions.  Specifically, he explored the hypothesis that a between-channel gap 

detection paradigm would better demonstrate the psychoacoustic relationship to 

categorical VOT perception than a within-channel paradigm.  Participants included 10 

native English-speaking adults, 10 native Spanish-speaking adults, and 10 bilingual 

(English-Spanish) speaking adults.  Behavioral gap detection and VOT perception tasks 

were utilized.  Elangovan found that the between-channel gap paradigm was better 

correlated to categorical VOT perception as the between-channel gap detection paradigm 

mimics the acoustic dimensions of speech. 

Temporal processing involves both temporal resolution and temporal integration. 

Studies investigating temporal resolution and integration abilities have used various test 

paradigms, including forward and backward masking, gap detection, and continuous and 

interrupted noise.  Masking paradigms have provided evidence of a “release from 

masking” phenomenon that provides listeners with a certain advantage in word 

recognition.  Specifically, the release from masking phenomenon improves word 

recognition performance in interrupted noise conditions than in the continuous noise 

conditions (Stuart, 2005).  This performance difference is assumed to be due to the ability 

of the auditory system to catch “glimpses” of speech information during the interruptions 

in noise.  Thus, the listener is able to patch together the fragments of the signal and use 

their knowledge of language to correctly identify the signal. 

Stuart (2005) conducted a study to investigate the development of temporal 

resolution in normal-hearing school-aged children by examining word recognition scores 
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in quiet, continuous, and interrupted noise.  Previous studies have reported that temporal 

resolution in children is not as good as adults, which may be due to maturation effects.  

Five groups of fifteen children, grouped according to age from 6-7years, 8-9 years, 10-11 

years, 12-13 years, and 14-15 years, and one group of young adult women participated in 

the study.  All participants had normal hearing from 250-8000 Hz and normal middle ear 

function.  All participants had negative history of speech, language, and learning 

disorders.  The stimuli consisted of Northwestern University-Children’s Perception of 

Speech (NU-CHIPs) monosyllabic words, presented at 30 dB sensation level (SL) above 

speech recognition thresholds.  The lists were presented in quiet and in both interrupted 

and continuous noise conditions, in which the signal-to-noise ratio was 10, 0, -10, or –20 

dB.  Participants were instructed to repeat the words presented.  It was hypothesized that 

word recognition performance would be poorer for children than adults, that word 

recognition performance would be poorer in the noise conditions, and finally, that 

performance would reach adult-like sooner in quiet conditions than with competing noise. 

Results confirmed the hypotheses that children did perform poorer than adults in 

word recognition performance, especially in the competing noise conditions, and that the 

older the child, the more adult-like the word recognition performance in the quiet 

condition (Stuart, 2005).  This was found to occur around the age of 10 years.  Poor 

performance on word recognition in the noise conditions by the younger groups may be 

explained by their limited linguistic knowledge combined with immature temporal 

resolution capabilities.   Poorer performance in both interrupted and continuous noise 

conditions in the younger children may also be attributed to developing temporal 
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resolution ability.  Thus, while younger children perform poorer on temporal resolution 

tasks, their auditory systems are not selectively impaired but are as yet inefficient for 

processing signals in competing noise (Stuart, 2005). 

In another study conducted by Stuart et al. (2006), the researchers compared word 

recognition performance of normal hearing preschool children in interrupted and 

continuous noise paradigms to that of a normal adult listener.  Sixteen preschool children 

with normal hearing participated in the study.  NU-CHIPS monosyllabic words were 

presented in either interrupted or continuous noise to the children and responses were 

scored as percent correct.  A three-factor mixed analysis of variance (ANOVA) was 

utilized to analyze differences between group (adult vs. child), signal to noise ratio, and 

noise condition (interrupted vs. continuous).  Result indicated that word recognition 

performance was better in the interrupted noise condition, which confirmed previous 

results by Stuart (2005).  They also found that while children performed poorer than 

adults, children as young as four or five years performed better in the interrupted noise 

condition.  Stuart et al. (2006) cited research indicating that temporal resolution abilities 

should mature to adult-like by age twelve years of age.  Thus, it was concluded that 

younger auditory systems are not impaired in any way, but are less efficient in temporal 

resolution abilities than in older children and adults.  Taking this into consideration, it 

was suggested that temporal resolution abilities could successfully be assessed in 

preschool aged children using word recognition in noise paradigms.  Earlier identification 

would thus lead to earlier diagnosis and intervention of auditory processing deficit. 
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 Temporal order judgments are considered a more complex form of auditory 

processing than detection.  It has been suggested that the ability to sequence events may 

serve as the basis for higher-level cognitive processes, such as speech and language 

processing (Fink, Ulbrich, Churan, & Wittmann, 2006).  Evidence suggests that both the 

right and left temporal lobes have specified auditory processing functions and that these 

functions aid in the ability to correctly order sequences of events.  The left temporal lobe 

is responsible for serial ordering of acoustic stimuli whereas the right temporal lobe is 

primarily responsible for the recognition of temporal pattern (Musiek, Pinheiro, & 

Wilson, 1980).  The perception and verbal report of temporal order or patterning requires 

the interactive function of both temporal lobes.  Musiek, et al. (1980) investigated the 

effects of commissurotomy on temporal patterning tasks.  Three participants were studied 

approximately 10 days after surgery.  One participant was tested before surgery, ten days 

after surgery, and again one year after surgery.  Participants had normal pure tone 

thresholds (250-8000 Hz), normal speech reception thresholds, and normal word 

recognition scores.  Thirty frequency and 30 intensity pattern lists were randomly 

presented to each ear individually.  Two of the three tones were the same and the third 

differed in either intensity or frequency.  The patient had to respond with either “high” or 

low” and “soft” or “loud.”  The stimuli were presented in a second experiment where the 

patient had to hum the pattern.  The researchers found that all three subjects exhibited 

poor verbal sequencing performance on both the frequency and intensity tasks, following 

right ear presentation which was poorer than the left ear presentation.  However, 

performance on the humming task was significantly better than for verbal sequencing.  
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As previously stated, the left temporal lobe is responsible for the verbal sequencing of 

pattern and the right hemisphere is responsible for pattern perception.  Thus, verbal 

sequencing first requires the perception of pattern by the right hemisphere, the transfer of 

that information across the corpus callosum, and the processing of that information by the 

left hemisphere for linguistic labeling (Bellis, 2003).  With a commissurotomy, pattern 

information is unable to reach the left hemisphere, which explains why the patients were 

unable to verbally sequence the stimuli but were able to correctly hum the pattern.  The 

researchers concluded that, independently, neither hemisphere could adequately process 

the verbal sequencing of intensity and frequency patterns (Musiek et al., 1980).  Thus, 

frequency pattern tasks are sensitive to interhemispheric dysfunction.  Temporal order 

deficits inhibit the ability to correctly sequence successive stimuli or discriminate 

acoustic patterns of speech resulting in decoding breakdowns or the ability to segment 

sequences of acoustic events into individual phonemic units.  The ability to match 

phonemic units to their lexical counterparts is essential for fluent and automatic reading 

(Chermak & Musiek, 1997).  

Auditory Temporal Processing and Reading Disorders   

Temporal processing tasks provide significant insight with regards to children 

diagnosed with language disorders and RD.  Two hypotheses have been developed 

regarding impaired speech perception and subsequent phonological processing 

impairments.  The first is that speech perception is speech-specific and is thus related to a 

deficit in verbal working memory.  Under this hypothesis, it is assumed that poor readers 

have more difficulty “identifying phonetically similar, though phonologically 



32 

 
 

  

contrastive” speech stimuli, exhibited poorer performance in word recognition in noise 

conditions, and had shorter verbal memory spans (Mody, et al., 1997, p. 201).  The 

second hypothesis assumes that impaired speech perception is due to a temporal 

processing deficit and may be nonlinguistic in nature.  Tallal (1980) hypothesized that an 

auditory processing disorder may result in the inability to discriminate rapidly presented 

speech and nonspeech stimuli.  It might be expected that the more difficulty children 

experienced in processing brief acoustic stimuli, the more difficulty they would have in 

overall speech perception and subsequently in learning to read.  In other words, difficulty 

in speech perception may be related to the inability to quickly and efficiently make 

grapheme to phoneme conversions (Lachmann, Berti, Kujala, & Schroger, 2004).  It has 

been suggested that the underlying cause of reading disorders is due to phonological 

processing deficits; therefore, breakdowns occurring in auditory temporal processing 

degrade acoustic signals thus forming the root of phonological processing deficits in 

dyslexic children (Klein, 2002; Talcott, Witton, Hebb, Stoodley, Wastwood, France, 

Hansen, & Stein, 2002).   

Mody, Studdert-Kennedy, and Brady (1997) tested the speech-specific and 

auditory temporal processing hypotheses in normal and reading impaired children to 

determine which hypothesis could most accurately be associated with impairments in 

speech perception.   Three experiments were conducted in this study.  The first 

experiment sought to identify good and poor readers based on performance using a /ba/-

/da/ temporal order judgment task modeled after Tallal (1980) and to then determine if 

these difficulties still persisted in a discrimination task in which the syllables were readily 
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identifiable.  The researchers hypothesized that if the difficulties vanished during the 

discrimination task, then the errors observed in the temporal order task may be due to 

difficulties identifying the syllables rather than judging temporal order.  The second 

experiment served as a nonspeech stimuli discrimination control.  The researchers 

claimed that if poor readers displayed difficulties discriminating nonspeech stimuli, then 

it could be assumed that the difficulties may be due to an auditory temporal processing 

deficit of rapidly changing stimuli.  However, if the difficulties in discrimination were 

not observed, then it could be concluded that difficulties in discrimination are phonetic 

and thus specific to speech.  Finally, the third experiment compared good and poor 

readers on sensitivity to transitional information.  Forty second-grade children (age 7-9 

years) participated in the study.  All children underwent pre-experimental testing, 

consisting of the Word Attack and Word Identification subtests of the Woodcock-

Johnson Reading Mastery Test-Revised (Woodcock, 1987), the Peabody Picture 

Vocabulary Test-Revised (Dunn & Dunn, 1981), and the Block Design subtest of the 

Wechsler Intelligence Scale for Children-Revised (Wechsler, 1974).  All stimuli were 

presented through supra-aural headphones at a comfortable listening level.  Results from 

all three experiments did not lend support for an auditory temporal processing disorder in 

regards to speech perception.  In experiment 1, poor readers exhibited difficulties with 

/ba/-/da/ temporal order, but did not exhibit these same difficulties in the discrimination 

task.  These results supported the researchers’ hypothesis that poor readers can judge 

temporal order accurately if they can identify the correct items.  Thus, difficulties with 

temporal order judgment of /ba/-/da/ is phonological.  In the second experiment, no 
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significant difference was found between good and poor readers on the nonspeech 

discrimination task.  While in experiment one, there was a strong effect of ISI on 

discrimination of speech stimuli, there was no effect of ISI on nonspeech stimuli.  Thus, 

difficulty with /ba/-/da/ is specific to speech and cannot be attributed to auditory temporal 

processing.  Finally, in the third experiment, results showed that poor readers were not 

less sensitive to transitional information than good readers.  Again, this confirmed the 

hypothesis that difficulties in speech perception are speech specific rather than due to 

deficits in auditory temporal processing (Mody, et al., 1997).   

However, Wright, Lombardino, King, Puranik, Leonard, and Merzenich (1997) 

provided evidence supporting the argument that breakdowns in auditory temporal 

processing degrade acoustic signals in speech resulting in the inability to hear “acoustic 

distinctions among successive brief sounds in speech” (p. 176) and that such degradation 

may result in developmental language impairments.  The researchers reported that 

children with specific language impairment have severe auditory perceptual deficits in 

processing brief rather than longer durational auditory stimuli.  These researchers 

measured detection thresholds for a brief tone presented before, during, and after two 

different masking paradigms in eight children diagnosed with specific language 

impairment and eight children with normal language development.  Wright et al. (1997) 

revealed that the children with normal language development were able to detect the 

presence of a tone both preceding and following the presentation of noise, but not when 

the tone was presented simultaneously with the noise.  In contrast, the specific language 

impairment group needed a higher tone level in order to detect its presence in all 
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conditions.  It was also found that backward masking (when the tone was presented 

before the noise) hampered detection performance as much as when the tone was 

presented before or during the noise for the specific language impairment group.  When 

the researchers presented a brief tone with notched noise, the performance of the specific 

language impaired group improved as compared to the continuous noise paradigm.  That 

is, the language-impaired group was better able to detect the presence of a tone presented 

before the notched noise.  Wright et al. (1997) summarized that children with specific 

language impairment “are severely impaired in their ability to (1) separate a brief sound 

from a rapidly following sound of similar frequency, and (2) enhance the detection of a 

brief tone by exploiting a frequency difference between the tone and a longer co- 

occurring or preceding masking sound” (p. 177).  This evidence supports a previous 

study cited (Bradley & Bryant, 1978) in which children with reading difficulties were 

found to be poor at discriminating words that differed in their initial sound. 

In another study supporting the argument for an auditory temporal processing 

disorder in reading disorder, Rey, De Martino, Espesser, and Habib (2002) investigated 

difficulties experienced by poor readers with consonant cluster ordering.  The study was 

designed to examine whether a deficit exists in the ordering of two different syllable 

structures, such as consonant-consonant-vowel (CCV) or consonant-vowel-consonant-

vowel (CVCV); to find a possible link between temporal order judgment and event 

duration; and to investigate whether a temporal deficit is related to phonological 

impairment.  Three experiments were conducted on children with phonological 

processing deficits (age 9-13 years) and 10 normal readers (age 11-13 year).  The first 
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experiment investigated whether consonant order in a CCV syllable was difficult for 

children with a reading disorder.  The second experiment compared consonant ordering 

in CCV and CVCV sequences, in which the consonant clusters in both sequences were of 

the same duration.  Finally, the third experiment tested whether temporal duration of the 

consonants influenced performance on temporal order judgments.  Performances on all 

tasks in each experiment revealed significant differences in performance between normal 

and impaired readers.  Individuals with reading disorder consistently exhibited poorer 

performance on order judgments in all experiments.  These findings did not support 

Mody et al.’s (1997) claim that temporal order impairment is due to phonetic similarity of 

stimuli rather than auditory temporal processing, but rather supported Tallal’s claim of an 

auditory processing deficit.  That is, phonological awareness deficits in individuals with 

RD may be the result of an inability to order brief acoustic events (Rey et al., 2002). 

In a study conducted by Walker, Givens, Cranford, Holbert, and Walker (2006), 

the relationship between auditory processing of tonal stimuli and word recognition 

abilities in children was investigated.  Previous research indicated that poor lexical 

readers exhibited more difficulty processing rapidly presented tonal stimuli while poor 

nonlexical readers exhibited a global deficit in the recollection of tones regardless of 

presentation speed or response mode (Cestnick & Jerger, 2000).  Therefore, Walker et al. 

investigated not only performance on pitch pattern discrimination tasks but also duration 

discrimination tasks as well.  Eighteen normal hearing children (mean age 10 years) 

identified as either normal reading or dyslexic, based on decoding skills and receptive 

language tasks, participated in the study.  The pitch pattern and duration pattern tasks 
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were administered and results indicated that dyslexic children performed poorer on both 

the pitch and duration pattern discrimination tasks than the normal reading children.  The 

results confirm and support previous evidence that indicate the existence of an auditory 

temporal ordering disorder in dyslexic individuals. 

Finally, Boets, Wouters, van Wieringen, and Ghesquiere (2006) conducted a 

study investigating the relationship between auditory temporal processing and 

phonological processing and to determine if genetically high-risk children for reading 

disorder perform differently (poorer) on both phonological and auditory temporal 

processing tasks than low-risk children.  Sixty-two five-year-old children participated in 

the study.  Thirty-one children were identified as high-risk based on a questionnaires 

investigating the reading and spelling disabilities of family members and on the 

development of the child.  The other 31 participants were considered low-risk due to 

answers provided on the same questionnaires.  Phonological awareness and auditory 

temporal processing tasks were administered.  Phonological skills were assessed using 

phonological awareness tasks (sound identity, rhyme fluency), verbal short-term memory 

tasks (digit span forward and nonword repetition), and rapid naming tasks.  Productive 

and receptive letter knowledge was also assessed because previous literature has shown 

these tasks to be good predictors of literacy development (Boets et al., 2006).  For the 

auditory tasks, gap-detection, frequency modulation (FM) detection, and tone in noise 

detection tasks were utilized.  All auditory tasks were presented monaurally at 70 dB SPL 

over calibrated supra-aural headphones.  For the auditory temporal tasks, a three-interval 

forced choice oddball paradigm was used.  The participant was instructed to indicate 
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which stimulus was different from the others.  A two-down, one-up staircase procedure 

was used to calculate 70.7% correct responses and thresholds were calculated as the 

geometric mean of the values in the last four reversals.  All data were collected between 

the second and fourth month of the last year of kindergarten.   

Boets et al. (2006) revealed that the high-risk children tended to perform poorer 

on almost all phonological tasks than the normal children, although some of these 

performance differences did not reach significance.  For the auditory tasks, there was no 

significant group effect for gap-detection, FM detection, or tone-in-noise detection; 

however, there was a significant effect of threshold run for all three of the auditory tasks.  

When examining the relationship between phonological and auditory skills, the 

researchers found that for the total group the FM detection and tone-in-noise detection 

were significantly related to variables assessing phonological awareness skills.  FM 

detection was the only auditory task related to letter knowledge.  However, for the high-

risk group, only tone-in-noise detection was significantly related to phonological 

awareness.  The researchers concluded that a specific aspect of auditory temporal 

processing might not be related to phonological awareness, since gap-detection was not 

related to any phonological awareness task, but rather the nontemporal tone-in-noise task.  

They further suggested that accurate phase-locking systems might be more related to 

phonological processing due to the finding that deviant auditory spectral processing was 

more closely related to phonological processing skills.  Boets et al. neither confirmed nor 

negated the auditory temporal processing hypothesis of reading disorder. 
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While several behavioral studies have been conducted to investigate the link 

between auditory temporal processing and reading impairment, other researchers have 

utilized electrophysiological measures (Alonso-Búa, Diaz, & Ferraces, 2006; Schulte-

Körne, Deimel, Bartling, & Remschmidt, 1998; Sharma, Purdy, Newall, Wheldall, 

Beamon, & Dillon, 2006).  One electrophysiological measure typically used is the 

mismatch negativity (MMN).  This measure is best suited to examine automatic central 

auditory processing (Schulte-Körne et al., 1998).  The MMN is a component of the 

evoked related potential that is elicited by any discernible change in an acoustic sequence 

and is thought to reflect behavioral acoustic discrimination (Schulte-Körne et al., 1998; 

Alonso-Búa et al., 2006; Sharma et al., 2006).  The MMN has been used to investigate 

whether reading impairment is related to a speech-specific deficit or a deficit in auditory 

temporal processing. 

Schulte-Körne, et al. (1998) investigated whether a relationship exists between 

reading disorder and central auditory processing.  To determine if speech perception 

deficits were preattentive and automatic, the researchers utilized an oddball paradigm 

using both tonal and speech stimuli.  MMN responses were recorded.  The researchers 

hypothesized that the MMN would be attenuated for speech stimuli only in the dyslexic 

readers.  Nineteen children with spelling disability (mean age 12.5) and 15 normal 

reading children participated in the study.  The children with spelling disability were 

defined as having lower word decoding ability than the controls.  All auditory stimuli 

were presented binaurally through headphones.  Tonal stimuli consisted of a standard 

tone of 1000 Hz and a deviant tone of 1050 Hz.  Tones were 90 ms in duration and were 
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presented in pseudorandom order.  Speech stimuli consisted of a standard /da/ and a 

deviant /ba/, adopted from Heinz and Stark (1996).  Participants were instructed to attend 

to a silent video and were asked several questions on topics of the movies after EEG 

recording.   

Schulte-Körne et al. (1998) revealed no significant effects for tonal stimuli 

between groups, while there was significant effect for speech stimuli.  That is, children 

with RD exhibited attenuated MMN responses for speech stimuli but not for tonal 

stimuli.  These results are supported by results from Alonso-Búa, et al. (2006) who found 

no significant differences between normal and impaired readers in MMN amplitude.  

However, they did find a significant delay in MMN latency for the linguistic stimuli for 

both groups.  Reduced discriminatory ability for linguistic stimuli suggests a specific 

phonological deficit in children with RD.  These results support the argument that speech 

perception deficits are, indeed, speech specific and not due to an auditory temporal 

processing disorder.   

However, a study conducted by Sharma, et al. (2006) showed that reading 

impairment might stem from an underlying auditory processing disorder.  Comparing 

behavioral phonological and audiological performance to MMN responses, the 

researchers examined whether children with reading impairment show auditory 

processing deficits for both speech and nonspeech stimuli.  They hypothesized that 

children with reading impairment would show attenuated MMN responses as compared 

to normal reading children.  Twenty-one children (mean age 10.4) served as controls 

while 15 children with RD (mean age 10.9) were placed in the experimental group.  
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Children with RD were identified as having reading scores two years behind their 

chronological ages and showed no evidence of attention, language or cognitive deficits.  

Children were tested using the Wheldall Assessment of Reading Passages (WARP), 

which measures reading fluency and Coltheart and Castle’s Word/Nonword Test, which 

measures regular and irregular words, and nonwords.  Four behavioral tests were used to 

assess auditory processing: dichotic digits test version 2, frequency pattern test, random 

gap detection, and ipsilateral speech-in-noise, with a presentation level of 60 dB HL 

under supra-aural headphones.  For the frequency pattern test and the speech-in-noise 

test, stimuli were presented to the right and left ears separately.  For the gap detection 

task and the dichotic digits test, stimuli were presented binaurally.  In the 

electrophysiological test battery, six deviant stimuli were delivered monaurally to the 

right ear.  An oddball paradigm was used where the standard stimuli for tones was a 1000 

Hz tone and two deviant tones of 1100 Hz and 1500 Hz.  The standard chord stimuli was 

a combination of 1000, 1100, and 1500 Hz tones and the two deviant chords were 1000 

and 1100 Hz tones presented simultaneously and 1000 and 1500 Hz tones presented 

simultaneously.  And finally, the standard speech stimuli were /da/ and /ga/ with /a/ 

pronounced similar to the word “hard” and for the deviant the /a/ was spoken as a low 

back vowel (as in “hard” without the /r/).  For the MMN recordings, P1, N250 peak 

latencies and amplitudes were measured for both standard and deviant stimuli. 

Sharma et al. (2006) found that the reading disabled group had poorer reading 

fluency and accuracy scores as well as poorer nonword reading scores than normal 

reading children.  The control group performed well on all behavioral auditory tests while 
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the reading disabled group showed deficits on at least one of the four auditory tests, 

specifically the frequency pattern test.  Additionally, the researchers also found that 

MMN responses were more consistently present with the speech stimuli; however MMN 

responses were too inconsistent to be used as a clinical tool for diagnosing auditory 

processing deficits.  The researchers concluded that there is no clear relationship between 

MMN and auditory processing disorder. This could be due to poor reliability of the 

behavioral results or the small number of trials in the behavioral paradigm.  However, a 

significant number of children with RD exhibited difficulty with the frequency pattern 

test, which is a complex task requiring “frequency discrimination, rapid auditory 

processing, temporal sequencing, and linguistic labeling” (Sharma et al., 2006, p. 1141).  

Thus, poor temporal discrimination may account for poor speech perception and 

subsequent phonological processing.  Children with reading impairment who showed 

problems with nonword reading always showed evidence for an auditory processing 

disorder.  The researchers then concluded that poor phonological awareness might be due 

to poor auditory temporal processing. 

In summary, the inability to detect subtle changes in acoustic stimuli has been 

linked to phonological processing deficits in reading disabled children (Sharma et al., 

2006; Tallal, 1980; Walker et al., 2006; Wright et al., 1997).  Breakdowns in the most 

basic level of auditory temporal processing, detection, result in the inability to decode 

individual phonological elements in speech, thereby inhibiting the ability to make correct 

grapheme to phoneme correlations.  It has been suggested that decoding deficits 

occurring at the lowest level of processing impedes higher-level processes such as 
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comprehension (Shaywitz & Shaywitz, 2005).  In addition, interhemispheric dysfunction 

can affect the ability of the listener to correctly judge temporal order or pattern.  It has 

also been suggested that within the human brain exists a time organization system that is 

independent of a “peripheral and central modality-specific system,” thus leading to the 

argument that temporal processing deficits not only occur in the auditory system, but in 

the visual system as well (Bellis, 2003).  It has been argued that visual temporal 

processing deficits may lead to the inability to retain visual information and the ability to 

rapidly process sequences of letters (Boden & Brodeur, 1999).  Thus, it is important to 

review research focusing on the relationship between visual temporal processing and 

decoding. 

Visual Temporal Processing and Reading Disorders   

Until recently, previous research revealed that normal reading and reading 

impaired individuals did not differ systematically in visual processing and it was thus a 

common assumption that visual processing deficits were not attributable to reading 

disorder (Lovegrove, 1993).  However, over the past two decades, research has found 

visual abnormalities associated with reading disorder, specifically involving the 

magnocellular system.  Anatomical studies investigating the visual pathway have 

revealed that the visual system is comprised of two separate yet parallel pathways 

(Cestnick& Coltheart, 1999; Lehmkuhle, et al., 1993; Lovegrove, 1993).  The 

magnocellular pathway is predominately a flicker- or motion-detecting system, is more 

sensitive to rapidly changing stimuli and is mediated via magnocellular lateral geniculate 

neurons to the occipital and parietal lobes.  On the other hand, the parvocellular system is 
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predominately a detailed pattern system, is more sensitive to slow moving stimuli, color 

and hue, and mediated via the parvocellular lateral geniculate neurons to the occipital and 

temporal lobes (Cestnick & Coltheart, 1999; Evans, Drasdo, & Richards, 1996; 

Lovegrove, 1993).  Since the magnocellular system is primarily a motion detection 

system, it has been suggested that slower visual processing and longer visual persistence 

at lower spatial frequencies observed in individuals with reading disorder is due to a 

deficit affecting the magnocellular system (Eden, Van Meter, Rumsey, & Zeffiro, 1996).  

In other words, a specific deficit to the magnocellular pathway may underlie several 

characteristic errors associated with reading impairment. 

 The magnocellular theory of reading impairment holds that reading involves a 

series of brief fixations separated by saccadic eye movements (Skottun, 2000).  The 

theory also holds that the parvocellular system is suppressed by the magnocellular system.  

This suppression serves to prevent information processed during one fixation from 

lingering into the next fixation.  Failure of the magnocellular system to suppress the 

parvocellular system may cause visual confusion, specifically confusing neighboring 

letters while reading (Skottun, 2000; Stein & Walsh, 1997).  However, whether the 

function of these two systems is causal or associative to reading impairment is still 

unclear.  Thus, several behavioral, electrophysiological, and neuroimaging studies have 

been conducted to investigate the role of the magnocellular system and its relationship to 

reading impairment. 

As mentioned above, the lower level components of the visual system are 

comprised of two parallel pathways: the magnocellular and parvocellular (Borsting, 
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Ridder, Dudeck, Kelly, Matsui, & Motoyama, 1996).  Evidence of a magnocellular 

deficit in reading impaired individuals comes from several behavioral studies, which have 

employed three main tasks: contrast sensitivity to both static and flickering stimuli, 

coherent motion, and the Ternus task. Contrast sensitivity tasks have been used to assess 

the magnocellular system because it has been shown that reading impaired individuals 

have reduced sensitivity to lower spatial frequencies and higher temporal frequencies 

(Borsting et al., 1996; Conlon, Sanders, & Zapart, 2004; Demb, Boynton, Best, & Heeger, 

1998; Evans, et al., 1996; Greatrex & Drasdo, 1995).   

 In a study conducted by Borsting, et al. (1996), spatial contrast sensitivity was 

assessed in reading impaired adults subtyped as either dyseidetic or dysphoneidetic.  

These two subtypes were chosen because dyseidetic reading disorder is hypothesized to 

stem from visual processing deficits and dysphoneidetic reading disorder was chosen 

because it represents the most severe type of reading disorder and will therefore result in 

the most significant difference on visual processing tasks.  Twenty-six participants (mean 

age 35 years) were divided into three groups: normal, dyseidetic, and dysphoneidetic.  

Each subject had to meet visual acuity and intelligence criterion.  Dyslexic subtypes were 

determined by performance on the Adult Dyslexia Test (Griffin, Christenson & Walton, 

1990).  The visual stimuli consisted of vertically oriented sinusoidal gratings displayed 

on a monitor and were viewed binocularly.  A two-alternative, forced-choice technique 

was used and a modified staircase method was used to determine threshold.  Six spatial 

frequencies were employed (0.5, 1.0, 2.0, 4.0, 8.0, 12.0 c/deg) and gratings drifted at two 

temporal frequencies (1 and 10 Hz).  Borsting et al. (1996) found that individuals 
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classified as dyseidetic did not perform significantly different from those of normal 

individuals on the spatial contrast sensitivity tasks at any frequency, which did not 

confirm the hypothesis that dyseidesia stems from visual processing deficits.  However, 

the dysphoneidetic individuals showed reduced sensitivity to low spatial frequency at 10 

Hz, which confirms the hypothesis that a magnocellular deficit is related to a subtype of 

reading disorder.    

 In another study conducted by Demb, et al. (1998), contrast sensitivity and motion 

discrimination performance was compared to determine if reading skill is related to 

magnocellular pathway function.  Five individuals with reading disorder (mean age 22.2 

years) and five control subjects (mean age 26.8 years) participated in the study.  

Participants were administered five reading tests: the reading and spelling subtests of the 

Wide Range Achievement Test (WRAT 3), the word-attack subtest of the Woodcock-

Johnson, and the reading rate and comprehension measures of the Nelson-Denny.  Speed 

discrimination was measured using a two-interval, forced choice double staircase 

procedure.  Stimuli were moving 0.4 c/deg sine-wave gratings at low mean luminance (5 

cd/m2).  Participants were instructed to report which of the two stimuli moved faster.  

