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Alterations in circadian rhythm have been associated with numerous cardiovascular 

pathologies.  In project 1, we tested the hypothesis that functional mutation of the Per2 

circadian clock gene would provide cardioprotection to mice that had undergone permanent 

coronary ligation to induce myocardial infarction (MI).  mPer2-M mice had a 43% smaller 

infarct size compared to wild type (WT), along with reduced leukocyte infiltration, increased 

capillary density, increased myocyte hypertrophy, and reduced myocyte apoptosis.  This suggests 

that mutation of mPer2 is cardioprotective. 

The heart lacks a sufficient capacity for endogenous repair after injury.  We tested the 

hypothesis that intramyocardial administration of ephrinA1-Fc at the time of MI would 

promote cardiomyocyte survival, subsequently reducing infarct size and inflammatory cell 

infiltrate. The ephrinA1 ligand has been predominantly characterized as a pro-angiogenic factor 

in development and tumor progression, but is also involved in apoptosis and inflammation.  The 

ephrinA1 ligand has not been studied in the adult myocardium or in the context of acute MI.  

Intramyocardial injection of EphrinA1-Fc reduced infarct size, necrosis, chamber 

dilation, and left ventricular free wall thinning four days after MI. Inflammation was also 



substantially reduced, with reductions in neutrophil and leukocyte density. We measured 

reductions in serum cTnI, and cleaved PARP, and increased bag-1 protein expression, suggesting 

reduced cell death.  Phosphorylated AKT/total AKT protein was increased, indicating improved 

cellular survival. Our analysis of gene expression revealed that Eph receptors A1-A4, A6, and 

A7 were expressed in the uninjured adult myocardium. Expression of EphA1-A3 and EphA7 was 

significantly increased following MI while EphA6 expression was decreased. Treatment with 

ephrinA1-Fc further increased EphA1 and EphA2 gene expression, and also increased EphA4 

expression.  

To date, only reperfusion has been shown to reduce injury and improve long-term 

remodeling. We have discovered two new mechanisms by which this can be effected: 1) we have 

observed a dramatic reduction in cardiac injury in mice lacking a functional circadian gene 

product mPer2; and 2) we are the first to identify a role for ephrinA1/EphA signaling in the 

repair process following MI, and have identified a novel, protective role for ephrinA1-Fc 

administration at the time of MI. 
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CHAPTER 1: INTRODUCTION 

 

Acute Myocardial Infarction: Characterization and Significance 

 

Despite considerable advances in recent years, cardiovascular disease continues to be a 

significant public health problem, affecting 81 million Americans and resulting in over 800,000 

deaths each year.  Almost 1 million new or recurrent heart attacks, or myocardial infarctions 

(MI), occur each year (Lloyd-Jones, Adams et al.).  The damage resulting from MI is largely 

irreversible and often leads to heart failure. Currently, efforts are focused on reducing tissue 

damage following this ischemic event, or even generating replacement tissue. 

 Atherosclerosis often results in coronary artery thrombosis, leading to coronary occlusion 

and downstream ischemia.  Prolonged ischemia results in the death of cardiomyocytes.  This 

leads to the release of a number of different factors which may be used as plasma biomarkers for 

MI diagnosis.  Factors released from apoptotic and necrotic tissue include fatty acid binding 

protein (FABP), creatine kinase, skeletal-brain hybrid type (CK-MB), serum glutamic-

oxaloacetic trasaminase (SGOT), and cardiac troponins I and T (Masson, Latini et al. ; Cleutjens, 

Blankesteijn et al. 1999).  In the days and weeks following MI, the infarct area undergoes a 

number of structural changes leading to the formation of non-contractile scar tissue, which over 

time will adversely affect function.   
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Cell Death and Myocardial Infarction 

 

Death of myocytes following MI occurs through three different, but interdependent, 

pathways: necrosis, apoptosis, and autophagy (Whelan, Kaplinskiy et al. ; Kunapuli, Rosanio et 

al. 2006).  Myocyte necrosis is a passive, unregulated process in which the cells swell and burst. 

Triggers include hypoxia and ischemia (Kunapuli, Rosanio et al. 2006).  During this process, the 

plasma membrane becomes dysfunctional, causing the cells and their organelles to swell.  As the 

contents leak out of these swollen cells, an intense inflammatory response is initiated (Whelan, 

Kaplinskiy et al.).  Necrosis differs from apoptosis in that it is much less regulated, and does not 

require energy.     

While initial reports suggested that necrosis was the characteristic mode of cell death that 

occurred in the acute stages after MI, there is also literature to suggest that apoptosis occurs 

acutely, as well (Itoh, Tamura et al. 1995; Bardales, Hailey et al. 1996; Olivetti, Abbi et al. 1997; 

Saraste, Pulkki et al. 1997; Buja and Entman 1998; Haunstetter and Izumo 1998; Kang and 

Izumo 2003).  Some reports have suggested that, since apoptosis requires energy, it is more 

prominent following reperfusion, whereas necrosis is associated with prolonged ischemia 

(Gottlieb, Burleson et al. 1994; Kang and Izumo 2000).  Apoptotic cell death is induced by 

cytokines including TNFα and Fas, which bind cell surface receptors and recruit intracellular 

adaptor proteins.  This leads to activation of caspases, which mediate proteolytic cell death.  In 

the case of Fas binding, pro-apoptotic proteins of the Bcl-2 family are activated. In contrast to 

necrosis, apoptosis consists of programmed death characterized by DNA fragmentation and 

shrinkage of the cells.  Apoptosis is stimulated by external triggers such as a lack of growth 
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factors or changes in hormonal levels including increased norepinephrine and angiotensin II  

(Cigola, Kajstura et al. 1997; Communal, Singh et al. 1999; Kunapuli, Rosanio et al. 2006).  

 Cellular autophagy is the third, lesser known process which has only recently been 

proposed as a mechanism in myocyte survival and death.  Autophagy is a form of programmed 

cell death in which a cell may re-direct nutrients to the most essential processes, through 

lysosomal degradation of less important components.  Thus, it may be viewed as a survival 

mechanism.  This process is typically observed in hibernating myocardium, or in the transition 

from hypertrophy to heart failure, and is a mechanism for cells to resist starvation in ischemic 

tissue.  A protein often associated with cardiomyoycte autophagy is the Bcl-2 associated 

athanogene (BAG)-1 protein, which links heat shock proteins to the proteasome, leading to 

protein degradation (Townsend, Cutress et al. 2004; Gurusamy, Lekli et al. 2009).  Under normal 

conditions, when a cell has a sufficient supply of nutrients, Tor kinase remains inactive.  

However, when the nutrient supply is insufficient for cellular survival, Tor kinase becomes 

inactivated, which initiates autophagy.  A vesicle, termed the autophagosome, is formed from the 

endoplasmic reticulum, and becomes the repository for cell components slated to die.  The 

contents of the autophagosome are then transferred to a lysosome via fusion, and the 

autophagosome is degraded by proteases (Kunapuli, Rosanio et al. 2006).   

In the acute phase after MI, the heart undergoes a number of pathological and structural 

changes, often described as infarct repair.  Many groups have described this infarct healing 

process extensively (Dobaczewski, Gonzalez-Quesada et al. ; Cleutjens and Creemers 2002; 

Frangogiannis, Smith et al. 2002; Holmes, Borg et al. 2005; Frangogiannis 2006).  Perhaps, 

modulating part(s) of this process may help to preserve myocardial tissue and attenuate 

cardiovascular dysfunction.  Three overlapping phases of infarct healing have been described 
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(Virag and Murry 2003; Frangogiannis 2006; Frantz, Bauersachs et al. 2009; Nah and Rhee 

2009), which will be detailed below. 

 

The Inflammatory Phase 

 

 In mice, the inflammatory phase of infarct healing typically lasts on the order of hours to 

days (approximately 3-72 hours) and is characterized by the induction of chemokines and 

cytokines in the infarcted heart.  The onset of ischemia leads to activation of hypoxia-inducible 

factor (HIF)-1α.  Growth factors, including vascular endothelial growth factor (VEGF) and basic 

fibroblast growth factor (bFGF) are released following activation of HIF-1α, and stimulate 

growth of new vessels.  Complement activation occurs, which may aid in inflammatory cell 

recruitment to the infarct (Frangogiannis, Smith et al. 2002; Frangogiannis 2006).  Some of the 

infiltrating inflammatory cells may, in combination with cardiomyocytes and endothelial cells, 

generate reactive oxygen species (ROS) which may further contribute to leukocyte recruitment.  

Neutrophils infiltrate the tissue by adhering to endothelial cells in the vasculature and migrating 

into the ischemic tissue (Nah and Rhee 2009).    In some animals that underwent 

ischemia/reperfusion, reduced levels of neutrophils was associated with significant decreases in 

infarct size (Romson, Hook et al. 1983; Jordan, Zhao et al. 1999).  Infiltrating neutrophils can 

potentially be cytotoxic, but a rapid inflammatory response may also improve infarct healing 

(Ren, Dewald et al. 2003).  Both neutrophils and macrophages participate in clearing the infarct 

zone from necrotic cellular debris.  In addition, macrophages release growth factors and 

cytokines that aid in the forming the granulation tissue (Frangogiannis 2008).  Toll-Like 

Receptor (TLR) Mediated Pathways are also activated during the inflammatory phase, leading to 
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activation of Nuclear factor (NF)-κB.  NF-κB is located in the cytoplasm, associated with 

inhibitors of κB, or IκB.  When IκB is phosphorylated, it ultimately becomes degraded by 

proteasomes, releases NF-κB, leading to NF-κB activation.  NF-κB activation results in 

regulation of genes involved in inflammation, including chemokines and cytokines, as well as 

cellular adhesion (Frangogiannis 2008). 

 A provisional matrix, composed of fibrin, allows the infiltration of inflammatory and 

vascular cells to the healing infarct.  This provisional matrix is formed when vascular 

permeability is increased through the release of inflammatory cytokines (Frangogiannis 2006). 

         

The Proliferative Phase 

 

 The proliferative phase occurs 3 to 7 days following MI, and is characterized by 

proliferation of fibroblasts and endothelial cells to form a rich, cellularized granulation tissue.  

This granulation tissue must be vascularized, to provide nutrients and oxygen.  Endothelial cells 

proliferate and contribute to formation of the vasculature.  In addition, endothelial progenitor 

cells (EPCs) may be involved.  These bone marrow-derived progenitors are produced in the bone 

marrow, and mobilized to the peripheral blood in response to ischemia (Asahara, Masuda et al. 

1999; Takahashi, Kalka et al. 1999; Masuda, Kalka et al. 2007).  The cells are then recruited to 

sites of vessel growth, where they may differentiate into vascular cells or contribute to 

vasculogenesis by secreting cytokines, chemokines, and growth factors that promote cell survival 

and growth (Kamihata, Matsubara et al. 2001; Rehman, Li et al. 2003).  The Tie2 receptor 

tyrosine kinase is present on endothelial cells and EPCs.  When the Angiopoietin (Ang)-2 ligand 

is activated during MI, it binds to, and activates, Tie2-expressing cells, which facilitates the onset 
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of angiogenesis.  Under normal conditions, the Ang1 ligand is expressed and bound to Tie2-

expressing cells.  The expression of the Ang2 ligand seems to disrupt this signaling system 

(Frangogiannis 2006).  Once vessels are formed, demarcation of vascular boundaries is 

necessary.  The Eph Receptor Tyrosine Kinase (RTK) family and its ephrin ligands are involved 

in this process, with the EphB4 receptor expressed on venous endothelial and smooth muscle 

cells, while the ephrinB2 ligand is expressed on arterial vessels (Carmeliet 2003).   Some of the 

newly formed vessels will be stabilized by pericytes.  Vessels that are not coated with pericytes 

will eventually regress.  The fibrin matrix is proteolytically cleaved, by the conversion of 

plasminogen to plasmin, and replaced with a more organized provisional matrix composed of 

fibronectin and hyaluronan (Frangogiannis 2006).   

 

The Maturation Phase 

 

 The maturation phase typically occurs 7-14 days after injury in mice (Frangogiannis 

2006).  Ultimately, the proliferating fibroblasts and endothelial cells will undergo apoptosis, 

leaving a thin, collagenous scar in the infarct zone.  The only vessels that remain are those that 

are coated with smooth muscle cells and have little to no angiogenic capacity.  Fibroblasts, 

located predominantly at the infarct border zone differentiate into myofibroblasts and lay down 

extracellular matrix proteins, particularly collagen.  Fibroblasts synthesize transforming growth 

factor-beta 1(TGF-β1), which further enhances collagen formation.  Type I and III collagens are 

the principal components of the scar.  The mature collagen matrix works to stabilize the scar 

(Sun and Weber 2000).  If the resulting scar is large enough, heart failure may ensue due to 

decompensation of the remote regions of the myocardium.  Cardiac fibrosis, characterized by the 
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accumulation of type I and type III collagen, replaces necrotic cardiomyocytes, and adversely 

affects myocardial tissue stiffness and diastolic function.  Eventually, systolic function is also 

affected (Weber 1997).  Structural changes of the heart occur due to several variables.  Myocyte 

hypertrophy in remote regions of the myocardium may alter the shape of the heart and put 

additional strain on the infarcted region.  Myocyte necrosis in the infarct zone may lead to 

thinning and dilation of the left ventricle.  Cardiomyocytes lengthen and thin in response to 

infarction, and strain on the tissue, which may further result in wall thinning.  Perhaps most 

importantly, groups of myocytes slip past one another during infarct repair, altering cell shape 

(Weisman, Bush et al. 1988).  When left ventricular thinning and dilation occur, leading to 

infarct expansion, there is an increased incidence of clinical mortality (Weiss, Marino et al. 

1991). 

  

Current Therapeutic Strategies 

 

 Presently, there is great energy being devoted to exploring therapeutic strategies which 

could reduce infarct damage and/or promote regeneration of necrotic tissue.    Early reperfusion 

and antithrombotic therapy have helped to reduce mortality by preventing myocyte necrosis, but 

therapeutic success is only accomplished if reperfusion is initiated immediately after MI.  In fact, 

some suggest that the benefit to the patient begins to decline if therapy is initiated after a delay of 

60 to 114 minutes (Segers and Lee ; Nallamothu and Bates 2003; Pinto, Kirtane et al. 2006).  

Pharmacological strategies already in place, such as the use of beta-blockers or ACE inhibitors 

following MI improve overall survival, but do nothing to improve actual cardiac function.  Once 
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infarction has occurred, damage is irreversible so these strategies only work to delay the onset of 

heart failure.   

The most recent interest has been in the fields of stem cell therapy and tissue engineering, 

but results thus far have been disappointing.  Despite some remarkable advances in many animal 

models, improvements in the clinical setting have been modest at best.  For example, a recent 

phase 1 clinical trial using intracoronary bone marrow mononuclear cell transplantation in 

patients who had suffered ST-elevation MI (STEMI) revealed no difference in the functional 

improvement observed between the cell treatment group and the placebo group.  There was, 

however, a modest decrease in left ventricular end diastolic volume (LVEDV) following cell 

transplantation, suggesting a favorable effect on LV remodeling (Traverse, McKenna et al.).  In 

rodents, transplantation of either mesenchymal stem cells (MSCs) or cardiomyocyte-like cells 

(CLCs) resulted in improved myocardial contractility, in a dose dependent manor.  The CLCs 

were more effective, and exerted their effects mainly through engraftment in and mechanical 

support of the matrix, while MSCs promoted angiogenesis in the infarcted tissue (Shim, Tan et 

al.). 

 Much of the disparity in data reported from cell therapy experiments thus far is directly 

due to the variation in cell type and delivery method used, as well as concerns over safety.  For 

example, autologous transplantation of skeletal myoblasts into rabbits that had undergone 

cryoinfarction resulted in improved myocardial function and incorporation of the skeletal muscle 

cells into the myocardium (Taylor, Atkins et al. 1998).  However, results of the MAGIC clinical 

trial (Myoblast Autologous Grafting in Ischemic Cardiomyopathy) were disappointing, showing 

no substantial difference in function between myoblast- and placebo-treated patients.  More 

importantly, there was a higher incidence of arrhythmias in myoblast recipients, suggesting that 
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safety of this therapy needs further evaluation (Menasche, Alfieri et al. 2008).  Embryonic stem 

cells have also been used for cell therapy, with conflicting results.  For example, transplantation 

of embryonic stem cells into infarcted mice resulted in the formation of teratomas, and little to 

no differentiation into cardiomyocytes (Nussbaum, Minami et al. 2007).  Bone marrow-derived 

cells are less ethically controversial when compared to embryonic stem cells, but their efficacy is 

also questionable, ranging from no effect at all, to improved contractility and ejection fraction 

(for review see (Wei, Wong et al. 2009)).  Questions also exist regarding the mechanism of cell 

therapy-mediated benefits.  Cellular differentiation, engraftment, or paracrine actions are all 

possibilities, and may be specific to the cell type used. 

 An alternative to cell therapy that has been investigated in both the laboratory and clinical 

settings is protein therapy, which is attractive because it involves proteins that are already 

expressed in vivo, and are evolutionarily conserved.  More importantly, therapies involving 

naturally occurring proteins avoid ethical debates that surround the use of stem cell therapy (ie, 

embryonic stem cells), and eliminate the possibility of rejection that may occur with cell therapy 

or organ transplantation.  Availability of these compounds is relatively abundant and many are 

already commercially available, providing an attractive alternative to cultivating and expanding 

cell populations for autologous transplant.  Proteins used for therapy after MI can be loosely 

categorized into four groups: (i) those used to promote angiogenesis, (ii) proteins to promote 

mobilization of stem and progenitor cells to the heart, (iii) proteins that may induce mitosis of 

native cardiomyocytes, and (iv) growth factors which induce proliferation and growth of stem 

and progenitor cells (Hwang and Kloner ; Segers and Lee).  

 Pro-angiogenic proteins, including fibroblast growth factor (FGF) and vascular 

endothelial growth factor (VEGF) are of great interest due to the possibility of increasing cardiac 
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perfusion, which will ultimately promote cell survival and improve function.  It has also been 

reported that following acute MI, there is a decrease in angiogenic factors including VEGF, 

associated with decreased myocardial contraction (Siddiqui, Fischer et al.).  Thus, if various 

angiogenic proteins can be used to “supplement” the endogenous expression of these proteins in 

the heart, cardiac repair may be accelerated.   

