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 Cardiovascular disease (CVD) exerts economic and humanitarian costs that are 

unparalleled by any other disease. Of the many etiologies of CVD, myocardial infarction 

accounts for over 50% of the associated mortality and anything that can decrease the 

extent of infarction could drastically impact the burden of CVD. The purpose of this work 

was to further our understanding of the role of cardiac mitochondria in 

ischemia/reperfusion injury. Herein I found that physiologic (exercise) and 

pharmacologic (Bendavia) interventions that lessen the oxidative burden during 

ischemia/reperfusion have the potential to limit myocardial infarction. Under conditions 

of oxidative stress, animals who received short term exercise (Ex) were better able to 

maintain the glutathione couple in a reduced state, likely through an increase in 

glutathione reductase (GR) activity. This phenotypic change was associated with 

decreased reactive oxygen species (ROS) accumulation and a lower incidence of fatal 

ventricular arrhythmias. Furthermore, I found that ROS generated within the cytosol, 

and not the mitochondria, during bouts of Ex are important signaling molecules that 

increase GR activity and this increased activity may be responsible for the 
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cardioprotective effects observed with Ex. Finally, I found that treatment with the 

mitochondrially-targeted peptide Bendavia was successful at lowering infarct size in 

isolated guinea pig hearts, due to an ability to decrease ROS accumulation and 

maintain mitochondrial energetics. Taken together, these studies suggest that therapies 

aimed at decreasing mitochondrial ROS and/or maintaining mitochondrial energetics 

during ischemia/reperfusion may have significant clinical impact. 
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Chapter 1: Introduction 
   

Prevalence of cardiovascular disease 
 Cardiovascular disease (CVD) exerts economic and humanitarian costs that are 

unparalleled by any other disease. Ischemic heart disease costs an estimated $165 

billion per year, with physical inactivity accounting for approximately 10% of this cost 

(162), making a sedentary lifestyle a multi-billion dollar problem and highlighting the 

need to promote exercise as medicine within populations at risk. In 2005, approximately 

1 out of every five deaths in the United States was due to coronary heart disease (162). 

Since CVD represents such a burden on the well being of the human population, further 

investigation into how to decrease either the prevalence or mortality associated with 

CVD is of grave importance. 

Coronary heart disease 

accounts for the majority of 

deaths due to CVD (Figure 1), 

and ischemia/reperfusion injury 

resulting from treatment for 

coronary heart disease is the 

focus of this dissertation. 

Ischemia/reperfusion injury: What is it? 

Myocardial ischemia occurs when the blood supply to the myocardium is 

insufficient to match the metabolic demand. Ischemia is an appropriate term as it stems 

from the Greek ischo (to hold back) and haima (blood). The primary event that leads to 

 

Figure 1: Percentage breakdown of deaths due to CVD (United 
States: 2006, preliminary). Taken from (162). 
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obstruction of a coronary artery is generally due to thrombus formation over a 

preexisting atherosclerotic plaque. The formation of the atherosclerotic plaque and 

development of coronary artery disease are beyond the scope of this work and are 

described in detail elsewhere (226). This thrombotic blockage prevents blood flow from 

reaching downstream tissues and predisposes them to cell death. The onset of cellular 

death during ischemia can begin as early as 15 minutes from the onset of symptoms, 

and as duration of ischemia 

increases, the probability of cell 

death also rises (111).  

Importantly, both short- and long-

term mortality are inversely 

proportional to the size of the 

infarction (21, 97, 98, 113, 114). 

Various mechanisms are 

involved in cellular death during 

ischemia and reperfusion and are 

discussed below (see also Figure 

2 and Figure 4).  

 During ischemia the heart tries to compensate by matching its demand with the 

decreased supply by decreasing contraction and switching from aerobic to anaerobic 

metabolism. However, due to the decreased coronary flow, metabolite washout is 

diminished in the ischemic tissue. This combination of increased anaerobic metabolism 

and decreased washout leads to a net increase in proton concentration and CO2 within 

 

Figure 2: Mechanisms by which myocardial ischemia can 
lead to cell death and myocardial infarction. From (200) 
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cardiac tissue, effectively lowering intracellular pH (62). This decrease in pH lowers the 

myofilaments sensitivity to calcium and decreases contractile force (6, 84, 151). 

During ischemia, mitochondrial metabolism is diminished (due to decreased 

oxygen delivery required for oxidative phosphorylation) and ATP levels being to fall, 

When this occurs, ATP-sensitive potassium (KATP) channels on the sarcolemmal 

membrane open, allowing K+ to freely leave the cell. Coupled with decreased metabolite 

washout, K+ accumulates in the extracellular space, decreasing the Nernst potential for 

K+, depolarizing the membrane potential and shortening of the action potential duration. 

Intracellular calcium levels also rise during ischemia, likely due to a combination of 

decreased reuptake into the SR (because of diminished ATP levels) with no change in 

its release from the ryanodine receptor (6, 151). This increased calcium can lead to 

ischemic contracture and an increase in the likelihood that the mitochondria will undergo 

permeability transition. 

Currently the best treatment for myocardial ischemia is prompt reperfusion. 

However, reestablishing coronary flow can lead to further injury, such as myocardial 

stunning, fatal ventricular arrhythmias, and further cell death.  These etiologies may be 

due, in part, to the “bursts” of reactive oxygen species (ROS) that occur in the early 

stages of reperfusion (283, 284). In Chapter 5 (see Figure 22 below) I show that, in 

untreated cells, ROS accumulation is observed prior to cell death during reoxygenation 

and that this reoxygenation injury can be prevented if mitochondrial ROS accumulation 

is prevented. The ability to decrease ROS accumulation during reperfusion is 

associated with decreased injury and is the focus of this dissertation.  
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Role of the mitochondria in health and disease 
 

Mitochondria are important regulators of cell life and death that respond to a wide 

variety of stress signals, including loss of growth factors, hypoxia, oxidative stress, and 

DNA damage (101). The main role of the mitochondria is to generate enough ATP 

through oxidative phosphorylation and the mitochondria has thus earned the nickname 

“The Powerhouse of the Cell”. In cardiomyocytes, mitochondria account for 

approximately 30% of the intracellular volume, presumably reflecting the high energy 

demand of contraction that the heart undergoes on a beat-to-beat basis. However, 

during oxidative phosphorylation approximately 0.4-4% of molecular oxygen (O2) 

consumed is reduced by a single electron transfer to form superoxide (140). 

During oxidative phosphorylation, mitochondria set up a membrane potential 

(∆Ψm) by pumping protons from the matrix to the inner membrane space. This ∆Ψ m is 

what drives the ATP synthase to synthesize ATP. However, during metabolic stress, 

fluctuations in ∆Ψ m have been observed in whole hearts (38, 237) and isolated 

myocytes (9).  These depolarizations in ∆Ψm drop cellular levels of ATP and can induce 

action potential heterogeneity by opening sarcolemmal ATP-sensitive potassium (KATP) 

channels (3, 199).  As action potential lability is a prime substrate for the formation of 

reentrant arrhythmias (3), interventions that stabilize ∆Ψm diminish electrical 

dysfunction during an oxidative challenge (38).  In Chapter 3, I show that short-term 

exercise training is associated with a phenotype where glutathione is maintained in a 

reduced state due to an increase in glutathione reductase activity. It is expected that 

this would lead to improved maintenance of mitochondrial energetics and is responsible 

for the decrease in arrhythmogenic events. 
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Role of glutathione system 
 

Glutathione (GSH) represents the largest capacity thiol buffer in the heart (229) 

and exerts a significant effect on mitochondrial function (9, 237). Under normal 

conditions, the balance of reduced (GSH) and oxidized (GSSG) highly favors the 

reduced state (69) and recent data implicates the glutathione redox couple as a 

“pivoting point” between ROS balance and mitochondrial dysfunction (9, 11, 143, 237). 

The importance of maintaining a high GSH:GSSG ratio has been highlighted elsewhere 

(38, 46), but it is interesting to note that the mitochondrial permeability transition pore 

(PTP) opening is sensitized during oxidative stress (172) and significant oxidation of the 

GSH couple (GSH:GSSG of < 50:1) has been shown to trigger PTP opening (9). 

Despite the fact that several studies have shown that superoxide reduction to 

H2O2 through MnSOD is increased with Ex (41, 87, 220, 271), the effect of Ex on H2O2 

scavenging by the glutathione system remains unclear (131, 221, 241). Recently, we 

showed that uncompensated oxidation of reduced GSH can induce catastrophic 

ventricular arrhythmias, even under normoxic conditions (38). In Chapter 3, I describe 

how Ex preserved GSH in a reduced state under similar conditions and protected hearts 

from fatal ventricular arrhythmias. This was associated with decreased ROS 

accumulation and an increase in GR activity. Interestingly, administration of exogenous 

glutathione (GSH) (232) or its precursor, N-acetyl cysteine (72), has resulted in 

decreased injury in animal models. Since there is little de novo synthesis of GSH within 

cardiac tissue (99) the ability of the mitochondria to replenish GSH is of significant 

importance and is the focus of Chapters 3 and 4. 
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To investigate if decreasing mitochondrial ROS during reperfusion presents a 

good pharmacological target, we utilized the novel mitochondrially-targeted peptide 

Bendavia. In Chapter 5, I describe that treatment with Bendavia decreased the ROS 

accumulation in cardiomyocytes, enhanced the ability to maintain mitochondrial 

energetics, and was associated with decreased cell death. 

Exercise as a therapy 
 
 The ability for exercise to confer protection from I/R injury is described in detail in 

Chapter 2. Despite significant advances in our understanding of the preconditioning 

phenomenon, none of the experimental preconditioning strategies put forth have 

improved therapeutic treatments for patients (80).  One potential reason for this lack of 

translation to clinical practice is the short-lived effectiveness of most preconditioning 

stimuli (60, 255).  Exercise remains one of the few sustainable strategies shown to 

precondition the heart against ischemia/reperfusion injury. Data from our group (43, 44) 

and others (104, 220) have demonstrated that short term exercise is cardioprotective, 

and that this is sustained if exercise continues for months (41).  We believe that by 

studying the mechanisms involved in exercise-induce preconditioning we can uncover 

novel and sustainable preventative treatments for those who cannot or will not adhere to 

an exercise regimen.  

In the United States the proportion of individuals engaging in physical activity 

declines with age and physical inactivity is responsible for approximately 10% of the 

global burden of myocardial infarction after accounting for other CVD risk factors (162). 

Epidemiological evidence supports the notion that patients who exercise regularly are 

more prone to survive a myocardial infarction (183), and have a significantly lower 
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incidence of sudden cardiac death (103).  This protection has also been well 

documented in animal models, as training confers resistance against several different 

indices of ischemia/reperfusion injury, including infarction (for review see (45, 87) and 

Chapter 2), stunning (35, 41, 106, 157), and arrhythmias (105, 118, 194, 220).  While 

the cardioprotective effect of exercise are clear, the cellular mechanisms responsible for 

the protective phenotype have not been elucidated.  

Central Hypothesis 
 

The goal of this dissertation is to advance our understanding of the role that 

cardiac mitochondria play in exercise preconditioning.   The overriding hypothesis is that 

ischemia/reperfusion injury is mediated by a mitochondrial overload of ROS that 

collapse mitochondrial energetics, and therapies that can reduce this oxidative burden 

will prevent cell death.  In Chapter 3, I establish that maintenance of reduced 

glutathione through the glutathione reductase reaction may be the mechanism by which 

exercise confers protection from ventricular arrhythmias. Chapter 4 sheds valuable 

insight into the role of cytosolic ROS as signaling molecules that modify GR activity and 

confer protection from myocardial infarction. In Chapter 5, I describe the effects of a 

novel pharmacological treatment for I/R injury that decreases mitochondrial ROS 

accumulation.  

 



 

 

Chapter 2: Exercise-induced cardiac preconditioning: How exercise mends your 
achy-breaky heart 
 From Chad R. Frasier, Russell L. Moore, and David A. Brown.  Exercise-induced 
cardiac preconditioning: How exercise can mend your achy breaky heart.  Journal of 
Applied Physiology, 2011; 111(3): 905-915 (PMID 21393468). (87) 

 

Introduction 
 

The benefits of exercise in promoting health are well documented throughout 

human history.  Various forms of exercise were prescribed by the ancient Chinese, 

Indians, Greeks, and Romans, making exercise arguably the oldest therapeutic 

intervention for the treatment or prevention of disease (160). As our understanding of 

the cardiovascular system evolved, so too did the notion that the overall health of the 

cardiovascular system could be improved with exercise. Beginning as early as the 

1850s exercise was prescribed specifically for the prevention of heart disease in 

Scotland and Scandinavia, and later in the mountain resorts of Germany (160).  In the 

United States, the public health pioneer Dr. James M. Anders was among the first to 

recognize the beneficial effects of exercise medicine.  In a 1904 speech, Anders noted 

that, “It should ever be a feature of our therapeutic creed, to give close attention to 

physiologic means and to recognize their superiority over drugs as curative agencies” 

(7).   

Fast forward a century and one will find an obesity and diabetes epidemic 

sweeping through industrialized nations, with physical inactivity now recognized as a 

major risk factor for cardiovascular disease.  Recent estimates suggest that 

approximately 12% of the cost of cardiovascular disease can be attributed to physical 

inactivity (275), making physical inactivity a multi-billion dollar problem.  A significant 

http://www.ncbi.nlm.nih.gov/pubmed/21393468�
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amount of time, effort, and resources are being devoted to preventative methods 

seeking to reduce the burden that ischemic heart disease places on both our species 

and our health care system.  In this review article, we seek to summarize the current 

literature regarding the ability of exercise to delay/reduce cardiac ischemia/reperfusion 

injury; in short, we will describe how exercise can make “achy” hearts a little less 

“breaky”.   

Before we begin, it should be noted that exercise is known to reduce arrhythmia 

(105, 194, 220), decrease myocardial stunning (35, 165), and improve coronary 

vascular reactivity (42, 147, 148) in hearts exposed to ischemia/reperfusion. Several 

recent papers have discussed exercise cardioprotection (14, 25, 215, 216, 242), and 

many of these articles have focused on other indices of ischemic injury besides cell 

death.  In this mini-review, we will focus almost exclusively on the ability of exercise to 

confer resistance against infarction.  In the first half of this review, we provide a 

comprehensive overview of the exercise type, duration, and intensity needed to protect 

the heart. In the second half, we discuss underlying cellular mechanisms responsible for 

exercise cardioprotection.  We highlight new insights into how exercise may trigger and 

mediate protection against infarction, and we discuss the time-course of cellular events 

during ischemia and reperfusion that may be altered in the heart after exercise.  Finally, 

throughout this review we point out areas where future research can augment our 

understanding of exercise-induced cardioprotection. 

Can we really ‘precondition’ the heart against infarction? 
 

In the scientific literature, a growing number of strategies have been found to 

protect the heart from ischemia/reperfusion injury.  Among the first of these strategies is 
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the “preconditioning” phenomenon, first noted by Murry et al. (186), where short 

ischemic episodes before a long index ischemia decreased infarction.  A number of 

stimuli have subsequently shown to precondition the heart against injury (reviewed in 

(29)), along with the recent discovery that slowly bringing the heart out of ischemia with 

“post-conditioning” also salvages myocardium (261). Pre/post-conditioning delays the 

onset of ischemia/reperfusion injury, but the extent of protection depends critically on 

the establishment of reperfusion.  In the clinic, prompt reperfusion remains the best 

treatment to salvage tissue, and in experimental settings pre/post-conditioning stimuli 

lose their efficacy to reduce injury with prolonged ischemia (186, 203, 273).  However, 

the re-establishment of coronary flow induces problems of its own (reperfusion injury, 

discussed below), and we will address the etiology of injury during both ischemia and 

reperfusion.   

Naturally, there is enormous interest in trying to ‘mimic’ ischemic pre/post-

conditioning with a compound administered to patients hospitalized for ischemic events.  

Despite scores of potential treatments that are effective in experimental settings, to date 

none of the putative compounds have been incorporated into clinical standard of care.  

The reasons for the lack of translation have been well described elsewhere (80), but the 

correlation between humans who exercise and reduced morbidity/mortality after 

infarction is well documented.  

What is the relationship between exercise and infarct size? 
 

Epidemiological evidence has indicated that there is a strong correlation between 

individuals who exercise regularly and those who survive a myocardial infarction (183, 

205-209).  Elderly humans who are sedentary appear to lose the preconditioning 
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benefits of preinfarction angina, although the protection was seen in counterparts who 

exercised (2, 222).  Given the relationship between infarct size and mortality (112, 178), 

exercise is postulated to promote survival by delaying cell death during metabolic 

challenge, reducing the mass of infarcted tissue.  

Although direct confirmation of exercise-induced infarct sparing is difficult to 

measure in human hearts, several studies have provided indirect evidence of exercise 

cardioprotection in the human heart. Zdrenghea et al. found that exercise-induced ST-

segment depression was significantly attenuated in high risk patients during the 

subsequent exercise bout (276). Lambiase and colleagues exercised patients with 

known coronary artery disease prior to percutaneous coronary intervention, and 

observed that the ST-segment deflection induced by 3-minute intracoronary balloon 

inflation was lessened in the exercised patients (145). Remote preconditioning may also 

protect human heart tissue, as forearm exercises improved ischemic function in isolated 

human atrial trabeculae (224).   

Exercise-induced reductions in infarct size have been observed across animal 

models, corroborating human epidemiological data.  The first observation of exercise 

cardioprotection was noted 8 years before the discovery of ischemic preconditioning 

(IPC) (176),  and has been observed in both male (4, 44, 52, 55, 91, 117, 270, 271) and 

female (39, 42, 44, 55, 106) animals.  Infarct salvage can be seen using both in vivo (4, 

91, 106, 117, 271) and ex vivo (perfused heart) (39, 42, 44, 52, 55, 73, 270) 

preparations of ischemia/reperfusion, indicating that both systemic and intrinsic cardiac 

adaptations are likely responsible for the protective phenotype.  Although most studies 

have used younger animals, the exercise-induced cardioprotection appears to be 
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upheld with aging (150, 218, 244).  This distinction is important, as the vast majority of 

deaths from MI occur in humans over the age of 65.  

On average, the magnitude of protection evoked by exercise preconditioning is a 

30-40% reduction in injury (reviewed in more detail in (45)).  This magnitude in infarct 

size reduction is consistent with many pharmacological treatments aimed to decrease 

injury, but does not appear to be as large in magnitude as classical ischemic 

preconditioning (273).  

Is exercise really the same as ‘preconditioning’? 
 

There are a number of similarities between exercise-induced cardioprotection 

and other preconditioning stimuli. The time-course for protection is very similar across 

models, with a narrow first window of robust protection followed by a ‘second window’ of 

more modest protection (77, 271, 273).  In both IPC and acute exercise preconditioning, 

infarct size is significantly lower within one hour of the stimulus, but this protection 

wanes for approximately 24 hours.  A second window of protection is observed following 

both IPC and exercise preconditioning, and in both cases the second window reflects a 

much wider time frame to observe a preconditioning effect (approximately 24-36 hours 

after the preconditioning stimulus).   

The only studies to examine the time-course for exercise preconditioning used a 

single bout of exercise (77, 271).  Repetitive exercise training over weeks/months 

evokes a number of morphological/phenotypic changes in the myocardium, including 

resting bradycardia, hypertrophy of the left ventricle, cellular growth/adaptations in 

cardiac myocytes, and altered coronary vascular function (39, 42, 147, 168).  These 

changes make it a little more difficult to compare a chronic stimulus with acute stimuli 
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such as classical ischemic preconditioning, and future studies looking to compare the 

time-course for protection following chronic training hope to provide insight into whether 

the protection is still characterized by two distinct windows of preconditioning.   