Contrast detection thresholds were measured using a similar method and stimuli were the 

same as those in the speed discrimination task.  The researchers found that the motion 

discrimination task was a better indicator of reading impairment than contrast detection.  

The researchers suggested that when assessing the magnocellular pathway in individuals 

with reading disorder, motion discrimination tasks should be included in the test battery. 
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 A review by Skottun (2000) highlighted several potential problems interpreting 

results from early research using contrast sensitivity tasks.  That is, several early studies 

investigating the relationship between reading impairment and a magnocellular deficit 

have produced results that do not match predictions for a magnocellular deficit.  Skottun 

(2000) makes the distinction concerning the difference between spatial and temporal 

contrast sensitivity.  A contrast sensitivity curve exists to help predict deficits in the 

magno- or parvocellular systems.  The curve represents the “sensitivity of whichever of 

the two systems is the more sensitive at any given spatial and temporal frequency” 

(Skottun, 2000, p.112).  Using this curve, one could predict that a deficit in the 

magnocellular system exists if reduced sensitivity is observed below 1.5 c/deg.  On the 

other hand, one would expect a parvocellular deficit if reduced sensitivity was observed 

above 1.5 c/deg.  However, a number of earlier studies failed to produce results that could 

clearly be interpreted as a magnocellular deficit.  That is, these researchers found that 

performance on contrast sensitivity tasks was less sensitive to higher spatial frequencies 

(above 1.5 c/deg) than lower spatial frequencies for individuals with reading disorder.  

Using the contrast sensitivity curve, these results do not predict a magnocellular deficit, 

but rather a parvocellular deficit. 

 While a number of studies failed to produce unambiguous results concerning a 

magnocellular deficit, other studies employing both static and flickering gratings have 

produced results more consistent with this deficit (Cornelisson, Hansen, Hutton, 

Evangelinou, & Stein, 1998; Borsting et al., 1996; Demb et al., 1998).  When flickering 

stimuli (20 Hz) were used at low gratings of 0.5, 1.5, and 2 c/deg, the researchers found 
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that reading impaired individuals’ sensitivity was reduced with increases in temporal 

frequency, which is in agreement with the magnocellular deficit of reading impairment 

(Skottun, 2000). 

 Skottun (2000) offered possible explanations as to why results on contrast 

sensitivity tasks did not reconcile with predictions of a magnocellular deficit.  One such 

explanation is that the criterion for a magnocellular deficit is reduced sensitivity below 

1.5 c/deg.  None of the studies he reviewed met this criterion.  In fact, most of the studies 

found reduced sensitivity at medium or higher spatial frequencies, which is more 

consistent with a parvocellular deficit.  If the criteria were more relaxed so that it 

included medium spatial frequencies, more results from these earlier studies would be 

consistent with a magnocellular deficit.  However, if higher spatial frequencies were 

included it would be difficult to tease out a magnocellular deficit from a parvocellular 

deficit (Skottun, 2000).  Several improvements were suggested by Skottun (2000) for 

future research using contrast sensitivity, such as the use of “Gaussian blob” to reduce 

sharp edges during the flicker cycle, masking stimulus transients (which reduces 

sensitivity of the magnocellular system), and using a dark screen during flickering rather 

than a luminance-matched surround because low luminance emphasizes the 

magnocellular pathway to the cortex. 

 Williams, Stuart, Castles, and McAnnally (2003) conducted a study investigating 

the relationship between a magnocellular deficit and subgroups of reading impairment.  

Twenty individuals with reading impairment and 23 normal reading children (age 8-12 

years) participated in the study.  The children with reading impairment were further 
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classified as having phonological deficits, visual/lexical deficits, or a combination of 

deficits.  The visual stimulus consisted of a Gaussian blob flickering sinusoidally at 8.33 

Hz for 1 second, which measured the magnocellular system.  The stimulus used as a 

measure for the parvocellular system was a moderately high spatial frequency (8 c/deg), 

which was presented for 1 second.  Thresholds were determined using a modified three-

down, one-up two-alternative, forced-choice staircase procedure to obtain a 79% correct 

threshold.  Each trial consisted of two intervals, the first of which was paired with a 2500 

Hz tone and the second, which was paired with a 400 Hz tone.  The stimulus was 

presented either during the first or second interval.  The participant was instructed to 

verbally indicate in which interval the stimulus was presented.  The researchers found no 

significant difference in performance between normal readers and all three subgroups of 

reading impairment in both static and flickering contrast sensitivity tasks.  They 

hypothesized that the lack of a magnocellular deficit could be explained by a lack of 

specific damage to the magnocellular system in their sample of reading impaired children 

(Williams et al., 2003).  However, this leaves the question of whether a relationship exists 

between a magnocellular deficit and reading impairment unanswered. Several other 

behavioral studies have employed coherent motion tasks to determine if a relationship 

exists between reading impairment and a magnocellular deficit. 

 While contrast sensitivity tasks have been useful in examining the function of the 

magnocellular and parvocellular pathways during reading, another task, the coherent 

motion task, has also been utilized.  As mentioned previously, deficits in visual 

processing can lead to letter confusion during reading.  Cornelissen, Hansen, Hutton, 
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Evangelinou, and Stein (1998) proposed that impaired magnocellular function, 

specifically, leads to letter transposition while reading, which may explain difficulties 

experienced by reading impaired individuals.  That is, a magnocellular deficit may cause 

letters or parts of letters to be lost, duplicated, or scrambled during reading.  They 

hypothesized that a positive correlation should exist between impaired performance on 

motion coherence tasks and letter errors in reading impaired individuals, thus supporting 

the magnocellular deficit of reading impairment.  Sixty children (mean age 10.5 years) 

participated in the study and had normal to corrected-normal visual acuity.  AH1 X & Y 

Tests of Perceptual Reasoning (Heim et al., 1977) and the Non-reading Intelligence Tests 

(NRIT) level 3 (Young, 1996) were used to assess IQ.  The children’s’ reading age was 

assessed using the British Ability Scales (BAS) single word reading accuracy test and 

phonological awareness was assessed using two subtest of the Phonological Awareness 

Battery (Educational Psychology Publishing, UCL, 1995): the rhyme test and the 

spoonerism test.  Experimental tasks included a word list based on the BAS reading age 

and a coherent motion task.  The coherent motion task consisted of random dot 

kinematograms.  Two black rectangular patches contained 300 randomly arranged white 

dots each.  Each trial lasted 2300 ms and coherent motion appeared randomly in one of 

the two patches.  “Coherently moving dots lived for only two consecutive animation 

frames (total of 58 ms) before being reborn in a new, randomly selected position on the 

patch” (Cornelissen et al., 1998, p.475).  Thresholds were determined using a two-

alternative, forced choice method.  Results revealed a non-linear, positive relationship 

between coherent motion thresholds and letter errors made by reading impaired children.  
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The researchers also found that those children with intermediate phonological skills made 

more letter errors than those children who had very poor or very good phonological skills. 

However, since there was no significant correlation between performance on 

phonological tasks and coherent motion, the researchers hypothesize that this 

performance was independent of magnocellular function.  The results of this study reveal 

a positive correlation between reading errors and magnocellular function, thus suggesting 

component skills in reading may be affected by deficits in the magnocellular pathway 

(Cornelissen et al., 1998). 

 In another study of coherent motion, Talcott, Hansen, Assoku, and Stein (2000) 

predicted poorer performance of coherent motion sensitivity in reading impaired 

individuals as compared to normal readers, especially at low and intermediate dot 

densities where information is more limited.  Participants consisted of 10 adults 

diagnosed with RD (mean age 25.2 years) and 10 normal reading adults (mean age 22.2 

years).  All adults with reading impairment had been previously diagnosed by clinical or 

educational psychologists based on their literacy skills and cognitive abilities.  The 

stimuli consisted of random dot kinematograms.  Each dot had a lifetime of four 

animation frames, after which they would reappear in random location thus giving the 

appearance of coherent motion.  The subjects were instructed to indicate in which patch 

coherent motion was perceived.  Thresholds were determined using a one-up, one-down, 

two-alternative, forced-choice, single staircase procedure.  Both the effects of dot density 

and stimulus duration were analyzed.  Stimulus durations consisted of 4, 9, 18, and 36 

animation frames, which corresponded to 200, 451, 902, and 1804 ms, respectively.  Dot 
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density consisted of patched containing either 75, 150, 300, or 600 dots, which 

corresponded to a dot density of 1.5, 3.1, 6.1, and 12.2 dots/deg2, respectively.  The 

researchers found that coherent motion sensitivity in reading impaired individuals was 

significantly reduced than controls for both the stimulus duration and dot density 

experiments.  These findings support the hypothesis of poor global motion processing in 

developmental reading disorder.  However, the reading impaired group was less sensitive 

to motion at each stimulus duration tested.  The researchers found that this finding is not 

consistent with previous research indicating that reading impaired individuals are less 

sensitive primarily to short duration stimuli.  Thus, results from Talcott et al. (2000) 

“demonstrates that the visual deficit is more related to their poor integration of the 

changes in time that are characteristic of dynamic visual stimuli than to more generalized 

detection deficits for stimuli with limited presentation durations” (p. 942). 

 A technique, called the Ternus task, has also been used to assess the magno- and 

parvocellular systems.  Developed in 1938 by Ternus, the tasks allows for illusions of 

movement to be created.  The squares, aligned horizontally, are presented and then re-

presented on a screen.  When the interstimulus interval is approximately 50 ms or more, 

the three squares appear to move backwards and forwards as a group, whereas if the 

interstimulus interval is 50 ms or shorter, the squares appear to move one by one, also 

known as apparent element movement (Cestnick & Coltheart, 1999).  Breitmeyer & 

Ritter (1986) argue that apparent element movement depends upon the parvocellular 

system and group movement depends on the magnocellular system.   
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 Cestnick and Coltheart (1999) investigated the relationship between exception 

word reading and nonword reading to a visual deficit observed during the Ternus task.  

The purpose of the study was to determine if a correlation existed between exception 

word reading and group movement.  The researchers hypothesized that if exception word 

reading was associated with group movement, then there would also be an association to 

nonword reading and group movement.  However, if the exception word reading variable 

were partialled out, then the correlation between nonword reading and group movement 

would disappear (Cestnick & Coltheart).  Forty-three individuals with reading 

impairment and 44 normal readers participated in the study.  Participants were selected 

from primary schools throughout Sydney, Australia.  The Ternus display consisted of 

three squares on a dark background.  Apparent movement was measured at 12 

interstimulus intervals: 8.3, 16.6, 24.9, 33.2, 41.5, 49.8, 58.1, 66.4, 74.7, 83.0, 91.3, and 

99.6 ms. Each individual display had a duration of 50 ms and there were 20 trials per 

interstimulus interval, thus resulting in a total of 240 trials.  The participants were 

instructed to stare at a cross while the squares were flashed above or below it and make a 

judgment if three squares were moving (“three moving”) or if one square was moving 

(“one jumping”).   

The researchers discovered that the reading impaired readers performed worse on 

the Ternus task than did normal readers.  To determine if different groups of reading 

impairment display different patterns of performance on the Ternus task, Cestnick and 

Coltheart (1999) subtracted the number of nonwords read correctly from the number of 

irregular words read correctly from all 80 participants.  Positive values indicated 
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phonological reading disorder and negative values indicated surface reading disorder.  

Only pure phonological dyslexics (10 children) and pure surface dyslexics (3 children) 

were chosen for reanalysis of performance on the Ternus task.  When compared with 

phonological dyslexics, surface dyslexics produced less group movement at short 

interstimulus intervals and more group movement at longer interstimulus intervals.  

When compared to normal readers, the phonological dyslexics displayed poorer 

performance on the Ternus task than the surface dyslexics.  The researches suggested that, 

“evidence for heterogeneity is clear” (Cestnick & Coltheart, 1999, p. 242).  That is, only 

some individuals with developmental reading disorder perform abnormally on Ternus 

tasks (i.e. specifically phonological dyslexics) whereas others do not.  Positive 

correlations were found between poor performance on the Ternus task and nonword 

reading skills.   

 Electrophysiological studies have also been used to assess visual pathway 

function by measuring latency and amplitude of responses in normal and reading 

impaired individuals.  Based on behavioral studies, it has been hypothesized that reading 

impaired individuals would display longer latencies and shorter amplitudes on low-level 

visual tasks than normal readers.  That is, since reading impaired individuals showed 

reduced sensitivity to rapidly changing dynamic visual stimuli, it is assumed that the 

visual system in the reading impaired is characterized by longer integration time and/or 

longer visual persistence (Breznitz & Misra, 2003).   

 Lehmkuhle, et al. (1993) conducted an electrophysiological study comparing 

magnocellular visual pathway function in normal reading and in reading disordered 
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children.  The researchers hoped to support the hypothesis that the function of the 

magnocellular pathway in reading-disabled children was reduced as compared to normal 

reading individuals.  Visual evoked potentials were recorded in children 8-11 years old 

using flicker fusion tasks.  Similar to auditory gap detection tasks, flicker fusion tasks 

assess the timing mechanism of the visual system and its ability to detect one versus two 

flashes of light and thresholds are measured in ms. The critical finding of the visual 

evoked potential measures was that individuals with RD had longer latencies and were 

attenuated as compared to the normal reading children.  The results supported the 

hypothesis of a magnocellular pathway deficit in reading disabled individuals involving a 

slowing of response in this pathway.  It has been speculated by Livingstone et al. (1991) 

that the magnocells in the lateral geniculate nucleus (LGN) are smaller and more 

disorganized in individuals with reading disability and that smaller magnocells may 

affect visual processing speed.  

 Due to conflicting evidence in studies utilizing visual evoked potential measures 

to support the existence of a magnocellular deficit in individuals with RD (Galaburda and 

Livingstone, 1993; Lehmkuhle et al., 1993), the role of the parvocellular and 

magnocellular deficit in reading impairment was investigated in another study conducted 

by Farrag, Khedr, and Abel-Naser (2002).  Fifty-two children with reading impairment 

and 41 controls participated in the study.  All children with reading disorder were 

selected based on IQ and scores on Wechsler Intelligent Scale for Children-Revised and 

Wide Range Achievement Test.  All children were in the fourth grade of elementary 

school.  Visual stimuli consisted of black and white checkerboard patterns displayed on a 
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screen.  The participants were instructed to fix their gaze on a dot in the center of the 

screen.  The latency and amplitude of the first positive (P100) were measured.  Results 

showed that the latency of the VEP for high contrast and 3-Hz stimulus rate was 

significantly shorter than normal readers, while no significant difference was observed 

for amplitude.  No significant difference in either latency or amplitude was observed 

between groups for low contrast stimuli.  However, when comparing low and high 

contrast in the same group, the children with reading impairment showed significantly 

reduced amplitude under low contrast than normal readers.   No significant differences in 

latency or amplitude were observed between the reading impaired group and normal 

readers under rapid and slow stimulation rates.  Results from this study were in 

agreement with previous studies that found no magnocellular deficit in reading impaired 

individuals.  In fact, the researchers suggested that it is the magnocellular system that is 

suppressed during saccadic suppression, which is, again, contradictory to the 

magnocellular theory.  The findings indicated normal functioning of the magnocellular 

system, suggesting that a deficit exists in the parvocellular system (Farrag et al., 2002).   

 Neuroimaging studies have also been conducted to further the argument for a 

magnocellular deficit in reading impairment.  Anatomical studies in postmortem brains 

have revealed abnormalities in the magnocellular layers of the lateral geniculate nucleus 

(Eden et al., 1996).  These abnormalities include smaller and disorganized magnocellular 

neuron cell bodies.  Behavioral and electrophysiological studies have found conflicting 

evidence for diminished sensitivity to rapidly changing stimuli (Farrag et al., 2002; 

Lehmkuhle et al., 1993, Lovegrove, 1993; Skottun, 2000).  In light of these results, it is 
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proposed that impaired activation in MT/V5 during motion perception will be seen during 

neuroimaging, thus adding support to the magnocellular deficit. 

 Eden, Van Meter, Rumsey, and Zeffiro (1996) used fMRI to study visual motion 

processing in men with normal reading ability and those with RD.  A stimulus velocity 

judgment task was used to measure behavioral visual motion perception in dyslexic men.  

Blood-oxygenation level dependent (BOLD) contrast signals were measured while 

viewing one of the three stimuli.  BOLD signals were compared between the two groups 

of men during a low-contrast coherent motion task.  The results revealed difference in 

activation of the area MT/V5 between the individuals with normal and impaired reading 

ability.  That is, the control group exhibited activation in the MT/V5 area, which has been 

reported to show particular sensitivity to coherent motion, whereas there was no 

activation in the men with RD.  The researchers suggested that the lack of activation in 

this area may be due to “disrupted interaction of the motion processing areas that usually 

require exquisite temporal synchronization” (Eden et al., 1996, p. 114).  Another 

interpretation is that abnormalities in the visual system may be one component of a 

disorder that has abnormalities from other systems associated with it.  In the case of 

reading impairment, this interpretation suggests a global temporal deficit. 

 Research conducted on both auditory and visual temporal processing have 

revealed that individuals with reading disorder exhibit poorer performance on detection 

and processing speed tasks than normal readers (Hirsh, 1959; Lehmkuhle et al., 1993; 

Lovegrove, 1993; Phillips, 1999; Talcott et al., 2000; Talcott et al., 2002; Tallal, 1980; 

Walker et al., 2002).  Talcott et al. (2000) found that individuals with reading disorder 
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were less sensitive to dynamic visual stimuli, such as rapid motion changes, and that this 

reduced sensitivity may relate to poor integration of changes in time.  Similarly, these 

readers performed poorer on auditory temporal order tasks, which may also reflect 

reduced sensitivity to changes in the temporal spectrum of the signal.  Lovegrove (1993) 

suggested a relationship between combined deficits of both the auditory and visual 

systems and phonological processing abilities.  That is, it may be possible that some 

individuals with RD have problems processing rapidly presented stimuli in several 

modalities (i.e. auditory and visual), reflecting a hypothesized general timing deficit 

associated with RD, which is further supported by Livingstone et al. (1991).   

Auditory/ Visual Temporal Processing   

Due to the emergence of data indicating a visual temporal processing deficit 

associated with reading disorder (Lehmkuhle et al. 1993; Lovegrove, 1993), a hypothesis 

has been formulated suggesting that individuals with reading disorder have temporal 

processing deficits in both the auditory and visual modalities (Ben-Artzi et al., 2005).  

Talcott, Gram, Ingelghem, Witton, Stein, and Toennessen (2003) conducted a study 

investigating dynamic visual and auditory stimuli in children who were native speakers of 

Norwegian.  The purpose of this study was to determine if sensory temporal processing 

deficits were exhibited by children who speak a language with more regular orthography 

as compared to children who speak a language reflecting more irregular orthography, 

such as English.  Employing an auditory frequency modulated (FM) tone task and a 

visual coherent motion task, the researchers found that the Norwegian children also 

demonstrated poor auditory and visual temporal processing based on poor performance 
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on auditory and visual detection tasks.  Since the Norwegian language has a more regular 

orthography, it was concluded that poor performance on dynamic auditory and visual 

tasks is characteristic of most disabled readers, regardless of native language.  

Several studies have been conducted examining cross-modal temporal processing 

abilities in normal readers and those with RD (Farmer & Klein, 1993; Heim et al., 2001; 

Ingelghem, Wieringen, Wouters, Vandenbussche, Onghena, & Ghesquiere, 2001; Rose, 

Feldman, Jankowski, and Futterweit, 1999) in attempts to determine a relationship 

between auditory versus visual temporal processing abilities and phonological versus 

visual/lexical decoding (Bretherton & Holmes, 2003; Cestnick, 2001; Walker et al., 

2002).  However, research investigating auditory and visual temporal processing using 

analogous tasks to assess temporal resolution has either found evidence of a general 

processing deficit or found no association between visual processing and reading ability 

(Bretherton & Holmes, 2003; Farmer & Klein, 1993; Heim et al., 2001) 

Ingelghem, et al. (2001) assessed detection abilities (lowest level of temporal 

processing), by means of psychophysical threshold tests for gap detection in the auditory 

system and for double flash detection in the visual system, in order to determine the 

existence of a general temporal processing deficit.  Participants included 20 children age 

10 years to 12 years.  Ten were identified with developmental reading disorder and were 

age-matched to 10 participants with normal reading abilities.  All participants had normal 

IQ and no auditory or ophthalmologic abnormalities.  A gap detection task was employed 

to assess auditory temporal processing and a double flash detection task was employed to 

assess visual temporal processing.  The researchers used the double flash detection task 
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as analogous to the gap detection task due to the ability of both tasks to measure the 

timing mechanism of each system and the ability to determine interstimulus interval 

thresholds. The children were instructed to verbally report which interval, the first or 

second, contained the target (gap) stimulus.  The threshold corresponding to 70.7% 

correct was recorded for both tasks.  Results for the gap detection and double flash tasks 

indicated that the children with reading impairment had higher detection thresholds than 

the normal reading children, indicating slower processing speeds of rapidly presented 

stimuli in both the visual and auditory modalities.  The researchers confirmed the 

hypothesis that auditory and visual temporal processing deficits may be an underlying 

distal cause of reading disorder.  In other words, reading disorder is a symptom of global 

temporal processing deficits (Ben-Artzi et al., 2005).  The researchers also concluded that 

the results supported the hypothesis of a general temporal processing deficit in dyslexic 

individuals (Ingelghem et al., 2001). 

Rose, et al. (1999) conducted a study supporting the hypothesis of a general 

temporal processing deficit in individuals with RD.  Ninety children, age 11 to 12 years, 

participated in the study and were identified with normal hearing and normal or 

corrected-normal vision.  Forty-eight children were classified as normal readers and the 

remaining 33 children as poor readers.  Two temporal processing tasks were administered 

to assess both auditory and visual processing abilities.  In task one, four conditions (two 

intramodal and two cross modal) were employed to assess auditory and visual processing 

of temporal patterns.    The conditions were presented as auditory-auditory, visual-visual, 

auditory-visual, or visual-auditory.  Auditory patterns consisted of three to six tones and 
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visual patterns consisted of three to six light flashes.  The children were instructed to 

indicate if the patterns were same or different.  For task two, the auditory and visual 

patterns were held constant and were brief in duration.  Again, intramodal and cross-

modal conditions were used.  All patterns contained interstimulus pauses of 500 ms in 

duration and one extended pause of about 1000 ms that occurred after the first or second 

stimulus presentation.  Children were instructed to determine if the patterns were same or 

different.  The researchers found that poor readers performed poorer on all temporal 

patterns whether they were auditory or visual, suggesting that the inability to recognize 

temporal patterns regardless of modality was related to RD (Rose et al., 1999). 

Investigating the relationship between cross-modal processing deficits and 

reading ability, Cestnick (2001) compared temporal processing abilities among two 

subgroups of reading disordered populations: phonological (poor nonlexical readers) and 

surface dyslexics (poor lexical readers).  She showed that individuals with phonological 

reading disorder performed poorer on both the auditory and visual temporal processing 

tasks than did the individuals with surface reading disorder and that their performance 

were correlated with one another.  Cestnick (2001) hypothesized that “simultaneous 

deficits to the magnocellular pathways in both visual and auditory systems could mimic 

the behavioral cross-modality temporal processing difficulties observed in the 

phonological dyslexics” (p. 324).  Thus, cross-modal deficits exist in phonological 

reading disorder but not in surface reading disorder. 

While several studies have found a relationship between auditory and visual 

temporal processing and phonological decoding and visual/lexical processing, few studies 
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have examined this relationship when nonwords and irregular words were presented 

singly or in contiguity.  Au and Lovegrove (2007) investigated auditory and visual 

temporal processes involved in reading irregular words and nonwords by normal readers 

when the words were presented in two presentation paradigms: singly and in contiguity 

as a series of six words.  As mentioned previously throughout the literature review, it has 

been suggested that auditory processing is thought to be associated with phonological 

decoding abilities, thus affecting nonword reading ability.  Likewise, it has been 

suggested that visual temporal processing plays a role in visual/lexical processing, thus 

affecting the ability to read irregular words and rapidly transition from one word to the 

next.  For this study, the researchers also examined how well various visual processes 

accounted for reading of nonwords and irregular words singly and in contiguity.  

Seventy-nine English-speaking young adults participated in the study.  The auditory and 

visual tasks utilized in the study included visual flicker contrast sensitivity task, a visual 

temporal order judgment (TOJ) task, visible persistence flicker fusion task, auditory gap 

detection task, and an auditory TOJ task.  The reading tasks consisted of two lists of 30 

irregular words each selected from Castles and Coltheart (1993) and from the National 

Adult Reading Test (NART) and two lists of 30 nonwords each selected from Castles and 

Coltheart (1993) and the WRMT-R.  Significant correlations were found between the 

visual and the irregular word reading measures and between the auditory and nonword 

reading measures. Regression analyses also indicated that the auditory temporal 

processing tasks predicted nonword reading for both the single and in contiguity 
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presentation modes. These results support that notion that different subtypes of RD 

exhibit selective temporal processing deficits in different modalities. 

In another study investigating the hypothesis of a general temporal processing 

deficit, Farmer and Klein (1993) investigated whether poor performance on visual and 

auditory temporal tasks would be correlated with each other and with reading and 

phonemic awareness tasks.  Twenty children identified as dyslexic, age 14 years, 20 age-

matched normal readers (age 14 years), and 20 younger normal reading children, age 8.8 

years, participated in the stud study.  Three auditory tasks were administered: a click 

fusion task to measure the smallest interstimulus interval required to differentiate the 

clicks, a temporal order judgment task, and a tone sequence matching task.  Analogous 

visual tasks using light flashes, two meaningless symbols, and a sequence of four light 

flashes were also administered.  The researchers found that children with reading disorder 

required longer interstimulus intervals to correctly perceive and identify individual 

auditory clicks and were less accurate at perceiving the order of acoustic stimuli.   

However, the children with RD did not perform significantly poorer than normal readers 

on the visual flash detection task, nor were they less accurate at determining order of 

visual stimuli.  These results indicate the presence of an auditory processing disorder, 

supporting Tallal’s (1980) hypothesis of an auditory processing disorder in reading 

disorder, but did not indicate the presence of a visual processing deficit although a trend 

towards impairment in the visual modality was observed.  The researchers cautioned that 

the lack of evidence for a visual processing deficit might be due to a developmental 

resolution of a visual temporal processing deficit.  Similarly, Heim et al. (2001) did not 
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find evidence to support the hypothesis of a general temporal processing disorder.  The 

results from their study revealed that while the children with reading disorder had 

impaired auditory processing, temporal sensitivity was enhanced rather than degraded in 

the visual modality, suggesting that the enhanced visual system may compensate for 

impaired auditory processing. 

Breznitz and Misra (2003) investigated whether or not “asynchrony” in speed of 

processing between the visual and auditory modalities exists in reading impaired 

individuals.  The “asynchrony phenomenon” holds that impaired synchronization 

between the visual and auditory modalities will inhibit automatic and fluent reading.  

Incoming visual information reaches the cortex at slower rates than incoming auditory 

information.  The time for visual information to reach the cortex is approximately 70 ms 

post-stimulus onset whereas the time for auditory information to reach the cortex is 

approximately 30 ms post-stimulus onset (Breznitz & Misra, 2003).  In order for 

successful reading to be achieved, “synchronization of information transfer must take 

place, and this synchronization can be achieved only if each modality is processing 

information at an appropriate pace” (Breznitz & Misra, 2003).  Previous researchers have 

shown that individuals with reading impairment have prolonged temporal integration in 

both the auditory and visual modalities (Lehmkuhle et al., 1993; Lovegrove, 1993).   The 

asynchrony phenomenon was compared between reading impaired and normal reading 

groups between and within the visual and auditory modalities, using both low-level 

nonlinguistic and high-level linguistic stimuli.  Eighty (40 adults with reading disorder, 

40 controls) male university students (age 19-25 years) participated in the study.  
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Behavioral baseline measures included IQ tests, decoding skills, reading comprehension, 

accuracy, and speed in context, word recognition skills, orthography, working memory, 

and rate of retrieval.  Electrophysiological measures included low-level auditory and 

visual choice reaction time tasks in which the subjects were instructed to press a button 

when the target stimulus was presented.  The auditory nonlinguistic stimuli consisted of 

target tones of 1000 Hz and nontarget tones of 2000 Hz.  Auditory linguistic target 

stimulus was /d/ and the nontarget stimulus was /b/.  Visual nonlinguistic stimuli were 

meaningless shapes (one horizontal line and one vertical line).  Target stimulus was a 

shape made to look like a reversed “L” and the nontarget shape looked like a “T.”  

Linguistic visual stimuli consisted of Hebrew letters where the target stimulus was /b/ 

(“bet”) and the nontarget stimulus was /ch/ (“chaf”).  A lexical decision task was also 

employed where a random series of 40 pairs of words and 40 pairs of pseudowords were 

presented on a computer screen.  Participants were instructed to look at both items and 

determine if the word pairs were real words or pseudowords.  Electroencephalogram 

(EEG) recordings were measured.  Breznitz and Misra found that P200 latencies did not 

differ between modalities or between groups for lower level nonlinguistic and linguistic 

tasks.  However, P300 latencies were slower for both groups when processing visual 

nonlinguistic and linguistic stimuli than for processing the auditory nonlinguistic and 

linguistic stimuli.  Results also showed that speed of processing was prolonged in the 

group with reading disorder for the psuedoword discrimination task than for the control 

group.  A connection was found to exist in speed of processing and accuracy: the longer 

the latency, the lower the accuracy.  Thus, the study found an asynchrony phenomenon in 
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adults; however, the researchers caution that it is not yet clear whether speed of 

processing deficits can be attributed to a more global impairment. 

Laasonen, Service, and Virsu (2002) investigated crossmodal temporal processing 

in rapid sequential nonlinguistic stimuli in normal and reading impaired young adults.  

