
ABSTRACT 
 

Sarath Vijayakumar. THE ROLE OF MEDIATORS OF NEURONAL PLASTICITY IN 
THE CIRCADIAN REGULATION OF SUPRACHIASMATIC NUCLEUS BY LIGHT. 
(Under the direction of Dr. Jian Ding) Department of Physiology, August 27, 2009. 
 
Circadian rhythms are highly conserved physiological functions that are present in almost all 

living organisms. In mammals, circadian rhythms are synchronized to the environmental 

light:dark cycle by daily adjustments in the hypothalamic suprachiasmatic nucleus (SCN), the 

location of the master circadian pacemaker. We hypothesize that light entrainment of the 

circadian clock involves neural plastic adaptations in the SCN. The mechanism of neural 

plasticity has been intensively studied in the hippocampus and the dentate gyrus.  However, the 

cell and molecular mechanism underlying circadian clock resetting in the SCN remains poorly 

understood.  Thus, we sought to investigate whether modulators that are known to regulate 

neural plasticity in the hippocampus play a role in the signal transduction of circadian clock 

resetting. Light induced expression of tissue-type plasminogen activator (tPA) in the SCN, 

maximal induction was seen one hour following a light pulse at circadian time (CT) 16. A 

corresponding increase in the tPA proteolytic activity was also observed. tPA-STOP™ (an 

inhibitor of tPA)-infused animals exhibited attenuated light-induced phase delay of circadian 

wheel running activity. The levels of  cyclin-dependent kinase 5 activators, p35 and p25 were 

decreased at Zeitgeber Time (ZT) 16, at ZT22 the levels were increased whereas, no change was 

observed at ZT6. The bi-transgenic animal, CK-p25 demonstrated increased phase delay at CT16 

and attenuated phase advance at CT22 following transient overexpression of p25.  SCN neurons 

expressing p25 co-localized with phosphorylated-extracellular signal-regulated kinase and 

Gastrin Releasing Peptide. This is one of the first studies to report the involvement of these 

neuromodulators in circadian light entrainment. Mounting evidence shows that circadian rhythm 



disturbances may be associated with increased health risks, such as jet-lag, cancer development, 

cardiovascular and metabolic disorders. The findings of this study have improved our 

understanding of the complex and intricate pathways involved in light entrainment and may lead 

to development of novel therapeutic avenues in treating circadian rhythm disturbances. 
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CHAPTER 1 – INTRODUCTION 
 

“Mechanism is not the biologist’s only business. He is, or should be, concerned also with 

questions of both function and history” – Colin Pittendrigh (1966) 

 

Circadian Rhythms 
 

Most organisms live in an environment that is changing continuously in a 

rhythmic manner based on Earth’s rotation around its axis. Organisms exhibit daily 

changes in physiology and behavior based on this astronomical phenomenon (Hastings et 

al., 2003; Pittendrigh, 1993). These daily changes that occur with a period of around 24 

hr are termed circadian from Latin “circa diem” meaning “about a day”. Circadian 

rhythms have evolved in most species, ranging from single cell organisms to plants and 

animals. The cyanobacterium Synechococcus, shows circadian rhythmicity in its 

photosynthetic machinery (Dunlap et al., 2004; Harmer et al., 2001), while the 

dinoflagellate Lingulodinium shows bioluminescent rhythmicity (Dunlap et al., 2004; 

Lowrey and Takahashi, 2004). In mammals, circadian rhythmicity is seen in the sleep-

wake cycle, cardiovascular activity, hormonal secretions, body temperature, hepatic 

metabolism, gastro-intestinal physiology and many other metabolic and behavioral 

processes. Circadian rhythms persist with intrinsic periods close to 24 hr even in the 

absence of any external time cues, indicating the presence of an internal time keeping 

system or “circadian clock” in every organism. Circadian rhythms expressed in the 

absence of external cues are defined as “free-running”. The “free-running” rhythms often 



2 

 

  

deviate from 24 hr and need to be adjusted to the environment by external signals, called 

Zeitgebers. This adjustment process is called entrainment. The most potent Zeitgeber for 

animals is the environmental light-dark cycle. 

The “circadian clock” has undergone evolutionary changes becoming more 

complex in higher species (Herzog, 2007). In the marine snail, Bulla gouldiana, 

approximately 100 basal retinal neurons in the eye  act as the circadian pacemaker 

coordinating its daily locomotor activity (Block and Wallace, 1982). In the fruit fly, 

Drosophila melanogaster, a group of neurons located in the lateral and dorsal brain 

drives rhythms in locomotion, photophobicity and eclosion (Helfrich-Forster, 2005; 

Stoleru et al., 2004). In birds, for instance, the sparrow, extra-retinal photoreceptors 

within the brain acts as the “circadian clock” (Menaker, 1968). 

The Suprachiasmatic Nucleus 
 

In mammals, the master circadian pacemaker is located in the hypothalamic 

suprachiasmatic nucleus (SCN). Surgical ablation of the SCN results in a loss of 

circadian rhythms of locomotor activity, drinking behavior and corticosterone release 

(Moore and Eichler, 1972; Stephan and Zucker, 1972a, b). Allograft transplant of fetal 

SCN tissue to SCN-lesioned hosts was able to restore their locomotor activity (Lehman et 

al., 1987). When fetal SCN taken from mutant hamsters with a 20 hour period was 

transplanted to SCN-lesioned wild type host with 24 hour period, the restored rhythm of 

the wild type host became 20 hour circadian period.  These studies suggest that the SCN 

is the master circadian pacemaker that determines the overall circadian rhythm of the 
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animal (Ralph et al., 1990). All these experiments clearly demonstrate the importance of 

the SCN in orchestrating circadian rhythms. 

SCN Input and Output Pathways 
 

The SCN is a paired nucleus consisting of approximately 10,000 neurons each 

and is located on either side of the third ventricle above the optic chiasm in the 

hypothalamus (Abrahamson and Moore, 2001; Van den Pol, 1980). The SCN receives 

input from many brain regions (Fig. 1). The main input is via the retino-hypothalamic 

tract (RHT), a monosynaptic pathway originating from an unique set of non-image 

forming retinal ganglions cells (RGCs) that express the photopigment melanopsin and are 

intrinsically photo sensitive (Berson et al., 2002; Johnson et al., 1988; Moore and Lenn, 

1972). Glutamate (Glu) and the neuropeptide Pituitary Adenylyl Cyclase Activating 

Peptide (PACAP) are the principal neurotransmitters released from the RHT terminals to 

the SCN (Ebling, 1996; Hannibal, 2002; Hannibal et al., 1997). SCN also receives non 

photic input via the geniculo-hypothalamic tract that projects from the intergeniculate 

leaflet (IGL) carrying neuropeptide Y, and projections from the mesencephalic raphé 

nuclei that are serotonergic. These pathways project mainly to the ventral SCN (Moga 

and Moore, 1997; Moore and Card, 1990; van Esseveldt et al., 2000). The dorsal SCN 

receives input mainly from the basal forebrain and infralimbic cortex (Moga and Moore, 

1997). There are several other minor pathways that project to the SCN from the 

hypothalamic tuberomammillary, arcuate and supraoptic nuclei (Krout et al., 2002; Morin 

and Blanchard, 2001; Saeb-Parsy et al., 2000). 
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The SCN has three major output pathways (Fig. 1). The pathway that contains the 

largest portion of SCN efferents runs in an arc dorsally and caudally. This pathway  

projects to regions surrounding the SCN, mainly the paraventricular nucleus, the 

subparaventricular zone, and the dorsomedial hypothalamus (Leak et al., 1999). The 

other two pathways are to the medial preoptic area and to the retrochiasmatic area and the 

capsule of the ventromedial nucleus. Additionally, the SCN has sparse projections to 

other brain areas, i.e., the tuberomammillary nucleus, the ventrolateral preoptic nucleus, 

and an indirect projection to the limbic system via the paraventricular nucleus 

(Abrahamson et al., 2001; Chou et al., 2002; Peng and Bentivoglio, 2004). 
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Figure 1: SCN input and output pathways. 

 
 

The diagram depicts the major input and output pathways to and from the SCN. The 

ventral SCN containing VIP neurons and the dorsal SCN containing AVP neurons are 

outlined. DMH (dorsomedial hypothalamus), PVN (paraventricular nucleus), sPVZ (sub 

paraventricular zone), RHT (retino-hypothalamic tract), 3V (third ventricle), OC (optic 

chiasm), GHT (geniculo-hypothalamic tract). The inputs and outputs are shown on 

separate sides for clarity.   
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Molecular Basis of the Mammalian Circadian Clock 
 

At the molecular level, the circadian clock involves a cell-autonomous 

transcription-translation feedback loop comprising a core set of  “clock genes” (Lowrey 

and Takahashi, 2004). In mammals, circadian locomotor output cycles kaput (Clock) and 

its paralogue neuronal Period-Aryl hydrocarbon nuclear translocator-Single-minded 

(PAS) domain protein 2 (Npas2), Brain and muscle aryl hydrocarbon receptor  nuclear 

translocator-like (Bmal1), period homologue 1, 2 (Per1, Per2), and Cryptochrome 1, 2 

(Cry1, Cry2) form the primary negative-feedback loop (Fig. 2). During the day, the basic 

helix-loop-helix transcription factors CLOCK and BMAL1 activate transcription of the 

Per and Cry genes. The PER and CRY proteins heterodimerize, translocate to the nucleus 

and inhibit their own transcription (Lee et al., 2001). During the night, the PER-CRY 

repressor complex is degraded and a new transcription cycle is initiated by CLOCK-

BMAL1. The entire transcription-translation loop takes approximately 24 hours to 

complete. In addition to the primary feedback loop, there is a secondary negative-

feedback loop formed by the nuclear hormone receptor, Rev-erba, a direct repressor of 

Bmal1 transcription. Further stabilization of the primary feedback loop is brought about 

by auxiliary loops involving the orphan nuclear receptor, RORα, and other clock 

components Dec1 and Dec2 (Ko and Takahashi, 2006; Ueda et al., 2002). 
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Figure 2: Simplified model of the mammalian molecular clock (Gachon et al., 2004). 

 

Two interlocking positive and negative loops form the core of the molecular oscillator. 

