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Monte Carlo simulations of secondary electron emission from thin metal foils after

fast proton impact require reliable interaction cross sections with the target under

consideration. Total and energy differential inelastic cross sections have been derived

for aluminum, copper, and gold thin-metal foils within the plane-wave first Born

approximation (PWFBA) that factorizes the double cross section into the generalized

oscillator strength and kinematic factors. The generalized oscillator strength or Bethe

surface of the medium is obtained by using a semi-empirical optical oscillator strength

distribution published in the literature and an extension algorithm based on the

delta-oscillator model. Energy differential, total, and stopping cross sections are then

obtained by simple integrations. Comparisons with other calculations and

experimental values from the literature show that our modeloffers a good agreement

in the energy range considered. As a final step, the cross sections and a transport

model for copper have been implemented into the Monte Carlo track structure code

PARTRAC where simulations of secondary electron emission spectra from copper foil

have been performed.
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1 Introduction

1.1 Initial facts and observations

The study of ionizing radiation is considered by many to begin with the work of the

German physicist Wilhelm Conrad Röntgen and the discovery of X- rays in 1895

[1, 2]. Although the effects of X- rays on materials were not initially well understood,

shortly after the announcement of its discovery, they were recognized as an important

tool for medical diagnosis, but unfortunately for many patients, X-rays were widely

adopted without a previous systematic and serious study of its dose-effect properties.

It later became evident that X-rays could severely damage biological tissue and

demanded a serious analysis not only of its possible applications but also of its

ionization effects.

To understand a phenomenon such as ionizing radiation is to have the ability to

completely describe its properties in particular, for obvious reasons, its effects on

biological medium, for example, water and hydrocarbons. More generally, it includes

the reliable capacity to accurately generate, measure, andpredict its effects in all

relevant systems. For the last 75 years, this has been an ongoing joined effort that

includes scientific work specially in physics, chemistry, and biology that are

developing the necessary theories and techniques while studying systems from full

bodies of experimental animals to base deoxyribonucleic acid (DNA) sequences in

target cells. Progressing from full organisms down to tissue, to cell, to chromosome,

and to the gene, finally, the diverse biological effects of ionizing radiation can all

ultimately be interpreted, understood, and explained in terms of disruptions in these

building blocks or base sequences [3, 4].
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1.2 Motivation and objectives

This particular study is part of a research project initiated a few years ago at East

Carolina University, with two main purposes: To study the transport of secondary

electrons in condensed phase and its spectra distribution when emitted from the targets

and also to provide rigorous tests for Monte Carlo-based charged particle track

structure models used in radiobiology.

The tests began with preliminary comparisons between experimental results of doubly

differential electron-yields using two distinct experimental techniques (time of flight

and electrostatic) for hydrocarbon targets (electron-yields at 45 degrees from CH4,

C2H6, and C3H8) and the simulation results from the event-by-event charged particle

track structure Monte Carlo (MC) code PARTRAC using its semi-empirical cross

section models for liquid water. The main purpose was to testthe simulation at the

fundamental physics level or before any reactions take place. Since discrepancies were

observed between the results obtained from experiment and PARTRAC at the low and

high energy ranges (< 50 eV and> 1 keV) and could not be completely clarified from

this preliminary test on hydrocarbon foils using the water-cross sections available in

PARTRAC, the project was extended to provide experimental data for amorphous solid

water (ASW) and other important biological tissues. Exploration of the results from

ASW are currently been done and the experimental data obtained for metals are very

consistent and will provide an excellent testing ground [5].

Therefore, to make this starting test possible, new cross-sections representative of the

metals, which are used as substrate in the experiment, needed to be calculated and

implemented into PARTRAC using the similar plane-wave Borntheory as it was

previously done for water cross-sections used in PARTRAC. It is to fulfill this initial

step that I began the study of the interaction of fast chargedparticles in

condensed-phase media to obtain the necessary background to calculate these



3

cross-sections for aluminum, copper, and gold. This work requires the

accomplishment of the following main steps:

• Collect and study key resources in classical electrodynamics and dielectric

theory

• Study the plane wave first Born approximation (PWFBA) for description of

sources or projectiles

• Understand the oscillator strength concept for the analytical representation of the

targets

• Research and construct the optical oscillator strength (OOS) of the relevant

target materials

• Research a simple dispersion algorithm for the construction of the generalized

oscillator strength (GOS)

• Compare between the classical electrodynamics collision picture and the full

quantum mechanical treatment

• Search for key quantities and expressions that are relevantfor the determination

of the desired differential inelastic cross sections (DICS)

• develop and optimize numerical procedures for the calculation of DICS, total

cross sections (TCS), and consistency tests

• Format and graphically represent the obtained DICS and TCS calculations and

compare them with well known results
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It is hoped that this study in association with others that are currently being performed

can help the group answer the questions that were set since the first data on carbon

foils. For instance, it is desired to understand the phenomenon of metal and water

foil-charging and its relation with the reduction of low energy electron-yields based on

the physical properties of the foils [5].



2 Theory

2.1 Basic principles

2.1.1 Cross-sections

An incident charged particle interacts with another by exerting a Coulomb force on it

that depends simultaneously on the charge of both particlesand the distance of

separation between them [6, 7]. Unfortunatelly, the study of the atomic structure and

properties of materials usually involves the simultaneousinteraction of a large amount

of charged particles, which is known as a many body problem that is impossible to be

precisely solved. Therefore, statistical tools must be employed when dealing with such

problems, and if statistical fluctuations can be minimized by taking a large number of

measurements, the searched properties and values can be inferred as an average over

them. It is from this necessity that the concept of cross section comes to play a

fundamental role in atomic physics.