Both VEGF and FGF have been widely used in pre-clinical and clinical studies, but the 

promising results seen in laboratory animals have not been translated to human patients.  An 

early study used VEGF infusion via osmotic minipumps in pigs that had undergone permanent 

coronary occlusion.  This six week infusion of VEGF resulted in a reduced infarct volume and 

improved ejection fraction and myocardial wall thickening (Pearlman, Hibberd et al. 1995).  In a 

rat model of MI, intracardiac injection of VEGF resulted in increased survival of 

cardiomyocytes, presumably by increasing myocyte mitotic activity as well as cytoprotection.  

Additionally, there was a greater intensity of neutrophil and macrophage infiltration with VEGF 

treatment, along with increased collagen formation (Dremina, Shurygina et al. 2009).  In 

humans, plasmid DNA encoding VEGF has been delivered intramyocardially and endocardially, 

but with little to no functional improvement for those patients (Losordo, Vale et al. 1998; Vale, 

Losordo et al. 2001; Losordo, Vale et al. 2002; Rajagopalan, Mohler et al. 2003; Stewart, Kutryk 

et al. 2009). 

 FGF treatment has also produced promising pre-clinical data.  In a dog model of coronary 

occlusion, FGF was infused into the left circumflex coronary (LCX), resulting in reduced infarct 

size, reduced necrosis, increased vascular density, and improved ejection fraction (Yanagisawa-

Miwa, Uchida et al. 1992).  A clinical study using recombinant FGF-2 intracoronary 

administration in patients with coronary artery disease demonstrated improved exercise tolerance 
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and reduced angina symptoms 90 days after treatment.  However, the placebo group continued to 

improve, and by 180 days post-treatment, the differences between treatment groups were 

abolished (Simons, Annex et al. 2002).  A more promising result came from a clinical trial that 

implanted microcapsules containing FGF into ischemic myocardium.  The higher dose of FGF 

(100ug) had a favorable effect on infarct size and angina symptoms, while the lower dose (10ug) 

did not (Laham, Sellke et al. 1999).  Clearly, protein or cell therapy (or some combination of the 

two) holds great promise for myocardial repair, but results are still conflicting.  A system in 

which therapies could be targeted to specific cell types would be ideal, so that specific phases of 

infarct repair could be modulated independently.  For example, promoting vasculogenesis in the 

ischemic myocardium is of interest to restore the flow of nutrients and oxygen to the infarct 

zone, so some would argue that therapies should be endothelial cell-specific.  However, targeting 

the cardiomyocytes directly is also useful, in order to promote cellular survival and prevent 

death.  To date, many of the therapies proposed have not been cell-specific. 

 

Two Approaches Resulting in Infarct Salvage 

 

 An early interest in our laboratory was investigating the role of individual circadian clock 

genes on the response to acute MI.  An early observation was made that mice lacking functional 

mammalian Period 2 protein (mPer2-M mice) had a reduced infarct size following 30 minutes of 

ischemia and 2 hours of reperfusion.  This initiated a new set of experiments using a non-

reperfused infarct model, to analyze various endpoints in response to permanent coronary 

occlusion. Data from these studies are represented in chapters 2.1 through 2.4.  In short, we 

demonstrated that the absence of the circadian clock gene, mPer2, results in robust 
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cardioprotection following MI.  One element of the response that was intriguing was a 

substantial improvement in capillary density and an increased number of bone marrow-derived 

progenitor cells in the mPer2-M mice.  These experiments contribute a new understanding of 

circadian clock gene biology in the setting of cardiovascular disease, and our laboratory is 

currently investigating the cellular mechanisms of mPer2-M cardioprotection.   

The direction of the laboratory then moved towards identifying therapeutic strategies that 

might promote revascularization of damaged myocardium, as well as provide an alternative to 

the convoluted and controversial field of cell therapy.  Because of the challenges that have come 

from protein therapy involving VEGF and FGF, we were interested in identifying a new 

therapeutic family to use for post-MI repair. 

  

Eph Receptor Tyrosine Kinase Family/Ephrin Ligands 

 

The Eph Receptor Tyrosine Kinase (RTK) family and its respective ephrin ligands are 

widely under-explored in the cardiovascular arena.  Many of these proteins are reported to be 

pro-angiogenic in other tissue settings, but have not been investigated in the injured adult heart.  

We were intrigued by studies showing that members of the Eph/Ephrin B family are involved in 

endothelial progenitor cell (EPC) adhesion (Foubert, Silvestre et al. 2007) and post-MI 

angiogenesis (Mansson-Broberg, Siddiqui et al. 2008).  We constructed the hypothesis that 

members of the EphrinA family might also trigger therapeutic angiogenesis and attenuate the 

inflammatory response, resulting in reduced infarct size, as we saw in our mPer2-M mice.  The 

EphrinA1 ligand, an angiogenic protein, was chosen for post-MI intramyocardial injection, and 

these results are discussed in chapters 3.1 through 3.4. 
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 We have proposed two key projects, to elucidate the role of a specific peripheral clock 

gene, Per2, and hypothesize that its mutation will be protective to the heart.  In contrast, we have 

chosen an angiogenic protein, ephrinA1, and propose that its administration to the infarcted heart 

will promote cell survival.  

 



 

 

CHAPTER 2: mPER2 AND MYOCARDIAL INFARCT REPAIR 

2.1: Background 

Epidemiological Data 

 

Incidence of cardiovascular disease appears to be correlated with the time of day, and has 

sparked a great deal of interest in basic and clinical research with regards to circadian clock gene 

regulation.  Multiple studies have explored the time-of-day phenomena in the setting of 

myocardial infarction, and it is frequently reported that myocardial infarction is more likely to 

occur in the early morning hours (Durgan, Pulinilkunnil et al. ; 1992; Willich, Jimenez et al. 

1992; Mitrovic, Stefanovic et al. 2008).  By examining the blood levels of creatine kinase, it is 

evident that there is a greater incidence of myocardial infarction in the three hours after 

awakening (Willich 1999).  Circadian fluctuations in blood pressure (BP) and heart rate (HR) 

have also been observed, often referred to as the “morning surge” due to the spike in both 

measurements upon waking, and a decrease in BP and HR while one sleeps (Neutel and Smith 

1997; White 2001; Patel, Wong et al. 2008).  Additional evidence of circadian variation in 

cardiovascular disease is demonstrated by increased risk of metabolic syndrome, myocardial 

infarction and atherosclerosis in shift workers (Karlsson, Knutsson et al. 2001; Ha and Park 

2005; Copertaro, Bracci et al. 2008; Haupt, Alte et al. 2008).  Interestingly, Esquirol and 

colleagues recently published the results of a clinical study that demonstrated differences in 

metabolic syndrome between shift workers and day workers, which took into account behavioral 

and lifestyle practices that may influence their risk for cardiovascular disease such as diet, 

alcohol consumption, smoking, and exercise.  Even when these behaviors were accounted for, 
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there were still differences in triglycerides and HDL levels between shift and day workers 

(Esquirol, Bongard et al. 2009).  Clearly, then, the differences observed in risk for developing 

cardiovascular disease must be regulated at a cellular or molecular level, rather than behavior at 

specific times of day.  We are just beginning to elucidate regulation of clock gene expression in 

different cell types, and how alterations may influence the progression of disease processes. 

  

Circadian Biology 

 

Before characterizing clock gene expression in peripheral tissues, it is essential to 

understand the basic aspects of circadian biology.  The central circadian clock is located in the 

suprachiasmatic nucleus (SCN) of mammals.  Light cues from the environment are transmitted to 

the SCN by glutamate, ultimately leading to phase shift of the circadian clock.  Light stimulation 

leads to induction of ‘input genes’ including the early transcription factor c-fos, and PER1 and 

PER2 genes.  Output genes such as avp, dbp, and CREM transmit information from the SCN to 

downstream targets affecting physiological functions.  Both input and output genes may overlap 

with pacemaker genes, which regulate circadian rhythms by using information from input genes 

to affect system function through output genes (Cermakian and Sassone-Corsi 2000).   

 Within most cell types in the body there are transcriptionally controlled circadian clocks 

which regulate many biological functions.  It has been previously revealed that these peripheral 

clocks exist within many cells of the heart including cardiomyoyctes (Durgan, Hotze et al. 2005), 

as well as endothelial cells (Takeda, Maemura et al. 2007) and smooth muscle cells (McNamara, 

Seo et al. 2001; Nonaka, Emoto et al. 2001) of the vasculature.  In circulation, clock genes have 

been identified on peripheral blood mononuclear cells (Teboul, Barrat-Petit et al. 2005), 
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hematopoietic stem cells (Tsinkalovsky, Rosenlund et al. 2005; Garrett and Gasiewicz 2006; 

Tsinkalovsky, Filipski et al. 2006), and immune cells (Nebzydoski, Pozzo et al. ; Wang, Reece et 

al. ; Du, Fan et al. 2005; Fukuya, Emoto et al. 2007; Hayashi, Shimba et al. 2007).  The mPer1 

and mPer2 genes were also identified in whole murine bone marrow, and exhibited a diurnal 

expression pattern that was differentiation- and lineage-stage specific, suggesting the presence of 

a circadian clock system in the bone marrow (Chen, Mantalaris et al. 2000).    To assess the 

effect of myocyte-specific circadian clocks on cardiac function, Young and colleagues have 

developed a mutant mouse whose circadian clock in the cardiomyocytes is disrupted so that the 

morning to night transition is abolished.  The authors reported that this cardiomyocyte-specific 

circadian clock mutant (CCM) did not exhibit the normal diurnal heart rate variations as seen in 

wild type (WT) mice.  They also consumed more energy but with less efficient cardiac function 

(Bray, Shaw et al. 2008).  Clearly, then, this cell-specific circadian clock can have a substantial 

effect on myocardial function and metabolism.  One inherent weakness of the study is that it did 

not specifically address the contribution of individual clock genes to the peripheral clock 

function of the cardiomyocyte.  To specifically investigate the effect of the cardiomyocyte-

specific circadian clock on the response to myocardial ischemia, the same group performed 

ischemia/reperfusion (I/R) surgeries on WT and CCM mice and found that WT mice exhibited 

variation in infarct volume, remodeling, and function, depending on what time of day the I/R 

occurred.  In contrast, CCM mice did not show this same time-of-day variation (Durgan, 

Pulinilkunnil et al.).  This may provide an explanation at the cellular level as to some of the 

epidemiological findings described previously in this chapter, indicating that time of day is often 

related to severity of MI. 
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 To fully understand the complexity of circadian variation and cardiovascular disease, a 

greater appreciation for the involvement of specific circadian genes is needed.  In humans, 

PER1, PER2, BMAL1, and CRY1 are expressed in the heart, with all but CRY1 exhibiting 

circadian rhythm in the heart (Leibetseder, Humpeler et al. 2009).  In mice, BMAL1, PER2, 

CRY1, and REV-erb-α were all expressed three and five days postnatally, but did not become 

synchronized to the expression of clock genes in the SCN until day five (Huang, Lu et al.). 

 The effect(s) of individual, specific clock genes on cardiovascular pathological 

conditions has been relatively unstudied.  A recent study used mice with a mutated Per2 gene 

(mPer2-M), and evaluated a number of hemodynamic measurements in 12:12-hour light-dark 

cycle, as well as in constant darkness.  mPer2-M mice had increased heart rate and reduced 

diastolic blood pressure.  Interestingly, they did not undergo “nighttime dipping” when placed in 

constant darkness (Vukolic, Antic et al.).  Dipping, or the fall in blood pressure at night when the 

patient is sleeping, is considered normal and healthy.  When dipping does not occur, nocturnal 

hypertension may be diagnosed and treated with antihypertensive medication before bedtime 

(Vij and Peixoto 2009).  In a rat model of ischemia/reperfusion, there was an attenuation of clock 

gene oscillations in the ischemic zone, but not in the non-ischemic zone.  On the other hand, 

hypoxia induced through the use of a hypobaric chamber did not attenuate clock gene 

oscillations (Kung, Egbejimi et al. 2007).  Interestingly, a 2003 report by Koyanagi and 

colleagues indicated that cotransfection of cultured sarcoma 180 cells with the VEGF-Luc 

reporter and HIF-1α led to a ~15-fold increase in VEGF promoter activity, which was dose-

dependently repressed by cotransfection with PER2.  Further, PER2 protein precipitated with 

HIF-1α protein, and there was an anti-phase accumulation of VEGF mRNA and PER2 protein, 

suggesting that PER2 protein may regulate the circadian expression pattern of VEGF in tumor 
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cells during periods of hypoxia (Koyanagi, Kuramoto et al. 2003).    A potential role for the Per2 

clock gene in the regulation of angiogenic proteins may be of interest in cardiovascular repair of 

ischemic tissue.  Combined, these data suggests that circadian clock genes, including Per2, may 

be involved in regulating myocardial function, but their activity becomes impaired following 

myocardial ischemia.  To our knowledge, the effect of a single circadian clock gene on the 

subsequent response to myocardial ischemia has not been investigated.  Specifically, we are 

interested in the role of the Per2 gene in myocardial infarct repair.  All facets of infarct repair (ie, 

cell death, proliferation, inflammation, vasculogenesis, and remodeling) will be evaluated in a 

Per2 functionally mutated mouse (mPer2-M).  In addition, since circadian rhythms have been 

reported to influence bone marrow cell production and mobilization (Lucas, Battista et al. 2008; 

Mendez-Ferrer, Lucas et al. 2008), and the Per2 gene has been implicated in endothelial 

progenitor cell function (Wang, Wen et al. 2008), we will analyze bone marrow-derived 

progenitor cell counts in mPer2-M mice.    
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2.2: Attenuation of Myocardial Injury in Mice with Functional Deletion of the Circadian 

Rhythm Gene mPer2 

Am J Physiol Heart Circ Physiol 298:1088-1095, 2010 

doi:10.1152/ajpheart.01280.2008 

The Am Physiol Soc, used with permission 

 

 

 

INTRODUCTION 

 

Circadian rhythms are daily variations of physiological processes that are found in living 

organisms.  In mammals, the circadian rhythms are regulated by the suprachiasmatic nucleus 

(SCN) of the hypothalamus.  The SCN synchronizes the circadian rhythms of peripheral organs 

to each other and to the environmental light-dark cycle via integrated oscillatory expression of 

multiple circadian clock genes (Harmer, Panda et al. 2001; Dvornyk, Vinogradova et al. 2003; 

Dardente and Cermakian 2005; Merrow, Spoelstra et al. 2005).  So far, eight core circadian clock 

genes have been identified in mammals, including a Clock gene, a gene encoding brain-muscle 

Arnt-like protein 1 (Bmal1) (Honma, Ikeda et al. 1998), three period genes (Per1, Per2, and 

Per3) (Sun, Albrecht et al. 1997; Zheng, Larkin et al. 1999; Shearman, Sriram et al. 2000), and 

two cryptochrome genes (Cry1 and Cry2) (Thresher, Vitaterna et al. 1998; Hardin and Glossop 

1999; Sancar 2000).   

Recently, it has been shown that clock genes are found in all peripheral tissues, including 

the heart.  Epidemiologic studies demonstrate the existence of circadian patterns in the incidence 
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of cardiovascular disease.  For example, the onset of non-Q-wave angina, unstable angina, 

myocardial infarctions, and sudden cardiac death all show marked elevations in occurrence 

between the hours of 6am and noon, compared to any other time of day (Muller 1999; Willich, 

Kulig et al. 2004).  A better understanding of the function of circadian genes in the heart and in 

response to injury may lead to innovative therapies for cardiovascular disease (Fujino, Iso et al. 

2006; Young 2006; Portaluppi and Lemmer 2007). 

Cardiac tissue expresses all known isoforms of Cry and Per genes, with Cry2, Per1 and 

Per2 expressed to the greatest degree (Young 2006).  However, all of these genes function 

essentially as reciprocally controlling transcription factors, and in many cases the expression of 

these genes is monitored by the modulation of many “non-circadian” proteins as readouts.  

Enzymes regulating cardiac metabolism (57), reactivity of vascular endothelial cells (22, 50, 54), 

modulation of inflammatory responses (3, 27, 33, 34, 44), bone marrow progenitor cell release 

(Bourin, Ledain et al. 2002), and apoptosis (25) all have circadian gene components of control, 

and all are associated with the myocardial response to coronary artery occlusion.  However, the 

specific relationship between a circadian gene and the inflammatory response and injury 

associated with early myocardial infarction has not been determined.  Given that circadian 

rhythms control the cell cycle and mutations in clock genes have been associated with tumor 

growth and altered regulation of apoptosis (Lamont, James et al. 2007), and altered contractile 

function, metabolism, and gene expression in clock gene mutant cardiomyocytes (Bray, Shaw et 

al. 2008) it would appear reasonable to suggest that Per2 may be capable of altering the response 

to ischemic injury.  Therefore, these studies were designed to test the hypothesis that functional 

Per2 mutation would attenuate early post-MI injury.   
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METHODS 
 
Animals.  Male wild type C57BL/6J mice (aged 8-10 weeks) and homozygous mutant mPer2-M 

mice bred on a C57BL/6J background were obtained from Jackson Laboratories (mPer2-M 

Brdm1, stock #003819; Bar Harbor, Maine) (Zheng, Larkin et al. 1999). (Zheng, Larkin et al. 

1999).   Two segments of the PAS domain of the mPer2 gene were deleted, rendering a 

functional null mutant. RT-PCR indicated a mutant transcript, if translated, would generate an 87 

amino acid protein (Zheng, Larkin et al. 1999).  Mice possessing this ubiquitous mutation are 

morphologically indistinguishable, have a shorter circadian period, and lose rhythmicity in 

constant darkness compared to their WT counterparts (Zheng, Larkin et al. 1999).  All animals 

were individually housed in a light-proof chamber and entrained in a 12 hour light and 12 hour 

dark (12:12 LD) cycle for at least 10 days before surgery.  All procedures were approved by the 

East Carolina University Institutional Animal Care and Use Committee and are in compliance 

with NIH guidelines.   

Surgical Procedure.   Mice were anesthetized (20 µl/g Avertin i.p.), intubated and ventilated 

using a Kent Scientific TOPO ventilator.   Briefly, the LAD coronary artery was permanently 

ligated or sham ligated in controls.  The chest cavity was sutured closed and the animals were 

permitted to recover in a warming chamber before being returned to the vivarium. No analgesia 

was used and all experiments were performed during the light phase of the circadian cycle 

between ZT3 and ZT9. The surgical procedure is described in more detail elsewhere (Ismail, 

Poppa et al. 2003; Reinecke and Murry 2003).   

