
Abstract

THE DESCRIPTION OF SCHUMANN ELECTROMAGNETIC RESONANCES

BETWEEN EARTH AND ITS IONOSPHERE AS BOSE–EINSTEIN

CONDENSATES OF EXTREMELY LOW FREQUENCY PHOTONS

by Davidson S. Wicker

April 2012

Director: Orville Day, PhD

Department of Physics

The purpose of this thesis is to show that Schumann resonances between Earth and

its ionosphere are Bose–Einstein condensates of extremely low frequency photons. We

will show that the photon densities of the first five modes of the Schumann resonances

are each sufficient for the creation of a Bose–Einstein condensate. We will also study

the coherence of the Schumann resonance electromagnetic waves, another necessary

condition for the onset of a Bose–Einstein condensation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarShip

https://core.ac.uk/display/71973772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




THE DESCRIPTION OF SCHUMANN ELECTROMAGNETIC

RESONANCES BETWEEN EARTH AND ITS IONOSPHERE AS

BOSE–EINSTEIN CONDENSATES OF EXTREMELY LOW

FREQUENCY PHOTONS

A Thesis

Presented to

The Faculty of the Department of Physics

East Carolina University

In Partial Fulfillment

Of the Requirements for the Degree

Master’s of Science in Applied Physics

by

Davidson S. Wicker

April 2012



c© Davidson S. Wicker, 2012



THE DESCRIPTION OF SCHUMANN ELECTROMAGNETIC RESONACES 

BETWEEN EARTH AND ITS IONOSPHERE AS BOSE-EINSTIEN 

CONDENSATES OF EXTREMELY LOW FREQUENCY PHOTONS  
 

By 

Davidson Sterling Wicker  

APPROVED BY: 

 

DIRECTOR OF DISSERTATION: 

_________________________________ 

Orville Day, PhD 
COMMITTEE MEMBER: 

_________________________________ 
Michael Dingfelder, Ph.D 

COMMITTEE MEMBER: 

_________________________________ 
Edson Justiniano, Ph.D 

COMMITTEE MEMBER: 

_________________________________ 

Jason Yao, Ph.D 
CHAIR OF THE DEPARTMENT OF PHYSICS: 

_________________________________ 

John Sutherland, Ph.D 
DEAN OF THE GRADUATE SCHOOL: 

_________________________________ 
Paul J. Gemperline, Ph.D 

 



Dedication

This thesis is dedicated to my lovely wife Fabrienne, and our daughter Mayla.



Acknowledgements

First, I would like to thank my thesis advisor, Dr. Orville Day, for allowing me to participate

in this fascinating research. His guidance helped me through many of the challenges and

obstacles I faced when pursuing the topic of the Schumann resonances. Our earlier work

together on photon cavities surrounding black holes provided me with a great introduction

to spherical photon cavities. Dr. Day realized that by considering the Schumann resonant

cavity as a photon cavity, as opposed to simply an electromagnetic cavity, we may be able

to show that the Schumann resonances are a Bose–Einstein condensate. As we investigated

this possibility we came to realize there are likely several BEC’s, composed of photons from

each mode of the Schumann resonances.

I also want to thank the other members of my thesis committee: Dr. Michael Dingfelder,

Dr. Edson Justiniano, and Dr. Jason Yao. The two semester course on quantum mechanics

taught by Dr. Dingfelder was perhaps the most difficult, and interesting, course I have

taken during my physics studies. The electrodynamics course taught by Dr. Justiniano

was equally challenging, and helped prepare me well for much of the work related to the

Schumann resonances. Dr. Yao (Department of Engineering) offered valuable insight and

suggestions on successfully preparing this thesis. Although not on the advisory committee,

Dr. John Kenney gave me some great suggestions and challenged me to study properties of

the Schumann resonances that I had not considered.



Contents

1 Introduction 1

2 Theoretical Determination of the Schumann Resonance Frequencies 4

3 Properties of the Schumann Resonant Cavity 13

3.1 Cavity Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Earth’s Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Earth’s Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Earth’s Geomagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Atmospheric Conditions within the Schumann Resonant Cavity . . . . . . . 21

4 Source of the Schumann Resonance Electromagnetic Waves 23

5 Energy Density of the Schumann Resonance Electromagnetic Waves 25

6 Coherence of the Schumann Resonances 29

7 The Schumann Resonances as Bose–Einstein Condensates 31

7.1 Bose–Einstein Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Critical Temperature and Critical Density Requirements . . . . . . . . . . . 36

8 Conclusion 39

References 41



1 Introduction

First predicted in 1952 by Winfried Otto Schumann[1], the Schumann resonances are a set of

distinct peaks in the extremely low frequency (ELF) range1 of the electromagnetic spectrum

detected on Earth’s surface. This electromagnetic radiation is confined in a natural spherical

cavity formed between the Earth’s surface and its lower ionosphere, as shown in Figure

1. Both the Earth and it’s ionosphere are conductors, which act as a confining potential,

allowing the Schumann resonance standing waves to exist[2]. The Schumann resonances

propagate in the horizontal direction with a vertical electric field and horizontal magnetic

field[3]. Vertical antennas and horizontally aligned magnetometers are used to detect the

electric field and magnetic field components of the Schumann resonances[4]. The existence of

the Schumann resonances has been well documented since the first experimental observations

in the early 1960s and is now considered to be an empirical fact[5].

Figure 1: Diagram of the Earth-ionosphere cavity depicting the direction of propagation of

the Schumann resonances, and the orientation of the electric field. Here, h is the height of

the cavity (around 80 km).

1ELF radiation is typically defined to be from 3-300 Hz, although it can extend to 3 kHz as defined in

some scientific fields.



Lightning strikes are responsible for excitations in the Earth-ionosphere cavity, as was

pointed out by Schumann[1]. At any given time a total of about 2000 thunderstorms oc-

cur worldwide, covering around 10% of Earth’s surface, with about 100 lightning strikes

occurring every second worldwide[6]. This large occurrence of lightning strikes keeps the

Schumann resonant cavity populated with extremely low frequency radiation that has been

well documented[3, 4, 7, 8, 9, 10]. Although this radiation varies slightly in frequency

and intensity over time, experimental data indicates that the resonant modes only vary

by about ±1 Hz[11]. The extremely low frequencies of the Schumann resonances involve

huge wavelengths—about 40,000 km (Earth’s circumference) for the fundamental mode.

We believe the Schumann resonances have quantum aspects that have never been iden-

tified. Most who have studied the Schumann resonances are geophysicists or electrical en-

gineers with little or no understanding of quantum systems. All descriptions so far in the

literature have been in terms of Maxwell’s classical equations of electromagnetism. To the

best of our knowledge there have been no studies of the Schumann resonances from a quan-

tum point of view. Only the classical electrodynamic features of the Schumann resonances

have been studied, and we believe there are interesting quantum aspects of the Schumann

resonances that have never been studied before. We will show that by studying some of the

quantum features of the Schumann resonances a remarkable property of this phenomenon

will be realized; the Schumann resonances are Bose–Einstein condensates of extremely low

frequency photons.