Without being concerned with the precise way in which an incident particle interacts

simultaneously with a large number of target particles, possibly exchanging energy

and momentum with all of them, the desired properties are inferred by setting the

measurement devices to only “count” or detect the particlesthat satisfy a pre-defined

physical property. In an extremelly simplified way, this is experimentally done by

setting the detector’s position with respect to the incident particle’s direction, adjusting

the detector’s sensitivity, or measuring the scattering particle’s time-of-flight if the

scattered particle’s momentum and energy are desired. Fromthe following picture, see

figure 1, the analytical representation of the cross sectionfor a particular event can be

constructed as:
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Let an incident flux of particles per unit of target’s area,Jinc, interact with a material.

The scattered flux of particles within a solid angledΩ = sinθdθdφ , dNs, measured

from the center of the interaction area on the target to the detector’s position is then

expected to be proportional to this incident flux, which can be written as

dNs(θ ,φ)

dΩ
=

dσ(θ ,φ)

dΩ
Jinc, (1)

wheredσ(θ ,φ)
dΩ is a proportionality constant, known as differential interaction

cross-section that can then be expressed as

dσ(θ ,φ)

dΩ
=

1
Jinc

dNs(θ ,φ)

dΩ
. (2)

The total cross-section is given by

σ =

ˆ

dσ(θ ,φ)

dΩ
dΩ =

ˆ π

0
sinθdθ

ˆ 2π

0

dσ(θ ,φ)

dΩ
dφ . (3)
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Figure 1: Diagram for the scattering of an incident flux of particlesJin.

After interaction with the target, only the flux of particlesthat have

been scattereddNs(θ ,φ) within a solid angledΩ in the direction defined

by the plane anglesθ andφ will be considered in the determination of the

proportionality factor between the incident flux and the scattered flux

known as the differential cross sectiondσ(θ ,φ)
dΩ .
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2.1.2 From Maxwell’s equations to differential cross-sections

The above over-simplified pictorial description of the experimental determination of a

differential cross-section can theoretically be more completely described from

ab-initio classical electrodynamics that obviously starts from the well known four

fundamental Maxwell’s equations [6, 7, 8, 9]

In the following equations, let∇ =
−→∇ , E =

−→
E (−→r , t), D =

−→
D (−→r , t), B =

−→
B (−→r , t),

H =
−→
H (−→r , t), A =

−→
A (−→r , t), J =

−→
J (−→r , t), andρ = ρ(−→r , t).

∇×H =
∂D
∂ t

+ J, (4)

∇×E = −∂B
∂ t

, (5)

∇ ·B = 0, (6)

and

∇ ·D = ρ, (7)

where the electrical displacement and induced magnetic field are respectively defined

as

D = ε0E (8)

and
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B = µ0H. (9)

To study the interaction of an incident electromagnetic field due, for example, to an

incident charged particle approaching the target with defined energy and momentum,

we need to obtain the wave equation that describes the movingfield. Recognizing the

vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (10)

the wave equation is obtained after following some basic steps, which start by taking

the curl of the Faraday’s Law. Following, is the complete derivation.

∇× (∇×E) = ∇×
(
−∂B

∂ t

)

∇(∇ ·E)−∇2E = −µ0
∂
∂ t

(∇×H)

−→∇
(

ρ
ε0

)
−−→∇ 2

E = −µ0
∂
∂ t

(
∂−→D
∂ t

+
−→
J

)

∇
(

ρ
ε0

)
−∇2E − ε0µ0

∂
∂ t

(
∂E
∂ t

+
J
ε0

)



10

ε0µ0
∂ 2E
∂ t2 −∇2E = −µ0

∂J
∂ t

− 1
ε0

−→∇ ρ

(
∂ 2

∂ t2 − c2∇2
)

E = − 1
ε0

[
∂J
∂ t

+ c2∇ρ
]

Note that

c ≡ 1√ε0µ0

is the phase velocity of the moving radiation in vacuum, which is often referred as the

speed of “light in vacuum” withε0 andµ0 being the electric permitivity and magnetic

permeability of free space.

This wave equation is then the point of departure for explaining all the properties of

interest involving, for example, propagation, reflection,refraction, and in special for

this study the scattering processes with single and many-electron atoms involving free

and bound electrons.

Looking back into the wave-equation, we can interpret it as an association between

induced source terms on the right of the equation, given by the current and charge

densities, and the field they generate. Therefore, by appropriately representing the

response of the target to an incident electric field through the current and charge

densities induced in the material, the new field resulting from the induction process

can be in principle calculated.

The objective is then to solve the wave equation for the radiated electric fieldE(r, t) in

the presence of accelerated source terms represented by free or bound electrons and



11

combine this field with the incident polarization agent or inductive field to obtain the

resulting scattering wave.

2.2 The electric field due to an induced current charge density

To solve the wave equation

(
∂ 2

∂ t2 − c2∇2
)

E = − 1
ε0

[
∂J
∂ t

+ c2∇ρ
]

(11)

for E(r, t), in the presence of source terms, we can treat the quantity between

parentheses on the left of equation 11 as an operator and consider solving forE(r, t)

for arbitrary sources with the form

E(r, t) =

ˆ

[G(r, t)] [source]dr, (12)

whereG(r, t) represents the Green’s or response function due to the source term

[10, 11]. This can be considerably simplified if we move to thetemporalω and spatial

k frequency domains that are connected to the coordinater space through the

Fourier-Laplace transforms

E(−→r , t) =

ˆ

k

ˆ

ω
Ekωe−i(ωt−

−→
k ·−→r ) dωdk

(2π)4 (13)

and
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Ekω =

ˆ

r

ˆ

t
E(−→r , t)ei(ωt−

−→
k ·−→r )drdt, (14)

wheredω anddk correspond to scalar volume elements,Ekω = E(k,ω), and

ω = ωr + iωi, with ωi > 0. This is necessary for the convergence of equation 14 when

t → ∞.

Thus, in Laplace-Fourier space, the wave equation in operator form simplifies to

(ω2− k2c2)Ekω =
1
ε0

[
(−iω)Jkω + ic2kρkω

]
, (15)

which can be solved for the electric field.