At 4 days post-MI, mice were given a 0.5 ml i.p. injection of 5-bromodeoxyuridine 

(BrdU, 5mg/ml) to label proliferating cells and sacrificed 1 hour later with an i.p. injection of 

pentobarbital.  The perfused heart and a segment of small intestine (used as a positive control for 
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BrdU+ proliferating cells) were immersed in zinc fixative and 4 transversely sectioned slices of 

equal thickness were processed and embedded in paraffin.  Routine histological (hemtaoxylin 

and eosin, picrosirius red/fast green, toluidine blue, and congo red) procedures and 

immunostaining were performed using 5 µm sections.   

Morphometry and Histology.  For non-reperfused infarct studies, photographs of four 

hematoxylin and eosin stained sections per heart (uninjured control and 4 days post-MI, both WT 

and mPer2-M hearts) were taken at 20x using a DP70 digital camera.  Scion imaging software 

(Scion Corporation, Frederick, MD) was used to trace the infarct zone (granulation tissue and 

necrosis), necrosis (no myocyte nuclei), and granulation tissue (inflammatory cells, fibroblasts, 

smooth muscle cells, and endothelial cells).   

To assess myocyte cross-sectional area, 3 images were taken at 600x from both the 

epicardial and endocardial surface at the infarct border in 2 sections containing infarct (12 

images total).  In each image, 3-7 perpendicularly sectioned myocytes with centrally located 

nuclei were measured and the mean cross-sectional area was calculated.  

Immunostaining. Tissue sections were deparaffinized and endogenous peroxidases 

quenched.  After rinsing in PBS, slides were incubated with anti-smooth muscle α-actin (SMα-

A; peroxidase-conjugated, DAKO, U7033) for myofibroblasts, anti-CD31 (PharMingen, 

#553371; 1:2000) for endothelial cells in infarcted hearts, isolectin B4 (Vector, #B-1205) for 

endothelial cells in control hearts (Ismail, Poppa et al. 2003), anti-CD45 (PharMingen, #550539; 

1:2000) for leukocytes, and anti-Ly6G (BD PharMingen, #550291, 1:100) for neutrophils.  

Biotinylated Anti-MMP-9 (R&D Systems, BAF909, 1:3) was used to visualize the expression 

pattern of MMP-9 in infarcted tissues.  The reaction product was visualized with DAB (Vector, 

SK-4100).  For BrdU double-labeling of fibroblasts, slides previously stained with anti- SMα-A 
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were rinsed and incubated with peroxidase-conjugated anti-BrdU (Roche, #1585860; 1:25).  The 

reaction product was visualized with Vector VIP (Vector, SK-4600).  

Myofibroblast, capillary, macrophage, and neutrophil density was measured in the infarct 

zone in 5 fields/section of 2 sections of infarcted heart per specimen at 400x and numbers are 

expressed as #/0.1mm2.  Proliferating cells (DAB+/BrdU+) were counted in random fields 

throughout the infarct until a total of 500 DAB- positive cells had been counted in each of 2 

sections containing infarct regions.  Vascular smooth muscle cells that are clearly part of vessels 

can easily be seen at this magnification and were thus omitted from these counts.  Measurements 

were expressed as the percentage of double-labeled cells in 1000 DAB- positive cells ± SEM.   

For detection of DNA strand breaks in cell nuclei, we used TUNEL staining, a common 

means of detecting in situ cell death in tissue sections (Salloum, Abbate et al. 2008; Yoo, 

Lemaire et al. 2009) (Roche, #11684817910).  All TUNEL positive (DAB+) cells were counted 

by inspecting random fields throughout the infarct until a total of 500 nuclei had been counted in 

each of 2 sections containing infarct regions and the data were expressed as a percentage of 1000 

total nuclei.  A double stain for TUNEL and anti-α-sarcomeric actin (Sigma, A2172, 1:4000; 

visualized with Vector Red, SK-5100) was done to determine the number of apoptotic 

cardiomyocytes in the border regions of 2 sections of the heart with infarct regions. The number 

of double positive cells was expressed as a percentage of 500 total cardiomyocyte nuclei. 

Immunoblotting. Left ventricles of mouse hearts were snap frozen in liquid nitrogen at the time 

of harvest and subsequently homogenized in HEPES buffer containing protease inhibitors.  

Proteins from control WT and mPer2-M and 4 days post-MI WT and mPer2-M left ventricles 

(40ug) were resolved by SDS polyacrylamide gel electrophoresis (7-15%) and transferred to 

PVDF membranes.  Chemiluminescence was used for immunodetection.  Images of the western 
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blots were captured using the Typhoon 9410 Imager.  Densitometry was performed using 

ImageQuant TL 1D and array image analysis software. All membranes were subsequently 

stained with Ponceau S (0.1% w/v in 5% acetic acid, Sigma P7170) to confirm equal loading and 

transfer (Moore and Viselli 2000).  

RT-PCR.  RNA was isolated from the whole LV according to routine Trizol method and 

purified using the RNeasy mini kit (Qiagen; #74104).  RT was performed using the High 

Capacity cDNA RT kit (ABI; 4368814) and 100ng RNA was amplified with TaqMan Universal 

Master Mix (ABI; 4364338) using the Applied Biosystems 7900HT Fast Real-Time PCR 

machine.  The following TaqMan primer/probes were purchased from ABI: clock 

(Mm00455950_m1), bmal1 (Mm00500226_m1), Npas2 (Mm00500848_m1), cry1 

(Mm00514392_m1), cry 2 (Mm00546062_m1), mPer1 (Mm00501813_m1), mPer2 

(Mm00478113_m1) and GAPDH (Mm99999915_g1) as an internal reference. For each gene, 

mRNA expression was analyzed in triplicate in three animals. 

Hemodynamic Determinations.  Uninfarcted mice and mice 4 days after infarction, were 

anesthetized (90 mg Ketamine :10mg Xylazine/100 g body weight i.p.).  Echocardiography 

(Toshiba Nemio 30, Duluth, GA) using a 14-MHz linear array transducer (PLM 1204AT) 

derived left ventricular (LV) volume was used to calibrate the LV volume signal obtained by the 

conductance catheter (Joho, Ishizaka et al. 2007).   Two dimensional images of the LV were 

obtained in the parasternal long axis and short axis views, and M-mode images were obtained at 

the midventricular level in both views, from which internal dimensions of the left ventricle were 

obtained at end diastole (LVIDd) and end systole (LVIDs).  Left ventricular end-diastolic 

(LVEDV) and end-systolic volumes (LVESV) were determined using the area-length method as 

validated previously (Joho, Ishizaka et al. 2007).  

https://products.appliedbiosystems.com/ab/en/US/partnerMkt/ab?cmd=ABAssayDetailDisplay&assayID=Mm00500226_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=bmal1&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults�
https://products.appliedbiosystems.com/ab/en/US/partnerMkt/ab?cmd=ABAssayDetailDisplay&assayID=Mm00514392_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=cry1&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults�
https://products.appliedbiosystems.com/ab/en/US/partnerMkt/ab?cmd=ABAssayDetailDisplay&assayID=Mm00546062_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=cry2&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults�
https://products.appliedbiosystems.com/ab/en/US/partnerMkt/ab?cmd=ABAssayDetailDisplay&assayID=Mm00501813_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=Per1&adv_kw_filter1=ALL&inventoried=1&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=25&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults�
https://products.appliedbiosystems.com/ab/en/US/partnerMkt/ab?cmd=ABAssayDetailDisplay&assayID=Mm00478113_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=Per2&adv_kw_filter1=ALL&inventoried=1&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=25&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults�
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Left ventricular pressure volume measurements were obtained using a 1.2 F pressure 

volume conductance catheter (Scisense Inc., London, Ontario) inserted into the carotid artery and 

advanced into the left ventricle as described previously (Nemoto, DeFreitas et al. 2002; 

MacGowan, Rager et al. 2005).  Pressure volume data were recorded (Polyview, Grass 

Technologies, Warwick, RI) under baseline conditions and after transient occlusion of the 

inferior vena cava.  Pressure volume loops were subsequently generated and analyzed offline, 

using CardioSoft (Sonometrics, London, Ontario) data analysis software.   Hemodynamic 

measurements included peak systolic LV pressure (LVP), stroke volume, heart rate, cardiac 

output, stroke work, maximum rate of LV pressure development (LV dP/dtmax), end-systolic 

elastance (Ees) (Suga, Yamada et al. 1984), and preload recruitable stroke work (PRSW, linear 

regression of stroke work vs. end-diastolic volume) (Glower, Spratt et al. 1985), and are 

expressed as mean ± SD (Table 1).   

Statistics.   Data are expressed as mean ± SEM.  Statistical significance between groups was 

determined by ANOVA and significance levels were p< 0.05.  Statistical analysis of 

hemodynamic data was performed using two-factor ANOVA, comparing WT and mPer2-M 

mice at baseline, and at 4 days after infarction, and individual subgroup comparisons were made 

using Tukey’s multiple range test (p < 0.05).   Mortality between 4d WT and mPer2-mutants and 

RT-PCR data was analyzed with a Student’s t-test (p < 0.05). 

 

RESULTS 

Morphometry and Histology.  No significant differences were observed in mortality between 

the WT and mPer-M mice (survival rates - mPer2-M: 83% (n= 15 of 18); WT: 85% (n= 17 of 
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20).  All mice were included in these analyses and the investigator was blinded while making 

measurements. 

The infarct area was 43% smaller in the mPer2-M mouse hearts (Figure 2.1; WT: 5.4 ± 

0.3 mm2 versus mPer2-M: 3.1 ± 0.2 mm2; p<0.05) and, as such, there was 48% less residual 

necrosis (infarct area minus granulation tissue area) in the mPer2-M (WT: 2.1 ± 0.2 mm2 versus 

mPer2-M: 1.1 ± 0.2 mm2; p<0.05) and 35% less granulation tissue in the mPer2-M (WT: 5.1 ± 

0.4 mm2 versus mPer2-M 3.3 ± 0.5 mm2 ).  

There were 40% less TUNEL positive apoptotic nuclei (as a percentage of all nuclei) in 

the mPer2-M infarcts as compared with WT mouse hearts (WT: 45 ± 3% versus mPer2-M: 27 ± 

3%; p<0.05).  Specifically, cardiomyocyte apoptosis in 4 day infarcts of mPer2-M mice versus 

WT 4 day hearts was significantly less (Figure 2.2A; 26 ± 1.9% and 41 ± 1.6% respectively). 

The average myocyte cross-sectional area (MCSA) was not different between uninjured control 

hearts of WT and mPer2-M mice (WT: 203 ± 22 µm versus mPer2-M: 225 ± 23 µm).  There was 

a non-significant trend for MCSA to be higher in the epicardium (220 ± 23 µm) than 

endocardium (186 ± 22 µm) in WT hearts in contrast to mPer2-M hearts which tended to have 

larger myocytes in the endocardium (247 ± 17 µm) versus the epicardium (208 ± 33 µm).  At 4 

days post-MI, the average MCSA (both endocardial and epicardial) was increased in mPer2-M 

hearts whereas it decreased in WT mouse hearts (Figure 2.2B; WT: 174 ± 6 µm versus mPer2-

M: 262 ± 9 µm).  There was no difference between epicardial MCSA versus endocardial MCSA 

in either WT or mPer2-M hearts at 4 days post-MI. 

 Representative micrographs of immunohistochemical staining for the pan-leukocyte 

marker CD45 in WT and mPer2-M mouse hearts are shown in Figure 2.3 (A and B, 

respectively).  Macrophage density was 25% lower in the infarct zone of mPer2-M hearts at 4 
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days post-MI as compared with WT mouse hearts (Figure 2.3C; WT: 84 ± 8 versus mPer2-M 63 

± 5; p<0.05).   There was no significant difference between neutrophils (WT 4d 13 ± 2 versus 

mPer2-M 4d 12 ± 3).  Similarly, eosinophils counts using congo red staining and toluidine blue 

staining for mast cells were present in very low numbers and thus yielded no significant 

differences between the groups (data not shown). 

There was no difference in the vessel density per 0.1mm2 in uninfarcted control hearts 

(WT: 103 ± 8 versus mPer2-M: 112 ± 4).  Representative images of CD31+ endothelial cells in 

the infarct zone at 4 days post-MI are shown in WT (Figure 2.3D) and mPer2-M (Figure 2.3E) 

mouse hearts.  We observed a 43% increase in vessel density per 0.1mm2 in the infarct zone of 

mPer2-M mice compared to WT (Figure 2.3F; WT: 49 ± 10 versus mPer2-M: 87 ± 8; p<0.01).  

Although there was no difference in the average area/vessel in the WT versus mPer2-M control 

mice or in the vessels in the infarct region, there was a significant difference in the area/vessel in 

the uninjured tissue regions of the infarcted heart (WT: 6.3 ± 0.8 µm2 versus mPer2-M: 9.7 ± 0.4 

 µm2; p<0.01).   

Immunohistochemistry for activated fibroblasts was performed using an anti- SMα-A 

antibody and representative images of infarct zone of WT and mPer2-M hearts at 4 days post-MI 

are shown in Figure 2.3 (G and H, respectively).  Fibroblast density in the infarct zone was 44% 

higher in mPer2-M hearts at 4 days post-MI than in WT mouse hearts (Figure 2.3I; WT: 60 ± 6 

versus mPer2-M: 108 ± 17, p<0.05).  There was no difference in fibroblast proliferation rate 

(SMA+ + BrdU+/SMA+) between the 2 groups at 4 days post-MI or interstitial fibrosis (data not 

shown).  It is possible that proliferation occurs earlier since there was less injury to the mPer2-M 

hearts but this was not determined.  
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Figure 2.4 shows representative micrographs for MMP-9 immunohistochemistry in 4 day 

WT and mPer2-M hearts and a western blot to demonstrate changes in the expression level.  The 

images demonstrate the presence of this protein in inflammatory cells.   One representative 

sample per group most closely approximating the average of the 3 per group measured was used 

for the western blot.  Densitometry of the bands shows there is no difference in the expression of 

MMP-9 between control WT or mPer2-M hearts, however, in contrast to the 40% increase in 

expression in 4 day WT infarcted hearts compared to control, the expression level does not 

change in mPer2-M hearts at 4 days post-MI.  

RT-PCR. The level of transcripts as measured by the Ct (detection threshold) of each gene in 

each sample was normalized to the constitutive housekeeping gene GAPDH to control for 

sample to sample differences. The groups (n=3)were compared as follows: control mPer2-M 

versus control WT, 4d WT versus 4d control, 4d mPer2-M versus control mPer2-M, and 4d 

mPer2-M versus 4 d WT.  There were no differences in the expression levels of any of the 7 

genes (mPer2 was not measured in mPer2 mutant mice), except for bmal, with a measured 1.54 

fold increase in 4D mPer2-M from 4d WT; p<0.05. 

Cardiac Function. Pressure-volume loops for WT and mPer2-M mice are shown in Figure 

2.5 (n=6 per group).  There were no differences in ventricular performance between the groups 

before infarction.  After infarction, as expected, indices of ventricular performance decreased in 

both WT and mPer2-M 4 days post-MI (Table 2.1).  However, the loss of ventricular contractile 

function was significantly attenuated in the mPer2-M animals compared to infarcted WT 

animals.  Peak LVP (WT, 67 ± 3; mPer2-M, 79 ± 4, p < 0.05), ESPVR (WT, 2.23 ± 

0.23mmHg/µL; mPer2-M 2.98 ± 0.20 mmHg/µl, p<0.05), and PRSW (49.1 ± 2.8 mmHg/µl;  

mPer2-M, 61.4 ± 2.4 mmHg, p <0.05) all were significantly better in the mPer2 animals, while 
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heart rate, cardiac output, ejection fraction, and stroke volume were not different between the 

groups.  Since bradycardia can decrease cardiac output by limiting stroke volume(Hart, Burnett 

et al. 2001), it is possible that anesthesia induced bradycardia created some degree of ventricular 

dilatation that partially masked differences between the groups in measurements of output and 

stroke volume.   However, the ESPVR and PRSW are widely held to be more sensitive measures 

of performance.  Clearly, at four days, significant dysfunction compared to control values exists 

in both groups, but the improved performance in the mPer2-M animals is consistent with the 

decreased inflammation and reduced apoptosis also described in these animals. 
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  Figure 2.1. mPer2-M hearts have reduced infarct size at 4 days post-MI.  

Representative histology of WT (top left) and mPer2-M (top right) control mouse hearts and WT 

(bottom left) and mPer2-M (bottom right) hearts 4 days after chronic MI.  Infarct size was 46% 

smaller in mPer2-M hearts 4 days post-M.I (p<0.05). Arrows point to granulation tissue, 

asterisks indicate necrosis, RV= right ventricle, LV = left ventricle. 
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Figure 2.2. A) Reduced cardiomyocyte apoptosis and B) increased myocyte cross-sectional 

area in mPer2-M mouse hearts 4 days after chronic infarction. 

There were 15% less TUNEL-positive apoptotic cardiomyocytes observed in mPer2-M mice (top 

right) as compared with WT (top left; * p <0.05).  The average myocyte cross-sectional area 

(µm2) was increased in mPer2-M mice (bottom right) versus WT (bottom left). 
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Figure 2.3.  Pan-leukocyte marker CD45 staining showed reduced CD45-positive inflammatory 

cells in mPer2-M mice (B) compared with WT mice (A) at 4 days after infarction (C; *P <0.05). 

KO, knockout. There was a significant increase in vessel density in mPer2-M (E) hearts 

compared with WT hearts (D) at 4 days post-MI (F; †P < 0.01).  Fibroblast density was also 

increased in mPer2-M (H) compared with WT (G) mouse hearts at 4 days post-MI (I; *P < 0.05). 
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Figure 2.4. MMP-9 expression in inflammatory cells is reduced in mPer2-M hearts 4 days 

after chronic infarction.  

MMP-9 is expressed in inflammatory cells in mPer2-M hearts (right) compared to WT (left) at 4 

days after infarction. A representative western blot for MMP-9 shows that there is no difference 

between uninjured WT and mPer2-M hearts. In contrast to the increased expression observed in 

WT hearts at 4 days post-MI, there is no change in MMP-9 expression in mPer2-M hearts at 4 

days post-MI. 
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Figure 2.5. mPer2-M mice showed improved LVP, ESPVR, and PRSW 4 days after 

infarction.   

Pressure-volume loops, showing pressure generated (y-axis) with volume ejected (x-axis).  

ESPVR: slope of the best fit line through the end-systolic pressure volume points in the series of 

PV loops.  With linear fit, all slopes have regressions r>0.94. 