The researchers hypothesized that “accurate and fast crosstalk between visual and 

auditory, visual and tactile, and auditory and tactile modalities” is impaired in reading 

impaired individuals (p. 342).  In other words, a global temporal processing deficit 

affecting the visual, auditory, and tactile modalities exist in the reading impaired 

population.  Sixteen adults diagnosed with developmental reading disorder (20-36 years) 

and 16 age-matched controls participated in the study.  The neuropsychological 

assessment included Wechsler Memory Scale Revised (WMS-R): associative learning, 

auditive discrimination, phonological synthesis, naming speed, reading speed, lexical 

decision, word segmentation speed, reading comprehension, letter rotation, nonword span, 

temporal acuity and temporal order judgment.  Three crossmodal combinations were used 

for temporal acuity and temporal order judgment: audiotactile, visuotactile, and 

audiovisual.  Headphones, a monitor, and tactile devise were connected to the participant.  

The participant was instructed to listen, watch or feel for the stimulus presentation.  

“Pulses” were presented in each combination either simultaneously or out of phase with 

each other.  For the temporal order judgment, an adaptive yes/no threshold search was 

used to estimate stimulus onset asynchronies.  The participant had to indicate which pulse 

came first in each combination.  For the temporal acuity task, the “pulses” were presented 
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in patterns of three and were presented either simultaneously or out of phase to one 

another.  The participant had to determine if the pulses were the same or different.   

The researchers found that individuals with reading disorder needed longer 

interstimulus intervals in order to correctly judge the order of events in every modality 

combination; however, only the audiotactile difference was statistically significant.  They 

also found that the dyslexic readers needed longer interstimulus intervals in order to 

judge simultaneity/nonsimultaneity of stimulus pulses in every modality combination, 

although these differences were not statistically significant.  The researchers concluded 

that both temporal order judgment and temporal acuity is impaired in dyslexic individuals 

as compared to normal readers across modalities (Laasonen et al., 2002).   

Finally, Walker, Hall, Klein, and Phillips (2006) reported a cross-sectional study 

investigating performance on auditory, visual, and language tasks in 124 participants 

ranging in age from 7 to 45 years.  Four auditory tasks, four visual tasks, and four 

language measures were administered and performance was analyzed to provide three 

lines of evidence:  

Behavioral evidence on the development of temporal processing skills that may  

be informative about reading performance, …evidence on the correlations  

between temporal processing performance and language/reading performance  

when age is partialled out, and … different kinds of perceptual temporal processes  

contributed unique variance to orthographic and phonological components of  

reading performance (p. 128).   
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The four auditory tasks administered were within- and between-channel gap paradigms, 

sequential overlapping temporal order judgment, and overlapping temporal order 

judgment.  Likewise, the visual tasks administered were overlapping and sequential 

temporal order judgment tasks and coherent and transparent motion tasks.  The language 

measures utilized in this study were the Token test, a phonological awareness subtest, the 

Olson test, and the Wide Ranging Achievement test.  The researchers found that 

improvement on auditory and visual temporal processing tasks, with the exception of the 

coherent motion task, improved with age.  It was also found that developmental 

improvement plateaus and performance becomes adult-like at around ages 9 to 12 years.  

They also found that language and reading development continued to improve and reach 

adult-like through 9-12 years, similar to that of temporal processing abilities.  The 

researchers also found significant positive correlations between performance on temporal 

processing tasks and language/reading tasks.  That is, the higher the score on temporal 

processing tasks, the better the language/reading performance.  In regards to providing 

behavioral evidence that temporal processing abilities correlate with reading development, 

the researchers suggested that “perceptual development should co-occur with, or precede, 

language and reading development” (p. 135).  Their study provided evidence of 

developmental improvement in both auditory and visual temporal processing skills and 

reading abilities at around the same age in children ages 9-12 years.  Walker et al. also 

found that orthographic reading performance correlated more with the within-channel gap 

detection task, as it required the detection/identification of a single event.  On the other 
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hand, phonological reading performance correlated more with tasks requiring relative 

timing or temporal judgments of two separate events. 

To understand how deficits in auditory temporal and visual temporal processing 

relate to reading disorder, it is important to understand aspects of the normal reading 

process.  Auditory temporal processing deficits may underlie difficulties in phonological 

processing and subsequent reading disability whereas visual temporal processing deficits 

may influence reading fluency.  Breakdowns in normal reading development, especially 

in auditory and visual perception, could be linked to more complex and global processing 

disorders. 

Reading Disorders 

 Reading is a complex and interactive mode of human information processing, 

which involves decoding graphical stimuli and matching it to phonological, visual, and 

contextual information stored in the mental lexicon.  Accurate decoding of auditory and 

visual stimuli relies on the processes of identification and discrimination.  A high level of 

automaticity is involved in these processes in order to achieve fluency and 

comprehension.  An individual cannot become a skilled reader “if he cannot automatize 

lower-order subskills or if he still requires much attentional direction to execute them 

accurately” (Lovett, 1984, p. 69).  That is, disproportionate amounts of time required for 

processing may impede higher-level processes like comprehension (Catts & Kamhi, 1999; 

Shaywitz & Shaywitz, 2005). 

 Perceptual analysis of the spoken and written word, in which particular features 

are identified, allows access to the mental lexicon.  The mental lexicon stores 
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phonological and visual information as well as meaning and grammatical rules.  

Accessing the mental lexicon through reading occurs two ways: through phonological 

representation and through visual representation.  Lexical access through the 

phonological route involves matching phonetic units to corresponding visual units, also 

known as grapheme to phoneme translation.  Accessing the lexicon by analyzing the 

visual word form without phonological decoding, or through orthographic processing, 

occurs via the visual/lexical route (Brown, 1997).  Individuals with reading disorder 

exhibit difficulty “mastering the sublexical orthographic and phonological structure of 

language” (Brown, 1997, p. 208). 

 Behavioral and neurological studies involving normal and impaired readers aid in 

the formulation of cognitive and neuroanatomical models of RD (Price, Winterburn, 

Giraud, Moore, Noppeney, 2003).  A number of these studies have subtyped reading 

disorder into three groups, thus highlighting unique underlying deficits of reading 

disorder (Borsting et al., 1996; Lachmann et al., 2005).  Dysphonetics are readers with 

deficits in phonological processing alone while dyseidetics are readers with visual 

processing speed deficits.  Dysphonetics exhibit difficulty breaking down words into 

individual phonetic units.  Therefore, a reader with a phonological processing deficit is 

unable to read unfamiliar words using the phonological approach.  Dyseidetics are unable 

to recognize whole words and match them to information stored in the mental lexicon.  In 

other words, these readers use phonological decoding as a primary means of reading, 

which slows reading rate.  The third group, dysphoneidetics, exhibits deficits in both 

phonological processing and naming speed.  With the identification of various underlying 
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deficits in reading, two cognitive models have been developed in an attempt to 

understand the processes affected during reading development that lead to reading 

disorder: the Phonological Core Deficit (Brown, 1997; Hutzler, Ziegler, Conrad, Wimmer, 

& Zorzi. 2004; Lachmann et al., 2005; Shaywitz & Shaywitz, 2005; Torgeson, Wagner, 

& Raschotte, 1994) and the Double Deficit Hypothesis (Schatschneider, Carlson, Francis, 

Foorman, & Fletcher, 2002; Wolf, Bally, & Morris 1986; Wolf & Bowers, 1999).  

Supporters of the Phonological Core Deficit focus on phonological awareness and 

phonological capabilities while supporters of the Double Deficit Hypothesis separate 

naming speed from phonological processing and treat the two deficits as distinct and 

individual sources of reading disability. 

Phonological Core Deficit 

Based on the phonological theory of reading acquisition, words are segmented 

into individual phonological units, which are represented by letters in written text 

(Shaywitz & Shaywitz, 2005).  Individuals with developmental reading disorder are 

unable to use the phonological structure of spoken words to make appropriate grapheme 

to phoneme conversions (Moisescu-Yiflach & Pratt, 2005).  Research focusing on the 

relationship between phonological processing and reading achievement generally agree 

that “use of sublexical phonological units is an important stage in the normal reading 

development of skilled reading” (Brown, 1997, p. 208).  Torgeson, Wagner, and 

Raschotte (1994) identified three phonological processing abilities that are positively 

related to reading achievement: phonological awareness, phonological memory, and the 

rate of access for phonological information.  In learning to read, the child identifies, 
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isolates, or blends phonemic units in words and stores that information in their long-term 

memory.  The efficiency by which the child decodes and the rate at which he or she can 

access information stored in the mental lexicon influences reading ability.   

 Nonword reading provides a means of assessing a reader’s phonological decoding 

ability.  Because nonwords have no lexical representations, they can only be read using 

grapheme to phoneme translation.   The reader must make a connection between 

unfamiliar letter sequences and words that are already stored in the mental lexicon.  

Difficulty with nonword reading is assumed to reflect deficient phonological 

representations or the inability to correctly decode letter sequences and construct new 

orthographic entries (Brown, 1997; Hutzler et al., 2004; Simos, Breier, Fletcher, Foorman, 

Bergman, Fishbeck, & Papanicolaou, 2000).  Thus, readers with phonological decoding 

deficits are unable to accurately decode and read unfamiliar words and rely on their 

stronger visual/lexical processing capabilities.  Research comparing nonword reading 

performance between normal and dyslexic readers indicates that readers with 

phonological processing deficits exhibit poor nonword reading skills (Brown, 1997).  

However, nonword reading tasks are not the only means of identifying phonological 

processing deficits.  Assessing a reader’s ability to manipulate, synthesize, and analyze 

phonemic units provides a means to assess phonemic awareness skills.    

 In a longitudinal study, Torgeson, et al. (1994) compared the development of 

phonological processing skills both before and after reading instruction as well as the 

growth rate of these skills in a two-year period and investigated relationships between 

phonological processing and reading.  Two hundred forty-four children participated in the 
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study and were randomly selected from various kindergarten classrooms in several 

elementary schools.  Each of the schools from which the participants were selected had 

adopted a whole language approach to reading.  Tests assessing five phonological 

abilities, serial naming (rapid naming of sequences), isolated naming (rapid naming when 

stimuli were presented one at a time), synthesis, analysis, and phonological memory were 

administered to the children in the first semester of each year of the study.  For data 

analysis, the tasks measuring each variable were combined into a unit-weighted 

composite based on scores standardized with respect to kindergarten means and standard 

deviations.  Their analyses indicated that serial naming developed the earliest of the five 

abilities with short-term memory developing the slowest.  However, these skills remain 

stable during reading instruction.  The researchers also found that phonological 

awareness was the phonological variable most strongly related to reading skill.  As to 

whether a causal relationship exists between phonological processing abilities and 

subsequent reading achievement, the researchers suggested that there did, indeed, exist 

such a relationship when all five abilities were considered simultaneously.  However, no 

significant causal relationship was found when examining how each of the five abilities 

uniquely affected reading skill individually.  

 In regards to reading development, cognitive psychology views the earliest stage 

of reading as the ability to segment words into small numbers of visual forms with the 

later stages involving the ability to develop appropriate spelling to sound translations 

(Brown, 1997).  However, debate exists as to attributing reading disorder to only a 

phonological core deficit.  Thus, research has also focused on the second of the two 
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cognitive models, the Double Deficit Hypothesis.  Proponents of this controversial model 

suggest that naming speed and phonological processing are two separate sources of 

reading disability.  That is, supporters of this model assume that a visual processing 

component also exists in reading development. 

Double Deficit Hypothesis 

Current research has shifted from the perspective that automatic and fluent 

reading is a result of phonological processing alone and that naming speed deficits may 

also contribute to reading disorder (Karni, Morocz, Bitan, Shaul, Kushir, & Breznitz, 

2005; Schatschneider et al., 2002; Wolf et al., 1986; Wolf & Bowers, 1999).  The Double 

Deficit Hypothesis attempts to answer the question whether a phonological core deficit 

represents the processes underlying naming speed.  Geshwind (1965) first hypothesized 

the connection between naming speed and reading achievement.  Researchers operating 

under the Double Deficit Hypothesis have since identified four main lines of evidence 

supporting the naming speed hypothesis (Schatschneider et al., 2002).  The first line of 

evidence claims that naming speed tasks predict reading performance beyond what 

phonological awareness skills predict.  Wolf and Bowers reviewed the results of previous 

studies and found weak correlations between phonemic awareness and naming speed 

tasks.  They also discovered that naming speed tasks independently contributed to 

“variance in word identification (accuracy and latency), orthographic skill, fluent text 

reading and comprehension” (Wolf and Bowers, 1999, p. 420).  The second line of 

evidence provides support that children with both phonological and naming speed deficits 

had significantly lower reading abilities than children with deficits in only one area.  The 
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third line of evidence claims that phonological awareness is more closely related to pure 

decoding abilities and that naming speed is more closely related to fluency.  That is, 

readers with phonological processing deficits present with no difficulty in naming speed 

but do have difficulty with phonological decoding, word attack, and comprehension skills 

while readers with naming speed deficits display greater difficulty with fluency and rapid 

naming, but do not exhibit significant difficulty with phonological processing skills 

(Wolf and Bowers, 1999).  Finally, the fourth line of evidence provides support for the 

existence of the three subtypes of reading disorder. 

 In the past two decades, researchers investigating RD have focused on the 

relationship between naming speed and reading (Schatschneider et al., 2002; Wolf et al., 

1986; Wolf & Bowers, 1999).  The relationship between naming speed and reading is 

dependent upon “development and correspondence between lower and higher-level 

processes in specific tasks” (Wolf et al., 1986).  The researchers found that word retrieval 

speed tasks provide a useful means for predicting reading rate and retrieval processing 

abilities in normal and impaired readers.  Naming speed tasks require rapid transition 

from one unit to another.  In other words, rapid word recognition speed strongly relates to 

automaticity (Lovett, 1984).  Due to the implications naming speed deficits have on 

reading ability, more current research now focuses on whether visual processing deficits 

exist in dyslexic individuals (Breznitz & Myeler, 2003; Chase & Jenner, 1993; Farmer & 

Klein, 1993; Lehmkuhle et al., 1993).  Boden and Brodeur (1999) have suggested that 

short temporal gaps are created by saccades during the reading process.  Thus, reading 

requires retaining visual information from fixation to fixation. 



76 

 
 

  

It has been suggested that a primary deficit in auditory temporal processing exists 

in dyslexic readers (Bretherton & Holmes, 2003; Breznitz & Myeler, 2003; Tallal, 1980).  

Although the question of whether a visual temporal processing disorder affects reading 

ability remains controversial, psychophysical studies indicate that individuals with 

reading disorder perform less well on visual temporal processing tasks, specifically, 

flicker sensitivity and temporal order judgment (Breznitz & Meyler, 2003).  Breznitz and 

Meyler (2003) suggested that the visual system processes information faster than the 

auditory system and that reading disability may depend on speed of processing deficits, 

which could affect the “visual/orthographic and auditory/phonological routes” (Plaza & 

Cohen, 2005, p. 190).  In order to determine if processing strategies used by both normal 

and impaired readers, researchers have used a variety of neuroimaging techniques to 

examine neural activation patterns in both normal and dyslexic readers, including 

positron emission tomography (PET), functional magnetic resonance imaging (fMRI), 

and magnetoencephalography (MEG).  These studies have shown that activation patterns, 

primarily in the left hemispheric structures responsible for hearing, speech, and language 

may differ between normal and dyslexic readers. 

Neurological Connections to Reading Disorders 

Neuroimaging Studies and Reading Disorders   

Various neuroimaging techniques have been utilized to identify and assess 

specific areas in the brain that are responsible for a variety of speech, language, and 

reading processes.  These neuroimaging techniques include PET Scans, fMRI, and MEG.  

Each technique provides a different means for examining brain activity during reading 
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and reading related tasks and has greatly contributed to the study of reading acquisition.  

Until recently, neuroimaging techniques were used primarily on adults to study the brain 

after acquired reading disorder.  It was assumed that results from these studies could help 

researchers understand neural activation patterns during the normal reading process and 

apply theories regarding breakdowns in particular areas of the brain responsible for 

speech and language that might lead to developmental reading disorder (Price et al., 

2003).   

Shaywitz, et al. (2002) compared neural activity in dyslexic and normal reading 

children during phonological analysis tasks using fMRI techniques to determine if 

neuronal patterns exhibited by adults were a result of a lifetime of poor reading or if they 

occurred during a period of literacy acquisition.  One hundred forty-four children were 

selected to participate in the study.  Seventy children were identified as having reading 

disorder and 74 children were identified as normal readers.  The children lay supine in the 

imaging system and were instructed to look at a screen placed inside the gantry.  Tasks 

designed to activate processes in reading were shown on the screen.  These tasks included 

identifying letters, sounding out letters, sounding out pseudowords, and sounding out and 

comprehending real words.  The researchers found that children with reading disorder 

had more difficulty when engaged in tasks requiring phonological analysis but not during 

those tasks requiring visual perception.  Imaging results also showed that these children 

exhibited significantly less brain activation during phonological analysis tasks in the left 

hemispheric regions, including inferior frontal, superior temporal, and parieto-temporal 

areas, as well as in right hemispheric regions, including the inferior frontal gyrus, parieto-



78 

 
 

  

temporal region, and in the occipito-temporal region.  Since these different activation 

patterns existed in children, the researchers concluded that the deficits in the left 

hemispheric reading areas were present at birth and are not a consequence of a lifetime of 

poor reading. 

 Joseph, Noble, and Eden (2001) reviewed previous literature on neuroimaging 

and reading, focusing specifically on studies that used PET scans and fMRI techniques 

during word decoding tasks.  Several areas of the brain have been associated with the 

reading process, including Wernicke’s and Broca’s areas, the temporoparietal cortex, the 

supramarginal gyrus, the angular gyrus, and portions of the frontal lobe, particularly the 

inferior frontal gyrus.  Five components of reading have been identified and research 

related to each component was reviewed, suggesting some degree of connectivity 

between reading components.  The reading components included visual word from 

processing, lexical orthography, lexical phonology, sublexical phonology, and semantic 

processing.  Earlier researchers (Petersen, Fox, Snyder, & Raichle, 1990) suggested that 

visual word form processing, which involved the analysis of visual stimuli, occurred 

primarily in the left medial extrastriate cortex while more recent researchers (Price, 

Gorno-Tempini, Graham, Biggio, Mechelli, Patterson, & Noppeney, 2003) implied that 

the lingual and fusiform gyri may also be involved in visual word form analysis, thus 

suggesting functional connectivity with other areas during reading.  In regards to lexical 

orthography, researchers have attempted to separate lexical orthography from lexical 

phonology in order to develop a better understanding of neural activation patterns for 

orthographic fluency.  While data from these studies have implicated the left temporal, 
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left inferior frontal, and left inferior parietal cortices, including Broca’s area, activation 

patterns could not be attributed to orthographic processing alone because tasks used to 

illicit these activation patterns may have also included some degree of phonological 

decoding and processing.  Thus, researchers examining activation patterns for lexical 

phonology, using tasks such as rhyme judgments and lexical decision tasks, have 

provided evidence of activation in the posterior superior temporal gyrus, the left insula, 

and the inferior frontal cortex.  While there appears to be overlap in regions of the brain 

associated with lexical orthography and lexical phonology, research has also shown that 

overlap exists between lexical phonology and sublexical phonology but with a few 

differences (Joseph et al., 2001).  As previously mentioned, lexical phonology was found 

to involve activation of the left insula; however, this was not the case for sublexical 

phonology.  It was also found that while lexical phonology primarily involved activation 

in the superior regions of the temporal lobe, sublexical phonology involved activation in 

the middle temporal gyri and included the occipitotemporal junction.  Finally, both lateral 

and medial regions of the frontal lobe tend to be more extensively involved in lexical 

rather than sublexical phonological processing (Joseph et al., 2001).  The last component 

of reading reviewed included semantic processing.  A review of the research indicated 

that tasks, such as category judgment and semantic generation, activated both various 

regions in the temporal and frontal cortices.  In general, a review of neuroimaging studies 

focusing of word decoding skills across subcomponents of reading has provided evidence 

of left-hemispheric participation during the reading process (Joseph et al., 2001). 
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 Review of anatomical and radiological research reveals that individuals with 

reading disorder exhibit different neural activation patterns in the left hemispheric 

planum temporale, which includes part of Wernicke’s area.  Generally, the left planum 

temporale is larger than the right planum in normal right-handed individuals and is 

important for language lateralization (Tervaniemi & Hugdahl, 2003).  Therefore, one 

would expect to see asymmetrical activation between the left and right planums, with 

more activation occurring in the left planum.  It assumed that the planum temporale is 

responsible for the analysis of speech information and is likely involved in early auditory 

processing (Tervaniemi & Hugdahl, 2003).  Previous researchers investigating 

developmental reading disorder have found reduced activation in the left hemispheric 

regions and enhanced activation in the right hemisphere during performance on 

phonological tasks (Shaywitz et al., 2002; Simos et al., 2000).   

There is a general consensus across studies that different neural patterns exist 

between normal and poor readers in the left and right hemispheres. Temple (2002) 

reviewed an fMRI study conducted by Temple, Poldrack, Salidis, Deutsch, Tallal, 

Merzenich, and Gabrieli (2001), which investigated whether or not the neural patterns 

exhibited by individuals with RD reflected a lifetime of compensation or a brain 

dysfunction fundamental to RD.  Twenty-four dyslexic and 15 normal reading children 

were recruited for the study.  During imaging, the children were instructed to perform a 

letter rhyme task.  The researchers found that patterns of activation in the hemispheres for 

the children with RD were similar to those of dyslexic adults.  That is, the children with 

RD showed left frontal activity but no significant activity in the left temporoparietal area.  
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The researchers thus suggested that the activation patterns exhibited by dyslexic 

individuals may indeed reflect a brain dysfunction specific to reading disorder. 

Electrophysiological/Behavioral Studies and Reading Disorders  

Neuroimaging studies have provided evidence suggesting that various regions of 

the brain are more specialized during particular reading tasks but do show overlap.  In 

general, it is hard to isolate proximal brain regions for certain tasks due to the overlap in 

functional anatomy.  Recent studies have begun to incorporate electrophysiological and 

behavioral measures to help identify the order in which areas are activated during reading 

and if atypical processing occurs in dyslexic individuals (Brezntiz & Meyler, 2003; 

Georgiewa, Rzanny, Gaser, Gerhard, Vieweg, Freesmeyer, Mentzel, Kaiser, & Blanz, 

2002; Heim, Eulitiz, Kaufmann, Fuchter, Pantev, Dinneson, Matulat, Scheer, Borstel, & 

Elbert, 2000; Lachmann et al., 2005; Simos et al., 2000; Tervaniemi & Hugdahl, 2003).   

Heim, et al. (2000) investigated functional characteristics of the left hemispheric 

auditory cortex in dyslexic and normal children using both MEG and an 

electrophysiological measure (MMN).  It was hypothesized that children with RD would 

show different organization of the left auditory cortex and would display absent MMN 

indicating psychoacoustic dysfunction.  The hypotheses were based on evidence provided 

by Kraus et al. (1996) that suggested that deficits in phonemic discrimination have 

“origins in the auditory pathways and are pre-attentive in nature” (p. 1750).  Eleven 

children identified as having reading disorder and 9 normal children between the ages of 

8-13 years were selected to participate.  An oddball paradigm using linguistic stimuli 

(consonant-vowel strands) was utilized to elicit neural activation.  Recordings were 
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obtained using the mismatched fields (MMF) and neuroimaging patterns were recorded 

from the left supratemporal cortex.  MEG images showed different neural activation 

patterns between normal readers and children with reading disorder.  That is, the children 

with reading impairment exhibited activation in more anterior regions of the left temporal 

lobe than normal readers.  This finding supported the hypothesis that readers with reading 

disorder exhibit different organization in the left hemisphere than normal readers.  When 

analyzing the MMF results, the researchers found that, in both the children with reading 

disorder and the children with normal reading ability, the M80 (positive deflection) was 

activated primarily in the auditory cortex.  On the other hand, the M210 (negative 

deflection), representing a subsequent processing stage, was primarily activated in more 

anterior regions of the M80 as compared to the normal readers, in which M210 was 

activated in more posterior regions.  The researchers concluded that difference did exist 

in organization of the left hemisphere but were not able to determine if the differences 

were functional or structural in nature. 

Georgiewa, et al. (2002) also attempted to identify cerebral representation of 

phonological processing using both event related potentials (ERP) and fMRI techniques.  

Seventeen participants (mean age 13 years) were identified as having either normal 

reading ability or reading disorder and they were instructed to silently read similar 

linguistic stimuli during ERP and fMRI recordings.  The researchers found that the fMRI 

revealed the greatest amount of neural activation primarily in the left inferior gyrus for 

normal readers.  However, the dyslexic readers displayed three areas of activation: “in a 

cluster including the left inferior frontal gyrus, the left insula and the anterior part of the 
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left temporal superior gyrus; in a posterior part of the left thalamus; and in part of the 

nucleus caudatus left” (Georgiewa et al., 2002, p. 6-7).  The children with RD also 

showed hyperactivation in Broca’s area, the anterior insula, and in the lingual gyrus.  As 

for the event related potentials, the children with RD exhibited longer latencies than the 

normal reading children indicating greater difficulty with phonological processing in the 

group with reading impairment. The researchers suggested that hyperactivation in 

Broca’s area in readers with reading disorder may reflect increasing effort and 

concentration in phonological decoding and could be attributed to difficulty in reading 

the stimuli.   

Researchers suggest that longer latencies recorded during event related potential 

testing indicate slower speed of processing in individuals with reading disorder.  It has 

been hypothesized that children with RD may have deficits at the perceptual level due to 

auditory processing speed impairments during reading (Breznitz & Meyler, 2003). 

Breznitz and Meyler (2003) investigated speed of processing in the visual, auditory, and 

cross-modal modalities in readers with normal reading ability and those with reading 

impairment.  Eighty (40 normal readers and 40 readers with reading disorder) university 

students, age 22-25 years, were selected to participate in the study.  EEG activity and 

event related potentials were obtained for each subject in the visual, auditory, and cross-

modal conditions.  The researchers found that the participants with RD were impaired as 

compared to normal readers when responding to low-probability stimuli.  That is, 

individuals with reading impairment when processing low-probability targets for visual 

only, auditory only, and between modalities exhibited slower speed of processing.  When 
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analyzing single modality data, the researchers found that normal readers processed 

nonlinguistic stimuli in the left hemisphere whereas the individuals with RD processed 

the nonlinguistic stimuli in the right hemisphere.  Breznitz and Meyer (2003) suggested 

that these individuals are predisposed to process in the right hemisphere due to deficits in 

the left hemisphere. 

Bellis, Billiet, and Ross (2008) cited previous literature supporting the strong role 

of the left hemisphere in processing both auditory and visual stimuli due to the 

occurrence of right-ear advantage (REA) when disparate signals are presented to each ear 

simultaneously and a right-visual-field advantage (RVFA) when visuals tasks involved 

half-field presentation.  It has been suggested that comparing auditory and visual analogs 

may be useful in determining if the mechanisms involved in temporal processing are 

similar or independent of one another.  However, there is little research investigating the 

clinical utility of visual analogs in an auditory processing test battery for the differential 

diagnosis of CAPD.  In two separate experiments, Bellis et al. (2008) explored 

maturational effects of visual processing and examined the validity of a dichotic listening 

task commonly used in clinical to assess central auditory processing disorders (CAPD) 

and a corresponding visual analog in normal adults and children and in children 

diagnosed with CAPD, with a specific deficit in interhemispheric transfer.  

For the first experiment, Bellis et al. (2008) examined maturational effects of 

visual processing.  Ten adults and ten children were recruited to participate.  All 

participants had normal hearing, normal to corrected-normal vision, and had normal 

auditory processing abilities.  The auditory task chosen for the study was the Dichotic 
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Digits Test (Musiek, 1983) because of its sensitivity to disruptions of the cerebellum and 

interhemispheric pathways.  The visual analog consisted of the same digit pairs as the 

auditory paradigm, with the exception of the number “10” being substituted for the 

number “1.”  This was due to the fact that “10” could be misconstrued as two separate 

numbers (i.e. “1” and “0”) or that the number “0” could be misinterpreted as a capital 

letter “O.”   The visual analog was created using SuperLab Pro Experimental Laboratory 

Software version 2.0 (Cedrus Corporation, 1999).  All visual stimuli were presented on a 

computer monitor with digits being presented in each visual half-field simultaneously for 

the duration of 200 ms. The second pair of digits were presented for 200 ms after a 100 

ms ISI.  Participants were required to freely recall all four digits presented for both 

modalities.  A percent correct scoring method was used to determine performance on 

both the auditory and visual tasks.  Results indicated greater asymmetries in REA and 

left-visual-field advantage (LFVA) in children as compared to adults.  While ceiling 

effects were seen in the auditory task in adults, ceiling effects were not observed in the 

visual task.  Given that visual half-field asymmetries were more pronounced in children 

than adults, it was suggested that both hemispheres equally process visual stimuli and 

represent them in visual form by adulthood. 

To determine clinical utility of visual analogs in the differential diagnosis of 

CAPD, Bellis et al. (2008) also compared performance on the auditory and visual 

dichotic digits task between the same ten children from the first experiment to seven 

children diagnosed with CAPD, presumed to have a primary deficit in interhemispheric 

transfer.  Test materials and procedures were the same as those used in the first 
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experiment.  Results revealed that children with CAPD exhibited significantly larger 

REA and a reversed pattern of asymmetry for the visual analog.  In other words, children 

with CAPD demonstrated a RVFA as compared to an LFVA found in normal children.  It 

was then concluded that deficits in interhemispheric transfer may significantly degrade 

visual information as it travels from the right hemisphere to the left for verbal report, thus 

resulting in a large RVFA in children diagnosed with CAPD.  The results of the study 

suggested there is some degree of validity to using visual analogs in a CAPD test battery; 

however further exploration is necessary to determine if the use of visual analogs 

significantly adds to the differential diagnosis of CAPD from more global pansensory 

disorder.  