Although exercise may share some of the mechanistic pathways with IPC (e.g. a 

role for reactive oxygen species; covered in detail below), there are clear distinctions.  

For example, phosphorylation of Akt or GSK-3β has been observed in a number of 

preconditioning models (reviewed in (185)), but neither Akt nor GSK-3β phosphorylation 

appear to be necessary for exercise cardioprotection (39, 61).  Furthermore, increased 

cyclooxygenase-2 (COX2) is seen in several preconditioning models (31), but up-

regulated COX2 was not found to be involved in exercise preconditioning (219).  

Several other characteristics of exercise preconditioning distinguish this 

preconditioning stimulus from the others.  First, any preventative treatment must be 

shown to be sustainable for long periods of time.  Many experimental stimuli appear to 

“precondition” the heart when given one time, but unless our powers to forecast 

impending coronary events improve drastically, the clinical relevance of one-time 

administration of preventative measures must be questioned.  As a preventative 

measure, exposure to exercise protects the heart against infarction after either 1 day, or 

many months of the exercise stimulus.  Second, any potential therapy must be readily 

available to patients, and there is no treatment that is more readily available to patients 

(or more economically affordable) than exercise.  Finally, as addressed above the 

epidemiological evidence is clear that exercise is also protective to human hearts.  

Given these distinctions from classical models of preconditioning, exercise is arguably 

the most clinically relevant preconditioning stimulus that has been studied to date. With 
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such enormous potential, we will now address how much of this stimulus is necessary 

to precondition the myocardium.   

How much exercise is needed to protect the heart? 
 

An interesting (and on-going) challenge is to determine exactly how much 

exercise is needed to evoke protection against I/R injury.  By far, the most common 

exercise model in the literature is forced treadmill running in the rat.  In most studies, 

30-60 minutes of running at treadmill speeds of 27-33 meters per min is used as the 

exercise stimulus (often bookended by 10-15 min of lower intensity running at ~15 

meters per min).  Such protocols consistently confer protection against infarction (see 

below), and reflect an exercise intensity of approximately 75% of VO2max (19).  To the 

best of our knowledge, the influence of lower intensity treadmill running (<60% VO2max) 

on infarct-salvage is not known. Studies examining post-ischemic mechanical recovery 

after lower intensity treadmill running protocols have found equivocal results, with some 

finding improved recovery with exercise (156), and others finding no effect (243).  A 

direct relationship between exercise intensity/duration with infarct salvage must be 

addressed in future studies.  

Unlike skeletal muscle, training adaptations to the heart following treadmill 

protocols are not normally characterized by increased Krebs Cycle intermediates 

(citrate synthase, for example, is not normally increased in trained hearts (146, 195, 

213)), but there are training adaptations such as elevated anti-oxidants (covered in 

detail below) and left ventricular hypertrophy.  The resting bradycardia induced by 

higher intensity treadmill running can even be observed in the isolated heart (39), 
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indicating that intrinsic adaptations to pacemaker currents may also accompany altered 

autonomic nervous system tone.  

Our best insight into how much exercise is needed is provided by studies that 

have used different models, intensities, and durations of exercise and looked at 

increased expression of cardioprotective proteins (such as cellular anti-oxidants and/or 

heat shock proteins).  An exercise intensity of > 24 meters/min (with a treadmill incline > 

2%) appears to be necessary for the upregulation of myocardial heat shock proteins 

(179, 195), although several studies have dissociated the link between exercise-induced 

protection and elevated heat shock proteins (104, 243, 252).  Increased manganese 

superoxide dismutase (MnSOD) is observed in young animals following exercise at 

intensities > 27 meters/min with treadmill incline set at either 0% (92, 117, 220, 271) or 

10% (42, 52).  Increased cardiac MnSOD can be induced at lower treadmill speeds (20-

25 meters/min) if a treadmill incline of > 10% is applied (119, 221), but is not observed 

at treadmill speeds lower than 20 meters/min (54, 156).  

Future research that determines how long exercise cardioprotection persists after 

cessation of an exercise regimen will also improve our understanding of exercise 

preconditioning.  Although no study has directly determined how long exercise-induced 

infarct salvage lasts after stopping exercise, an interesting study from Powers’ group 

investigated the effects of exercise cessation on functional recovery.  In their study, 

Lennon et al. (155) exercised animals for a total of 8 days, with the final 3 days 

consisting of high intensity exercise (30 meters/min for 1 hour).   The beneficial effects 

of exercise (as evidenced by post-ischemic recovery of cardiac work) persisted for 9 
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days after cessation of the exercise, but by 18 days post-exercise there was no longer 

an exercise effect.   

While the cardioprotective benefits of treadmill running protocols are clear, the 

limitations of this model must be clearly recognized.  Animals that do not run on the 

treadmill are often prodded, blasted with air, or shocked via an electrical grid.  The 

caveat that animals may display a stress response following this ‘motivation’ must be 

acknowledged in forced treadmill studies, especially those where exercise only lasts a 

few days.  Only a few investigators have attempted to address this issue, and in both 

cases there was evidence (especially in male animals) of systemic stress (reflected by 

adrenal hypertrophy, splenic atrophy, and increased circulating corticosterone) (43, 

182).  Admittedly, these data are subject to different interpretations (what is ‘stress’ 

versus ‘exercise adaptations’?), and we hope that the dialogue regarding the best 

experimental exercise approach will continue among scientists in this field.   

More work must be done to determine if voluntary wheel running protocols can 

protect the heart against infarction.  Wheel running has the advantage that animals run 

ad libitum, with rats often covering several kilometers per day (153).  The disadvantages 

of wheel running include a much lower intensity of exercise, and variability among the 

amount of exercise that each animal receives. Voluntary wheel running has been shown 

to improve survival after ischemia (67), but future studies are needed to determine if 

voluntary running can protect the heart to the same extent as higher intensity treadmill 

running.  

A few studies have looked at the infarct sparing effects of swimming training.  In 

these studies, animals were exposed to several hours of swimming per day for 7-8 
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weeks, and infarctions were significantly reduced in swim-trained animals compared to 

sedentary counterparts (91, 279).  The limitations of swimming protocols must also be 

acknowledged, as the exercise is often characterized by diving reflexes, animal stress 

from borderline drowning, and intermittent hypoxia (22, 86).  

What is it about exercise that triggers a protective phenotype? 
 

We are only beginning to understand what exercise does to “trigger” a 

preconditioning response.  Exercise-induced activation of adenosine or opioid 

receptors, transient ROS production, AMP kinase, and/or surges in inflammatory 

cytokines are candidate triggers for the protection (a hypothetical schematic is 

presented in Figure 3).  

Several studies 

suggest that receptor-

dependent signaling 

cascades are involved in 

triggering exercise 

cardioprotection. 

Adenosine receptor 

blockade abolished the 

cardioprotection evoked 

by intermittent bouts of 

tachycardia in paced dog 

hearts (78), suggesting that adenosine release at high heart rates initiates a cascade of 

events that confer resistance to infarction. The mechanism of action for adenosine 

 

Figure 3: Putative sequence of events leading to exercise-induced 
cardioprotection. Postulated ‘triggers’ of exercise-induced cardioprotection are 
denoted in green, with end-effectors labeled in red font.  Images of nucleus and 
myofilaments obtained from (24, 266) respectively. 
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receptor activation is surely multi-factorial.  Husain and Somani (121) recently found 

that the increase in myocardial anti-oxidant enzymes after acute exercise was abolished 

when exercise was performed in the presence of an adenosine receptor blocker.  The 

authors did not investigate ischemia/reperfusion injury, and more work is needed to 

determine if adenosine receptors initiate cardioprotective signaling following repetitive 

bouts of exercise.  This is especially important in light of observations where chronic 

administration of adenosine loses efficacy to precondition the myocardium (255).   

Opioids may also play a role in triggering exercise cardioprotection.  A recent 

study found that blocking opioid receptors during the exercise treatment abolished the 

infarct salvage (73).   Endogenous opioids can be released from a number of tissues 

(including heart) (70, 75), and administration of both opioid peptides and opioid receptor 

agonist preconditions tissue against injury (74, 93).  Exercise may increase endogenous 

opioids in the coronary circulation via endocrine/autocrine pathways, although the exact 

role of endogenous opioids in exercise preconditioning warrants further investigation.  

An attractive hypothesis is that the activation of adenosine and/or opioid 

receptors during exercise leads to protection via protein kinase C (PKC)-dependent 

mechanisms.  Adenosine and opioid receptor-signaling both converge on PKC (180, 

260, 272), and the activation/translocation of PKC isoforms may induce a number of 

adaptive changes within the myocardium.  The expression of several PKC isoforms is 

altered in the heart after repetitive exercise (49), and inhibiting PKC before exercise 

abolishes the infarct salvage (177, 270).  Among the different PKC isoforms in the heart, 

several studies suggest a protective role for PKCε in particular (49, 177).  It is not yet 

clear which cellular proteins “down-stream” of PKC may be activated to mediate 
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exercise preconditioning.  PKC-dependent activation of heat shock protein 70 does not 

appear to be an absolute requirement for exercise cardioprotection (177), although 

PKC-dependent activation/trafficking of sarcolemmal ATP-sensitive potassium channel 

may be involved.  Future research that elucidates down-stream PKC targets will 

improve our understanding of its role in exercise cardioprotection.   

 Another putative trigger of exercise preconditioning is the transient release of 

reactive oxygen species (ROS) during exercise.  Several studies have noted that the 

infarct-salvaging affects of exercise, as well as exercise-induced improvements in 

cardiac function are abolished when anti-oxidants are given during the exercise (4, 191, 

271).  Exercise has been shown to increase the activity of myocardial NADPH oxidase, 

and inhibiting NADPH oxidase, a source of reactive oxygen species, abolished the 

protective effects of acute exercise (227).  The notion that a small amount of reactive 

oxygen species may lead to cardiac adaptations that confer resistance to infarction has 

been put forth in other preconditioning models (138), although the mechanisms that 

ultimately lead to decreased I/R damage are yet to be determined.  A small ROS burst 

may increase anti-oxidant buffering capacity by promoting gene expression and protein 

synthesis, similar to the hormesis observed in skeletal muscle (126).  ROS-dependent 

(redox) modulation of the ryanodine receptor after exercise was recently found to 

decrease SR calcium leak (227), although it is not clear if this mechanism is involved in 

delayed exercise cardioprotection (i.e. 24 hours after exercise versus acute effects 

investigated by Sanchez et al. (227)).  

 Adenosine monophosphate-activated protein kinase (AMPK) is another 

candidate ‘trigger’ for exercise preconditioning. AMPK is believed to be quiescent in the 
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heart when energy supply-demand is in balance, but is activated during changing 

metabolic conditions (such as exercise or ischemia; reviewed in (12, 137)). 

Pharmacological activation of AMPK has been shown to reduce infarct size to a similar 

degree as exercise preconditioning (142).  Cardiac AMPK is activated following 

treadmill running, with the AMPKα-2 isoform appearing to be the most responsive (61, 

142, 187). Relating to the cardioprotective mechanism of action, AMPK activation is 

postulated to stimulate glucose/fat metabolism in the heart during metabolic stress (12, 

137), and may promote translocation of cardiac ATP-sensitive potassium channel 

subunits ((246); described in more detail below).  The ischemic heart switches to 

anaerobic glycolysis very quickly, and both glycogen storage and sarcolemmal glucose 

transport are stimulated by AMPK.  During reperfusion, AMPK is believed to augment 

fatty acid uptake and oxidation, further augmenting substrate flux through re-energized 

mitochondria. AMPK activation after exercise may protect the heart through better 

preservation of cardiac energetics, and there is both direct and indirect evidence that 

cellular ATP content is better maintained after ischemia/reperfusion in exercised hearts 

((36, 124); addressed in more detail below).  Inhibiting AMPK activation has not yet 

been shown to abolish exercise preconditioning.  Using an AMPKα-2 dominant negative 

mouse model, Musi et al. found that neither the ability of animals to exercise nor the 

maintenance of cardiac energy stores was altered with AMPKα-2 deficiency (187).   

Future experiments that directly examine exercise cardioprotection in AMPK knockout 

models, as well as development of more specific pharmacological tools that block 

AMPK activation will improve our understanding of AMPK in exercise cardioprotection.  
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The role of cytokines on cardiac ischemia/reperfusion injury in the literature is 

conflicting (65, 169). Regarding the involvement of cytokines in triggering exercise 

induced cardioprotection, Yamashita et al. found that antibodies directed at both TNFα 

and IL-1β abolished exercise-protection when given prior to a single bout of exercise, 

and one-time administration of TNFα has been shown to reduce injury (169, 271).  

Clearly more investigation is needed to clarify the role that cytokines play in exercise-

induced cardioprotection, and whether cytokines such as TNFα are involved in long-

term exercise adaptations (such as cardioprotection or hypertrophy). 

Among the candidate triggers and mediators involved in exercise-induced infarct 

sparing, augmented collateral coronary circulation, elevated nitric oxide synthase, heat 

shock proteins, and ER stress proteins do not appear to be obligatory for protection.  

For the interested reader, several excellent review articles have articulated these 

studies in more detail (216, 242).   

Is exercise-induced cardioprotection due to improved ability to scavenge ROS? 

Superoxide Dismutase.     
 

Exercise appears to improve at least some aspects of cellular ROS scavenging 

systems.  Superoxide production by complexes I and III of the electron transport chain, 

NADPH oxidase, xanthine oxidase, and NOS is believed to contribute to 

ischemia/reperfusion injury in the heart (28).   The “front-line” of cellular superoxide 

detoxification involves enzyme-catalyzed dismutation by superoxide dismutase (SOD).  

Cellular compartmentalization of SOD has led to several distinct isoforms including 

extracellular SOD, copper-zinc (Cu/Zn)SOD in the cytosolic compartment, and 

manganese (Mn)SOD in the mitochondrial matrix.  Among these isoforms, increased 
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MnSOD in particular has been found in many studies to correlate with protection against 

infarction.   

In most exercise preconditioning studies, upregulated MnSOD has been 

observed following exercise.  The duration (number of consecutive days) of exercise 

appears to be a key determinant to altering cardiac MnSOD levels.  As noted in Table 1, 

most (but not all) investigations have observed increased MnSOD activity following 

short-term (one to five days) exercise, but MnSOD mRNA (73) or protein (44) is not 

increased after acute exercise. In studies examining MnSOD with longer duration 

exercise protocols, there is a clear upregulation in both the activity (52, 119, 120, 131, 

149, 213) and protein expression (42).  This ability to augment MnSOD with exercise 

appears to be maintained in the aged heart (100, 131, 149). Supporting evidence for 

augmented MnSOD content and cardioprotection comes from mouse models where 

genetic over-expression of MnSOD protected against infarction (59), and genetic 

knockdown was associated with increased necrosis and impaired cardiac function 

(164).  

Even within the same study, increased MnSOD activity can be observed without 

increased protein expression (271). Post-translational modification of MnSOD is known 

to affect enzyme activity (267), and future experiments will help to determine if post-

translational modifications of MnSOD (such as de-phosphorylation) are involved in the 

exercise-induced increase in MnSOD activity.  As with exercise cardioprotection, 

upregulation in either the activity or protein content of MnSOD appear to be critically 

dependent on the intensity of exercise, as low-intensity treadmill running (54, 156, 213) 
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and voluntary free wheel running (130) do not appear to increase myocardial MnSOD 

levels.   

Pharmacological SOD mimetics show promise as a cardioprotective treatment 

across models of I/R (27, 53, 129, 136, 141).  In recent human clinical trials, exogenous 

ROS scavengers decreased short-term injury (256), although there didn’t appear to be a 

long-term benefit. Further development of SOD mimetics, especially mitochondria-

specific ROS scavengers (248), has potential in mitigating cardiac I/R injury.   

Table 1: Changes in myocardial MnSOD after exercise 

Study (ref.) Animal  
(sex) 

Exercise  
Duration/type 

Cardiac MnSOD change following 
exercise (method employed) 

SHORT-DURATION 
EXERCISE STUDIES 

   

Yamashita et al. (271) rat (M) 1 d treadmill Early Phase: increased (activity), NC 
(protein) 

Late Phase: increased (activity and protein) 
Dickson et al. (73) rat (M) 1 d treadmill NC (mRNA) 
Hoshida et al. (117) rat (M) 2 d treadmill Increased (activity; early and late phase) 
Quindry et al. (220) rat (M) 3 d treadmill Increased (activity) 
Lennon et al. (156) rat (M) 3 d treadmill NC: low intensity running (activity) 

Increased: high intensity running (activity) 
Demirel et al. (68) rat (F) 3-5 d treadmill Increased (activity) 
French et al. (92) rat (M) 5 d treadmill Increased (activity) 
Brown et al. (44) rat (M and F) 1 or 5 d treadmill NC (protein content) 
LONG-DURATION 
EXERCISE STUDIES 

   

Husain (119) rat (M) 8 wk treadmill Increased (activity and protein) 
Ramires and Ji (221) rat (F) 10 wk treadmill Increased (total SOD activity) 
Chaves et al. (52) rat (M) 10 wk treadmill Increased (total SOD activity) 
Kakarla et al.  (131) rat (F) 12 wk treadmill Increased (total SOD activity) 
Chicco et al. (54) rat (M) 12 wk treadmill 

(low intensity) 
NC (protein) 

Lawler et al. (149) rat (?) 12 wk treadmill Increased (activity and protein) 
Starnes et al. (241) rat (M) 16 wk treadmill NC (total mitochondrial SOD activity) 
Brown et al. (42) rat (F) 20 wk treadmill Increased (protein content) 
Gunduz et al. (100) rat (M) 1 yr swimming Increased (total SOD activity) 
Vaanholt et al. (257) mouse (M)  life-long wheel NC (total SOD activity) 
Judge et al. (130) rat (M) life-long wheel Decreased (activity) 

 
 

Abbreviations: NC, no change; SOD, superoxide dismutase; ?, sex not disclosed. 



 24 
 

 

Augmented H2O2 Scavenging 
 

Heightened SOD capacity appears to be involved in exercise cardioprotection, 

but there is little evidence of increased enzymes responsible for converting the SOD 

reaction product, H2O2, to water.  In the myocardium, enzymatic detoxification of H2O2 

depends on catalase, glutathione peroxidase, and thioredoxin. Only a few studies have 

noted increased catalase in the heart after exercise training (119), with most studies 

finding no difference in myocardial catalase activity after exercise (68, 92, 106, 130, 

220, 221, 251).  Most studies also find no change in glutathione peroxidase in the heart 

(68, 92, 106, 130, 220, 241, 251), consistent with observations where genetic over-

expression of glutathione peroxidase did not confer protection against infarction (129).   

Finally, although there has not been as much investigation into cardiac thioredoxin with 

exercise, it also appears to be uninfluenced by exercise (68).  Taken together, 

heightened enzymatic scavenging of H2O2 does not seem to be a requisite for exercise-

induced cardioprotection.   

Glutathione and Glutathione Reductase 
 
 Exercise has been shown to increase total cardiac glutathione content (221), 

although this too appears to be intensity-dependent as increased glutathione was not 

observed with life-long wheel running (130).  It is not clear glutathione reductase is 

involved in exercise cardioprotection, with some studies finding that glutathione 

reductase increases with exercise (131, 221) and others finding no change (52, 68, 

130).  Further work, especially those comparing glutathione content during/after 
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oxidative stress, may provide more insight into glutathione and exercise 

cardioprotection.   

Are ATP-sensitive potassium channels involved in exercise cardioprotection?  
 
 A candidate protein complex that appears to be involved in exercise 

cardioprotection is the family of cardiac ATP-sensitive potassium (KATP) channels.  In 

the heart, there is one family of KATP channels in the sarcolemmal membrane 

(sarcKATP), and another in the mitochondrial inner membrane (mitoKATP) (122, 196). 