During the day, BMAL1 forms a heterodimeric complex with CLOCK that acts via E-

BOX DNA regulatory sequences to drive the expression of Period (Per1, per2) and 

Cryptochrome (Cry1 and Cry2) genes. PER:CRY complex accumulate during the night 

translocate to the nucleus and inhibit their own transcription, thus forming the negative 

loop. Once the PER:CRY complex level goes down after degradation, a new cycle starts 

all over again. CLOCK and BMAL1 also drive expression of Rev-Erbα, which in turn 

competes for binding elements on the Bmal1 promotor, acting to stabilize the loop. 
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Modified from Gachon et al., 2004 
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Circadian Clock Resetting By Light – Photic Entrainment 

 

Photic entrainment of circadian rhythms occurs through daily, light-induced 

adjustments in the phase and period of the SCN pacemaker (Daan, 1976; Decoursey, 

1964). In mammals, the photic entrainment process has been characterized mainly by 

studying the resetting effects of brief light exposure in nocturnal rodents. In experimental 

animals housed under programmed lighting schedule, the Zeitgeber time (ZT) is defined 

relative to the experimental light:dark (L:D) cycle. By definition, ZT0 is the time when 

the lights are on and ZT12 is the time when lights are off in the animal housing. When 

the animals are kept in constant conditions (usually constant darkness), they start to “free-

run”. This “free running” rhythm often deviates from 24 hr and shows inter-species 

variation. Under “free-running” conditions, time scale is expressed in Circadian time 

(CT) units (Daan, 1976). One circadian cycle is divided into 24 equally sized circadian 

units, one unit being defined as the division of the intrinsic “free-running” period (τ) by 

24. CT0 is defined as the beginning of the subjective day (the onset of the rest phase in 

nocturnal rodents) and C12 as the beginning of the subjective night (the onset of the 

activity phase in nocturnal rodents). Under constant darkness (DD), brief light exposure 

during the early subjective night causes phase delays, while exposure during the late 

subjective night causes phase advances of the SCN circadian clock. Light exposure 

during the subjective day elicits either very minimal phase shift or none at all. The “phase 

dependence” of the response of the SCN circadian clock to light is depicted in the photic 

phase response curve (PRC; Fig. 3B) (Daan, 1976; De Coursey, 1960). The quantitative 

aspects of the photic PRC: the relative amplitude and duration of the phase delay and 



11 

 

  

advance regions of the PRC curve vary widely among species (Fig. 4) and is also 

influenced by the photoperiod (Rusak and Zucker, 1979; Travnickova et al., 1996). 

Typically, animals with intrinsic period τ less than 24 hr show large amplitude phase 

delays and smaller phase advances. Conversely, animals with τ greater than 24 hr show 

large phase advances and smaller phase delays. 
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Figure 3: Photic phase response curves and their derivation (Dunlap et al., 2004). 

 

(A)  Light pulse is applied to free-running animal at different circadian phase points to 

derive the phase response curve. The horizontal lines in A-E, represent the daily activity 

of the animal maintained in constant darkness over a 15 day period. On day zero, the 

animals are briefly exposed to light (square, “light pulse”). The time difference between 

the dotted line extrapolating the trajectory of the animal’s activity prior to the light pulse 

and the actual onset of activity after the light pulse is known as a phase shift. 

(B)  Phase response curve for the animal in A. The sinusoidal phase shift curve plotted, as 

a function of circadian time, is known as the PRC. Point A represents a time of the 

animal’s subjective day during the light-insensitive period and is referred to as the “dead 

zone”. Points C and D are examples of a phase delay and advance, respectively.  
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Dunlap et al., 2004 
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Figure 4: Species difference in photic phase response curve (Hannibal et al., 2002). 

 

Depiction of complete photic phase response curve of three different species, mouse, rat, 

and hamster. Phase delays are plotted in negative direction and phase advances in the 

positive direction. The horizontal axis represents 24 hr period. Typically, animals with 

intrinsic period τ less than 24 hr show large amplitude phase delays and smaller phase 

advances. On the other hand, animals with τ greater than 24 hr show large phase 

advances and smaller phase delays. Mouse with τ less than 24 hr shows a greater 

amplitude phase delay and a small amplitude phase advance. Hamster with τ more than 

24 hr shows a greater phase advance than phase delay. τ (tau/ “free-running” period) 1, 2 

and 3 represent subjective day, subjective early night and subjective late night 

respectively.  
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Hannibal et al., 2002 
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Mechanism of Photic Resetting of the Circadian Clock 
 

Although the phenomenon of photic resetting was discovered in 1960 (De 

Coursey, 1960), the exact mechanism responsible for the phase dependent photic 

response of the SCN circadian clock remains elusive. Considerable research done in the 

last nearly 50 years has improved understanding of this phenomenon. Several signal 

transduction pathways have been proposed (Fig. 5), including the phosphorylation of 

transcription factor CREB (Gau et al., 2002; Ginty et al., 1993), the activation of cGMP 

and Ca2+/calmodulin kinase II (CaMKII) (Gillette, 1996; Ginty et al., 1993; Mathur et al., 

1996; Tischkau et al., 2003a; Tischkau et al., 2003b). Several other kinases, including 

mitogen-activated kinase (MAPK) (Akashi et al., 2008; Akashi and Nishida, 2000; Cao et 

al., 2008; Dziema et al., 2003; Obrietan et al., 1998) and Ca2+/calmodulin kinase (CaMK) 

(Wu et al., 2001) have also been implicated in the activation of CREB in the SCN. 

Upon photic stimulation, Glu is released in the RHT initiating a series of signal 

transduction cascades in the SCN that ultimately result in a phase shift of the circadian 

clock (Ding et al., 1994; Golombek et al., 2003). Glutamate released from the RHT 

activates N-methyl-D-aspartate (NMDA), non-NMDA (AMPA/kinate) and metabotropic 

(mGluR1) receptors in the SCN (Ebling, 1996). Glutamate also induces an increase in 

intracellular Ca2+  levels in the SCN (Colwell, 2001; van den Pol et al., 1992). Although 

currents evoked by exogenous application of AMPA did not show a diurnal rhythm in 

their magnitude, there was daily rhythm in the magnitude of AMPA-induced Ca2+  

transients that peaked during the night (Michel et al., 2002).  

The increased intracellular Ca2+  results in the activation of a plethora of enzymes 

in the SCN, particularly, CamKII and neuronal nitric oxide synthase (nNOS). Activation  
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Figure 5: Putative photic signal transduction pathway in the SCN. 

 

Glutamate activation of NMDA receptors in the SCN results in calcium influx that 

activates NOS and CaMK activity, which in turn modulates other kinases such as PKG 

and MAPK which lead to the phosphorylation of CREB and induction of clock genes 

producing phase shifts of the clock. PACAP stimulation activates several signaling 

pathways via cAMP/PKA and or MAPK pathways. (NOS- Nitric oxide synthase, NO-

Nitric Oxide, GC- Guanylyl cyclase, cGMP-cyclic GMP, PKG-Protein kinase G, CREB-

cAMP response element binding protein, RyR-ryanodine receptor, AC-Adenylyl Cyclase  

cAMP-cyclic AMP, PKA-Protein kinase A, CaMKII- calmodulin-dependent kinase II. 

See text for details). 
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of nNOS leads to the formation of nitric oxide (NO). Several studies have indicated the 

role of nNOS in circadian photic resetting (Agostino et al., 2004; Ding et al., 1994; 

Ferreyra et al., 1998; Melo et al., 1997; Watanabe et al., 1994). The pathway downstream 

of NO diverges and is thought to be responsible for inducing the bi-directional phase 

shifts during the night. During the late night, NO activates soluble guanylyl cyclase 

inducing changes in both cGMP levels and cGMP-dependent protein kinase activity 

(cGK) (Taishi et al., 2001; Tischkau et al., 2003b). Mechanisms downstream of cGK 

activation are not completely elucidated but, acting through intermediary pathways cGK 

activation culminates in phosphorylation of CREB and induction of PER protein 

expression. During early night, there occurs additional mobilization of Ca2+ from 

intracellular stores via the activation of ryanodine receptors (Ding et al., 1998). Recently, 

Pfeffer et al. showed that dysfunctional ryanodine calcium signaling in the BMAL1 null 

mutant led to an impaired light-input pathway selectively during early night (Pfeffer et 

al., 2009). Photic stimulation also releases the neurotransmitter PACAP in the RHT 

(Hannibal et al., 2000; Liu and Madsen, 1997; Yaka et al., 2002). Multiple signaling 

pathways are involved in the PACAP-mediated light entrainment of the SCN. Activation 

of the PACAP receptors by light stimulates the cAMP/PKA signaling pathway resulting 

in CREB phosphorylation events and phase advance of the clock (Chen et al., 1999; 

Tischkau et al., 2000). It also modulates gluatamatergic signaling via the ERK/MAPK 

pathway. NMDA receptor activation also involves CaMKII mediated ERK/MAPK 

pathway. MAPK stimulation activates the phosphorylation of CREB which results in the 

induction of clock genes (Butcher et al., 2002; Coogan and Piggins, 2003; Dziema et al., 
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2003; Obrietan et al., 1998). The exact downstream targets that induce phase delay during 

early night remain largely unknown. 

Neuronal Plasticity in Circadian Photic Resetting 
 

Circadian rhythms have three defining characteristics: 1) The rhythms are 

persistent in constant conditions independent of environmental time cues. 2) The rhythms 

show temperature compensation, the “free-running” period of the organism remains 

constant over a wide-range of ambient temperatures. 3) The most important feature of 

circadian rhythms is their ability to be entrained by cycling environmental  time cues or 

Zeitgebers. Light is the major environment cue that can reset the circadian clock. The 

ability of light to reset the clock allows it to maintain temporal alignment with external 

time cues. A short light pulse given during the sensitive circadian phase can permanently 

reset the phase of the circadian clock over a period of few days. Light-induced resetting 

of the circadian clock is a classic example of short-term environmental stimuli inducing 

long-lasting behavioral adaptations. 

Long-term potentiation (LTP), long lasting activity-dependent increase in the size 

of a synaptic response, was first described by Bliss and Lømo (Bliss and Lomo, 1973). It 

is now considered to be the cellular mechanism underlying learning and memory. LTP 

has been divided into an early phase LTP (E-LTP) that lasts for 1-2 hr and involves 

modifications of pre-existing synapses as a result of increased Ca2+ flux through NMDA 

receptors and accompanying protein phosphorylation events (Bliss and Collingridge, 

1993; Malenka and Nicoll, 1999) and a late-phase LTP (L-LTP) that can last as long as 6-

8 hrs (Frey et al., 1988). L-LTP requires activation of cAMP-dependent protein kinase 
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and the transcription factor CREB (Kandel, 2001). It is also dependent on new protein 

synthesis (Fales et al., 1919; Frey et al., 1988).  Tetanic stimulation of the hippocampus 

that induces L-LTP has been shown to enhance the expression of several proteins 

(Matsuo et al., 2000; Qian et al., 1993). 

Although the exact protein synthesis responsible for the induction and 

maintenance of L-LTP remains elusive, a few have emerged as the likely candidates, 

notable among these being: brain-derived neurotrophic factor (BDNF), tissue-type 

Plasminogen Activator (tPA), Calpain and Cyclin-dependent kinase 5 (Cdk5). BDNF has 

emerged as a critical secretory protein that regulates synaptic development and plasticity 

in the CNS (Lu, 2003; Poo, 2001). tPA is another target gene being considered. Seizure, 

kindling and paradigms that induce L-LTP all cause an enhancement of tPA mRNA 

expression in the hippocampus (Qian et al., 1993). tPA mutant mice have been shown to 

exhibit a selective impairment in L-LTP (Calabresi et al., 2000; Frey et al., 1996; Huang 

et al., 1996). Calpain, a Ca2+ dependent cysteine protease has also been implicated in L-

LTP process. Calcium influx following titanic stimulation activates calpain that in turn 

cleaves fodrin, allowing translocation of Glu receptors (Lynch and Baudry, 1984). 