Two theories have also been postulated regarding interhemispheric transfer 

functions in children with RD.  The first theory predicts that the time associated with the 

exchange of information between the hemispheres may be too short for reading-

disordered children.  The second theory suggests, “an interhemispheric signal degrading 

may interfere with efficient, right-to-left hemisphere processing of visual information in 

reading-disordered children” (Walker, Spires, & Rastatter, 2001, p. 275).  That is, 

children with RD required longer stimulus-duration thresholds to achieve the same 

accuracy rate as normal readers.  Researchers have also provided evidence distinguishing 

right versus left hemisphere superiority for processing visual information.  Previous 

researchers have reported anomalies in the “cerebral organization for linguistic 

information in reading-disordered adults may be influential in RD” (Walker et al., 2001, 

p. 274).  For example, Walker et al. sited a research study by Olsen (1973) that found that 
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normal readers had a right visual-field advantage whereas individuals with reading 

impairment did not have that superiority.  In another study, Herman, Sonnabend, & Zeevi 

(1986) found that the lack of laterality or functional asymmetry for readers identified as 

dyslexic is consistent with the idea reading impairment may be a result of incomplete 

hemispheric dominance.  In a normative study completed by Rastatter, Dell, McGuire, 

and Loren (1987), it was found that right visual-field stimulation yielded faster reaction 

times for abstract words while the opposite was true for the left visual-field (concrete 

words yielded faster reaction times).   

 Walker, et al. (2001) investigated interhemispheric interactions for visual 

language processing in normal and reading-impaired adults by analyzing vocal reaction 

times in a lexical decision task to tachistoscopically concrete and abstract word stimuli 

presented on a computer monitor.  The authors suggested that word recognition would 

not occur in the reading-disabled population without interhemispheric transfer, which 

would allow for the interaction of both phonological and orthographic decoding.  In other 

words, if a breakdown exists in visual analysis for sight-word reading, the individuals 

with RD would rely heavily on phonological decoding for the lexical decision task, which 

is represented through right or left hemisphere activation.  This would, in turn, lead to 

prolonged reaction times and a greater number of errors.  Walker et al. found that the 

right hemisphere did not perform lexical decisions predominantly over the left 

hemisphere for the individuals with RD.  They, therefore, suggested that an 

underdeveloped lexical processing system was present in the participants with reading 

impairment, which may be assessed through lexical decision paradigms.  Therefore, 
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Walker et al. support the notion that adults with RD use different processing strategies for 

lexical decisions. 

Neuroimaging and event related potential studies provide evidence for a 

neurological basis for phonological processing and speed of processing deficits as 

exhibited by readers with reading disorder (Breznitz & Myeler, 2003; Georgiewa et al., 

2002; Heim et al., 2000; Joseph et al., 2001; Lachmann et al., 2005; Shaywitz et al., 2002; 

Simos et al., 2000; Tervaniemi & Hughdahl, 2003).  Abnormal neural activation patterns 

during phonological decoding and processing tasks indicate that the temporal and frontal 

lobes of the left hemisphere, including the left planum temporale, are primarily affected 

in individuals with reading impairment and that these patterns are exhibited in childhood.  

Overactivation in Broca’s area and activation in the right hemisphere may serve as a 

compensatory strategy but it has not been established that this activation pattern will 

enable a reader with reading disorder to become more automatic.  Heim et al. (2001) 

hypothesized whether poor auditory processing abilities may be compensated for by an 

enhanced visual sensory modality.  Their hypothesis was based on the research conducted 

by Talcott et al. (2000), which found that auditory and visual temporal processing 

abilities were independently engaged during phonological processing.  However, based 

on results from numerous neuroanatomical and behavioral studies on visual temporal 

processing, it is still unclear as to whether individuals with reading disorder have a deficit 

in visual temporal processing.  Further research is necessary to determine whether a 

pansensory temporal processing deficit exits in individuals with reading disorder. 
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Summary and Rationale 

At present, several researchers have been able to replicate findings that auditory 

temporal processing deficits are associated with reading disability (Farmer & Klein, 1993; 

Ingelghem et al., 2001; Tallal, 1980; Wright et al., 1997).  That is, the inability to detect 

changes in acoustic stimuli (i.e. frequency and duration modulation) may result in poor 

reading ability.  However, over the past ten years, research has focused on the existence 

of a general temporal processing deficit and its relationship to phonological and 

visual/lexical processing (Chase & Jenner, 1993; Farmer & Klein, 1993; Lehmkuhle et al., 

1993; Lovegrove, 1993).  Temporal processing deficits in the auditory and visual systems 

may lead to breakdowns in basic decoding or in the ability to rapidly transition from 

word to word in written text thereby affecting automatic and fluent reading.  Several 

models of reading disorder that associate the disorder with the central nervous system 

include: “(1) low-level visual processing difficulties due to selective impairment in 

magnocellular layers of the lateral geniculate nucleus, (2) a general auditory processing 

deficit, specifically in temporal coding or rapid auditory changes, and (3) speech sound 

processing problems arising from poor phonological awareness” (Heim et al., 2000, p. 

1749).  Methodologies used to assess visual temporal processing have included flicker 

fusion tasks, visual temporal order tasks, and color fusion tasks.  Conflicting results from 

research assessing visual temporal processing abilities have resulted in an ongoing debate 

regarding the existence of a pansensory temporal processing deficit.  It remains unclear as 

to what extent auditory and visual processing deficits play in reading disability and if 

their relationship to reading impairment is directly causative or indirectly correlated.   
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 The conflicting evidence for the existence of a pansensory temporal processing 

deficit may be due in part to the hierarchy of tasks utilized during the experiments, how 

RD were defined and if individuals identified as dyslexic were grouped based on their 

particular deficit(s), and whether the auditory and visual tasks were analogous to each 

other.  That is, uncertainty remains concerning whether or not the auditory and visual 

tasks assessed similar hierarchical processing abilities.  A majority of the researchers in 

the studies reviewed above did not further subcategorize individuals with reading 

disorder as either having phonological deficits or visual/lexical deficits, but rather 

categorized these individuals under one broad definition.  This may account for 

discrepancies observed when attempting to determine if auditory and visual temporal 

processing deficits were exhibited by reading disabled individuals.  Not all individuals 

with reading disorder are alike.  Some individuals may only exhibit deficits in either 

phonological processing or visual/lexical processing while others may exhibit deficits in 

both.  In other words, deficits in phonological processing or visual/lexical processing 

manifest themselves in a variety of patterns, including the inability to read unfamiliar 

words, the inability to achieve automatic and fluent reading, or a combination of both.  

Numerous visual stimuli have been utilized to determine the existence of visual 

processing deficits, including light flashes, different shapes and sizes of symbols, and 

grades of color.  The use of varying visual stimuli demonstrates the need to identify 

analogous stimuli for the auditory and visual modalities.  However, it must be recognized 

that it is difficult to design a task that may identify the aspects of temporal processing that 

contribute to poor reading (Cestnick, 2001). 
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 One way to further research the existence of a global temporal processing disorder 

is to investigate auditory and visual processing hierarchies through a variety of analogous 

tasks, such as detection, discrimination, and temporal order judgment and to attempt to 

find a relationship between performances on these tasks to the two groups of RD: 

phonological disorders and visual/lexical disorders.  Therefore, this study will seek to 

determine if a relationship exists between auditory and visual temporal processing skills 

and RD, primarily in decoding and sight-word reading skills. 

Plan of Study and Experimental Questions 

 In this study the relationship between auditory and visual temporal processing 

abilities in reading disorders in school-aged children was investigated.  The investigation 

sought to determine if an association exists between reading disability and impairment in 

the visual and auditory sensory receptors or if it is interactive with these systems.  

Participants included children between the ages of 10 to 13 years who were identified as 

either having normal reading ability or reading disorders based on a series of pre-

experimental tasks.  The following experimental questions were divided into two sections.  

Auditory 

1. Is there a difference in performance between children with normal reading ability 

and those children with reading disorders (dysphonetic and dysphoneidetic) in an 

auditory detection task as measured by temporal thresholds (ms) in within- and 

between-channel gap detection paradigms? 
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2. Is there a difference between children with normal reading ability and those 

children with reading disorders (dysphonetic and dysphoneidetic) in an auditory 

temporal processing task involving duration discrimination abilities? 

3. Is there a difference between children with normal reading ability and those 

children with reading disorders (dysphonetic and dysphoneidetic) in an auditory 

temporal patterning task involving temporal order accuracy? 

Visual 

1. Is there a difference in performance between children with normal reading ability 

and those children with reading disorders (dysphonetic and dysphoneidetic) in a 

visual detection task as measured by temporal thresholds in critical flicker fusion? 

2. Is there a difference between children with normal reading ability and those 

children with reading disorders (dysphonetic and dysphoneidetic) in a visual 

temporal processing task involving duration discrimination abilities? 

3. Is there a difference between children with normal reading ability and those 

children with of reading disorders (dysphonetic and dysphoneidetic) in a visual 

temporal patterning task involving temporal order accuracy? 

 

 

 

 

 



           
 

 
 

CHAPTER II 

METHODS 

Participants 

Participants included 27 school-aged children between 10 and 13 years of age.  

Participants were separated into two experimental groups, control and RD, based on 

performance on a series of standardized reading and language tests during the pre-

experimental session of the study.  All participants were recruited from the research 

participant pool at the East Carolina University Speech, Language, and Hearing Clinic or 

from ads placed in local tutoring centers and newspapers (Appendix A).  All participants 

had English as their native language and had negative histories of neurological disorders, 

head trauma or surgery, active otologic disorder, dizziness, or emotional/behavioral 

disorders.  Children diagnosed with attention deficit disorder/attention deficit 

hyperactivity disorder were permitted to participate in the study but were required to take 

their medication prior to participating in all sessions of the study.  All children were from 

Greenville, North Carolina or surrounding counties.  Table 1 provides mean age for each 

group. 

Prior to testing, all participants were screened for normal hearing sensitivity as 

defined by pure tone thresholds screened at 20 dB HL at octave frequencies 500 to 4000 

Hz.  Middle ear function was also screened via tympanometry and normal middle ear 

function was defined as peak compensated static admittance < 0.4 mmho and a 

tympanometric width of > 200 daPa (Nozza, Bluestone, Kardatzke, & Bachmann, 1994).  

In addition, all participants were screened for normal or corrected normal visual acuity as  
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Table 1:  

Means and Standard Deviations (SDs) of Age for the Control and Reading Disorder 

Groups. 

 

Group                   N   Mean Age (Yrs)       SD 

                       Control                  12                    11.8          .94 

               RD       15         11.9        1.20 

             Total       27 
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measured by a Keystone Telebinocular system.  From the 27 participants who completed 

the study, three participants wore eyeglasses and had corrected normal vision.  Normal 

visual acuity was defined as 20/40 or better and was assessed using the Visual Skills 

Assessment test card kit.   

 Each participant and their parent/guardian gave informed consent and minor 

assent using approved forms [including Health Insurance Portability and Accountability 

(HIPPA) consent] that were orally reviewed by the examiner and then signed.  These 

forms are presented in Appendix B. 

 Pre-experimental testing was conducted to aid in identifying the control and the 

RD groups. Pre-experimental tests included the Word/Nonword Test, 1994 (Coltheart and 

Leahy, 1996), the Word Identification and Word Attack subtests of the Woodcock 

Reading Mastery Test – Revised (WRMT-R, form H), the Peabody Picture Vocabulary 

Test – IV (PPVT-IVT, form B), and the Raven’s Coloured Progressive Matrices. Normal 

readers were defined as having average scores based on age norms on the Word/Nonword 

Test and standard scores of > 85 on both subtests of the WRMT-R.  The RD groups 

(dysphonetic and dysphoneidetic) were defined as having below average performance 

based on age norms taken from Edwards and Hogben (1999) on one or more of the 

reading lists (i.e. regular word, exception word, nonword) on the Word/Nonword Test and 

a standard score of < 84 on at least one subtest of the WRMT-R.  Specifically, the two 

groups of RD (dysphonetic and dysphoneidetic) were further determined as follows.  

Children were assigned to the dysphonetic (phonological decoding deficit) group if a 

below average standard score on the Word Attack subtest of the WRMT-R (< 84) or a 
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score falling below age-based norms for the nonword list on the Word/Nonword Test was 

obtained.  Children were assigned to the dysphoneidetic (mixed deficits) group if a 

standard score of < 84 was obtained on both subtests of the WRMT-R and a below 

average score was obtained on both the irregular word or nonword lists for the 

Word/Nonword Test.  All participants, regardless of group assignment, obtained average 

standard (> 85) scores on the PPVT-IVT and at least an average intellectual rating on the 

Raven’s Coloured Progressive Matrices. Participants who had undergone a 

comprehensive diagnostic language and reading evaluation at the East Carolina 

University Speech-Language-Hearing Clinic were exempted from pre-experimental 

testing and were grouped according to their official diagnosis.    

Materials and Stimuli 

 Auditory Gap Detection Task   

Both a within-channel gap paradigm and a between-channel gap paradigm were 

utilized for the gap detection task.  For the within-channel paradigm, the leading marker 

was a short 10 ms, narrowband noise burst centered at 1000 Hz.  The trailing marker was 

a 300 ms narrowband noise burst centered around 1000 Hz.  In the between-channel gap 

paradigm, which was used for this study due to the fact that this paradigm more closely 

resembles voice onset time in spoken language, the leading marker was a short 10 ms, 

wideband noise burst, bandpassed from 10 Hz to 20,000 Hz with a rise/fall time of 1 ms. 

The trailing marker was a 300 ms, half octave narrowband noise with a rise/fall time of 

10 ms, and filter roll-off of 48 dB/octave.  The center frequency of the trailing marker 

was 4000 Hz.  The intertrial interval for both paradigms was determined based on 
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participants’ reaction time to the preceding trial and followed 300 ms after a response on 

the response pad.   

Each stimulus trial had three sequences (two control and one target) with an inter-

sequence interval of 500 ms. The control sequences had a leading and trailing marker 

separated by an inaudible gap of 1.0 ms. The target sequence had the leading and trailing 

markers separated by a gap varied by an adaptive tracking procedure; specifically, a two-

down, one-up procedure to obtain 70.7% threshold on a psychometric function (Levitt, 

1971).   

Auditory Duration Discrimination Task 

 Similar to a study conducted by Walker (2005), test stimuli of 75 ms 1000 Hz 

tones were generated using the same apparatus and software program used for creating 

the gap detection tasks described above.  Each trial sequence contained three 1000 Hz 

tones with two standard tones 75 ms in duration and one target tone of 50 ms in duration.  

Interstimulus intervals were set at 400 ms and intertrial intervals were set at 500 ms.  The 

target stimulus length varied by an adaptive tracking procedure (two-down, one-up 

procedure) and a mean threshold was calculated. 

Auditory Duration Pattern Judgment Task 

The test stimuli for the duration pattern test consisted of the Auditec Duration 

Pattern Test traditionally used in clinical settings.  This test consisted of 30 sequences, 

with each sequence consisting of three 1000 Hz tone patterns, with silent inter-tone 

intervals of 300 ms.  The tones were either short (250 ms) or long (500 ms) with 10 ms 

rise/fall times and shaped with a cosine-squared function.  The inter-pattern interval was 



98 

 
 

  

6 seconds.  There were six possible pattern combinations of the three tones: short, short, 

long; short, long, short; short, long, long; long, short, short; long, short, long; long, long, 

short.   

Visual Critical Flicker Fusion Task 

 In order to assess gap detection abilities of the visual system, a flicker fusion task 

was employed.  A Lafayette Instrument 12021 Flicker Fusion system was used to 

measure the flicker fusion thresholds of each participant.  This test was designed to detect 

the critical flicker fusion threshold (CFF).  The CFF threshold was measured when a 

beam of light was interrupted intermittently causing the light to either flash or flicker.  If 

the flicker rate exceeded a certain point, the light appeared to remain steady.  This was 

termed fusion threshold.  On the other hand, the point at which the steady light appeared 

to change and flicker was termed the flicker threshold.  Critical flicker fusion was 

calculated as the average of the flicker and fusion thresholds.   

Visual Duration Discrimination Task 

 It has been found that speed of processing for visual stimuli is slower than for 

auditory stimuli.  In fact, visual information reaches the visual cortex approximately 70 

ms post stimulus onset (Breznitz and Misra, 2003).  Therefore, visual stimuli were longer 

in duration than the auditory stimuli given the nature of slower visual processing.  

Stimulus sequences consisted of a nonlinguistic symbol (*) presented discreetly one right 

after another on a computer screen with a duration of either 300 ms (short) or 600 ms. 

(long).  A black (*) stimulus was presented on a white screen.  The size of the (*) was set 
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to size 72 font for easy visibility.  All presentations were presented in the center of the 

screen and were viewed binocularly.   

Visual Duration Pattern Judgment Task 

 One duration pattern test was created for temporal order judgment.  The test 

stimuli for the duration pattern test consisted of 30 sequences with each sequence 

containing three flashes of a black (*) on a white computer screen.  The (*) was in size 72 

font for easy visibility.  Durations of the (*) were either 300 ms (short) or 600 ms (long) 

with interstimulus intervals of 1000 ms.  Intertrial intervals were 6000 ms.  All 

presentations were presented in the center of the screen and were viewed binocularly.   

Instrumentation 

Auditory Gap Detection Task 

The stimuli and apparatus for the auditory gap detection tasks were similar to 

those used by Elangovan (2005).  All noise stimuli was generated by a Dell Optiplex 

GX1 computer (Pentium II, 400 MHz, 512 MB RAM, operating on a Windows 95 

operating system) and a digital to analog converter (D/A) (Tucker Davis Technologies, 

TDT, model DD1) with a 32-bit resolution and a sampling period of 20 µs.  A signal 

processing card (AP2 array processor, TDT systems II) communicated with the D/A 

system via optical interface.  The stimuli were generated using the SigGen 32 (version 

3.1) software of the TDT (TDT system II) and were low pass filtered (TDT, model FT6-2) 

to prevent aliasing, were attenuated (TDT, model PA4), and then power amplified (TDT, 

model HB6) before being presented binaurally to the participants through EAR-3A insert 

earphones.  Participants were given a response box controlled by a 25 pin connection to 
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one of the real-time processors.  All stimuli were calibrated to reach an overall level of 70 

dB pSPL.   

Auditory Duration Discrimination Task 

Test stimuli for the duration discrimination task were generated using the same 

TDT apparatus and software program (SigGen) used for creating the gap detection tasks 

above.  All generated stimuli were filtered (TDT Model FT6-2) to prevent aliasing, were 

attenuated (TDT Model PA-4), digitally filtered (TDT Model PF1), and power amplified 

(TDT Model HB6) before being presented binaurally through EAR-3A insert earphones 

at a level of 70 dB pSPL.   

Auditory Duration Pattern Judgment Task 

The Auditec Duration Pattern Test was presented via a compact disc player and 

routed through a GSI 61 audiometer.  All presentations were presented through both 

channels on the audiometer. All stimuli were presented binaurally through EAR-3A insert 

earphones at 60 dB HL. 

Visual Critical Flicker Fusion Task 

The Lafayette Instrument 12021 Flicker Fusion system uses digital circuitry to 

provide electrical frequency generation ranging from 1.0 Hz to 100.0 Hz in 0.1 Hz steps.  

The viewing chamber contained two lights, one for the left eye and one for the right eye.  

The inside of the viewing chamber was a dull black to minimize reflection and the 

stimulus color was white, which was presented at 100% luminance.  The typical 

maximum luminance level was 58 Cd/m2.  All stimuli were presented and viewed 

binocularly. 
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Visual Duration Discrimination Task 

All visual stimuli were generated using a Dell XPS laptop computer and 

SuperLab (Cedrus Corporation, version 4.1.3) software.  Trials consisted of 3 stimulus 

sequences, two standards and one target.  Participants indicated the target stimulus by 

pressing the appropriate key on a computer keyboard. 

Visual Duration Pattern Judgment Task 

The same apparatus and software program used to generate the stimuli for the 

duration discrimination task was also used to create the stimuli for the duration pattern 

test [Dell XPS laptop computer using SuperLab software (Cedrus Corporation, version 

4.1.3)].  Participants indicated the correct pattern by pressing the appropriate key on a 

computer keyboard.  

Calibration and Fast Fourier Transforms 

 All auditory stimuli used for the gap detection and discrimination tasks were 

calibrated to 70 dB SPL using a Bruël and Kjær precision sound level meter (Model 2231) 

with an octave band filter (Model 1625) and a Bruel and Kjaer pressure microphone 

(Model 4144). The signals were routed from the TDT system to insert earphones, which 

were connected to the sound level meter via a 2 cm3 coupler.  In the case of the Duration 

Pattern test, signals were routed from a compact disc player, audiometer, and insert 

earphones to the sound level meter. 

Fast Fourier Transforms (FFTs) were obtained using SpectraPro (SOFTEST 

Version 3.32.17) software package.  Prior to FFT analysis, signals were recorded using 

Cool Edit 96 software, which were then saved in a .wav format.  The .wav files were 
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imported into SpectraPro where the FFTs were carried out.  The sampling rate for all 

stimuli was 44,100 Hz.  For the gap stimuli, FFT size was 4096, which generated an 

effective resolution of 10.77 Hz.  Sampling was obtained from 22 to 10030 with a 

Hanning window.  The FFT size for the tonal stimuli was 1024 Hz with a decimation 

ratio of 3.  Results of the FFTs for all stimuli were saved in an Excel workbook and 

exported to Cricket Graph III (Version 1.5.3) for display.  Figure 1 and Figure 2 displays 

the FFTs for the gap and tonal stimuli, respectively. 

General Procedures 

 A double walled sound attenuated audiometric booth, meeting standards for 

permissible ambient noise (American National Standards Institute, 1999), served as the 

test environments for all auditory testing.  The visual experiments were conducted in a 

research lab room, which contained a table with the laptop used to present the visual 

stimuli.  The order of presentation for all experimental tasks was randomized between all 

participants.  All testing, including pre-experimental and experimental testing, lasted 

approximately 3 hours and was conducted over a two-day period.  Participants were 

given a 10 minute break between experimental tasks to reduce the occurrence of fatigue 

and inattention during testing. 

Auditory Gap Detection Task 

  Similar to the study conducted Elangovan (2005), gap detection thresholds were 

estimated using a three-interval, forced choice method for both paradigms. The three-

interval, forced-choice method was the preferred procedure of choice due to the 

reasoning that listeners are able to understand the stimulus parameters under investigation  
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Figure 1: FFT analysis for the between channel (A) leading marker and (B) trailing 

marker and (C) of the within channel marker for the Auditory Gap Detection Task. 
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Figure 2: FFT analysis for the (A) 1000 Hz tone used in the Auditory Duration 

Discrimination Task and (B) tokens from the Auditory Duration Pattern Test. 
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without detailed explanation or reinstruction once the task is underway or when one task 

is substituted for another (Tyler, Summerfield, Wood, & Fernandes, 1982). The 

participants were instructed to indicate which stimulus sequence contained the longer gap.  

The response method consisted of the participant pressing a button on a response pad.  

The PsychoSig (Version 3.11, TDT System II) software controlled stimulus presentation 

and the order of stimulus presentation for each stimulus trial was randomized.  The inter-

trial interval was determined by the participant’s reaction time to the preceding trial and 

followed 300 ms after the response on the response pad.  Initially, the gap duration was 

long to aid in familiarity of the task.  Gap duration was increased after incorrect 

responses and decreased for every two successive correct responses.  The two-down, one- 

up procedure was used to measure the 70.7% point on the psychometric function (Levit, 

1971).  Prior to testing, a 10-item practice test was administered using a 20 ms gap to 

ensure that the participants understood the task requirements and were able to achieve at 

least 90% correct.  For the experimental test, the initial step size for the gap detection was 

20 ms and was then decreased to 5 ms after three reversals.  Test trials continued until 30 

total trials or 8 reversals were obtained and gap detection threshold was stable and 

desirable (i.e. lower than the initial gap duration).  The mean gap duration threshold was 

calculated as the arithmetic mean of the duration of the gap obtained from the last 4 

reversals for both paradigms (Hall & Grose, 1994).  

Auditory Duration Discrimination Task   

Discrimination thresholds were estimated using three-interval, forced choice 

procedure.  Prior to testing, a 10-item practice test was administered with a standard tone 
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of 75 ms and a target tone of 50 ms. A correct score of at least 90% was obtained from 

each participant to ensure task familiarity and ability to complete the task without 

difficulty.  For the experimental test condition, the initial duration of the target was long 

so as to aid in familiarity of the task.  A two-down, one-up stepwise tracking procedure 

was implemented to measure the 70.7% point on the psychometric function (Levit, 1971).  

The participants were instructed to indicate (push button on response pad) which stimulus 

was different in the sequence of three tones.  The inter-trial interval was determined by 

the participant’s reaction time to the preceding trial and followed 300 ms after the 

response on the response pad.  Based on Elfenbein, Small and Davis (1993), the initial 

step size of the target was 40 ms but was then reduced to 10 ms after the second reversal.  

Test trials continued until 30 total trials or 8 reversals were obtained and discrimination 

thresholds were stable and desirable (i.e. lower than the initial target duration).  The mean 

discrimination threshold was calculated as the arithmetic mean of the thresholds obtained 

from the last 4 reversals for both paradigms. 

Auditory Duration Pattern Judgment Task 

  The Auditory Duration Pattern test was presented in a sound attenuated booth.  

Prior to testing a 10-item practice test was administered and a score of at least 90% was 

obtained to ensure that participants understood task directions and performed the task 

without difficulty.  A stimulus pattern of three tones was presented with two tones of the 

same duration and one tone of a different duration.  Participants were instructed to point 

to the correct pattern represented on paper (Appendix C).  The examiner marked correct 

answers on the score sheet and calculated percent correct score.   
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Visual Critical Flicker Fusion Task 

  Flicker fusion thresholds were estimated using one of the three automatic 

protocols: the adaptive tracking procedure.  The participants were instructed to indicate, 

by push of a button, when the light seemed to flicker or remain steady.  Software 

controlled stimulus presentation and depending on the participant’s response, the next 

frequency displayed was either at a higher or lower frequency.  To determine CFF, the 

software limited frequency steps from +/- 10 Hz after the first reversal to +/- 2.5, 1.2, 0.6, 

0.3, and 0.1 from the second to the sixth reversal, respectively.  The test was stopped 

after the sixth reversal.  The CFF was considered the stopping frequency after the sixth 

reversal had been reached.  Similar to the auditory gap detection task, participants 

underwent three trials and the mean flicker fusion threshold was obtained.  Prior to 

testing, thorough instructions were given to the participants to ensure that task 

requirements were understood. 

Visual Duration Discrimination Task   

Participants were seated 18 inches from the computer screen and were instructed 

to indicate (push button on response pad) which stimulus was different in the sequence.  

The “long” and “short” categorizations were explained to the participants prior to testing.  

If the “different ‘*’” stimulus occurred first, then the participant was instructed to press 

number “1” on the keyboard.  If the “different ‘*’” stimulus appeared second in the 

sequence of three flashes, then the participant was instructed to press number “2” and so 

on.  Interstimulus intervals were 1000 ms and inter-trial intervals were 6000 ms.  The 

initial duration of the target was long so as to aid in familiarity of the task.  The initial 
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step size of the target was 50 ms but will be reduced to 25 ms after the third reversal. 

Prior to testing a 10-item practice test was administered and a score of at least 90% was 

obtained to ensure task familiarity and ability to perform the task without difficulty.   

When participants reached 90% accuracy, testing began.  Due to the inability of the 

software to stop automatically after 8 reversals, thirty test trials were administered.  The 

mean discrimination threshold was obtained from the last 4 reversals.  All presentations 

were presented in the center of the screen and were viewed binocularly. 

Visual Duration Pattern Judgment Task 

  Participants were seated 18 inches from a computer screen.  The duration pattern 

sequences were presented in a randomized order.  A stimulus pattern of three (*) flashes 

were presented with two duration of equal length and one duration of a different length. 

As with the auditory duration pattern test, there were six possible patterns: long, long, 

short; short, long, long; long, short, short; short, short, long; long, short, long; and short, 

long, short.  Participants were instructed to press the appropriate button on a computer 

keyboard corresponding to the correct pattern observed.  Placed in front of the 

participants was a laminated paper indicating the six possible patterns and their 

corresponding key on the keyboard.  For example, if the participant observed “short-

short-long” on the screen, he or she was instructed to press number “2” on the keyboard.  

A percent correct score was calculated once the test was completed. Prior to testing a 10-

item practice test was administered and a score of at least 90% was obtained to ensure 

task familiarity and ability to perform the task without difficulty.   When participants 

reached 90% accuracy, testing began. 
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Statistical Methods 

SPSS (Version 15.0) was used as the statistical analysis tool for all data collected 

from the study.  Descriptive analysis of the data was done to examine the mean and 

standard deviations of scores obtained on all experimental tasks between groups (control, 

dysphonetic, and dysphoneidetic). Percent correct scores on the temporal order task were 

also converted to proportional values and submitted to an arcsine transformation. For all 

data, if a significant main effect of group was observed, then appropriate post-hoc 

comparisons were conducted.  Specifically, a two orthoginal single-df comparison was 

carried out to determine the source of the main effect and to answer the question, “is 

there a difference in performance one task as a function of group (control, dysphonetic, 

and dysphoneidetic)?”   

To answer the question of whether there was an effect of group and paradigm on 

gap threshold, a 2-factor mixed analysis of covariance (ANCOVA) was utilized.  The 

independent variables included group (control, dysphonetic, dysphoneidetic) and gap 

paradigm (within- and between-channel).  The dependent variable was threshold (ms).  

For the auditory duration discrimination task, a one-way ANCOVA was utilized.  

The independent variable for this analysis was group (control, dysphonetic, 

dysphoneidetic) and the dependent variable was threshold (ms). 

For the auditory duration pattern judgment task, a one-way ANCOVA was 

utilized.   The independent variable for this analysis was group (control, dysphonetic, 

dysphoneidetic) and the dependent variable was percent accuracy.  The percent accuracy 

scores were transformed to rationalized arcsine units for inferential analysis. 
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A one-way ANCOVA was also utilized for the visual critical flicker fusion task.  