PRSW: r > 0.95 for each of the Stroke work/End diastolic volume slopes 
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Table 2.1. Pressure-Volume (PV) Loop data.  Hemodynamics in C57 WT and mPer2-M 

mouse hearts without injury (control) and with chronic infarction 4 days post-MI. HR: heart rate; 

SV: stroke volume; EF: ejection fraction; CO: cardiac output; EDV: end diastolic volume; 

LVPsys: left ventricular systolic pressure; ESPVR: end systolic pressure volume relationship; 

PRSW: preload recruitable stroke work (values are mean ± SEM; * significantly different from 

respective control, ŧ = significantly different 4 day WT vs. 4 day mPer2-M). 

 

 

 

 

 

 

 



52 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

DISCUSSION 

Our data represent novel findings regarding the interaction between the circadian rhythm gene 

mPer2 and cardiac injury.  In summary, we observed significant myocardial protection in mPer2-

M mouse hearts as evidenced by a 43% reduction of infarct area, a 43% increase in vascular 

density, 25% less leukocyte infiltration, 17% more hypertrophy, and 15% less cardiomyocyte 

apoptosis in the infarct zone of mPer2-M mouse hearts compared to WT mouse hearts 4 days 

post-MI.  Our hemodynamic data confirm less dysfunction, as exhibited by preservation of 

contractility and indices of cardiac work such as in ESPVR, PRSW, and LVP in mPer2-M, 4 

days post-MI.  There was better functional preservation in the mPer2-M animals, although the 

large difference in infarction was accompanied by modest improvements in indices of 

contractility.  In part, some of the differences may have been masked by the bradycardia induced 

by the anesthetic, but more likely, the severity of the infarction, and the early time point of these 

data both contribute to limiting differences that might be observed in functional performance.  

However, the improvement in performance, combined with the decreased inflammation and 

volume of necrosis would be consistent with an expectation of better longer term recovery once 

the infarction completely resolves.   

In the absence of reperfusion, at 4 days post-MI, granulation tissue comprised of 

macrophages, endothelial cells, and fibroblasts are at the peak of proliferation and migration to 

initiate scar formation (Virag and Murry 2003).  Mice lacking functional mPer2 protein 

contained less macrophages, more myofibroblasts, better preservation of capillary density, and 

displayed decreased total and cardiomyocyte apoptosis compared to matched C57 controls at 4 

days post-MI.  Previous studies showing that mPer2-M mutant mice failed to show a daily 

rhythm in levels of IFN-γ a potent pro-inflammatory cytokine and activator of macrophages that 
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is secreted by NK cells (Arjona and Sarkar 2006; Liu, Mankani et al. 2006).  The decreased 

responsiveness of the inflammatory cascade may be responsible in part for the decreased 

apoptosis due to reduced oxidative stress and cytokine elaboration (Sun 2007; Frangogiannis 

2008; Hori and Nishida 2009) .   The lack of functional Per2 protein in the heart may be directly 

responsible for the reduced apoptosis as well since a previous study showing mPer2 

overexpression in mouse Lewis lung carcinoma cells and mammary carcinoma cells (EMT6) 

resulted in rapid apoptosis by downregulation of c-Myc, Bcl-X(L) and Bcl-2 and upregulation of 

p53 and bax (Hua, Wang et al. 2006).  Also, it has previously been shown that the inflammatory 

response following an LPS challenge in mPer2 mutant mice, the inflammatory response is 

blunted due to deficient NK cell function (Liu, Mankani et al. 2006).  Further, when the circadian 

system is uncoupled centrally, rats kept in total darkness during the first 48 hours following brain 

injury exhibited improved recovery (Corwin and Vargo 1993; Vargo, Lai et al. 1998; Vargo, 

Grachek et al. 1999).  These data coordinately suggest that reduced injury in the non-reperfused 

model occurred by decreased immune cell infiltration and function as well as reduced 

cardiomyocyte apoptosis, leading to expeditious resolution of infarct repair.  Increased 

myofibroblast density in the infarct zone is also suggestive of faster healing.  This notion is 

further supported by the decreased expression of MMP-9 in mPer2-M hearts at 4 days post-MI.  

MMP-9 is known to be upregulated early in response to injury and is often found to be expressed 

by leukocytes (Heymans, Luttun et al. 1999). Further, MMP-9 null mice exhibit reduced infarct 

area in response to acute ischemia/reperfusion and this was attributed to less neutrophil 

infiltration (Romanic, Harrison et al. 2002) and in the absence of reperfusion, there was less 

deleterious remodeling, dilation, and fewer macrophages (Ducharme, Frantz et al. 2000).  

Indeed, we observed decreased MMP-9 expression in inflammatory cells and this, combined 
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with the reduced density of inflammatory cells and reduced cardiomyocyte apoptosis indicates 

that less injury is part of the mechanism by which infarct area is reduced in mPer2-M hearts. 

Furthermore, the observed decrease in cardiomyocyte apoptosis, increased cardiomyocyte 

hypertrophy, and reduced infarct size imply that less death and more robust compensation act 

coordinately to preserve cardiac function. 

Mechanistically, Per1, Per2, Cry1, and Cry2 interfere with Clock-Bmal1 activity to 

repress transcription targets (Gauger and Sancar 2005; Shimba and Watabe 2009).  Since Per2 

protein is non-functional in these mPer2-M mice and bmal1 (arntl) gene expression is increased 

in response to ischemia in the absence of reperfusion in mPer2-M versus WT, this would suggest 

that the repressor activity normally effected by mPer2 is alleviated and so targets could be 

upregulated.  These targets include ET-1, VEGF, and metabolic enzymes known to play a role in 

hypertrophy and angiogenesis (Thackaberry, Gabaldon et al. 2002).  Also, the work by Kotanagi, 

S. et al (2003) showing that transfection of tumor cells with Per2 dose-dependently inhibits 

VEGF induced by hypoxia via inhibition of HIF-1α/ARNT-induced VEGF promoter activity, 

further lends support to the idea that mPer2 mutants probably have increased VEGF levels and 

hypertrophic mediators in response to hypoxia/ischemia (Thackaberry, Gabaldon et al. 2002; 

Koyanagi, Kuramoto et al. 2003).  Further investigation into vascular changes, as well as 

potential mediators of this and the observed increase in cardiomyocyte hypertrophy is currently 

underway. 

 
We postulate that synchronization between the SCN and peripheral clocks is a continuous 

process and that the pressure to maintain this synchronization involves signaling mechanisms 

that are energetically demanding for the peripheral target tissues.  When coupled with an 

underlying pathophysiology that generates a vulnerable substrate, such as coronary artery disease 
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or pressure overload, the pressure to normalize desynchronized rhythms may increase the 

progression of injury.   Additional mechanistic studies are being conducted to understand the 

signaling pathways between clock genes and cardiac genes that afford this protection.  Long-

term studies are also in progress to determine if the observed enhancements in the repair process 

result in reduced scar formation and consequent ventricular remodeling as well as amelioration 

of cardiac dysfunction. 
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2.3: mPer2 Mice Have Increased Frequency of Bone Marrow-Derived Progenitors 

 

Introduction: 

 

 We observed 43% increased vessel density in mPer2-M mice at four days post-MI, and 

there was no significant difference in endothelial cell proliferation (chapter 2.2).  Interestingly, 

preliminary data from our laboratory indicates increased ephrinA1 protein in mPer2-M mice 

(Figure 2.6).  EphrinA1 is an angiogenic protein, discussed in more detail in chapter 3.  The 

increased expression of an angiogenic protein, coupled with increased capillary density, is 

suggestive of an increased angiogenic response.  Further, ephrinA1 has been implicated in 

hematopoietic stem cell adhesion (Ting, Day et al.), so it is plausible that upregulation of this 

protein is contributing to progenitor cell recruitment to the infarcted heart.  Thus, we postulated 

that this observation may be vasculogenesis due to mobilization of circulating endothelial 

progenitor cells (EPCs).  These cells are thought to originate in the bone marrow, and mobilize 

into circulation in response to ischemia, cytokines, growth factors, and even exercise.  They are 

also present to participate in normal endogenous maintenance of the endothelium, and have been 

used as biomarkers to predict the severity of cardiovascular events (Seguin, Braun et al. 2007; 

Povsic and Goldschmidt-Clermont 2008; Mobius-Winkler, Hollriegel et al. 2009).  In 1997, 

Asahara and colleagues were the first to identify EPCs, using a combination of the hematopoietic 

cell surface marker CD34 and the vascular endothelial growth factor (VEGF) receptor Flk-1 

(Asahara, Murohara et al. 1997).  When CD34+ mononuclear blood cells were plated on 

fibronectin, a small population (approximately 80 cells per mm2) attached and formed spindle 

shapes, suggesting differentiation to an endothelial phenotype.  It was later reported that 
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producing a regional ischemia increased circulating EPC frequency in both mice and rabbits.  

Additionally, treating rabbits with GM-CSF prior to inducing hindlimb ischemia led to further 

increases in circulating EPCs and improved hindlimb vascularization (Takahashi, Kalka et al. 

1999). 

 EPCs are a relatively small population in the bone marrow and peripheral blood.  Recent 

reports indicate that these cells represent anywhere from 70-210 cells per mL of blood to 3000-

5000 cells per mL of blood (Dome, Dobos et al. 2008), to approximately 2% of the peripheral 

blood population (Chang, Leu et al.), depending on which markers are used.  In the bone 

marrow, these cells represent less than 0.003% of circulating bone marrow-derived progenitors 

(Taylor, Rossler et al. 2009).   

To assess the total number of circulating bone marrow-derived progenitor cells in C57 

and mPer2-M mice, Miltenyi Biotec’s Magnetic Activated Cell Separation was used to enrich the 

bone marrow population by depleting mature hematopoietic cells through the use of magnetically 

labeled microbeads labeled against mature hematopoietic cells.  Markers included in the linage 

cell depletion kit (Miltenyi # 130-090-858) include CD5, CD45R/B220, CD11b, Gr-1/Ly6G/C, 

7-4, and Ter-119.  We chose to isolate a bone marrow-derived subpopulation of progenitor cells, 

which are lineage cell-negative (antigens listed above), and CD34, sca-1 double-positive.  While 

there is not uniform agreement on the specific definition for an EPC, it is generally accepted that 

EPCs are derived from a CD34+ bone marrow subset, and typically express CD133 and KDR.  

There is still disagreement on including CD133 as a marker, however, because mobilized EPCs 

typically lose CD133 expression early in the mobilization process (Leone, Valgimigli et al. 

2009).  CD34 was one of the original markers used to identify EPCs (Morrison, Hemmati et al. 

1995; Asahara, Murohara et al. 1997; Kawamoto, Ohmura et al. 1997).  In our studies, the CD34 
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and sca-1 antigens were chosen due to their documented expression on bone marrow multipotent 

hematopoietic stem cells in mice. Both markers represent primitive populations of bone marrow 

cells that have not yet committed to a particular lineage.   

 

Methods: 

Bone marrow isolation:  Isolation of bone marrow was performed under sterile conditions.  Mice 

were euthanized with an i.p. injection of 0.1mL pentobarbital (390mg/mL).  Each hind leg was 

wiped with betadine, followed by 70% ethanol.  Sterile scissors and forceps were used to isolate 

the femur and tibia of each leg.  These bones were placed in a sterile petri dish, and immersed in 

70% ethanol.  The ends of each bone were cut off with sterile scissors, and 10mL of sterile 

MACS buffer (Miltenyi # 130-091-221) was flushed through each bone using a 27.5 gauge 

needle and syringe.  The suspension, containing bone marrow cells, was collected in a 50mL 

conical tube.  The sample was centrifuged at 1500rpm for 10 minutes at 4°C to pellet the cells.  

Cells were washed once with MACS buffer, then re-centrifuged.  The pellet was then 

resuspended in 1mL MACS buffer, a 10ul aliquot was taken for cell counting (using a 

hemocytometer), and the suspension was transferred to a 1.7mL eppendorf tube.  The tube was 

then centrifuged at 1500rpm for 10 minutes at 4°C.  Bone marrow from 2-3 mice per 

experimental group was pooled to obtain an adequate number of cells to analyze. 

MACS Purification: The supernatant was vacuumed off, and the pellet was resuspended in 40ul 

of MACS buffer per 107 cells.  Ten microliters of Lineage biotin-antibody cocktail (Miltenyi # 

120-001-547) was added to the cell suspension, the tube was briefly vortexed, and incubated on 

ice for 10 minutes.  Next, 30ul of MACS buffer per 107 cells and 20ul of anti-biotin microbeads 

(Miltenyi #120-000-900) per 107 cells were added to the suspension.  The suspension was 
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vortexed and incubated on ice for 15 minutes.  Cells were washed with 1mL MACS buffer per 

107 cells and centrifuged at 300xg for 10 minutes.  The supernatant was aspirated with vacuum 

filtration, and the cell pellet was resuspended with 500ul MACS buffer, per 108 cells.  One MS 

magnetic column (Miltenyi # 120-000-472) per pooled sample was used.  Each column was 

rinsed with 500ul of MACS buffer, followed by the addition of the 500ul sample suspension.  

The column was washed three additional times with 500ul MACS buffer.  The entire effluent 

was collected in a 15mL conical tube.  This is the enriched cell population, depleted of lineage 

positive cells. 

Antibody Staining and Flow Cytometry:  The collected cells were centrifuged for 10 minutes at 

300xg and 4°C.  The supernatant was aspirated, and the cell pellet was resuspended in 100ul 

MACS buffer, transferred to a 1.7mL eppendorf tube, and chilled on ice.  Two microliters of 

FITC rat anti-mouse Ly6A/E (anti-sca-1) antibody (BD Pharmingen # 557405) and 5ul of PE 

anti-mouse CD34 antibody (Biolegend # 119308) were added to the 100ul cell suspension, and 

incubated on ice for 10 minutes.  After incubation, 1mL MACS buffer was added to the tube, 

which was then centrifuged for 15 minutes at 1500rpm and 4˚C.  The supernatant was removed; 

the pellet was resuspended in 500ul MACS buffer, and transferred to a polystyrene flow 

cytometry tube.  Cells were analyzed on a Becton Dickinson FACScan flow analyzer.  Results 

are expressed as the percent double-positive for sca-1 and CD34.  Due to the need to pool 

samples from multiple mice to attain an adequate number of cells for flow cytometric analysis, 

the results represent pooled populations of 2-3 mice each.  Thus, standard error of the mean 

cannot be calculated. 
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Results: 

 

mPer2-M exhibit greater numbers of BM-derived progenitor cells before and after MI compared 

to C57 WT mice. 

 Our results indicate that the frequency of CD34+/sca-1+ progenitors in the bone marrow 

tended to be higher in mPer2-M mice than in C57 WT mice at control, basal levels (0.62% vs. 

0.45%) (Figure 2.7).  Bone marrow was collected from both strains of mice 24 hours after 

surgery.  The mPer2-M mice again had relatively higher total levels of CD34+/sca-1+ 

progenitors compared to C57 WT mice (1.01% vs. 0.73%).  Although there was a trend for 

increased levels of the mPer2-M-derived bone marrow EPCs, we could not verify this 

statistically, so we are unable to conclude that there was increased production of BM-derived 

progenitors in mPer2-M mice.  
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Figure 2.6: Western blot showing increased ephrinA1 protein expression (MW: 28kDa) in 

mPer2-M mice compared to WT mice, at control, 2 days, and 4 days post-MI. 
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Figure 2.7: mPer2-M mice exhibit higher levels of CD34+, sca-1+ progenitor cells before and 24 

hours after acute myocardial infarction, compared to wild type controls.  Top panel: CD34+, sca-

1+ frequencies.  Bottom panel: representative dot plots of C57 and mPer2-M bone marrow 

progenitors at 24 hours post-MI.   
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Discussion: 

 

 This data suggests that mPer2-M mice tended to have elevated levels of CD34+/sca-1+ 

progenitors in their bone marrow, which may be contributing to the cardioprotection observed in 

these mice.  There was a trend toward increased EPC production in mPer2-M mice, compared to 

WT, but we were unable to perform statistics on this data due to a small sample number.  

Increased bone-marrow derived progenitors may be involved in the improved vascularity we 

observed in mPer2-M mice following MI.   

 Our findings contradict that of a 2008 report from Wang et al. which investigated the 

angiogenic response in mPer2-M mice using a model of hind limb ischemia.  The authors found 

that cultured endothelial cells showed earlier growth arrests after multiple passages than their 

C57 WT counterparts.  This was coincident with increased Akt signaling in mPer2-M which may 

be responsible for the increased vascular senescence.  Additionally, matrigel was implanted with 

and without VEGF, and hemoglobin content of the matrigel was measured as an index of vessel 

formation.  mPer2-M mice had substantially less hemoglobin in the presence and absence of 

VEGF, indicating reduced angiogenesis in these mice.  Hind limb ischemia in mPer2-M led to 

autoamputation, but did not in WT mice, which may suggest impaired blood flow in response to 

ischemia.  To elucidate a mechanism for this, the authors measured circulating EPC levels and 

found that baseline levels did not differ between WT and mPer2-M mice, but the number of 

EPCs 5 days post-ischemia was significantly less in mPer2-M (Wang, Wen et al. 2008). These 

findings indicate that mPer2-M mice actually have an impaired angiogenic response to ischemia, 

which is in contrast to our findings.  However, differences in the experimental paradigm between 

the two studies make direct comparisons in the data difficult. 
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 While we cannot directly explain the differing results between our study and that of 

Wang and colleagues, there are several notable differences.  First, it is possible that the mPer2 

gene simply plays differing roles in different tissue beds.  Since the endothelial cell senescence 

study was performed in vitro, and involved cultured cells, and the in vivo work was carried out in 

a model of hind limb ischemia, these results may not be directly comparable to our studies, 

which were designed to evaluate the response to myocardial ischemia in vivo.  Cells in the Wang 

et al. study were cultured, while ours were analyzed upon collection.  Further, the markers used 

to characterize EPCs were different.  In our study, we chose to characterize cells expressing 

CD34 and sca-1, which represents a larger pool of bone marrow derived cells with which to 

work, and from which we believe EPCs are derived.  Wang and colleagues used a different set of 

markers- acetylated low-density lipoprotein (Ac-LDL), lectin, and endothelial nitric oxide 

synthase (eNOS).  As discussed earlier, the dissimilar set(s) of cell surface markers used to 

identify EPCs is still a topic of debate in this young field, and makes it difficult to make direct 

comparisons between different studies, especially when dealing with such a rare population of 

cells.  Additionally, different markers are present at different lineage stages of development. 