The path is clear now. If we construct appropriate models forthe sourcesJ(r, t) and

ρ(r, t), we can obtain the electric field from equation 15.

Using the equation for charge conservation

∇ · J +
∂ρ
∂ t

= 0, (16)

which is derived by taking the divergence of Ampere’s Law andthe known vector

relation∇ · (∇×A) = 0, the charge density can be written as

ρkω =

−→
k · Jkω

ω
. (17)
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Finally, the electric field can be written as

Ekω = − iω
ε0

[
Jkω − k̂0(k̂0 · Jkω)

ω2− k2c2

]
, (18)

where~k = kk̂0 with k = 2π
λ .

Equation 18 can be further simplified if we adopt a coordinatesystem oriented around

the propagation direction defined by the unit vectork̂0, please see figure 2, and

decompose the source asJkω = JT kω + |JLkω |~k0 with transverse and longitudinal

components. It can then be finally be expressed as

Ekω = − iω
ε0

JTkω
ω2− k2c2 , (19)

with its real-space representation

E(r, t) =

ˆ

k

ˆ

ω

(
− iω

ε0

)
JTkωe−i(ωt−k·r)

(ω2− k2c2)

dωdk
(2π)4 . (20)
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Figure 2: Coordinate system in the direction of the propagation of the incident

wavek̂0. This simplifies the expression describing the radiation

field Ekω through the decomposition ofJkw into longitudinal

JLkw and transverseJT kw components.
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2.3 Modeling the current charge density

2.3.1 The point radiator

Lets initially consider the case of an accelerating free electron that is small when

compared with the wavelength of the radiating field, thus allowing us to represent its

charge density by a Dirac delta function [6, 7, 8]. Thus, the moving electron can be

expressed as a current density given by

J = qn(r, t)−→v (r, t), (21)

whereq is the charge,n represents the particle number density, and−→v the particle’s

velocity.

The real-space and Laplace-Fourier space current densities are repectively

J = −eδ (r)−→v (t),

where in Cartesian coordinatesδ (r) = δ (x)δ (y)δ (z),

and

Jkω = −e−→v (ω), (22)

with transverse component
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JT kω = −e−→v T (ω). (23)

Substituting this current density back into equation 20 andintegrating we can

recognize the expected connection between the radiated field and the particle’s

acceleration given by

E =
e

4πε0c2r
d−→v T (t − r/c)

dt
(24)

and

E =
e−→a T (t − r/c)

4πε0c2r
. (25)

2.3.2 Scattering power for the oscillating free electron

The Poynting vector (energy flow or power per unit area) in electromagnetic theory is

given by [6, 7]

−→
S (−→r , t) = E ×H. (26)

Again from Faraday’s Law and the definition of magnetic induction we can derive the

Magnetic fieldH as follows
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∇×E = −∂B
∂ t

B = µ0H

∇×E = −µ0
∂H
∂ t

ik̂×Ekω = iωµ0Hkω ,

from which we obtain

Hkω =

√
ε0

µ0
k̂0×Ekω , (27)

whereω = kc,with c = 1√ε0µ0
for propagation in free space.

Using the vector identityA× (B×C) = (A ·C)B− (A ·B)C and the fact that for

transverse waveŝk0 ·E = 0, we obtain

−→
S (−→r , t) =

1
Z0

|E|2k̂0, (28)
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whereZ0 =
√

µ0
ε0

is the impedance of free space.

Noting thataT = |−→a T | = |−→a| sinθ the radiated power
−→
S (−→r , t) can be represented by

the acceleration, which reveals the familiar form for the dipole radiation [6, 7], see

figure 3 below.

−→
S (−→r , t) =

e2|−→a |2sin2θ
16π2ε0c3r2 k̂0 (29)

or

dP
dΩ

=
e2|−→a |2sin2 θ

16π2ε0c3 , (30)

where
−→
S (−→r , t) = dP

dA k̂0, for dA = r2dΩ.

The total power radiated immediately follows from the integration of equation 30,

P =
8π
3

(
e2|−→a |2

16π2ε0c3

)
. (31)

Note that the average radiated power, which is used in the calculation of the

differential cross section for the radiation of an accelerated charged electron in the

direction defined by the acceleration vector−→a (−→r , t) can be expressed as [6, 7]

−̄→
S =

1
2

Re[E ×H∗] (32)
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Figure 3: sin2θ radiation pattern of a small accelerated charge.

2.3.3 The scattering cross-section of a single free electron

Now that we know the radiation power of the point oscillator,we can calculate the

scattering cross section by defining it as the ratio between the average scattered power

P̄sc and the average total incident power|−̄→S i|,

σ =
P̄sc

|−̄→S i|
. (33)

Let a free electron experience the oscillatory Lorentz force



20

−→
F = −e [Ei +

−→v ×Bi] , (34)

when in the presence of an incident field

Ei(r, t) = E0e−i(ωt−
−→
k ·−→r ). (35)

The equation of motion is then given by

m−→a = −e [Ei +
−→v ×Bi] . (36)

The magnetic induction in this case is expressed as

Bi(r, t) =
k̂0×Ei(

−→r , t)
c

. (37)

Thus, we can neglect the−→v ×Bi, in equation 36 since it is proportional tov/c, which

is very small for non-relativistic velocities and equation36 simplifies to

−→a (−→r , t) = − e
m

Ei(
−→r , t). (38)
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The transverse component is obviously obtained by

aT = asinθ = − e
m
|Ei|sinθ . (39)

Introducing the electron radiusre = e2

4πε0mc2 , the scattered electric field in the direction

θ with respect to the polarization direction of the incident field,

E(−→r , t) = −e2|Ei|sinθ
4πε0mc2r

e−iω(t−r/c), (40)

can be more compactly written as

E(−→r , t) = −re|Ei|sinθ
r

e−iω(t−r/c). (41)

Therefore, the single free-electron scattering cross section (Thomson) can be written as

σ =
P̄sc

|S̄i|
=

4π
3

(
e4|Ei|2

16π2ε0m2c3

)

1
2

√
ε0
µ0
|Ei|2

(42)

or

σe =
8π
3

r2
e . (43)
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The differential form follows as,

dσe

dΩ
=

1
|Si|

dP̄
dΩ

(44)

or

dσe

dΩ
= r2

e sin2 θ . (45)

2.3.4 Scattering by bound electrons

The approach for the calculation of the scattering cross section for bound electrons is

similar to the one used for free electrons as described above. First a connection

between the radiated field and the charged particles’ acceleration is constructed. The

acceleration is then obtained from a model for the motion of the charges and the cross

section is finally obtained from the radiated power and the total power. What changes

in each case is the equation of motion.