The independent variable for this analysis was group (control, dysphonetic, 

dysphoneidetic) and the dependent variable was threshold (Hz). 

A one-way ANCOVA was utilized for the visual duration discrimination task.  

The independent variable for this analysis was group (control, dysphonetic, 

dysphoneidetic) and the dependent variable was threshold (ms). 

For the visual duration pattern judgment task, a one-way ANCOVA was utilized.   

The independent variable for this analysis was control (control, dysphonetic, 

dysphoneidetic) and the dependent variable was percent accuracy.  The percent accuracy 

scores underwent an arcsine transformation to convert the percents to proportional values 

for analysis. 

Since it was found that the control group and the dysphonetic and dysphoneidetic 

groups combined had significantly lower mean language standard scores (SS = 102.60) 

on the PPVT-IVT as compared to mean language standard scores of the control group 

(SS=115.08), PPVT–IV scores were used as a covariate to determine if verbal ability 

affected significance found during inferential analysis of the experimental data. 

Finally, to determine if performance on a standardized reading test, such as the 

WRMT-R or the Word/Nonword Test, was related to performance on the experimental 

tasks, a series of parametric correlation (Pearson Product-Moment correlational 

coefficient) tests were performed for each experimental task that yielded significant 

differences in performance.



           
 

 
 

CHAPTER III 

RESULTS 

Reading is an intricate process that involves several actions of the reader, such as 

the complex processes of accessing one’s lexicon through both the phonological and 

visual/lexical routes.  Phonological processing serves as the precursor to phonological 

decoding and requires accurate analysis of the acoustic event.  Phonological decoding is 

defined as the word recognition process that transforms print into words.  Thus, accessing 

the lexicon using the phonological route requires explicit awareness of the phonological 

structure of words and accurate auditory temporal processing.  Auditory temporal 

processing involves receiving and analyzing temporal cues within the acoustic message, 

such as voice onset time, formant structure, and frequency and duration modulations.  

When readers access the mental lexicon through the visual/lexical route no phonological 

decoding is needed, but rather orthographic or visual/lexical processing.  Thus, the 

visual/lexical strategy relies on the reader’s ability to appropriately recognize whole 

words or specific letter patterns and match them to information already stored in the 

mental lexicon.  Readers with deficits in orthographic processing and decoding have 

difficulties accessing the mental lexicon through the visual/lexical route and continue to 

rely on segmenting written words into individual units, which results in an overreliance 

on phonological decoding skills.  Due to the fact that efficient reading depends on the 

ability of the reader to successfully decode and identify words in written text by both 

decoding strategies, two separate sources of reading failure account for differential types 

of reading disorders (Torgeson et al., 1994; Wolf & Bowers, 1999).  
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To date, research remains inconclusive as to the role general temporal processing 

deficits play in phonological and visual/lexical decoding during reading.  Thus, it remains 

unclear as to what extent auditory and visual processing deficits play in reading disorders 

and if their relationship to reading impairment is directly causative or associative.  The 

purpose of this study was to examine the relationship between auditory and visual 

temporal processing skills and RD, primarily in decoding and sight-word reading skills. 

Experimental tasks were designed to assess detection, discrimination, and 

temporal order judgment abilities in the auditory and visual modalities.  In the auditory 

domain, both within- and between-channel gap paradigms were utilized to assess the 

ability of the auditory system to detect a silent gap between individual auditory events 

when gap duration was manipulated and became progressively imperceptible.  Likewise, 

in the visual domain, a critical flicker fusion task was utilized to assess the ability of the 

visual system to detect separate visual events when individual events became 

progressively imperceptible.  Discrimination tasks for both sensory domains were 

designed to assess the ability of each system to discriminate differences between a target 

stimulus and a constant when the duration of the target stimulus was manipulated to 

become progressively imperceptible.  Finally, temporal order judgment tasks were 

designed to assess the ability of the auditory and visual systems to identify the sequence 

of events.  Presentation modes for the visual discrimination and temporal order tasks 

were similar to those of the auditory discrimination and temporal tasks such that stimuli 

were presented discreetly (one after another) within a trial with fixed interstimulus 

intervals between events. 
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Participants 

Twenty-seven children (20 males, 7 females; mean age = 12.1 years) were 

recruited to participate in the study.  Twelve children (8 males, 4 females; mean age = 

11.8 years) served as the control group and 15 (7 males, 2 females; mean age = 11.9 years) 

children were identified as RD based on their scores on two of the pre-experimental 

reading and language tests, specifically, the Woodcock Reading Mastery Test – Revised 

(WRMT-R) and the Word/Nonword Test (Coltheart & Leahy, 1996).  Readers assigned to 

the control group had standard scores of > 85 on both subtests of the WRMT-R and raw 

scores within a normal range based on age norms for the Word/Nonword Test as 

calculated by Edwards and Hogben (1999).  Children were grouped into the RD group if 

standard scores on one or both of the subtests of the WRMT-R fell below 84 and raw 

scores on one or more subtests of the Word/Nonword Test fell below normal range based 

on age norms. To differentiate RD subtypes, children were assigned to the dysphonetic 

(DP) group if standard scores were < 84 on the Word Attack subtest of the WRMT-R and 

raw scores on the nonword list of the Word/Nonword Test were outside the age-based 

norms (Edwards & Hogben, 1999).  Additionally, children assigned to the dysphoneidetic 

group (or mixed group [M]) had standard scores of < 84 on the Word Attack and Word 

Identification subtests of the WRMT-R and raw scores on the irregular word and nonword 

lists of the Word/Nonword Test outside the age-based norms (Edwards & Hogben, 1999).  

Means and standard deviations for the standard scores on the WRMT-R and Peabody 

Picture Vocabulary Test – IV (PPVT – IV) along with mean raw scores and standard 

deviations on the Word/Nonword Test as a function of group are shown in Tables 2 and 3 
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and in Figures 3 and 4, respectively.  Individual standard scores and performances on the 

WRMT-R, PPVT – IV, and the Word/Nonword Test as a function of group are in 

Appendix D. 

Age 

An independent samples t-test was utilized to examine differences in average age 

as a function of group.  There was no significant difference in the average age between 

the control group and the RD group (i.e., dysphonetic and dysphoneidetic groups 

combined) [t (25) = -0.20, p = 0.85, Mean difference = -0.08, SE = 0.42, 95% confidence 

interval of the difference = -0.95 to 0.78].   

Verbal Ability 

An independent samples t-test was utilized to examine verbal ability, as measured 

by the PPVT-IVT, as a function of group.  There was a significant difference in average 

standard scores on the PPVT-IVT between the control group and the RD group (i.e., 

dysphonetic and dysphoneidetic groups combined) [t (25) = 2.36, p = 0.03, Mean 

difference = 12.48, SE = 5.29, 95% confidence interval of the difference = 1.58 to 23.39].  

The RD group had significantly lower mean language standard scores (SS = 102.60) on 

the PPVT-IVT as compared to the mean language standard scores of the control group 

(SS = 115.08).  Therefore, PPVT-IV scores were used as a covariate for all inferential 

analyses. 

Data Screening 

 Prior to descriptive and inferential analysis, threshold data for the auditory and 

visual gap detection and duration discrimination tasks, as well as the accuracy scores for 
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Table 2.  

Mean and Standard Deviations of Standard Scores on the Word Identification and Word 

Attack Subtests of the WRMT-R and Standard Scores on the PPVT-IV as a Function of 

Group (i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
 Group 

 Control (N =12) DP (N=6) M (N = 9) 

WRMT-R    

Word Identification     

 Mean 106.8 92.0 81.9 

 Range 92-132 85-99 72-89 

 SD  11.9  5.1  5.8 

Word Attack     

 Mean 112.0 93.3 87.3 

 Range 101-127 84-107 73-107 

 SD    8.9  9.2 10.2 

               PPVT    

 Mean 115.1 105.0 101.0 

 Range 96-146 96-111 86-123 

 SD  17.4    5.5   11.9 
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Table 3.  

Mean Raw Score and Standard Deviations for Regular Word, Irregular Word, and 

Nonword Lists of the Word/Nonword Test as a Function of Group (i.e., Control, 

Dysphonetic [DP] and Dysphoneidetic [M]). 

 
 Group 

 Control (N =12) DP (N=6) M (N = 9) 

Regular Word     

 Mean 28.4 25.3 21.3 

 Range 25-30 23-28 14-28 

 SD  1.7  2.1  5.0 

   Irregular Word     

 Mean 24.9 21.3 15.6 

 Range 20-30 19-25 8-21 

 SD  3.6  2.4  4.3 

       Nonword    

 Mean 26.3 15.0 12.1 

 Range 21-30 11-19 3-20 

 SD  2.8  3.4  6.9 
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Figure 3. Mean standard scores on the Word Attack and Word Identification subtests of 

the WRMT-R as a function of group.  Error bars represent plus one SD of the mean.  
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Figure 4. Mean standard scores on the Regular Word, Irregular Word, and Nonword lists 

on the Word/Nonword Test as a function of group.  Error bars represent plus one SD of 

the mean. 
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the auditory and visual duration pattern tasks were examined within and across trials  

with SPSS Explore (SPSS 16.0 for Mac, SPSS, Inc) for accuracy of data entry and to 

identify missing values and outlying data points.  Outliers were eliminated and threshold 

data was analyzed for averaged data (i.e., two or three trials) and for best threshold.  Two 

participants, participant 5 in the control group and participant 22 in the dysphoneidetic 

group, could not complete the between-channel gap detection task.  Similarly, participant 

8 in the control group could not complete the visual duration discrimination task and a 

linear mixed model analysis of variance (ANOVA) was used to account for the missing 

threshold data.   

Auditory Experimental Tasks 

Auditory Gap Detection 

In Experimental Task One, participants were required to complete a three-trial 

gap detection task in both between-channel and within-channel paradigms.  For both 

paradigms, each stimulus trial had three sequences (i.e., two control and one target) with 

an inter-sequence interval of 500 ms. The control sequences had a leading and trailing 

marker separated by an inaudible gap of 1.0 ms. The target sequence had the leading and 

trailing markers separated by a gap varied by an adaptive tracking procedure.  

Participants indicated which sequence contained the gap by pressing the appropriate 

button on a response pad.  For threshold analysis, independent variables included group 

and gap paradigm (i.e., between-channel and within-channel).  The dependent variable 

was threshold (ms).  Mean and best thresholds and standard deviations as a function of 

group (i.e., control, dysphonetic, and dysphoneidetic) and gap paradigm are provided in 
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Table 4 and 5, respectively, and illustrated in Figure 5.  Individual mean and best 

thresholds (ms) as a function of group are reported in Appendix E. One participant in the 

control group and one participant in the dysphoneidetic group were unable to achieve 

90% accuracy on the familiarization task and therefore did not complete the between-

channel gap detection experimental task.   

Auditory Gap Detection Analyses.  The first experimental question addressed 

whether statistically significant differences in threshold performance (ms) existed in a 

gap detection task as a function of group (i.e., control, dysphonetic, and dysphoneidetic).  

Two separate three-factor linear mixed model ANOVAs (SPSS 16.0 For Mac, SPSS Inc.) 

were conducted to examine differences in mean and best gap threshold as a function of 

group and gap paradigm (i.e., within- vs. between-channel).  Standard scores on the 

PPVT-IV were entered as a covariate. The repeated measures were modeled with a first-

order autoregressive moving average (ARMA [1, 1]) covariance structure. This analysis 

can accommodate missing data in a repeated measures design (Little & Rubin, 2002). 

Recall from above that two participants (i.e., one participant in each of the control and 

dysphoneidetic groups) could not complete the between-channel gap task. The summaries 

of the ANOVAs are in Tables 6 and 7. As seen in both tables, significant main effects of 

group and paradigm were found. As expected mean and best within-channel gap 

paradigm thresholds were found to be significantly lower than between-channel gap 

paradigm thresholds.  With both the mean and best gap detection data sets, two 

orthogonal single-df contrasts were undertaken to find the source of the main effect of  
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Table 4.  

Mean Gap Threshold (ms) and Standard Deviations for the Within- and Between-

Channel Gap Paradigm Tasks as a Function of Group (i.e., Control, Dysphonetic [DP] 

and Dysphoneidetic [M]). 

 Group 

 Control  DP  M  

Within-Channel Gap Paradigm    

 N 12 6 9 

 Mean 6.78 9.04 13.11 

 Range 3.75-10.42 2.92-18.83 5.50-40.75 

 SD 2.15 5.34 12.72 

Between-Channel Gap Paradigm    

 N 11* 6 8* 

 Mean 24.33 52.42 68.69 

 Range 5.00-85.00 22.17-89.00 23.50-144.00 

 SD 18.18 5.34 43.98 

Note: * One participant could not complete task. 
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Table 5.  

Best Gap Threshold (ms) and Standard Deviations for the Within- and Between-Channel 

Gap Paradigm Tasks as a Function of Group (i.e., Control, Dysphonetic [DP] and 

Dysphoneidetic [M]). 

 Group 

 Control  DP  M  

Within-Channel Gap Paradigm    

 N 12 6 9 

 Best 4.79 5.83 9.42 

 Range 2.50-8.75 2.50-10.00 3.75-27.50 

 SD 1.91 2.70 9.64 

Between-Channel Gap Paradigm    

 N 11* 6 8* 

 Best 19.00 37.08 62.56 

 Range 5.00-54.00 14.00-69.00 21.50-144.00 

 SD 15.49 20.47 44.37 

Note: * One participant could not complete task. 
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Figure 5. Mean (A) and best thresholds (B) on the Within-Channel and Between-Channel 

Gap Detection Task as a function of group.  Error bars represent plus one SD of the mean. 
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Table 6.  

Summary Table for the Three-Factor, Linear Mixed Model ANCOVA Investigating 

Differences in Mean Gap Threshold (ms) as a Function of Within- Subjects Variable Gap 

Paradigm (i.e., Within- and Between-Channel) and Between-Subjects Variable Group 

(i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Source df F p 

Group 2 4.51 0.02* 

Gap 1 6.41 0.02* 

PPVT 1 7.43 0.01* 

Group X Gap 2 2.01 0.16 

Group X PPVT 2 3.46 0.05 

Gap X PPVT 

Group X Gap X PPVT 

1 

2 

4.55 

1.63 

0.04* 

0.22 

Note: * Significant at p < 0.05 
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Table 7.  

Summary Table for the Three-Factor, Linear Mixed Model ANCOVA Investigating 

Differences in Best Gap Threshold (ms) as a Function of Within- Subjects Variable Gap 

Paradigm (i.e., Within- and Between-Channel) and Between-Subjects Variable Group 

(i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Source df F p 

Group 2 4.95 0.02* 

Gap 1 7.40 0.01* 

PPVT 1 7.26 0.01* 

Group X Gap 2 3.29       0.06 

Group X PPVT 2 3.87 0.04* 

Gap X PPVT 

Group X Gap X PPVT 

1 

2 

5.55 

2.72 

0.03* 

      0.09 

Note: * Significant at p < 0.05 
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group.  In both average and best threshold analysis, the control group performed 

significantly better than the RD groups (p < 0.05).  Further, there was no significant 

difference between the two RD groups (p > 0.05).   

Auditory Duration Discrimination 

 In Experimental Task Two, participants were required to complete and three-trial 

duration discrimination task in which they were instructed to determine which trial 

contained the “different” stimulus.  Each trial sequence contained three 1000 Hz tones 

with two standard tones 75 ms in duration and one target tone of 50 ms in duration.  

Depending on participant response, target duration varied by an adaptive tracking 

procedure.  Participants indicated which sequence contained the target by pressing the 

appropriate button on a response pad.  For threshold analysis, the independent variable 

was group.  The dependent variable was threshold (ms).  Mean and best threshold and 

standard deviations as a function of group (i.e., control, dysphonetic, and dysphoneidetic) 

are provided in Table 8 and in Figure 6.  Individual mean and best duration 

discrimination thresholds (ms) and standard deviations as a function of group are reported 

in Appendix E. 

Auditory Duration Discrimination Analyses.  The second experimental question 

addressed if statistically significant differences in threshold existed in a duration 

discrimination task as a function of group.  Two separate univariate analyses of 

covariance (ANCOVA) were conducted on mean and best threshold (ms) as a function of 

group (i.e., control, dysphonetic, and dysphoneidetic) when controlling for verbal ability 
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Table 8.  

Mean and Best Thresholds (ms) and Standard Deviations on the Auditory Duration 

Discrimination Task as a Function of Group (i.e., Control, Dysphonetic [DP] and 

Dysphoneidetic [M]). 

 
  Group 

  Control (N = 12) DP (N = 6) M (N = 9) 

Average Threshold (ms) Mean 14.20 16.67 21.51 

 Range 8.33-24.58 10.83-30.00 7.08-36.25 

 SD   5.36   7.21   9.17 

Best Threshold (ms) Mean 11.04 12.08 17.64 

 Range 3.75-22.50 8.75-20.00 6.25-32.50 

 SD   5.30   4.08   8.01 
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Figure 6. Mean and best thresholds on the Auditory Duration Discrimination Task as a 

function of group.  Error bars represent plus one SD of the mean. 
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 (i.e., standard scores on the PPVT-IV as a covariate).  The results of the ANCOVAs are 

displayed in Table 9.  As shown in Table 9, results of the ANCOVAs revealed no 

significant main effect of group. 

Auditory Duration Pattern Judgment 

In Experimental Task Three, participants were required to complete a 30-

sequence auditory duration pattern test.  Each sequence consisted of three 1000 Hz tones 

that were either short (250 ms) or long (500 ms) making up one of six possible tonal 

patterns.  Participants indicated which pattern was heard by pointing to the appropriate 

pattern represented on a piece of paper.  For duration pattern accuracy analysis, the 

independent variable was group (i.e., control, dysphonetic, and dysphoneidetic) and the 

dependent variable was accuracy (i.e., percent correct).  Mean percent correct scores and 

standard deviations as a function of group are provided in Table 10 and in Figure 7.  

Individual accuracy scores and standard deviations as a function of group are listed in 

ppendix E. 

Accuracy Data.  The third experimental question addressed if statistically 

significant differences in accuracy existed on an auditory duration pattern test as a 

function of group (i.e., control, dysphonetic, and dysphoneidetic).  Prior to inferential 

analysis, raw data (i.e., proportion) were submitted to an arcsine transformation.  A 

univariate ANCOVA was conducted on accuracy as a function of group when controlling 

for verbal ability (i.e., standard scores on PPVT -IV as a covariate).  The results of that 

ANCOVA are displayed in Table 11.  As shown in Table 11, there was no significant 

main effect of group. 
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Table 9.  

Summary Table for the One-Way ANCOVAs Investigating Differences in Mean and Best 

Thresholds (ms) on the Auditory Duration Discrimination (ADD) as a Function of Group 

(i.e., Control, Dysphonetic, and Dysphoneidetic). 

 

Task 
 

Condition Source df F p η2  θ 

ADD 
 

Mean Group 2 2.50 0.10 0.18 0.45 

 
 

 PPVT 1 0.17 0.68  0.007 0.40 

 
 

Best Group 2 3.38 0.05 0.23 0.58 

 
 

 PPVT 1 0.60 0.45 0.03 0.12 

        
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



131 

 
 

  

Table 10.  

Mean Accuracy (Percent) and Standard Deviations on the Auditory Duration Pattern 

Test as a Function of Group (i.e., Control, Dysphonetic [DP] and Dysphoneidetic [M]). 

 
 Group 

Auditory Duration Pattern Test Control (N = 12) DP (N = 6) M (N = 9) 

Mean 81.0 70.5 60.4 

Range 43-100 53-80 37-80 

SD 17.2 10.0 16.7 
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Figure 7. Mean percent correct on the Auditory Duration Pattern Judgment Task as a 

function of group.  Error bars represent plus one SD of the mean.  
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Table 11.  

Summary Table for the One-Way ANCOVAs Investigating Differences in Accuracy 

(proportion) on the Auditory Duration Pattern Judgment (ADPT) Task as a Function of 

Group (i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Task 

 
Condition Source df F p η2  θ 

ADPT 
 

 Group 2 1.88 0.18 0.14 0.35 

 
 

 PPVT 1 7.25 0.01 0.24 0.73 
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Visual Experimental Tasks 

Visual Critical Flicker Fusion 

 In experimental task one, participants were required to complete a three-trial 

critical flicker fusion task in which they were instructed to indicate, by press of a button, 

the presence or absence of flicker in two beams of light presented inside a viewing 

chamber.  The beams of light were interrupted intermittently causing the lights to either 

flash or flicker. If the flicker rate exceeded a certain frequency point, the lights appeared 

to remain steady.  Based on participant response, frequency of flicker was varied by an 

adaptive tracking procedure.  For critical flicker fusion threshold (Hz) analysis, the  

independent variable was group (i.e., control, dysphonetic, and dysphoneidetic) and the 

dependent variable was flicker fusion threshold (Hz).  Mean and best thresholds and 

standard deviations as a function of group and are provided in Table 12 and in Figure 8.  

Individual mean and best thresholds (Hz) as a function of group are reported in Appendix 

E. 

Visual Critical Flicker Fusion Analyses. The first experimental question 

addressed if statistically significant differences in threshold existed on a visual critical 

flicker fusion test as a function of group (i.e., control, dysphonetic, and dysphoneidetic).  

Two separate univariate ANCOVAs were conducted on the mean and best threshold (ms) 

as a function of group controlling for verbal ability when standard scores on the PPVT-IV 

were used as a covariate.  The results of those ANCOVAs are summarized in Table 13.  

As shown in Table 13, results of the ANCOVAs revealed no significant main effect of 

group.   
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Table 12.  

Mean and Best Thresholds (Hz) and Standard Deviations on the Visual Critical Flicker 

Fusion Task as a Function of Group (Control, Dysphonetic [DP] and Dysphoneidetic 

[M]). 

 
  Group 

  Control (N = 12) DP (N = 6) M (N = 9) 

Average Threshold (Hz) Mean 41.5 38.0 40.1 

 Range 34.9-45.1 32.9-41.9 31.2-59.2 

 SD   3.2   3.2  8.9 

Best Threshold (Hz) Mean 44. 5 40.4 42.7 

 Range 37.8-42.2 38.0-42.2 34.6-67.4 

 SD  5.3   1.5 10.5 
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Figure 8. Mean and best thresholds on the Visual Critical Flicker Fusion Task as a 

function of group.  Error bars represent plus one SD from the mean. 
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Table 13.  

Summary Table for The One-Way ANCOVAs Investigating Differences in Mean and Best 

Threshold (Hz) on the Visual Critical Flicker Fusion Task (CFF) as a function of Group 

(i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Task 

 
Condition Source df F p η2  θ 

CFF 
 

Mean Group 2 0.44 0.65 0.04 0.11 

 
 

 PPVT 1 2.70 0.11 0.11 0.35 

 
 

Best Group 2 0.35 0.71 0.03 0.10 

  PPVT 1 2.62 0.12 0.10 0.34 
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Visual Duration Discrimination 

In Experimental Task Two, participants were required to complete a three-trial 

duration discrimination task in which they were instructed to determine which trial 

sequence contained the “different” stimulus.  Each trial sequence contained three 

asterisks (*) presented on a computer screen with two standard asterisks presented for 

300 ms in duration and one target asterisk presented for 600 ms in duration.  Depending 

on participant response, target duration varied by an adaptive tracking procedure.  

Participants indicated which sequence contained the target by pressing the appropriate 

button on a computer keyboard.  For threshold analysis, the independent variable was 

group (i.e., control, dysphonetic, and dysphoneidetic).  The dependent variable was 

threshold (ms).  Mean and best thresholds and standard deviations as a function of group 

are provided in Table 14 and in Figure 9. One participant in the control group was unable 

to achieve 90% accuracy on the familiarization task and, therefore, did not complete the 

experimental trials. Individual mean and best thresholds (ms) as a function of group are 

reported in Appendix E.  

Visual Duration Discrimination Analyses. The second experimental question 

addressed if statistically significant differences in threshold existed in a duration 

discrimination task as a function of group (i.e., control, dysphonetic, and dysphoneidetic).  

A two-factor linear mixed ANOVA (SPSS 16.0 For Mac, SPSS, Inc) was conducted to 

examine differences in visual duration discrimination as a function of group.  Standard 

scores on the PPVT-IV were entered as a covariate. This analysis can accommodate 

missing data in a repeated measures design (Little & Rubin, 2002).   Recall from above 
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Table 14. 

 Mean and Best Thresholds (ms) and Standard Deviations on the Visual Duration 

Discrimination Task as a Function of Group (i.e., Control, Dysphonetic [DP] and 

Dysphoneidetic [M]). 

 
  Group 

  Control (N = 12) DP (N = 6) M (N = 9) 

Average Threshold (Hz) Mean 65.83 62.15 39.35 

 Range 25.00-137.50 43.75-110.42 12.50-87.50 

 SD 34.12 25.60 23.14 

Best Threshold (Hz) Mean 99.24 101.04 66.66 

 Range 31.25-237.50 68.75-181.25 18.75-225.00 

 SD 55.24   43.20 63.35 
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Figure 9. Mean and best thresholds on the Visual Duration Discrimination Task as a 

function of group.  Error bars represent plus one SD of the mean. 
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 that one participant in the control group  could not complete the visual duration 

discrimination task. The summaries of the ANOVAs are in Tables 15 and 16. As seen in 

the tables, all main effects and interactions were not significant. 

Visual Duration Pattern Judgment  

 In Experimental Task Three, participants were required to complete a 30-

sequence visual duration pattern test.  Each sequence consisted of three asterisks (*) 

presented on a computer monitor for either 300 ms or 600 ms, making up one of six 

possible visual patterns.  Participants indicated which pattern was viewed by pressing the 

appropriate key on a computer keyboard.  The six patterns were represented on a piece of 

paper for ease of pattern identification. For duration pattern accuracy analysis, the 

independent variable group (i.e., control, dysphonetic, and dysphoneidetic) and the 

dependent variable was accuracy (i.e., percent correct).  Mean accuracy scores and 

standard deviations as a function of group is provided in Table 17 and Figure 10. 

Individual accuracy scores as a function of group are reported in Appendix E. Prior to 

inferential analysis, raw data (percent correct scores) were submitted to an arcsine 

transformation. 

Visual Duration Pattern Judgment Analyses.  The third experimental question 

relative to visual processing addressed if statistically significant differences in accuracy 

(i.e., proportion) existed on a visual duration pattern test as a function of group (i.e., 

control, dysphonetic, and dysphoneidetic).  Prior to inferential analyses, the proportion 

correct scores were transformed to arcsine units.  A univariate ANCOVA was conducted 

on accuracy as a function of group controlling for verbal ability when standard scores on 



142 

 
 

  

Table 15.  

Summary Table for the Two-Factor, Linear Mixed Model ANCOVA Investigating 

Differences in Mean Visual Duration Discrimination Threshold (ms) as a Function of 

Group (i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Source df F p 

Group 2 2.04 0.08 

PPVT 1 2.90 0.46 

Group X PPVT 2 2.98 0.07 
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Table 16.  

Summary Table for the Two-Factor, Linear Mixed Model ANCOVA Investigating 

Differences in Best Visual Duration Discrimination Threshold  (ms) as a Function of 

Group (i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Source df F p 

Group 2 1.61 0.23 

PPVT 1 0.69 0.42 

Group X PPVT 2 1.65 0.22 
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Table 17.  

Mean Accuracy (Percent) and Standard Deviations on the Visual Duration Pattern Task 

as a Function of Group (i.e., Control, Dysphonetic [DP], and Dysphoneidetic [M]). 

 
 Group 

Visual Duration Pattern Test Control (N = 12) DP (N = 6) M (N = 9) 

Mean 54.7                       55.8 52.2 

Range 30-80 17-87 27-80 

SD 17.3 26.9 17.0 
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Figure 10. Mean percent correct on the Visual Duration Pattern Judgment Task as a 

function of group.  Error bars represent plus one SD of the mean. 
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the PPVT-IV were used as a covariate.  The results of that ANCOVA are displayed in  

Table 18.  Results of the ANCOVA revealed no significant main effect of group. 

Correlational and Linear Regression Data Analyses 

A series of parametric correlation (Pearson Product-Moment correlational coefficient) 

tests were conducted to examine the association between the pre-experimental Word 

Identification and Word Attack subtests of the WRMT-R and the Regular Word, Irregular 

Word, and Nonword lists of the Word/Nonword Test.  The analyses were undertaken to 

determine if both reading measures similarly assessed phonological decoding and sight-

word reading abilities.  Correlations were also conducted to investigate the association 

between performance on the pre-experimental tasks and performance on all experimental 

tasks. In addition, linear regression analyses were conducted to determine the predictive 

nature of the experimental tasks to reading scores on the Word Identification and Word 

Attack subtests of the WRMT-R.  Finally, Pearson Product-Moment correlational 

coefficient analyses were conducted to investigate the association between performances 

on the auditory experimental tasks to performance on the visual experimental tasks.   

Pre-experimental Tasks 

Significant positive correlations were found between standard scores on the Word 

Identification of the WRMT-R and raw scores on the Regular Word, the Irregular Word, 

and the Nonword lists of the Word/Nonword Test.  Additional positive correlations were 

found between the standard scores on the Word Attack subtest of the WRMT-R and raw 

scores on the Regular Word, the Irregular Word, and the Nonword lists of the 

Word/Nonword Test.  The results of those correlations are summarized in Table 19.   
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Table 18.  

Summary Table for Three Separate One-Way ANCOVAs Investigating Differences in 

Proportion of Accuracy on the Visual Duration Pattern Task (VDPT) as a function of 

Group (i.e., Control, Dysphonetic, and Dysphoneidetic). 

 
Task 

 
Condition Source df F p η2  θ 

VDPT 
 

 Group 2 0.41 0.67 0.03 0.11 

 
 

 PPVT 1 5.35 0.03 0.19 0.60 
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Table 19.  

Pearson Product-Moment Correlations Between Performance on Word Identification (WI) 

and Word Attack (WA) Subtests of the WRMT-R and the Regular Word (RW), Irregular 

Word (IW), and Nonword (NW) Lists of the Word/Nonword Test. 