SarcKATP channels couple the metabolic status of the cell to the electrical excitability, 

and may be part of a negative feedback mechanism utilized by cells to shorten the 

action potential and reduce excitability when energy supplies fall (see (198) for a review 

of KATP channels in cardiac preconditioning,).  KATP-dependent truncation of the action 

potential is believed to reduce cellular calcium levels by reducing L-type calcium 

transients. Functional cardiac sarcKATP channels are believed to exist as hetero-

octomers, with 4 pore-forming subunits and 4 accessory subunits inserted into the 

sarcolemma.  Heart-specific isoforms were originally thought to consist of Kir6.2 pore-

forming subunits, and SUR2a accessory subunits, although recent findings indicate that 

the molecular identity of cardiac sarcKATP may be more complicated and include 

multiple isoforms of both pore-forming (Kir) and accessory (SUR) subunits (278).   

Several studies support a role for sarcKATP channels in exercise preconditioning.  

Genetic knockout of sarcKATP pore-forming subunits confers exercise intolerance (282), 

and upregulation of KATP channel subunits has been observed following both short-term 

and chronic exercise (39, 44).  A confirmatory role for sarcKATP channels in exercise-

induced cardioprotection is provided in both short-term (55) and long-term (39) exercise 
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studies where pharmacological block of sarcKATP channels abolished the 

cardioprotection.  In isolated cardiac myocytes exposed to I/R, Libonati et al. showed  

 

A. 

 

B. 

 

Figure 4: Pathophysiological changes in rodent cardiac tissue during ischemia (A) and reperfusion (B). Postulated 
mechanisms involved in exercise-preconditioning noted in red font.  Heart image modified from (170).  
Abbreviations: ∆Ψ p, sarcolemmal membrane potential, ∆Ψ m, mitochondrial membrane potential; sarcKATP, 
sarcolemmal ATP-sensitive potassium channels. 
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that myocytes from trained animals had shorter action potentials than sedentary 

counterparts, consistent with the notion that exercise may protect the heart by 

augmenting the ability to repolarize (159). The issue of sarcKATP channel subunit 

trafficking should be addressed in future exercise studies, as both PKC (82) and AMPK 

(246) have been shown to translocate sarcKATP subunits to the sarcolemma and induce 

cardioprotection in other preconditioning models.    

Sarcolemmal KATP channel opening during ischemia appears to be the crucial 

time-point to protect tissue against infarction, as blocking the channels during 

reperfusion alone doesn’t influence infarct size (127).  During the ischemic period, there 

is probably a relatively short window for KATP channels to protect the heart.  In rodent 

hearts exposed to ischemia, electrical activity in ventricular tissue continues for 

approximately 15 minutes, although mechanical function stops within in the first 2 

minutes.  Conduction velocity slows during ischemia due to the closure of gap junctions 

(“cellular uncoupling”) (50), and after approximately 15-20 minutes of ischemia cells 

become inexcitable due to run-down of sarcolemmal ion gradients and gradual 

sarcolemmal depolarization secondary to ATP depletion (see Figure 4).  This loss of 

electrical excitability is best observed in global ischemia models (37), and is along the 

same time-line as the onset of ischemic contracture.  Given the small window for 

sarcKATP-dependent protection, sarcKATP opening likely reduces infarction by delaying 

the onset of injury, although this delay may be inconsequential after prolonged ischemia 

(203).  While speculative, this would explain why KATP channel block during longer 

ischemic bouts did not influence infarct size in sedentary male hearts (55, 127), as 

sedentary male rats are the most susceptible to injury and the window of protection from 
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KATP channel opening may have passed during prolonged injury.  Despite a higher 

propensity for injury in male animals (127), exercised male hearts still show increased 

sarcKATP channel expression (44), and blocking sarcKATP channels during ischemia 

abolishes the exercise preconditioning in both sexes (39, 55). 

Although the opening of KATP channels reduces cellular injury, the consequence 

of increasing KATP currents may introduce electrical heterogeneity in the heart and 

promote arrhythmia, especially during reperfusion (reviewed in (46)).  Regarding the 

ischemic versus reperfusion opening of KATP channels, it seems plausible that blocking 

sarcKATP channels during ischemia delays calcium overload and decreases infarction 

(127), while blocking sarcKATP channels during reperfusion has negligible effect on 

infarction but maintains cardiac function secondary to preservation of electrical stability 

(as observed in (125)).   

Unlike a number of other preconditioning models (reviewed in (197)), blocking 

the mitochondrial KATP channel during I/R did not influence exercise-induced protection 

from infarction (39).  Interestingly, administration of a mitoKATP blocker during exercise 

(versus during I/R) does abolish the protection (77), indicating that mitoKATP activation 

might be involved in triggering the protective phenotype, but is not involved during the 

ischemic insult.  It is important to note that the compound used as a ‘specific’ blocker of 

mitoKATP (5-hydroxydecanoate) is notoriously non-specific (39, 108-110). Future 

experiments using a better pharmacological approach, as well as improved insight into 

the molecular identity of mitoKATP, will advance our understanding regarding the 

involvement of mitoKATP in exercise preconditioning.   
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Does prior exercise protect against cellular calcium overload? 
 

Cellular calcium overload is central to the etiology of ischemia/reperfusion 

damage (reviewed in (201)). There is surprisingly little information regarding the effects 

of exercise on myocardial calcium handling during pathological circumstances.  Jew and 

Moore (125) found no difference in cellular calcium content between sedentary and 

trained hearts exposed to I/R, although the method employed indicated only the total 

calcium content (and does not indicate if compartmentalization of calcium, i.e. to the 

mitochondria, occurred).  Consistent with these findings, Libonati et al. (159) found no 

difference in cellular calcium transients in myocytes from sedentary and trained animals, 

although these measurements were done in myocytes isolated after experimental I/R.  

Bowles and Starnes (36) used radiolabeled calcium isotopes and found that the 

exercise trained heart appeared to be less-susceptible to calcium overload after 30 

minutes of reperfusion.  One of the best physiological correlates to calcium overload is 

increased left ventricular diastolic pressure, and exercise does appear to protect the 

heart from diastolic dysfunction during I/R (42). Clearly much more investigation is 

warranted regarding the time-specific changes in cardiac calcium handling in hearts 

exposed to I/R to determine if prior exercise effectively delays the time-course for 

calcium overload after the onset of ischemia.  

What is the role of cardiac mitochondria in exercise preconditioning? 
 

Exercise evokes adaptations in cardiac mitochondria that likely contribute to 

exercise-induced cardioprotection. While increases in Krebs Cycle intermediates are not 

observed after exercise in the healthy heart, a number of exercise-induced changes in 

mitochondrial proteins associated with apoptosis and ROS scavenging have been 
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observed (134).  Interestingly, the subsarcolemmal population of mitochondria appeared 

to have more changes than the interfibrillar population of mitochondria (133). While 

there is much work to be done to understand how the altered mitochondrial proteome 

leads to infarct sparing, there are clearly phenotypic changes to mitochondria following 

exercise training. Isolated mitochondria from exercised animals are more resistant to 

apoptotic stimuli (134, 279).  Whether or not delayed permeability transition pore 

opening (PTP) is a characteristic of mitochondria from exercised animals is equivocal, 

with some investigators finding no change in mitochondrial calcium tolerance (241) and 

others finding that mitochondria from exercised animals have a greater calcium 

retention capacity (134, 171).  A likely explanation underlying differences between 

studies is the experimental methods employed.  Starnes et al. (241) found no 

differences in calcium tolerance after administering one calcium pulse (200nmol/mg 

mitochondrial protein) to de-energized mitochondria.  Both Marcil et al. (171) and 

Kavazis et al. (134) found that PTP opening was delayed after training, but only when 

mitochondria were respiring on the complex II substrate succinate.  Given the 

heightened ROS production with succinate-supported respiration, an improvement in 

endogenous ROS scavenging capacity is likely the culprit behind delayed PTP opening 

in these studies.   

Taken together, mitochondria from exercised animals appear to be more 

resistant to injury, and it is likely that this healthier population of mitochondria is better 

able to preserve cellular energetics during oxidative stress (Figure 4).  Preservation of 

energetics after exercise is reflected by a slower decline in myocardial ATP levels 

during ischemia/reperfusion (35), maintenance of cardiac oxygen consumption after 
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ischemia (36), prolonged time-course for sarcKATP channel opening during cellular 

anoxia (124), and resistance to apoptotic stimuli (134).  

Conclusion 
 
 Exercise training is one of the few preconditioning stimuli that evokes sustainable 

protection against cardiac ischemia/reperfusion injury.  Improved oxidant buffering 

capacity, decreased cellular/mitochondrial calcium overload, and preservation of 

bioenergetics all appear to be involved in the underlying mechanisms.  There is 

arguably no stimulus, whether pharmacological or physiological, that can promote such 

potent and long-lasting protection to hearts.  Continued research into the mechanisms 

underlying exercise-induced cardioprotection, as well as novel pharmacological agents 

that are effective in exploiting these mechanisms, will improve our ability to treat those 

achy, breaky hearts.  

  



 

 

Chapter 3: Short-term exercise decreases arrhythmias following thiol oxidation 
and ischemia in isolated rat hearts 
 
From Chad R. Frasier, Ruben C. Sloan, Phillip A. Bostian, Michael Gonzon, Jennifer 
Kurowicki, Steven LoPresto, Ethan Anderson, and David A. Brown. Short-term exercise 
preserves myocardial glutathione and decreases arrhythmias following thiol oxidation 
and ischemia in isolated rat hearts. Journal of Applied Physiology, 2011; 111(6): 1751-
1759 (PMID 21940849). (89) 
 

 

Introduction 
Sudden cardiac death due to sustained ventricular arrhythmia is a significant cause 

of mortality following a myocardial infarction, especially in patients with underlying 

cardiovascular disease (162).  Epidemiological evidence indicates that humans who 

exercise regularly are more prone to survive a myocardial infarction (183), likely due to 

a significantly lower incidence of sudden cardiac death among exercised individuals 

(103).  The cardioprotective effect of exercise training is also well documented in animal 

models, as exercise confers resistance against several different indices of 

ischemia/reperfusion injury including infarction (for review see (45, 88)), myocardial 

stunning (35, 41, 106, 157), and arrhythmia (reviewed in (25)).  With regards to the anti-

arrhythmic effects of exercise, several studies have noted that exercise evokes an anti-

arrhythmic phenotype characterized by lower incidence of ventricular arrhythmia (25, 

105, 118, 220) and increased ventricular fibrillation threshold (194).  Despite the clear 

association between exercise and resistance to arrhythmia, the cellular mechanisms 

have not been fully elucidated.  

Although prompt reperfusion remains the best treatment of an ischemic event, 

abrupt flow restoration is associated with a burst of reactive oxygen species (ROS) that 

http://www.ncbi.nlm.nih.gov/pubmed/21940849�
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is believed to be partly responsible for reperfusion injury (245, 283). This ROS burst 

may lead to fatal arrhythmias (reviewed in (46)), and strategies that improve 

mitochondrial ROS scavenging have clear potential in mitigating electrical dysfunction. 

Exercise has been shown to decrease ROS-mediated myocardial damage (251), but an 

explanation of how improved tolerance to an oxidative insult protects exercised hearts 

against arrhythmia has not been provided.   

  Cardiac glutathione represents the largest capacity thiol buffer in the heart (229) 

and exerts a significant effect on mitochondrial function (3, 47). Recent data implicates 

the glutathione redox couple as a “pivoting point” between ROS balance and 

mitochondrial dysfunction (9, 11, 143, 237). During conditions when ROS generation 

exceeds scavenging capacity (such as early reperfusion), ROS-mediated opening of 

energy-dissipating ion channels in the inner mitochondrial membrane  leads to instability 

in mitochondrial membrane potential (∆Ψ m) (10).  Oscillations in ∆Ψ m activate 

sarcolemmal ATP-sensitive potassium (KATP) channels and can induce lability in the 

cardiac action potential (3, 10), a prime substrate for re-entrant arrhythmia (46).   

Previous investigations found that collapses in ∆Ψ m occur when the reduced/oxidized 

glutathione ratio (GSH/GSSG) reaches a ‘critical’ level, and our previous work indicated 

that chemically oxidizing the cellular thiol pool induced ventricular arrhythmias under 

otherwise normoxic conditions (38).  Pharmacological treatments that sustain 

GSH/GSSG have been shown to stabilize ∆Ψ m (9, 38, 94), and prevent arrhythmias 

(38), but whether a physiological stimulus such as exercise can reduce arrhythmia by 

maintaining GSH/GSSG is not known.    
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Given the important influence that glutathione can exert on cardiac electrical 

activity, we conducted this study to determine if the anti-arrhythmic effects of short-term 

exercise were due to an improved tolerance to oxidative stress by the cardiac 

glutathione system. We hypothesized that 10 days of exercise would reduce 

arrhythmias evoked by either chemical oxidation of glutathione or ischemia/reperfusion.  

We also postulated that isolated myocytes from exercised animals would show 

diminished ROS emission and improved viability during cellular oxidative challenge, and 

that this protective phenotype would be associated with maintenance of ROS-buffering 

capacity by the glutathione system.   
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Methods  

Experimental Animals 
Female Sprague-Dawley rats (150-250g) were housed on a 12:12 hour light-dark 

cycle with food and water provided ad libitum. All experiments were conducted in 

accordance with guidelines established by the Guide for the Care and Use of 

Laboratory Animals published by the US National Institutes of Health (NIH Publication 

No. 85–23, revised 1996), and with prior approval from East Carolina University’s 

Animal Care and Use Committee.  

Exercise Protocol 
 Rats were randomly assigned into one of two experimental groups: sedentary 

control (Sed) or short-term exercise (Ex). Exercise was performed on a motorized 

treadmill similar to a well-established protocol (40). We chose an exercise protocol 

consisting of 10 days of running, because our previous work indicated that this protocol 

evokes both a cardioprotective phenotype and skeletal muscle adaptation to the 

exercise while minimizing the stress response in female rats (43).  Following 3 days of 

acclimation to the treadmill (15m/min for 5, 10, and 15 minutes for days 1, 2, and 3, 

respectively), Ex animals 

received 10 consecutive 

days of treadmill running (6% 

grade) using the protocol in 

Figure 5. 

Animals that did not run were placed back on the moving treadmill using 

prodding or a mild shock via the shock grid at the end of each running lane. Sed 

 

Figure 5: Exercise protocol used in this study. 

   
15 min 30 min 15 min 

15 m/min 30 m/min 15 m/min 
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animals were handled and placed on the stationary treadmill for 5 minutes each day for 

10 days.  

Experimental Groups 

 A total of 71 rats were used in the study.  Following 10-days of exercise (or 

handling control), experimental animals were used in one of the following six study 

arms: 1. Whole heart diamide perfusion until the heart went into a sustained (greater 

than 10 seconds) ventricular arrhythmia (n = 8 Sed and 8 Ex); 2. Whole heart diamide 

perfusion for 39 minutes (n = 8 for Ex only); 3. Whole heart diamide perfusion for 30 

minutes followed by a 20 minute washout period (n = 7 Sed and 7 Ex); 4. Whole heart 

ischemia/reperfusion experiments (n=7 Sed and 7 Ex animals); 5. Whole-heart 

perfusion for 15 min (with no diamide) for ‘untreated controls’ (n = 6 Sed and 5 Ex 

animals), or 6: Isolated cardiac myocyte experiments (n=4 Sed and 4 Ex animals).  

Following each whole heart perfusion protocol, hearts were removed and the left 

ventricle frozen for further analysis. Each set of experiments is described in detail in 

Figure 6.   

 

Figure 6: Protocols used in this study 

  
Baseline 200 µM Diamide until sustained arrhythmia 

Group 1 (N = 8 per group): 

  
Baseline 39 minutes of 200 µM Diamide 

Group 2 (N = 8 Ex only): 

  
Baseline 30 minutes 200 µM Diamide 

Group 3 (N = 7 per group): 

 
20 minute Washout 

  
Baseline 30 minutes Global Ischemia 

Group 4 (N = 7 per group): 

 
30 minutes Reperfusion 
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Isolated Heart Perfusion 
 Twenty-four hours after the last bout of exercise (or handling control), rats were 

anesthetized using a ketamine/xylazine mixture (90 mg/kg ketamine, 10 mg/kg xylazine, 

i.p.).  Upon the absence of animal response reflexes, hearts were removed via midline 

thoracotomy, placed briefly in 0.9% saline (4˚C), and cannulated by the aorta on a 

modified Langendorff apparatus. Hearts were instrumented for the measurement of left 

ventricular function, coronary flow, and electrocardiogram as previously described (38, 

236).  Briefly, hearts were retrograde perfused with gassed (95%O2 5%CO2) Krebs 

buffer containing (mM) 118 NaCl, 24 NaHCO3, 4.8 KCl, 2 CaCl2, 1.2 MgSO4, 1.2 

KH2PO4, and 10 glucose (37⁰C). The calcium content in the experimental buffers is on 

the high end of the physiological range, but normoxic hearts perfused under these 

experimental conditions retain function for at least 90 minutes with no loss of function 

(41), suggesting that calcium overload in our preparation (perfusion time ~60 min) is 

minimal in non-stressed hearts.   A latex balloon (Harvard Apparatus) was inserted 

through the mitral valve into the left ventricle and inflated to a diastolic pressure of 4-7 

mmHg for measurement of left ventricular pressures. ECG leads were placed in the 

bath for volume-conducted ECGs.  Coronary flow was monitored throughout the 

protocol with a Transonic flow probe placed in series with the perfusion line proximal to 

the perfusion cannulas, and flow rates were normalized to heart wet weight. All 

measurements were recorded on a PowerLab System (A.D. Instruments) at a sampling 

rate of 1000Hz.  Data were stored on a personal computer and subsequently analyzed 

using Chart 7.0 software (A.D. Instruments).  
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Diamide Experiments 
Following instrumentation, 16 hearts (n = 8 Sed and 8 Ex) were allowed to 

equilibrate for 15 minutes and baseline values were recorded, after which the buffer was 

switched to Krebs buffer with the addition of 200µM diamide. Diamide perfusion was 

allowed to continue until the heart entered a sustained (greater than 10 seconds) 

ventricular arrhythmia. In a separate subset of Ex hearts (n = 8), diamide perfusion 

lasted 39 minutes, which was the average time it took for Sed hearts to go into an 

arrhythmia. 

To determine if Ex improved the ability of hearts to recover following diamide 

treatment, 14 hearts (n=7 per group) were perfused with diamide for 30 minutes. After 

the 30 minute diamide perfusion, the buffer was switched back to the diamide-free 

Kreb’s for a 20-minute washout period to determine the extent of recovery. The 

concentration of diamide used in this study has previously been shown to deplete the 

cardiac glutathione pool and induce cardiac arrhythmias (38). Immediately following 

perfusion, the left ventricle was isolated and frozen in liquid nitrogen for biochemical 

analysis.  

Ischemia/Reperfusion Experiments 
A subset of 14 hearts (n=7 and 7 for Sed and Ex groups, respectively) was 

subjected to 30 minutes of global no-flow ischemia by stopping flow to the heart. 

Following 30 minutes of ischemia, the static buffer was drained from the perfusion lines 

and flow was restored for 30 minutes. As with the other groups, the left ventricle was 

isolated and frozen at the end of reperfusion for biochemical studies.   
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Arrhythmia Assessment 
Arrhythmias were scored in accordance with the Lambeth Conventions (263).  

Arrhythmias were scored for the diamide treatment and washout periods separately, 

and for the entire reperfusion period.  The scoring system used was: 0 = 0-49 premature 

ventricular beats; 1 = > 50 premature beats; 2 = at least 1 episode of VT (regardless of 

duration); 3 = at least one episode of VF (regardless of duration) and 4 = fatal event.  