Several other mechanisms have also been suggested including the degradation of Glu 

receptor-interacting protein (GRIP) (Lu et al., 2001). Cdk5 is a proline-directed 

serine/threonine kinase that has been implicated in various neuronal functions, including 

learning, memory and neurodegenerative disorders (Dhavan and Tsai, 2001). A transient 

increase in Cdk5 activity was shown to enhance LTP, whereas, a prolonged hyperactivity 

resulted in learning and memory deficit (Fischer et al., 2005). 
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The role of the neurotrophin, BDNF has been extensively studied in the past 

decade. BDNF and its cognate receptor, tyrosine receptor kinase B (TrkB) are expressed 

in the SCN (Allen and Earnest, 2005; Liang et al., 1998a). Not only is BDNF expressed 

in SCN, the expression also exhibits a circadian rhythmicity with peak protein levels 

occurring at night (Liang et al., 1998b). BDNF can also reset the circadian rhythm of 

SCN neuronal activity in brain slice preparation by modulating NMDA and AMPA 

currents in the SCN neurons (Michel et al., 2006). Little is known about the potential role 

in the SCN and circadian resetting of other neuromodulators of plasticity. Drawing 

similarities in the function of the hippocampus and the SCN, it is reasonable to assume 

that the neuromodulators implicated in the neuronal plasticity in the hippocampus might 

play a similar role in the SCN.   

Objective of Current Study 
 

The main objective of this study is to investigate the role of modulators of 

neuronal plasticity in resetting the circadian clock. To achieve this objective, the 

following specific aims are devised: 

1) Investigate the role of extracellular serine protease tPA in the modulation of  

circadian clock resetting. 

2) Investigate the role of Cdk5 and its activators in circadian clock resetting. 

3) Investigate the role of cysteine protease, calpain in the photic resetting of the 

circadian clock. 

 
 
 
 



 

 

 

CHAPTER 2 – METHODS 
 

Animals 
 

All animal treatments conformed to the standards in the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and were approved by the East 

Carolina University Institutional Animal Care and Use Committee. 

C57BL/6: Adult male mice, 6-8 weeks of age were purchased from either The Jackson 

Laboratory (Bar Harbor, ME; Stock No. 000664) or from Harlan Laboratories 

(Indianapolis, IN). Mice were housed under standard conditions with a 12:12 hr 

Light:Dark cycle (Lights On – 7:30 AM, Lights Off- 7:30 PM) with free access to food 

and water ad libitum. Transgenic Mice: Breeding pairs of C57BL/6-Tg(tetO-

CDK5R1/GFP)337Lht/J (Stock No: 005706) and B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ 

(Stock No: 007004) were obtained from The Jackson Laboratory (Bar Harbor, ME). All 

mice were conceived and raised on a doxycycline containing diet (1mg/g, Bio-Serv, 

Frenchtown, NJ) to keep the transgene repressed. The animals were switched to a normal 

diet for 2 weeks to induce the expression of the transgene. All transgenic transgenes were 

heterozygous. Wild type littermates were used as controls. The bi-transgenic mice will be 

referred to as CK-p25. In the inducible CK-p25 mice, the expression of green fluorescent 

protein (GFP) tagged p25 is mediated by the CaMKIIα promoter regulated tet-off system. 

p25 expression is repressed in the presence of tetracycline analog, doxycyline. Robust 

p25 expression and elevated hippocampal Cdk5 activity is observed after 1-2 weeks of 

induction (Fischer et al., 2005).  A schematic of the tetracycline-inducible p25 transgene 

is given in Fig. 6.   
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Genotyping 
 

Routine genotyping of transgenic mice offspring was done from tail snips using 

REDExtract-N-Amp Tissue PCR Kit (Sigma, St. Louis, MO). DNA extraction was done 

by incubating the tail snips in a 4:1 mixture of extraction solution and tissue preparation 

solution from the kit first at 55°C for 10 min and then at 95°C for 3 min. 100 µl of 

neutralization solution B was added to sample and mixed by gentle vortexing. The 

neutralized tissue extract was immediately used for PCR reaction. The PCR reaction 

sample contained 10 µl of REDExtract-N-Amp PCR reaction mix, 4 µl of tissue extract, 

2 µl of forward and reverse primers (final concentration of 0.1M) and 2 µl of PCR grade 

water. PCR was performed on tail genomic DNA for 35 cycles of 95°C at 1 min, 55°C at 

1 min, and 72°C at 1 min on Eppendorf MasterCycler gradient (Eppendorf, Westbury, 

NY). The following PCR primers were used: 5'-AAGTTCATCTGCACCACCG-3', 

5'- TCCTTGAAGAAGATGGTGCG-3' forward and reverse primers for p25-GFP 

transgene and 5′-GTGATTAACAGCGCATTAGAGC-3′ and 5′-

GAAGGCTGGCTCTGACCTTGGTG-3′ as forward and reverse primers for CAMKII-

tTA transgene. 15 µl of the PCR reaction product was loaded on 2.5% agarose gel, 

electrophoresis was done at 75 V for 40 min. The bands on gel were visualized using 

Alpha Imager (Alpha Innotech, San Leandro, CA). 
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Figure 6: Schematic of tetracycline-inducible p25 transgene. 

 

The bi-transgenic mice (CK-p25) contains two trangenes: GFP tagged p25 and CaMKIIα-

tTA, tetracycline regulated promoter. In the absence of tetracycline, CK-p25 mice 

express p25 in a tissue specific manner. The transgene is switched on and off by 

switching the diet between normal rodent chow and a doxycycline based diet. (tTA- 

tetracycline transactivator, IRES – internal ribosome entry site, Dox- doxycycline, GFP – 

green fluorescent protein). 
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Western blotting 
 

On the day of the experiment, mice, having been entrained to a 12 hour L:D cycle 

for 10 days, were given a light pulse (~ 100 lux) starting at Zeitgeber Time (ZT) 16. At 20 

minute intervals, animals were deeply anesthetized (ketamine/xylazine, 18/2 mg/kg, i.p) 

and decapitated with a guillotine. Control animals received no light pulse and their SCNs 

were collected under dim red-light (less than 5 lux). The brain was dissected out and 

SCN-containing coronal hypothalamic brain sections (500 µm) were prepared using a 

customized tissue slicer. The sections were immediately frozen on to a glass slide over dry 

ice.  A stainless steel needle (400 µm inner diameter) was then used to punch out both SCN 

from each brain section. For each experimental condition, SCNs from 4 animals were 

collected, pooled and stored at -80°C until use.  SCN tissues were homogenized in a small 

volume of modified radio immunoprecipitation assay buffer (50 mM  Tris-HCl pH 7.4, 

1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM  PMSF, 1 

µg/ml each Aprotinin, Leupeptin, Pepstatin, 1 mM Na3VO4, and 1 mM NaF) centrifuged 

at 8000 x g for 10min at 4°C, then the supernatant was collected and stored at -80° C until 

the extracts were processed for Western blotting. Total  protein content in the lysate was 

quantified using a Bio-Rad DC protein assay kit following the manufacturer’s protocol. 50 

µg of protein lysate was loaded onto  4-12 % bis tris gel, subjected to electrophoresis and 

transblotted onto PVDF membrane. After transfer, membranes were washed with 0.5 %  

TBST, blocked with 5% powdered non-fat dry milk in TBST and then incubated overnight 

at 4oC with the primary antibody, rabbit polyclonal anti-tPA (1:1000). After incubation 

with primary antibody, membranes were washed with TBST and incubated with  

horseradish peroxidase-conjugated anti-rabbit secondary (1:5000). The ECL Plus detection 
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system (Amersham BioSciences) was used for visualization of the signal. Blots were 

quantified using UNSCAN-IT quantitative densitometry analysis software (Silk 

Corporation, USA).  

Behavioral Experiments 
 

Wheel Running Activity for tPA Study 
 

Male mice (8-10 weeks old), were anesthetized (ketamine/xylazine, 18/2 mg/kg, i.p.) and 

stereotaxically implanted with a guide cannuli (Plastic One, 22-gauge with 28-gauge 

stylet, the stereotaxic co-ordinates were AP 0.4 mm, LM 0.0 mm, DV 4.5 mm). Post-

cannulation, mice were individually housed in polypropylene cages equipped with 4 ½ -

inch running wheels for at least 10 days in 12 hour L:D cycle to recover before being put 

into constant darkness cycle (DD). Wheel running activity was monitored with Vital 

View 3.11 data acquisition software (Minimitter, Sunriver, OR) in 5- minute bins on an 

Intel Pentium computer. The injection times (CT16, CT22) were calculated for free 

running animals by adding 4 hours to the calculated CT12 time derived from a regression 

fit line of onset of activity, considering 7 days prior to the treatment day. The inhibitor, 

tPA-STOP™ (200 μM) or saline was injected into the third ventricle of restrained mice 

over a period of 2 minutes by removing the stylet and inserting a 28-gauge injector 

attached to a microsyringe. The procedure was performed in the dark with the aid of 

infrared night-vision goggles (Night Owl, CA).  After 10 days in DD following the first 

injection, the animals were given a second injection, this time the treatment was reversed, 

mice that received a first injection of tPA-STOP™ were injected with saline the second 

time and vice versa.  Raw phase-shifts were calculated as the difference between two 
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regression fit lines of activity onsets considering 7 days prior to the treatment and 7 days 

after the treatment (avoiding the first two days following treatment).  Raw phase-shifts 

were converted to circadian hours by multiplying with the factor, τ/24, where τ is the 

calculated free-running period of the particular animal. 

Wheel Running Activity for Cdk5 Study 
 

Adult CK-p25 transgenic mice and their wild type littermates 6-8 weeks old were 

transferred to light proof chambers, individually housed in polypropylene cages equipped 

with 4 ½ -inch running wheels for at least 10 days in 12:12 hr L:D cycle before being put 

into constant darkness cycle (DD). The transgene was turned on and off by switching the 

doxycycline diet (1g/kg, Bio-Serv, Frenchtown, NJ) to normal diet. The time line for the 

experiment is given in Fig. 7. 

Wheel running activity was monitored with ClockLab data acquisition software 

(Actimetrics, Wilmette. IL) in 6- minute bins on an Intel Pentium IV computer. “Free-

running” mice were exposed to a 20 min, 100-lux light pulse at one of the following 

circadian time points: CT12, CT22, CT6. At the appropriate CT, the mouse was taken out 

of the light-proof chamber in complete darkness with the aid of night vision goggles. The 

mouse was transferred to the light exposure chamber which had lights adjusted to provide 

~100 lux at cage level. After light exposure, the mouse was transferred back to the light-

proof chamber. Animals were allowed to “free-run” for 10 days between the light pulse 

treatments. Raw phase-shifts were calculated as the difference between two regression fit 

lines of activity onsets considering 7 days prior to the treatment and 7 days after the 

treatment (avoiding the first two days following treatment).  Raw phase-shifts were 
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converted to circadian hours by multiplying with the factor, τ/24, where τ is the 

calculated free-running period of the particular animal.  

Immunohistochemistry 

Under deep anesthesia with ketamine/xylazine (0.1 ml/10g body weight; 

(18mg/2mg)per kg i.p), mice were perfused transcardially with 40 ml of ice-cold 

phosphate buffered saline (PBS) pH 7.4 followed by 40 ml of 4% paraformaldehyde 

fixative. The brain was dissected out and post-fixed in the same fixative for 24 hr at 4°C. 