 There have been several reports in the last decade that have characterized the expression 

of clock genes in bone marrow-derived cells, as well as the circadian rhythm variation in 

cultured bone marrow cells.  Tsinkalovsky and colleagues (2005) analyzed bone marrow side 

populations by staining mouse bone marrow with Hoechst 33342 fluorescent dye and enriching 

the cell population through FACS.  Approximately 80% of the BM side population cells they 

isolated expressed sca-1 and c-kit, which are markers for early hematopoietic progenitors.  The 

authors reported that circadian genes mPer1, mPer2, mBmal1, mCry1, mClock, and mRev-erbα 

were all expressed in whole bone marrow and BM side populations.  There were different 
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expression patterns for several circadian genes- mPer1 and mCry1 mRNA expression was higher 

in bone marrow side populations than in whole bone marrow (Tsinkalovsky, Rosenlund et al. 

2005).  

 The same group reported in 2006 that mPer2 displays a circadian rhythm in bone marrow 

progenitors in the absence of light-dark synchronization.  Other clock genes that were 

investigated did not appear to exhibit circadian variation when examined in side population cells.  

However, in whole bone marrow and liver cells, mPer1 and mRev-erbα displayed circadian 

variation, indicating that expression of circadian clock genes may be regulated during 

development (Tsinkalovsky, Filipski et al. 2006). 

 A 2008 report in Nature elucidated some of the questions surrounding hematopoietic 

stem cell (HSC) release with regards to circadian rhythms.  The authors measured levels of 

circulating HSCs following exposure to photic stimulation.  Additionally, expression of the 

Cxcl12 chemokine was measured, as it is the only chemokine known to be involved in HSC 

migration.  When CXCL12 expression was at its lowest, HSC levels in the blood were at their 

highest, while high levels of CXCL12 corresponded to low levels of circulating HSCs.  When 

mice were exposed to 12 hours of light and 12 hours of darkness, there was a regular oscillation 

of HSCs in circulation.  However, when the light-dark cycle was advanced by 12 hours, to 

simulate “jet lag,” circulating HSCs did not oscillate with any kind of regularity with regard to 

time (Mendez-Ferrer, Lucas et al. 2008).  Based on these findings, it was crucial that blood in 

our study was collected at approximately the same time each day.  In this study, it was collected 

in the mornings, between 9 and 11am.  Likewise, all mice in our studies are housed in 12 hours 

of light/12 hours of dark conditions, to ensure consistency during sample collection and analysis. 
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 Our data in chapter 2.2 indicated a robust cardioprotection in mPer2-M mice following 

acute myocardial infarction that was, in part, characterized by elevated capillary density.  

Investigating the specific mechanism for this apparent revascularization is of great interest to our 

laboratory.  One initial hypothesis was that mPer2 mice may have higher levels of EPCs, or may 

have improved mobilization of their bone marrow-derived EPC pool.  Clearly, more work must 

be done to definitively answer this intriguing question, but these initial data suggest that EPCs 

may in fact play a role.  In addition to measuring EPC levels in the blood (to contrast with levels 

from the bone marrow), it will also be imperative to measure CXCL12 and CXCR4 expression, 

to explore whether or not that mobilization signaling cascade may be involved, as well as 

enhanced myocardial expression of homing signals. 
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2.4: Conclusions 

 

mPer2-M mice subjected to 4 days non-reperfused myocardial ischemia are protected 

more than their wild type (WT) counterparts in the days following MI.  This was characterized 

by a 43% reduction in infarct size, 25% less macrophage infiltrate, 43% increased capillary 

density, 17% increased myocyte hypertrophy, as well as 15% less myocyte apoptosis.  In 

addition, we observed higher levels of bone marrow-derived progenitors in mPer2-M mice 

compared to WT, in control mice and 24 hours post-MI.  Together, this data suggests that 

functional deletion of the mPer2 clock gene provides cardioprotection from ischemic events in 

mice. 

 Interestingly, our results are in conflict with several recent reports also looking at the 

Per2 gene.  For example, hemodynamic data from Vukolic et al. indicated that Per2 mutant mice 

abolishes the “dipping” phenomena, which may indicate nocturnal hypertension (Vukolic, Antic 

et al.).  Our data suggests an improved functional response in mPer2-M to myocardial ischemia, 

with no notable differences between mPer2-M and WT mice under control conditions.  However, 

we did not investigate functional parameters in animals housed under constant darkness, which 

may elicit different results.   

 As discussed in chapter 2.3, our preliminary EPC data conflicts with that of Wang and 

colleagues (Wang, Wen et al. 2008), who found that mPer2-M mice have significantly less EPCs 

following an ischemic event than WT mice.  However, differences between our study and theirs 

may simply be due to different experimental models (LAD ligation vs. hind limb ischemia) or 

the use of different cell surface markers to characterize EPCs. 
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 Another study that looked at gene expression in bone marrow from mPer2-M mice was 

published in 2009.  Luo and colleagues demonstrated that circadian oscillations of several clock 

genes (Per1, Bmal1, Clock, and Rev-erbα) were disrupted in mPer2-M mice, but present in wild 

type mice (Luo, Tian et al. 2009).  This suggests that mPer2 plays a critical role in regulating 

circadian oscillations in the bone marrow.  In addition, the authors revealed that mPer2-M mice 

had downregulated Ly49C and Nkg2d mRNA.  Both of these genes are involved in cytotoxicity 

regulation, which may support our findings if the functional absence of Per2 promotes cellular 

survival. 

 A recent report by Kakan and colleagues demonstrated that mPer2-M mice had less 

severe acetaminophen- (APAP) induced liver damage than wild type mice when APAP was 

administered in the evening.  There was no difference in liver injury between the two strains 

when APAP was administered in the morning.  It was hypothesized that the mPer2-M protection 

from injury was mediated by reduction of an important cytochrome P450 isoform, Cyp1a2 

(Kakan, Chen et al.).  P450 enzymes are known to be expressed in the heart, but it is not yet clear 

what their role is in the progression of MI (Sunder-Plassmann 2007; Zordoky, Aboutabl et al. 

2008; Chaudhary, Batchu et al. 2009).  This would be a unique direction to expand on our 

current studies in the mPer2-M mice. 

 Because of the epidemiological interest in circadian rhythm and its involvement in 

cardiovascular disease, our study may provide new insight into the molecular involvement of a 

specific clock gene in the infarct repair process.  More studies are certainly needed, to ascertain 

specific mechanisms which may be involved in this cardioprotection.  A basic understanding of 

the interplay between circadian clock genes and cardiovascular disease may lead to novel 

insights in this field.



 

   

   

CHAPTER 3: EPHRINA1/EPHA RTK SIGNALING AND MYOCARDIAL INFARCT 

REPAIR 

 

3.1: Introduction 

 

Discovered in 1987, Eph receptors represent the largest family of receptor tyrosine kinase 

(RTK) receptors.  Ephrins, or “Eph receptor-interacting ligands,” bind these receptors.  Since 

their discovery, there has been a rapidly growing body of literature representing interest in the 

field, with approximately 1200 PubMed listings in 2008 (Lackmann and Boyd 2008).  The vast 

majority of these publications are focused on development and cancer.  In fact, only a handful of 

publications exist that document the expression or role of Eph or Ephrin proteins in the heart- 

either developmentally (Li, McTiernan et al. 1998; Gerety, Wang et al. 1999; Li, Mi et al. 2001; 

Gerety and Anderson 2002; Cowan, Yokoyama et al. 2004; Wang, Cohen et al. 2004; Grego-

Bessa, Luna-Zurita et al. 2007; Stephen, Fawkes et al. 2007) or in adult (Mansson-Broberg, 

Siddiqui et al. 2008). 

 There are two subclasses of Eph receptors and ephrin ligands, based on their structure, 

binding affinity and sequences.  The A sub-class consists of 10 EphA receptors, which bind the 

six ephrinA ligands.  Likewise, there are six EphB receptors which may bind the three ephrinB 

ligands.  For the most part, binding is said to be “promiscuous,” with only ligands and receptors 

of the same class interacting.  However, there are several exceptions and cross-talk between 

subclasses can occur.  The ephrinA5 ligand will bind the EphB2 receptor, and the ephrinB2 
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ligand will bind the EphA4 receptor (Mosch, Reissenweber et al. ; Kullander and Klein 2002; 

Himanen, Saha et al. 2007).  We did measure expression of other ephrin ligands (data not shown) 

and did not see changes in any of them with MI or with ephrinA1 treatment, so the effects 

reported here are most likely due to direct modulation of EphA receptors by ephrinA1. 

 Both ligands and receptors are membrane-bound, meaning that cell to cell contact is 

required for interactions.  As stated previously, a major difference between the two sub-classes is 

structure of the proteins- specifically, how they are anchored to the membrane.  EphrinA ligands 

are bound to the membrane by a glycosylphosphatidylinositol (GPI) linkage, while EphrinB 

ligands consist of a transmembrane-spanning domain.  Receptors consist of both an extracellular 

and intracellular domain.  On the intracellular side is the tyrosine kinase domain, as well as a 

sterile alpha motif and a Postsynaptic density 95-Discs large-Zonula occludentes-1 (PDZ) 

binding motif (Mosch, Reissenweber et al. ; Brantley-Sieders, Schmidt et al. 2004). 

 

Eph/Ephrin Signaling 

 

When an ephrin ligand binds an Eph receptor, forward signaling occurs in the direction of 

the receptor-expressing cell.  This signaling cascade is dependent on the tyrosine kinase domain 

as well as associations with other effector proteins.  Simultaneously, signals to the ligand-

expressing cell initiate reverse signaling (Holland, Gale et al. 1996; Himanen, Saha et al. 2007; 

Pasquale 2008).  Recently, it has been proposed that ephs and ephrins on the same cell surface 

may interact to silence bidirectional signaling, but the mechanism has yet to be elucidated (Egea 

and Klein 2007).  As is the case for most RTKs, dimerization of the receptors is necessary for 

phosphorylation and activation to occur.  However, multimerization of the ligands is also 
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required, and in some cases, the degree of activation can be amplified by the extent of ligand 

aggregation (Gale and Yancopoulos 1997; Surawska, Ma et al. 2004). 

Many of the initial discoveries made regarding Ephs and ephrins involved the processes 

of cellular repulsion and adhesion.  Forward signaling is typically associated with cellular 

repulsion, while reverse signaling is associated with cellular adhesion.  Following cell-to-cell 

contact of the receptor- and ligand-expressing cells, cell separation must occur if repulsion is to 

happen.  This is typically accomplished by either cleavage of the cell surface proteins or trans-

endocytosis of the entire Eph/ephrin complex (Himanen, Saha et al. 2007; Kuijper, Turner et al. 

2007).  Adhesion and repulsion are important processes in vascular development, axon guidance, 

tumor metastasis, and cellular invasion.   

 

Involvement of EphA/ephrinA in Disease 

 

As previously mentioned, much of the interest in Eph/ephrin signaling has been in the 

cancer literature.  Briefly, EphA2 has been identified on the endothelium of tumor blood vessels, 

and its ligand, ephrinA1, is expressed on tumor cells (Brantley, Cheng et al. 2002).  Additionally, 

EphrinA1 has been identified as a downstream target of VEGF, TNFα, and HIF-2α (Pandey, 

Shao et al. 1995; Cheng, Brantley et al. 2002; Yamashita, Ohneda et al. 2008).  Upregulation of 

EphA2, particularly in breast and prostate cancer, is often correlated with a poor prognosis in 

cancer patients (McCarron, Stringer et al. ; Ireton and Chen 2005; Landen, Kinch et al. 2005; 

Wykosky and Debinski 2008).  However, EphA1 downregulation has been observed in skin and 

colorectal cancers (Hafner, Becker et al. 2006; Herath, Doecke et al. 2009).      
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While there is minimal literature documenting the expression patterns of Eph receptors or 

ephrin ligands in response to ischemic cardiovascular events, more is known about their response 

to central nervous system (CNS) injury, where there have been reports of upregulated Eph 

receptors and ephrin ligands (Du, Fu et al. 2007; Pasquale 2008).  In 1999, Moreno-Flores and 

colleagues induced neuronal death by kainite injection, and found EphA4, EphB2, and EphA5 

expression in the hippocampal neurons three days after injury.  The authors suggest that these 

receptors may be involved in axonal migration in response to injury, or in post-injury glial 

activation (Moreno-Flores and Wandosell 1999).  A more recent report by Liu and colleagues 

showed that EphB3-expressing macrophages were recruited to injured axons expressing the 

ephrinB3 ligand following injury of the adult retinal ganglion (RGC), suggesting a role for 

EphB3 in axon plasticity (Liu, Hawkes et al. 2006).  EphA4 was found to be accumulated in 

injured axons following spinal cord injury in rats, while its ephrinB2 ligand was upregulated in 

the astrocytes surrounding the injury (Fabes, Anderson et al. 2006).  In a non-human primate 

model, EphA4 was upregulated on astrocytes around a lesion site in the primary visual cortex, 

and could be activated by ephrinA5-Fc to stimulate astrocyte proliferation.  It was reported that 

activation led to downstream signaling of both the mitogen-activated protein kinase (MAPK) and 

Rho pathways (Goldshmit and Bourne). 

In the heart, the EphA3 receptor is critical for development of the atrioventricular valves 

and atrial septum.  Both the A3 receptor and ephrinA1 ligand were identified in adjacent 

endocardial cells.  EphA3 mutant mice had atrioventricular canal and septal defects, were 

bradycardic, and approximately 75% died of cardiac defects (Stephen, Fawkes et al. 2007).  The 

ephrinA5 ligand has also been identified in isolated neonatal cardiomyocytes, and when it was 

overexpressed in these cells, the EphA3 receptor was downregulated, and there was reduced 
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bromodeoxyuridine incorporation (Li, Mi et al. 2001).  To our knowledge, only one study has 

evaluated the expression pattern of Eph receptors and ephrin ligands in the heart, which will be 

discussed in more detail in chapter 3.2 (Mansson-Broberg, Siddiqui et al. 2008). 

Eph RTKs and ephrin ligands are also involved in the inflammatory process, by 

enhancing epithelial/endothelial barrier permeability, and promoting leukocyte extravasation.  

Both ligand and receptor are expressed in the vascular endothelium as well as the epithelium, and 

also on leukocytes (Ivanov and Romanovsky 2006).  One study demonstrated that ephrinA1 

stimulation of T cells and thymocytes inhibited their migration in transwell plates (Sharfe, 

Freywald et al. 2002).  However, another study showed the opposite- stimulation of CD4+ T 

cells with ephrinA1 promoted chemotaxis.  Further, the EphA1 and EphA4 receptors were 

identified on CD4+ T cells (Aasheim, Delabie et al. 2005).  Clearly, there is a role for Ephs and 

ephrins in the inflammatory process.  However, the role of these proteins in modulating the 

inflammatory response following MI remains un-explored. 

  Eph/Ephrin signaling also appears to be involved in cell survival and death.  In one 

study, T cells which expressed the ephrinA4 ligand were stimulated with EphA2-Fc. Activation 

of ephrinA4 by EphA2 partially abolished cell death, as evaluated by thymidine incorporation.  

By using propidium iodide staining and a TUNEL assay, the authors were able to conclude that 

EphA2-stimulated reverse signaling, through ephrinA4, inhibited T cell apoptosis.  In addition, it 

was concluded that EphA2/ephrinA4 reverse signaling induced Akt phosphorylation (Holen, 

Shadidi et al. 2008). 

The goal of the studies in chapter 3 is to elucidate the role(s) of Eph/ephrin signaling in 

the context of non-reperfused myocardial infarction.  Specifically, we hypothesize that the 

ephrinA1 ligand and its receptors will be expressed in the heart, and expression of the angiogenic 
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ephrinA1 ligand will decrease in response to injury.  Supplementation with chimeric ephrinA1-

Fc will ameliorate the infarct response and promote tissue salvage.  Based on its purported roles 

in angiogenesis, inflammation, and cell survival, this signaling cascade would be an attractive 

therapeutic target in reducing cellular damage and death following MI.   
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3.2: Intramyocardial Administration of EphrinA1-Fc Promotes Tissue Salvage Following 

Myocardial Infarction in Mice 

As submitted to the Journal of Physiology, November 2010 

 

Introduction 

 

The heart lacks an endogenous regenerative capacity sufficient for repair after injury.  

Consequential left ventricular remodeling after myocardial infarction (MI) leads to LV dilatation, 

ultimately leading to heart failure (Pfeffer and Braunwald 1991; Gaudron, Eilles et al. 1993; 

Goldstein, Ali et al. 1998; Holmes, Borg et al. 2005). To reduce this epidemiologic and fiscal 

burden, it is imperative that strategies be developed to preserve cardiomyocyte survival, 

subsequently reducing myocardial infarct size, and reducing overall LV remodeling. 

Immediately after coronary occlusion, ischemic myocytes downstream from the 

occlusion become necrotic and/or undergo apoptosis (Cheng, Kajstura et al. 1996; MacLellan 

and Schneider 1997; Freude, Masters et al. 1998) or autophagy (Nakai, Yamaguchi et al. 2007; 

Dorn and Diwan 2008; Porrello and Delbridge 2009) . Cardiac troponin I is released, which can 

be measured in plasma and correlates to the size of injury (Bodor, Porterfield et al. 1995; 

Chapelle 1999; Braunwald, Antman et al. 2002; Nageh, Sherwood et al. 2003; Oyama and Sisson 

2004; Jaffe 2005).  Neutrophils infiltrate the tissue immediately, while leukocytes, 

predominantly macrophages, arrive shortly thereafter and participate in digestion of necrotic 

cellular debris.  Neutrophils in the ischemic tissue can be toxic to the surrounding myocytes, 

because they release reactive oxygen species and proteolytic enzymes which further injure the 
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surrounding myocytes (Lefer and Granger 2000; Frangogiannis, Smith et al. 2002; Frangogiannis 

2008; Lambert, Lopez et al. 2008; Nah and Rhee 2009).  Once damage occurs, a hypocellular 

scar forms that leads to contractile dysfunction and heart failure (Fishbein, Maclean et al. 1978; 

Frangogiannis, Smith et al. 2002; Virag and Murry 2003; Dorn 2009).  

Since the discovery of the Eph (erythropoietin-producing hepatocellular carcinoma) 

receptor tyrosine kinase (RTKs) in 1987 (Hirai, Maru et al. 1987), a great deal of effort has been 

focused on elucidating Eph receptor tyrosine kinase (RTK) and ephrin ligand signaling in the 

context of numerous pathologies.  A distinguishing characteristic of Eph-ephrin interactions is 

the ability to generate bidirectional signaling.  “Forward” signaling occurs in the direction of the 

receptor-expressing cell, while “reverse” signaling occurs in the direction of the ligand 

expressing cell (Bruckner, Pasquale et al. 1997; Mellitzer, Xu et al. 1999; Klein 2001; Kullander 

and Klein 2002).  Upon ligand binding and receptor activation, endocytic internalization of the 

complex occurs (Pasquale 2010), leading to downregulation of the protein.  Intracellular 

cascades downstream of Eph/ephrin signaling are involved in cellular survival, growth, 

differentiation, and motility (Zhou 1998; Kullander and Klein 2002; Arvanitis and Davy 2008; 

Pasquale 2008; Pasquale 2010).  The EphA1 receptor has been linked to angiogenesis through 

endothelial cell migration.  Like the ephrinA1 ligand, EphA1 is induced by TNF-α, VEGF, and 

IL-1β, leading to cellular adhesion via integrins and vessel destabilization (Pandey, Shao et al. 