The model we will use for bound electrons accounts for the discrete binding energies

of each electron and considers that the relatively massive nucleus with charge+Ze

does not respond dynamically to the high frequency incidentfield. On the other hand,

the electrons are set in oscillatory motion with frequency imposed by the passing

electromagnetic field. The response of each electron to the incident field is directly

related to their individual resonance frequency that reflects the different restoring
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forces upon them. Thus, the influence of the incident field on the motion of a particular

electron depends on how close the incident frequency is to the resonance frequency of

that particular electron.

Let the equation of motion of a bound electron be expressed as

m
d2−→x
dt2 +mγ

d−→x
dt

+mω2
s
−→x = −e [Ei +

−→v ×Bi] , (46)

which involves the accelerationd
2−→x
dx2 of the electron with massm, a dissipative force to

account for the energy loss with a damping factorγ defined bymγ d−→x
dt , and a restoring

forcemω2
s
−→x for an oscillatory motion with resonance frequencyωs. Again we can

neglect the−→v ×Bi term for non-relativistic velocities.

For an incident field of the form
−→
E (−→r , t) = Eie−iωt , we can expect the displacement,

velocity, and acceleration to contain the samee−iωt time dependence. Therefore, the

equation can be written as

[
m(−iω)2−→x +mγ(−iω)−→x +mω2

s
−→x = −eEi

]
e−iωt , (47)

from which we finally obtain

−→x =
e−iωt

ω2−ω2
s + iγω

eEi

m
(48)

and



24

−→a =
−ω2e−iωt

ω2−ω2
s + iγω

eEi

m
. (49)

Following the same, already given, free-electron procedures, the semi-classical

scattering cross section for a bound electron of resonance frequencyωs is given by

σ =
8π
3

r2
e

ω4

(ω2−ω2
s )2+(γω)2 . (50)

2.3.5 Scattering by many-electron atom

Using an electron distribution for this semi-classical model of multi-electron atom that

can be written as

n(−→r , t) =
Z

∑
s=1

δ (−→r −4−→r s(t)), (51)

wherer is the nucleus’ coordinate,4−→r the vector displacement from the nucleus, and

Z the total number of electrons held by the atom, we can write the charge distribution

as

J(−→r , t) = −e
Z

∑
s=1

δ (−→r −4−→r s(t))−→v s(t). (52)
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Applying the Born approximation, which neglects the effects due to neighboring

electrons and assumes that−→v s(t) will be dominated by the incident field only and

following steps similar to the ones for bound electrons, which are all well explained in

[6, 8, 12, 13], first the current density is again expressed ink−ω space by

Jkω = −e
Z

∑
s=1

e−i
−→
k ·4−→r −→v s(ω), (53)

and the electric field is given by

E(−→r , t) = − e
ε0

Z

∑
s=1

ˆ

k

ˆ

ω

(−iω)ei
−→
k ·(−→r −4−→r s)−→v T s(ω)e−iωt

(ω − kc)(ω + kc)
dkdω
(2π)4 . (54)

Letting−→r s ≡−→r −4−→r , we finally obtain

E(−→r , t) =
e

4πε0c2

Z

∑
s=1

−→a T s(t − rs/c)
rs

. (55)

The complete form involving the angular dependence is givenby

E(−→r , t) = −re

r
f (4−→

k ,ω)|Ei|sinθe−iω(t−r/c), (56)

where
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f (4−→
k ,ω) =

Z

∑
s=1

ω2e−i4
−→
k .4−→r s

(ω2−ω2
s + iγω)

(57)

is the complex atomic scattering factor.

The differential and total scattering cross sections are then written as

dσ
dΩ

= r2
e | f |2sin2θ (58)

and

σ =
8π
3

r2
e | f |2. (59)
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2.4 The atomic scattering factor and the oscillator strength

The atomic scattering factor in equation 57 presents a phasefactore−i4
−→
k ·4−→r s ,

please see figure 4, to account for the different positions ofthe electrons in the atom. A

simplification is possible for the case of forward scattering and also in the long

wavelength limit. In each of these two cases, the atomic scattering factorf (∆−→k ,ω)

reduces to

f 0(ω) =
Z

∑
s=1

ω2

ω2−ω2
s + iγω

. (60)
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Figure 4: Many-electron atom in three random electronic spatial configurations.

Although some electrons may experience the same incident phase in the

−→
k i direction, the scattering field due to each electron has distinct phase

as seen by an observer in the
−→
k f direction.
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Lettinggs , known as the oscillator strength of the atom, indicates thefraction of

oscillators of the system associated with a given resonancefrequency it is then

required that

∑
s

gs = Z, (61)

which allows the re-writing of the forward atomic scattering factor to be

f 0(ω) = ∑
s

gsω2

ω2−ω2
s + iγω

= f 0
1 (ω)+ i f 0

2(ω). (62)

The forward atomic scattering factor, is usually calculated by first obtaining the

imaginary partf 0
2(ω) from photo-absorption experiments. The absorption coefficient

(µ) is measured andf 0
2 (ω) calculated through

µ =
2reλ
Amu

f 0
2(ω). (63)

Finally, Kramers-Kronig relations are used to derive the real part.