Cardiac Myocyte Isolation 
Hearts from Sed and Ex animals (n=4 per group) were excised after anesthesia 

as described above and promptly placed on a retrograde perfusion cannula.  Isolated 

cardiac myocytes were prepared using methods similar to those previously described 

(37).  Briefly, the hearts received 5 minutes of perfusion with calcium-free Tyrode’s 

solution containing (in mM): 140 NaCl, 10 HEPES, 5 KCl, 1 MgCl2, and 10 Glucose (pH 

= 7.4, 37°C).  The solution was then switched to a digestion buffer consisting of 

Tyrode’s solution plus 25µg/mL Liberase DH (Roche) and 20µM CaCl2 for 22-26 

minutes. The heart was cut down and the left ventricle minced in digestion buffer in a 

heated (37°C) dissection dish. Chunks were gently aspirated with pipettes of increasing 

resistance (25mL, 10 mL, and 5mL serological pipettes) for 5 minutes.  The cell 

suspension solution was filtered through 0.25µm mesh and allowed to gravity precipitate 

for 12 minutes. Following gravity precipitation, cells were exposed to increasing 

amounts of calcium in Tyrode’s (50, 100, 200, 400 µM and 1 mM), each followed by a 

12 min gravity precipitation, before being put into Dulbecco’s Modification of Eagle’s 

Medium (DMEM) with 10% Fetal Bovine Serum. Once in DMEM, the cells were 

incubated (37°C, 5% CO2, balance room air) and used within 8 hours post-dispersion.  
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Cellular ROS Fluorescence Measurements 
At the time of each experiment, isolated myocytes were placed in Tyrode’s 

solution containing 1.8mM CaCl2, and cellular ROS production was measured with the 

fluorescent probe 5-(6)-chloromethyl-2,7-dichlorohydrofluorescein diacetate (CM-DCF, 

Invitrogen). CM-DCF fluorescence increases in proportion with cellular ROS production, 

specifically production of H2O2 and hydroxyl radical, but not superoxide (259).  

Ventricular cardiomyocytes from Sed and Ex animals were loaded with 500nM CM-DCF 

for 10 minutes and placed in a heated (37 ⁰C) flow-through perfusion chamber (Warner 

Instruments) housed on the stage of an inverted fluorescent microscope (Leica).  CM-

DCF fluorescence was evoked using light from a metal-halide lamp filtered to an 

excitation wavelength of 472nm (bandpass filter width 30nm), and emission was 

collected at 520nm (bandpass filter width 36nm).  Emitted light was captured with a 

CCD camera, and images were acquired on a personal computer.  To avoid 

photobleaching of the probe, sampling rate was set at 1 min intervals.  Our preliminary 

data indicated that this sampling rate and flourophore concentration led to stable 

recordings in normoxic (non-stressed) myocytes for up to 50 minutes (data not shown).  

After 5 minutes of baseline imaging, the solution was switched to Tyrode’s solution plus 

200 µM diamide. Fluorescence was monitored every minute for 40 minutes or until cell 

death occurred, whichever came first.  

Changes in fluorescence intensity were quantified for each time-point by 

subtracting the cell fluorescence (obtained via a region of interest drawn around the cell 

perimeter) from background fluorescence (obtained via a region of interest in an area 

adjacent to each myocyte).  To account for unequal flourophore loading across cells, 

each cellular fluorescence trace was normalized to baseline fluorescence intensity (Fo) 
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(before diamide) for each cell.  As expected, diamide treatment led to an increase in the 

CM-DCF signal over time, rapidly increasing after about 15 minutes of diamide 

treatment.  Because some of our myocytes died during diamide treatment (depicted in 

Figure 11D), we were not able to plot the average fluorescence intensity increase over 

the time of treatment (as cell death precludes accurate fluorescence measurements).  

Therefore, we quantified an ‘inflection point’, when the fluorescence signal significantly 

increased from baseline. We defined the inflection point as the time point when the 

fluorescence slope (using a linear fit) increased more than 3 times from the mean slope 

during the first 5 minutes of treatment. At the beginning and end of each experiment, a 

bright-field image of each cardiac myocyte was obtained using differential interference 

contrast, and these images are presented along with fluorescence traces for improved 

clarity.   

Myocardial Glutathione, Glutathione Peroxidase, and Glutathione Reductase  
Myocardial glutathione was assessed as described previously (38). Briefly, total 

glutathione (GSHt) and oxidized glutathione (GSSG) were determined using a 

commercially available kit (Oxis International). Final concentrations were normalized to 

protein content using a BCA Protein Assay (Thermo Scientific).  

For the determination of glutathione peroxidase (GPx) and glutathione reductase 

(GR) activities, 50-70 mg of frozen powdered tissue was homogenized in the presence 

of 0.3 mM 1-methyl-2-vinylpyridinium trifluoromethanesulfonate, and samples were 

diluted in ddH2O so that 1.5 mg protein per sample was loaded into a 96-well plate. 

Glutathione reductase was measured similar to the method of Carlberg and Mannervik 

(48). Briefly, samples were loaded in triplicate on a 96-well plate containing 1 mM 
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GSSG and 0.5 mM NADPH in TEE buffer (10 mM Tris, 1 mM EDTA, 1mM EGTA, pH 

7.4). Absorbance at 340nm was measured over 5 minutes and the rate of oxidation for 

1µM NADPH/min is equivalent to 1 U of GR activity. A similar method was used for 

measurement of glutathione peroxidase, as described previously (250). Samples were 

loaded into 96-well plate along with 1 mM GSH, 100 mU/ml glutathione reductase, 0.5 

mM NADPH, and tBOOH in TEE buffer. Absorbance at 340 nm was measured over 5 

minutes and the rate of NADPH oxidation per minute was used to calculate the GPx 

activity.  

Statistical Analysis 
All data are expressed as mean ± S.E.M. Comparisons for dichotomous 

variables between Sed and Ex were done using a Student’s t-test. Arrhythmia scores 

and glutathione content, between each group and baseline values, was analyzed with 

two-way ANOVA (group x treatment), followed by Newman-Keuls post-hoc tests. 

Between-group comparisons for incidence of ventricular fibrillation and fatal arrhythmias 

were made using a chi square test. Analysis of left ventricular developed pressure was 

determined via a two-factor (group x time) ANOVA with repeated-measures (time). 

Analysis of the Kaplan-Meier survival curve was done with a one-tailed Mantel-Cox test. 

For all comparisons, statistical significance was determined if P<0.05.  
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Results 

Animal Characteristics Following Exercise 
Morphological data 

from animals in the study are 

presented in Table 2.  

Consistent with our previous 

work (43), our short-term 

exercise protocol did not lead 

to significant differences in 

body, adrenal, or spleen 

weights. We observed 

significant hypertrophy of the heart 

following 10 days of exercise. 

Baseline hemodynamic values are 

presented in Table 3, and we found 

no differences in cardiac function 

between Sed and Ex hearts during 

baseline recordings.   

Incidence of Ventricular Arrhythmia Following Diamide Treatment 
The time to the first sustained arrhythmia during diamide treatment is presented 

in Figure 7. Ex hearts had a delayed onset of ventricular arrhythmia when compared to 

their Sed counterparts (P<0.05; Figure 7). A sustained arrhythmia was defined as any 

ventricular arrhythmia occurring with a duration ≥ 10 seconds. The average time for Sed  

Table 2: Morphological data from experimental animals. Data are 
expressed as mean ± s.e.m.  Abbreviations: HW, heart weight; BDW, 
body weight; LV, left ventricle. 

 Sed  Ex  P Value 

BDW (g) 220 ± 2 214 ± 6 0.441 

Left Adrenal (mg) 35 ± 8 38 ± 7 0.321 

Right Adrenal (mg) 34 ± 1 37 ± 8 0.929 

Spleen (mg) 561 ± 83 599 ± 92 0.608 

Heart Weight (mg) 858 ±25 954 ± 28 * 0.013 

LV Weight (mg) 503 ± 17 602 ± 16 * P<0.001 

HW/BDW * 1000 4.0 ± 0.1 4.4 ± 0.2 * 0.02 

Table 3:  Baseline hemodynamic variables for hearts in the 
study.  Data are expressed as mean ± s.e.m.  

 Sed Ex 

LVDP (mmHg) 116 ± 8 114 ± 6 

Coronary Flow (mL/min*g) 9.2 ± 1.2 10.0 ± 0.6 

Heart Rate (bpm) 301 ± 13 314 ± 7 

+dP/dt (mmHg/sec) 4312 ± 380 4728 ± 427 

-dP/dt (mmHg/sec) -2564 ± 240 -2903 ± 178 
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animals to enter an arrhythmia was 39 minutes, and it should be noted that not one 

animal in the Ex group had a time to arrhythmia less than 39 minutes. 

The extent and severity of 

cardiac arrhythmias for hearts in the 

group exposed to 30 minutes of 

diamide exposure and 20 minutes of 

washout are presented in Figure 8.  

As expected, during the shortened 

diamide treatment, the incidence and 

severity of arrhythmia was not 

significantly different between Sed 

and Ex.  However, during the 

washout period, hearts from the Ex 

group had a significantly lower 

incidence of arrhythmia, as reflected by a lower arrhythmia score and longer time until 

the first run of VT/VF during washout (P<0.05; Figure 8C and D). Ex significantly 

 

Figure 7: Exercise delays the onset of ventricular arrhythmias during sustained thiol oxidation. A. Representative left 
ventricular developed pressure (LVDP; black trace) and volume-conducted electrocardiogram (ECG; gray trace) 
recordings from a sedentary animal approximately 39 minutes into diamide treatment. The transition to ventricular 
arrhythmia and subsequent loss of pump function is noted with an arrow. B: Representative trace from an exercised 
animal during the same duration of diamide treatment as the sedentary trace. C Mean time to onset of ventricular 
arrhythmia following sustained diamide treatment; *, P<0.05 vs. Sed. N = 8 per group. Mean ± S.E.M.  

 

Figure 8: Ex decreases the severity of arrhythmias in the 
isolated rat heart exposed to reversible treatment with the thiol 
oxidant diamide (30 min), followed by a 30 minute washout 
period.  A: Arrhythmia scores (calculated from System A) 
between Sed and Ex animals during/after the diamide 
treatment. B: Arrhythmia scores (calculated from System B) 
between Sed and Ex animals during/after the diamide 
treatment.  C: Percentage of hearts in each group that 
experienced an episode of VF. D: Summary of hearts in each 
group that experienced a fatal (non-spontaneously reverting) 
ventricular arrhythmia; *, P<0.05 vs. Sed during diamide 
treatment; +, P<0.05 vs. Ex during diamide;  #, P<0.05 vs. Sed 
during washout.  N= 7 per group. Mean ± S.E.M.  
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decreased the number of hearts that had an episode of VF (P<0.05; Figure 8E), and 

lowered the incidence of non-reverting (fatal) arrhythmia at the end of the protocol 

(P<0.05; Figure 8F).  

Incidence of Arrhythmia Following Global Ischemia/Reperfusion 
Reperfusion arrhythmias in 

hearts exposed to 30 minutes of 

global ischemia/reperfusion are 

presented in Figure 9. During 

reperfusion, hearts from Ex animals 

had a significantly lower arrhythmia 

score (P<0.05; Figure 9A). Ex also 

significantly decreased the number 

of hearts that experienced an 

episode of VF (P<0.05; Figure 9B). 

The incidence of fatal arrhythmias was not significantly different between Sed and Ex 

animals, But none of the 7 Ex animals had a fatal arrhythmia, whereas 2 Sed animals 

were fatal at the end of the protocol (Figure 9 C; P=0.13). 

 

Figure 9: Incidence of reperfusion arrhythmias in hearts 
exposed to 30 minutes of global ischemia and 30 minutes of 
reperfusion. A: Arrhythmia scores (calculated from System A) 
for hearts 15 minutes into reperfusion. B: Arrhythmia scores 
(calculated from System B) for hearts 15 minutes into 
reperfusion. C. Summary of hearts in each group that 
experienced an episode of VF. D. Incidence of non-reverting 
(fatal) arrhythmia during reperfusion for hearts in the study.  *, 
P<0.05 vs. Sed. N = 7 per group. Mean ± S.E.M. 
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Left Ventricular Function 
 Left ventricular developed pressure 

(LVDP) data from the study where 

functional recovery was under 

investigation are presented in Figure 10. 

Diamide treatment induced a steady 

decline in the pressure developed in the 

left ventricle. This decrease in LVDP was 

significantly attenuated in the Ex group 

(P<0.05).  Developed pressure rebounded 

during the washout period in the Ex group and was significantly greater than the 

sedentary controls starting 11.5 minutes into the washout period and lasting throughout 

the remainder of the protocol (Figure 10; P<0.05).  In the group exposed to 

ischemia/reperfusion there was no statistically significant differences in recovery of LV 

function between Sed and Ex animals (LVDP at the end of reperfusion was 18 ± 3 and 

27 ± 4 mmHg, for Sed and Ex respectively; P=0.14). 

Cellular ROS Production 
Cellular ROS (specifically H2O2 and hydroxyl radical) production during diamide 

treatment was monitored in isolated ventricular myocytes with the flourophore CM-DCF, 

and representative images and traces are presented in Figure 11A and B.  Black and 

white images represent bright-field images of the myocyte at the beginning (left) and 

end (right) of each experiment.  The sudden increase in CM-DCF fluorescence after 

approximately 15 min of diamide has been previously observed in isolated cardiac 

 

Figure 10: Left ventricular developed pressure (LVDP) 
during diamide treatment and washout for Sed (black 
circles) and Ex (gray circles) groups. Hearts were 
perfused with 200 µM diamide for 30 minutes, followed 
by a 20 minute washout; *, P<0.05 Main effect; **, 
P<0.05 Bonferonni post hoc for time. N= 7 per group. 
Mean ± S.E.M. 
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myocytes (9), and is consistent with the concept of mitochondrial criticality (for review, 

see (8)).  This steep rise in H2O2 emission that preceded myocyte death was quantified 

using an inflection point, and the time to inflection was significantly delayed in Ex 

animals (Figure 11C; P <0.05).  As diamide exposure often led to cell death in some 

cells (depicted in the Sed representative image in Figure 11A), we plotted a Kaplan-

Meier survival curve for myocytes in the study (Figure 11D).  Myocytes from Ex animals 

displayed both a delay in the onset of cell death, as well as a decrease in the total 

number of cells that died following diamide treatment.  

 

Figure 11:  Ex delays the increase in ROS fluorescence and decreases cell death in isolated ventricular myocytes 
exposed to oxidative stress.  A: Representative images over time for Sed and Ex myocytes. Black and white 
pictures represent bright field images of myocytes at the beginning and end of each experiment, and fluorescence 
traces in between are fluorescence images from cells loaded with the ROS sensor CM-DCF.  B: Representative 
CM-DCF traces from Sed (black line) and Ex (gray line) myocytes. C: Average time to inflection for both groups. D: 
Survival curve for Sed (black) and Ex (gray); *, P<0.05 for Sed versus Ex myocyte survival. N = 18 (from 4 animals) 
for Sed and 25 (from 4 animals) for Ex. Mean ± S.E.M.  
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Myocardial Glutathione, Glutathione Peroxidase, and Glutathione Reductase  
Myocardial glutathione content data are presented in Figure 12. At baseline, 

there was no significant difference between Sed and Ex in total glutathione (GSHt), 

oxidized glutathione (GSSG), or the reduced/oxidized glutathione ratio (GSH/GSSG) 

(Figure 12A, B, and C respectively). In the Sed and Ex groups that were allowed to 

enter a sustained arrhythmia, perfusion with diamide led to a significant decrease in 

GSH/GSSG. In the Ex group perfused with diamide for only 39 minutes, there was also 

a significant decline in GSH/GSSG from baseline. However, this group had a 

significantly higher GSH/GSSG ratio than both the Sed and Ex groups that were 

allowed to continue until an arrhythmia occurred (Figure 12C).  

GSHt in the Sed group decreased significantly in the washout and reperfusion 

groups, but did not significantly change in the Ex group (Figure 12A; P<0.05). GSSG 

levels increased in both the Ex and Sed groups entering a sustained arrhythmia as well 

as the Ex group receiving 39 minutes of diamide perfusion (Figure 12B).  

GSH/GSSG declined significantly following washout in the Sed hearts perfused 

with diamide for 30 minutes, but was not significantly decreased in the Ex group (Figure 

 

Figure 12: Myocardial content of total glutathione (GSHt), oxidized glutathione (GSSG), and ratio of reduced to 
oxidized glutathione (GSH/GSSG). All tissue collected immediately after the completion of each perfusion protocol. A: 
total glutathione (GSHt) content. B: oxidized glutathione (GSSG) content. C: ratio of reduced to oxidized glutathione 
(GSH/GSSG) in hearts. *, P<0.05 vs. Sed at Baseline; #, P<0.05 vs. Ex Baseline; +, P<0.05 vs. Ex until arrhythmia; 
Mean ± S.E.M.   
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12C). In the I/R group Sed hearts showed a decline in the ratio of GSH/GSSG, but 

remained unaltered in the exercise group (Figure 12C).  

 
Glutathione reductase 

activities from diamide only 

treated hearts are presented 

in Figure 13. In hearts 

perfused until a ventricular 

arrhythmia occurred, there 

was no significant difference 

between Sed and Ex animals.  

If the perfusion was limited to 

39 minutes in the Ex group, there was a significant preservation in glutathione 

reductase activity versus both the Sed and Ex groups (P<0.05; Figure 13). 

Enzyme activities from 

untreated hearts are presented in 

Figure 14. There were no 

differences in the activity of 

myocardial GPx between Sed and 

Ex. On the other hand, GR activity 

was significantly greater in the 

hearts of Ex animals than in Sed 

animals (Figure 14; P<0.05).  

  

 

Figure 13: Glutathione reductase (GR) activity in hearts exposed to 
sustained thiol oxidation. Hearts were cut down after the onset of 
ventricular arrhythmia (time-points noted in Figure 1) and analyzed for 
GR activity.  A subset of exercised hearts was cut down at the mean 
arrhythmia onset time for sedentary hearts (39 minutes).   *, P<0.05 vs. 
Sed; #, P<0.05 vs. Ex.  N = 8 per group. Mean ± S.E.M. 

 

Figure 14: Basal changes in cardiac glutathione reductase (GR) 
and glutathione peroxidase (GPx) enzyme activity for sedentary 
(Sed) and exercise trained (Ex) hearts.  *, P<0.05.  N = 6 for Sed 
and 5 for Ex. Mean ± S.E.M. 
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Discussion 
This study was conducted to determine if short-term exercise (Ex) protected 

hearts against arrhythmias during conditions of oxidative stress.  Our results indicate 

that Ex delays the onset and decreases the incidence and severity of ventricular 

arrhythmias following thiol oxidation and ischemia, and that augmented ROS-buffering 

capacity by the cardiac glutathione system is associated with this anti-arrhythmic 

phenotype.  To the best of our knowledge, several aspects of this work represent novel 

findings.  First, we demonstrated that Ex confers an anti-arrhythmic phenotype in 

isolated female hearts exposed to two different oxidative challenges.  Second, we 

observed that isolated myocytes from Ex animals display slower rises in cellular H2O2 

levels and lower incidence of cell death during oxidative stress than sedentary cells. 

Third, Ex led to better maintenance of GSH/GSSG following thiol oxidation or ischemia.  

Finally, increased glutathione reductase activity is directly related to the preservation of 

the glutathione redox couple in a more reduced state during sustained oxidative stress. 

Taken together our results indicate that short-term exercise augments the ability of 

female hearts to replenish cardiac GSH through glutathione reductase reaction during 

an oxidative challenge leading to decreased incidence and severity of arrhythmias, 

improved cardiac function, and delayed cellular death.   