1995; Cheng, Brantley et al. 2002; Cheng, Brantley et al. 2002; Moon, Lee et al. 2007).  

Similarly, the EphA2 receptor, expressed on endothelial cells, is widely reported as a key player 

in angiogenesis, particularly in development and cancer (Ogawa, Pasqualini et al. 2000; 

Brantley-Sieders, Schmidt et al. 2004; Brantley-Sieders, Fang et al. 2006; Wykosky, Palma et al. 

2008).               
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Of the five ephrinA ligands, ephrinA1 is unique in that it is the only ligand which binds 

all eight EphA receptors known to be expressed in mice.  Aside from its predominant 

characterization as a pro-angiogenic factor in adult mouse tumors, (Easty, Hill et al. 1999; 

Ogawa, Pasqualini et al. 2000; Iida, Honda et al. 2005), ephrinA1 appears to be involved in 

inflammation and apoptosis, two very important facets of infarct progression.  It was reported in 

2006 that Eph receptors are differentially expressed at early and late stages of inflammation 

(Ivanov and Romanovsky 2006).  For example, at earlier stages of inflammation, EphA2 and 

EphrinB2 expression is predominantly localized to epithelial and endothelial cells, promoting 

disruption of the endothelial/epithelial barrier.  However, as the inflammatory process 

progresses, expression of EphA1, EphA3, EphB3, and EphB4 on these cells decreases, allowing 

infiltrating leukocytes to adhere to endothelial cells by disrupting endothelial/epithelial barriers 

(Ivanov and Romanovsky 2006).  EphrinA1/EphA receptor expression changes also appear to be 

involved in regulating pathways involved with apoptosis.  In 2006, Munoz and colleagues 

reported that EphA4 deficient mice exhibited both defective T cell development and increased 

numbers of apoptotic cells (Munoz, Alfaro et al. 2006).  These two reports suggest a role for the 

EphA4 receptor in mediating cell death, and it is reasonable to suspect that activation of this 

receptor is anti-apoptotic, while inhibition or removal of this receptor is pro-apoptotic. 

The present study was designed to characterize the expression of ephrinA1/EphA RTKs 

in the uninjured adult myocardium, in response to ischemia in non-reperfused myocardium, and 

the role of exogenous ephrinA1 in limiting myocardial infarct injury.  Specifically, we tested the 

hypothesis that intramyocardial administration of ephrinA1-Fc at the time of injury would 

promote myocyte survival and subsequently reduce infarct size and inflammatory cell infiltrate.  
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Our results indicate a novel and robust cardioprotective role for ephrinA1-Fc in limiting 

excessive infarct injury in the nonreperfused myocardium.   

 

Methods 

 

Ethical Approval.  All procedures were approved by the East Carolina University Institutional 

Animal Care and Use Committee and the investigation conforms to the Guide for the Care and 

Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication 

No. 85-23, revised 1996). 

Animals.  Six week old B6/129S breeder pairs were obtained from Jackson Laboratories (Bar 

Harbor, Maine) to establish an in-house colony (strain # 101045).  Animals were housed in 12-

12 light/dark cycle conditions and received food and water ad libitum.   

Surgical Procedure.   Male 8-10 week old mice (22-28g) were anesthetized (20 µl/g Avertin 

i.p.), intubated, and mechanically ventilated.  The left anterior descending (LAD) coronary artery 

was permanently ligated using 8-0 suture.  Sham controls in which the suture was pulled through 

the heart but not ligated, and either IgG-Fc or ephrinA1-Fc was injected, were done to ensure 

that there was no injury caused by the injection (data not shown).  Infarction was confirmed by 

blanching of the myocardium distal to the site of ligation.  Following coronary occlusion, using a 

Hamilton syringe with a sterile 30 gauge needle, animals received a single intramyocardial 

injection of either 6ug IgG-Fc (R&D #110-HG), or 6ug ephrinA1-Fc (Sigma #E9902) 

resuspended in 6ul sterile PBS at the peri-infarct zone.  This dose was chosen based on prior 

studies showing effective doses of intramyocardial injections of Tβ4 (Bock-Marquette, Saxena et 

al. 2004) and intraperitoneal injection of ephrinB2-Fc (Mansson-Broberg, Siddiqui et al. 2008).  
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Additionally, this dose is within the therapeutic range (for humans) of the maximum 

recommended therapeutic dose (MRTD) 0.00001 to 1000mg/kg-bw/day, as defined by the FDA 

(Contrera, Matthews et al. 2004).  Taking into account heart weight, potential for efflux of the 

protein from the heart via the injection site, and that an average mouse left ventricle weighs 

approximately 150mg, injecting 6µg of protein intramyocardially is within this range 

(approximately 40mg/kg).   The investigator performing the surgery was blinded as to the 

treatment, which were randomized by another investigator.  Once the animals recovered, they 

were returned to the vivarium. The surgical procedure is described in more detail elsewhere 

(Virag and Murry 2003; Virag, Dries et al. 2010). 

Four days after surgery, mice were given a 0.5 ml i.p. injection of 5-bromodeoxyuridine 

(BrdU, 5mg/ml) to label proliferating endothelial cells  and anesthetized 1 hour later with an i.p. 

injection of 0.1mL pentobarbital (390mg/mL) (Virag and Murry 2003).  The heart was arrested 

in diastole using cold KCl (30mM), excised, rinsed in PBS, and immersed in zinc fixative with a 

segment of small intestine (used as a positive control for BrdU+ proliferating cells).  Hearts were 

sectioned transversely into 4 slices of equal thickness and were processed and embedded in 

paraffin.   Routine histological (hematoxylin and eosin) procedures and immunostaining were 

performed using 5 µm sections, as described below (Virag and Murry 2003). 

EphrinA1-Fc Distribution in the Myocardium: To determine the distribution pattern and duration 

of persistence of ephrinA1-Fc in the nonreperfused myocardium, an anti-human IgG-Fc was 

used to immunolocalize the ephrinA1 chimera in hearts at 30min, 4hr, and 24h post-injection 

(n=3 per group).  A representative image (Figure 1) shows prominent epicardial and transmural 

staining at 30min.  Light staining was observed in 2 of 3 hearts at 4hr but none was observed at 
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24hr or 4 days post injection, saline injected hearts, or in tissues incubated without the primary 

antibody (data not shown). 

Histology and Morphometry.  Images of four hematoxylin and eosin stained sections per heart 

were taken at 20x using a DP70 digital camera.  Scion imaging software (Scion Corporation, 

Frederick, MD) was used to trace the cross sectional area of the left ventricular wall and 

chamber, as well as the infarct zone (necrosis + granulation tissue) and necrosis.  Measurements 

from three to four complete, transverse profiles per heart were averaged.  Septal and free wall 

thicknesses were also measured using the average of three radial measures in each of two 

sections containing infarct.  The investigator was blinded as to the treatment while obtaining 

morphometric measurements.   

Immunostaining.  Tissue sections were deparaffinized in xylene and endogenous peroxidases 

quenched with 3% H202 in methanol.  Slides were rinsed in PBS and incubated with anti-

ephrinA1 (Zymed # 34-3300), CD45 (PharMingen, #550539; 1:2000) for leukocytes, Ly6G 

(PharMingen #550291) for neutrophils, or CD31 (PharMingen #553371) and anti-BrdU (Roche 

#11585860001) for proliferating endothelial cells. Slides were incubated with appropriate 

biotinylated secondary antibodies and then with Avidin Biotin Complex (Vector Labs PK-6100).  

The reaction product was visualized with DAB (Vector, SK-4100), counterstained with methyl 

green, dehydrated in xylene, and slides were coverslipped. For the ephrinA1 staining, a second 

antibody, anti-ephrinA1 (Santa Cruz, # sc-911) was used to verify consistent staining pattern.  

Negative controls were performed in the same manner but without a primary antibody.  For mast 

cell staining, slides were sent to Histo-Scientific Research Laboratories (Mount Jackson, 

Virginia) for pinacyanol erthrosinate staining to identify mast cells (Murray, Gardner et al. 

2004).  Leukocyte, neutrophil, and mast cell density was measured in 3 fields per section of 2 



83 
 

sections of infarcted heart at 400X.  Results were expressed as the number of cells per 0.1mm2.  

For proliferating endothelial cells (BrdU+ + CD31+), numbers are expressed as a percentage of 

1000 endothelial cells (CD31+ only). 

Cardiac Troponin I (cTnI) Measurements.  Approximately 50-100µl of whole blood was 

collected from mice pre-surgery and at the time of euthanasia by a submandibular bleed, stored 

in lithium heparin coated tubes on a rocker to prevent clotting, and analyzed within 30 minutes 

of collection on an i-STAT Handheld Clinical Analyzer with cTnI cartridges (Abbott labs 

#06F15-04).  Values are expressed as ng/mL. 

Protein Isolation:  Whole left ventricles were snap frozen in liquid nitrogen at the time of 

collection, and stored at -80˚C until use.  The whole LV was homogenized in a lysis buffer 

containing 50mM hepes, 10mM EDTA, 100mM NaF, 50mM Na pyrophosphate, and 1% each of 

protease and phosphatase inhibitors.  Protein was quantified using the Bradford Assay. 

Western blotting:  Western blotting was performed on a 4-12% gradient Bis-Tris gel (BioRad) in 

1X MOPS running buffer.  50ug of sample was loaded per well, and the gel was run for 1 hour at 

155V, and transferred for 55 minutes (for ephrinA1, BAG-1 and GAPDH) or 1hr 30 min (for 

cleaved PARP, AKT, and pAKT) onto pure nitrocellulose membranes (BioRad).  The membrane 

was incubated with one of the following antibodies: cleaved PARP (89kDa; Cell Signaling 

#9544; 1:1000), ephrinA1 (28kDa; Santa Cruz, sc-911; 1:100), AKT (Cell Signaling #4691, 

1:1000), phospho-AKT (Cell Signaling #4060, 1:2000), and GAPDH (37kDa; Millipore 

#MAB374; 1:100), followed by appropriate secondary antibodies.  EphrinA1 and cleaved PARP 

were run on the same membrane, which was cut horizontally at 50kDa, with the bottom half of 

the membrane used for the ephrinA1 blot, and the top half used for the cleaved PARP blot.  The 

ephrinA1 blot was then stripped/reprobed for anti-GAPDH to confirm equal protein loading.  All 
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blots were detected with Amersham ECL Advance (GE Healthcare #RPN2135) and imaged on a 

Typhoon Imager.  Densitometry was performed using Image J software and the intensity of each 

protein was normalized to GAPDH.  In the case of pAKT/AKT, the amount of phosphorylated 

AKT protein was normalized to total AKT.  

RNA extraction and real-time RT-PCR.  The Trizol method was used for RNA isolation, 

followed by the Quiagen RNeasy kit for additional purification.  cDNA was synthesized using a 

high capacity cDNA kit.  Real-time RT-PCR was conducted on an Applied Biosystems 

thermocycler.  A reaction mixture of 10 µL containing 100ng RNA was amplified using 

recommended conditions for TaqMan primers provided by Applied Biosciences. TaqMan 

primers and probes were obtained from Applied Biosciences (EphrinA1: Mm00438660_m1), 

EphA1: Mm00445804_m1, EphA2: Mm00438726_m1, EphA3: Mm00580743_m1, EphA4: 

Mm00433056_m1, EphA5: Mm00433074_m1, EphA6: Mm00433094_m1, EphA7: 

Mm00833876_m1, GAPDH: Mm99999915_g1).  In each experiment, fluorescence data were 

analyzed using the ΔΔCT method.  Gene expression was normalized to the housekeeping gene 

GAPDH.  No Template Controls (NTC) were included in each experiment, and all samples were 

run in triplicate. 

Statistics.  Student t-tests were used to test statistical significance between 4 day MI and 

ephrinA1-Fc-treated MI for RT-PCR, relative infarct size, and necrosis.  ANOVAs and student 

Newman-Keuls post-hoc analyses were used to determine differences between control, 4 day MI, 

and ephrinA1-Fc-treated MI for cTnI, inflammatory cell density, chamber area, and left 

ventricular free wall thickness.  The number of hearts analyzed for each endpoint and 

significance levels have been specified for each experiment in the Figure legends.  Four animals 
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were excluded from all experiments: two from each group, based on suboptimal cTnI and/or 

overall health of the animals.  P values less than 0.05 were considered significant. 

 

Results 

 

EphrinA1-Fc Reduces Infarct Size, Necrosis, Chamber Dilation, and Left Ventricular Free Wall 

Thinning. 

EphrinA1-Fc or IgG-Fc was injected into the border zone of the infarct immediately after 

coronary ligation.  Four days after surgery, tissue was collected and either fixed for histology and 

immunohistochemistry, or frozen for RNA and protein isolation.  Overall survival for this study 

was 70%, and there was no difference in survival between experimental groups.  Histological 

staining and morphometric analyses (Figure 2) show a 50% reduction in the size of the infarct 

(expressed as a percent of the left ventricle), 64% less necrotic area, a 35% reduction in chamber 

dilation, and 32% less thinning of the infarcted left ventricular free wall.  Of note, there was no 

significant difference in chamber area between uninjured control hearts and those treated with 

ephrinA1-Fc at day 4 post-MI. 

 

Cardiac Troponin I Levels Reduced with ephrinA1-Fc Administration 

In the present study, serum cTnI levels were measured prior to surgery and at the time of 

euthanasia (four days post-MI) in the same animals.  There was an 89% increase in cTnI levels 

following MI in vehicle treated hearts.  However, cTnI levels in ephrinA1-Fc treated hearts were 

54% lower than those from vehicle treated animals (Figure 3A), p<0.05.  Interestingly, there was 
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no significant difference between pre-surgery levels and those of ephrinA1-Fc treated animals 

four days post-surgery.  

 

EphrinA1-Fc Treated Hearts Show Diminished cleaved PARP Expression and Increased BAG-1 

Expression. 

 In the present study, cleaved PARP, the main target of caspase-3 and an indicator of 

increased apoptosis (Nicholson, Ali et al. 1995; Tewari, Quan et al. 1995; Oliver, de la Rubia et 

al. 1998), increased by approximately 88% in response to MI, but diminished with ephrinA1-Fc 

treatment (Figure 3B) below control levels.  Although we did not observe a change in the level of 

Bcl-2 protein expression with ephrinA1-Fc treatment (data not shown), we did observe a change 

in Bcl-2-associated athanogene-1 (BAG-1).  BAG-1 is a protein that enhances the anti-apoptotic 

effects of Bcl-2 and has also been identified as a cardioprotective protein through interactions 

with heat shock proteins (Doong, Vrailas et al. 2002; Townsend, Cutress et al. 2004).  We report 

here that ephrinA1-Fc administration upregulated the expression of the BAG-1 protein by 

approximately 54% (Figure 3C).   

 

 

 

EphrinA1-Fc Treatment Reduces Inflammatory Cell Infiltration to Infarcted Myocardium 

Our results indicate a 57% reduction in neutrophil density (Figure 4A) and a 21% 

reduction in leukocyte density in ephrinA1-Fc-treated versus IgG-Fc-treated hearts at 4 days 

post-MI (Figure 4B), indicating ephrinA1-Fc attenuates the inflammatory response.  We 
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observed no statistical differences in the numbers of mast cells between ephrinA1-Fc and vehicle 

treated hearts, with only a few (1-6 per section of LV) mast cells per heart (data not shown). 

 

EphrinA1-Fc Treatment Does not Influence the Angiogenic Response to MI.   

No differences were seen in endothelial cell proliferation (5.0 ± 1% vs. 6.1 ± 1.3%; n=3 

vehicle, n=5 ephrinA1-Fc) or capillary density (111 ± 26.4 vs. 111 ± 26.0 vessels per 40X high 

power field, n=4 per group) between vehicle- and ephrinA1-Fc-treated hearts, respectively. 

 

EphrinA1 and EphA Receptor Gene Expression in Response to EphrinA1-Fc Treatment 

EphrinA1 gene expression was quantified using qRT-PCR.  mRNA levels decrease 

significantly by 35% following MI, and remain unchanged with ephrinA1-Fc treatment (Figure 

5).  Of the eight receptors, EphA1, A2, A3, and A7 were all significantly upregulated four days 

after MI (5-fold, 2-fold, 5-fold, and 28%, respectively); EphA1 andA2 were further upregulated 

with ephrinA1-Fc treatment (10-fold and 3-fold, respectively, from control).  Despite not 

changing in response to MI, EphA4 was significantly upregulated 2-fold with ephrinA1-Fc 

treatment.  EphA6 was detected in control hearts, but significantly decreased in response to MI, 

and expression in the ephrinA1-Fc- treated group was unchanged relative to the untreated MI 

group (Figure 5).  Ligands ephrinA2-A5 and EphrinB3 (the only B ligand known to bind to an 

EphA receptor, specifically, EphA4) were also detected in the heart, but their expression did not 

change in response to MI or ephrinA1-Fc administration (data not shown). 

      

Endogenous EphrinA1 Tissue Expression Pattern post-MI and in Response to EphrinA1-Fc 

Treatment 
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In uninjured control hearts, endogenous ephrinA1 protein expression appeared to be 

expressed at a low, basal level on cardiac myocytes throughout the myocardium.  Four days after 

MI, ephrinA1 protein expression was expressed in cardiomyocytes throughout the uninjured 

regions of the hearts and was also localized to the spared cardiac myocytes on both the epicardial 

and endocardial surfaces of the myocardium, at the border zones of the infarct (Figure 6A and 

6B).  In the ephrinA1-Fc-treated hearts at 4 days post-MI, endogenous ephrinA1 protein 

expression appeared to be localized not only to the cardiomyocytes, but also to infiltrating 

granulation tissue cells throughout the infarct zone (Figure 6C). 