This classical approach brings to light two important features of the cross-section

calculation in the more general case of scattering from bound electrons: First, it shows

that the target’s response to a specific type of interaction can be described by a single

complex quantity named the atomic scattering factor. Second, and more important, it

offers a way to link the theory with experiment through the determination of absorption
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coefficients of materials. Although not complete, the classical theory description of

interaction cross sections presents these two properties or ideas that will remain in the

treatment of the interaction between fast charged particles and single atoms as given by

Bethe’s full quantum theory and in condensed-phase targetsusing the dielectric theory.

2.5 Bethe theory and the GOS of a material

Tracing back the theoretical work that lead to current understanding of the inelastic

interaction between charged particles and the stopping power of materials, among

many important contributions we can mention some key specific work: N. H. D. Bohr

in 1913 for his derivation of an explicit formula for the stopping power for heavy

charged particles using full classical treatment that relied in part on intuition and

insight due to the not yet available quantum theory; to H. A. Bethe for the development

of the full quantum theory of stopping power of materials in gas-phase or by single

atomic interaction in the 1930s [14, 15, 16]; to E. Fermi for his semi-classical theory

for the energy-loss in gasses and in condensed materials [17], to J. Lindhard, J.

Hubbard and R. H. Ritchie in the 1950s for showing that the inelastic interaction of

charged particles in condensed-phase materials is best described by the dielectric

function of the medium [18], and to U. Fano for applying the dielectric theory to

various penetration phenomena and extending Bethe’s theory to condensed-phase

materials in 1963 [19].

Summarizing what is presented in detail by Inokuti [13, 14, 15, 16], Bethe’s inelastic

differential cross section for fast collisions, where the velocity of the incident particle

is much greater than the electron’s mean orbital velocity inthe shell under

consideration, is constructed under the first Born approximation of the interaction field

and views the collision as a suden and small external perturbation in the target’s field

caused by the projectile. Under these considerations, the expression of the differential

cross-section for the exchange of energy and momentum factorizes into two distinct
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terms - a kinematical term involving properties of the projectile only and a term, called

the generalized oscillator strength (GOS), which stores all the target’s properties.

The expression is given by

dσn = 2πZ2e4(mv2)−1q−1 |εn(q)|2d(lnq), (64)

whereZ, v, andm are respectively the electric charge, the velocity, and therest mass of

the incident particle,e is the electron’s charge,̄h
−→
K = h̄(

−→
k i −

−→
k f ) is the projectile’s

change in momentum, andq =
(h̄
−→
K )2

2m the recoil energy, which are all related

exclusively to the projectile.|εn(q)|2 represents the conditional probability that the

target-atom undergoes a transition from ground-state|0〉 to an excited state|n〉 when

receiving a momentum transfer ofh̄
−→
K after the collision.εn(q) is called the

inelastic-scattering form factor and carries the dynamicsof the target atom only.

Realizing the connection between the form factor and the familiar optical dipole

oscillator strengthfn, Bethe introduced a new quantity called the generalized oscillator

strength, which is related to the inelastic-scattering form factor by

fn(q) =
En

q
|εn(q)|2 , (65)

and to the dipole oscilator strength through

fn =
En

R
M2

n , (66)
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where

M2
n =

∣∣∣∣∣
1
a0

ˆ

ψ∗
n

z

∑
j=1

x jψ0dr1...drz

∣∣∣∣∣

2

, (67)

wherea0 is the Bohr radius,z the total number of electrons,x j a component ofr j, and

finally, ψ0(r1, ...,rz) andψn(r1, ...,rz) are the many-body eigenfunctions for the ground

and excited states respectively.

Recalling similarity with the classical derivation from ab-initio electrodynamics, in the

long wavelength limit, the optical oscillator strengthfn is proportional to

photon-absorption cross section, which offers an extremely important link between

Bethe’s theory and experimental results.

2.6 GOS Hartree-Fock approximation for single atomic collision

As well explained in [13, 14, 15, 19], for large impact energies, the excitation or

ionization in the encounter of a proton with chargeZp and massM with an atom in the

first Born approximation can be written as [20, 21]

Q0n(E) =
2πZ2

pM

E(En −E0)

ˆ qmax

qmin

f0n(q)
dq
q

, (68)

whereE is the energy of the incident particle,q is its change in momentum after

scattering, andE0 andEn are the eigenvalues of the initial and final states of the target.

The GOS for a particular transitionf0n(q) is defined as

f0n(q) =
2
q2(En −E0)|ε0n(q)|2, (69)
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where

ε0n(q) =
z

∑
s=1

ˆ ˆ

Ψ∗
n(r1, ...,rs)exp(iqzs)Ψ0(r1, ...,rs)dr1...drs. (70)

Ψ0(r1, ...rs) andΨn(r1, ...rs) are respectively the eigenfunctions of the initial and final

states of the target.

Note that the necessary functions needed to describe the initial and final states of the

target are only available for the simplest targets and approximation techniques to

derive these functions must be employed for more complex systems with more than

one electron. A common method is the Hartree-Fock approximation, which neglects

nuclei kinetic energy and adopts constant repulsion between them [22, 23]. In this

approximation, the electronic Hamiltonian is described as

Helec = −
N

∑
i=1

1
2

∇2
i −

N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
ri j

, (71)

and when inserted into the Schr ¨odinger equation

HelecΦelec = εelecΦelec, (72)

provides the solution
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Φelec = Φelec({ri};{RA}), (73)

which describes the motion of the electrons with explicit dependence on the electronic

coordinates and parametric dependence on the nuclear coordinates. Same as the

electronic energy

εelec = εelec({RA}). (74)

The parametric dependence means that, for different arrangements of the nuclei,Φelec

is a different function of the electronic coordinates.