Exercise-induced Protection Against Arrhythmia 

Our observation that Ex reduced fatal ventricular arrhythmias confirms findings in 

both human epidemiological studies (103) and previous reports using animal models 

(105, 118, 194, 220).  Using an isolated heart model, we found that Ex reduced the 

incidence and severity of ventricular tachycardia/fibrillation (VT/VF) either after 
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overwhelming cellular anti-oxidant defenses with the thiol-oxidant diamide or following 

global ischemia/reperfusion. These findings are in agreement with other studies where 

exercise protected against arrhythmias induced by in vivo ischemia/reperfusion (105, 

118, 220) or ectopic ventricular pacing protocols (194).  By using the isolated female rat 

heart, we were able to corroborate earlier work (in male animals) (194) showing that 

exercise induces intrinsic adaptations in the heart that protect against arrhythmia.  

In this study, we found that Ex delays the onset of ventricular arrhythmia during 

conditions of sustained oxidative stress. A likely explanation for this time-dependency is 

that exercise, like other preconditioning stimuli, delays the onset of injury but loses 

efficacy with prolonged insult (88, 186, 203, 273).  Interestingly, when the diamide insult 

was shortened to investigate the ability of Ex hearts to recover we found that this 

protection from arrhythmias persisted, possibly due to the preservation of glutathione 

reductase reaction’s ability to re-reduce oxidized glutathione. This Ex-induced decrease 

in arrhythmias also allowed for better recovery of cardiac function after diamide 

(consistent with several ischemia/reperfusion studies (35, 41, 157, 279)).  

Role of the Cardiac Glutathione System in Arrhythmias 

Glutathione is the largest capacity thiol buffer in the heart (229), and 

uncompensated oxidation of reduced glutathione (GSH) to oxidized glutathione (GSSG) 

can induce catastrophic ventricular arrhythmias (for review see (8, 46)).  In this study, 

we used two different models of glutathione oxidation to evoke arrhythmia: chemical 

oxidation of the glutathione pool with diamide, and ischemia/reperfusion.  As expected, 

each intervention reduced both total glutathione and the reduced/oxidized glutathione 
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(GSH/GSSG) ratio in Sed animals (See Figure 12). These findings are in agreement 

with previous studies where ischemia/reperfusion depleted cardiac glutathione (154) 

and lowered GSH/GSSG (51, 210, 253, 265).  In sedentary controls, the extent of 

glutathione depletion/oxidation with diamide was similar to what we observed following 

reperfusion (Figure 12) and the incidence and severity of arrhythmias was also 

comparable between these groups (see Figure 8 and Figure 9).   

During conditions of oxidative stress, cardiac action potentials can become 

heterogeneous subsequent to the opening of sarcolemmal ATP-sensitive potassium 

(KATP) channels (3, 199).  Oscillatory KATP currents occur in phase with fluctuations in 

mitochondrial membrane potential (∆Ψ m) when cellular/mitochondrial anti-oxidants 

become overwhelmed (10).  Collapses in ∆Ψ m following GSH oxidation have been 

observed in intact hearts (38, 237) and isolated myocytes (9). This collapse in 

bioenergetics induced by GSH oxidation was associated with the onset of ventricular 

arrhythmias (38).  Pharmacological treatments that maintain GSH/GSSG ratios during 

oxidative challenge sustain ∆Ψ m (9, 94) and decrease cardiac arrhythmias (38).  Of 

notable translational interest, improving the GSH buffering capacity with the glutathione 

precursor N-acetylcysteine was also effective in preventing arrhythmias in humans 

undergoing cardiac surgery (204).   

Exercise-induced Preservation of Cell Viability and GSH/GSSG  

We show for the first time that Ex leads to a phenotype that is resistant to 

arrhythmias through the preservation of GSH/GSSG. This is evidenced by the fact that 

both GSH/GSSG and glutathione reductase activity are higher in our Ex group 
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subjected to only 39 minutes of diamide treatment when compared to the Sed group. 

This exercise-induced delay against GSH oxidation and subsequent arrhythmias in 

intact hearts was associated with improved cellular H2O2 buffering and significantly 

greater resistance to cell death during thiol-oxidation in isolated cardiac myocytes.  To 

the best of our knowledge, this study is the first observation that exercise-induced 

protection against sustained oxidative stress has been shown in viable ventricular 

cardiomyocytes.  During oxidative stress, there is a sharp increase in ROS emission 

observed when ‘mitochondrial criticality’ is reached (8).  We observed a spike in cellular 

ROS along the same time-scale as previous work (10), and found that the time until this 

ROS surge was significantly prolonged in myocytes from Ex animals.  

The depletion in cardiac GSH was attenuated in Ex hearts in the washout and I/R 

groups (Figure 12A). These results support our hypothesis that Ex delays the ROS 

surge because of preserved cardiac H2O2 scavenging capacity.  Short-term exercise did 

not alter basal GSH/GSSG ratio or the GPx enzyme activity, consistent with several 

other reports (106, 220, 241).  However, following either challenge, GSH/GSSG was 

much better maintained in Ex hearts. This suggests that the preservation of GSH in a 

more reduced state is more important in delaying H2O2 accumulation than scavenging 

of H2O2 by the GPx reaction. 

Exercise-induced sustainment in GSH/GSSG was likely due to increased activity 

of glutathione reductase, which has been previously reported in female hearts after 

exercise (268).  As the enzyme responsible for reducing GSSG back to GSH, these 

data suggest that it is not the ROS-scavenging ability of the glutathione system that is 
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protective following exercise (as there is no increase in GPx activity; see Figure 14), but 

rather the ability of the heart to replenish GSH.  Given that the de novo synthesis of 

glutathione is very low in the heart (99), and that GSSG is released from the heart 

during reperfusion (254) the importance of GSH replenishment is obligatory for the 

heart’s ability to withstand a sustained oxidative challenge.  Of interest, the ability to 

regenerate GSH is enhanced by a polarized ∆Ψ m to support NADPH regeneration by 

the mitochondrial NADH/NADPH transhydrogenase (229).  While the high GSH/GSSG 

ratio that we observed in Ex hearts exposed to oxidative stress would likely be 

associated with a higher ∆Ψ m (9), future experiments will provide insight into additive 

effects of enhanced glutathione reductase and better maintenance of ∆Ψm after Ex.   

Although there may be variability across animal species, it is interesting to note 

that a GSH/GSSG ratio < 50 has been implicated as a threshold for the opening of the 

mitochondrial permeability transition pore (9), which induces necrotic and apoptotic cell 

death (102).  Our observation that GSH/GSSG in animals that were perfused with 

diamide until an arrhythmia occurred had values below 50 while the Ex group that 

received only 39 minutes of perfusion remained higher than 50 and was absent of any 

sustained ventricular arrhythmias is of particular interest. Furthermore, Ex animals 

receiving only 30 minutes of diamide followed by a washout, exhibited a decrease in 

arrhythmia severity, improved cardiac function, and GSH/GSSG values above 50 in our 

Ex group versus lower values in their Sed counterparts.  This preservation of 

GSH/GSSG may explain the delayed production of ROS and lower propensity for cell 

death in Ex myocytes. While speculative, this would be in line with previous studies 
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indicating that Ex elicits a phenotype characterized by reduced opening of the 

mitochondrial permeability transition pore (134).   

Our finding that Ex improves the ROS-scavenging ability of the heart through 

improved GSH replenishment compliments several studies examining other ROS-

scavenging mechanisms within the myocardium.   Using anti-sense oligonucleotides, 

Hamilton et al. (105) showed a role for manganese superoxide dismutase (MnSOD) in 

exercise-induced protection against arrhythmia, and a recent paper by Quindry’s group 

also showed upregulated MnSOD activity following short-term exercise training that 

associated with the anti-arrhythmic phenotype (220).   In both of these studies, there 

was no clear exercise-induced upregulation in either GPx or catalase, the major routes 

for the conversion of H2O2 to water.  Given that the product of enzymatic superoxide 

dismutation is H2O2, the lack of heightened capacity to break down the H2O2 

(augmented by upregulated MnSOD) left several unanswered questions.  In this study, 

we offer a putative explanation that the ability of the Ex heart to scavenge H2O2 lies not 

in improved scavenging by GPx (seen herein and also in both (105, 220)), but by 

augmented replenishment of GSH through glutathione reductase.  Indeed, other studies 

have shown that GR activity increased (in liver) proportionally with the amount of 

exercise (269). Although there are obvious limitations to this speculation, including sex-

specific differences in MnSOD (44) and GPx (268),  this viewpoint could provide a 

consensus into how Ex augments ROS-scavenging capacity from superoxide 

production through the complete conversion to water.   Clearly, future experiments are 

warranted to support this notion.   
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Limitations 

 This study used 10 days of exercise to elicit a cardioprotective phenotype. Our 

previous work showed that 10 days of exercise in female rats evoked some early 

adaptations to training (such as increased skeletal citrate synthase activity), while 

minimizing markers of systemic stress (43). This model of exercise may be independent 

of changes seen with classical ‘exercise training’, where the exercise stimulus is carried 

out for many months and more robust training adaptations (such as resting bradycardia) 

are observed.  Also, we obtained a volume-conducted ECG signal by placing the leads 

directly into the bath surrounding the heart. Volume-conducted ECGs are generally 

more variable than leads placed on the surface of the heart and thus did not allow for 

direct comparison of electrical vector between groups. We used 2.0 mM CaCl2 in our 

Kreb’s Henseleit buffer. This level of calcium may be considered hypercontractile, 

however all groups were exposed to the same levels of calcium. 

Conclusions 

In this study, Ex induced intrinsic changes to the female heart that reduced the 

susceptibility to arrhythmias during two distinct oxidative challenges.  This 

cardioprotection was observed in intact hearts and isolated cardiac myocytes, and 

involved augmented ROS buffering capacity after exercise. Specifically, the ability to 

maintain a reduced glutathione environment through heightened glutathione reductase 

activity may be the underlying mechanism by which Ex confers protection. Our findings 

contribute to a growing body of literature describing the cardioprotective effects of 

exercise, a very inexpensive and widely available preventative strategy.  Future studies 

examining pharmacological strategies designed to improve glutathione replenishment 
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have enormous potential as prophylactic therapies seeking to abrogate fatal ventricular 

arrhythmias. 



 

 

Chapter 4: Exercise-induced preconditioning relies on NAD(P)H oxidase, and not 
mitochondrial, derived reactive oxygen species in isolated rat hearts. 

 

Introduction 

Cardiovascular disease constitutes a significant amount of the mortality within the 

United States, with myocardial ischemia accounting for the largest portion of these 

deaths. Despite the fact that prompt reperfusion remains the best treatment for 

myocardial ischemia, restoration of coronary flow is associated with further cell death, 

likely due to an increase in reactive oxygen species at the onset of reperfusion (210, 

254, 283). An improved capacity to buffer reactive oxygen species is centrally involved 

in exercise-induced protection from ischemia/reperfusion (I/R) injury (87). 

Under pathological conditions, reactive oxygen species (ROS) are generally 

thought to exacerbate the insult. However, evidence is emerging the ROS signaling 

actually may play an important role in cell life as well as death (for review see (101, 

116)). ROS have been implicated in the cardioprotective signaling cascade underlying 

ischemic preconditioning (79, 161, 247), heat stress (13), anesthesia (34, 66), and 

angiotensin II treatment (138). Interestingly, ROS signaling appears to be upstream of 

protective signaling mediated by PKC, implying that ROS may be one of the first steps 

of the signal transduction cascade leading to cardioprotection (79). 

Exercise has been shown to be a potent and sustainable form of cardiac 

preconditioning by us and others (41, 44, 104, 251). In our previous work we 

demonstrated that prior exercise led to an increase in the ability of glutathione to buffer 

ROS and decrease ventricular arrhythmias (90). This was associated with an increase 
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in glutathione reductase (GR) activity and better maintenance of reduced to oxidized 

glutathione (GSH:GSSG). Similarly others have shown that increased antioxidant 

capacity following an exercise regimen is associated with a cardioprotective phenotype 

(105, 271), although the signaling processes involved in antioxidant upregulation are not 

fully understood.  

A modest increase in ROS may play a vital role in cellular events leading to 

exercise preconditioning, and several studies suggest that ROS-scavengers may 

actually prevent the cardioprotective adaptations after exercise. During exercise ROS 

production has been shown to increase (for review see (123, 214)) and this transient 

redox shift can be blocked with administration of an antioxidant (5, 192).  Using the 

NAD(P)H oxidase inhibitor apocynin, Sanchez and colleagues found that inhibiting the 

formation of NAD(P)H oxidase blunts the cardioprotective effects of exercise and 

tachycardia (227). Use of the general antioxidant N-2-mercaptopropionyl glycine (MPG) 

has also been shown to blunt the beneficial effects of exercise on myocardial infarction 

(5) and cardiovascular function (192). However, neither of these studies directly 

compared if the site of ROS generation are important for the signaling involved in 

exercise-induced preconditioning.  

The purpose of this study was to investigate the importance and origin of ROS 

generated during exercise on exercise-induced preconditioning. Using Bendavia, a 

novel peptide that has been shown to decrease mitochondrial ROS (57, 248, 281), and 

apocynin (an inhibitor of NAD(P)H oxidase formation) we investigated two major 

sources of ROS generation within the myocardium. Use of Bendavia in an animal model 

of diabetes has previously been shown by our lab to be protective (235). Herein we find 
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that administration of Bendavia just prior to exercise did not blunt the protection, but 

administration of apocynin abolished the protective effects of exercise. Our data 

suggest that during exercise a transient increase in the oxidative burden occurs, 

increasing GR activity.  This study is the first to directly investigate the 

compartmentalization of ROS generation in exercise. Furthermore, this study provides 

novel insight into how increased oxidative stress during an exercise bout can lead to 

post-translational modifications of GR. 



 61 
 

Methods 

Animals 

All experiments were conducted in accordance with guidelines established by the 

Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85–23, revised 

1996), and with prior approval by East Carolina University’s Animal Care and Use 

Committee. Female Sprague-Dawley rats (150-250g) were housed on a 12:12 hour 

light-dark cycle with free access to food and water. A total of 94 animals were used in 

this study. 

Exercise Protocol 

Rats were exercised daily as described previously (89). Briefly, rats were given a 

3 day acclimation period on the treadmill. Ex animals then received 10 consecutive days 

of treadmill running for 60 minutes per day at 15 m/min for 15 minutes, 30 m/min for 30 

minutes, and 15 m/min for 15 minutes. Animals that did not run were gently prodded or 

received a mild shock.  

MTP-131 and Apocynin Injections  

 Rats were randomly assigned to receive an injection (i.p.) of either 1.5 mg/kg 

MTP-131 (n=7/group for Sed and Ex), 5 mg/kg apocynin (n=8 and 12 for Sed and Ex 

respectively), or 0.9% saline (n= n=12/group for Sed and Ex).  The injection was given 

ten minutes prior to each bout of exercise or handling control.  
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Isolated Heart Experiments 

Twenty four hours after the last bout of exercise rats were injected with 

ketamine/xylazine (90 mg/kg ketamine, 10 mg/kg xylazine, i.p.) and upon the absence 

of reflexes the hearts removed via midline thoracotomy and retrograde perfused on the 

cannula of a modified Langendorff apparatus as described previously (38, 236). 

Following a 15 minute baseline period global, no-flow, ischemia was induced for 25 

minutes. After 25 minutes, the static buffer was drained from the lines and flow was re-

established for two hours. Immediately following two hours of reperfusion the left 

ventricle was isolated and stained for infarct via TTC staining  as described previously 

(236). In a separate subgroup of animals hearts were perfused for 10 minutes before 

being snap frozen for subsequent biochemical analysis (n=4/group for Sed, Ex, and Ex 

+ Apocynin). 

Glutathione Reductase Inhibition 

 In another subset of hearts, carmustine (BCNU) was used in the isolated heart 

model described above to inhibit glutathione reductase activity. Following a 10 minute 

baseline period the buffer was switched to a Kreb’s buffer with 150 µM BCNU for 5 

minutes before global ischemia induction (n=6/group for Sed, Sed + BCNU, Ex, and Ex 

+ BCNU) and continued throughout the reperfusion period.  

Arrhythmia Assessment 

 Arrhythmias were scored as described previously (90) based on the 

electrocardiogram signal according to the Lambeth Conventions (63, 263). The 

incidence of ventricular fibrillation (VF) and fatal arrhythmias was noted for each group. 
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Myocardial Glutathione Content 

 Glutathione content was measured as described previously (38, 89). To assess 

the amount of glutathione oxidation that occurs during exercise animals were trained as 

normal and immediately following the last bout animals were anaesthetized and left 

ventricle snap frozen (n=4/group for Sed, Ex, and Ex + Apo). 

Glutathione Reductase Activity 

Glutathione reductase activity was measured in tissue homogenates as 

described previously (89). To determine the redox sensitivity of glutathione reductase 

within cardiac tissue a subset of experiments were carried out in which tissue 

homogenates were incubated with DTT (2mM) or diamide (200 µM) at 4⁰C for 20 

minutes prior to testing the activity.  

Immunoblot Analysis  

 Left ventricle homogenates were subjected to SDS-PAGE and subsequent 

transfer to a nitrocellulose membrane. Membranes were blocked for 1 hour at room 

temperature with Tris-buffered saline containing 0.1% Tween and 4% bovine serum 

albumin. Following blocking the membrane was incubated with an antibody for GR 

(1:1000; Invitrogen) overnight at 4°C. The membrane was then washed and incubated 

with an IR-Dye-conjugated secondary antibody (LiCor Biosciences). Membranes were 

scanned and quantified using the Odyssey Infrared Imaging system (LiCor 

Biosciences).  
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Statistical Analysis 

All data are presented as mean ± S.E.M. A two-way ANOVA (training x 

treatment), followed by Newman-Keuls post-hoc test was used for all analysis. 

Between-group comparisons for the incidence of ventricular fibrillation and fatal 

arrhythmias were made using a chi square test. For all comparisons, statistical 

significance was determined when P<0.05.  
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Results 

Animal Morphology and Baseline Characteristics 

 Rat morphological data is presented in Table 4. No differences were observed in 

body weight between groups. Furthermore, no indices of stress (as assessed by splenic 

atrophy or adrenal hypertrophy) were seen. However, there was a trend towards cardiac 

hypertrophy in our Ex animals following 10 days of exercise (P=0.07). 

Table 4: Morphological Data from animals in this study. Data presented as mean ± S.E.M. 

 
Sed/Saline Sed/Bendavia Sed/Apocynin Ex/Saline Ex/Bendavia Ex/Apocynin 

BDW (g) 234±5 242±7 220±3 247±7 243±8 235±7 

Spleen 

(mg) 
610±23 614±31 653±28 641±28 629±27 639±40 

L. Adrenal 

(mg) 
31±2 32±2 29±1 34±2 34±2 30±2 

HW/tibia 

(mg/mm) 
30±1 28±1 26±1 32±1 30±1 30±1 

 

Myocardial Infarction 

 Infarct size is presented in Figure 15. As expected, our Ex group had a significant 

reduction in infarct size (53 ± 3 vs. 40 ± 1% for Sed and Ex respectively; P < 0.05). 

Treatment with Bendavia had no effect on infarct size in our Ex group (42 ± 4%; P > 

0.05), but treatment with apocynin abolished the protective effects of exercise (53 ± 2%; 

P < 0.05 vs. Ex/Saline). In our Sed animals apocynin treatment had no effect on 
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myocardial infarction (55 ± 3%; P > 0.05), but Bendavia treatment significantly 

decreased the size of infarction (41 ± 3%; P <  

0.05 vs. Sed/Saline). 