Before discussing the Schumann resonances as a quantum system, we will go over some of

the necessary background information required for an in depth understanding of this global

phenomenon. We will begin by studying some of the properties of the Earth-ionosphere
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cavity. Then, we will consider the theoretical foundations of the Schumann resonances. In

the last section we will discuss Bose-Einstein condensates (BEC), and demonstrate that

the Schumann resonances meet the necessary conditions for the onset of a BEC: coherence,

containment in a confining potential, and densities above a critical density.
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2 Theoretical Determination of the Schumann Reso-

nance Frequencies

Resonant waves within the Earth-ionosphere cavity are governed by the wave equation

∇2ψ − 1

c2

∂2ψ

∂t2
= 0 (1)

where c is the speed of the wave, and ∇2ψ is given by Laplace’s equation (in spherical

coordinates):

∇2ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
(2)

The normal mode solutions to Equation 2 satisfy the equation

∂

∂t
Ψ = iωΨ (3)

where

Ψ(r, θ, ϕ, t) = ψ(r, θ, ϕ)eiωt (4)

This equation tells us that the wavefunction Ψ has a spatial amplitude ψ, and evolves in

time according to eiωt. The function ψ(r, θ, ϕ) satisfies the Helmholtz equation given by

(∇2 + k2)ψ = 0 (5)

where k is the wavenumber and k2 = ω2/c2. By substituting Equation 2 into Equation 5,

we get (after some rearranging)[
1

r

∂2

∂r2
+

1

r2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
+ k2

]
ψ = 0 (6)

The spatial part of Equation 4 can be separated into two components

ψ(r, θ, t) = j(r)Y (θ, ϕ) (7)



where j(r) describes the radial motion of the wave, and Y (θ, ϕ) is the spherical harmonic,

which describes the angular motion of the wave. Now, we can substitute Equation 7 into

Equation 6, separate out the r dependence from the (θ, ϕ) dependence and set them equal.

This implies that they are equal to the same separation constant, λ. The angular portion of

Equation 6 is written as

1

sin θ

∂

∂θ
sin θ

∂Y

∂θ
+

1

sin2 θ

∂2Y

∂ϕ2
= −λY (8)

and the radial portion is written as[
d2

dr2
+

2

r

d

dr
+

(
k2 − λ

r2

)]
j(r) = 0 (9)

where the eigenvalue λ is determined by the boundary conditions. Of course, the eigenvalues

in this case correspond to the eigenfrequencies of the cavity.

To find the eigenfrequencies associated with the Schumann resonances we must solve

Maxwell’s equations in spherical coordinates. Maxwell’s equations are given by:

∇× E = µ0
∂H

∂t
(10)

∇×H =
∂D

∂t
(11)

∇ ·D = 0 (12)

∇ ·H = 0 (13)

where µ0 = 4π × 10−7 H/m is the permeability of free space, ε0 = (36π × 109)−1 F/m is the

permittivity of free space, E is the electric field, D is the electric induction, and H is the

magnetic field. The more commonly used magnetic B-field is related to H by B = µ0H

(valid in Earth’s atmosphere—explained in more detail later), and D is related to E by

D = ε0εE, where ε is the permittivity (its value being material dependent).
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Equation 11 can also be written as[12]

∇×H = iωε0E + J + Jext (14)

where J is the conduction current, and Jext is the external source current. The conduction

current is driven by the electric field and can be written as J(r) = σ(r)E(r), if the elec-

trical conductivity σ(r) is taken to be a scalar function of position[12]. For the Schumann

resonant cavity the external source current Jext comes from lightning, which excites the

Earth-ionosphere cavity, and can be treated as a radial electric dipole. The rate at which

energy from lightning is pumped into the nth mode is given by[12]

Jn =
1

K

∫
A

E∗n · Jext dA (15)

where K is a normalization constant, and E∗n is the complex conjugate of the nth mode

electric field.

The field components of the Schumann resonances have a time dependence in the form

exp(iωt). Therefore, we can convert Equations 10–13 from the time domain to the frequency

domain by application of a Fourier transform:

E(r, ω) =

∫ ∞
−∞

E(r, t) exp(−iωt) dt (16)

and

H(r, ω) =

∫ ∞
−∞

H(r, t) exp(−iωt) dt (17)

where r = rr̂ + θθ̂ + ϕϕ̂ = (r, θ, ϕ) is the position vector in spherical coordinates.

Schumann considered an idealized concentric spherical cavity with perfectly conducting

boundaries. Using these assumptions, the r, θ, and ϕ components of Equations 10 and 11
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can be written as[2]

1

r sin θ

(
∂

∂r
r sin θEϕ −

∂Er
∂ϕ

)
= iωµ0Hθ (18)

1

r

(
∂

∂r
rEθ −

∂Er
∂θ

)
= −iωµ0Hϕ (19)

1

r sin θ

(
∂

∂r
r sin θHϕ −

∂Hr

∂ϕ

)
= iωε0εEθ (20)

1

r

(
∂

∂r
rHθ −

∂Hr

∂θ

)
= iωε0εEϕ (21)

1

r sin θ

(
∂

∂θ
sin θEϕ −

∂Eθ
∂ϕ

)
= −iωµ0Hr (22)

1

r sin θ

(
∂

∂θ
sin θHϕ −

∂Hθ

∂ϕ

)
= iωε0εEr (23)

By treating the Earth-ionosphere cavity as being filled with a homogeneous dielectric with

ε ≈ ε0, Equations 18–23 can be reduced to just three field equations at Earth’s surface[13]:

Eθ = −ZgHϕ (24)

Er = −iI dlf(f + 1)

4πa2ε0ωh

∞∑
m=0

(2m+ 1)Pm(cos θ)

m(m+ 1)− f(f + 1)
(25)

Hϕ = − I dl

4πah

∞∑
m=0

2m+ 1

m(m+ 1)− f(f + 1)

dPm(cos θ)

dθ
(26)

where a is Earth’s radius2, h is the height of the lower-ionosphere, Zg is the surface impedance

of the ionosphere, ε0 is the permittivity of free space, f is the eigenfrequency, Pm(cos θ) is

the Legendre polynomial, θ is the angle between the source and observer, and I dl is the

current moment of the radial electric dipole.

The vertical electric field given by Equation 25 is called a TM (transverse magnetic)

wave since it is perpendicular to the horizontal magnetic field. Likewise, Equation 26 is

2Earth’s equatorial radius is 6378.1370 km and the polar radius is 6356.7523 km, with a mean radius of

6371 km.
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called a TE (transverse electric) wave since it propagates in a direction perpendicular to

the electric field. Electromagnetic fields such as the Schumann resonances are called TEM

waves, or transverse electromagnetic waves, since both fields (E and H) are perpendicular

and the direction of propagation is parallel to the cavity boundaries. The actual direction

of propagation for the Schumann resonance TEM waves is given below.