Coronal sections were cut using a vibratome (Vibratome 1000 Plus, St. Louis, MO) at a 

thickness of 30µm. The sections were washed with PBS for 10 min. After the wash, the 

sections were blocked with 5% Normal Horse Serum (NHS) in PBS containing 0.3% 

Triton X-100 (PBST) for 1 hour. Following blocking the sections were incubated in 

primary antibody in PBST containing 1% NHS overnight at 4°C. After incubation with 

primary antibody, the sections were washed with PBS for 3x10 min. The sections were 

then incubated with Anti-Rabbit ImmPRESS™ reagent (Vector Laboratories, 

Burlingame, CA) for 1 hour at 22°C. Next, the sections were washed with PBST for 3x10 

min. For visualization, the sections were treated with 3, 3’-diaminobenzidine (DAB) 

substrate and 0.03% hydrogen peroxide. Once the desired staining intensity has 

developed (4-7 min), the reaction was stopped by transferring the solution to PBS. The 

sections were then mounted on Superfrost Plus microscopic slides (Fisher Scientific, 

Pittsburgh, PA) and allowed to dry overnight. Sections were cleared in CitriSolv (Fisher 

Scientific, Pittsburgh, PA) 2x10 min each and coverslipped with DPX Mountant (Sigma-

Aldrich, St. Louis, MO). Images were captured using Olympus DP20 digital camera on 
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an Olympus BX51 microscope (Olympus America, Center Valley, PA). Negative control 

(no primary antibody) was included in the staining procedure to validate the specificity of 

staining. List of primary antibodies used is given in Table 1. 

Immunofluorescence  

Immunofluorescence staining was done in the same way as described under 

immunohistochemistry. The only difference was fluorescent labeled secondary antibodies 

were used. Confocal microscopy was done using Zeiss LSM510 confocal microscope. 

Electron Microscopy 

Brains from transgenic animals with and without the induction of the transgene 

were collected as described under immunohistochemistry method. They were postfixed in 

2% glutaraldehyde fixative for 2 hrs, trimmed to 10 mm2 cube containing the SCN using 

a sharp scalpel and further postfixed in 4% paraformaldehyde fixative for 24 hr at 4°C. 

The cubes were trimmed further to 5 mm2 cubes, washed in 0.1M cacodylate buffer 3 

times 10 min each. After the wash they were fixed in 1% osmium tetraoxide for 1 hr 

rinsed with 0.1 M phosphate buffer for 10 min and stained en-block with 1% uranyl 

acetate. The SCN cubes were then dehydrated in graded series of ethanol (25, 50, 75, 95, 

100 and 100%) for 15 min each.  Embedding was done in increasing concentrations of 

Spurr’s media in ethanol – 30% for 30 min, 70% for 1 hr, 100% for 2 hr, 100% for 30 

min and finally in 100% media in a flat tissue tear-away container.  The block was 

trimmed to 2 mm2 cube and ultrathin silver-gray sections (80nm) were cut using Leica 

EM UC6 ultramicrotome (Leica, Germany), collected on 200 mesh copper grids. 
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Table 1: Primary antibodies used for immunohistochemistry, immunofluoresece 

and Western blotting. 
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Primary Antibody Concentration 

tPA 

(American Diagnostica) 
1:500 

Cdk5 (C-18) 

(Santacruz Biotechnology) 
1:500 

P35 (C-19) 

(Santacruz Biotechnology) 
1:500 

Calpain-1 (domain IV) 

(Abcam) 
1:1000 

p-ERK (anti-phospho42/44 MAPK) 

(Cell Signaling Technology) 
1:400 

GRP (FL-148) 

(Santacruz Biotechnology) 
1:500 
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Sections were viewed with a  JEOL 1200 EX electron microscope (Japan Electron Optics 

Laboratory Co., Japan) operated at 60 kV accelerating voltage. Images were captured 

using a SIS MegaView III CCD camera.  Synaptic counting was done as described by 

(Knott et al., 2002). Briefly, serial electron micrographs were arranged in sequence and 

sampling rectangle was drawn on each micrograph. Synapses were counted within this 

sample rectangle. A synapse was identified as a region of  synaptic density with at least 3 

identifiable vesicles. Synapses that crossed the right and lower sides of the sampling 

rectangle were included in the count, those that crossed the left and upper sides were 

excluded. 

Kinase Activity Assay for Cdk5 
 

The kinase activity assay was performed according to Glass and Krebs (1982) 

using the Cdk5-specific peptide substrate (Peninsula Labs).  The animals were exposed to 

a light pulse at ZT12 (100 lux, 15 min) and the SCN was rapidly dissected and snap 

frozen in liquid nitrogen and stored at -80°C until further processed.  The SCN tissue was 

sonicated for 10 sec in 50 µl buffer containing glycerophosphate 10 mM and a cocktail of 

protease inhibitors (phenylmethylsulfonyl fluoride (100 µM), phenanthroline (10 mM), 

leupeptin (2 µM), pepstatin (0.2 µM), and aprotinin (1%) (Sigma)), BSA (0.1 mg/ml), 

KT5720 (protein kinase A inhibitor, 0.1 µM), Tris (20 mM), pH 7.4, Mg2+ acetate (20 

mM), and isobutylmethylxanthine (IBMX, 100 µM), and then centrifuged at 2000 × g for 

3 min at 4°C.  A 30 µl aliquot of the supernatant was taken and mixed with 15 µl of 

buffer containing the peptide substrate (400 µg/ml), [γ-32P]ATP (1 µCi/tube), and cold 

ATP (14 µM), and then incubated for 2 min at 37°C. The reaction was stopped by  
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Figure 7: Timeline of light pulse experiment for CK-p25 mice. 

 

Heterozygous CK-p25 mice, 6-8 weeks old, were entrained with 12:12 hr Light:Dark 

cycle. After 2 weeks of entrainment, the mice were released to constant darkness. Mice 

were kept in constant darkness until the end of the experiment. Mice were allowed to 

“free-run” for 10 days after every light pulse treatment. Normal rodent chow was 

replaced with doxycyline based diet for 2 weeks to induce p25 gene expression. To 

repress the gene expression, doxycycline diet was switched to normal rodent chow for 4 

weeks. The experiment was terminated by putting the mice back to Light:Dark cycle. 
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cooling on ice and adding 10 µl of 1N HCl.  A 35 µl aliquot of the reaction product was 

placed on filter paper (Whatman P81 disks) and air-dried.  The filter paper was washed 

with 0.5% orthophosphoric acid until no more radioactivity appeared in the effluent.  The 

dried filter paper was placed in a scintillation vial with 5 ml scintillation fluid and 

counted for 2 min.  Activity is expressed as a percentage of the average difference with 

and without light exposure.  

Calpain Activity Assay 
 

One day before the experiment, C57BL/6 mice, previously stably entrained to a 

12:12 hr L:D cycle were transferred to light proof chambers with the same light cycle, 

housed individually in polypropylene cages with free access to food and water ad libitum. 

Mice were divided into 6 groups – control and experimental groups for each of the three 

circadian time points – ZT16, ZT22 and ZT7. On the day of the experiment, mice were 

given a light pulse (~ 100 lux) for 20 min duration at each circadian time point mentioned 

above. Control mice received no light exposure. Animals were deeply anesthetized 

(ketamine/xylazine, 18/2 mg/kg, i.p) and decapitated with a guillotine. The SCN of 

control animal was collected under dim red-light (less than 5 lux). The brain was 

dissected out and SCN-containing coronal hypothalamic brain sections (500 µm) were 

prepared using a customized tissue slicer. The sections were immediately frozen on to a 

glass slide over dry ice.  A stainless steel needle (400 µm inner diameter) was then used to 

punch out both SCN from each brain section. Cerebellum was also collected from each 

animal. For each experimental condition, SCN and cerebellum from 4 animals were 

collected, and stored at -80°C until use.  The tissue was homogenized in sample buffer 
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(Tris-HCl 20 mM pH 7.5, EDTA 1mM, EGTA 1mM, DTT 1mM). The homogenate was 

centrifuged at 12,000 x g for 10 min and the supernatant was collected. Total protein 

content in the samples was measured using Bio-Rad DC protein assay following 

manufacture’s protocol. Calpain activity was measured using Calpain Glo-Protease Assay 

kit (Promega, Madison, WI) according to the manufacture’s protocol. In this assay, activity 

is measured with luminescence, The luminescence was measured using 20/20n 

luminometer (Turner BioSystems, Sunnyvale, CA). The relative luminescence was 

averaged over 10 sec, background-subtracted, and normalized to the amount of protein in 

the sample. 

Dye-Quenched Fluorescent In-Situ Zymography 
 

One day before the experiment, C57BL/6 mice, previously stably entrained to a 

12:12 hr L:D cycle were transferred to light proof chambers with the same light cycle, 

housed individually in polypropylene cages with free access to food and water ad libitum. 

On the day of the experiment, mice were given a light pulse (~ 100 lux) starting at ZT16. 

At 20 minute intervals, animals were deeply anesthetized (ketamine/xylazine, 18/2 

mg/kg, i.p) and decapitated with a guillotine. The brain was dissected out and post-fixed 

in ethanol:methanol fixative (3:1 by volume) for 6 hr at 4°C. After post-fixation, brains 

were washed in 99% ethanol (4°C) two times 10 min each. It was then trimmed to a 5 

mm block and infiltrated with a mixture of Steedman’s/Polyester wax (Electron 

Microscopy Sciences, Hatfield, PA) with increasing concentrations of the wax (50%, 

75%, 95%, 100%) for 1 hr each in an oven at 37°C. The brain block was left in pure wax 

overnight at 37°C. Finally, the specimens were embedded in 100% polyester wax in flat 
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peel-away tissue embedding containers (VWR, West Chester, PA). Blocks were cut into 

10 µm thick sections using HM340E rotary microtome (Microm, Germany). During 

cutting, the block was cooled by down-draft from dry ice in a funnel positioned 6 inches 

above the cutting block. Ribbon sections obtained were floated in a water bath at 39°C. 

The sections were mounted on Superfrost Plus microscopic slides (Fisher Scientific, 

Pittsburgh, PA) and air dried for 30 min. The sections were then dewaxed briefly in 

graded concentrations of ethanol (50%, 75%, 95%, 100%) for 1 min each. After 

dewaxing, sections were dried overnight at 4°C. The sections were again dewaxed in 

absolute alcohol at 37°C for 5 and 10 min each. The slides were air dried for 10 min 

between each alcohol dewaxing. Following dewaxing, the sections were hydrated in 

graded ethanol (95%, 75%,50%, distilled water) for 3 min each. The in-situ zymography 

protocol was adapted from Gawlak et al. 2009, Fredericks and Mooke, 2004 and Sappino 

et al. 1993. A dye-quenched fluorescent casein substrate, DQ Casein (EnzChek Protease 

Assay Kit, Red fluorescence, Molecular Probes/Invitrogen, Eugene, OR) was used. The 

substrate is heavily labeled with pH-insensitive red-fluorescent BODIPY FL which 

shows an increase in fluorescence once cleaved by the protease. The specimens were pre-

incubated in PBS pH 7.4 at 37°C for 30 min. They were then overlaid with the 

fluorescent substrate, DQ casein diluted 1:100 in 1% low gelling point agarose in PBS 

with 0.9 mM Ca2+ and 1mM Mg2+ and 20 µl of a 4mg/ml solution of purified human 

plasminogen (American Diagnostica, Stamford, CT). 20 µl of the overlay mixture was 

applied to each section, and was spread evenly under 40 x 32 mm glass coverslip. Slides 

were incubated at 37°C in a humidified oven. The incubation was carried out for 3 hr. 