 

 

Figure 15: Exercise-induced preconditioning abolished with apocynin treatment. * P<0.05 vs. Sed, # 
P<0.05 vs. Ex, + P<0.05 vs. Sed  and  MTP, @ P<0.05 vs. Ex and MTP. Mean ± S.E.M. 
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Glutathione Reductase Expression and Activity 

 Corroborating our previous work 

(89) Ex animals had increased GR 

activity (20.3 ± 1.3 vs. 49.9 ± 7.5 

mU/mg for Sed and Ex respectively; P 

< 0.05; Figure 16). This increase in 

activity was abolished in Ex animals 

treated with apocynin (26.4 ± 8.2  

mU/mg; P < 0.05). If Ex samples were 

treated with DTT, a thiol reductant, activity was reduced (26.3 ± 10.3 mU/mg; Figure 

17). Furthermore, if Sed samples were treated with diamide, a thiol oxidant, GR activity  

was significantly increased (57.3 ± 6.2 mU/mg; P < 0.05). No difference was seen 
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Figure 16: Inhibiting NAD(P)H oxidase generated 
ROS prior to exercise blunts increases in glutathione 
reductase activity. * P<0.05 vs. Sed, # P<0.05 vs. Ex 
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Figure 17: Redox modification of GR activity in 
Sed and Ex left ventricular homogenates. * P<0.05 
vs. Sed. 

Figure 18: No differences in GR protein expression 
between groups. 
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between groups in the expression of GR protein (P > 0.05; Figure 18).  

Glutathione Reductase Inhibition 

 Inhibition of glutathione reductase with the pharmacological inhibitor BCNU 

abolished the protective effects of Ex from myocardial infarction (57 ± 1; P < 0.05; 

Figure 19A). Perfusion with BCNU also abolished the protection of exercise against 

ventricular arrhythmias (Figure 19B) 

A. 

0

20

40

60

80

*

Sed
Sed BCNU

Ex
Ex BCNU

#

In
fa

rc
t 

S
iz

e 
(%

  Z
A

R
)

 

B. 

0

2

4

6

8

10
Sed
Sed BCNU

Ex
Ex BCNU

*

#
Ar

rh
yt

hm
ia

 S
co

re

 

Figure 19: GR inhibition abolishes exercise-induced preconditioning from myocardial infarction and 
ventricular arrhythmias. Infarct size (A)  and arrhythmia (B) data from isolated hearts perfused with BCNU 
*, P<0.05 vs. Sed; #, P<0.05 vs. ; Data presented as mean ± S.E.M. 
 



 69 
 

Discussion 

Main Findings 

In this study we investigated if ROS produced during exercise act as signaling 

molecules that lead to exercise-induced preconditioning and if the site of this ROS 

generation plays a role. The major finding of this study is that ROS generated through 

NAD(P)H oxidase, and not within the mitochondria, act as signaling molecules involved 

in increasing the activity of glutathione reductase. We found that during exercise the 

oxidative burden on the cell transiently increases and may shift the oxidative state of 

GR, increasing its activity. Confirming the importance of GSH replenishment in 

exercise-induced preconditioning, we showed that pharmacological inhibition of GR 

abolished the beneficial effects of exercise. 

This study is important in establishing that ROS can act as signaling molecules 

under physiological conditions and that GSH replenishment through the GR reaction are 

important steps in exercise-induced cardioprotection. To our knowledge this is the first 

study to investigate if the origin of ROS (i.e. mitochondrial vs. cytosolic) plays a role in 

exercise-induced preconditioning. Interestingly, a recent study found that cytosolic ROS, 

and not mitochondrial, may contribute to cardiac hypertrophy in a glucose transporter 

knockout mouse (158). Further investigations into the origin of ROS and their role in 

physiology/pathophysiology will help establish their role response to various stressors 

and may alter the way we view ROS. 
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The Role of GSH in Cardiac Health 

During a bout of exercise reactive oxygen species are generated which lead to a 

transient oxidative shift in cellular thiols and in this study we establish that these ROS 

are generated through NAD(P)H oxidase and not the mitochondria. It is important to 

note that this transient increase in oxidative stress is protective, whereas others have 

found that when ROS are constitutively high some of the effects of exercise training are 

absent (223). The ability to maintain a high reduced to oxidized GSH:GSSG ratio is 

important for buffering ROS in the heart and is linked to improved cardiac function (38, 

46). Herein we found that an improved ability to maintain GSH may be a requisite for 

exercise-induced preconditioning. This corroborates our previous work where we 

showed the Ex animals had an increase in GR activity which was associated with an 

improved ability to maintain GSH in a reduced state, a decrease in ROS accumulation, 

and a lower incidence of fatal ventricular arrhythmias (89).   

Under physiological conditions, the heart’s ROS production is countered by 

sufficient antioxidant defenses. However, during pathological conditions ROS 

production exceeds the intrinsic antioxidant defenses and leads to cell death (11) (for 

example, ROS generation is elevated in early reperfusion (30, 283, 284)) and an ability 

to decrease this oxidative burden has been associated with improved cardiovascular 

health. Improved ROS scavenging following exercise training is well established in the 

literature (for review see (87)), but the role of the glutathione system in exercise-induced 

preconditioning remains unclear (131, 221, 241). This study helps establish that 

increased GR activity and maintenance of GSH:GSSG is important to the beneficial 

effects of exercise. 
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Redox Modification of Glutathione Reductase 

Since there is little de novo synthesis of GSH in the heart (99) the ability to 

replenish GSH is of significant importance. GSH represents the largest capacity thiol 

buffer in the heart (229) and is known to exert a significant effect on mitochondrial 

function (9, 237) and improving the heart’s ability to maintain GSH in its reduced state is 

an area that warrants further study. Fortunately, the reduction of GSSG by GR is 

kinetically more favorable that its other fates with the rate of the GR reaction 

approximately 20 times higher than its utilization or loss from the cell (18, 58, 202). 

The activity of GR has been shown to be affected by temperature, pH, and the 

redox status of the cell (211). Importantly, Edwards et al. found that GR does not exist 

in either a phosphorylated or carboxylated form (83), suggesting that post-translational 

modification of GR is primarily due to redox modification (95, 173, 211). In support of 

this, GR activity seems to be inversely proportional to the concentration of GSH (58). In 

mammals, where pH and temperature are held relatively constant under physiological 

conditions, redox modification of GR may be a pathway by which the heart increases its 

ability to replenish GSH under conditions of oxidative stress. In this study we found that 

Ex significantly increased GR activity and this increase in activity could be blunted if left 

ventricle homogenates from Ex animals were incubated with the thiol reductant, DTT 

(Figure 17). Similar to others (173), we also found that GR activity was significantly 

increased in our Sed group if samples were incubated with the thiol oxidant diamide, 

suggesting that redox modification of GR does occur within cardiac tissue. Although 

speculative, these data also seem to suggest that Ex animals have significantly more 
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oxidation of GR than Sed counterparts and future studies will be needed to validate this 

hypothesis.   

Physiological Role for NAD(P)H Generated ROS 

In this study we investigated the two major sites of ROS production within cardiac 

tissue: the mitochondria and NAD(P)H oxidase and found that NAD(P)H oxidase 

generated ROS are potent signaling molecules in exercise-induce preconditioning. In 

cardiac tissue NAD(P)H oxidase exist in two isoforms, NOX2 and NOX4 (47) and 

appears to be located in T-tubules, in close proximity to the sarcoplasmic reticulum (SR)  

(115, 277). An interesting observation is that NOX4 may generate ROS within a cellular 

compartment that is not readily accessible to current probes for superoxide, but once it 

is converted to hydrogen peroxide it is easily detected (76, 233). ROS produced in close 

proximity to the SR may play a role in modification of the ryanodine receptor and 

increasing calcium release (20, 115). Although speculative, ROS generated through 

NAD(P)H oxidase may provide an alternative mechanism to increase intracellular 

calcium during a bout of exercise and this physiological role for ROS generated within 

the cytosol (vs. the mitochondria) may explain their importance in exercise-induced 

preconditioning.  

Conclusions 

The results of this study include several novel findings that are important to the 

field of exercise-induced preconditioning. First, ROS generated through NAD(P)H 

oxidase, and not within the mitochondria, act as signaling molecules in the 

cardioprotective pathway. Second, an ability to increase GR activity seems to be a 
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requisite for decreasing cellular injury. Third, this study establishes that transient 

increases in ROS production occur during exercise and shift GSH:GSSG to a more 

oxidized state. This decreased ratio of GSH:GSSG may in turn act as a mechanism by 

which thiols on GR are modified and activity is increased. 



 

 

Chapter 5: Reduction of ischemia/reperfusion injury with Bendavia, a novel 
mitochondrial-targeting cytoprotective peptide.  

 

Introduction 
Early and successful myocardial reperfusion with primary percutaneous coronary 

intervention remains the most effective strategy for reducing the size of a myocardial 

infarct and improving clinical outcome. Reperfusion injury remains a major issue in 

patients who receive percutaneous coronary intervention, thrombolysis or have 

spontaneous reperfusion for ST-segment myocardial infarction. Given that long-term 

prognosis has been linked to both size of infarction(112, 114, 178), strategies aimed to 

decrease infarct size have significant clinical potential.  

Reactive oxygen species are centrally involved in the development of myocardial 

infarction.  Augmented production of reactive oxygen species (ROS) during early 

reperfusion contributes to myocyte death (175, 228).  Elevated ROS increases the open 

probability of the mitochondrial permeability transition pore (PTP)(102), which is 

followed by bioenergetic collapse and ultimately cell death.  Given that mitochondrial 

ROS production is high in early reperfusion, therapies that directly (and effectively) 

target mitochondrial ROS production are ideal in this setting. Recently, a novel class of 

cell permeable small peptides has been developed that selectively target mitochondria. 

The Szeto-Schiller (SS) peptides are relatively small (<10 amino acids), water soluble 

molecules that contain a similar structural motif of alternating basic (Arg, Lys) and 

aromatic (Phe, Tyr, Dmt (2’6’-dimethyltyosine)) residues which allows them to freely 

cross cell membranes (despite a 3+ net charge at physiological pH)(280).  Studies with 

fluorescent and radiolabeled SS peptides indicate that they localize to mitochondria and 
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concentrate at the inner mitochondrial membrane (IMM) (281). One particular peptide, 

Bendavia (also called SS-31) has been shown to significantly reduce ROS levels (248) 

and protected hearts from injury in a rodent model of ischemia/reperfusion(56).   

The purpose of the present study was to determine whether the mitochondrial-

targeting cytoprotective peptide Bendavia could protect the myocardium from 

reperfusion injury.  We discovered that Bendavia decreases infarct size in an isolated 

heart model. This was corroborated with work done in isolated cardiomyocytes showing 

that Bendavia may abolish cell death due to ROS accumulation during early reperfusion 

and lead to better maintenance of bioenergetics.  
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Methods 
 The animals used in these studies were maintained in accordance with the 

policies and guidelines of the Position of the American Heart Association on Research 

Animal Use (American Heart Association, 1985) and the Guide for Care and Use of 

Laboratory Animals (1996).  Protocols received prior approval by The Institutional 

Animal Care and Use Committee (East Carolina University).  

Ischemia/Reperfusion Injury in Guinea Pigs 
Adult male guinea pigs (200-300g) were anesthetized with a ketamine/xylazine 

cocktail (85/15 mg/kg, respectively; i.p.). Upon the absence of reflexes to ensure a deep 

plane of anesthesia, hearts were excised via midline thoracotomy and immersed in ice-

cold saline. Guinea pig hearts were placed on a modified Langendorff apparatus and 

instrumented for the observation of electromechanical function as previously described 

(37, 38, 89). After a 10-minute equilibration period, hearts were divided into the 

following treatment groups: 1. Control followed by global ischemia/reperfusion (I/R); 2. 

Administration of 1nM Bendavia in the perfusate beginning 10 minutes before index 

ischemia and for the entire reperfusion; 3. Post-ischemic administration of 1nM 

Bendavia for the duration of reperfusion; 4. Post-ischemia administration of 0.2µM 

cyclosporine A. Hearts were exposed to global no-flow ischemia by stopping perfusion 

for 20 minutes. At the end of the 120-minute reperfusion period, infarct size and 

arrhythmia scores were assessed as previously described (37, 38, 236). 

Myocyte Hypoxia/Reoxygenation Experiments 
Guinea pig left ventricular myocytes were isolated by enzymatic digestion for 

hypoxia/reoxygenation studies using our established protocols(89). Isolated primary 

cardiomyocytes were incubated (95% O2 balance room air, 37 C) for 2-8 hours post-
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dispersion.  For the drug treatment groups, myocytes were either incubated for 10 

minutes with 1nM Bendavia prior to being placed in the perfusion chamber (Bendavia 

group), or received no drug treatment (Control group).  Cells were placed into a custom-

built perfusion chamber housed on the stage of an inverted fluorescence microscope for 

the study of cell survival during cellular hypoxia/reoxygenation. For each myocyte 

experiment, cells were allowed to settle on the glass coverslips for at least 20 minutes 

before the initiation of perfusion. More information on the construction of the perfusion 

chamber is provided in the Methods Supplement.   

Myocytes were superfused for a 5 minute baseline period with Tyrode’s solution 

containing (in mM): 140 NaCl, 10 HEPES, 5 KCl, 1 MgCl2, 1.8 CaCl2, and 10 glucose 

(pH = 7.4, 37°C), delivered via an in-line solution heater a rate of 1.0-1.2mL/min. 

Myocytes were paced (4ms duration, 1Hz frequency, 10V amplitude) for the duration of 

the hypoxia-reoxygenation protocol.  Our decision to pace during hypoxia is based on 

observations indicating that guinea pig myocardium maintains electrical activity through 

20 minutes of ischemia(3). After 5 minutes of baseline perfusion, the solution was 

switched to Tyrode’s solution gassed with 100% argon (hypoxia solution) for 20 

minutes. Following 20 minutes of perfusion with hypoxia solution, the superfusate was 

switched back to normoxic Tyrode’s to initiate reoxygenation. Cells were reoxygenated 

for 30 minutes or until cell death, whichever came first. When appropriate, the time of 

myocyte death during hypoxia/reoxygenation was noted by complete transition from 

rod-shaped to rounded, necrotic cell morphology. Differential interference contrast 

images of the myocytes were obtained at the beginning and end of each experiment.   

Subsets of myocytes that underwent hypoxia-reoxygenation were loaded with 
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one of two fluorescent probes to monitor either cellular ROS levels or mitochondrial 

membrane potential (∆Ψ m) during the protocol (described below).  Another cohort of 

cells was exposed to hypoxia/reoxygenation with no fluorescent probe to determine if 

the flourophores themselves influenced cell survival.  Since the different flourophores 

did not influence the proclivity to cell death during the protocol (when compared to 

unloaded cells), the data were pooled for the survival plot to include all cells exposed to 

hypoxia/reoxygenation.   

Myocyte ROS Levels During Hypoxia/Reoxygenation 
For the determination of cellular ROS production, guinea pig ventricular 

cardiomyocytes were loaded with 500 nM of the fluorescent ROS probe 5-(6)-

chloromethyl-2,7-dichlorohydrofluorescein diacetate (CM-DCF, Invitrogen) for 10 

minutes in the incubator prior to imaging as described previously (89). CM-DCF 

fluorescence intensity was captured every 30 seconds throughout the 

hypoxia/reoxygenation experiments.  

Mitochondrial Membrane Potential (∆Ψm) During Hypoxia/Reoxygenation 

Separate experiments were conducted to determine the influence of Bendavia on 

∆Ψm during cellular hypoxia/reoxygenation. Isolated guinea pig ventricular myocytes 

were loaded with the ∆Ψm sensor tetramethylrhodamine, methyl ester (TMRM; 25nM, 

‘non-quench mode’) for 10 minutes prior to imaging.  TMRM fluorescence intensity was 

captured every 60 seconds throughout hypoxia and reoxygenation or until cell death, 

whichever came first.  

Statistical Analyses 
The myocyte survival curve was analyzed using a Logrank (Mantel-Cox) test 
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based on the a prioi hypothesis that Bendavia would improve cell survival. Infarct Size 

and Bendavia Uptake data for the Guinea Pig hearts were analyzed using an ANOVA 

followed by Newman-Keuls Post-Hoc tests for between-group comparisons. For all 

comparisons, significance was noted if P<0.05.   
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Results 

Effect of Bendavia on Ischemia/Reperfusion Injury  
The effect of Bendavia on 

infarct size is presented in Figure 

20.  Following the 

ischemia/reperfusion protocol, 

untreated (control) guinea pig 

hearts had infarct sizes of 50 ± 4 % 

of the area at risk (AAR; n = 14, 

Figure 1). Administration of 1nM 

Bendavia, either before ischemia (n 

= 9) or at the onset of reperfusion 

only (n = 9), significantly reduced 

infarct size to 30 ± 5 and 31 ± 6 % 

AAR, respectively (p<0.05 versus control, ANOVA). Treatment with 0.2µM CsA also 

significantly reduced infarct size to 33 ± 5 % of the AAR (p<0.05 versus control, 

ANOVA; n = 8). There were no differences in infarct size among treatment groups.  

Effects of Bendavia on Post-Ischemia Hemodynamic Recovery and Arrhythmia 
Bendavia had no major effects on the recovery of cardiac electromechanical 

function after ischemia/reperfusion. Neither the incidence of arrhythmia nor the extent of 

recovery of left ventricular function was influenced by Bendavia treatment. Arrhythmia 

scores for the 2h reperfusion period were 4.9 ± 0.4 in the control group (n = 14). 

Administration of Bendavia, either before ischemia or at the onset of reperfusion, had no 

 

Figure 20: Infarct size in isolated guinea pig hearts exposed to 
20 minutes of ischemia and 2 hours of reperfusion. Whole time = 
compound administered both before and after ischemia; @ 
reperfusion = compound administered only during reperfusion; P 
< 0.05 versus control (ANOVA). 
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effect on arrhythmia scores (5.7 ± 0.7 and 4.4 ± 0.4, respectively, n = 9 and 9, 

respectively; P > 0.05, ANOVA). CsA treatment also had no significant effect on the 

incidence of arrhythmia (arrhythmia score of 4.0 ± 0.5, n = 8; P > 0.05, ANOVA). Left 

ventricular developed pressure at the end of the 2 hour protocol was 22 ± 5 mmHg in 

the control group (n = 14), and 24 ± 6 mmHg when Bendavia was administered before 

and after ischemia (n = 9). Administration of Bendavia or CsA at the onset of 

reperfusion also had no effect on recovery of developed pressure (39 ± 5 and 34 ± 6 

mmHg, n = 9 and 8, respectively; P > 0.05, ANOVA).  

Guinea Pig Myocyte Survival During Hypoxia/Reoxygenation 
In this study, a total of 78 guinea pig cardiac myocytes were exposed to cellular 

hypoxia/reoxygenation. Since 

cells died during both the hypoxic 

and reoxygenation periods, a cell 

survival plot is presented in Figure 

21. A total of 43 cells were 

exposed to hypoxia/reoxygenation 

under control (no drug) conditions, 

with another 35 cells that were 

treated with 1nM Bendavia. At the 

end of the 20 minute hypoxia 

period, 65% (28 of 43 total) of 

control cells and 74% (26 of 35 

total) of Bendavia-treated cells were still alive (no drug effect during hypoxia, P>0.05, 

 

Figure 21: Bendavia significantly abolished ROS-dependent cell 
death, but the extent of cell death during hypoxia as well as ROS-
independent cell death during reperfusion was similar to control.  
Survival plot for myocytes in the study exposed to hypoxia and 
reoxygenation. Each cell death event is noted as a downward step 
in the survival curve. *, P<0.05 versus control for the reoxygenation 
period. 
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Mantel-Cox test).  Bendavia specifically prevented death associated with reoxygenation. 