Equation 24 is found experimentally to be effectively zero[2]. By taking the cross product

of the remaining E and H fields we get

S = E×H = ErHϕ sinα θ̂ (27)

where α is the angle between the radial E-field and horizontal (relative to Earth’s surface)

H-field, and clearly points in the θ̂ direction. Equation 27 is called the Poynting vector, and

specifies the power flow along the direction of propagation. This theoretical result also fits

with experimental data[4, 7].

Although a spherical cavity formed from two concentric spheres has no preferred direction,

models that take into account the variations in the Earth’s ionosphere place the polar axis

θ = 0 either at one of Earth’s poles or at the center of the day (or night) hemisphere[2].

With perfectly conducting cavity boundaries the eigenfrequencies are given by

fm =
c

2πa

√
m(m+ 1) (28)

and produces the 10.5, 18.2, 25.7, 33.2, and 40.7 Hz as the first five eigenfrequencies (if we

take Earth’s mean radius to be 6371 km). To reproduce the eigenfrequencies that match

values obtained experimentally we can multiply Equation 28 by a correction factor which
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takes in to account the variations in the conductivity of the Earth’s ionosphere[13]

f ′m ≈ fm

(
1−

c
√
ε0

4h
√
πfmσi

)
(29)

where σi is the conductivity of the lower ionosphere (between a height of 60-100 km), and

c is the speed of light. Variations in the conductivity of the ionosphere are due to Earth’s

geomagnetic field and solar radiation (as mentioned above).

The eigenfrequencies can also be found from the following dispersion relation [14]

knRE =

√
n(n+ 1)

(
1− h

RE

)
−
(
REZ

2h

)2

+ i
RE

2h
Z (30)

where Z is the effective dimensionless surface impedance, and arises when taking into account

the non-sharp boundary of the lower-ionosphere and effects from Earth’s geomagnetic field.

Z becomes a tensor whose components depend on uniquely defined coordinates. We must

define two sets of coordinates, one with respect to the geographic pole, and the other with

respect to the geomagnetic pole3. The geographic spherical coordinates (r, θ, ϕ) place θ = 0

at Earth’s rotational axis, and the geomagnetic spherical coordinates (R, θ′, ϕ′) place θ′ = 0

aligned with Earth’s geomagnetic pole (tilted at 11◦ from Earth’s rotational axis). The two

coordinate systems are related by [2]

r sin θ cosϕ = R sin θ′ cosϕ′ + δ

r sin θ sinϕ = R sin θ′ sinϕ′ (31)

r cos θ = R cos θ′

where δ is the displacement from the geomagnetic axis to the geomagnetic pole, which is

taken to be parallel to the geographic axis. This odd choice for the geomagnetic axis is

3Earth’s outer magnetic field is treated as the field due to a dipole source shifted by δ from Earth’s

rotational axis
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made so the Sun is always normal to both the geomagnetic and geographic axis. Earth’s

geomagnetic field components, in terms of the geomagnetic coordinates are [2]

H0
R = − 2M0

4πR3
cos θ′

H0
θ′ =

M0

4πR3
sin θ′ (32)

H0
ϕ′ = 0

and in terms of the geographical coordinates are written as

H0
r ≈ −

2M

4πa3
cos θ

[
1 +

7

2

δ

a
sin θ sin Ψ

]
H0
θ ≈

M0

4πa3
sin θ

[
1 +

δ

a

sin Ψ

sin θ
(1 + 2 sin2 θ)

]
(33)

H0
ϕ ≈

δ

a

M0

4πa3
cos θ cos Ψ

where Ψ =
π

12
(tU−6)+λd is the angle between the day-night interface (called the terminator)

and the normal to the Sun, tU Greenwich mean time (GMT) in hours, and λd is the angle

between the Greenwich meridian and the geomagnetic pole. The angle Ψ is used in place of

ϕ when treating the Schumann resonant cavity as anisotropic (see Figure 2).

When considering a sharply bounded magnetized plasma4, the dimensionless surface

impedance is found by solving ∑
θ

ZrθZθϕηrϕ = ε̂−1 (34)

where ε̂ is given by Equation 50. The surface impedance (Equation 34) has generalized

4Equations 34–38 are also valid for spherical boundaries whenever κ � δS , where κ is the radius of

curvature, and δS is the skin depth of the wave in the atmosphere. This also tells us that the electromagnetic

wave in the plasma always propagates along the normal to the boundary, regardless of the incident angle,

and is why we only have ωr in Equations 38.
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Figure 2: Diagram of the spherical coordinate system for a non-uniform Earth-ionosphere

cavity, where M0 is the magnetic moment (see Equation 49).

components equal to [14]

Zθθ =
1

χ

[
ηθθ +

√
ηθθηϕϕ − ηθϕηϕθ

]
Zϕϕ =

1

χ

[
ηϕϕ +

√
ηθθηϕϕ − ηθϕηϕθ

]
Zϕθ =

ηϕθ
χ

Zθϕ =
ηθϕ
χ

(35)

where χ2 = ηθθ + ηϕϕ + 2
√
ηθθηϕϕ − ηθϕηϕθ. The surface impedance tensor is given by

Zθϕ = Ẑ =

Z1 −Z2

Z2 Z1

 (36)
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If we assume that the conductivity of the ionospheric plasma is high, then we have

ωveff

ω2
0

� 1 (37)

where ω0 is the plasma frequency of the ionosphere, and veff is the effective collision frequency.

By using this assumption we find that each component in Equation 36 is given by

Z1 = Zθθ = Zϕϕ =

√
i
ωveff

2ω2
0

√√√√1 +

√
1 +

ω2
r

v2
eff

Z2 = Zϕθ = −Zθϕ =

√
i
ωveff

2ω2
0

1√
1 +

√
1 + ω2

r

v2
eff

ωr
veff

(38)

These components depend only on the radial geomagnetic field at the specific frequencies of

the Schumann resonances, and the positive sign implies wave absorption in the ionosphere[2].

For small electron gyrofrequency (i.e., a negligible geomagnetic field), we have the surface

impedance of an isotropic ionosphere[2]

Zθθ = Zϕϕ = Z0 =

√
i
ωveff

ω2
0

. (39)

By studying the surface impedance of the ionosphere we now have a better understanding

of why the Schumann resonances are reflectedt.
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3 Properties of the Schumann Resonant Cavity

Schumann developed the theoretical underpinnings of electromagnetic resonances confined

between Earth’s surface and its ionosphere by considering an idealized cavity. When the

wave equation (Equation 1) is applied to a perfectly spherical resonant cavity formed by two

concentric shells we get a set of eigenfrequencies given by[4]

f` =
c

2π(a+ h/2)

√
`(`+ 1), (40)

where c is the speed of light, a is the radius of the inner spherical surface, h is the height

of the cavity, and ` = {1, 2, . . . } is the mode number (see Figure 3). The square root

factor in Equation 40 is present due to the spherical symmetry of the resonant cavity.5. The

factor in front of the square root specifies the separation frequency of resonant waves. The

separation frequency
c

2π(a+ h/2)
is about 7.4 Hz, but is found experimentally to be closer

to 6 Hz[3, 4, 7, 8, 9, 10].