The specificity of protease activity was tested by incubating the sections with an overlay 
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mixture that did not contain plasminogen and one which contained tPA-STOP™. The 

zymograms were observed under a Leica DM4000b epi-fluorescent microscope (Leica, 

Germany). Pictures were taken using DFC 420C cooled CCD camera (Leica, Germany). 

Images were obtained using Leica Application Suite 3.3 (Leica, Germany). The exposure 

settings were 1.5s, gamma=1 and gain=1. For quantitation of fluorescence density, higher 

magnification images (400x) were captured for each SCN. Quantitation was done using 

NIH ImageJ (1.43e, NIH, Bethesda, MD). The images were converted to 8-bit gray-scale 

images (0= black;255=white). To account for background fluorescence, images were also 

captured from the adjacent area of the SCN.  

Gray-scale density correction was done with the following formula (Clemens et 

al., 2005): 

∁ = 255 𝑥𝑥 
(𝜎𝜎 −  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 )

(𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 −  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 ) 

where C = corrected gray-scale density, σ = average of gray-scale values within 

the SCN, σmin = average of gray-scale values in the adjacent SCN region and σmax = 

maximum gray-scale value. 

Data Analysis and Statistics 
 

Statistical analysis was done using the SPSS software (Version 16.0; SPSS Inc., 

Chicago, Illinois). Results are expressed as mean±S.E.M. Paired t-test was used to 

compare two groups. Differences between groups were determined by one way ANOVA 

and Tukey’s HSD post-hoc test where appropriate. p≤0.05 was considered to be 

significant. Graphs were plotted using SigmaPlot (version 11.0; Systat Software, Inc., 
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San Jose, CA). Images were processed with Photoshop CS4 (Abode Systems Inc., San 

Jose, CA). Image analysis was done using NIH ImageJ (version 1.43e; NIH, Bethesda, 

MD).  

 

 

 



 

 

 

CHAPTER 3 - THE ROLE OF EXTRACELLULAR SERINE PROTEASE 

TISSUE-TYPE PLASMINOGEN ACTIVATOR IN THE MODULATION OF 

NEURONAL PLASTICITY IN CIRCADIAN CLOCK RESETTING 
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Summary 
 

Tissue-type plasminogen activator (tPA) is an extracellular serine protease that 

has been shown to modulate neural plasticity in many brain regions including the 

hippocampus, amygdala and cerebellum.  The present investigation focused on 

identifying the role of tPA in light-induced circadian rhythm resetting in a mouse model.   

Light exposure at night, the time when light is capable of resetting the circadian 

clock, induced transient elevation in the expression of tPA in the mouse SCN.  Not only 

was the expression of tPA in the SCN elevated by light, there was also a corresponding 

increase in the proteolytic activity of tPA in the SCN.  Furthermore, light-induced phase 

delay of the circadian rhythm of mouse wheel running activity was markedly reduced 

after intra-cerebroventricular injection of tPA-STOP™, an inhibitor of tPA. These results 

strongly suggest a potential role for tPA in modulating of light-induced resetting of the 

circadian clock.   
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Introduction 
 

Circadian rhythm resetting is an important behavioral adaptation to a change in 

environment.  Neuroplasticity often underlies behavioral adaptations to environmental 

changes (Bailey and Kandel, 1993; Schacher and Montarolo, 1991).  Neurotrophins, 

including  nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) 

along with their respective receptors are located within the SCN and have been found to 

modulate photic resetting (Bina and Rusak, 1996; Bina et al., 1997; Liang et al., 2000; 

Michel et al., 2006).  

A mechanical change in synaptic morphology has been hypothesized for the 

acquisition, consolidation and retention of long-term memory (Lamprecht and LeDoux, 

2004).  Inter-cellular membrane interactions, extracellular matrix (ECM), intracellular 

cytoskeleton all contribute to the synaptic cytoarchitecture. Extracellular proteolysis is 

likely to be a major player in the modulation of inter-cellular adhesions (Neuman et al., 

1989; Shiosaka and Yoshida, 2000). The dynamic remodeling requires rapid changes in 

the ECM and receptor signaling (Dityatev and Schachner, 2003).  Extracellular 

proteolytic enzymes, in particular, serine proteases, are likely candidates for the plastic 

remodeling process (Shiosaka, 2004; Shiosaka and Yoshida, 2000; Vassalli et al., 1991).  

Among the serine proteases, tPA has been implicated in numerous aspects of synaptic 

plasticity. 

tPA is a serine protease with a molecular weight of approximately 70kDA. It 

contains domains of kringle, epidermal growth factor, serine protease and fibronectin 

type I (Lunen and Collen, 1993). It was originally identified as a fibrinolytic protease that 
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converted the inactive zymogen, plasminogen into the active protease, plasmin (Lunen 

and Collen, 1993). tPA is released by both neurons and glia (Teesalu et al., 2002; Tsirka, 

2002) and is expressed in many regions of the brain, including the hippocampus, 

amygdala, hypothalamus and cerebellum (Baranes et al., 1998; Pawlak et al., 2003; 

Sappino et al., 1993; Seeds et al., 1995). Overwhelming evidence suggests a role for tPA 

in synaptic plasticity, especially characterized is its effect on hippocampal long-term 

potentiation (LTP).  tPA has been identified as one of the brain activity dependent 

(BAD), immediate-early genes induced in the hippocampal neurons during seizures, 

kindling and LTP (Qian et al., 1993). A previous study suggested that the expression of 

BAD genes were induced in the SCN in response to a light stimulus at night (Kornhauser 

et al., 1992). A more recent study showed that tPA can modulate Glu-induced phase 

shifting in the SCN brain slice (Mou and Prosser, 2006). These observations led us to 

explore the role of tPA in resetting the circadian clock.  
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Results 
 

Light Induces tPA Expression in the SCN 
 

To examine the role of tPA in light entrainment, we investigated whether light can induce 

the expression of tPA in the SCN. Figure 8 describes the expression of tPA following 

light exposure at ZT16. tPA expression in the SCN is rapidly and transiently induced in 

response to light exposure at night. Western blot analysis showed that tPA protein level 

in the SCN started to increase after 40 minutes of light exposure at ZT16, and reached a 

peak level after 60 minutes of light exposure.  The tPA level began to decline after 80 

minutes, and returned to half maximal level after 120 minutes following light exposure. 

The expression was significantly increased following 60 minutes of light exposure. 

 

Light Induces tPA Proteolytic Activity in the SCN 
 

Figure 9 show representative photomicrographs of in-situ zymography for tPA 

proteolytic activity in the SCN. The proteolytic activity was found to be significantly 

increased following 40 minutes of light exposure. The specificity of the reaction was 

tested by omitting plasminogen in the overlay mixture (Figure 9 C) and by adding tPA-

STOP™, an inhibitor of tPA (Figure 9 D). In both the conditions the proteolytic activity 

was found to be decreased. Quantitation of fluorescence show that the proteolytic activity 

increased significantly, showing almost a 2-fold increase following 40 min light exposure 

at ZT16. The specificity of the reaction was tested by incubating with tPA-STOP™. In 
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the presence of the inhibitor, the proteolytic activity was significantly decreased versus 

40 min light exposure (Figure 9 E).  

tPA Modulates Light-induced Phase Shifts in vivo 
 

To determine whether tPA could modulate light-induced phase shift in vivo, we 

monitored the circadian rhythm of mouse wheel running in constant darkness. A 

representative actogram in Figure 10 shows that in tPA-STOP™ infused mice the light-

induced phase delay was significantly reduced (0.3 hrs ± 0.22, n=12) compared to control 

mice that received saline infusion (1.3 ± 0.25 hrs, n=12).  
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Figure 8: Light induces tPA protein expression in the SCN. 

 

A: Representative Western blot showing the expression of tPA after different durations of 

light exposure at ZT16.  B: Bar graph showing fold change in tPA expression levels 

normalized to the control.  tPA expression level was maximally induced 1 hour after light 

exposure. An increase in expression level was first observed at 40 min. The levels started 

to decline after 60 min. An increased expression was seen up to 120 min. following the 

light exposure. Values are presented as mean±S.E.M., n=5 *p<0.05. 
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Figure 9 A-E: Light induces tPA proteolytic activity in the SCN.  

 

The photomicrographs depict dye-quenched fluorescent in-situ zymography for tPA. A ) 

shows the proteolytic activity in the SCN of the control animal (no light exposure).  B) is 

the proteolytic activity in the SCN measured following 40 min of light exposure. The 

specificity of the reaction by tested by omitting plasminogen in the overlay mixture (C) 

by co-incubation with tPA-STOP™ (5µM) (D) F) represents the quantitation of 

fluorescence, a measure of the proteolytic activity. Following 40 min of light exposure, 

the proteolytic activity significantly increased showing almost two-fold increase versus 

control. Incubation with tPA-STOP™ significantly decreased the proteolytic activity. 

Values are mean±S.E.M., n=4 *p<0.05, #p<0.05. Scale bar =100 µm. 
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Figure 10 A-B: tPA-STOP™ attenuates light-induced phase shifts.  

 

(A) A representative double-plotted actogram showing 43 days of activity demonstrates 

that intracerebroventricular injection of tPA-STOP™ into the 3rd ventricle reduces the 

light-induced delay of running activity when compared to the control animals injected 

with saline. The red, blue and green colored lines represent the regression fit lines of 

activity onset after tPA-STOP™ treatment, before tPA-STOP™ treatment and after 

saline treatment (B) The bar graph represents the mean phase delays after injection of 

tPA-STOP™ and following injection of saline. Light-induced phase delay after injection  

of tPA-STOP was decreased (26±8 min.) compared to that following injection of saline 

(90±10 min.). Values are presented as mean±S.E.M n=16 *p<0.05. 
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Discussion 
 

The main goal of this study was to explore the potential role of the extracellular 

protease tPA in the photic resetting of circadian rhythm.  The tPA/plasmin system 

consists of an inactive zymogen, plasminogen that is converted to plasmin, a broad 

spectrum serine protease, by tPA (Collen, 1999). The tPA/plasmin system has been 

implicated in various physiological processes, such as learning and memory in the 

hippocampus, stress responses in the amygdala and motor learning tasks in the 

cerebellum (Madani et al., 1999; Pawlak et al., 2003; Seeds et al., 1995). Several recent 

studies have revealed a critical role of tPA in the maintenance of LTP in the 

hippocampus. A selective reduction of LTP was seen in hippocampal slices from tPA 

deficient mice, suggesting a potential role of tPA in synaptic facilitation (Calabresi et al., 

2000; Frey et al., 1996; Huang et al., 1996). LTP was also shown to be enhanced in 

hippocampal slices from mice overexpressing tPA (Madani et al., 1999). Furthermore, 

mice over expressing tPA showed improved learning capacity (Madani et al., 1999), 

whereas, the mutant mice with a genetic deletion of tPA showed impairment in spatial 

learning tasks (Huang et al., 1996). 