 
 Word/Nonword Test Subtests 

WRMT-R Subtests RW IW NW 

WI 0.76** 0.81** 0.80** 

WA 0.80** 0.81** 0.87** 

Note: ** p < 0.01 
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 Further, simple linear regression analyses revealed that the relation between performance 

on the Word Identification subtest, as a function of performance on the regular word, 

irregular word, and nonword reading lists of the Word/Nonword Test, were statistically 

significant (p < 0.05).  A summary of independent ANOVAs that tested significance of 

the linear relationship between the Word Identification subtest of the WRMT-R and all 

word lists of the Word/Nonword Test are presented in Table 20.  Bivariate scatterplots 

and linear regression lines for performance on the Word Identification subtest, as a 

function of performance on the Word/Nonword Test is shown in Figure 11.   

Additional simple linear regression analyses also revealed that the relation 

between performance on the Word Attack subtest, as a function of performance on the 

regular word, irregular word, and nonword reading lists of the Word/Nonword Test, were 

statistically significant (p < 0.05).  A summary of independent ANOVAs that tested 

significance of the linear relationship between the Word Attack subtest of the WRMT-R 

and all word lists of the Word/Nonword Test are presented in Table 21.  Bivariate 

scatterplots and linear regression lines for performance on the Word Attack subtest, as a 

function of performance on the Word/Nonword Test is shown in Figure 12.    

Finally, significant positive correlations were found between performance on the 

PPVT-IV and performance on the Word Attack (r = 0.60, p < 0.01) and Word 

Identification (r = 0.74, p < 0.01) subtests of the WRMT-R.  Simple linear regression 

analyses revealed that the relation between performance on the Word Attack and Word 

Identification subtests of the WRMT-R, as a function of performance on the PPVT-IV, 

were statistically significant (p < 0.05).  A summary of independent ANOVAs that tested 
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Table 20.  

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the Word Attack Subtest of the WRMT-R as a Function of Performance 

on the Word/Nonword Test. 

 

Task Source df F p 
 

     
Regular Word 

 
Regression 1 45.04 0.00 

 Residual 
 

25   

Irregular Word Regression 
 

1 47.42 0.00 

 Residual 
 

25   

Nonword Regression 
 

1 78.23 0.00 

 Residual 25   
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Figure 11. Bivariate scatterplots and linear regression lines for performance on the Word 

Attack Subtest of the WRMT-R as a function of performance on the (A) Regular Word, (B) 

Irregular Word, and (C) Nonword lists of the Word/Nonword Test. 
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Table 21.  

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the Word Identification Subtest of the WRMT-R as a Function of 

Performance on the Word/Nonword Test. 

 

Task Source df F p 
 

     
Regular Word 

 
Regression 1 34.87 0.00 

 Residual 
 

25   

Irregular Word Regression 
 

1 49.04 0.00 

 Residual 
 

25   

Nonword Regression 
 

1 45.04 0.00 

 Residual 25   
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Figure 12. Bivariate scatterplots and linear regression lines for performance on the Word 

Identification Subtest of the WRMT-R as a function of performance on the (A) Regular 

Word, (B) Irregular Word, and (C) Nonword lists of the Word/Nonword Test. 
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significance of the linear relationship between the Word Attack and Word Identification 

subtests of the WRMT-R, as a function of performance on the PPVT-IV is presented in 

Table 22.  Bivariate scatterplots and linear regression lines for performance on the Word 

Attack and Word Identification subtests, as a function of performance on the PPVT-IV 

are shown in Figure 13. 

Pre-experimental Tasks and Experimental Tasks  

To better understand the relationship between auditory and visual temporal 

processing and performance on reading measures assessing phonological decoding and 

sight-word reading skills, an additional series of Pearson Product-Moment correlational 

coefficient analyses were conducted to investigate the performance on each experimental 

task to performance on the Word Identification and Word Attack subtests of the WRMT-R.  

It has been suggested that poor phonological decoding skills is directly related to  

deficits in auditory temporal processing.  Furthermore, it has been suggested that deficits 

in visual temporal processing may be related to deficits in sight-word reading abilities.  

The Word Attack subtest is a nonword reading measure assessing phonological decoding 

skills.  It was expected that performance on all auditory experimental tasks would be 

strongly correlated with performance on the Word Attack subtest.  The Word 

Identification subtest is assumed to assess sight-word reading abilities; however, this 

subtest does not contain purely non-phonetic words.  Therefore, individuals may use both 

phonological and sight-word reading strategies to decode words on the Word 

Identification subtest.  It was expected that performance on both the auditory and visual  

experimental tasks would be correlated to performance on the Word Identification subtest.   
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Table 22.  

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the PPVT-IV as a Function of Performance on the WRMT-R. 

 
Task Source df F p 

 
     

Word Attack 
 

Regression 1 14.03 0.00 

 Residual 
 

25   

Word Identification Regression 
 

1 29.59 0.00 

 Residual 25   
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Figure 13. Bivariate scatterplots and linear regression lines for performance on the (A) 

Word Attack [WA] and (B) Word Identification [WI] subtests of the WRMT-R as a 

function of performance on the PPVT-IV.  
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Auditory Tasks and Word Attack.  Average and best threshold (ms) for the 

auditory gap detection and auditory duration discrimination tasks, as well as accuracy 

(i.e., proportion) on the auditory duration pattern task, were compared to performance on 

the Word Attack subtest of the WRMT-R.  This analysis revealed several significant 

correlations between performances on all auditory tasks assessing detection (i.e., within- 

and between-channel gap paradigm), duration discrimination, and duration temporal 

order judgment and performance on the Word Attack subtest as summarized in Table 23. 

Specifically, significant negative correlations were found between average and best 

thresholds (ms) on the between-channel and within-channel gap detection paradigms and 

the average and best thresholds (ms) on the auditory duration discrimination task and 

standard scores on the Word Attack subtest of the WRMT-R.  However, a significant 

positive correlation was found between accuracy on the auditory duration pattern 

judgment task and the Word Attack subtest of the WRMT-R.  Simple linear regression 

analyses revealed that the relation between performance on the Word Attack subtest, as a 

function of performance on the auditory temporal processing tasks, were statistically 

significant (p < 0.05).  A summary of independent ANOVAs that tested the significance 

of the linear relationships between the Word Attack subtest of the WRMT-R and all 

auditory tasks (i.e., average and best thresholds and accuracy proportion) are presented in 

Table 24.  Bivariate scatterplots and linear regression lines for performance on the Word 

Attack subtest of the WRMT-R as a function of performance on all experimental auditory 

tasks are shown in Figures 14-17. 
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Table 23.  

Pearson Product-Moment Correlations Between Performance the Word Attack (WA) 

Subtest of the WRMT-R and the Mean (avg) and Best (best) Threshold on the Auditory 

Gap Detection Task (Within-[WC] and Between-Channel [BC]), Auditory Duration 

Discrimination Task (ADD), and Proportion of Accuracy on the Auditory Duration 

Pattern Judgment Task (ADPT.) 

 
 

 
WCavg WCbest BCavg BCbest ADDavg ADDbest ADPT 

 

WA -0.44* -0.46* -0.50* -0.49* -0.45* -0.45* 0.67** 

Note: *p < 0.05; **p < 0.01 
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Table 24.  

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the Word Attack (WA) Subtest of the WRMT-R as a Function of 

Performance on the Experimental Auditory Tasks. 

 
Task Source df F p 

WCavg Regression 

Residual 

1 

25 

6.10 0.02 

WCbest Regression 

Residual 

1 
 

25 

6.86 0.02 

BCavg Regression 

Residual 

1 
 

23 

7.60 0.01 

BCbest Regression 

Residual 

1 
 

23 

7.08 0.01 

ADDavg Regression 

Residual 

1 
 

25 

6.50 0.02 

ADDbest Regression 

Residual 

1 
 

25 

6.17 0.02 

ADPT Regression 

Residual 

1 
 

25 

19.98 0.00 
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Figure 14. Bivariate scatterplots and linear regression lines for performance on the Word 

Attack subtest of the WRMT-R as a function of (A) mean and (B) best performance on the 

Within-Channel Gap Detection Task. 
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Figure 15. Bivariate scatterplots and linear regression lines for performance on the Word 

Attack subtest of the WRMT-R as a function of (A) mean and (B) best performance on the 

Between-Channel Gap Detection Task. 
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Figure 16. Bivariate scatterplots and linear regression lines for performance on the Word 

Attack subtest of the WRMT-R as a function of (A) mean and (B) best performance on the 

Auditory Duration Discrimination Task. 
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Figure 17. Bivariate scatterplot and linear regression line for performance on the Word 

Attack subtest of the WRMT-R as a function of performance on the Auditory Duration 

Pattern Judgment Task. 
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Auditory Tasks and Word Identification.  Average and best threshold (ms) for the 

auditory gap detection and auditory duration discrimination tasks, as well as accuracy 

(i.e., proportion) on the auditory duration pattern task, were also compared to 

performance on the Word Identification subtest of the WRMT-R.  This analysis revealed 

several significant correlations between performance on auditory tasks assessing 

between-channel gap detection, duration discrimination, and duration temporal order 

judgment and performance on the Word Identification subtests as summarized in Table 

25 and illustrated in Figures 18-20.  Specifically, significant negative correlations were 

found between average and best thresholds (ms) on the between-channel gap detection 

paradigm and the average and best thresholds (ms) on the auditory duration 

discrimination task and standard scores on the Word Identification subtest of the WRMT-

R.  A significant positive correlation was found between accuracy on the auditory 

duration pattern judgment task and the Word Identification subtest of the WRMT-R.  

Further, simple linear regression analyses revealed that the relation between performance 

on the Word Identification subtest, as a function of performance on the auditory temporal 

processing tasks, were statistically significant (p < 0.05).  A summary of independent 

ANOVAs that tested the significance of the linear relationships between the Word 

Identification subtest of the WRMT-R and all auditory tasks (average and best thresholds 

and accuracy proportion) is presented in Table 26.  

Visual Tasks and Word Attack and Word Identification.  To better understand the 

relationship between visual temporal processing and performance on reading measures  
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Table 25.  

Pearson Product-Moment Correlations Between Performance the Word Identification 

(WI) Subtest of the WRMT-R and the Mean (avg) and Best (best) Threshold on the 

Auditory Gap Detection Task (Within-[WC] and Between-Channel [BC]), Auditory 

Duration Discrimination Task (ADD), and Proportion of Accuracy on the Auditory 

Duration Pattern Judgment Task (ADPT). 

 
 

 
WCavg WCbest BCavg BCbest ADDavg ADDbest ADPT 

 

WI -0.36 -0.32 -0.61** -0.60** -0.38* -0.38* 0.63** 

Note: *p < 0.05; **p < 0.01 
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Table 26. 

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the Word Identification (WI) subtest of the WRMT-R as a Function of 

Performance on the Experimental Auditory Tasks. 

 

 
Task Source df F p 

BCavg Regression 
 

Residual 
 

1 

23 

13.80 0.001 

BCbest Regression 
 

Residual 
 

1 

23 

12.95 0.002 

ADDavg Regression 
 

Residual 
 

1 

25 

4.30 0.04 

ADDbest Regression 
 

Residual 
 

1 

25 

4.26 0.04 

ADPT Regression 
 

Residual 

1 

25 

12.56 0.002 
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Figure 18. Bivariate scatterplots and linear regression lines for performance on the Word 

Identification subtest of the WRMT-R as a function of (A) mean and (B) best performance 

on the Between Channel Gap Detection Task. 
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Figure 19. Bivariate scatterplots and linear regression lines for performance on the Word 

Identification subtest of the WRMT-R as a function of (A) mean and (B) best performance 

on the Auditory Duration Discrimination Task. 
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Figure 20. Bivariate scatterplot and linear regression line for performance on the Word 

Identification subtest of the WRMT-R as a function of performance on the Auditory 

Duration Pattern Judgment Task. 
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assessing phonological decoding and visual/lexical processing (or sight-word reading) 

skills, average and best threshold (ms) for the visual Critical Flicker Fusion (CFF), the 

visual duration discrimination tasks, as well as accuracy (i.e., proportion) on the visual 

duration pattern task, were compared to performance on the Word Attack and Word 

Identification subtests of the WRMT-R as summarized in Table 27.  For the visual 

experimental tasks, no significant correlations were found between thresholds (Hz) on the 

visual CFF task and the visual duration pattern task and performance on the Word Attack 

and Word Identification subtests of the WRMT-R.  However, significant positive 

correlations were found between average and best threshold (ms) on the visual duration 

discrimination task and Word Identification subtests of the WRMT-R.  A summary of 

independent ANOVAs that tested the significance of the linear relationships between the 

Word Attack and Word Identification subtests of the WRMT-R and the visual duration 

discrimination task (i.e., average and best thresholds) are presented in Tables 28 and 29, 

respectively.   Bivariate scatterplots and linear regression lines for performance on the 

Word Attack and Word Identification subtests as a function of performance on the 

experimental visual duration discrimination task are shown in Figures 21 and 22, 

respectively. 

Experimental Tasks 

Similar to the pre-experimental reading tasks, Pearson Product-Moment 

correlational coefficient analyses were also conducted to investigate mean and best 

performance on experimental tasks within and across modalities among all participants.   

 



171 

 
 

  

Table 27.   

Pearson Product-Moment Correlations Between Performance the Word Attack (WA) 

Word Identification (WI) Subtest of the WRMT-R and the Mean (avg) and Best (best) 

Threshold on the Visual Critical Flicker Fusion Task (CFF), Visual Duration 

Discrimination Task (VDD), and Proportion of Accuracy on the Visual Duration Pattern 

Judgment Task (VDPT). 

 
 CFFavg CFFbest VDDavg VDDbest VDPT 

WA 0.25 0.22 0.55** 0.46** 0.29 

WI 0.25 0.27 0.63** 0.46** 0.35 

Note: *p < 0.05; **p < 0.01 
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Table 28.  

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the Word Attack (WA) subtest of the WRMT-R as a Function of 

Performance on the Visual Duration Discrimination Task (VDD). 

 

Task Source df F p 

VDDavg. Regression 1 10.54 0.003 

 Residual 24   

VDDbest Regression 1  6.39 0.02 

 Residual 24   
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Table 29.  

Summary of Independent ANOVAs Investigating the Linear Relationship Between 

Performance on the Word Identification (WI) subtest of the WRMT-R as a Function of 

Performance on the Visual Duration Discrimination Task (VDD). 

 
Task Source df F p 

VDDavg. Regression 1 16.16 0.001 

 Residual 24   

VDDbest Regression 1  7.69 0.01 

 Residual 24   
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Figure 21. Bivariate scatterplots and linear regression lines for performance on the Word 

Attack subtest of the WRMT-R as a function of (A) mean and (B) best performance on the 

Visual Duration Discrimination Task.  

. 
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Figure 22. Bivariate scatterplots and linear regression lines for performance on the Word 

Identification subtest of the WRMT-R as a function of (A) mean and (B) best performance 

on the Visual Duration Discrimination Task. 
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The results of those correlations are summarized in Tables 30 and 31.  A significant 

negative correlation between the average threshold and the best threshold on the between-

channel gap detection task and the auditory duration pattern test was revealed.  A 

significant negative correlation was also found between the average threshold and the 

best threshold on the auditory duration discrimination task and the auditory duration 

pattern test.    

Likewise, when all performances on experimental tasks within the visual modality 

were compared among all participants, a significant positive correlation between the 

average threshold on the visual duration discrimination task and the visual duration 

pattern test was revealed.  No other significant correlations were found within the visual 

experimental tasks.  Finally, when performance experimental tasks were compared across 

modalities, significant correlations were revealed and are also summarized in Tables 30 

and 31.   A significant negative correlation was found between the average threshold on 

the auditory duration discrimination task and the average threshold and the best threshold 

on the visual duration discrimination task.  A significant negative correlation was also 

revealed between the best threshold on the auditory duration discrimination task and the 

best threshold on the visual duration discrimination task.  A significant positive 

correlation was found between proportion of accuracy on the auditory duration pattern  

judgment task and the average threshold and the best threshold on the visual duration 

discrimination task. 
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Table 30.  

Pearson Product-Moment Correlations Between Mean Performances on Auditory 

Experimental Tasks (i.e., WCGap and BCGap, ADD, ADPT), and Visual Experimental 

Tasks (i.e., CFF, VDD, VDPT). 

 
Experimental Task BCGap ADD ADPT CFF VDD VDPT 

WCGap 0.07 0.25   -0.17 -0.31   -0.32 -0.15 

BCGap --- 0.30 -0.46* -0.17   -0.30 -0.17 

ADD --- --- -0.41*  0.03   -0.42* 0.19 

ADPT --- --- ---  0.21   0.53** 0.13 

CFF --- --- --- ---    0.01 0.22 

VDD --- --- --- --- ---   0.45* 

Note: *p < 0.05; **p < 0.01 
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Table 31.  

Pearson Product-Moment Correlations Between Best Performances on Auditory 

Experimental Tasks (i.e., WCGap and BCGap, ADD, ADPT), and Visual Experimental 

Tasks (i.e., CFF, VDD, VDPT). 

 
Experimental Task BCGap ADD ADPT CFF VDD VDPT 

WCGap 0.56 0.45*   -0.21 -0.15   -0.25    -0.06 

BCGap ---   0.19 -0.47* -0.19   -0.32 -0.20 

ADD --- --- -0.42*  0.03 -0.44*  0.17 

ADPT --- --- ---  0.22 0.46*  0.14 

CFF --- --- --- ---    0.11  0.17 

VDD --- --- --- --- ---  0.38 

Note: *p < 0.05;  **p < 0.01 

 

 

 

 

 

 



           
 

 
 

CHAPTER IV 

DISCUSSION 

It has been suggested that deficits in auditory and visual temporal processing may 

contribute to the lack of development of basic decoding skills or the ability to rapidly 

transition from word to word in written text; thereby, ultimately affecting automatic and 

fluent reading.  Research focusing on the processes involved in normal reading 

development has concluded that intact phonological and visual/lexical processing are the 

primary phenomena required to achieve automatic and fluent reading (Brown, 1997; 

Catts & Khami, 1999).  Previous studies examining the extent of which deficits within 

these two processes relate to reading disorders have resulted in the emergence of two 

hypotheses of reading disorders: the Phonological Core Deficit and the Double Deficit 

Hypothesis (Brown, 1997; Hutzler et al, 2004; Schatschneider et al., 2002; Shaywitz & 

Shaywitz, 2005; Torgeson et al., 1994; Wolf et al., 1986; Wolf & Bowers, 1999). The 

Phonological Core Deficit hypothesis states that the inability to use the phonological 

structure of spoken words to make appropriate grapheme-to-phoneme conversions 

underlie most reading disorders (Moisescu-Yiflach & Pratt, 2005; Wolf and Bowers, 

1999).  Alternatively, proponents of the Double Deficit Hypothesis posit that, while 

phonological processing deficits are strongly associated with reading disorders, 

weaknesses in lexical access, often noted in rapid automatized naming, is a separate 

source of reading failure and independently contributes to the type of a reading disorder.  

Both theories of reading emphasize the reliance upon the auditory and visual subsystems 
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for appropriate development of decoding skills and naming speed ability but in different 

ways.  

Within the past decade, research has focused on a third hypothesis of reading 

disorders: a general temporal processing deficit (Chase & Jenner, 1993; Farmer & Klein, 

1993; Lehmkuhle et al., 1993; Lovegrove, 1993).  Several links between sensory systems 

and reading abilities have been identified (Boets, Wouters, van Wieringen, De Smedt, 

Ghesquiere, 2008; Karni et al., 2005; Plaza & Cohen, 2005; Schatschneider et al., 2002; 

Share, Jorm, Maclean, & Matthews, 2002). The first link states that accessing the lexicon 

through the phonological route requires the auditory system to receive and analyze 

temporal cues within the acoustic message.  Deficits in basic perception of rapid temporal 

modulations, likely to occur in running speech, have been shown to impair the analysis 

and segmentation of speech at the phonemic level, resulting in poor phonological 

awareness and phonological memory as well as impaired higher-level processing of 

sequence patterns (Tallal, 1980; Torgeson et al., 1994). The second link asserts that 

accessing the lexicon via the visual/lexical route requires the visual system to accurately 

recognize visual features in printed text during orthographic processing for rapid retrieval 

of lexical information while reading (Wolf & Bowers, 1999).  Deficits in basic perception 

of visual features in text at either the syllable or whole-word level have been linked to 

poor performance on naming speed tasks, the demands of which are similar to those 

during continuous reading. These links provide evidence to support the three subtypes of 

reading disorder: dysphonetic (phonological decoding deficits only), dyseidetic (sight-
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word reading deficits only), and dysphoneidetic (combination of phonological decoding 

and sight-word reading deficits) (Boder, 1973).   

There continues to be debate regarding the existence of a pansensory temporal 

processing deficit in reading disorders.  Researchers have speculated that individuals 

classified in one of the three RD subtypes would exhibit different patterns of performance 

on auditory and visual tasks (Ben-Artzi et al., 2005; Cestnick & Coltheart, 1999; Farmer 

& Klein, 1993; Heim et al., 2001; Ingelghem et al., 2001; Rose et al., 1999; Williams et 

al., 2003).  Contemporary research has supported the relationship of auditory temporal 

processing deficits to reading disorders in both children and adults (Boets, et al., 2008; 

Ingelghem et al., 2001; Shaywitz & Shaywitz, 2005; Tallal, 1980; Walker et al., 2002; 

Walker et al., 2006; Wright et al., 1997).  That is, deficits in the ability to detect rapid and 

subtle changes in acoustic stimuli (i.e. frequency and duration modulation) result in poor 

speech perception and may affect reading acquisition; however, results from visual 

studies investigating the magnocellular theory of reading disorder remain inconclusive 

(Galaburda & Livingstone, 1993; Hood & Conlon, 2004; Lehmkuhle et al., 1993; Skottun, 

2000).  It remains unclear as to the extent that both auditory and visual processing deficits 

contribute to the nature of reading disorders and if the relationship to reading disorders is 

causative or comorbid conditions. 

The purpose of the study was to further investigate the existence of a pansensory 

(auditory and visual) temporal processing deficit in school-aged children with reading 

disorders to determine if an association existed between specific subtypes of reading 

disorders and differences in auditory and visual sensory processing abilities.  The current 
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investigation examined auditory and visual temporal processing hierarchies through a 

series of analogous tasks assessing detection, discrimination, and temporal order 

judgment abilities in an attempt to determine if a pattern of performance was specific to 

either of the two subtypes of reading disorders (i.e., dysphonetic and dysphoneidetic) 

identified by the current investigation using criteria outlined by Boder (1973).  In this 

investigation, it was hypothesized that children identified as dysphonetic readers would 

exhibit greater difficulty with tasks assessing auditory temporal processing abilities due 

to the primary deficit in phonological awareness.  However, children with miexed or 

phonological and visual/lexical (sight-word) reading disorder (i.e., dysphoneidetic) would 

exhibit deficits on tasks assessing auditory and visual temporal processing due to the 

mixed nature of the reading disorder.  Therefore, evidence of different patterns of 

auditory and visual temporal processing, as a function of the nature of the reading 

disorder, would further explain and define a possible pansensory temporal processing 

deficit in individuals with reading disorders.  

For the purposes of this study, descriptive and inferential analyses were critically 

conducted on each of the auditory and visual temporal processing tasks between the 

control group and the dysphonetic and dysphoneidetic groups when RD was treated as 

heterogeneous disorder. The purpose was to determine if the above mentioned specific 

patterns of deficient performance observed on each of the experimental tasks (i.e., 

detection, discrimination, and temporal order judgment), in both modalities, were 

indicative of underlying deficits in one or both of the sensory systems, thereby giving 

credence to the pansensory deficit hypothesis of reading disorders.   
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 Auditory Gap Detection Task: Threshold Analysis 

 The first experimental question addressed whether statistically significant 

differences in mean and best gap thresholds (ms) were found as a function of group (i.e., 

control, dysphonetic, dysphoneidetic) and gap paradigm (i.e., within-channel or between-

channel). Analysis of thresholds revealed a significant main effect of gap paradigm 

between the groups.  That is, the within-channel gap paradigm yielded lower average 

thresholds (i.e., control = 6.78 ms; dysphonetic = 9.04 ms; and dysphoneidetic = 13.11 

ms) than the average thresholds on the between-channel gap paradigm (i.e., control = 

24.33 ms; dysphonetic = 52.42 ms; dysphoneidetic = 68.69 ms). These findings 

supported previous research by Schulte-Körne et al. (1998), Phillips and Smith (2004) 

and Hautus, Setchell, Waldie, and Kirk (2003) that found within-channel auditory gap 

detection thresholds of approximately 10 ms in normal listeners.  Additionally, in the 

present study, the mean threshold for the between-channel gap paradigm observed for the 

control group (24.33 ms) was consistent with previous research where between-channel 

gap detection tasks with a short-duration leading marker yielded thresholds between 25-

40 ms in normal listeners (Phillips, Taylor, Hall, Carr, & Mossop, 1997; Phillips, 1999; 

Phillips & Smith, 2004).  In the present study, a significant main effect was observed for 

both average and “best” thresholds obtained on the between-channel gap detection task as 

a function of group (i.e., control and RD).  Overall, the dysphonetic and dysphoneidetic 

readers, as a whole, had significantly elevated thresholds as compared to the normal 

readers.  Furthermore, when analyzing performance among groups of reading disorders 

(i.e., control, dysphonetic, and dysphoneidetic), the present data revealed significant main 
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effects as a function of group and gap paradigm for both the mean and “best” threshold 

across trials for the between-channel gap detection task.  It was observed that the 

dysphonetic readers (i.e., mean = 52.42 ms; best = 37.08 ms) and dysphoneidetic readers 

(i.e., mean = 68.69 ms; best = 62.56 ms) had significantly poorer thresholds as compared 

to normal readers (25.37 ms) for the between-channel gap detection task.  The findings of 

significant main effects on threshold data in the between-channel gap paradigm as a 

function of group support the original hypothesis that individuals with reading disorders 

would perform poorer on auditory tasks requiring detection of temporally modulated 

acoustic signals. 

It has been suggested that asymmetries in allotment of attention to the perceptual 

channels activated by the between-channel task may be responsible for the difference in 

gap detection thresholds between the within-channel and between-channel paradigms 

(Phillips, 1999).  In other words, allocating perceptual or attentive resources to one 

channel may “impoverish the time stamping of the event in any other channel” (Phillips, 

1999, p. 348).  As previously mentioned, the between-channel paradigm assesses the 

relative timing of the offset of activity in one perceptual channel and the relative timing 

of the onset of activity in a different perceptual channel in the auditory system.  Thus, the 

listener must attend to information processed in two separate channels in the auditory 

system when an acoustic signal is presented containing leading and trailing markers 

differing from one another in frequency, duration, or intensity, as is demonstrated in 

speech perception.  The more rapid rates of temporal modulation in running speech are 

evidenced in formant transitions.  “Whereas the first function of transitions is to carry 
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phonetic information, another is to bind together phonetic segments so that at rapid 

transmission rates the temporal order of speech may be preserved” (Tallal, 1980, p. 196). 

The inability to detect rapid transitions in running speech is important when examining 

the relationships between auditory temporal processing, speech perception, and 

phonological awareness.   

 Elangovan and Stuart (2008) investigated the role of the auditory mechanisms 

involved in distinguishing among different phonetic features in speech.  Within- and 

between-channel gap paradigms were utilized to determine the psychoacoustic 

relationship between gap paradigm and perception of categorical voice onset time in the 

stop consonants /b/ and /p/.  They found that the between-channel gap detection 

thresholds were significantly correlated to categorical voice onset time perception.  This 

was not the case with the within-channel thresholds.  With regards to speech perception, 

the inability to perceive subtle differences between phonemes acoustically similar to one 

another, such as those that are voice onset time oppositions (i.e. /ba/-/pa/) may indicate a 

deficit in phonological awareness.  Deficits at the phoneme level prevent “[normal 

manipulation of] phonological information thus impairing [the] ability to acquire 

phonological prerequisites to learning to read” (Habib, 2000, p. 2381).  The inability to 

master phonological prerequisites during reading acquisition prevents the ability to 

develop appropriate spelling-to-sound correspondences.  It has been argued that temporal 

cues convey important phonetic information in spoken language; therefore, deficits in 

auditory temporal processing may lead to deficits in speech perception and, subsequently, 

phonological processing (Talcott, Witton, McClean, Hansen, Rees, Green, & Stein, 1999).  
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As widely reported in the literature (Brown, 1997; Schatschneider et al., 2002; Shaywitz 

& Shaywitz, 2005; Torgeson et al., 1994), intact phonological skills are needed, but not 

independently sufficient, in the development of phonological decoding strategies.   

The auditory experimental tasks utilized in the current study examined 

performance on auditory temporal processing skills (i.e., detection, discrimination, and 

temporal ordering) relative to phonological decoding in order to determine if breakdowns 

in low-level auditory processing abilities were reflected in reading disorder subtypes.  

The current investigation found overall poorer performance on nonword reading tasks 

during pre-experimental testing and a general elevation of between-channel gap detection 

thresholds for the dysphonetic (52.42 ms) and dysphoneidetic (68.69 ms) readers as 

compared to the nonword reading task performance and subsequent between-channel gap 

detection thresholds for the normal readers (24.33 ms).  When further examining the 

bottom-up direction of the relationship between auditory and phonological processing, 

phonological awareness skills are directly influenced by sound knowledge acquired 

during speech perception.  Deficits in this area can contribute to poor reading decoding, 

specifically in the phonological decoding strategy.  Phonological decoding is a reading 

strategy that relies on the segmentation and analysis of words into individual phonetic 

units and matching them to their corresponding letter representations in text (Talcott, 

Witton, McLean, Hanson, Rees, Green, & Stein, 2000). The quality of phonological 

representations stored in the mental lexicon is highly dependent upon the ability of the 

auditory system to accurately perceive the temporal cues embedded in a speech signal.  