When Equation 40 is applied to the Earth-ionosphere cavity the first five modes are given

5If an experimenter had no prior knowledge of Earth’s spherical geometry, then the presence of this

factor could be used as experimental proof that the Earth-ionosphere resonant cavity possesses spherical

symmetry[2]



Figure 3: Diagram of the Earth-ionosphere cavity (not to scale,
b− a
a
� 1), where a is

Earth’s mean radius (6371 km), b is the radius of the lower ionosphere, and h is the height

of the cavity (around 80 km).

as

f1 = 10.5 Hz

f2 = 18.2 Hz

f3 = 25.7 Hz (41)

f4 = 33.2 Hz

f5 = 40.7 Hz

where we use a = 6371 km (Earth’s mean radius), and h = 80 km (the distance between

Earth’s surface and the average height of the lower ionosphere). However, the experimental

14



values are found to be around[5]

f1,exp = 8 Hz

f2,exp = 14 Hz

f3,exp = 21 Hz (42)

f4,exp = 27 Hz

f5,exp = 34 Hz

Higher frequency modes are often seen (up to about 7) in the experimental spectra. The

discrepancy between the theoretical values and the values obtained by experiment is due to

variations in the height at which the standing waves reflect off the lower ionosphere. Details

of the variation in the height of the lower ionosphere will be discussed later.

Measurements of the Schumann resonances show wide peaks, that have been attributed

to the finite conductivity of the lower-ionosphere[2]. The width of resonant peaks can be

quantified by considering the Q-factor. The Q-factor of a resonant cavity is given as [15]

Q =
ω0

δω
=
ω0

Γ
(43)

where ω0 is the resonant frequency and Γ is the width of the peak at half-maximum. Schu-

mann predicted a cavity Q of about 12 in his theoretical work[1], but experimental data

showed a cavity Q1 = 4 for the fundamental mode, and Q5 = 6 for the fifth resonant

mode[2, 5]. Since we have h/RE � 1, where RE equals Earth’s radius, and h is the height

of the lower-ionosphere, Equation 43 reduces to[2]

Q =
h

δS
(44)
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where

δS =
λ√
ε

= λZ (45)

Equation 45 is called the skin depth of the cavity walls, and describes the distance that

electromagnetic waves penetrate beyond the cavity boundaries. Here, λ is the resonance

wavelength, ε is the permittivity of the cavity walls, and Z is the effective dimensionless

surface impedance of the ionosphere (Equation 36). With an average cavity height of 80 km

and a Q-factor equal to 4, we find that δS = 20 km. In other words, the electromagnetic

field of the fundamental Schumann resonance penetrates 20 km into the ionosphere, to an

average maximum height of 100 km, representing just 1/2000th of the fundamental mode

wavelength. The skin depth of the Schumann resonances partially explains why experimental

data[4, 7, 8, 9, 10] of their resonant frequencies does not show sharp peaks.6

We believe the peak widths are also partially a result of incomplete resonant waves being

generated from lightning. Accelerated free electrons from a typical lightning event do not

always have lifetimes long enough for them to form a complete resonant wave. Single stroke

lightning has an average duration of 30-40 ms, but multiple stroke lightning, which accounts

for 80-85% of all lightning events can last several times longer[6]. The period of oscillation

for the fundamental mode of the Schumann resonances is T1 =
2πRE

c
= 134 ms, where

RE is Earth’s radius, and c is the speed of light. Therefore, we would expect the measured

6Although the Schumann resonant frequencies vary by ∼ ±1 Hz, it is interesting to note that, on average,

the attenuation rate of Schumann resonant waves appears to be equal to their rate of production by lightning.

Otherwise, the Schumann resonances would continue to build up, or eventually die off from attenuation. This

implies a connection between the frequency of occurrence of lightning strikes and the conductivity of the

ionosphere.
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resonant peaks to be wide since, for at least 15-20% of all lightning events, there isn’t enough

time to generate a complete Schumann resonant wave. The free electrons created by shorter

duration lightning strikes will bind to molecules in the atmosphere too quickly.

3.1 Cavity Boundaries

3.1.1 Earth’s Ionosphere

The Schumann resonant cavity is bounded by the confining potentials of Earth’s surface and

its lower ionosphere. The cavity boundaries are “confining” due to their conductivity. The

conductivity σ of a material is a proportionality constant that relates the current density J

to the force per unit charge[16]:

J = σ(E + v ×B) (46)

where E is the electric field, v is the velocity of the charged particles, and B is the magnetic

field through which the particles move. When the velocity of the charged particles is small,

Equation 46 reduces to

J = σE (47)

and is known as Ohm’s law.

The conductivity of Earth’s ionosphere varies with time and increases rapidly with

elevation[2]. The height of the lower ionosphere varies throughout the day and time of

year, with daily variations due to a decrease in ion production at night from the solar wind.

Seasonal variations are more complex, but are also due to the Sun’s influence on Earth’s

atmosphere. The presence of free electrons at altitudes above 60 km cause the conductivity

of the atmosphere to increase to a level that supports the reflection of electromagnetic exci-
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tations in the Earth-ionosphere cavity. At 100 km in altitude the atmospheric conductivity

is similar to the average conductivity of Earth’s surface[17]. Although the lower ionosphere

is not a perfect conductor, the Schumann resonances have a low occurrence of penetration

through this boundary due to their very low frequencies. The conductivity of the lower-

ionosphere at an altitude of 75 km has been measured to be σ = 3.7 × 10−6 S·m−1, and

electron density at this altitude is found to be Ne = 400 electrons/cm3 [2]. Electromag-

netic waves with frequencies greater than around 10 MHz are generally not reflected by the

ionosphere since its conductivity is not high enough to support wave reflection at these high

frequencies[2].

3.1.2 Earth’s Surface

Earth’s surface has an average electrical conductivity of about 10−3 S·m−1 [17], and carries

a net negative charge of about 5× 105 C[17]. The electrical conductivity σ is very sensitive

to temperature and composition[18]. Most dry rocks are actually insulators at temperatures

below a few hundred degrees Celsius, but fluids found in the rocks pores can substantially

increase its conductivity[18]. The average conductivity of crystalline rocks in Earth’s crust

is in the range of 10−6 to 10−2 S·m−1 [19]. This empirical observation is contained in the

following relation (known as Archie’s Law)

σbulk = σfluidP
2 (48)

where σbulk is the conductivity of the rock, σfluid is the conductivity of the fluid within the

rocks pores, and P is the “fractional porosity” of the rock[18]. Geological data suggests

that Earth’s conductivity at a depth of 20 km (the same as the skin depth δS of the lower-
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ionosphere) varies from 5-15 mS·m−1. The conductivity of Earth’s oceans, which accounts

for most of the Earth’s surface area, is between 2.5-6 S·m−1[19].

An understanding of the conductive properties of Earth’s surface helps us understand

why we can consider it to be a near-perfect conductor. The extremely low frequencies of the

Schumann resonances ensures they will be reflected from Earth’s surface.