In the first set of experiments, we showed that light could induce transient 

expression of tPA protein in the mouse SCN. An increased expression was seen after 40 

min of light exposure.  The tPA level peaked after one hour and remained elevated for up 

to 2 hours following light exposure. Not only was the expression level of tPA increased, 

there was also a corresponding increase in the proteolytic activity of tPA in the SCN 
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following light exposure as demonstrated in in-situ zymography. A similar light-induced 

expression of polysialic acid and polysialylated neural cell adhesion molecule have been 

observed in the SCN. Polysialylated neural cell adhesion molecule is an important 

mediator of plasticity in cell interactions and has been shown to play a critical role in the 

photic regulation of  circadian rhythm (Glass et al., 2000; Prosser et al., 2003).  Glu-

induced tPA mRNA translation has been demonstrated in hippocampal neurons (Shin et 

al., 2004). In the hippocampus and cerebellum, transcription of tPA mRNA is induced 

after synaptic activation (Amir and Stewart, 1998; Qian et al., 1993; Seeds et al., 2003). It 

has been suggested that there is  an immediate site-specific synthesis and release of tPA 

which is followed by an NMDA receptor mediated upregulation of tPA mRNA (Qian et 

al., 1993; Shin et al., 2004). An analogous mechanism might exist in the SCN. The exact 

mechanism by which tPA expression in the SCN is induced after photic stimulation needs 

to be investigated further. 

The inhibition of light-induced phase delay of circadian wheel running activity by 

tPA-STOP™ suggests that tPA can modulate circadian rhythm resetting. tPA is a broad 

spectrum extracellular protease that converts the inactive zymogen, plasminogen to its 

active form, plasmin, through proteolytic cleavage.  Although the primary substrate of 

tPA is plasminogen, tPA has been shown to mediate the proteolysis of other ECM 

proteins (Hoffman et al., 1998; Nakagami et al., 2000; Wu et al., 2000).  Upon synaptic 

activation in the hippocampus, plasmin converts the immature precursor form of BDNF, 

proBDNF, to its mature form, mBDNF (Pang et al., 2004).  Previous studies have 

demonstrated that BDNF in the SCN could enhance Glu release and potentiate NMDA 

and AMPA mediated currents, through pre-synaptic and post-synaptic mechanisms, 
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respectively (Michel et al., 2006).  Plasmin directly interacts with the NMDA receptor, 

cleaving an amino terminal of the NR2A subunit and augmenting NMDA receptor 

responses (Yuan et al., 2009).  tPA also directly binds to the low-density lipoprotein 

receptor (LRP) independent of its protease activity (Orth et al., 1994).  tPA is rapidly 

endocytosed by LRP after binding to the receptor initiating a series of intracellular 

signaling events (Zhuo et al., 2000). A growing body of evidence suggest that tPA can 

directly cleave the NR1 subunit and thereby increase  Ca2+ influx (Benchenane et al., 

2007; Fernandez-Monreal et al., 2004; Nicole et al., 2001). Thus, tPA has a dual 

influence on the NMDA receptor: an indirect potentiation of Ca2+ influx via LDL 

receptor, and a plasmin mediated enhancement of  NMDA receptor function. tPA may 

modulate photic resetting through one or more of these mechanisms. 



 

 

 

 

CHAPTER 4 - THE ROLE OF CYCLIN-DEPENDENT KINASE 5 AND ITS 

ACTIVATORS IN CIRCADIAN CLOCK RESETTING BY LIGHT 
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Summary 
 

Cyclin-dependent kinase 5 (Cdk5) is a unique member of the cyclin-dependent 

kinase family that is activated by non-cyclin activators mainly, p35 and p25. Recent 

studies have implicated Cdk5 and its activators in various neurological processes, 

including but not limited to learning and memory, drug addiction and neurodegenerative 

disorders. Cdk5 is a signal transduction molecule downstream to NMDA receptors in the 

Glu pathway.  Since Glu is the principal neurotransmitter of the RHT (Ding et al., 1994), 

we sought to investigate the role of Cdk5 in the light entrainment of the circadian clock.  

SCN neurons expressing the Cdk5 activator, p25 co-localized with 

phosphorylated-extracellular signal-related kinase (p-ERK) and Gastrin Releasing 

Peptide (GRP). Cdk5 activators showed a differential response to light. At ZT16, the 

levels were significantly decreased whereas, at ZT22, it was significantly elevated. At 

ZT6, there was no significant change in the levels. A similar response was seen in the 

activity of Cdk5. The kinase activity was significantly decreased at ZT16, significantly 

increased at ZT22, and unchanged at ZT6. These results were confirmed in a bi-

transgenic mouse model which overexpressed the activator, p25. In the bi-transgenic 

animal, light-induced phase delay in circadian wheel running activity at CT16 was 

significantly increased whereas light-induced phase advance was significantly attenuated. 

Moreover, the bi-transgenic animals exhibited an increased Cdk5 kinase activity in the 

SCN following overexpression of p25, which returned to basal levels once the 

overexpression was repressed. The bi-transgenic animals also demonstrated changes in 

synapse density in the SCN. The synaptic density in the SCN was significantly increased 

following overexpression of p25. Once the overexpression was turned off the synaptic 
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count also returned to basal levels. Taken together, these results strongly suggest that 

Cdk5 along with its activators play a role in the modulation of circadian photic resetting.   
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Introduction 
 

Cdk5 was first discovered in the bovine brain and because it had a sequence homology to 

human CDC2, it was referred to as neuronal CDC2-like kinase (NCLK) (Lew et al., 

1992; Meyerson et al., 1992). Cdk5 is a proline-directed kinase that phosphorylates 

serines and threonines immediately upstream of a proline residue. Like other cyclin-

dependent kinases, Cdk5 by itself has no enzymatic activity. It requires association with a 

regulatory unit for activation. Cdk5 is activated by p35 and p39. It can also be activated 

by p25 and p29, the calpain-mediated cleavage products of p35 and p39. Although, Cdk5 

is expressed in many tissues, the activators are expressed mainly in post-mitotic neurons, 

thus Cdk5 kinase activity is seen highest in the central nervous system (Paglini and 

Caceres, 2001; Paglini et al., 2001). Cdk5 is a pleotropic kinase and more than two dozen 

substrates have been identified (Dhavan and Tsai, 2001; Smith, 2003). 

Cdk5 has been implicated in various neural functions. It is involved in regulation 

of cytoskeletal elements (Hallows et al., 2003; Smith, 2003), axon guidance (Nikolic et 

al., 1996), membrane transport (Barclay et al., 2004; Paglini and Caceres, 2001; Paglini 

et al., 2001; Shea et al., 2004), and synaptic function (Cheng and Ip, 2003). 

In the past few years, Cdk5 has gained more attention for its role in synaptic 

plasticity, learning and memory. A role of Cdk5 in dendritic spine formation has been 

reported in hippocampal neurons (Cheung et al., 2007; Cheung and Ip, 2007). BDNF 

induced dendritic growth was abolished in a TrkB mutant mouse model lacking Cdk5 

phosphorylation site (Cheung et al., 2007). Cdk5 also modulates neuronal secretion at the 

synapse (Cheng and Ip, 2003). Several lines of evidence point to role of Cdk5 in both 

short-term and long-term potentiation. Its role in synaptic plasticity and learning was first 
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studied using the inhibitors, roscovitine and butyrolactone I. The inhibitors suppressed 

LTP induction in hippocampal CA1 area (Li et al., 2001). Long-term depression and 

spatial learning has been shown to be impaired in p35 null mutant mouse model 

(Ohshima et al., 2005). The role of Cdk5 in synaptic plasticity and spatial learning is 

further supported by the observation that transgenic mice that overexpress p25 show 

enhanced LTP and spatial learning (Angelo et al., 2003; Fischer et al., 2005; Ris et al., 

2005). Thus Cdk5 has a multifaceted role in synaptic plasticity. The potential role of 

Cdk5 in light entrainment also stems from the fact that glutamate has been shown to 

induce transient activation of Cdk5 ((Wei et al., 2005). The present study was envisaged 

to investigate the role of Cdk5 in light entrainment by employing the bi-transgenic mice 

that conditionally overexpress the Cdk5 activator, p25. 
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Results 
 

Regional Localization of Cdk5 Activator, p25 in the SCN 
 

Figure 11 A shows the distribution of p25 immunoreactivity in the SCN. p25 positive 

immunoreactivity is seen in both ventro-medial and dorso-medial regions of the SCN, 

more towards the dorsal region. Since the p25 transgene is GFP tagged, it can be 

visualized without immunolabelling. Figure 11 B shows that p25 expressing neurons in 

the SCN co-localize with neurons expressing p-ERK. Figure 11 C shows that p25 

expressing neurons in the SCN are in close approximation to GRP fibers in the “cap” 

region of the SCN.  

 

Effect of Light on Cdk5 and its Activators in the SCN 
 

Figure 12 describes the effect of light on Cdk5 activator levels in the SCN at ZT16, ZT22 

and ZT6. At ZT16 (Figure 12 A) both p35 and p25 levels were decreased (p35- p<0.032, 

p25-p<0.021) compared to control which received no light pulse. At ZT22 (Figure 12 B) 

both p35 and p25 levels were  increased in the SCN following a 20 min light pulse (p35-

p<0.004, p25-p<0.04). At ZT6 (Figure 12 C) there was no  change in p35 or p25 levels in 

the SCN. In contrast to the light exposure at night, light pulse at ZT6 did not induce 

change in p35 or p25 levels in the SCN.  Furthermore, light exposure at night induced 

changes of p25 and p35 levels only in the SCN, but not in the cerebellum.          
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Effect of Light on Cdk5 Kinase Activity in the SCN 
 

The Western blot analysis showed that light exposure at night could induce 

changes in the expression of both p25 and p35 in the SCN.  Figure 13 describes the effect 

of light on Cdk5 kinase activity in the SCN. After a 20 min light pulse (~100 lux), the 

kinase activity was increased at ZT22. The activity decreased at ZT16, whereas, at ZT6 

there was no change in the kinase activity. 
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Figure 11 A-C: Co-localization of Cdk5 activator, p25 in the SCN.  

 

Representative photomicrographs show (A) distribution of neurons expressing p25 

neurons in the SCN. p25-GFP immunoreactivity is seen in the dorsomedial region of the 

SCN (B) p25 expressing neurons are seen to co-localize with p-ERK expressing neurons 

(C) p25 expressing neurons are seen in close approximation to GRP fibers. (Red – pERK 

in 11 B, GRP in 11 C, Green – p25-GFP, white arrows point to co-localization).   
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Figure 12 A-C: Effect of light on Cdk5 activators in the SCN.  

 

A- Cdk5 activator levels in the SCN and Cerebellum at ZT16. B- Cdk5 activator levels in 

the SCN and Cerebellum at ZT22. C- Cdk5 activator levels in the SCN and Cerebellum at 

ZT6. In all the figures upper panel shows representative Western blot bands for Cdk5, 

p25, p35 and GAPDH in the control and light treated group. Lower panel depicts the 

relative densitometric ratio normalized to GAPDH. At ZT16, p35 and p25 levels were 

decreased in the SCN following light exposure. There was no change in the total Cdk5 

level . In the cerebellum, no change was seen in the levels of Cdk5, p35 and p25 after 

light exposure. At ZT22, p35 and p25 levels in the SCN increased following light 

exposure, whereas total Cdk5 in the SCN and p35, p25, Cdk5 levels in the cerebellum 

remain unchanged after the light exposure. At ZT6, there was no change in the levels of 

p35, p25 or Cdk5 in both the SCN and cerebellum. Values are presented as 

mean±S.E.M., n=6, *p<0.05. 
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Figure 13: Effect of light on Cdk5 kinase activity in the SCN.  