Disruptions in speech perception, due to deficits in auditory temporal processing, may 
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result in misrepresentations of phonological information stored in long-term memory thus 

impairing decoding skills in individuals, which results in a dysphonetic reading/spelling 

pattern.  The inability to process temporal cues related to phonetic features in speech, 

such as for voiced and voiceless consonants and formant transitions, may negatively 

impact accurate speech perception and thus impair higher-level phonological processing 

and phonological decoding skills.  Thus, underlying auditory temporal processing deficits 

may explain the reason that a dysphonetic reading pattern exists in some individuals. 

Auditory Duration Discrimination Task: Threshold Analysis 

The second experimental questions addressed whether statistically significant 

differences in mean threshold (ms) were found as a function of group (i.e., control, 

dysphonetic, dysphoneidetic). Statistical analysis of threshold data revealed no significant 

main effect of threshold as a function of group.  Thus, individuals with RD were found to 

be as efficient as the control group at discriminating differences in a sequence of auditory 

events when the duration of one event was manipulated.  This finding did not support the 

hypothesis that individuals with differing subtypes of RD would perform significantly 

poorer on tasks assessing discrimination abilities when the acoustic signal was 

manipulated in the temporal domain.  

The lack of significant difference in thresholds between the normal, dysphonetic, 

and dysphoneidetic readers for the auditory discrimination task may be explained by 

interstimulus interval (ISI) duration, which was held constant at 400 ms. It has been 

suggested that a faster rate of presentation may significantly interfere with higher-level 

processing, such as discrimination of the acoustic signal in individuals with reading 
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disorders (Cestnick & Jerger, 2000; Tallal, 1980).  Cestnick and Jerger (2000) 

investigated a series of auditory temporal processing tasks, of which a Fast Same-

Different and Slow Same-Different task were utilized in groups of good readers, poor 

nonlexical readers (i.e., poor nonword readers), and poor lexical readers (i.e., poor 

irregular word readers) based on performance on the same Word/Nonword Test utilized in 

the current investigation.  In the “fast” condition, ISIs were varied from 8 to 305 ms 

whereas for the “slow” condition, ISIs were kept constant at 428 ms. The researchers 

found group differences in performance between good and poor readers for the “fast 

condition” but not the “slow” condition.  The poor readers had higher thresholds on the 

Fast Same-Different task than the good readers.  Thus, the more rapidly in succession the 

stimuli were presented, the more taxing the task on the auditory system for the poor 

readers. Therefore, shortening the ISI duration between stimuli in the auditory duration 

discrimination task similar to Cestnick and Jerger’s (2000) Fast Same-Different task 

should be taken into consideration for future investigations. 

Auditory Duration Pattern Judgment: Accuracy Analysis 

 The third experimental question addressed whether statistically significant 

differences in mean percent accuracy on an auditory duration pattern task were observed 

as a function of group (i.e., control, dysphonetic, or dysphoneidetic).  Accuracy analysis 

revealed no significant main effect of group (i.e., control = 81.00%, dysphonetic = 

70.50%, and dysphoneidetic = 60.44%). The lack of significant difference in performance 

between the control group and the dysphonetic and dysphoneidetic groups does not 

support the hypothesis, posed by the current investigation, that individuals with reading 
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disorders would perform poorer on tasks assessing temporal order judgment abilities 

when the acoustic stimuli were manipulated in the temporal domain.  

 For the current investigation, the mean percent accuracy for the control group 

was 81.00% (SD =17.20).  The mean percent correct scores obtained by the control group 

in this investigation were consistent with normative data (Musiek, 1994) cited in Bellis 

(2003) who reported norms for the Duration Pattern Test set two standard deviations 

below the mean at 70%, 71%, and 73% for normal listeners at ages 10, 11, and 12 years, 

respectively. Thus, normal readers performed within the normal limits for the duration 

pattern temporal order judgment task (DPT).   

When investigating performance on an auditory duration pattern task (DPT) in 

children with reading disorders (RD), Walker et al. (2006) found that children (mean age 

10.75) performed significantly poorer on the DPT task as compared to age-matched, 

normal reading peers (mean age 10.67).  She reported DPT mean percent correct scores 

of 57.3% (SD = 19.8) and 56.9% (SD = 19.3) for the right and left ears, respectively.  In 

the current study, the mean percent correct score for the dysphonetic and dysphoneidetic 

groups was observed at 70.50% (SD = 10.01) and 60.44% (SD = 16.79), respectively.  

When comparing mean percent scores for the RD group in the current study to norms 

reported by Musiek (1994), the overall RD group performance did not fall two standard 

deviations below the mean, suggesting that an auditory temporal judgment task, in which 

duration of the stimuli is manipulated, was not found in children with reading disorders in 

the current investigation. 
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The lack of significant difference in accuracy on the duration pattern judgment 

task, utilized in the current investigation, may have been due to the nonlinguistic mode of 

response.  Participants were provided a piece of paper depicting the duration sequences 

and were instructed to point to the sequence that corresponded to the pattern perceived. It 

has been suggested that temporal order judgment tasks require a child to “focus auditory 

attention, discriminate meaningless segments of sound, and retain these elements briefly 

in auditory short-term/working memory…” (Share, Jorm, Maclean, & Matthews, 2002, p. 

174).  By providing graphical depictions of all possible duration patterns, the participant 

was able narrow down possible pattern choices, thereby, diminishing the use of short-

term memory.  In the current study, if the manual response mode been hand gesturing, t 

perhaps significant differences in accuracy on the temporal order judgment task would 

have been observed as it would have required the participant to rely more heavily on 

attention, discrimination, and temporal sequencing abilities, which are utilized during 

speech perception.  Significantly poorer ability in the retention of identified unfamiliar 

patterns of sound sequences, that could be stored in short term memory and retrieved 

during the temporal order judgment task, may reflect the presence of disproportional 

phonological processing skills, which “pertains to the analysis of larger phonological 

units such as rhymes or syllables” (De Jong et al., 2000, p. 276).  Deficits in lower-level 

auditory temporal processing abilities may subsequently impair higher-level analysis and 

manipulation of phonemic information used in decoding novel words and in acquiring 

receptive vocabulary.  This observation provides further support for the relationship 

between auditory temporal processing deficits and reading disorders.   
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Visual Critical Flicker Fusion Task: Threshold Analysis 

 The first visual experimental task addressed the question of whether statistically 

significant differences in threshold (Hz) on a flicker/fusion task were observed as a 

function of group (i.e., control, dysphonetic, and dysphoneidetic).  Threshold analysis 

revealed no main effect of group. It was expected that the individuals identified as 

dysphoneidetic would demonstrate a marked difference in performance on a visual 

temporal processing task assessing detection of visual stimuli that had been manipulated 

in the temporal domain.  The lack of evidence indicating poorer performance on a 

detection task in the visual domain failed to support the hypothesis posed by the current 

investigation. The grand mean and “best” threshold (Hz) for the control group was 41.45 

Hz (SD = 3.19) and 44.45 Hz (SD = 5.34), respectively and were not statistically 

significant as compared to the grand mean and “best” thresholds (Hz) for the dysphonetic 

readers (mean = 37.97 Hz, SD = 3.16; best = 40.42 Hz, SD = 1.51) and dysphoneidetic 

readers (mean = 40.09 Hz, SD = 8.94; best = 42.66 Hz, SD = 10.46).  The findings of 

critical flicker fusion (CFF) thresholds in the current study are consistent with in-phase 

thresholds reported by Cross (1963), who reported normative mean CFF threshold data of 

41.6 Hz (SD = 4.2) and 43.4 Hz (SD = 3.8) for children ages 10 and 12 years, 

respectively.   

  The results of the current investigation did not provide evidence of a visual 

temporal processing deficit in individuals with reading disorders as previously found in a 

series of a variety of behavioral and electrophysiological studies, utilizing flicker 

sensitivity and double flash tasks that have found the presence of visual temporal 
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processing deficits in individuals with reading disorders (RD) (Lehmkuhle et al., 1993; 

Ingelghem et al., 2001).  While these investigations found elevated thresholds in 

individuals with reading disorders as compared to normal readers, the nature of the 

behavioral visual CFF task utilized in the present study differs from the double flash tasks 

utilized in those studies in stimuli presented, experimental apparatus, and stimulus 

presentation.  Thus, inconsistencies in support of the magnocellular theory of reading 

disorder warrant further exploration of visual gap detection task that assesses the 

magnocellular pathway of the visual system. 

Visual Duration Discrimination Task: Threshold Analysis 

 The second experimental task addressed the question of whether statistically 

significant differences in threshold (ms) on a visual discrimination task, in which 

duration of the visual stimuli was modified, were observed as a function of group (i.e., 

control, dysphonetic, and dysphoneidetic).  Threshold analysis for both the mean and best 

thresholds revealed no significant main effect of group. The lack of evidence indicating 

poorer performance on a detection task in the visual domain failed to support the initial 

hypothesis where a significantly poorer performance on a visual temporal processing 

involving discrimination of visual stimuli was expected for children with a 

dysphoneidetic reading disorder as compared to the control and dysphonetic readers. The 

grand mean average and “best” thresholds were 65.83 ms (SD = 34.12) and 99.24 ms (SD 

= 55.24) for the normal readers, respectively, and were not statistically significant from 

the mean and “best” thresholds for the dysphonetic (mean = 62.15 ms, SD = 25.60; best = 
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101.04 ms, SD = 43.20) and dysphoneidetic (mean = 39.35 ms, SD = 23.14; best = 66.66 

ms, SD = 63.35) readers. 

 It is believed that the visual duration discrimination task utilized in this study 

taxed the magnocellular pathway of the visual system due to the temporal nature of its 

design.  As with auditory temporal processing, the ability of the visual system to detect 

subtle and rapid changes in stimuli aids in the ability to automatically identify and 

discriminate whole word or letter patterns in text during continuous reading, thereby 

enhancing automaticity and fluency.  There are no known studies to date that have 

assessed visual duration discrimination utilizing the same methods as the current 

investigation.  The visual duration discrimination task employed in this study yielded 

large amounts of variance for all groups. The results (i.e. high variance) of the present 

study suggest that further examination of the current stimulus design for the visual 

duration discrimination task utilized is warranted to determine the most effective manner 

in which the relationship between visual temporal processing and orthographic 

processing and decoding may be investigated. 

Visual Duration Pattern Judgment Task: Accuracy Analysis 

 The third visual experimental question addressed whether statistically significant 

differences in mean accuracy on a visual duration pattern test were observed as a function 

of group (i.e., control, dysphonetic, and dysphoneidetic).  Accuracy analysis revealed no 

significant main effect of group. In the original hypothesis, it was expected that the 

individuals identified as dysphoneidetic would demonstrate a marked difference in 

performance on a visual temporal processing task assessing temporal order judgment of 
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visual stimuli that had been manipulated in the temporal domain.  The lack of evidence 

indicating poorer performance on a detection task in the visual domain failed to support 

the origninal hypothesis. The grand mean percent correct scores were 54.67% (SD = 

17.25), 55.83% (SD = 26.91), and 52.22% (SD = 16.99) for the control group and the 

dysphonetic and dysphoneidetic groups, respectively, which demonstrates essentially the 

same performance for all groups regardless of reading ability. 

 There been no known studies to date that have assessed visual temporal order 

judgment abilities utilizing the same methods as the current investigation, which was 

designed to mimic the presentation mode of the auditory Duration Pattern Test.  That is, 

nonlinguistic stimuli (*) were presented discretely with ISI held constant and were varied 

in length of presentation on the computer screen, similarly to the six duration patterns for 

the auditory duration pattern task.  As with the auditory temporal order judgment task, the 

visual temporal patterning task required the child to focus attention, discriminate 

segments of nonlinguistic symbols, and retain this information briefly in working 

memory. The findings of the current investigation indicated the possibility that the visual 

temporal judgment task may have been too demanding on working memory or that there 

may have been a general level of task difficulty for all the groups, regardless of reading 

ability.  Future investigation of the parameters in the present visual temporal order 

judgment task is warranted. 

Verbal Ability 

Since there was a significant difference of receptive vocabulary between the 

control and RD groups, the contributing effects of verbal ability on performance on 
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auditory and visual temporal processing tasks were controlled. All data were statistically 

analyzed with and without verbal ability (i.e., PPVT-IV, Quotient) as a covariate to 

analyze whether verbal ability significantly affected performance on auditory and visual 

experimental tasks.  While the effects of verbal ability did not change the findings of 

significance previously revealed in the statistical analyses, a trend towards stronger 

significance was observed when verbal ability was not controlled.  This was the case for 

all experimental tasks, with the exception of the visual duration temporal order judgment 

task.  However, significant differences in performance found in each of the tasks before 

and after verbal ability was used as a covariate suggested that while there may be 

differences in auditory temporal processing abilities between normal readers and 

individuals with varying subtypes of reading disorders, verbal ability (or lexical 

knowledge) may also play a role in the development of reading.   

Lexical ability has been linked to both language and cognitive ability.  In fact, a 

reciprocal relationship has been identified between oral language abilities and reading.  

This was evidenced by the significant positive correlations between performance on the 

PPVT-IV and the Word Attack (r = 0.60, p < 0.01) and the PPVT-IV and the Word 

Identification (r = 0.74, p < 0.01) subtests of the WRMT-R.  It has been suggested that 

expanded oral vocabularies enable the ability to analyze representations of sounds in 

unfamiliar words by using knowledge of sound structure already stored in the lexicon 

(Goswami, 2001).  However, lexical knowledge also directly contributes to reading by 

bridging the gap between phonological processing and comprehension by allowing the 

reader to map spoken sounds to words in print (De Jong, et al., 2000; Rvachew, 2007).  In 
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other words, enhanced lexical ability aids in the synthesis and analysis of sound at the 

phoneme level that require greater auditory temporal acuity; likewise, higher 

performance on auditory tasks assessing the ability to identify and discriminate subtle 

distinctions of an acoustic event allows for greater access to information stored and 

retrieved from the mental lexicon during phonological decoding. 

Correlations 

 Correlations between pre-experimental reading tests were undertaken to 

determine if word stimuli from the WRMT-R and Word/Nonword Test assessed the same 

decoding strategies (i.e. phonological decoding and visual/lexical decoding) since these 

measures were used to identify and subtype the reading groups.  Several significant 

positive correlations were observed including significant relationships between standard 

scores on both subtests (Word Identification and Word Attack) of the WRMT-R and raw 

scores on all word lists (Regular Word, Irregular Word, and Nonword) of the 

Word/Nonword Test.  These findings were expected and suggest that the two different 

reading measures assess similar decoding strategies, specifically phonological decoding 

and sight-word reading.  When examining specific relationships between the Word 

Identification and Word Attack subtests of the WRMT-R and the Regular Word, Irregular 

Word, Nonword lists of the Word/Nonword Test, the Word Identification subtest of the 

WRMT-R was most strongly correlated with the Irregular Word list of the Word/Nonword 

Test (r = 0.81, p < 0.01).  Likewise, the Word Attack subtest of the WRMT-R was most 

strongly correlated with the Nonword list of the Word/Nonword Test (r = 0.87, p < 0.01).  

Again, these findings were expected as the Word Identification and Irregular Word list 
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each primarily assess sight-word reading abilities and the Word Attack and Nonword lists 

each purely assess phonological decoding abilities, as these tests consist of nonsense 

words. 

To better understand the relationship between auditory and visual temporal 

processing and performance on reading measures assessing phonological decoding and 

sight-word reading skills, additional Pearson Product-Moment correlational coefficient 

analyses were conducted to investigate the performance on each experimental task to 

performance on the Word Identification and Word Attack subtests of the WRMT-R.  

Since the WRMT-R was strongly correlated with the Word/Nonword Test, it was used for 

the reading measure in correlational analyses.  Given that the Word Attack subtest is a 

nonword reading measure assessing phonological decoding skills, it was expected that 

performance on all auditory experimental tasks would be strongly correlated with 

performance on the Word Attack subtest.  Conversely, the Word Identification subtest is 

assumed to assess sight-word reading abilities and it was expected that performance on 

the visual experimental tasks would be strongly correlated with performance on the Word 

Identification subtest.   

Several significant correlations were observed when examining correlations 

between the Word Attack and Word Identification subtests of the WRMT-R and auditory 

experimental tasks.  Specifically, when examining the association between performance 

on the Word Attack subtest, as a function of performance on the auditory experimental 

tasks, significant negative correlations were found between the mean and best 

performance on the within-channel (i.e., Mean: r = -0.44, p < 0.05; Best: r = -0.46, p < 
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0.05) and between-channel auditory gap detection (i.e., Mean: r = -0.50, p < 0.05; Best: r 

= -0.49, p < 0.05) and the mean and best performance on the auditory duration 

discrimination tasks (i.e., Mean: r = -0.45, p < 0.05; Best: r = -0.45, p < 0.05) and the 

Word Attack subtest of the WRMT-R.  Additionally, a significant positive correlation 

between the auditory duration pattern judgment task and the Word Attack subtest of the 

WRMT-R (r =0.67, p < 0.01). These correlations suggest that tasks assessing auditory 

temporal processing are also taxed during reading tasks that primarily require 

phonological decoding, as with nonword reading.  Further, simple linear regression 

analyses revealed a significant (p < 0.05) predictive nature of performance on auditory 

tasks to performance on the Word Attack subtest of the WRMT-R.  That is, the lower the 

threshold on a gap detection task or auditory duration discrimination task, as well as 

higher accuracy on an auditory temporal order judgment task, the better the performance 

on the Word Attack subtest of the WRMT-R.   

Likewise, when comparing performance on visual experimental tasks to the Word 

Attack subtest of the WRMT-R, a significant positive correlation was revealed for the 

mean threshold (r = 0.55, p < 0.01) and best threshold (r = 0.46, p < 0.05) on the visual 

duration discrimination task, which was the only visual processing task that showed 

significant association to nonword decoding.  Of importance to note was that the auditory 

and visual duration discrimination tasks were significantly correlated with one another (r 

= -0.44, p < 0.05) and that both these tasks were significantly correlated to performance 

on the Word Attack subtest of the WRMT-R.  Although all auditory experimental tasks 

were correlated with the Word Attack subtest, the significant relationship observed 
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between performance on the visual duration discrimination task and nonword reading 

skills suggest that sensory processing across modalities (i.e., auditory and visual) may aid 

in the development of sound to symbol translations, or phoneme/grapheme associations, 

which are needed to decode when reading printed text, particularly in unfamiliar text or 

nonwords.  The correlational analyses between experimental tasks and the Word Attack 

subtest provide evidence supporting the need for efficient visual discrimination abilities, 

which are crucial for orthographic or grapheme discrimination and in the development of 

grapheme/phoneme associations.  These underlying skills would, therefore, underlie the 

deocoding of nonwords, which provides evidence for a pansensory (auditory and visual) 

relationship to reading. 

Additionally, when comparing performance on the auditory experimental tasks to 

the Word Identification subtest of the WRMT-R, significant negative correlations were 

observed between the mean and best gap threshold for the between-channel gap detection 

task (Mean: r = -0.61, p < 0.01; Best: r = -0.60, p < 0.01) and the mean and best auditory 

duration discrimination tasks (Mean: r = -0.38, p < 0.05; Best: r = -0.38, p < 0.05) and 

performance on the Word Identification subtest.  A significant positive correlation was 

observed between performance on the auditory duration pattern judgment task and the 

Word Identification subtest of the WRMT-R (r = -0.63, p < 0.01).  This finding is 

congruent with a study conducted by Walker et al. (2002), where a significant association 

was found between performance on an auditory frequency pattern judgment task for the 

left ear (r =0.75, p < 0.05) and performance on the Word Identification subtest of the 

WRMT-R in adults with reading disorders.  This relationship may have been due to the 
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fact that while the Word Identification subtest is used to measure sight-word reading 

skills, the word stimuli of this subtest are comprised of both nonphonetic and phonetic 

words.  As previously described, nonphonetic words may only be decoded via the visual-

lexical strategy since these words cannot be decoded by being sounded out.  However, 

phonetic words, even in a seemingly rapid single word decoding task (as in the Word 

Identification subtest of the WRMT-R), may be decoded using a visual-lexical or 

phonological decoding strategy.  This observation may explain the significant 

relationships between the Word Identification subtest and the auditory temporal 

processing experimental tasks.  Further, simple linear regression analyses revealed a 

significant predictive nature (p < 0.05) of performance on all but one (i.e., within-channel 

gap paradigm) of the auditory tasks to performance on the Word Identification subtest of 

the WRMT-R.  Thus, the lower the threshold on a gap detection task or auditory duration 

discrimination task, as well as higher accuracy on an auditory temporal order judgment 

task, the better the performance on the Word Identification subtest of the WRMT-R. 

When examining the relationship between visual temporal processing and 

performance on a sight-word reading task (WRMT-R, Word Identification), a significant 

positive correlation was observed only between the mean (r = 0.63, p < 0.05) and best 

performances (r = 0.46, p < 0.05) on the visual duration discrimination task and the Word 

Identification subtest of the WRMT-R.  These significant correlations suggest that visual 

temporal processing may have been taxed when the reading tasks were administered with 

forced rate and cued presentation during pre-experimental testing.  The administration of 

the experimental visual duration discrimination task was similar to the administration of 



201 

 
 

  

the pre-experimental reading tasks.  In the visual duration discrimination task, before the 

nonlinguistic stimuli (*) were presented, a cross-hair appeared on the screen to cue the 

participant that the test sequence was about to begin.  The rate of presentation of the test 

sequence was predetermined and presented rapidly (300 ms for the short duration and 

600 ms for the fast duration).  As with the WRMT-R Word Identification subtest, where 

the readers were required to visually decode word patterns quickly before moving on to 

the next word, the readers also had to quickly recognize and discriminate subtle 

differences to visual stimuli presented rapidly and in succession during the visual 

discrimination task.  Thus, lower visual discrimination thresholds on the visual duration 

discrimination task were correlated to higher standard and raw scores on the sight-word 

pre-experimental reading tasks (WRMT-R, Word Identification subtest).  Furthermore, a 

simple linear regression revealed a significant (p < 0.05) predictive nature of performance 

on the visual duration discrimination task to performance on the Word Identification 

subtest of the WRMT-R.  That is, the better the threshold on the visual duration 

discrimination task, the higher (better) the standard score on the Word Identification 

subtest of the WRMT-R. 

As with the correlational analyses for the Word Attack subtest, it is important to 

note that both auditory and visual tasks revealed strong relationships to the sight-word 

reading strategy.  That performance on the auditory tasks were strongly related to 

performance on the Word Identification subtest is not surprising.  The Word 

Identification subtest, while assumed to assess sight-word decoding abilities, is not a 

purely non-phonetic assessment.  Due to the fact that some words on the Word 
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Identification list may be decoded phonetically, the reader may choose which reading 

strategy to employ during testing.  Therefore, low-level auditory processing skills are still 

involved when the reader opts to decode via the phonological route.  The correlational 

analyses between performance on the experimental tasks and the Word Identification 

subtest of the WRMT-R provide further support for a pansensory (auditory and visual) 

relationship to reading.   

 Additional correlations were also examined between and across the experimental 

tasks.  When examining correlations between auditory tasks, several negative correlations 

were found between performance on both the auditory between-channel gap detection 

task and the auditory duration discrimination task to performance on the auditory 

duration temporal order judgment task.  The correlations support the hierarchical nature 

of the experiments utilized in the current investigation as temporal order judgment first 

requires the ability to identify and discriminate differences within acoustic events, which 

then serve as precursors for accurately sequencing those events according to order of 

presentation.   Also supporting the use of hierarchical experimental tasks was the 

significant negative correlation found between performance on the visual duration 

discrimination task and the visual duration temporal order judgment task.  The design of 

the visual discrimination and temporal order judgment tasks mimicked those of the 

auditory tasks assessing discrimination and temporal patterning abilities.  The 

significance of the correlation found between the visual duration discrimination task and 

the visual temporal order judgment task used in the current investigation suggests that the 
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processes involved in the discrimination task serves as a precursor to the visual temporal 

order judgment task.   

 Finally, a significant negative correlation (r = -0.42, p < 0.05) was found between 

performance on the auditory duration discrimination task and the visual duration 

discrimination task utilized in the current investigation.  While the visual tasks designed 

and utilized in the current investigation did not reveal visual temporal processing deficits 

in individuals with reading disorders, the correlation between the auditory duration 

discrimination and visual duration discrimination tasks suggests that the design of the 

visual duration discrimination task was analogous to that of the auditory duration 

discrimination task.  Thus, it is inferred that the processes tasked during auditory duration 

discrimination were of a similar nature to those tasked during visual duration 

discrimination.  

Limitations 

Low participant numbers for the dyseidetic RD group (sight-word reading deficit 

only) may have been affected by inclusionary age criteria, recruitment methods, and a 

small participant pool, which may have limited the identification of more children with a 

primary deficit in sight-word decoding skills.  The use of rapid automatized naming tasks 

(RAN) may have helped to identify this RD subtype.   

A possible limitation specific to the experimental tasks employed in this 

investigation was the efficiency of visual experimental tasks used to assess visual 

temporal processing. It is possible that the visual duration discrimination and visual 

temporal order judgment tasks may have been too difficult for all experimental groups.  



204 

 
 

  

The visual stimuli were presented at 300 ms for the short stimulus and 600 ms for the 

long stimulus, approximately 50 to 100 ms longer than the stimuli used for auditory 

duration discrimination and auditory temporal order judgment.  While a ceiling effect 

was not observed in the current study, it was observed that participants needed more 

practice with the familiarization trials before meeting the criteria to continue on to the 

experimental trials. Increasing the stimulus duration during familiarization trials and 

initial presentations during experimental trials may alleviate initial demand on attention, 

reduce participant mistakes, and increase the rate of desired responses during the 

experimental task, thus increasing the possibility for more significant differences to be 

observed between experimental groups.  Therefore, lengthening the presentation duration 

of the visual stimuli utilized on both the visual discrimination and visual duration pattern 

tasks should be taken under consideration. 

Conclusions 

 The purpose of the current investigation was to determine if a relationship existed 

between reading disorders and deficits in auditory and/or visual temporal processing.  As 

mentioned previously, the Double Deficit Hypothesis suggests that difficulty with both 

phonological decoding and naming speed independently contribute to overall reading 

difficulty in children with reading disorders (Wolf & Bowers, 1999).  Thus, difficulty in 

decoding the written word via the phonological and/or the visual/lexical routes suggests 

impairment in low-level perceptual processing in either of the two sensory modalities 

(auditory and visual).  Using this rationale, the present study focused on the temporal 

processing deficit hypothesis of reading disorders by assessing auditory and visual 
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temporal processing through a series of analogous hierarchical tasks designed to examine 

detection, discrimination, and temporal patterning abilities in both normal readers and 

children with reading disorders.  The current investigation did not find evidence of a 

pansensory temporal processing deficit in children with reading disorders on 

experimental tasks across modality when the reading groups were dichotomized, which 

did not support the initial hypothesis that children with reading disorders would exhibit 

greater difficulty in performance on all experimental tasks in both the auditory and visual 

domains.  Furthermore, the findings of the current investigation failed to support the 

hypothesis that individuals with particular subtypes of RD (dysphonetic and 

dysphoneidetic) would display different patterns of performance on the experimental 

tasks as a function of sensory system (auditory and visual).  That is, it was hypothesized 

that children having both a dysphonetic and mixed reading disorder would perform 

poorer on all auditory temporal processing tasks, but that only the dysphoneidetic group 

would perform poorer on visual temporal processing tasks due to the presence of an 

additional sight-word deficit.  However, an analysis of performance on all experimental 

tasks in regards to reading skill revealed significant findings that both confirmed and 

contributed to the relationship between auditory and visual temporal processing and 

reading in general. 

  The current investigation revealed a significant relationship between single word 

decoding skills, in both sight-word and phonological decoding strategies, and auditory 

and visual temporal processing abilities.  Specifically, significant correlations were found 

between performance on the Word Attack subtest of the WRMT-R and performance on 
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auditory temporal processing tasks involving gap detection, discrimination, and temporal 

ordering.  These correlations suggest that auditory temporal processing is related to 

efficiency of phonological decoding skills as measured by reading nonwords.  

Additionally, and importantly, a significant association was found between performance 

on the Word Attack subtest and performance on the visual duration discrimination task.  

This finding suggests that low-level visual temporal processing in addition to lower-level 

auditory temporal processing is involved when using the phonological decoding strategy, 

as this strategy requires the ability of the reader to discriminate between graphemes and 

phonemes in order to utilize grapheme/phoneme associations.  This finding provides 

evidence that pansensory temporal processing skills are related to reading skills, 

specifically regarding decoding abilities.   

Similarly, the current investigation also revealed a significant relationship 

between word recognition skills and auditory and visual temporal processing.  

Specifically, significant associations were found between performance on the Word 

Identification subtest of the WRMT-R and performance on auditory temporal processing 

tasks involving detection, discrimination, and temporal ordering.  These correlations 

suggest that, while the Word Identification subtest is used to measure sight-word 

decoding skills, the word stimuli are not purely non-phonetic, which allow for some 

words to be decoded using a phonological decoding strategy. As mentioned previously, 

correlational analyses revealed an association between auditory temporal processing 

skills and nonlexical reading abilities.  Additionally, a significant association was 

observed between performance on the Word Identification subtest and the visual duration 
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discrimination task.  The association between visual temporal processing and word 

recognition skills may suggest that visual temporal processing skills are employed during 

sight-word reading, as the reader is required to quickly recognize and discriminate word 

patterns before quickly moving to the next word.  As with the Word Attack subtest, a 

significant correlation was found between performance on the auditory duration 

discrimination task and performance on the visual duration discrimination task, which 

provides further support of low-level pansensory processing during reading.  However, as 

mentioned earlier, results from the current investigation, when analyzing performance on 

the auditory and visual experimental tasks as a function of reading ability, did not support 

the pansensory deficit in reading disorders. 