3.2 Earth’s Geomagnetic Field

Earth’s rotation provides it with a natural magnetic field. This field can be modeled as being

due to a dipole with a magnetic moment[2]

M0 = 8.07× 1022A×m2. (49)

Earth’s geomagnetic field causes an anisotropy in the conductivity of the ionosphere at

altitudes above about 80 km[3, 17]. The geomagnetic field (discussed in more detail later)

influences plasma in the ionosphere, thus affecting its relative permittivity. As a result of

this influence, the permittivity of the ionosphere is described by the tensor[2]

ε̂ =


εrr εrθ εrϕ

εθr εθθ εθϕ

εϕr εϕθ εϕϕ

 (50)
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whose components can be simplified with the condition ω � veff, ωH , ω0:

εrr,θθ,ϕϕ = 1− i ω
2
0

ωveff

+
v2

eff + ω2
r,θ,ϕ

ω2
H + v2

eff

εrθ,θr = i
ω2

0

ωveff

± veffωϕ + ωrωθ
ω2
H + v2

eff

εθϕ,ϕθ = i
ω2

0

ωveff

± veffωr + ωθωϕ
ω2
H + v2

eff

εϕr,r,ϕ = i
ω2

0

ωveff

± veffωθ + ωrωϕ
ω2
H + v2

eff

(51)

where ω0 is the frequency of the ionospheric plasma. The vector electron gyrofrequency7 is

given by

~ωH =
e ~B0

me

, (52)

where ω2
H = ω2

r +ω2
θ+ω2

ϕ, e = 1.6022×10−19 C is the charge of an electron, me = 9.11×10−31

kg is the mass of an electron, and ~B0 is Earth’s geomagnetic field (taken to be static).

Equation 50 reduces to εθϕ when the electron gyrofrequency is small.

The complexities of the ionospheres permittivity arise largely from the fact that the poles

of Earth’s geomagnetic field are not aligned with Earth’s rotational axis. By considering the

Earth’s geomagnetic field, we now have a better understanding of the reflective properties

of the ionosphere.

7Gyrofrequency, or Larmor frequency, is the frequency at which a charged particle rotates when moving

across a magnetic field
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3.3 Atmospheric Conditions within the Schumann Resonant Cav-

ity

Earth’s lower atmosphere has a net positive charge of about 5× 105 C, and balances out the

net negative charge distributed over Earth’s surface (as mentioned above). More than 90% of

the atmospheric charge is located between Earth’s surface and a height of 5 km.[6] The region

of the atmosphere within the Schumann resonance cavity has a particle density that varies

from 2.7×1019 cm−3 at ground level to 3×1014 cm−3 at an altitude of 80 km[2]. The average

energy of a Schumann resonant wave in the fundamental mode is hf1 = 330× 10−12 eV, far

too low to be absorbed by molecules in the Earth’s atmosphere. Atmospheric densities at

a height of 35 km (close to the average mid-point height of the Schumann resonant cavity)

are about 1% of their value at sea level. At 35 km in altitude the atmospheric conductivity

increases to 10−11 S·m−1 [6].

Cosmic rays and Earth’s natural radioactivity are responsible for the presence of ions

in the atmosphere at heights below 50 km. These ions make the lower atmosphere slightly

conductive, but their short lifetimes (on the order of microseconds) means that atmospheric

conductivity8 below about 50 km can usually be neglected[6]. Ion production over land is

about twice a high as it is over oceans since bodies of water with large surface area do not

have significant radioactivity[6]. Cosmic rays are primarily responsible for atmospheric ions

at heights greater than 1 km, where the number of ions produced is a function of solar activity

and geomagnetic latitude (the latitude as measured from Earth’s geomagnetic pole)[6].

8Atmospheric conductivity just above Earth’s surface is about 10−14 S·m−1, increasing rapidly with

altitude[6]

21



An important property of the Earth-ionosphere cavity is that it is approximately in

thermal equilibrium, due to the size of the cavity. Average temperatures are generally

between 270-300 K. The condition of thermal equilibrium will be important later when we

discuss the Schumann resonances as Bose–Einstein condensates.
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4 Source of the Schumann Resonance Electromagnetic

Waves

Schumann suggested that lightning strikes on Earth excite the Earth-ionosphere cavity and

generate low frequency standing waves[2]. This idea has been supported by experimental

data[7, 8, 10, 17, 20]. It is useful to understand some of the properties of lightning, since

this is the source of the Schumann resonances.

There are three primary thunderstorm centers responsible for excitations in the Earth-

ionosphere cavity; Middle and South America, equatorial Africa, and Southeast Asia, with

most activity occurring in the local late afternoon[3, 11]. The electromagnetic radiation

emitted from the typical lightning strike is peaked in the 5-10 kHz range with a large low

frequency band, and temperatures typically reaching 30,000 K[6, 2]. Lightning events always

involve clouds, which can generally be modeled as dipoles, with the base of the cloud being

negatively charged and the cloud top positively charged[2].

There are four different types of lightning discharges: upward positive, downward posi-

tive, upward negative, and downward negative, with downward negative lightning accounting

for around 90% of cloud-to-ground lightning[6]. It is believed that 3/4 of all lightning dis-

charges are cloud-to-cloud discharges[6].

Cloud to ground (or ground to cloud) lightning is rather complicated. The process begins

when a leader forms after the cloud’s electrostatic charge builds to a certain threshold,

dependent on the size of the cloud. The leader is a conducting column that moves in a

zig-zag motion from the cloud to the ground at a speed of about 1.5 ×105 m/s and carries

a negative charge of a few Coulombs[2]. Before the leader reaches the ground a column of



current called a return stroke moves from the ground upward toward the cloud. This return

stroke is what is commonly referred to as the “lightning bolt”, or “lightning flash”. The

entire process lasts about 1/3 of a second[2]. The vertical region surrounding a lightning

strike contains a large number of free electrons, which are stripped from molecules in the

atmosphere, due to the large potential difference between the Earth’s surface and clouds.

Typically, free electrons in the return stroke move only a few meters before binding with

molecules in the atmosphere[6].

Charge that builds up in clouds can be transferred to Earth in several different ways.

Dart-leader-return-stroke sequences, continuing currents, and M-components represent the

three possible modes of charge transfer to Earth’s surface during lightning strikes. All of

these methods have channel conductivities on the order of 104 S·m−1 [6].