 

Cdk5 kinase activity was measured using Cdk5 specific substrate. The average activity of 

the control sample was taken as 1. The kinase activity was measured after light pulse at 

the different circadian time points, ZT16, ZT22, ZT6. The activity measured was 

normalized to basal activity and is expressed as a ratio of the basal activity. Cdk5 kinase 

activity was significantly increased after light pulse at ZT22, at ZT16, the activity was 

significantly reduced, at ZT6 there was no significant change in the kinase activity. 

Values are presented as mean±S.E.M., n=12 *p<0.05, #p<0.05. 
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Figure 14 A-E: Effect of p25 overexpression on light-induced phase shifts in the CK-

p25 mice. 

 

Figure 14 A-E are representative double-plotted actograms of wheel-running activity. 

Each green line represents two consecutive days of activity. Red solid line represents the 

regression fit line of activity onsets of 7 days before the light pulse. Blue solid line 

represents the regression fit line of activity onsets of 7 days (excluding the first two days) 

after the light pulse. Yellow star indicates the time of light pulse. X axis represents time 

in hrs, Y axis represents days. The difference in X axis between the lines on the third day 

after light pulse is the calculated phase shift. Mice were free-running for 10 days before 

the experiment. A 15 min light pulse of 50 lux was given at CT16 (A, B) and CT22 (C, 

D). Subsequent to the light pulse, animals were maintained in DD. p25 overexpression 

was induced by switching the doxycyline based diet to normal rodent chow for 2 weeks. 

Figure 14 E is the quantification of light-induced phase shifts. Values are presented as 

mean±S.E.M. n=12/group. When p25 was overexpressed the phase delay at CT16 was 

significantly increased (No overexpression – -1.28±.0.21 hr, Overexpression -2.27±0.22 

hr, p=0.03). At CT22 the phase advance was significantly attenuated (No overexpression 

– 0.94±0.15 hr, Overexpression – 0.21±0.12 hr, p=0.002). The phase shifts returned to 

basal levels once the overexpression was turned off for 4 wks. 
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Figure 15: Effect of p25 overexpression on Cdk5 kinase activity.  

 

Cdk5 kinase activity was measured using Cdk5 specific substrate. The average activity of 

the control sample was taken as 1 The kinase activity was measured after overexpression 

for 2 wks and 4 weeks after overexpression was turned off . The activity measured was 

normalized to basal activity and is expressed as a ratio of the basal activity. Cdk5 kinase 

activity was significantly increased after p25 overexpression, it returned to basal values 

when expression returned to normal. Values are presented as mean±S.E.M., n=12, 

*p<0.05, #p<0.05. 
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Figure 16 A-C: Effect of p25 overexpression on synaptic density in the SCN.  

 

SCN samples from animals with and without overexpression of p25 were subjected to 

electron microscopic examination for synaptic morphology. A & B are representative 

electron microscopic images. Arrows point to electron-dense post synaptic density(thin 

arrow) and synaptic vesicles (thick arrow). The number of synapses was significantly 

increased following 2 weeks of overexpression of p25 in the CK-p25 mice. The number 

of synapses returned to basal levels once the overexpression was turned off for 4 wks. 

Values are presented as mean±S.E.M., n=12, *p<0.05 Scale bar = 0.5 µm. 
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Discussion 
 

Multiple lines of evidence have implicated Cdk5 in synaptic plasticity, learning 

and memory. The overall objective of this investigation was to identify the role of Cdk5 

in light-induced circadian clock resetting. 

Cdk5 activator, p25 distribution was observed in the dorsomedial and dorsolateral 

regions of the SCN. Co-localization of neurons expressing p25 with p-ERK and GRP was 

also demonstrated. GRP has been considered as the candidate for intra-SCN 

communication of photic input from the retino-recipient calbindinB (CalB) cells found in 

the ventral “core” region of the SCN. Light induces c-Fos and Per1 mRNA in GRP 

expressing neurons in the SCN (Aida et al., 2002; Antle et al., 2005; Earnest et al., 1993; 

Karatsoreos et al., 2006; Kawamoto et al., 2003; Romijn et al., 1996). GRP application 

can produce phase shifts of the circadian clock (Gamble et al., 2007; Kallingal and Mintz, 

2006, 2007; McArthur et al., 2000). GRP induces this phase shift via activation of CREB 

(Gamble et al., 2007). CREB activation is an essential process in light-induced and 

glutamate-induced phase shifts in the SCN (Ding et al., 1997; Tischkau et al., 2003a). 

Furthermore, GRP-induced phase shifts and Per induction requires the MAPK pathway 

(Antle et al., 2005; Moody and Merali, 2004). Our finding that Cdk5 activator p25 co-

localizes with GRP and p-ERK suggests that Cdk5/p25 may be a modulator of this 

pathway. Further studies will be required to elucidate the exact function of Cdk5/p25 in 

this pathway. 

Immunoblot and kinase assay studies demonstrated that light produces a 

differential response in Cdk5 activator levels. The activator levels were decreased at 

ZT16 and increased at ZT22. Consistent with this finding, we found that the kinase 
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activity was decreased at ZT16 whereas, at ZT22 it was increased. A similar finding was 

observed in the light-induced phase shifts of circadian wheel running activity in the bi-

transgenic animal with conditional p25 overexpression. While transient Cdk5 

hyperactivation augmented the phase delaying effect of light at CT16, the phase advance 

at CT22 was attenuated. Taken together, it is apparent that Cdk5 might be modulating the 

integration of photic signaling within the SCN. The only other reported occurrence of 

impairment in phase-advancing photic signaling is in PACAP null mutant mice (Beaule 

et al., 2009; Kawaguchi et al., 2003).  Deficits observed in the PACAP null mutant mice 

has been attributed to impairments in the animal’s ability to integrate stimulus intensity 

and/or duration (Beaule et al., 2009; Nelson and Takahashi, 1991). Considering our 

histological observation that Cdk5 activator co-localizes with cells implicated in intra-

SCN photic signaling pathway, it is a possibility that Cdk5 modulates the sensitivity of 

the circadian system to light. Further studies will be required to test this hypothesis. 

Electron microscopy revealed an increase in the number of synapses in the SCN 

following p25 overexpression. Synaptic morphogenesis is an integral part of neural 

plasticity in other regions of the brain. This is the first report of an alteration of synaptic 

morphology within the SCN. Structural plasticity has been proposed as a mechanism 

involved in light entrainment (Becquet et al., 2008; Bosler et al., 2009; Glass et al., 2003; 

Guldner et al., 1997).  

Collectively, our results indicate a role of Cdk5 in light entrainment, possibly by 

modulating the light sensitivity of SCN and/or altering synaptic morphology. Cdk5 is a 

pleotropic kinase with more than two dozen substrates, it is thus a possibility that both the 
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mechanisms mentioned above or even additional mechanisms are involved in the 

modulation of circadian photic resetting.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 5 - THE ROLE OF CYSTEINE PROTEASE CALPAIN IN THE 

PHOTIC RESETTING OF CIRCADIAN CLCOK 
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Summary 
 

Calpain is a cysteine protease that is activated by calcium. Calpain has been 

implicated in neuronal processes, including plasticity, learning and memory in the 

hippocampus. Calpain regulates Cdk5 activity by proteolytic cleavage of Cdk5 activators, 

p25 and p35. Studies have indicated that Cdk5 activators also play a role in synaptic 

plasticity, learning and memory. This study was designed to explore the role of calpain in 

circadian photic resetting.  

Calpain-1 immunoreactivity was distributed in the entire SCN from the rostral to 

caudal ends. A denser immunoreactivity was seen in the mid-caudal regions of the SCN. 

Basal expression levels of calpain-1 did not change between the various circadian time 

points, ZT16, ZT22, ZT6. The expression levels also showed no significant change after 

a light pulse at ZT16, ZT22 and ZT6. In contrast to expression levels, basal calpain 

activity levels exhibited a trend, the highest activity was seen at ZT16 and the lowest at 

ZT22. Light induced calpain activity in the SCN. Calpain activity levels were 

significantly increased at ZT16 and ZT22. Light pulse did not produce any significant 

change in calpain activity at ZT6. Our data suggest a potential role for calpain in 

circadian photic resetting but future studies are needed to ascertain the exact role of 

calpain.   
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Introduction 
 

Calpain is a neutral, calcium activated, intracellular cysteine protease expressed both in 

the cytosol and the synaptic terminal in neurons (Mellgren et al., 1989; Pontremoli et al., 

1989; Tomimatsu et al., 2002). There are at least 14 different types of mammalian 

calpains. Two isoforms of calpain are ubiquitously present in the brain: µ-calpain, and m-

calpain (also referred to as calpain I and calpain II, respectively). The other forms of 

calpain are tissue specific and not very well understood (Bevers and Neumar, 2008; Saez 

et al., 2006). Both calpain I and II have similar substrate specificity but differ in their 

sensitivity to Ca2+. Calpain I requires 3-50 µM calcium for activity, whereas calpain II 

requires 0.4-0.8 mM Ca2+ for half-maximal activity (Goll et al., 2003; Mellgren et al., 

1989). Both the calpains contain a subclass-specific 80 kDa catalytic subunit containing 

domains I-IV and a common small 30 kDa regulatory subunit containing domains V and 

VI. Domain II contains the catalytic activity and interacts with substrates and the 

endogenous calpain inhibitor, calpastatin. Calpain undergoes autolytic cleavage on 

domain I (Carafoli and Molinari, 1998; Nakagawa et al., 2001; Ono et al., 1998; 

Sorimachi et al., 1997).  

In the nervous system calpains have been implicated in various neuronal 

functions, including learning, memory and neurotoxicity. Calpain substrates include 

synaptic proteins such as membrane receptors, cytoskeletal proteins, post synaptic density 

proteins and other intracellular mediators of synaptic function (Croall and DeMartino, 

1991; Goll et al., 2003; Guttmann et al., 2001; Lee et al., 2000; Lu et al., 2000). Calpain 

has been implicated in the induction and maintenance of LTP. Inhibition of calpain 
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activity reduces induction of LTP in the hippocampal CA1 area (Oliver et al., 1989; 

Staubli et al., 1988). 

Recent studies have implicated the role of Cdk5 in synaptic plasticity, learning 

and memory (Fischer et al., 2005; Fischer et al., 2002, 2003a; Fischer et al., 2003b; 

Seeburg et al., 2008). Several studies have also indicated a role of Cdk5 activators, p35, 

and p25 in learning and plasticity. p35 homozygous and heterozygous knockout mice 

display impaired contextual fear-conditioned memory (Fischer et al., 2005). p35-

knockout mice also exhibit a lower threshold for theta-burst rhythm-induced LTP (Wei et 

al., 2005). Transient and low-level expression of p25 has been shown to improve 

plasticity and performance in learning tasks in mice that overexpress p25 (Angelo et al., 

2003; Fischer et al., 2005; Fischer et al., 2007). p25 is the calpain mediated proteolytic 

cleavage product formed from p35 (Patrick et al., 1999). Calpain also cleaves the other 

cdk5 activator, p39 to p29 (Patzke and Tsai, 2002). Since circadian photic resetting 

mainly involves the glutamatergic signaling pathway, we hypothesized that the calcium 

activated protease, calpain might play a role in regulating the activity of Cdk5 which in 

turn can modulate light-induced circadian clock resetting. In this study, we sought to 

investigate whether light can induce calpain expression level and or its activity in the 

SCN. 
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Results 
 

Regional Distribution of Calpain in the SCN 
 

Figure 17 A-L show staining for calpain-1 immunoreactivity in the SCN from the rostral 

to caudal ends. Calpain-1 immunoreactivity was observed in the entire SCN at all 

rostrocaudal levels. A denser immunoreactivity for calpain was seen in the mid-caudal 

regions of the SCN.  