In the Hartree-Fock theory, the many-electron wave function, which describes the

electron’s motion and spin are composed by the product of a spatial function or orbital

Ψ(r) and a spin orbitalα(r,↑) or β (r,↓). Since the Hartree product does not account

for antisymmetryΨ(r1,r2) = −Ψ(r2,r1) and correlation, they are modified by

representing the wave functions as single Slater determinantes or as a linear

combination of them to supply antisymmetry and correlationproperties. For a two

electron system, for example, it can be written as

Ψ(r1,r2) = 2−1/2

∣∣∣∣∣∣∣

χi(r1) χ j(r1)

χi(r2) χ j(r2)

∣∣∣∣∣∣∣
, (75)

whereχ(r) =






Ψ(r)α(r,↑)

or

Ψ(r)β (r,↓)






.
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Finally, for a general N-electron system we write [22, 23]

Ψ(r1,r2) = (N!)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(r1) χ j(r1) ... χk(r1)

χi(r2) χ j(r2) ... χk(r2)

... ... ... ...

χi(rN) χ j(rN) ... χk(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (76)

A clear presentation of the Hartree-Fock method is given in [22, 23].

2.7 DICS in condensed-phase - modeling the energy-loss function

2.7.1 The key quantity - energy-loss function

Finally, we reach the point where we can present in more detail the theoretical

approach that will be used in this work for the determinationof the inelastic

cross-sections for the interaction of fast protons and electrons in uniform and isotropic

thin foils of aluminum, copper, and gold. In principle, there are two methods from

where we can derive inelastic cross-sections: the microscopic, in which the

Hamiltonian of the system is constructed and the eigenfunctions optimized and linked

to the material’s dynamic-factor or inelastic form-factorusing approximation methods

as the Hartree-Fock self-consistent method concisely described above, and the

macroscopic or dielectric function formalism.

As it was first shown by Lindhard, Hubbard, and Ritchie in the 1950s [18], for

condensed-phase systems where its many-body features are very strong and cannot be

neglected, the inelastic interaction of charged particlesis best described by the

dielectric properties of the medium (dielectric formalism) where the

energy-loss-function is the key quantity of the theory and it can be obtained
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experimentally from spectroscopic techniques. An important advantage of this method

is that the energy-loss function, in the long wavelength limit, can be constructed from

optical measurements [24].

In this approach, the dielectric constant of the mediumε is generalized to address

absorption of energy, through the energy-lossw = h̄ω dependence, and scattering

properties, through the momentum transferq = h̄K dependence, of the target medium

to external perturbations. It is then a complex dielectric function that can be written as

ε(w,q) = ε1(w,q)+ iε2(w,q), (77)

wherew andq are respectively the energy and momentum transfer withK being a

scalar for uniform and isotropic materials. Usually, the imaginary component of the

dielectric functionε(ω,q) is obtained from experiment and the real term derived from

Kramers-Kronig relations [6, 11, 25, 26]. The energy-loss function, which plays a

central role in the slowing-down of fast charged particles is then defined as

[13, 18, 19, 24, 27, 28].

η2(w,q) = ℑ
[ −1

ε(w,q)

]
=

ε2(w,q)

ε2
1(w,q)+ ε2

2(w,q)
, (78)

whereℑ
[

−1
ε(w,q)

]
represents the imaginary part of−1

ε(w,q) .
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2.7.2 Link with the differential cross-section and GOS

In the non-relativistic limit and under the first Born approximation, the fundamental

element from which we can derive all the other desired quantities is the double

differential inelastic macroscopic cross-section (DDICS) that is expressed by

[13, 27, 28]

d2Σ
dqdw

(E;w,q) =
1

πa0E
η2(w,q)

q
, (79)

where

η2(w,q) =
π
2

E p2

Z
1
w

d f (w,q)

dw

is the energy loss function,Ep = 28.816
(

ρZ
A

)1/2
is the nominal plasma energy in

electron-volts [29],a0 is the Bohr radius,E is the total energy of the incident particle,

w the energy-loss,q = h̄k is the linear momentum transfered,Z the atomic number of

the material, and finallyd f (w,q)
dw the generalized oscilator strength of the material from

which inelastic inverse mean free-pathΣ = M(0), and electronic stopping-power

−dw
dx = M(1), follows from [24, 27, 28]

M(i)(E) =

ˆ

widw
ˆ

dq
d2Σ

dqdw
. (80)
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Thus we can see that through the GOSd f (w,q)
dw the DDCIS can be calculated using a

two-step process consisting first of obtaining the optical limit or OOS,d f (w,0)
dw , from

experiment and implementing the momentum dependency analytically through a

model. The model we will use is the so calledδ -oscillator model, which was first

presented by J. C. Ashley [30]. Thisδ -oscillator dispersion model connects the

energy-loss function of the material with the optical energy-loss function, and hence

experimental optical data, through

wℑ
[
− 1

ε(k,w)

]
=

ˆ x

0
dw′w′ℑ

[
− 1

ε(0,w′)

]
δ [w− (w′ +(h̄k)2/2)]. (81)

Thus relating the GOS with the OOS through

d f (w,q)

dw
=

d f (w− (h̄k)2/2)

dw
(82)

This method was first introduced by the Oak Ridge group (R. H. Richie, J, C. Ashley,

and co-workers) [30].

Finally, we can write the desired single relation between the DDICS and the OOS with

implemented momentum dependence through the delta-oscillator model as

d2Σ
dqdw

(E;w,q) =
1

2a0Z
E p2

E
1
w

1
q

d f (w−q2/2)

dw
(83)

This is the fundamental searched relation that connects theDDICS with our initial
semi-empirical OOS data. From successive integrations, wecan then obtain SDCS,
TCS and other desired quantities necessary for the MC simulation of the secondary
electron emission from the targets.
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2.8 Monte Carlo simulation of radiation transport

For completeness, the end of this document provides two results of MC simulations

using PARTRAC, a Monte Carlo code designed by GSF (The National Research

Center for Environment and Health of Germany) [31]. They were accomplished and

kindly provided by Dr. Michael Dingfelder after the inplementation of our interaction

models.