During a leader-return-stroke sequence a conductive path is created between the ground

and cloud, which is the charge source, and deposits negative charge along its path[6]. This is

followed by a return stroke, following the same path but in the opposite direction (ground-to-

cloud), thus neutralizing the negative charge from the leader[6]. Both the leader and return

stroke transport negative charge from the cloud to Earth’s surface[6]. “Continuing current”

lightning strikes are arcs between the cloud and Earth’s surface, where the arc current is

between tens and hundreds of amperes, lasting upwards of hundreds of milliseconds[6]. M-

component lightning “requires the existence of a grounded channel carrying a continuing

current that acts as a wave-guiding structure.”[6]
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5 Energy Density of the Schumann Resonance Elec-

tromagnetic Waves

We can determine the photon density of the Schumann resonances by knowing the energy

density of the Schumann resonances. Equations 25 and 26 tell us that the modes of the

Schumann resonances are mutually orthogonal. Therefore, we can write

∫
V

ε0E
∗
n · Em dV = uEδn,m (53)

and ∫
V

µ0H
∗
n ·Hm dV = uHδn,m (54)

where uE and uH are normalized energies, and

δn,m =


0 if n 6= m

1 if n = m

(55)

is the Kronecker delta function. The energy density (energy per unit volume) of the electric

field is then given by

uE =
1

2
ε0E

2 =
1

2

D2

ε0
(56)

where ε0 is the permittivity of free space, and D = ε0E is the electric displacement field.

In general, we have D = ε0E + P , where P is the electric polarization, which quantifies

the induced field due to dipoles in the material. In other words, it is a measure of induced

(or permanent) dipole moments in a dielectric material. For our purposes we can neglect P

since the electric polarization of Earth’s atmosphere is negligible in response to the Schumann

resonance waves due to low frequency.



The energy density stored in the magnetic field follows from Equation 54, and is given

by

uB =
1

2

B2

µ0

=
1

2
µ0H

2 (57)

where µ0 is the permeability of free space, and B = µ0H. In general, we have B = µ0(H+M),

where M is the magnetization of the material. Magnetization is a measure of the response of

a material to a magnetic field. Since the magnetization of Earth’s atmosphere is negligible

in response to the Schumann resonance waves, we can neglect M and use B = µ0H. The

B-field was originally called “magnetic induction”[21], but today it is common to simply call

it the magnetic field.

The total energy stored in the electromagnetic field is the sum of Equations 56 and 57

utotal = uE + uB (58)

and represents the energy per unit volume of an electromagnetic field.

By dividing Equation 58 by the energy per photon9, hf , we can obtain the photon density

of the Schumann resonances at the frequency f . Since the Earth-ionosphere cavity satisfies

the condition
b− a
a
� 1 (see Figure 3) the Schumann resonant waves change very slowly in

the radial direction and approximately linearly[2]. Therefore, we can treat the Schumann

resonances as effectively two dimensional and obtain a photon surface density σn for each

of the n modes (the case where n = 1 is shown below). Due to the horizontal propaga-

tion direction of the Schumann resonances we take the surface area of the two dimensional

9Here we have switched to the quantum description of an electromagnetic wave in anticipation of our

discussion of the Schumann resonances as Bose–Einstein condensates.
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Schumann cavity to be

ASR = 4π(RE + h/2)2 = 5.2× 1018 cm2 (59)

where RE = 6400×105 cm is Earth’s radius and h = 80×105 cm is the height above Earth’s

surface at which the Schumann resonances reflect off the lower ionosphere. Nickolaenko and

Hayakawa developed a heuristic model of the Schumann resonance fields that we use to find

the energy densities of the Schumann resonance waves for the first five modes[2]. The first

five resonant modes have electric fields peaked at

E1 = 130 mV/m

E2 = 60 mV/m

E3 = 80 mV/m (60)

E4 = 75 mV/m

E5 = 60 mV/m

and magnetic fields peaked at

H1 = 195µA/m

H2 = 230µA/m

H3 = 180µA/m (61)

H4 = 130µA/m

H5 = 150µA/m

These values correspond well with experimental measurements[4, 7, 8, 9, 20]. After dividing

Equation 58 by the height of the cavity, we obtain the energy surface densities for the first
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five Schumann resonance modes:

uσ,1 = 7.9× 10−13 J/cm2

uσ,2 = 3.9× 10−13 J/cm2

uσ,3 = 3.9× 10−13 J/cm2 (62)

uσ,4 = 2.8× 10−13 J/cm2

uσ,5 = 2.4× 10−13 J/cm2

We recognize the energy of each wave to be

En = hfn (63)

where h = 6.63 × 10−34J · s. Finally, we divide Equations 62 by Equation 63 (using the

corresponding frequency) to obtain the photon surface densities for the first five modes of

the Schumann resonances

σ1 = 1.5× 1020 cm−2

σ2 = 4.2× 1019 cm−2

σ3 = 2.8× 1019 cm−2 (64)

σ4 = 1.6× 1019 cm−2

σ5 = 1.1× 1019 cm−2
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6 Coherence of the Schumann Resonances

Lasers provide the most well known example of coherent radiation. However, the Schumann

resonances may be the most common form of coherent radiation on Earth. Radiation inside

a cavity can be said to be coherent if the phase relationship of all the waves is constant in

space and time. For measurements of frequency f taken at two spatially separated locations,

L1 and L2, the coherence γ is given by[10]

γ(f) =

√
|L1(f)∗L2(f)|2
|L1(f)|2|L2(f)|2

(65)

where L∗1 is the complex conjugate of L1. We would have perfect coherence if γ2 = 1.

The coherence of the the Schumann resonances has been found to be around 94–97%

for the fundamental mode (∼ 8 Hz), and 82–90% for the second mode (∼ 13 Hz), where

measurements of the horizontal magnetic field were made at two locations separated by 1100

km[10]. The large separation distance of these two measurement locations emphasizes in a

very convincing way that the Schumann resonances are indeed coherent. These experiments

involved placing large magnetic coils underground at each location with axes aligned within

0.5◦ of the geographic North-South and East-West directions. Other measurements of the

Schumann resonances found the coherence to be 90% and higher for the first two modes[22].

Even though the level of coherence of the Schumann resonances has been measured

experimentally, what has not been studied is the mechanism behind this coherence. The

free electrons generated during a lightning event are acted on by the Schumann resonance

electromagnetic waves that already exist and forced into coherence. This effect is similar to

the generation of laser light. Each electron has a component of acceleration in phase with

the Schumann resonances that surround Earth. As a result, these accelerating electrons emit



radiation in phase with the Schumann resonances. Experiments have shown that the Earth-

ionosphere cavity is filled with long-lasting ions (∼100 s) created from the Earth’s natural

radioactivity and cosmic rays[6], but these ions are too heavy to be acted on to produce

Schumann resonant waves.

The period of oscillation for the fundamental mode of the Schumann resonance is about

134 ×10−3 s. This is found by simply dividing the circumference of the Earth by the speed

of light. So, we can see that this is less than the time (about 1/3 second) it takes for

a complete single stroke lightning strike. However, multiple stroke lightning lasts much

longer[6]. It is multiple stroke lightning that produces free electrons with lifetimes long

enough for complete Schumann resonance waves to be created. Perfectly coherent Schumann

resonance waves inside a perfectly symmetrical cavity with perfectly conducting boundaries

would show sharp peaks at the eigenfrequencies. However, the data shows wide peaks[2].