 

Effect of Light on Calpain-1 Expression Levels in the SCN 
 

Figure 18 A-C describes the effect of light on calpain-1 expression levels in the SCN. 

Animals were given a 20 min light pulse of 100 lux at circadian time points ZT16, ZT22 

and ZT6. Control animals received no light pulse. There was no significant change in the 

expression levels of calpain-1 in the SCN after light treatment at any of the three 

circadian time points. There was also no significant difference in the basal expression 

level of calpain-1 at the three circadian time points.  

 

Effect of Light on Calpain Activity in the SCN 
 

Figure 19 A & B depict the effect of calpain activity in the SCN. Animals were given a 

20 min light pulse of 100 lux at circadian time points ZT16, ZT22 and ZT6. Control 

animals received no light pulse. Calpain activity was measured using a luminescent based 
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assay. Basal levels of calpain activity showed a trend. The activity was the highest at 

ZT16 and the lowest at ZT6 (A). The activity was significantly increased at both ZT16 

and ZT22 after light treatment (B). 
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Figure 17: Distribution of calpain immunoreactivity in the SCN.  

 

Representative photomicrographs of serial sections from the SCN arranged from the 

rostral to caudal ends. Each section is 30µm thick. Immunoreactivity for Calpain-1 is 

seen in the entire SCN region throughout the rostrocaudal extent. Denser 

immunoreactivity is seen in the mid-caudal sections. OC - optic chiasm, 3V- third 

ventricle. Magnification for all images x100.  
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Figure 18 A-C: Effect of light on calpain expression in the SCN.  

 

Calpain expression levels at (A) ZT16 (B)  ZT22 and (C) ZT6 following a 20 min light 

pulse of 100 lux intensity. Upper panel in all figures are representative Western blot 

bands for calpain-1 and GAPDH. Lower panel bar graphs represent relative densitometric 

ratio of calpain-1 normalized to GAPDH. At all time points, calpain-1 expression did not 

show any change. No change in expression of calpain-1 was observed following light 

exposure at the three points. Values are represented as mean±S.E.M, n=3/group. 
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Figure 19 A-B: Effect of light on calpain activity in the SCN. 

 

Calpain activity was measured using a luminescent assay based on a proluminescent 

calpain substrate. Values are represented as relative light units. A - calpain activity in the 

SCN at circadian time points ZT16, ZT22 and ZT6. B - Calpain activity in the SCN 

following a light pulse at ZT16, ZT22 and ZT6. Basal calpain activity was the greatest at 

ZT16 and the lowest at ZT6. At ZT16 and ZT22 calpain activity increased following light 

exposure. At ZT6 there was no change in calpain activity following light exposure. 

Values are presented as mean±S.E.M., n=3/group, *p<0.05.  
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Discussion 
 

Light-induced phase shifts of the circadian clock are initiated with the release of 

glutamate in the RHT. Glutamate release mainly stimulates NMDA receptors in the SCN 

causing an increased Ca2+ influx that initiates a cascade of intracellular signaling events 

and gene expression ending in phase shift of the circadian clock. Circadian variations in 

the magnitude of NMDA-induced Ca2+ events have been proposed in the SCN neurons 

(Colwell, 2001; Ikeda et al., 2003; Pennartz et al., 2002). Circadian rhythms in cytosolic 

Ca2+ have also been observed in cultured SCN neurons (Ikeda et al., 2003). Ryanodine 

receptors contribute to the amplification of cytosolic Ca2+ via mobilization of Ca2+ from 

internal stores. This Ca2+ induced Ca2+ release has been proposed as the mechanism for 

light-induced phase delays during early subjective night (Ding et al., 1998). Thus, the 

evidence indicates that Ca2+ plays a central role in circadian photic resetting. The goal of 

this study was to explore the role of calpain, a calcium-dependent protease in the photic 

signaling pathway. 

Calpain-1 immunoreactivity was  distributed in the entire SCN. This was the 

expected finding since both calpain-1 and calpain-2 are ubiquitous. The interesting 

finding was that the immunoreactivity was denser in the mid-caudal region of SCN. The 

canonical clock proteins, mPER1 and mPER2 while expressed uniformly in the rostral 

SCN, are concentrated in the shell regions of mid-SCN (Yan and Silver, 2004). It is 

possible that the pattern seen with calpain-1 distribution might be of functional 

significance in circadian photic signaling. 

The basal expression levels of calpain-1 did not show a change at any of the three 

circadian points. Also, no significant change in calpain-1 expression was observed after 
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light pulse treatment. Calpain-1 does not appear to have a circadian expression profile. 

Calpain being a Ca2+ dependent protease, its activity might be regulated by the cytosolic 

Ca2+ rhythms in the SCN. Moreover, the antibody used for Western blotting (Calpain-1, 

domain IV, Abcam, Cambridge, MA) detected both activated and latent forms of calpain. 

This proposed hypothesis is supported by our calpain activity data. We found a trend in 

calpain activity levels in the SCN. The activity was highest at ZT16 and the lowest at 

ZT22. A complete circadian profile of calpain activity will be able to confirm this trend. 

We have demonstrated that light significantly induces calpain activity at both ZT16 and 

ZT22, the time period when SCN is sensitive to light. There was no change in calpain 

activity following the light pulse at ZT6, the time when the SCN is insensitive to light. 

Collectively, our results indicate that calpain might have a role in the modulation of light-

induced phase shifts of circadian clock. The exact mechanism warrants future studies.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

CHAPTER 6 – SUMMARY 
 

It is nearly half a century now, since the phenomenon of light-induced photic 

resetting in mammals was first discovered. In the last 5 decades our understanding of 

circadian rhythms have grown tremendously; many “clock genes”, several signal 

transduction pathways, and presence of “peripheral clocks” have been identified but, the 

enigma of bi-directional response of the circadian clock to light remains unsolved. The 

overall goal of this investigation was to explore the potential role of some known 

modulators of neural plasticity in the light-induced resetting of the circadian clock. To 

achieve this goal the investigation had the following specific aims: (1) Investigate the 

role of extracellular serine protease tPA in the modulation of circadian clock resetting. (2) 

Investigate the role of Cdk5 and its activators in circadian clock resetting. (3) Investigate 

the role of cysteine protease, calpain in the photic resetting of the circadian clock. 

In our first set of experiments (Chapter 3), we demonstrate that light induces the 

expression of tPA in the SCN. The increased expression is associated with a 

corresponding increase in its proteolytic activity. This finding is similar to the one seen in 

the hippocampus where tPA expression was induced in an immediate-early gene fashion 

following stimuli that evoke kindling, seizure or kainic acid injection (Nagai et al., 1999; 

Qian et al., 1993; Salles and Strickland, 2002). The finding is further confirmed in our 

behavioral experiments where we demonstrate that injection of tPA-STOP™, an inhibitor 

of tPA, can attenuate the light-induced phase delay of circadian wheel running activity. 

To our knowledge, this is the first observation to report the role of an extracellular 

protease in circadian photic resetting. 
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The second series of experiments (Chapter 4) tested the hypothesis that Cdk5 and 

its activators modulate light-induced resetting of the circadian clock. We provide 

histological, biochemical, functional and behavioral evidences that prove this hypothesis. 

This is also the first report of the role of Cdk5 in the SCN.  

Thirdly, we provide evidence that the Ca2+ dependent protease, calpain might 

have a role in circadian resetting. 

To summarize, we have identified three new candidates, two proteases and a 

kinase that has a role in modulating circadian photic resetting. We propose a model (Fig. 

20) that integrates the various mechanisms by which these modulators of neuronal 

plasticity might modulation circadian photic resetting. Extracellular serine protease, tPA 

might mediate its action through (1) plasmin mediated interaction of laminin and NMDA 

receptor. (2) tPA can also directly cleave the NR1 subunit of NMDA receptor and 

thereby potentiating  its signaling (3) tPA can also bind to the LRP receptor and after 

being endocytosed potentiate PKA signaling. The cysteine protease, calpain is activated 

following the calcium influx. Activated calpain can cleave the Cdk5 activator, p35 to p25 

which is more stable than p35. Stable p25 produces transient activation of Cdk5 in the 

SCN. Activated Cdk5 might modulate circadian photic resetting by directly interacting 

with NMDA receptor signaling or by modulation of MAPK activity. These are just a few 

suggested mechanisms by which these modulators can integrate circadian photic 

signaling. Additional work will be required to determine the precise cellular signaling 

events that underlie the modulation of circadian photic signaling. 
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Figure 20: Proposed model integrating the modulators of neuronal plasticity in the 

putative photic signal transduction pathway in the SCN.  

Photic signal transduction in the SCN is initiated by the release of glutamate and 

PACAP in the RHT, activating a series of intra-cellular signaling cascades, induction of 

clock genes resulting in phase shifts of the circadian clock. Extracellular serine protease 

tPA might modulate glutamate signaling by (1) plasmin mediated interaction of laminin 

and NMDA receptors (2) directly interacting with NMDA receptors or (3) direct 

interaction with LRP receptors. Calcium influx resultant to NMDA receptor activation 

activates calpain which in turn cleaves the Cdk5 activator, p35 to p25. Stable p25 causes 

transient activation of Cdk5 which might modulate NMDA receptor mediated signaling 

by direct interaction with the NMDA receptors or by modulation of MAPK activity. 

(NOS- Nitric oxide synthase, NO-Nitric Oxide, GC- Guanylyl cyclase, cGMP-cyclic 

GMP, PKG-Protein kinase G, CREB-cAMP response element binding protein, RyR-

ryanodine receptor, AC-Acetyl choline, cAMP-cyclic AMP, PKA-Protein kinase A, 

CaMKII- calmodulin-dependent kinase II, MAPK-Mitogen activated protein kinase, 

LRP-Low-density lipoprotein receptor related protein). 
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Several recent studies have implicated circadian rhythm disturbances associated 

with an increased risk of cancer development, metabolic and cardiovascular disturbances. 

Recently, light therapy has been proposed for some sleep disorders. A better 

understanding of circadian rhythm resetting may lead to the development of new 

treatment modalities.     

Future Studies 
 

To test the proposed model it is necessary to identify the downstream targets of 

both tPA and Cdk5. Recent studies from our lab have in fact identified the presence of 

LRP receptors in the SCN.  Electrophysiological studies employing brain slice 

preparation will help delineate the exact mechanism of action of tPA. Suggested 

mechanisms indicate that Cdk5 can modulate circadian photic signal transduction 

pathways involved in both phase delay and phase advance of the clock. Pharmacological 

modulation of Cdk5 activity as a potential therapy for circadian rhythm disturbances is an 

interesting research idea that needs further exploration. 
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