2.8.1 Tracking of a charged particle

In Monte Carlo simulation, the interaction of primary charged particles with other

medium, consists of random sequences of free flights, where no interaction between

projectile and target takes place (original physical stateof the particle is conserved),

ending with the occurence of an event (some change in the previous physical state of

the particle). This event is characterized by a possible loss or transfer of certain

amount of energy, change in direction of movement, and can possibly cause ionizations

or generation of secondary particles. For the analitical ornumerical description of all

this to be possible, an interaction model or a set of differential cross-sections (DCS)

for each type of event under consideration needs to be implemented into the MC

simulation routines. These DCSs will then serve to determine the normalized

probability distribution functions (PDF) of the random variables needed to describe a

“track.” With appropriate inverse methods, the fundamental equation involving the

corresponding cummulative distribution functions (CDF) and a random number

ξ = [0,1[, cd f (ψ) =
´ ψ

a pd f (x)dx = ξ , can be written as a relation between the

desired random variableψ andξ , ψ = f (ξ ). Finally, histories can be generated by

sampling methods and quantitative information is obtainedby averaging them over

many calculations. Following is a more detail explanation of this process.
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2.8.2 The probability distribution function and sampling methods

As previously said, to describe the physical state (its energy and momentum for

example) of a particle as it travels or interacts with some target material, we need the

relevant random variables. These are obtained from random sampling their respective

probability distribution function (PDFs). In general, this is accomplished with the use

of random generators that produce uniform distributed random numbersξ ∈ [0,1[ .

The desired random variablesx are then obtained by solving the following sampling

equation, involving the cumulative distribution functionon the left and uniform

random variable on the right, forx using inverse transform methods [32, 33]

ˆ x

xmin

p(x′)dx′ = ξ , (84)

wherep(x) is the probability distribution function ofx andξ are random numbers.

Now, letting the particle’s direction be defined by the polarand azimuthal anglesθ and

φ , the energy-loss per event byw, and assuming that the particle could possibly

interact with the target through one out-of-two exclusive possible scattering methodsA

or B, the scattering model for each kind of collision can be written as

d2σA(E;w,θ)

dwdΩ

and

d2σB(E;w,θ)

dwdΩ
,
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respectively for collisions or interactions typesA andB, whereE is the initial energy

of the projectile,dΩ is a solid angle element in the directionθ ,φ .

The total cross-sections (per target element) are

σA,B(E) =

ˆ E

0
dw
ˆ π

0
2π sinθdθ

d2σA,B(E;w,θ)

dwdΩ
. (85)

The PDFs of the energy-loss and polar scattering angle for individual events are

pA,B(E;w,θ) =
2π sinθ
σA,B(E)

dθ
d2σA,B(E;w,θ)

dwdΩ
, (86)

wherepA,B(E;wθ)dwdθ gives the normalized probability that, in a scattering event of

typeA or B, the particle loses energy in the interval(w,w+dw) and suffers deflection

into the solid angledΩ in the directionθ ,φ , relative to the initial direction. For an

azimuthal symmetric system, the azimuthal scattering angle per collision is uniformly

distributed within the interval(0,2π) with probability distribution function

p(φ) =
1

2π
. (87)

Finally, the probability distribution for the discrete random variable that defines the

kind of interaction in a single event can be written as
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pA =
σA

σT
(88)

and

pB =
σB

σT
, (89)

whereσT = σA +σB is the total interaction cross section.

2.8.3 Random track generation

Now, with the necessary probability distribution functions (PDFs) and a random

generator suplying random numbers uniformly distributes in the intervalξ ∈ [0,1[ at

hand, a random track is simulated as follows:

The length between events, where the particle moves freely without interacting with

the medium (free-path), the type of event (scattering mechanism) that will take place,

the change in direction, and the energy-loss in the event areall random variables that

are sampled from their corresponding PDFs. The position of next event can be written

as

−→r n+1 = −→r n +α d̂, (90)
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whereα is the random variable sampled from the free-path PDF,r = (x,y,z), is the

position vector of an event in the medium, andd̂ = (u,v,w) is the direction cosines of

the direction of flight. The energy-lossw and the polar scattering angleθ are sampled

from the distributionpA,B(E;w,θ) with a suitable sampling technique and the

azimuthal angle is generated from a uniform distribution inthe interval(0,2π) as

φ = 2πξ . (91)

2.8.4 An example using a hypothetical mean-free-path PDF

Let a statistical model or PDF for the mean-free-path of certain particle be represented

by the following exponential function

pd f (x) = e−x. (92)

Noting that this function is already normalized,

ˆ ∞

0
e−xdx = 1, (93)

we can obtain the CDF and its relation withξ = [0,1[ from

f (λ ) =

ˆ λ

0
e−xdx = 1− e−λ = ξ . (94)

This results in a implicit relation involving our desired random variableλ and a set of

random numbersξ . By inverse methods we finally obtain the explicit relation that can

be written as
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λ (ξ ) = − ln(1−ξ ), (95)

from which we can sample the mean-free-path of the particleλ from an uniform

random distributionξ = [0,1[ given by an random generator. Following, please see

figure 5, is the graphical representations of the mean-free-path random distribution

after 10000 runs of the random generator using our hypothetical exponential pdf.

Figure 5: Graphical representation of the mean-free-path from a hypothetical

PDF. Each point represents a possible value for the mean-free-path that

is obtained from equation 95. The graph shows 10,000 points or runs

of the random generator. The final result is taken as an average over them.

A full explanation of this process can be found in [31, 32, 33].
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3.1 Consistency test for the OOS - sum-rule test

Our starting point is the verification of of Bethe’s sum-ruleof the initially available

semi-empirical optical-oscillator-strength-data of aluminum, copper, and gold defined

as [14, 15]

ˆ ∞

0

d f (w,q = 0)

dw
dw = Z, (96)

whered f (w,0)
dw is the OOS,w is the energy-loss grid,q is the linear momentum transfer,

andZ the number of electrons per atom in the material.