We believe this is due to accelerated free electrons that bind to molecules faster than the

period of oscillation of the Schumann resonance wave that acts on it.
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7 The Schumann Resonances as Bose–Einstein Con-

densates

First, we will give a brief overview of Bose–Einstein condensates. Then, we will discuss the

necessary conditions for the onset of a BEC and show that the Schumann resonances meet

these conditions.

7.1 Bose–Einstein Condensates

A Bose–Einstein condensate (BEC) is a condensed gas of particles in a confining poten-

tial, all of which exist in their ground state and can be described by a single collective

wavefunction[23]. The particles that form a BEC act collectively as a coherent wave, and

manifest themselves as a macro quantum state that is distinct from any other form of matter

or radiation. A BEC can form when the thermal de Broglie wavelength of its constituent

particles is on the order of their separation distance. This phenomenon was predicted by

Satyendra Bose and Albert Einstein in 1925 and first observed experimentally in 1995[24].

The experimental observation of a BEC in 1995 involved a condensed gas of trapped rubid-

ium atoms cooled to 170 nK. Since that time, several other experimental demonstrations

have successfully created BEC’s[25, 26, 27, 28, 29]. There are only a small number of mas-

sive bosons that can become a BEC. These include helium-4, rubidium, and the carbon-12

nucleus. A Bose–Einstein condensate has some similarities with lasers; both are coherent

sources of particles, and require a cavity to form. The main difference is that a Bose–Einstein

condensate is in thermal equilibrium[30].

A Bose–Einstein condensate of massless bosons are fundamentally different from a mas-



sive BEC. The main reason is that massless particles do not interact significantly with each

other, whereas massive particles do. In 2010 a 2-dimensional photonic BEC was observed for

the first time[30]. This was a 2-dimensional BEC because of the very close boundary walls

(small third dimension) compared to the other two dimensions. This was accomplished in

a dye-filled optical microcavity bounded by mirrors and pumped with a laser. The cavity

boundaries acted as a confining potential. The ground state mode occurred even when the

laser pump spot was spatially displaced within the cavity. We can see some similarities be-

tween this experiment and the Schumann resonances. First, the Earth-ionoshere cavity is an

effective 2-dimensional cavity filled with an approximately homogeneous dielectric. Second,

the Earth’s surface and the lower ionosphere act as the cavity’s confining potential. Lastly,

the Earth-ionosphere cavity is constantly “pumped” with lightning strikes that are spatially

(and temporally) displaced. As mentioned above, although lightning strikes are not a co-

herent source of light, many of the electromagnetic waves that are generated from lightning

may become coherent due to the immersion of the free electrons in a very dense BEC (see

Equation 64).

It is important to point out some of the distinctions between the two types of particles,

bosons and fermions. Bosons are particles that obey Bose–Einstein statistics and Fermions

are particles that obey Fermi–Dirac statistics. All bosons have integer spin, whereas fermions

have half-integer spin. More than one boson can occupy the same quantum state, but the

Pauli exclusion principle limits only one fermion from occupying the same quantum state.

The wavefunction for a collection of bosons is symmetric and remains unchanged upon

exchange of two particles. For example, a two particle wavefunction consisting of bosons,

with one having a probability of being located a position r1 and the other having a probability
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of being located a position r2 is written as

ψ(r1, r2) = ψ(r2, r1) (bosons) (66)

A collection of fermions, on the other hand, will have an anti-symmetric wavefunction under

particle exchange. The exchange of two fermions is characterized by the property

ψ(r1, r2) = −ψ(r2, r1) (fermions) (67)

Combinations of an even number of fermions, called mesons, are composite bosons, including

Cooper pairs (coupled pairs of electrons), which give rise to the phenomenon of supercon-

ductivity. Both massive and massless bosons10 can theoretically form a BEC if the necessary

conditions of coherence and critical density/temperature are met.

The quantum field operators ψ̂(r) and ψ̂†(r′), also called the “creation” and “annihilation”

operators, satisfy the the Bose commutation relation

[
ψ̂(r), ψ̂†(r′)

]
= δ(r− r′) (68)

where the r.h.s. is the Dirac delta function, and ψ̂† is the Hermitian conjugate of ψ̂. These

operators can be used to describe all observables, including the density operator

n̂(r) = ψ̂†(r)ψ̂(r). (69)

To describe a Bose–Einstein condensate in terms of these operators, we write the second

factor on the r.h.s. of Equation 69 as[31]

ψ̂(r) = 〈ψ̂(r)〉+ ψ̃(r) (70)

10Massless bosons include the photon, graviton, and gluon.

33



The first term on the r.h.s. is the Bose macroscopic wavefunction, used as the “order

parameter” for Bose superfluid phase transitions and is defined as

〈ψ̂(r)〉 ≡ Φ(r) =


0, if T > TBEC,

6= 0, if T < TBEC.

(71)

where TBEC is the critical temperature at which we see the onset of a Bose–Einstein conden-

sate. In order for Equation 71 to be finite a small symmetry-breaking perturbation must be

introduced[31]

ĤSB = lim
η→0

∫
dr
[
η(r)ψ̂†(r) + η∗(r)ψ̂(r)

]
. (72)

In other words, a Bose–Einstein condensate is defined as a broken-symmetry order parame-

ter.11. In contrast to a Fock state, where N (the number of particles) is fixed, Equation 71

is a coherent state with a “clamped” value of the phase[31].

The evolution of an atomic Bose–Einstein condensate is described by the Gross-Pitaevskii

(GP) equation[32]

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + (V0 + VNL)ψ (73)

where ψ is the order parameter (Bose wavefunction) from Equation 71, V0 = V (r) is the

external confining potential, and VNL is the interaction strength of the constituent bosons

(the subscript NL refers to this term being non-linear). For a photonic BEC we can neglect

the VNL term in Equation 73, since photons are very weakly interacting, and write

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V0ψ (74)

which is the familiar form of the Schrödinger equation, where m is the effective photon mass

given in Equation 75 below.

11In fact, all conservation laws can be defined using broken-symmetry order parameter theories[31]
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From a quantum perspective, the Schumann resonances are a high density collection

of bosons (photons) existing in the ground-state. For the Schumann resonances (massless

photons/bosons) to become a Bose–Einstein condensate we must satisfy the conditions of

coherence and critical density. An additional constraint placed on the Schumann cavity

(which we treat as effectively 2-dimensional), is that a 2-dimensional BEC can only exist

within a confining potential, unless the temperature is absolute zero[33]. Earth’s surface and

the lower ionosphere act as the confining potential for the Schumann photons, but these two

boundaries also provide an effective photon mass[34]. The Earth-ionosphere cavity can be

considered as being filled with an ideal gas of photons with an effective mass

mph =
hf

c2
≈ 5.78× 10−50 kg, (75)

where h is Planck’s constant (h = 6.626×10−34J·s), and c is the speed of light (c = 2.99×108

m/s).

Einstein showed that an atomic BEC will form when the de Broglie wavelength λ = h/p of

atoms is comparable to the interatomic spacing, where p is the momentum of the particle[23].