Despite the lack of evidence yielded by the current investigation to clearly 

determine a relationship between low-level visual temporal processing and reading 

disorders on visual experimental tasks, the findings from the auditory experiments in the 

current investigation confirmed previous research supporting the relationship between 

auditory temporal processing deficits and reading disorders (Rey et al., 2002; Tallal, 1980; 

Walker et al., 2001; Walker et al., 2006). As mentioned previously, it has been suggested 

that basic perceptual processing of acoustic stimuli serves as a prerequisite skill for active 

perception of continuous speech, which directly affects phonological processing (a 

higher-level linguistic skill), which subsequently impacts the development of reading and 

spelling (Schulte-Körne et al., 1999).  It has been argued that the negative impact of 

auditory temporal processing deficits in relation to reading disorders is only affected by 

perception of linguistic stimuli, suggesting that reading disorders stemming from deficits 
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in auditory processing is language specific (Mody et al., 1997). However, data obtained 

from the current investigation, in support of previous research (Tallal, 1980; Walker et al., 

2001; Walker et al., 2006; Wright et al., 1997), found that children with reading disorders 

exhibited poorer performance on auditory tasks utilizing nonlinguistic stimuli, 

specifically the between-channel gap paradigm task.  Elevated thresholds on the auditory 

between-channel gap detection task were significantly correlated to performance on the 

Word Attack subtest of the WRMT-R, suggesting a relationship between detecting and 

discriminating temporal changes within an acoustic signal and the ability to determine 

phonetic distinctions during isolated speech perception.  Furthermore, the nature of 

nonlinguistic auditory temporal order judgment tasks require participants to focus 

attention on each acoustic stimulus presented, discriminate fragments of meaningless 

sound, and retain each fragment in short-term memory while simultaneously performing 

same-different operations, all of which have been suggested to “impose demands of a 

metalinguistic nature,” similar to those used during phoneme segmentation (Share et al., 

2002, p. 174).  Thus, the findings of the current study indicated the presence of a 

nonlinguistic auditory deficit in children with reading disorders.  It is, therefore, argued 

that insensitivity to temporal changes in a nonlinguistic signal during auditory processing 

would be the suggested source of a possible causal nature to deficits in higher-order 

phonological processing abilities (Boets et al., 2008; Share et al., 2002; Talcott et al., 

2000).   

The fact that the current investigation did not find evidence of an underlying 

visual temporal processing deficit in children with dysphoneidetic reading disorders on 
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the visual experiments utilized was only somewhat surprising.  It has been argued that the 

magnocellular pathway is responsible for transient motion detection, which is 

demonstrated in the saccadic eye movement during continuous reading (Eden et al., 1996; 

Lovegrove, 1997, Skottun, 2000).  It has been hypothesized that individuals with primary 

deficits in visual/lexical access have difficulty transitioning from one letter to the next in 

printed text.  These difficulties may be due to longer visual persistence, poor visuospatial 

attention, and impaired letter position encoding, all of which require a sensitivity of the 

visual system to rapidly transitioning stimuli (Boets et al., 2008; Talcott et al., 2000).  

Individuals with dyseidetic or dysphoneidetic reading deficits rely heavily on 

phonological decoding skills and fail to establish automatic reading patterns.  Thus, these 

individuals tend to be slower readers.  While some of these behaviors seem linguistic in 

nature, several studies have found visual temporal processing deficits in individuals with 

reading disorders using a variety of nonlinguistic tasks, such as coherent motion and 

flicker sensitivity (Cornelisson et al., 1998; Demb et al., 1998; Talcott et al., 2000).  

Therefore, it was expected that an inability to detect rapid temporal changes of 

nonlinguistic visual stimuli designed and utilized in the current investigation should have 

been observed in the children with reading disorders, if the nature of the visual 

processing deficit was at a sensory level.  Although the data obtained on the low-level 

visual temporal processing tasks, used the current investigation, did not support a 

relationship between nonlinguistic visual temporal processing and reading disorders, it 

may be the case that visual temporal processing deficits would be more apparent using 

higher-order linguistic stimuli.  Therefore, visual temporal processing deficits in 
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individuals with dyseidetic or dysphoneidetic reading disorders may be more related to 

higher level visual processing deficits and lexical access or retrieval difficulties.  In other 

words, visual temporal processing disorders exhibited by individuals with reading 

disorders may be more linguistic in nature rather than nonlinguistic.  This was suggested 

by the significant correlations, found in the current investigation, between performance 

on the visual duration discrimination task and the Word Attack and Word Identification 

subtests of the WRMT-R.  Decoding encompasses a variety of processes during visual 

word recognition such as sequential processing of letters, perceived pronunciation of 

letter strings, and the application of rules regarding grapheme-to-phoneme 

correspondences within words (Habib, 2000; Talcott et al., 2000; Witton et al., 1998).  

Therefore, tasks assessing visual temporal processing using linguistic stimuli involving 

lexical access should be addressed in experimental tasks in future research. 

As mentioned previously, this study, in conjunction with previous literature, 

found a relationship between auditory and phonological processing when auditory 

nonlinguistic stimuli were utilized.  Examination of correlational data revealed significant 

negative correlations between performance on the within- and between-channel auditory 

gap detection tasks and the Word Attack subtest of the WRMT-R.  That is, lower 

thresholds (i.e. better performance) on the auditory within- and between-channel gap 

detection tasks were correlated to better performance on the Word Attack subtest.  

Likewise, a significant positive correlation was found between accuracy data on the 

auditory duration pattern judgment task and performance on the Word Attack subtest of 

the WRMT-R.  The nonlinguistic nature of auditory temporal processing deficits, 
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specifically those involving gap detection or temporal order patterning, provide support 

for the argument favoring an interdisciplinary approach in the diagnosis and management 

of individuals with reading disorders.  The data obtained in the current study suggest that 

underlying deficits in the auditory sensory system may lie at the root of reading disorders, 

in particular those reading disorders where the primary deficit is in phonological 

decoding. Therefore, the administration of a comprehensive auditory processing 

evaluation could identify children at risk for reading disorders.  While hyperactivity, 

inattention, and cognitive factors cannot be factored out of interpretational analysis, it 

would be appropriate to refer those children identified with auditory temporal processing 

deficits in the temporal domain for a speech and language evaluation.  Alternatively, 

those children diagnosed with reading disorders should be referred for a comprehensive 

auditory processing evaluation. The inability to correctly perceive and process the 

subtleties of any acoustic event or speech may lead to misrepresentations of information 

stored in the mental lexicon, thereby negatively affecting phonological decoding and 

visual/lexical processing while reading.  Thus, results of an auditory processing 

evaluation may further shed light on the nature of reading disorder and may aid in 

appropriate subtyping.  Due to the apparent nonlinguistic relationship auditory processing 

deficits and reading disorders, as particularly exhibited by those individuals with a 

dysphonetic and dysphoneidetic reading patterns, the current study is in favor of treating 

reading disorders as a heterogeneous disorder and, therefore, supports subtyping 

individuals with reading disorders as dysphonetic, dyseidetic, or dysphoneidetic based on 

characteristic reading behaviors.  
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No other significant differences were revealed between groups on measures 

assessing visual temporal processing (i.e. critical flicker fusion, duration discrimination, 

and duration pattern judgment).  Results from the analyses revealed large variances in 

performance between groups, suggesting either poor sensitivity of the visual tasks 

utilized in this study as visual analogs to the auditory tasks or that visual temporal 

processing deficits exhibited by individuals with a primarily dyseidetic reading behavior 

is more variable than auditory temporal processing deficits exhibited by individuals with 

a primary dysphonetic reading behavior.  The dyseidetic subtype is characterized by 

heavy reliance on phonological decoding abilities during continuous reading due to an 

inability to rapidly retrieve lexical information stored in the lexicon.  This may suggest 

that a visual temporal processing deficit is more linguistic in nature rather than a more 

general sensory deficit.  Future studies are warranted to continue examining the 

relationship of visual temporal processing and reading disorders and to investigate tasks 

more sensitive to (i.e. linguistic in nature) visual temporal processing in both normal 

readers and individuals with reading disorders.   

Future Research 

In the current investigation, the finding that there was a strong relationship 

between lexical ability and auditory processing, utilizing nonlinguistic stimuli, suggests 

that reading disorders can arise from breakdowns in both bottom-up and top-down 

processing.  It has been argued that reading disorders stem from a language-specific 

disorder rather than from an auditory temporal processing deficit (Mody et al., 1997).  

However, previous investigations have also supported the hypothesis that a strong 
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relationship exists between auditory temporal processing of nonlinguistic stimuli and 

reading abilities (Bellis et al., 2008; Brezntiz & Misra, 2003; Walker et al., 2002 & 2006).  

Due to the nonlinguistic nature of the relationship between lower-level auditory temporal 

processing deficits and reading disorders, it may be safe to assume that lower-level 

auditory perceptual deficits may then extend to higher-level linguistic and phonological 

processing difficulties.  Therefore, future research should focus on using linguistic tasks 

in the auditory temporal domain, such as categorical perception of acoustically similar 

stop consonants (i.e. /b/ and /d/ or /b/ and /g/) or voice onset time oppositions (i.e. /b/ and 

/p/) in both words and nonwords, and compare performances on these tasks to various 

measures of reading, primarily those assessing phonological decoding and sight-word 

reading abilities. 

Furthermore, implications from this study suggest a need for further investigation 

of the magnocellular theory of reading disorder.  Previous research examining the role of 

underlying deficits in the visual system in RD has produced inconclusive results.  The 

current investigation did not yield significant results indicating a magnocellular deficit in 

reading disorders using nonlinguistic stimuli, thereby failing to support the relationship 

between pansensory temporal processing deficits and reading disorders at a nonlinguistic 

level.  However, it should be noted that this investigation failed to find children with 

primarily sight-word decoding deficits. As mentioned previously, this study supports the 

use of subtyping of reading disorders (dysphonetic, dyseidetic, dysphoneidetic) based on 

characteristic deficits exhibited by individuals with reading disorders.  The pre-

experimental testing measures failed to identify the dyseidetic subtype of reading 
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disorders.  The lack of representation of a dyseidetic subtype could be attributed to: 

insensitivity of the pre-experimental tasks to the dyseidetic subtype or a general lack of 

representation of the dyseidetic subtype among the participants as a whole due to a low 

participant pool or an overwhelming primary deficit in phonological decoding exhibited 

by all participants with reading disorders.  To date, no study has used nonlinguistic visual 

discrimination and visual temporal order judgment tasks in the same manner as those 

designed and administered by the present investigation.  Correlational analyses 

performed on the visual tasks found a significant correlation between the visual duration 

discrimination task and the visual duration pattern judgment task, suggesting that the 

participants used similar temporal processing strategies for both visual tasks.  Further 

investigation into the design of the visual duration discrimination and visual duration 

pattern judgment tasks in normal readers to establish normative data and then extending 

the investigation to individuals with reading disorders is warranted.   

As mentioned previously, some individuals with reading disorders experience 

difficulty rapidly transitioning from one word to the next in printed text.  Reading 

involves brief fixations followed by saccadic eye movements.  Information is processed, 

retrieved, and stored during these brief fixations allowing the skilled, or automatic, reader 

to move quickly from one word to the next without diminishing comprehension.  

However, it has been suggested that individuals with dyseidetic (sight-word) or 

dysphoneidetic (mixed) deficits of reading disorders exhibit longer visual persistence and 

possible letter transposition while reading due to information carried during one fixation 

to the next during saccadic eye movement (Boets et al., 2008; Talcott et al., 2000).  
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Therefore, further exploration of linguistic and nonlinguistic tasks that assess visual 

temporal processing utilizing saccadic eye movement is warranted.  

In regards to the nonlinguistic nature of the visual temporal processing tasks, it is 

argued that perhaps visual temporal processing deficits in individuals with reading 

disorders would be more apparent using linguistic stimuli.  The dyseidetic group is 

characterized by a primary deficit in sight-word reading.  That is, these individuals rely 

heavily on phonological decoding abilities during continuous reading.  The inability to 

rapidly retrieve lexical information stored in the mental lexicon may suggest that a visual 

temporal processing deficit is language-specific rather than a more general deficit.  The 

ability to identify familiar letter sequences with little to no help from phonological 

decoding is necessary for orthographic processing of exception words.  As difficulty with 

accurate visual/lexical access is the primary deficit exhibited by individuals with the 

dyseidetic subtype of reading disorders, future research investigating the relationship 

between visual temporal processing and reading disorders should treat reading disorders 

as a heterogeneous group and continue to look for specific patterns of performance in the 

identification of reading disorder. Additionally, as the results of the inferential and 

correlational analyses in the current investigation suggest,  further research is needed to 

examine the relationship between auditory and visual temporal processing when reading 

abilities are viewed along a continuum, rather than as distinct categories of reading 

deficits or subtypes.  That is, the current investigation failed to find evidence on a 

pansensory deficit as a function of reading ability when reading groups were 

dichotomized across experimental tasks, yet did find evidence to support underlying 
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pansensory perceptual processing relative to reading ability when the association between 

performance on all experimental tasks and reading strategies was examined with reading 

groups collapsed together.  Furthermore, future studies directed toward how visual 

temporal processing of linguistic stimuli (such as anagrams or graphically similar isolated 

letters) relate to naming speed tasks while examining the relationship between visual 

temporal processing deficits and reading disorders is also warranted. 

The question whether a visual task is truly analogous to an auditory task continues 

to remain in question and should be further examined.  Correlational analysis between 

auditory and visual experimental tasks revealed a significant negative correlation (r =      

-0.44, p < 0.05) between the auditory duration pattern judgment task and the visual 

duration discrimination task, suggesting that the visual analogs designed in the present 

investigation assessed similar temporal processing abilities. Therefore, the need to 

continue investigations into analogous auditory and visual temporal processing tasks is 

also warranted. 
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 Task Instructions 
 
 

Instructions for the Gap Detection Test: 

You will hear three sequences of noise that sound like static.  Two will be the same and 

one will be different.  Listen carefully.  Some of the noises will sound like one burst of 

static and some will sound like two bursts of static.  I want you to find the noise that 

sounds like two bursts of static and press the button on the response box.  On the 

response box, you will see little lights flash above the buttons letting you know if you’re 

hearing the first, second, or third noise.  Pay attention because these lights will help you 

figure out what button to push.  So, for example, if the noise that sounds different 

happens first, then I want you to press the first button.  This test will gradually get harder, 

which means it will be harder for you to tell which one has two static noises in it, so if 

you’re not sure which noise sounds different, then it’s alright to take a guess.  [Verbally 

demonstrate the task and ask for a response.  Do two or three times before running the 

practice trail.] Before the test begins, we will do a practice.  You will see all the lights 

flash on the box to let you know we are about to start the test.  Push any button to start.  

We will do this test three times. Do you have any questions? 

 
Instructions for the Auditory DL Test: 

You will hear three tones.  Two will sound the same and one will sound different.  Listen 

carefully.  I want you to find the tone that sounds different from the other two and push 

the right button on the response box.  The tone that sounds different will sound shorter 
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than the other two sounds.  One the response box, little lights will flash over the buttons 

letting you know which tone you’re hearing: first, second, or third.  So, for example, if 

the tone that sounds different is the last one, then press the third button.  This task will 

gradually get harder, which means it will be harder for you to tell which tone was 

different from the other two.  If you are not sure which tone is different, then take a guess. 

[Verbally demonstrate test and ask for a response.  Demonstrate two or three times before 

beginning practice trial.] Before the test begins, we will do a practice.  You will see all 

the lights flash on the box to let you know the test is about to start.  Push any button to 

start.  We will do this test three times. Do you have any questions? 

 
Instructions for the Auditory Duration Pattern Test: 

You will hear a sequence of three tones that will make a pattern of sound.  Two of the 

tones will be the same and one will be different.  Listen carefully.  After you hear all 

three tones, I want you to find the pattern on the paper and point to it.  For example, if 

you hear short-long-short, I want you to find the pattern on the piece of paper and point to 

it.  The symbol for short will be (-) and the symbol for long will be (----).  So short-long-

short would look like (-  ----  -) on the piece of paper.  [Verbally demonstrate three of the 

six patterns and have child demonstrate the remaining three.  Verbally demonstrate a 

pattern and ask for a response before beginning practice trial.]  If you are not sure what 

the pattern is that you heard, then it’s alright to guess.  Before we start the test we will 

practice.  We will only do this test one time.  Do you have any questions? 
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Instructions for the Critical Flicker Fusion Test: 

Inside the box you will see two circles of light.  At first, the lights will flash.  Whenever 

you see the lights flash, I want you to press the (-) on the clicker.  These lights will flash 

faster and faster every time you press the (-).  At some point, these lights will flash so fast 

that they will seem to have stopped flashing and become a solid light.  Whenever you 

think the lights are no longer flashing and are completely solid, I want you to press the (+) 

on the clicker.  Watch the lights carefully.  Remember, every time you think the lights 

flash, press the (-) and every time you think you think they are solid, press the (+).  

Before we begin the test, I will show you what the lights will look like and ask you to tell 

me if you think they’re flashing or not.  Once we start the test, we will do it 3 times.  Do 

you have any questions? 

 
Instructions for the Visual DL Test: 

You will first see some instructions on the screen.  These instructions will tell you that 

you will see three (*)’s flash on the screen, one right after the other.  Two (*)’s will flash 

on the screen for the same amount of time and one (*) will flash for a different length of 

time.  Watch carefully.  I want you to find which (*) flashed on the screen for a different 

amount of time from the other two and press the correct button on the computer keyboard.  

For example, if the (*) flashed on the screen for a different amount of time happened first, 

then press #1 on the keyboard.  [Manually and verbally demonstrate the task.  Use hands 

to indicate the flash but use voice to aid in identifying short versus long.  Demonstrate 

two or three times and ask for a response before beginning practice trial.] This test will 
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gradually get harder and it will be more difficult to tell which (*) was different.  If you 

are unsure, you may guess.  Before we begin the test, we will practice.  Do you have any 

questions? 

 

Instructions for the Visual Duration Pattern Test 

You will see three (*)’s appear on the computer screen that will make up a pattern. Two 

of the (*)’s will be the same and one will be different.  Watch carefully.  After you see all 

three (*)’s, I want you to find the pattern on the paper and then press the correct button 

on the computer keyboard.  The symbol for short will be (-) and the symbol for long will 

be (----).  For example, if you see short-long-short, I want you to find (-  ----  -) on the 

piece of paper and then press the keyboard button for SLS.  [Verbally demonstrate three 

of the six patterns and ask participant to demonstrate remaining three.  Manually 

demonstrate patterns and ask for a response.  Do several times before beginning practice 

trial.] If you are not sure what the pattern is that you saw, then guess.  Before we start the 

test we will practice.  We will only do this test one time.  Do you have any questions? 

 

 
  
 

 

 



           
 

 
 

APPENDIX D: INDIVIDUAL READING AND LANGUAGE SCORES BY GROUP 

(I.E., CONTROL, DYSPHONETIC, AND DYSPHONEIDETIC)  



249 

 
 

  

Individual Reading and Language Scores by Subgroup  
(i.e., Control [C], Dysphonetic [DP] and Dysphoneidetic [M]) 

 
Standard Scores for Woodcock Reading Mastery Test – Revised 

 
                 Control Group     
Participant  Word Identification    Word Attack   
C1    95           103 
C2             100           104 
C3             120           127 
C4             132           122 
C5             108           112 
C6             105           119 
C7             113           123 
C8    98           101 
C9    92           105 
C10             110           110 
C11              94           105 
C12             114           113   
Mean (SD)            106.8 (11.9)          112.0 (8.9) 
 
 
 
 
 
           Dysphonetic Group     
Participant  Word Identification   Word Attack   
DP1    95             92 
DP2    91           107 
DP3    94             88 
DP4    85             84 
DP5    88             87 
DP6    99           102   
Mean (SD)   92.0 (5.1)            93.3 (9.2)  
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                   Dysphoneidetic Group     
Participant  Word Identification   Word Attack   
M1    85             94 
M2    86             94 
M3    89           107 
M4    77             83 
M5    72             78 
M6    85             73 
M7    75             81 
M8    85             89 
M9    83             87   
Mean (SD)   81.9 (5.8)            87.3 (10.2) 
 
 
 
 
 

Raw Scores for Word/Nonword Test 
 

     Control Group      
Participant        Reg. Word     Irreg. Word                 Nonwords         
C1     29   20   27 
C2     27   20   23 
C3     30   30   26 
C4     30   30   29 
C5     29   23   26 
C6     30   29   30 
C7     29   28   29 
C8     26   23   21 
C9     25   24   25 
C10     30   23   28 
C11     28   25   23 
C12     28   24   28   
Mean (SD)    28.4 (1.7)        24.9 (3.6)  26.3 (2.8) 
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                     Dysphonetic Group     
Participant        Reg. Word    Irreg. Word        Nonwords   
DP1     27   25   19 
DP2     28   23   19 
DP3     25   22   15 
DP4     26   20   11 
DP5     23   19   12 
DP6     23   19   14   
Mean (SD)    25.3 (2.1)  21.3 (2.4)  15.0 (3.4) 
 
 
 
 
 
 
 
                               Dysphoneidetic Group     
Participant          Reg.Word       Irreg. Word        Nonwords   
M1     21   13   20 
M2     28   21   20 
M3     28   21   18 
M4     18   13     9 
M5     16   17     8 
M6     20   16     9 
M7     14    8     4 
M8     25   18   18 
M9     22   13     3   
Mean     21.3 (5.0)  15.6 (4.2)  12.1 (6.9) 
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        Language Scores for the Peabody Picture Vocabulary Test – IV  
Participant  Control   DP     M   
1       96   111   105 
2     103     96   123  
3     138   109     95 
4      146   108   109 
5     129   102     87 
6     129   104   109 
7     126     -     86 
8                103     -     94 
9      104     -     101 
10     108     -     - 
11       96     -       - 
12      103     -     -   
Mean (SD)    115.1 (17.4)  105.0 (5.5)  101.0 (11.9) 
 



           
 

 
 

APPENDIX E: INDIVIDUAL THRESHOLDS (MS) AND ACCURACY SCORES (%) 

ON EXPERIMENTAL TASKS BY GROUP (I.E., CONTROL, DYSPHONETIC, AND 

DYSPHONEIDETIC) 
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Individual Thresholds (ms) and Accuracy Scores (%) on Experimental Tasks by Group  
(i.e., Control [C], Dysphonetic [DP], and Dysphoneidetic [M]) 

 
Mean and Best Thresholds (ms) for Within-Channel (WC) and Between-Channel (BC) 

Auditory Gap Detection Tasks 
 

      Control Group      
Participant    WC Average  WC Best     BC Average   BC Best  
C1           7.8      5.0          46.5      36.5   
C2                      5.8      5.0          27.3      14.0 
C3           5.1      3.8                     26.5                 19.0           
C4           5.5      3.8            8.3        5.0           
C5           5.0       2.5             *         *           
C6         10.4      6.3          13.3      12.5       
C7           8.8      8.8          25.5      24.0           
C8           6.3      5.0            5.0        5.0           
C9           8.0      6.3          65.0      54.0           
C10         10.0      6.3          28.5      26.5         
C11           3.8      2.5          13.3        5.0           
C12           5.0      2.5           8.3                            7.5   
Mean (SD)          6.9 (2.2)      5.0 (1.9)        24.3 (18.2)     19.0 (15.5)     
 
*This child was unable to complete the between-channel gap detection task. 
 
     Dysphonetic Group      
Participant      WC Average  WC Best     BC Average    BC Best  
DP1           7.5      5.0         56.5      34.0          
DP2           6.7      3.8         89.0      69.0          
DP3           2.9      2.5         22.2      14.0           
DP4         18.8    10.0         25.2      16.5        
DP5           8.3      7.5         59.8      44.0          
DP6         10.0              6.3         61.8      45.0   
Mean (SD)          9.0 (5.3)      5.8 (2.7)        52.4 (25.1)                37.1 (20.5) 
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                 Dysphoneidetic Group     
Participant      WC Average WC Best     BC Average    BC Best  
M1           5.5            3.8         40.7       39.0 
M2           5.8      5.0         46.5      34.0          
M3           8.3      3.8         23.5      21.5          
M4           7.0      4.8           *         *          
M5           6.3      3.8       144.0    144.0 
M6         28.9    27.5         32.0      30.0        
M7         40.8    25.0         70.3      64.0        
M8           5.9      3.8       125.3    116.5          
M9           9.6      7.5         67.3      51.5   
Mean (SD)        13.9 (13.4)    10.0 (10.1)          68.7 (44.0)     62.6 (44.4) 
 
*This child was unable to perform the between-channel gap detection task. 
 
 
 
Mean and Best Thresholds (ms) on the Auditory Duration Discrimination (ADD) Task as 

a Function of Group (Control [C], Dysphonetic [DP], and Dsyphoneidetic [M]) 
 

     Control Group       
Participant   ADD Average   ADD Best      
C1           8.8        5.0              
C2         21.3      16.3            
C3         15.0      12.5            
C4         10.4        8.8            
C5         20.0      16.3            
C6         15.4      12.5           
C7           8.3        3.8               
C8         14.2      10.0    
C9         24.6      22.5    
C10           9.2        7.5   
C11         10.0        8.8    
C12         13.3                   8.8     
Mean (SD)        14.2 (5.4)       11.0 (5.3) 
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     Dysphonetic Group      
Participant        ADD Average   ADD Best    
DP1                             19.6       12.5 
DP2                  13.8       11.3   
DP3                          10.8         8.8 
DP4                           11.7       10.0 
DP5                         14.2       10.0 
DP6                30.0       20.0     
Mean (SD)                 16.7 (7.2)       12.1 (4.1) 
 
 
 
 
             Dysphoneidetic Group      
Participant        ADD Average   ADD Best    
M1                  33.8      27.5 
M2                  17.9       16.3   
M3                  7.1        6.3 
M4                           23.8      20.0 
M5                  24.4      13.8 
M6                     36.3      32.5 
M7                18.3      16.3 
M8         15.4      12.5                    
M9                  16.7      13.8     
Mean (SD)               21.5 (9.2)      17.6 (8.0) 
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Accuracy (Percent Correct) on the Auditory Duration Patten Judgment Task as a 
Function of Group (Control, Dysphonetic [DP], and Dysphoneidetic [M]) 

             
Participant   Control             DP    M   
1        43              53               43 
2        96   77               80 
3        93   77               77 
4      100   66               60 
5        87   80               57 
6      100   70               37 
7        90     -               80 
8        73     -               43 
9        63     -               67 
10        67     -                - 
11        83     -                - 
12        77     -                -   
Mean (SD)        
 
 
 
 
 

Mean and Best Thresholds (Hz) on the Visual Critical Flicker Fusion (CFF) Task as a 
Function of Group (Control [C], Dysphonetic [DP], and Dsyphoneidetic [M]) 

 
     Control Group       
Participant   CFF Average   CFF Best      
C1         41.8      41.8              
C2         44.9      50.7            
C3         45.1      56.7            
C4         43.4      46.9            
C5         42.8      44.0            
C6         41.8      42.9           
C7         41.5      41.6               
C8         34.9      37.8    
C9         37.4      39.7    
C10         43.6      47.2   
C11         42.6      44.8    
C12         37.6                 39.3     
Mean (SD)        41.4 (3.2)      44.5(5.3) 
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     Dysphonetic Group      
Participant        CFF Average   CFF Best    
DP1                             41.9       42.2 
DP2                  38.2       41.2   
DP3                          40.2       40.8 
DP4                           32.9       41.0 
DP5                         36.1       38.0 
DP6                38.5       39.3     
Mean (SD)                 38.0 (3.2)       40.4 (1.5) 
 
 
 
 
             Dysphoneidetic Group      
Participant        CFF Average   CFF Best    
M1                  46.3      46.7 
M2                  46.2       47.1   
M3                34.0      34.6 
M4                           36.2      36.6 
M5                  37.5      40.6 
M6                     37.1      41.0 
M7                33.1      35.3 
M8         31.2      34.6                    
M9                  59.2      67.4     
Mean (SD)               40.1 (8.9)      42.7 (10.5) 
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Mean and Best Thresholds (ms) on the Visual Duration Discrimination (VDD) Task as a 
Function of Group (Control [C], Dysphonetic [DP], and Dsyphoneidetic [M]) 

 
     Control Group       
Participant   VDD Average   VDD Best      
C1         29.1      56.2              
C2         62.5    112.5            
C3         65.6      75.0            
C4       137.5    237.5            
C5       110.6    116.7            
C6         39.6      56.3           
C7         77.1    131.3               
C8            *            *    
C9         25.0      31.3    
C10         77.1    106.3   
C11         54.2    100.0    
C12         45.8                 68.8     
Mean (SD)        65.8 (34.1)      99.2 (55.2) 
 
*This child was unable to perform the between-channel gap detection task. 
 
 
     Dysphonetic Group      
Participant        VDD Average   VDD Best    
DP1                             43.8       75.0 
DP2                110.4     181.3   
DP3                          70.8     118.8 
DP4                           47.9       68.8 
DP5                         45.8       87.5 
DP6                54.2       75.0     
Mean (SD)                 62.2 (25.6)     101.0 (43.2) 
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             Dysphoneidetic Group      
Participant        VDD Average   VDD Best    
M1                  12.5      18.8 
M2                  52.1       68.8   
M3                87.5    225.0 
M4                           37.5      50.0 
M5                  29.2      56.3 
M6                     45.8      81.3 
M7                14.6      18.8 
M8         50.0      56.3                    
M9                  25.0      25.0     
Mean (SD)               39.4 (23.1)      66.7 (63.4) 
 
 
 
Accuracy (Percent Correct) on the Visual Duration Patten Judgment Task as a Function 

of Group (Control, Dysphonetic [DP], and Dysphoneidetic [M]) 
             
Participant   Control             DP    M   
1        30              80               63 
2        50   87               80 
3        73   47               50 
4        80   37               47 
5        60   17               50 
6        30   67               73 
7        73     -               37 
8        63     -               27 
9        43     -               43 
10        37     -                - 
11        50     -                - 
12        67     -                -   
Mean (SD)        
 



           
 

 
 

APPENDIX F: IRB APPROVAL LETTER 
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