Following reoxygenation there was a significant decrease in cell death evoked by 

Bendavia. Of the cells that were alive at the onset of reoxygenation, only 54% of control 

cells survived until the end of reoxygenation, compared to 85% of cells that were treated 

with Bendavia (P<0.05 for survival during reoxygenation).  

Role of Mitochondrial ROS in Cell Death 
 A subset of 

myocytes (n = 35 

total) exposed to 

hypoxia/ 

reoxygenation was 

loaded with the ROS 

sensor CM-DCF 

during the protocol to 

monitor ROS 

production with (n=18) 

or without (n=17) 

Bendavia pre-

treatment. 

Representative 

images and traces of 

cells are presented in 

Figure 22. The vast 

A. 

 

B.     

 

Figure 22: Cellular ROS production during hypoxia/reoxygenation. A: 
Representative fluorescence images of cardiac ventricular myocytes loaded with 
the ROS sensor CM-DCF.  ROS bursts during reoxygenation preceded cell death, 
and Bendavia treatment prevented ROS-induced cell death. B: Representative 
fluorescence intensity traces for cells in the study.  CM-DCF fluorescence is 
normalized to the basal fluorescence (Fo) for each cell at the end of hypoxia.   
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majority of cell death in 

the control group was 

preceded by a burst of 

ROS during the 

reoxygenation period. 

The ROS-dependent 

cell death was 

completely prevented 

in myocytes treated 

with Bendavia (Figure 

23). ROS-independent 

cell death during hypoxia or reoxygenation was similar between the control and 

Bendavia-treated groups.  

Maintenance of Mitochondrial Membrane Potential (∆Ψm) 
 A different subset of myocytes (n = 37 total) were exposed to 

hypoxia/reoxygenation while loaded with the ∆Ψ m indicator TMRM (presented in Figure 

24).  Myocytes treated with Bendavia were protected against cell death during 

reoxygenation, and specifically against cell death that was preceded by a collapse of 

∆Ψm, suggesting that the treatment prevented the opening of the mitochondrial 

permeability transition pore and subsequent loss of ∆Ψm.  

  

 

Figure 23: Contribution of ROS bursts to myocyte death during 
hypoxia/reoxygenation. 
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A. 

 
 
B.  

 
Figure 24: Mitochondrial membrane potential (∆Ψm) in myocytes during cellular hypoxia/reoxygenation. A. 
Representative fluorescence images of myocytes loaded with the ∆Ψm sensor TMRM.  ∆Ψm collapse often preceded 
cell death, and treatment with Bendavia improved the capacity to maintain ∆Ψm.  B. Representative fluorescence 
intensity traces for cells in the study.     

 

 
 



 85 
 

Discussion 

Key Findings 
 
 The present studies show that Bendavia, administered after the onset of 

ischemia, demonstrated cardioprotective effects. Bendavia reduced myocardial infarct 

size in isolated guinea pig hearts exposed to ischemia/reperfusion.  Bursts of reactive 

oxygen species were blunted by Bendavia, resulting in better maintenance of 

mitochondrial energetics and reduced cell death during reoxygenation. 

 Numerous agents have been tested as adjunctive therapy for reperfusion injury 

in the setting of acute myocardial infarction. At the present time early reperfusion via 

thrombolytic therapy or percutaneous coronary intervention (including percutaneous 

transluminal coronary angioplasty) are the only accepted definitive therapies for acute 

myocardial infarction(231). Early reperfusion limits myocardial infarct size and improves 

survival. However, not all patients receive early coronary artery reperfusion, and at the 

time of reperfusion some degree of injury may occur due to reperfusion itself.  

Cardioprotection at Reperfusion: Salvaging Cells that are Salvageable 
Cell death during ischemia and reperfusion is multi-factorial, and is generally 

attributed to a combination of necrosis, apoptosis, and autophagy (185).  Although a 

matter of some debate, necrotic cell death is probably the predominant cause of death 

in ischemic myocardium (17).  During early ischemia, insufficient electron flow down the 

mitochondrial electron transport chain shifts cellular ATP production away from 

oxidative phosphorylation. Cells increase rates of glycogen breakdown and transition to 

anaerobic glycolysis, and contraction rapidly ceases as intracellular pH decreases. As 

ischemia progresses, declining ATP levels lead to cellular sodium and calcium overload 
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(Figure 4).  Necrotic cell death ensues, exacerbated by the development of ischemic 

contracture which strains cellular structural integrity. 

While reperfusion is requisite to salvage tissue, prompt reperfusion can also 

injure cells that are hovering between life and death. Elevated intracellular levels of 

calcium, sodium, and inorganic phosphate, an alkaline shift towards physiological pH, 

and production of reactive oxygen species are all noted in early reperfusion (185).  

These factors promote the opening of energy-dissipating channels in the inner 

mitochondrial membrane.  In particular, the open probability of both the mitochondrial 

permeability transition pore (reviewed in (102)) and the inner membrane anion channel 

(reviewed in (46)) is greatly enhanced by reactive oxygen species. Oxidant-induced 

pore/channel opening collapses mitochondrial membrane potential (∆Ψm), leading to 

cessation of ATP production and ultimately cell death.   

The Mitochondria as a Therapeutic Target 
In the clinical realm, heightened reactive oxygen species production is implicated 

in the development of reperfusion injury (46). There is obviously a great deal of interest 

in decreasing reperfusion injury with compounds that scavenging reactive intermediates 

and/or directly blocking the permeability transition pore.  Among the candidate radical 

scavengers tested to date, early efforts focused primarily on superoxide dismutase 

mimetics and catalase.  These approaches reduced infarct size in some (27, 53, 136, 

141) (but not all (217)) animal studies.  Despite promising results in animal studies, 

these strategies do not appear to translate to beneficial effects in clinical trials (85, 256). 

The reasons for the lack of translation to the clinic have been described in detail 

elsewhere (80, 139), but likely involve cell permeability concerns and findings that non-
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specific radical scavengers must be used in very high doses to see efficacy.  Further, 

superoxide dismutase mimetics scavenge only superoxide anion, while a significant 

portion of tissue injury may arise from radical-independent redox signaling (i.e. oxidative 

shifts in intracellular thiols)(128).   

Direct permeability transition pore blockers have recently shown potential in 

reducing reperfusion injury in animal and human studies. CsA, which inhibits the 

association of cyclophilin D with the mitochondrial permeability transition pore, has been 

shown to reduce cardiac ischemia/reperfusion injury ((81, 234) and Figure 20).  In a 

recent small clinical trial (212), cyclosporine given at the time of percutaneous coronary 

intervention significantly reduced infarct size in humans (assessed using both MRI and 

enzymatic markers in serum), corroborating previous data from animal studies. A 

multicenter clinical trial is currently underway in Europe, investigating cyclosporine in a 

larger population of myocardial infarct patients. While these early results are promising, 

the use of cyclosporine may be confounded by a narrow therapeutic window (189), non-

specific effects on other cellular cyclophilins/calcineurin (262), and reports of 

cyclosporine-induced vasoconstriction(26).  

Reduction of Infarction with Bendavia 
There is a clear need for cytoprotective compounds that freely cross the 

sarcolemma, are effective across low doses, and target specifically to the region within 

the cell where sites of oxidant production is high (specifically, the mitochondria).  Drs. 

Hazel H. Szeto and Peter W. Schiller developed a new class of peptides that 

concentrate within mitochondria and reduce intracellular ROS generation(249).  

Bendavia (D-Arg- Dmt-Lys-Phe-NH2; analogous to SS-31 in the literature) is a 
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tetrapeptide that crosses cell membranes and targets to the inner mitochondrial 

membrane.  From a therapeutic standpoint, a promising property of Bendavia is that 

mitochondrial accumulation of Bendavia appears to be independent of the ∆Ψ m.  ∆Ψ m 

collapses during ischemia and the recovery of ∆Ψ m at reperfusion is very 

heterogeneous in the myocardium (174, 237).  Treatment strategies that require ∆Ψ m 

for mitochondrial delivery (such as anti-oxidants conjugated to triphenylphosphonium 

cations, i.e. MitoQ, MitoE, MitoSOD (238)) may only be targeting cells that are already 

on their way to recovery.  In our study, myocardial uptake of Bendavia was observed 

even in early reperfusion when ∆Ψ m may be compromised, consistent with studies in 

isolated cells where accumulation was not markedly affected by chemical uncouplers of 

mitochondria (281).   Furthermore, the ∆Ψm -depolarizing effects of compounds tethered 

to triphenylphosphonium makes them self-limiting and translates to a very narrow 

therapeutic window of efficacy (248). Bendavia treatment has no noticeable effect on 

basal ∆Ψ m when assessed by either TMRM fluorescence (281) or 

triphenylphosphonium uptake (Unpublished observations), allowing for a very wide 

therapeutic range and cardioprotection at/below nanomolar concentrations ((281) and 

herein). 

In this study, we show for the first time that Bendavia treatment reduces cellular 

reactive oxygen species generation and helped sustain ∆Ψ m in primary cardiac 

myocytes exposed to hypoxia/reoxygenation.  In particular, Bendavia reduced oxidant-

dependent cell death during the reoxygenation period, yet had no effect on myocyte 

survival during hypoxia.  This finding supports our hypothesis that this compound is 

most effective when production of reactive oxygen species is high.  In our cellular 
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studies, it seems plausible that Bendavia reactive oxygen species sustained ∆Ψ m by 

reducing the open probability of energy-dissipating ion channels in the inner membrane 

(such as the permeability transition pore and/or the inner membrane anion channel). 

Our myocyte data corroborate previous work in cell culture models, where Bendavia 

lowered the levels of reactive oxygen species and promoted cellular survival in neuronal 

cells exposed to t-butylhydroperoxide (281).  Further studies are needed to determine 

the exact mechanism by which this peptide reduces reactive oxygen species levels and 

stabilizes mitochondrial energetics.  

The cardioprotection that we observed in isolated guinea pig cells translated to 

infarct-size reduction in the isolated heart.  Importantly, this protection was observed if 

Bendavia was given after the onset of ischemia.  These data support the concept that 

damage to the mitochondria at the time of reperfusion is a therapeutic target. These 

studies confirm a previous study showing that the agent reduced infarct size in an acute 

rat model of myocardial infarction (56). However, in Cho’s study, Bendavia was 

administered both prior to coronary occlusion as well as prior to reperfusion. In all of the 

models presented here, Bendavia worked when given after coronary artery occlusion, 

including studies in which the drug was given just at reperfusion, supporting the concept 

that it reduced reperfusion injury.  

Summary 
 In conclusion, the mitochondria-targeting agent, Bendavia, demonstrated 

cardioprotective properties in in vitro and in vivo experimental models when 

administered prior to reperfusion. It protected cardiomyocytes, it limited myocardial 

infarct size, and for the first time was shown to reduce limit no reflow. Bendavia 
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protected cells from reactive oxygen species damage and preserved mitochondrial 

potential. Bendavia is an attractive candidate for clinical studies in cardiac 

ischemia/reperfusion injury. 



 

 

Chapter 6: Integrated discussion 

Major Findings 

 The overriding hypothesis of this work is that ischemia/reperfusion injury is 

characterized by mitochondrial overload of ROS that collapses mitochondrial energetics 

and leads to cellular injury. These studies help to establish the importance of cardiac 

glutathione in decreasing this ROS burden. Furthermore, they establish that maintaining 

reduced glutathione through the glutathione reductase reaction may be an important 

factor in exercise-induced preconditioning. Finally, treatment of cardiac tissue with 

Bendavia led to decreased ROS accumulation and decreased myocardial infarction. 

Taken together the work presented in this dissertation provide novel insights into 

physiological and pharmacological approaches that decrease oxidative stress and cell 

death during ischemia/reperfusion injury. 

 In Chapter 3 I showed that Ex led to a phenotype that maintained GSH in a 

reduced state during conditions of thiol oxidation and ischemia/reperfusion. This was 

likely mediated by an intrinsic increase in the GR activity. Chapter 4 goes one step 

further by showing that pharmacological inhibition of GR abolishes protection. 

Furthermore, it showed that ROS generated through NAD(P)H oxidase act as signaling 

molecules that may post-translationally modify GR, thereby increasing its activity. 

Lastly, Chapter 5 investigated a pharmacological approach aimed at decreasing 

myocardial infarction. We found that Bendavia decreased mitochondrial ROS 

accumulation, preserved mitochondrial energetics, and led to decreased cellular injury. 

Given that we found that cytosolic ROS may be involved in preconditioning signaling 

invoked by Ex and that the role for mitochondrial ROS may be limited to the pathology 
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associated with reperfusion injury, these opposing functions may be part of the reason 

antioxidant treatments have translated poorly into the clinic (1, 167, 274). 

 One interesting finding of this study is that exercise-induced preconditioning and 

Bendavia treatment may converge on the same mechanism. Although speculative, this 

convergence may occur at the ability to buffer mitochondrial ROS during reperfusion. 

This is substantiated by several findings: 1) in isolated hearts there was no difference in 

the extent of protection if Bendavia was given either before ischemia or at the onset of 

reperfusion (Figure 20); 2) administration of Bendavia via i.p. injection for 10 days led to 

increased protection in our Sed animals (Figure 15); and 3) There was no additive 

effects on exercise with Bendavia treatment. Since both exercise and Bendavia were 

shown to decrease ROS accumulation (Figure 11 and Figure 22 respectively) this is 

likely the site of convergence, and may help explain why there was no additive effects 

on Ex. 

Future Directions 

 The studies presented within this dissertation describe how glutathione regulation 

may be an underlying factor involved in the preconditioning effects of exercise. Chapter 

4 establishes that ROS generated through NAD(P)H oxidase during exercise act as 

signaling molecules that increase GR activity. Although the data presented within 

strongly suggest that GR activity is vital to the cardioprotective phenotype, the post-

translational modifications of GR that lead to this increase in activity need to be further 

elucidated.  

Figure 17 shows that post-translational modification do occur through redox 

sensitive mechanisms, most probably through thiol-thiol interactions. This is consistent 
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with the literature where it has been shown that GR lacks candidate sites for  

phosphorylation or carboxylation (83) and that GR activity is related to glutathione 

concentrations and the general redox status of the cell (58, 95, 173, 211). Directly 

demonstrating that Ex leads to a decrease in the amount of free thiols on GR would 

help to definitively determine if this is how ROS signaling modifies the GR protein.  

Another interesting study would be to investigate the redox status of GSH in the 

cardiac tissue immediately following exercise. This would give us an index of the extent 

of oxidative shift that occurs during exercise, and if this is blunted when cytosolic ROS 

formation is inhibited. With this knowledge we could directly investigate if physiological 

shifts in the oxidative state of the glutathione couple could directly affect the activity of 

GR in vitro.  

 The final chapter of this work utilized a pharmacologic approach to decrease 

oxidative stress during ischemia/reperfusion. Although the results are promising for this 

compound, there are several questions left to answer. First, we saw that 

cardiomyocytes treated with Bendavia were better able to maintain mitochondrial 

energetics during hypoxia/reoxygenation (Figure 24). Since we think that this compound 

is decreasing mitochondrial ROS, it would be interesting to see if cardiomyocytes 

treated with Bendavia were less susceptible to permeability transition during 

hypoxia/reoxygenation. Another important area left open to further study is if the timing 

of Bendavia administration affects ischemia/reperfusion injury. Given that we saw the 

same extent of protection regardless of whether hearts were treated before ischemia or 

at the onset of reperfusion (Figure 20). It would be interesting to see if Bendavia has a 
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“therapeutic window” wherein it has to be administered after the re-establishment of 

coronary flow. 
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Appendix B: Effects of rat estrous cycle on myocardial ischemia/reperfusion injury 
 

Introduction 
Epidemiological evidence suggests that women are less at risk for a 

cardiovascular event prior to undergoing menopause (258). Recent evidence has 

implicated that this may be associated with increased circulating levels of estrogen 

(107). The effect of menstrual cycle on cardiovascular disease has been less studied in 

humans than in animals, probably due to the rare nature of these events in a younger 

population. In fact a recent study found that cardiovascular events in menstruating 

women accounts for only 1% of all events (184). However, there is evidence that the 

phase of the menstrual cycle can have profound effects on cardiovascular function. 

Moran et al. have shown that blood pressure and heart rate can vary between phases 

(181). It’s also been shown that women early in the menstrual cycle have more risk for 

angina (135), supraventricular tachycardia (188, 225), and exercise induced ST 

depression (163).  SVT episodes were also linked to decreased levels of circulating 

estradiol and increased levels of progesterone (225). Interestingly, females who were 

irregular in their cycle are more susceptible to future coronary heart disease (23, 239) 

that can be extended to postmenopausal years (15). Since animal research is a potent 

tool for investigating cardiovascular disease, further investigation is warranted into the 

effects that the estrous cycle may have on cardiovascular health. 

In animal models the cardioprotective phenotype of premenopausal females has 

been shown in mice, rats, rabbits and dogs (44, 64, 144, 152, 264). Although several 

mechanisms have been suggested for the possible underlying mechanism, none of 

these studies have delved into the changes that may occur to cardiac tissue during 
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specific phases of the estrous cycle. Unfortunately, to date nobody has examined if the 

effects of fluctuating hormone levels during the estrous cycle have any effect on cardiac 

tissue and most of what has been shown is the effects of sex hormones on vascular 

function (258). 

Unlike humans, rodents do not undergo a menstrual phase where the uterine 

lining sloughs off and is expelled through the vagina, but rather the lining degenerates 

back to the normal size in an estrous cycle (166). The estrous cycle (in rats) is defined 

by four separate phases: proestrus, estrus, metestrus, and diestrus. Proestrus is 

characterized by increasing levels of estrogen. At the end of proestrus, ovulation 

(signaled by luteinizing hormone) occurs and marks the beginning of the estrus phase. 

During metestrus and diestrus the uterine lining degenerates back to normal and the 

cycle starts again (166, 230).         

Since no study to date has investigated the role of estrous cycle phase on the rat 

heart, this study was performed to see if the effects of fluctuating hormones during the 

estrous cycle have acute changes on cardiac tissue. By utilizing both in vivo and ex vivo 

models we will also be able to discern if the effects of hormones have acute affects or 

are limited to the circulation. Here we find that the estrous phase does not have any 

effect on the level of myocardial infarction in rat hearts. The level of myocardial 

infarction was not correlated with serum levels of 17-β estradiol or progesterone adding 

to our conclusion that estrous cycle phase has no bearing on the extent of injury 

following ischemia/reperfusion. No differences in the severity of arrhythmias or 

incidence of ventricular fibrillation (VF) with cycle phase were observed.  
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Methods 

Animals 
Female Sprague-Dawley rats were obtained and kept on a 12:12 light dark cycle 

with access to food and water ad libitum. Rats were ordered so that they were over 50 

days old at the onset of experiments.  Typically female rats will automatically begin 

cycling immediately after the vaginal orifice opens at around 32-36 days (96, 166). To 

ensure a more regular cycle, Rats were housed in a room with at least one male rat for 

the duration of the study (96).Research was performed in an AAALAC-accredited facility 

and animals use adhered to the principles stated in the Guide for the Care and Use of 

Laboratory Animals (NIH Publication No. 85–23, revised 1996) and was approved by 

the East Carolina University IACUC. 

Vaginal Cytology Examination 
To evaluate estrous stage in the rats, vaginal cytology was performed daily at 

0900.   A sterile cotton-tipped swab moistened with sterile saline was inserted into the 

rat’s vaginal opening.  The swab was rotated gently against the vaginal wall and 

removed.   The swab was immediately rolled onto a glass slide, then the smear was 

fixed by the use of a spray fixative (Safetex-Cytology Spray Fixative,  Andwin Scientific, 

Woodland Hills, CA) and then stained with Dip Quick Stain Preparation (JorVet, 

Loveland, CO).  Each slide was dipped into the three solutions 10 times, as this was 

determined to produce optimal staining quality. On the day of experiments, vaginal 

cytology was performed just prior to heart excision in order to get the most accurate 

reading of the phase each animal was in. Slides were analyzed by 2 independent 

reviewers for estrous phase. In the event that the 2 reviewers could not agree a third 

independent reviewer was brought in.  Estrous stage was determined using the 
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following criteria: Estrous > 75% squamous cells; Proestrus, mix of basal and squamous 

cells accounting for over 80% of slide; Diestrus > 80% neutrophils; Metestrus, mix of all 

three cell types. To confirm that our rats were cycling vaginal swabs were taken from 

animals every morning over the course of 8 days and they all displayed either a 4 day or 

5 day cycle (Figure 25). 