The corresponding equation for photons is λ = hc/E, where the photons momentum is given

by p = E/c. Since the fundamental mode of the Schumann resonances has a wavelength

equal to the “length” of the cavity (∼ 40,000 km) we see that each of these Schumann

photons necessarily overlaps. A three dimensional atomic gas with density n will begin to

condense into a single quantum state when we have the phase space density nλ3[35]. But, it

was recently shown[30] that a 2-dimensional collection of photons will condense into a BEC

when the phase space density is greater than unity

nλ2
th > 1, (76)
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where n is the surface density of photons confined to the Schumann resonance cavity, and

λth is the de Broglie wavelength that corresponds with thermal motion in the resonator

surface[30]. The thermal wavelength λth is given by

λth =
h√

2πmphkBT
(77)

where kB is Boltzmann’s constant, T is the absolute temperature, and mph is the effective

photon mass given in Equation 75. For the Earth-ionosphere cavity we get λth = 17.1

m. Using the results from Equation 64 we find that (for the fundamental mode) nλ2
th =

4.4× 1022 � 1. This result is not too surprising when we consider that Equation 76 makes

no assumptions about the wavelength to cavity length ratio, λ/`. For the Earth-ionosphere

cavity this ratio is 1, and thermal motion in the resonant plane is not important. Equation

77 can therefore be considered relevant for resonant cavity’s where λ/` � 1. Once a Bose–

Einstein condensate forms, the energy of its constituent particles is defined in terms of the

Heisenberg uncertainty principle ∆x∆p ≥ ~/2 [35].

7.2 Critical Temperature and Critical Density Requirements

Massive bosons must meet a critical temperate requirement to become a BEC. The critical

temperature for a 2-dimensional Bose–Einstein condensate is given by[33]

TC =
hf

kB

(
N

ζ(2)

)1/2

(78)

where kB is Boltzmann’s constant, h is Planck’s constant, f is the fundamental frequency,

N is the total particle number, and ζ(s) is the Riemann zeta-function (ζ(2) =
π2

6
), defined

as ζ(s) =
∑∞

n=1 1/ns. The corresponding equation for the critical temperature of a 3-
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dimensional BEC is

TC =
hf

kB

(
N

ζ(3)

)1/3

(79)

If we use the number density of the fundamental mode as given by Equation 86 below, then

Equation 78 gives us TC = 8.4 × 109 K. So, it is clear why temperature is not one of the

defining parameters for the onset of a photonic BEC in most situations.

To connect the critical temperature to the critical density we use[33]

N0

N
= 1−

(
T

Tc

)2

(80)

for the 2-dimensional case. In 3 dimensions we would use

N0

N
= 1−

(
T

Tc

)3

(81)

If we solve Equation 80 for N0 we get N1 = 7.8× 1038 photons in the fundamental mode of

the Schumann resonances. This value is exactly the same as that given by Equation 86, and

is not surprising since
T

Tc
� 1.

Whereas the critical temperature is the defining parameter for the onset of a massive

BEC, it is the density that is the defining parameter for the onset of a massless 2-dimensional

BEC. The equation that determines the critical number density for a 2-dimensional BEC is

given by[30]

Nc =
π2

3

(
kBT

~Ω

)2

(82)

where T is the absolute temperature of the cavity, ~ =
h

2π
is Planck’s reduced constant, and

Ω is the trapping frequency given by

Ω =
c√
DR/2

(83)

37



Here, D is the height of the cavity, c is the speed of light, and R is the radius of curvature

of the spherical cavity. Using D = 80 km, and R = 6400 km we get Ω = 591 Hz. If we

substitute this value into Equation 82 (with T = 300 K) we get

Nc = 1.45× 1022 (84)

The total number of photons in the Schumann resonant cavity at the nth modal frequency

if given by

Nn = σn4π(RE + h/2)2 (85)

where σn is the photon surface density of the nth mode (Equation 64), and the remaining

factors on the r.h.s. are the total surface area of the 2-dimensional Schumann resonant

cavity. By taking the results from Equation 64 and plugging in to Equation 85 we obtain

the total number of photons that surround Earth for the first five Schumann modes:

N1 = 7.8× 1038

N2 = 2.2× 1038

N3 = 1.4× 1038 (86)

N4 = 8.2× 1037

N5 = 5.5× 1037

When compared to Equation 84 we see that we clearly meet the critical density requirement

for the onset of a BEC by approximately 15–16 orders of magnitude.
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8 Conclusion

The first Bose–Einstein condensate composed of photons was reported in 2010[30]. We

are the first to propose that the Schumann resonances are Bose–Einstein condensates of

extremely low frequency photons. These resonances are confined within a cavity bordered

by Earth’s surface and its lower ionosphere. All other studies of the Schumann resonances

have used Maxwell’s equations, without consideration of quantum mechanical effects.

It is remarkable that the quantum aspects of the Schumann resonances have never been

studied before. Perhaps this is due to the belief that quantum mechanics only applies to

small scale phenomenon. Wave-particle duality forces us to accept that all electromagnetic

waves can also be described as particles—photons. The extremely large size of the Schumann

resonant waves (∼ 40,000 km for the fundamental mode) may have caused other researchers

to subconsciously suppress any consideration of them from a quantum perspective.

In our research, each of the two main requirements for the onset of a BEC were discussed:

coherence, and critical density/temperature. We also pointed out that two dimensional

cavities, which effectively describes the Earth-ionosphere cavity, are further bound by the

condition that a confining potential must exist between cavity boundaries if a Bose–Einstein

condensation is to be achieved. This condition was shown to be met by Earth’s surface, and

the lower-ionosphere.

Although the coherence of the Schumann resonances has already been studied, we are

the first to make the connection with this being one of the necessary conditions for the

onset of a BEC. We showed that the first five modes of the Schumann resonances meet the

condition for coherence, confirming measurements of coherence with measurements made at



two locations separated by over 1000 kilometers.

Lastly, we calculated the number densities for the first five modes of the Schumann

resonances and showed that they far exceed the necessary densities needed to form a BEC.

Based on the high photon densities for each of the first five modes, it is likely that higher

modes of the Schumann resonances may also meet the density requirements for Bose–Einstein

condensation, although we did not study these higher modes.

During our research we kept coming back to the question of when the Schumann reso-

nances first began. Clearly, at some point during Earth’s evolution lightning strikes produced

radiation at just the right frequencies to excite the Earth-ionosphere cavity at the Schumann

resonant frequencies. Then, the electric field of these Schumann resonant waves accelerated

free electrons in the atmosphere, producing waves in phase with each other. Eventually,

the photon density became high enough that Bose–Einstein condensation was achieved. The

entire process has probably sustained itself ever since, although it would be interesting to con-

sider the effects of Earth’s recurring geomagnetic pole reversals on the Schumann resonances.

Another area that could be explored is determining whether the Schumann resonances have

an effect, or cause, multiple stroke lightning.

This research represents a critical step forward in understanding the Schumann reso-

nances at a new level. Future studies on treating a Schumann resonance as a Bose–Einstein

condensate may benefit from this research.
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