   

EphrinA1 Protein Expression post-MI and in Response to EphrinA1-Fc Treatment 

Western blotting was used to quantify endogenous ephrinA1 expression.  Since anti-IgG-

Fc immunostaining (Figure 1) shows that expression of the chimeric protein is greatly reduced 

by 4 hours post-injection, and completely abolished by 24 hours, ephrinA1 protein expression 

detected at 4 days is only the endogenous protein.  In addition, the molecular weight for the 

chimera is 42kDa (not observed), vs. 28kDa for the native protein.  Endogenous ephrinA1 

protein expression decreased 50% with MI, but was only diminished by approximately 36% with 

ephrinA1-Fc treatment (Figure 6D). 

 

EphrinA1-Fc Administration Increases pAKT/total AKT Ratio. 

 Total and phosphorylated AKT protein was measured using western blotting.  While total 

AKT remained unchanged in the three groups (Control, 4 day MI, and EphrinA1-Fc treated), 

phosphorylated AKT levels increased with EphrinA1-Fc treatment following MI (Figure 7).  The 

pAKT/AKT ratio in EphrinA1-Fc treated hearts was significantly different from control and MI.  
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There was a trend for increased pAKT/AKT from control to MI, but this was not statistically 

significant. 
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Figure 3.1: EphrinA1-Fc distribution in the infarcted myocardium.  Anti-human IgG-Fc 

staining to detect exogenous ephrinA1-Fc in the myocardium 30 min after injection.  This 

representative image shows an abundant concentration of ephrinA1-Fc on the epicardial surface, 

as well as transmural expression of the protein.  To a lesser extent, ephrinA1-Fc was also 

detected 4 hours post-injection, but could not be detected 24 hours or 4 days post-injection. 
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Figure 3.2: EphrinA1-Fc administration reduces infarct size, chamber dilation, necrosis, 

and thinning of the left ventricular free wall. 

Representative histological images shown are of vehicle-treated (A) and ephrinA1-Fc-treated (B) 

hearts four days post-MI.  There was a 50% reduction in infarct size (C), 64% less necrosis (D), 

35% less chamber dilation (E), and 32% less thinning of the left ventricular free wall (F).  n=7 

control, 9 IgG-Fc, 9 ephrinA1-Fc, p<0.05.  † different from control, * different from IgG-Fc.  

LV: Left Ventricle; RV: Right Ventricle; N: Necrosis; G: Granulation tissue 
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Figure 3.3: Intramyocardial EphrinA1-Fc administration reduces tissue injury. 

Cardiac troponin I (cTnI) levels in serum decreased 54% four days post-MI (A).  Cleaved PARP 

expression was reduced with ephrinA1-Fc administration (B).  BAG-1 protein (C) increased with 

ephrinA1-Fc administration by 54% when normalized to GAPDH. n= 8 control, 13 vehicle, 11 

ephrinA1-Fc. p<0.05, † different from control, * different from MI. 
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Figure 3.4: EphrinA1-Fc reduces inflammatory cell infiltration. 

EphrinA1-Fc administration significantly reduced infiltration of neutrophils (A) and leukocytes 

(B) at 4 days. n= 3 control, 9 IgG-Fc, 9 EphrinA1-Fc, p<0.05, † different from control, * 

different from MI.  Representative images of Ly6G+ neutrophil infiltration (top panels) and 

CD45+ pan-leukocyte infiltration (bottom panels) are shown in control (left), vehicle-treated 

(middle), and ephrinA1-Fc treated (right) hearts.   
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Figure 3.5: Altered gene expression of EphrinA1 and EphA receptors in response to MI 

and MI + EphrinA1-Fc. 

Following MI, ephrinA1 gene expression was significantly reduced (black bars), and remained 

relatively unchanged in response to ephrinA1-Fc administration (grey bars).  Receptors A1, A2, 

A3, and A7 were significantly upregulated in response to MI, by 5-fold, 2-fold, 5-fold, and 1-

fold, respectively, while EphA4 remained unchanged.  EphA6 was detected in control hearts but 

dropped significantly following MI, and expression was not recovered with ephrinA1-Fc 

administration.  In response to ephrinA1-Fc administration, receptors A1 and A2 were further 

upregulated, by approximately 2-fold each, and A4 was also upregulated by almost 2-fold.  

Values were calculated using the ct method, normalized to GAPDH, and presented here as fold 

changes relative to uninjured control (white bars).  n=8 control, 8 MI, 8 ephrinA1-Fc, p<0.05, † 

different from control, * different from MI. 
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Figure 3.6: EphrinA1 protein distribution in the myocardium. 

Representative immunostaining for ephrinA1 protein showed a low basal expression of ephrin 

A1 in cardiomyocytes of control hearts (A), intense staining in endo- and epi-cardial myocytes 

following 4 days non-reperfused MI (B), and more intense staining in myocytes as well as 

numerous granulation tissue cells in the infarct zone following ephrinA1-Fc treatment at 4 days 

post-MI (C). EphrinA1 total protein expression (D) was reduced by 50% in response to MI, but 

only reduced 36% in response to ephrinA1-Fc administration (normalized to GAPDH).   
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Figure 3.7: Akt Expression with ephrinA1-Fc Administration 

 Representative blot of phosphorylated and total Akt, with the average densitometric 

analysis of three repeated blots.  n=3 control, 3 MI, 3 ephrinA1-Fc.  p<0.05,† different vs. 

control, * different vs. MI. 



103 
 

 

 

 



104 
 

 

Discussion 

 We report here that ephrinA1, and several of its receptors, are expressed in the adult 

myocardium, and their expression profile is altered in response to ischemia in the non-reperfused 

myocardium.  In addition, we have identified a novel and protective role for intramyocardial 

administration of ephrinA1-Fc at the time of MI, leading to reduced infarct size, necrosis, 

chamber dilation, and wall thinning, as well as less inflammatory cell infiltration.  A significant 

decrease in cardiac troponin I levels, coupled with reduced cleaved PARP and increased BAG-1 

protein expression, indicates less overall cell death.  This is further supported by the fact that 

ephrinA1-Fc administration leads to increased phosphorylated AKT protein, a known modulator 

of myocyte survival (Matsui, Nagoshi et al. 2003; Latronico, Costinean et al. 2004; Matsui and 

Rosenzweig 2005; Hausenloy and Yellon 2006; Miyamoto, Murphy et al. 2009).  

The heart lacks significant regenerative capacity to overcome myocardial injury. 

Therefore, there has been much investigation into a number of cell-, gene-, and protein-based 

therapeutic strategies aimed at augmenting the cardiac regenerative potential and promoting 

tissue salvage (Urbich, Rossig et al. 2006; Laflamme, Zbinden et al. 2007; Dorn and Diwan 

2008; van Rooij, Marshall et al. 2008; Abbate, Biondi-Zoccai et al. 2009; Bartunek, 

Vanderheyden et al. 2010; Hwang and Kloner 2010).  To effectively reduce injury and limit the 

progression of remodeling and dysfunction, it is necessary to reduce inflammation and cell death, 

and promote revascularization.   Optimization of the mode of delivery, timing, and 

bioavailability of proteins and growth factors has been an attractive target for infarct salvage and 

regeneration.  In 2002, Edelberg et al. reported that pre-treatment of an infarcted, non-reperfused 

rat heart with Platelet Derived Growth Factor-AB (PDGF-AB) resulted in a ~50% reduction in 
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infarct size.  However, treatment at the time of coronary occlusion did not alter infarct size 

(Edelberg, Lee et al. 2002).  There has also been interest in using the thymosin β4 peptide for 

myocardial salvage.  A 2004 report by Bock-Marquette et al. concluded that thymosin β4 was 

crucial for myocyte survival, migration, and repair (Bock-Marquette, Saxena et al. 2004).  In that 

study, intramyocardial (400ng in 10µl collagen) and intraperitoneal (150µg in 300µl PBS) 

delivery of the thymosin β4 peptide immediately after permanent coronary ligation in mice 

reduced infarct volume by 50% and improved contractile performance.  The authors identified 

AKT activation as a potential mechanism of Tβ4-mediated protection.  More work is needed to 

identify the factor(s) and their mechanisms of action that will promote optimal therapeutic 

efficacy (Segers and Lee). 

 The literature is currently limited in the number of reports involving ephrin and/or Eph 

expression and signaling in the adult heart. In 2008, Mansson-Broberg and colleagues 

demonstrated a protective role for ephrinB2/EphB4 signaling in the repair process after MI 

(Mansson-Broberg, Siddiqui et al. 2008).  An intraperitoneal injection of 100ug ephrin B2-Fc 1 

week after ligation of the left anterior descending coronary artery in mice resulted in increased 

capillary density.  This study suggests a role for Eph/ephrin signaling in the infarcted heart and 

its effect on capillary density, but did not investigate how these interactions influence infarct size 

or cell behavior, including that of cardiac myocytes, infiltrating inflammatory cells, and 

fibroblasts.  Additionally, the authors reported that ephrinB2-Fc treatment of cultured human 

aortic endothelial cells induced proliferation and that ephrinB2-Fc also induced increased 

sprouting in murine aortic ring studies, demonstrating a pro-angiogenic role for the 

EphB4/ephrinB2 signaling cascade (Mansson-Broberg, Siddiqui et al. 2008).  More recently, it 

has been proposed that downregulation of angiogenic factors in early injury impairs performance 
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and this can be remediated by administration of an angiogen (Siddiqui, Fischer et al.).  In 

accordance with this notion, the results of our study demonstrate decreased protein expression of 

the angiogenic factor ephrinA1, yet implicate a non-angiogenic role for exogenous chimeric 

ephrinA1-Fc-induced signaling in the context of acute MI that has not been previously reported.  

Further, Mansson-Broberg and colleagues reported that Eph receptors A1- A4, A6, B1, and B4, 

as well as ephrin ligands A1, A2, A5, B2, and B3 were expressed in adult hearts.  We have also 

detected the EphA receptors mentioned above, in addition to the EphA7 receptor.  The EphA6 

and EphA7 receptors have been implicated in angiogenesis, both are expressed on vascular 

endothelium (Shaut, Saneyoshi et al. 2007), and EphA7 is also expressed on mural cells (Stadler, 

Higgins et al. 2001), making it an attractive target to modulate vessel integrity via cell adhesion.  

Pathologically, increased expression of EphA7 correlates with increased severity of disease 

outcome in gliobastoma patients (Wang, Fokas et al. 2008).  Although we did not observe an 

angiogenic effect in the present study, long-term studies are underway to examine later time 

points, since involvement of these receptors could potentially mediate vessel persistence and/or 

revascularization of the infarcted heart. 

 As in other RTK’s, activation of Eph receptors by their ephrin ligands results in 

autophosphorylation of the receptors, and endocytic internalization and degradation of the 

ligand-receptor complex (Pasquale 2010), which would result in reduced protein expression.  In 

our study, we identified increased mRNA expression of several receptors (A1, A2, and A4) 

following ephrinA1-Fc administration.  This is likely due to a compensatory increase in mRNA 

following internalization and degradation of the receptors.  Of particular interest was the 

significant upregulation of EphA4 receptor expression following ephrinA1-Fc administration, 

since expression of this receptor was unaffected by MI alone.  EphA4 and EphA1 are both 
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expressed on T cells.  EphrinA1 stimulation of EphA4-expressing T cells resulted in cell 

migration (Aasheim, Delabie et al. 2005; Holen, Nustad et al. 2010), so it is possible that 

activation of this receptor in our model muted the inflammatory response, reducing necrotic 

debris and tissue damage, with an overall reduced inflammatory cell population at 4 days post-

MI.  This is further supported by a recent report showing that a small subset of T-cells, which 

express the angiotensin AT2R, are noncytotoxic compared to other T cells, and their 

transplantation into the ischemic myocardium increased expression of the protective cytokine IL-

10, thus reducing injury (Curato, Slavic et al. 2010).  EphA4 is also involved in apoptosis.  Furne 

and colleagues reported that removal of the ephrinB3 ligand from EphA4 resulted in caspase-

dependent cell death (Furne, Ricard et al. 2009).  We did not see changes in ephrinB3 mRNA 

expression, but it is plausible that ephrinA1-Fc stimulation of EphA4 in our model reduced, or 

inhibited, apoptotic cell death.  A 2006 study by Muñoz and colleagues showed that EphA4-

deficient mice had increased numbers of apoptotic cells, again suggesting a role for EphA4 

forward signaling in the inhibition of cellular apoptosis (Munoz, Alfaro et al. 2006).  More 

studies are needed to determine the cell-specific expression of EphA4 and its level of activation 

in response to ephrinA1-Fc. 

     There is evidence that ephrinA reverse signaling results in Akt phosphorylation 

and inhibition of apoptosis (Holen, Shadidi et al. 2008). Since ephrinA1-Fc administration 

increased the endogenous protein expression of ephrinA1 in the myocardium (Figure 6), this may 

also play a role in the observed protection. The EphA1 and EphA2 receptors have mainly been 

characterized in the setting of tumor angiogenesis (Giaginis, Tsourouflis et al. ; Wykosky, Gibo 

et al. 2005; Wykosky and Debinski 2008; Chen, Wang et al. 2010).  Further investigation into 

the mechanism of salvage afforded by forward signaling by each receptor and reverse signaling 
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by the ligand in addition to the role that activation of these pathways may play in promoting 

vessel stability and/or angiogenesis in the infarcted heart will be determined in future 

investigations by in vitro studies and examination of later timepoints. 

In the early stages following myocardial infarction, cardiomyocytes are lost through 

regulated cell death, or apoptosis, as well as unregulated death, or necrosis.  Protein expression 

of cleaved PARP, a marker of cellular apoptosis, was substantially reduced with ephrinA1-Fc 

administration, as shown in Figure 3.   Self digestion, or autophagy, can also occur in 

cardiomyocytes during MI, and may be involved in survival mechanisms, as well as cell death 

(Whelan, Kaplinskiy et al.).  Autophagy is activated in hibernating myocardium, an adaptive 

feature of cardiomyocytes to survive limited flow and depleted oxygen supply (Slezak, Tribulova 

et al. 2009).  In addition to enhancing the anti-apoptotic effects of the bcl-2 protein (Reed, Zha et 

al. 1996; Tang 2002), it has been previously reported that the BAG-1 protein can induce 

autophagy in a rat model of ischemia-reperfusion by linking heat shock proteins Hsc70/Hsp70 

with the proteasome (Gurusamy, Lekli et al. 2009)., leading to cardioprotection.  In accordance 

with these findings, in this study, we observed increased BAG-1 expression coupled with the 

significant reduction in myocardial injury following ephrinA1-Fc administration. Although we 

did not observe a change in Bcl-2 protein expression, we hypothesize that BAG-1 expression is 

leading to increased cellular survival through myocyte autophagy and studies in our laboratory 

are currently underway to specifically explore the cellular mechanism by which increased BAG-

1 expression affords protection in ephrinA1-Fc treated hearts (Terman and Brunk 2005). 

Cardiac Troponin I (cTnI) is a highly sensitive, specific, and reliable serum biomarker for 

cardiac injury in the clinical setting (Chapelle 1999; Nageh, Sherwood et al. 2003; Oyama and 

Sisson 2004), and there is a proportional relationship of the extent of myocardial injury with the 
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measured level of cTnI (Bodor, Porterfield et al. 1995; Braunwald, Antman et al. 2002; Jaffe 

2005).  In our study, cTnI levels were reduced by approximately 55% (p<0.05) with ephrinA1-Fc 

administration.  Combined with the reduced cleaved PARP and increased BAG-1 protein 

expression, these data suggest reduced cardiomyocyte injury as the mechanism for the observed 

salvage.  

Moreover, our data demonstrate that EphrinA1-Fc administration post-infarction leads to 

phosphorylation of AKT, a protein involved in cellular survival.  Our findings are in agreement 

with similar studies, including a recent paper which showed that administration of Nerve Growth 

Factor induced neovascularization and improved cardiac function in a permanent coronary 

occlusion model, which was coincident with a significant increase in phosphorylated AKT three 

days post-MI (Meloni, Caporali et al.).  In another study by the same group, inhibition of PI3K 

signaling led to reduced pAKT/AKT, increased cardiomyocyte apoptosis in vitro and reduced 

infarct size in mice 14 days following permanent coronary occlusion (Siragusa, Katare et al.).  

Treating swine for 7 days with subcutaneous injections of G-CSF beginning 24hrs after MI led to 

reduced infarct size, increased VEGF expression, and increased pAKT/AKT (Iwanaga, Takano 

et al. 2004).  Clearly, AKT activation is involved in cellular survival and favors cardiac salvage.  

While several other groups have identified AKT activation as a survival mechanism in the setting 

of non-reperfused MI (Patten and Karas 2006; Haider, Jiang et al. 2008; Shujia, Haider et al. 

2008), the downstream targets for AKT in this setting are not fully understood.  It has been 

proposed that three main methods of AKT cardioprotection involve anti-apoptotic factors, 

promotion of cell growth, and promotion of survival and improved function of dysfunctional 

cardiomyocytes (Matsui and Rosenzweig 2005).  Studies are currently underway to investigate 

this signaling process. 
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In summary, our data provide the first evidence that intramyocardial administration of 

recombinant ephrinA1-Fc promotes myocardial tissue salvage. Modulating ephrinA1/EphA 

signaling may play a significant role in governing the repair process following myocardial 

infarction, and so exogenous ephrinA1-Fc may prove to be an attractive therapeutic target.  

Although reperfusion has been the clinical standard for post-MI therapy, approximately 25% of 

these patients still have an infarct size greater than 75% of the ischemic zone, which is associated 

with an even greater incidence of mortality and poor outcome (Miura and Miki 2008).  In 

addition, reperfusion should be initiated within 2 hours of the onset of MI for the greatest success 

in salvaging ischemic tissue (Milavetz, Giebel et al. 1998).  Thus, reperfusion after MI may not 

always be feasible, so investigating the time-dependency of ephrinA1-Fc administration may 

provide new insight into a promising treatment option.  Our laboratory is currently working to 

elucidate the mechanism for the considerable degree of salvage observed by examining the 

effects of ephrinA1-Fc on cell-specific receptor expression patterns, signaling cascades activated, 

and isolated cell behavior and metabolism.  Additionally, we are examining the long-term impact 

that ephrinA1-Fc administration has on remodeling and cardiac function, as well as the time 

frame and frequency of administration required to elicit protection. 
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3.3: Metabolic Effects of EphrinA1 Administration 

 

PI3K-Akt Signaling and Myocardial Infarction 

 

We hypothesized that the cardioprotection observed following EphrinA1-Fc 

administration is due to promotion of cardiomyocyte survival in the ischemic setting, because 

revascularization was not observed (chapter 3.2).  Further, we have ruled out regulation of 

apoptosis because changes in bcl-2 protein expression were not altered with EphrinA1-Fc 

administration (chapter 3.2), and the overall contribution of apoptosis in a non-reperfused infarct 

is relatively small when compared to necrosis. 