 

Figure 25: Representative images from vaginal cytology for Proestrus (A), Estrus (B), Metestrus (C), and Diestrus 
(D) phases of the estrous cycle. (E) Daily changes in the phase of estrous in our animals. 

In Vivo Preparation 

 Animals were anesthetized with ketamine/xylazine (90 mg/kg ketamine, 10 mg/kg 

xylazine, i.p.) and upon the absence of reflexes a midline tracheotomy was performed. 

The animals were intubated with PE-90 tubing and mechanically ventilated. 
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Supplemental injections of ketamine/xylazine (i.p.) were given as needed to maintain a 

surgical plane of anesthesia. A circulating water heating pad was use to maintain body 

temperature at 37°C.  

Animals were given a 10-min equilibration period on the ventilator. Then the 

thorax was opened via a left parasternal incision, the pericardium was removed from the 

heart, and the left anterior descending coronary artery (LAD) was ligated by using a 

reversible snare applied 4 mm distal to the origin between the conus arteriosus and the 

left atrium. LAD occlusion was confirmed with the appearance of myocardial cyanosis 

distal to the occlusion. Following 25 min of occlusion, the ligature was released, and 

reperfusion ensued for 2 h. To minimize desiccation the chest walls were approximated 

with Parafilm.  

To determine the area at risk (AAR) was risk the LAD was religated at the 

original point of occlusion immediately following 2 hours of reperfusion and a 1% Evans 

blue solution was infused through the aorta. After Evans blue staining, infarct size was 

determined via TTC staining as described previously (236) and expressed as a percent 

of the AAR. 

Ex Vivo Preparation 
Animals were injected with ketamine/xylazine mix (90 mg/kg ketamine, 10 mg/kg 

xylazine, i.p.) and upon the absence of reflexes the hearts removed via midline 

thoracotomy and retrograde perfused on the cannula of a modified Langendorff 

apparatus as described previously (38, 236). Following a 5 minute baseline period 

global, no-flow, ischemia was for 25 minutes. After 25 minutes flow was re-established 
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and reperfusion ensued for two hours. Immediately following reperfusion the left 

ventricle was isolated and stained for infarct via TTC staining as described above. 

Assessment of Arrhythmias 
Arrhythmias were scored as described previously and in accordance with the 

Lambeth Conventions (38, 263) from the ECG signal as follows: 0 = 0 – 49 premature 

ventricular beats; 1 = 50-499 premature ventricular beats; 2 = > 500 premature 

ventricular beats and/or 1 episode of spontaneously reverting ventricular tachycardia 

(VT) or fibrillation (VF) less than 30 sec in total duration; 3 = > 1 episode of reverting 

VT/VF that is < 60 sec total duration; 4 = >1 episode of reverting VT/VF that was 61 to 

119 seconds in total duration; 5 = VT/VF that is > 119 seconds in combined duration; 

6 = fatal (non-reverting) VT/VF that began > 15 min into treatment; 7 = fatal VT/VF that 

began between 4 minutes and 15 minutes min into treatment; 8 = fatal VT/VF that 

began between 1 and 4 minutes into treatment; 9 = fatal VT/VF that began within the 

first 59 seconds of treatment. 

Hormone Concentrations 
 Rat serum was collected from the body cavity immediately following heart 

excision. Levels of 17-β estradiol and progesterone were determined using a 

commercially available kit (Cayman Chemicals, Ann Arbor, MI).  

Statistical Analysis 
Analysis was done with either GraphPad (Prism) or SPSS software. One way 

ANOVA with Tukey’s post hoc test.  
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Results 

Baseline Characteristics 

  

 

 

 

 

 

 

Animal morphological data and baseline cardiac function (Langendorff prep) data are 

presented in Table 5. No significant differences were observed in animal body weight or 

heart weight across the phases of estrous. Furthermore, there were no differences in 

baseline left ventricular developed pressure (LVDP), coronary flow, or heart rate. 

Infarct Size 

Infarct size data are presented in Figure 26. There were no differences observed 

in the infarcted area of the tissue based on the phase of the estrous cycle in isolated 

hearts(Proestrus, 42 ± 6%; Estrus, 49 ± 4%; Metestrus, 40 ± 9%; Diestrus, 47 ± 9%; 

P=0.77; Figure 26A). Furthermore no differences were seen between phases for the in 

vivo preparation (Proestrus, 32 ± 6%; Estrus, 29 ± 8%; Metestrus, 28 ± 4%; Diestrus, 34 

± 5%; P=0.87; Figure 26B). There was also no correlation observed between the levels 

of circulating estradiol or progesterone at the time of heart excision and infarct size 

(Figure 26A and B respectively). 

 

 

 
Proestrus Estrus Metestrus Diestrus 

Body Weight (g) 204 ± 2 200 ± 4 205 ± 4 201 ± 4 

Heart Weight (g) 0.93 ± 0.03 0.99 ± 0.04 0.95 ± 0.03 1.00 ± 0.03 

LVDP (mmHg) 117.6 ± 0.5 107.0 ± 0.6 124.1 ± 0.4 127.7 ± 0.5 

Heart Rate (bpm) 233 ± 3 187 ± 3 193 ± 2 209 ± 2 

Coronary Flow (mL/min/g) 11.73 ± 0.05 10.05 ± 0.07 10.48 ± .04 11.06 ± 0.06 
 

Table 5: Baseline characteristic of animals in this study. 
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Figure 26: No difference in infarct size between the phases of the estrous cycle. Data from the ex vivo (A) and 
in vivo (B) hearts. There was also no correlation between infarct size and serum levels of estradiol (C) or 
progesterone (D) in isolated rat hearts. 

Arrhythmias 
Arrhythmias were scored for the first 15 minutes of reperfusion in isolated hearts. 

There were no differences observed in the severity of arrhythmias (as evident from our 

arrhythmia score) (P=0.32; Figure 27A) nor the incidence of VF (Figure 27B) and there 

were also no difference in the likelihood of an isolated heart to experience VF with the 



 135 
 

phase of estrous. The severity of these arrhythmias was not correlated with the levels of 

estradiol or progesterone (Figure 27Cand D respectively). 
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Figure 27: No differences were seen between groups in the severity or incidence of ventricular 
arrhythmias in isolated rat hearts. Arrhythmia scores (A) and incidence of VF (B) were used to assess the 
severity of arrhythmias. There was also no correlation between the arrhythmia score and serum levels of 
estradiol (C) or progesterone (D) in isolated rat hearts. 
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Discussion 
It has been widely demonstrated in animal models that females exhibit a 

cardioprotective phenotype during their reproductive years (44, 64, 144, 152, 264). This 

has become a widely studied area with several different hypotheses as to how this 

occurs. However, there may be inherent variability in the data collected in these studies 

that arise from animals being in different phases of the estrous cycle. The goal of this 

study was to investigate if the estrous cycle has any effect on cardiovascular health and 

function in rat hearts during ischemia/reperfusion. Herein, we describe for the first time 

that the phase of the estrous cycle does not have any effect on the size of myocardial 

infarction or ventricular arrhythmias in rat hearts. Furthermore, we describe that there is 

no correlation between serum levels of 17-β estradiol or progesterone and infarction or 

arrhythmias. This study is important in establishing that the phase of estrous does not 

alter the results obtained in the isolated heart from female animals in studies where 

estrous cycle has not or cannot be standardized. 

 Several studies have investigated the role of exogenous estradiol on 

ischemia/reperfusion injury with several distinct mechanism put forth as possible 

explanations (for review see (32, 71)). In our study we saw no differences in the extent 

of injury with estrous phase or the amount of circulating estradiol. Although speculative, 

this may be because the effects of estrogen last longer than the duration of the estrous 

cycle in rats. Perhaps in larger animals, where cycle length is longer, differences may 

be observed.  

Several studies have shown that estradiol both augments activity of the PI3K/Akt 

pathway. Inhibition of PI3K and PKC has been shown to diminish cardiac function and 
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increase infarct size in female rats, but not in males (16). Using isolated hearts, Wang et 

al. found that female mice lacking estrogen receptor β (ERβ) exhibit diminished 

protection from myocardial infarction, inferring that increased activation of PI3K/Akt and 

decreased apoptosis may be responsible for the cardioprotective phenotype (264). 

Further demonstrating the possible anti apoptotic effects of estrogen, activation of a G-

protein coupled receptor that binds directly to estrogen has been shown to decrease 

mitochondrial permeability transition(33). 

 It has also been shown that acute pharmacological doses of exogenous 

estradiol lead to cardioprotection in the isolated heart and that lower, more physiological 

levels of estradiol have no acute effect (240).  The fact that we saw no difference in 

infarct size or correlation between infarct size and estradiol levels substantiates this 

observation. Debates within the literature as to the protective effects of exogenous 

estradiol administration may be due to the supraphysiological vs. physiological doses 

administered. The benefits to human health may also be limited as studies on hormone 

replacement therapy and morbidity have yielded conflicting results (for review see 

(190)). 

 Although studied less than estrogens and estradiol, progesterone is a major sex 

hormone that may affect cardiovascular function. Despite the fact that following the 

follicular phase, as progesterone levels increase, the risk of angina also increases (135) 

and is maintained after progesterone levels have dropped. High levels of progesterone 

have also been shown to be correlated with increased reactive oxygen species 

production in skeletal muscle (132). However, the fact that high progesterone levels 

may be associated with the development chronic heart failure, but not associated with 
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myocardial infarction (193) argues against a role for progesterone in 

ischemia/reperfusion injury. The inability to distinguish between the effects of estradiol 

and progesterone hinders investigators from concluding if their results are due to the 

protective effects of estrogen or the negative effect of progesterone.  

Conclusions 
 Despite the fact that several studies have shown that levels of estradiol and 

progesterone can have profound effects on cellular function, no one to date has 

investigated if circulating hormones affect ischemia/reperfusion injury. This study 

presents several novel findings, 1) circulating hormone levels during the estrous cycle 

do not influence cardiac ischemia/reperfusion injury and 2) serum levels of estradiol and 

progesterone are not correlated with infarct size or arrhythmia. These findings were 

confirmed in both the in-vivo and ex-vivo model, demonstrating that the effects of 

circulating hormones do not influence ischemia/reperfusion injury in rat hearts. This 

study is important in establishing the validity of data obtained from female rats in studies 

where estrous cycle was not determined. 

 



 

 

Appendix C: Figure reproduction 

 
  

 

Figure 28: Percentage breakdown of deaths due to CVD (United States: 2006, 

preliminary). Taken from (162). 
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Figure 29: Mechanisms by which myocardial ischemia can lead to cell death and 

myocardial infarction. Taken from (200). 
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Figure 30: Putative sequence of events leading to exercise-induced cardioprotection. 

Postulated ‘triggers’ of exercise-induced cardioprotection are denoted in green, with 

end-effectors labeled in red font.  Images of nucleus and myofilaments obtained from 

(24, 266) respectively. 
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A. 

 

B. 

 

Figure 31: Pathophysiological changes in rodent cardiac tissue during ischemia (A) 

and reperfusion (B). Postulated mechanisms involved in exercise-preconditioning 

noted in red font.  Heart image modified from (170).  Abbreviations: ∆Ψ p, sarcolemmal 

membrane potential, ∆Ψ m, mitochondrial membrane potential; sarcKATP, sarcolemmal 

ATP-sensitive potassium channels. 
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Figure 32: Exercise delays the onset of ventricular arrhythmias during sustained thiol 

oxidation. A. Representative left ventricular developed pressure (LVDP; black trace) and 

volume-conducted electrocardiogram (ECG; gray trace) recordings from a sedentary 

animal approximately 39 minutes into diamide treatment. The transition to ventricular 

arrhythmia and subsequent loss of pump function is noted with an arrow. B: 

Representative trace from an exercised animal during the same duration of diamide 

treatment as the sedentary trace. C Mean time to onset of ventricular arrhythmia 

following sustained diamide treatment; *, P<0.05 vs. Sed. N = 8 per group. Mean ± 

S.E.M.  
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Figure 33: Ex decreases the severity of arrhythmias in the isolated rat heart exposed 

to reversible treatment with the thiol oxidant diamide (30 min), followed by a 30 minute 

washout period.  A: Arrhythmia scores (calculated from System A) between Sed and 

Ex animals during/after the diamide treatment. B: Arrhythmia scores (calculated from 

System B) between Sed and Ex animals during/after the diamide treatment.  C: 

Percentage of hearts in each group that experienced an episode of VF. D: Summary 

of hearts in each group that experienced a fatal (non-spontaneously reverting) 

ventricular arrhythmia; *, P<0.05 vs. Sed during diamide treatment; +, P<0.05 vs. Ex 

during diamide;  #, P<0.05 vs. Sed during washout.  N= 7 per group. Mean ± S.E.M.  
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Figure 34: Incidence of reperfusion arrhythmias in hearts exposed to 30 

minutes of global ischemia and 30 minutes of reperfusion. A: Arrhythmia 

scores (calculated from System A) for hearts 15 minutes into reperfusion. B: 

Arrhythmia scores (calculated from System B) for hearts 15 minutes into 

reperfusion. C. Summary of hearts in each group that experienced an episode 

of VF. D. Incidence of non-reverting (fatal) arrhythmia during reperfusion for 

hearts in the study.  *, P<0.05 vs. Sed. N = 7 per group. Mean ± S.E.M. 
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Figure 35: Left ventricular developed pressure (LVDP) during diamide treatment and 

washout for Sed (black circles) and Ex (gray circles) groups. Hearts were perfused with 

200 µM diamide for 30 minutes, followed by a 20 minute washout; *, P<0.05 Main 

effect; **, P<0.05 Bonferonni post hoc for time. N= 7 per group. Mean ± S.E.M. 
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Figure 36:  Ex delays the increase in ROS fluorescence and decreases cell death in 

isolated ventricular myocytes exposed to oxidative stress.  A: Representative images 

over time for Sed and Ex myocytes. Black and white pictures represent bright field 

images of myocytes at the beginning and end of each experiment, and fluorescence 

traces in between are fluorescence images from cells loaded with the ROS sensor CM-

DCF.  B: Representative CM-DCF traces from Sed (black line) and Ex (gray line) 

myocytes. C: Average time to inflection for both groups. D: Survival curve for Sed 

(black) and Ex (gray); *, P<0.05 for Sed versus Ex myocyte survival. N = 18 (from 4 

animals) for Sed and 25 (from 4 animals) for Ex. Mean ± S.E.M.  
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Figure 37: Myocardial content of total glutathione (GSHt), oxidized glutathione (GSSG), 

and ratio of reduced to oxidized glutathione (GSH/GSSG). All tissue collected 

immediately after the completion of each perfusion protocol. A: total glutathione (GSHt) 

content. B: oxidized glutathione (GSSG) content. C: ratio of reduced to oxidized 

glutathione (GSH/GSSG) in hearts. *, P<0.05 vs. Sed at Baseline; #, P<0.05 vs. Ex 

Baseline; +, P<0.05 vs. Ex until arrhythmia; Mean ± S.E.M.   
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Figure 38: Glutathione reductase (GR) activity in hearts exposed to sustained thiol 

oxidation. Hearts were cut down after the onset of ventricular arrhythmia (time-points 

noted in Figure 1) and analyzed for GR activity.  A subset of exercised hearts was cut 

down at the mean arrhythmia onset time for sedentary hearts (39 minutes).   *, P<0.05 

vs. Sed; #, P<0.05 vs. Ex.  N = 8 per group. Mean ± S.E.M. 
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Figure 39: Basal changes in cardiac glutathione reductase (GR) and glutathione 

peroxidase (GPx) enzyme activity for sedentary (Sed) and exercise trained (Ex) 

hearts.  *, P<0.05.  N = 6 for Sed and 5 for Ex. Mean ± S.E.M. 
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Figure 40: Exercise-induced preconditioning abolished with apocynin treatment. * 

P<0.05 vs. Sed, # P<0.05 vs. Ex, + P<0.05 vs. Sed  and  MTP, @ P<0.05 vs. Ex and 

MTP. Mean ± S.E.M. 
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Figure 41: Inhibiting NAD(P)H oxidase generated ROS prior to exercise blunts 

increases in glutathione reductase activity. * P<0.05 vs. Sed, # P<0.05 vs. Ex 
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Figure 42: Redox modification of GR activity in Sed and Ex left ventricular 

homogenates. * P<0.05 vs. Sed. 
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Figure 43: No differences in GR protein expression between groups. 
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Figure 44: GR inhibition abolishes exercise-induced preconditioning from myocardial 

infarction and ventricular arrhythmias. Infarct size (A)  and arrhythmia (B) data from 

isolated hearts perfused with BCNU *, P<0.05 vs. Sed; #, P<0.05 vs. ; Data presented 

as mean ± s.e.m. 

 
  



 156 
 

 
  

 

Figure 45: Infarct size in isolated guinea pig hearts exposed to 20 minutes of ischemia 

and 2 hours of reperfusion. Whole time = compound administered both before and after 

ischemia; @ reperfusion = compound administered only during reperfusion; P < 0.05 

versus control (ANOVA). 
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Figure 46: Bendavia significantly abolished ROS-dependent cell death, but the extent 

of cell death during hypoxia as well as ROS-independent cell death during 

reperfusion was similar to control.  Survival plot for myocytes in the study exposed to 

hypoxia and reoxygenation. Each cell death event is noted as a downward step in the 

survival curve. *, P<0.05 versus control for the reoxygenation period. 
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Figure 47: Cellular ROS production during hypoxia/reoxygenation. A: Representative 

fluorescence images of cardiac ventricular myocytes loaded with the ROS sensor CM-

DCF.  ROS bursts during reoxygenation preceded cell death, and Bendavia treatment 

prevented ROS-induced cell death. B: Representative fluorescence intensity traces for 

cells in the study.  CM-DCF fluorescence is normalized to the basal fluorescence (Fo) 

for each cell at the end of hypoxia.   
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Figure 48: Contribution of ROS bursts to myocyte death during 

hypoxia/reoxygenation. 
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Figure 49: Mitochondrial membrane potential (∆Ψm) in myocytes during cellular 

hypoxia/reoxygenation. A. Representative fluorescence images of myocytes loaded with 

the ∆Ψm sensor TMRM.  ∆Ψm collapse often preceded cell death, and treatment with 

Bendavia improved the capacity to maintain ∆Ψm.  B. Representative fluorescence 

intensity traces for cells in the study.     
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Figure 50: Representative images from vaginal cytology for Proestrus (A), Estrus (B), 

Metestrus (C), and Diestrus (D) phases of the estrous cycle. (E) Daily changes in the 

phase of estrous in our animals. 
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Figure 51: No difference in infarct size between the phases of the estrous cycle. Data from 

the ex vivo (A) and in vivo (B) hearts. There was also no correlation between infarct size and 

serum levels of estradiol (C) or progesterone (D) in isolated rat hearts. 
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Figure 52: No differences were seen between groups in the severity or incidence of 

ventricular arrhythmias in isolated rat hearts. Arrhythmia scores (A) and incidence of VF 

(B) were used to assess the severity of arrhythmias. There was also no correlation 

between the arrhythmia score and serum levels of estradiol (C) or progesterone (D) in 

isolated rat hearts. 
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