 The phosphatidylinositol 3-kinase (PI3-K) pathway is a survival pathway resulting in 

activation of protein kinase C (PKC) as well as many other downstream signaling pathways, 

through phosphorylation of Akt.  Briefly, growth factors and hormones stimulate a cell and 

activate PI3K, leading to phosphorylation of the D-3 position phosphatidyl-inositol-4,5-

bisphosphate on the cell membrane, resulting in formation of phosphatidyl-inositol-3,4,5-

triphosphate.  Ultimately, phosphatases can degrade PI(3,4,5)P3 which will halt PI3K signaling 

(Cantley 2002; Hausenloy and Yellon 2006).   

PI3K-Akt signaling is of interest in the present study because of promising pre-clinical 

and clinical data suggesting a role for this survival cascade in ameliorating reperfusion injury.  

For example, the reperfusion injury salvage kinase (RISK) pathway has been studied extensively 

in the settings of both ischemic pre- and post-conditioning to reduce myocardial infarct size.  

Repeated bursts of ischemia and reperfusion at the initiation of myocardial reperfusion (ischemic 
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post-conditioning) resulted in reduced infarct size, and eNOS and Akt phosphorylation.  

However, treatment with a PI3K inhibitor abolished this protection.  A similar effect was seen 

with ischemic pre-conditioning, which is initiated before global ischemia, suggesting that the 

RISK pathway may be recruited either before or after ischemia while still being beneficial 

(Hausenloy, Lecour et al. ; Hausenloy, Tsang et al. 2005; Hausenloy, Tsang et al. 2005).     

In 2000, Tong and colleagues demonstrated that performing IPC before 20 minutes of 

global ischemia led to protein kinase B phosphorylation and nitric oxide production, which was 

inhibited by treatment with the PI3K inhibitor wortmannin (Tong, Chen et al. 2000).  This 

suggests that the protective effects often observed with IPC may be, at least in part, regulated by 

PI3K signaling.  Interestingly, Tsang and colleagues reported in 2005 that the diabetic rat heart 

can be protected with IPC, indicated by Akt phosphorylation, but only when three cycles of IPC 

were used.  In wild type rats, one, two, or three cycles of IPC were all beneficial.  Thus, it 

appears that there is a threshold in diabetic hearts, and if that threshold is reached using IPC, 

protection may be afforded via the RISK pathways (Tsang, Hausenloy et al. 2005). 

There are conflicting reports describing changes in total and phosphorylated Akt 

following MI and in response to therapeutics.  A recent report by Siddiqui and colleagues 

revealed that both total and phosphorylated Akt are reduced 2 days after coronary ligation in 

C57/BL6 mice, compared to sham controls (Siddiqui, Fischer et al.).  Sumi et al initiated 30 

minutes of ischemia and 48 hours of reperfusion in rabbits, then immediately treated them with 

G-CSF or saline.  G-CSF treatment reduced infarct size and increased phosphoryated Akt levels 

at 10 minutes and 48 hours post-MI (Sumi, Kobayashi et al.).  In a rat model, Yamazaki et al 

pre-treated their animals with epicatechin, which significantly reduced infarct size and improved 

function up to 3 weeks after surgery.  However, the authors did not observe any difference in 
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total or phosphorylated Akt two hours after coronary occlusion, which suggests that the 

cardioprotection from epicatechin is not Akt-dependent (Yamazaki, Taub et al.).  Treatment of 

cultured H9c2 rat cardiomyocytes with M-CSF for 10 minutes induced phosphorylation of Akt, 

leading to upregulation of a downstream anti-apoptotic gene, Bcl-xL, suggesting a role for pAkt 

in myocyte survival (Okazaki, Ebihara et al. 2007).  Our data in chapter 3.2 supported the 

hypothesis that ephrinA1-Fc administration would increase levels of phosphorylated ephrinA1-

Fc.  To assess mitochondrial content, we were next interested in evaluating citrate synthase 

activity in whole heart homogenates. 

 

Citrate Synthase and Myocardial Mitochondria Function 

 

 Changes in the metabolic activity of the heart are common following MI (Heather, Carr 

et al. ; Moncada ; Neubauer, Horn et al. 1995; Lesnefsky and Hoppel 2003; Chen, Moghaddas et 

al. 2008).  The mitochondria are critical for the regulation of cellular survival and death, through 

either apoptosis or necrosis, which have made them attractive therapeutic targets (Bouchier-

Hayes, Lartigue et al. 2005).  An analysis of mitochondrial activity in the infracted heart would 

potentially yield important information on the metabolic activity of the cells, providing 

mechanistic insight into the EphrinA1-Fc-mediated cardioprotection observed in our studies.   

To assess mitochondrial content and function, citrate synthase activity is frequently 

measured.  Citrate synthase is an enzyme located in the mitochondrial matrix, which catalyzes 

the reaction of acetyl CoA and oxaloacetate combining to form citrate, with CoASH released as a 

byproduct.  When the yellow colormetric agent 5,5-dithiobis-2-nitrobenzoate (DTNB) is 
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combined with CoASH, a mercaptide ion is released and the change in absorbance can be 

measured at 412nm (Goncalves, Paupe et al. ; Reisch and Elpeleg 2007). 

 Citrate synthase activity is frequently used as a measure of the oxidative capacity of a 

tissue.  It has been previously reported that citrate synthase activity is significantly reduced two 

days post-MI in mice (Siddiqui, Fischer et al.).  Additionally, it has been reported that left 

ventricular dysfunction following MI resulted in reduced citrate synthase activity in type IIB 

muscle fibers (Delp, Duan et al. 1997). 

   

Methods: 

 

Surgical procedure:  As previously described (Chapter 3.2), MI was induced in B6129s mice, 

followed by intramyocardial injection of EphrinA1-Fc .  Animals were euthanized four days 

post-surgery, and tissue was collected.  Left ventricles were snap-frozen in liquid nitrogen, and 

stored at -80˚C until used for citrate synthase activity assay. 

 

Citrate synthase activity: 

Homogenization:  Whole left ventricles were isolated from saline- (n=5) and ephrinA1-Fc- (n=6) 

treated mice four days post-MI, as well as from naive control animals (n=6).  The tissue was 

snap frozen in liquid nitrogen and stored at -80˚C.  Frozen left ventricles were weighed, and 

diluted 1:10 in 100mM Tris buffer for homogenization.  A small glass homogenizer and vial 

were used, with homogenization occurring on ice the entire time.  The homogenate was 

transferred to an eppendorf tube, and centrifuged at 1500xg for 10 minutes to pellet any debris 
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from the homogenization procedure.  The supernatant was aliquoted into fresh eppendorf tubes 

and stored at -80˚C until used for the citrate synthase assay. 

Citrate Synthase Assay:  A reaction cocktail was made consisting of the following, (volume per 

sample): 100mM Tris Buffer (40ul), 1mM DTNB (20ul), 3mM AcCoA (30ul), and 10mM 

oxaloacetate (10ul).  One well of a 96 well plate was used for each sample, with three additional 

wells used as blanks.  To each well, 90ul of 100mM Tris buffer was added, along with 10ul of 

homogenized protein.  In the case of the blanks, 10ul of Tris buffer was substituted for the 

protein.  Finally, 100ul of the reaction cocktail was added to each well to initiate the reaction, 

and the plate was immediately placed into the plate reader for subsequent analysis.  The plate 

reader used was an Epoch (BioTek) with Gen5 software.  The software was set up for a kinetic 

read, at 412nm, under the “sweep” mode, with absorbance readings made at 15 second intervals 

for a total of 5 minutes.  The most linear portion of the plotted data points was selected (typically 

from 0 to 3 minutes) and the slope was calculated for each sample for the specified range of time 

(see figure 3.8 for a representative data plot).  The specific activity was calculated using 

previously described methods (Brown, Jew et al. 2003; Brown, Chicco et al. 2005). 

Statistics: The pAkt/Akt blots were repeated three times, with densitometry performed on each 

blot to normalize the pAkt levels to total Akt.  The densitometric data reported is the average of 

the three, and the images shown are representative blots.  InStat Software was used to perform 

One-way ANOVA with Tukey-Kramer Multiple Comparisons Test used to make comparisons 

between groups.  For the citrate synthase data, results of the three experiments were averaged, 

and a one-way ANOVA was used to compare means across groups.  p<0.05. 
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Results: 

 

Citrate Synthase Activity is Not Altered by EphrinA1-Fc Administration. 

 Frozen hearts from control animals (n=6), saline-treated infarcted animals (n=5) and 

EphrinA1-Fc-treated infarcted animals (n=6) were analyzed for citrate synthase activity, and the 

assay was repeated three times.  Results of all three assays were pooled and analyzed for 

statistical significance.  There was no significant difference between any of the three groups in 

citrate synthase activity, as shown in Figure 3.9 (4.60 control vs. 4.42 saline vs. 4.54 ephrinA1-

Fc).  This finding was surprising, since it is generally assumed that citrate synthase activity will 

decrease following MI.  Interestingly, though, in one of the three runs for this experiment, There 

was a significant decrease in citrate synthase activity from control to saline-treated animals 

(p=0.03), with a trend for a decrease from control to EphrinA1-Fc treated animals (p=0.06).  

However, there was no statistically significant difference between saline-treated and EphrinA1-

Fc-treated mice, and when the results from each of the three experiments were compiled, there 

was no significant difference. 
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Figure 3.8: Representative plot of citrate synthase activity  

Representative plot of citrate synthase activity, measured as absorbance (OD) at 412nm.  

The area of linearity is highlighted in a yellow box, from zero to two minutes.  This is the region 

used to calculate specific activity.  When the slope of the line begins to level off, it is presumed 

that the reaction is limited by one of the substrates, so accurate calculations cannot be made.  In 

this case, the first two minutes of the reaction appear to be most linear.  Each point represents a 

specific absorbance, for each sample (y axis) plotted over time (x axis).
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Figure 3.9: Administration of ephrinA1-Fc does not alter citrate synthase activity in the 

heart. 

The calculations from each of the three assays were averaged, for control, saline-treated, 

and EphrinA1-Fc-treated, and represented in a bar graph.  One-way-ANOVA did not 

detect statistical significance for any of the comparisons between groups.  Results are 

expressed as mean +/- SEM.  
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Discussion: 

  

To our surprise, citrate synthase activity was not altered with EphrinA1-Fc treatment, 

suggesting that mitochondrial content and function is not influenced by this treatment.  These 

findings were surprising, in that other studies have reported a decrease in citrate synthase activity 

with MI.  It was anticipated that our infarcted hearts, treated only with saline, would demonstrate 

a similar effect, and that treatment with EphrinA1-Fc would abolish the reduced citrate synthase 

activity. 

 Several factors may have affected this outcome, including timing.  While our study 

examined the effects of permanent coronary occlusion on citrate synthase activity four days after 

infarction, other studies have analyzed citrate synthase two days after permanent occlusion 

(Siddiqui, Fischer et al.) as well as after ischemia reperfusion (Brown, Jew et al. 2003; Brown, 

Chicco et al. 2005).  In addition to timing, the entire left ventricle was homogenized and used for 

this assay, so it is possible that any measurable citrate synthase activity was too dilute to be 

measured. 

 Many studies have examined citrate synthase activity in skeletal muscle, but less is 

known about its activity in the myocardium.  In one study, myocardial infarction was induced in 

rats, and then some rats were given propionyl-L-carnitine (PLC) 10 days after surgery, and 

exercise capacity of the rats was assessed.  Interestingly, no differences in skeletal muscle citrate 

synthase activity were seen between sham and MI groups (Koh, Brenner et al. 2003). 

 Based on the results obtained, it can be concluded that ephrinA1 administration does not 

affect the oxidative capacity of the infarcted heart.  However, earlier time points should be 

examined, and an ischemia/reperfusion model may also be beneficial.   
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3.4: Conclusions 

 The data reported in chapter three clearly suggest a protective role for EphrinA1 in the 

context of acute, permanent myocardial ischemia.  Histological analysis revealed a significant 

reduction in infarct size, necrosis, chamber dilation, and left ventricular wall thinning.  We have 

also observed reduced inflammatory cell infiltration.  Cardiac Troponin I levels were 

significantly reduced with EphrinA1-Fc administration, suggesting reduced myocardial tissue 

damage.  Further, there was a substantial reduction in cleaved PARP protein expression, along 

with upregulated BAG-1 expression.  Combined, this suggests a reduction in cardiac myocyte 

death.  Finally, we have demonstrated that administration of EphrinA1-Fc increases 

phosphorylated Akt levels. 

To our knowledge, we are the first to demonstrate a role for EphA/EphrinA signaling in 

the context of acute myocardial infarction, and the first to use EphrinA1 therapeutically in this 

setting.  In the context of cardiac repair, reperfusion has become the accepted standard in post-

MI therapy, but alone is not sufficient to promote survival or repair of damaged tissue.  

Angiogenic protein therapies thus far have failed when translated from bench to bedside, due to 

the formation of a leaky and unstable vasculature.  The potential to activate a complex and varied 

system such as the Eph RTKs is exciting and holds therapeutic promise, due to the potential to 

modulate specific cellular interactions through individual receptors.  Future studies should 

certainly involve the use of EphrinA1-Fc administration in larger animal models of myocardial 

infarction, as well as in conjunction with reperfusion therapy.  Additionally, the use of receptor-
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specific knockout mice will be helpful in elucidating the contributions of each Eph receptor to 

EphrinA1-mediated cardioprotection.   

 



 

 

CHAPTER 4: GENERAL CONCLUSIONS 

 

The work presented in this dissertation is a compilation of studies which investigate two 

separate mechanisms for understanding tissue salvage following myocardial infarction.  In the 

first study, we have identified a role for the Per2 protein in cardiac repair.  Specifically, 

functional mutation of this protein was protective in the ischemic heart.  In the second study, we 

are the first to identify a protective role for exogenous ephrinA1 administration at the time of MI, 

and this may open the door to new post-MI therapies involving the Ephs/ephrins.  Future studies 

should aim to develop a detailed understanding of the mechanisms involved in myocardial 

infarct progression, as well as investigate ways to manipulate this process to enhance repair.  

Currently, most pre-clinical studies of infarct repair have failed when translated to human beings.  

Our work provides a new understanding of the contribution of a single clock gene, Per2, to 

cardiovascular repair.  These results initiated a new set of experiments attempting to ameliorate 

damage caused by infarction through exogenous protein administration (ephrinA1).  In the 

setting of non-reperfused MI, we have presented a novel mechanism for infarct salvage, which 

may prove to be a legitimate adjuvant, or even alternative, to reperfusion or the newly popular 

cell therapy. 

  

4.1: mPer2 Mutation is Cardioprotective 

 

In the first set of experiments, we connected a single circadian clock gene, Per2, with 

infarct repair processes, and concluded that functional mutation of this gene protected the heart
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 from ischemic damage.  Our findings are significant, since they provide a basic understanding of 

the role of Per2 in cardiovascular repair, and may help explain some of the epidemiological data 

that has been collected over the last decade.  In addition to its role in circadian clock biology, 

Per2 is a metabolic gene, and may be altering the metabolism of cardiomyocytes, promoting 

improved cell survival in an ischemic tissue.  To further investigate this theory, assays should be 

performed that evaluate cellular metabolism, including citrate synthase assay to measure 

mitochondrial content and function.  Isolated mitochondria studies may also be useful, to 

measure O2 consumption and H2O2 emission.  Generally, it is accepted that a reduction in infarct 

size below 20% of the left ventricular area is therapeutic and associated with improved outcome 

(Miura and Miki 2008).  When expressed as a percent of the left ventricle, the mPer2-M mice 

had an infarct size of approximately 24%, which is certainly closer to this therapeutic window 

than the 37% infarct size of WT mice. 

Of interest to this study was preliminary data from our laboratory (Figure 2.6) which 

showed that there was increased ephrinA1 protein expression in mPer2-M mice.  Since this 

protein has been associated with pathological angiogenesis, and we observed increased capillary 

density in mPer2-M mice after infarction, we hypothesized that administration of ephrinA1 

protein to infarcted mice would provide protection.  

   

 

4.2: EphrinA1 Administration Promotes Infarct Salvage 

 

The second set of experiments was initially an attempt to exploit a system with a known 

role in angiogenesis, in an attempt to promote revascularization of the infarcted heart.  Our 
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findings were surprising, in that there was a robust reduction in infarct size, which was not 

paralleled with increased capillary density or endothelial cell proliferation.  Clearly, at least in 

the acute stages after MI, some other mechanism was responsible for the beneficial effects 

observed.  The mechanism is not fully clear yet, but there are several possibilities.  For example, 

it is possible that the reduced infarct size was a direct modulation of inflammatory cell 

recruitment by ephrinA1, and that less inflammation resulted in less tissue damage.  Equally 

plausible, though, is that less tissue damage, produced by a separate mechanism, simply resulted 

in reduced inflammation.  Because ephrinA1 administration resulted in increased phosphorylated 

Akt, it is highly likely that survival pathways were modulated and less tissue damage was the 

end result.  Clearly, studies must be done to clarify the means by which this signaling cascade is 

working in the heart. 

As discussed earlier, it is generally accepted that reducing infarct size below 20% of the 

total left ventricle is therapeutic (Miura and Miki 2008).  Clearly, the ephrinA1-Fc 

administration brings our infarct sizes close to this target (22.85%), and additional studies with 

higher doses may prove to be even more effective.  An added benefit is that, unlike reperfusion 

therapy, ephrinA1-Fc administration attenuates the inflammatory response, which reduces the 

possibility of further tissue damage from therapy. 

Certainly, these pre-clinical results are promising, and these studies should be scaled to 

larger animal models to assess their translational potential.  In addition, administration of 

ephrinA1 in the setting of reperfusion, in animals with diseases such as diabetes, or coupled with 

other pharmacological therapies such as statins, would be essential.  Functional measurements 

should also be made, to assess the ability of ephrinA1 to improve cardiac performance.  Multiple 

injections, rather than one single bolus, may also prove to be beneficial in large animal models.  
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However, due to the small size of a mouse heart, this likely would have produced more damage.  

It would also be useful to assess the ability of ephrinA1 to improve stem cell retention and 

survival in an infarcted heart, since this has been an ongoing challenge in the regenerative 

medicine field.  Many questions remain unanswered, but the studies described here provide 

much to be optimistic about.  Ultimately, protein therapy, such as ephrinA1, may prove to be a 

successful alternative to cell therapy.  Because of the potential to activate or repress multiple 

receptors on several different cell types, the ephrin family may provide a unique opportunity for 

cardiac repair that has not been available with previous methods. 
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