Since the OOS is constructed in part from experiment [25], where index of refraction

and extinction coefficients are used to construct the dielectric function and the energy

loss function of the medium under consideration, please seesection (G) of this

document, and in part with a extrapolation-scheme for the higher-energy shells, this

test verifies if any normalization factor needs to be appliedto the data.

The numerical integration of the OOS is also a good point to verify and optimize the

numerical inrtegration routines. The optimization of the energy loss step sizedw for

the numerical integration in the energy loss domainw was accoplished by force where

direct integration of the OOS as function of step size was done and compared with an

approximately three percent allowed error band with respect to the optimum total

number of atomic electrons that have the well known values of13, 29, and 79,
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respectively for aluminum, copper, and gold. It was found that the best results were

obtained by first dividing the OOS into three regions with distinct energy loss steps

wheredw1 anddw3 values were maintained constant atdw1 = 1.00×10−5 Hartrees or

2.72×10−4 eV for w < 4.00 Hartrees or 108.8 eV, anddw3 = 1.00×101 Hartree or

272 eV forw > 3.50×102 Hartree or 9.52 keV. By varing the energy loss step size

dw2 of the second interval in the energy loss domain, where 4.00< w < 3.50×102

Hartrees, the OOS integration could be optimized. The optimum value ofdw2 was

found to be 1.00×10−2 Hartrees or 0.272 eV, please see figure 6. Following are also

given the graphical representations of the OOS for all threematerials. Please, see

figures 7 through 9.



47

Figure 6: Analysis of the integration routine used in the integration of the OOS.

The integration results is shown as function of the energy-loss stepdw2.

The optimum results are values that stay within approximately 3 percent

of the total number of electrons por atom of the target material

(Aluminum Z = 13, copper Z = 29, and gold Z = 79).
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3.1.1 Aluminum OOS

Figure 7: Optical oscillator strength density distribution of aluminum (Z = 13).

Obtained partially from experimental data [25] and partially from

NIST [26] for w > 1.0 keV.
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3.1.2 Copper OOS

Figure 8: Optical oscillator strength density distribution of copper (Z = 29).

Obtained partially from experimental data [25] and partially from

NIST [26] for w > 1.0 keV.
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3.1.3 Gold OOS

Figure 9: Optical oscillator strength density distribution of gold (Z = 79).

Obtained partially from experimental data [25] and partially from

NIST [26] for w > 1.0 keV.



51

3.2 Limits of integration

From the kinematics of the collision we can define the following interval of integration

for the momentum space(qmin,qmax). Recalling the relations between linear

momentum and the energy of the incident particle we can write

qinit =
√

2mE (97)

where:qinit is the initial linear momentum magnitude of the incident particle, E the

incident particle’s total kinetic energy, andm its mass.

Now, for a possible loss of energyw during the collision with a target, it is clear that

the incident particle’s magnitude of linear momentum can assume values from a

minimum of

qmin = qinit −q′ =
√

2m(
√

E −
√

(E −w)) (98)

to a maximum of

qmax = qinit +q′ =
√

2m(
√

E +
√

(E −w)) (99)

where:q′ =
√

2m(E −w).

Following are graphical representations of these limits asfunction of energy-loss for

electrons at 10 eV and 1 keV, and proton sources at 100 eV, and 1MeV, please see

figures 10 through 13.
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Figure 10: Limits of integration for electron energy of 10 eV
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Figure 11: Limits of integration for electron energy 10 keV
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Figure 12: Limits of integration for proton energy of 100 eV
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Figure 13: Limits of integration for proton energy of 10 MeV
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As expected for the convergence of the integral over linear momentum, see next

paragraph for the calculation of the differential inverse-mean-free-path, the limits

converge to the single valueqmin = qmax =
√

2mE asw → E.

Therefore, the first integration of equation 83 defines our first important relation. The

single differential macroscopic cross-section or the differential inverse-mean free-path

(DIMFP) can then be written as

dΣ
dw

(E;w,q) =
1

2a0Z
E p2

E
1
w

ˆ qmax

qmin

1
q

d f (w−q2/2)

dw
dq (100)

or more conveniently

dΣ
dw

(E;w,q) =
1

2a0Z
E p2

E
1
w

ˆ ρ2

ρ1

d f (w−q2/2)

dw
dρ (101)

where:ρ, ρ1,andρ2 are respectively lnq, lnqmin, and lnqmax.

Finally, a second integration over the energy-loss limits defines the other necessary

quantity for the construction of the probability distribution functions for the MC

simulation of the interaction. The inverse-mean-free-path (IMFP) can then be written

as

Σ(E) =
1

2a0Z
E p2

E

ˆ w

0

1
w

dw
ˆ qmax

qmin

1
q

d f (w−q2/2)

dw
dq (102)

Note that the IMFPΣ(E) or macroscopic total cross section is related to the
microscopic total cross-sectionσ(E) through the simple relationΣ(E) = Nσ(E),
whereN is the number density of the target.
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3.3 Shell separation

So far, the calculation of the differential and total cross-sections using the total OOS as

described in figures 7 through 9 respectively for aluminum, copper, and gold returns

the necessary quantities for the MC simulation without providing information about

the initial energy of ejection of the secondary particles inthe case of ionization events.

Similar to the case where the tracking of the primary particles is only possible if we

know, during all the simulation time, the energy and direction of these particles, to

“track” possible secondary electrons, we also need to know their initial energies and

ejection angle distributions.

To fulfill this requirement, the oscillator strength distributions were separated into

shells from where coefficients of proportionality could be introduced and calculated

based on the complete oscillator distribution and sum rules. Following, please see

figures 14 through 16, are the oscillator strength of aluminum, copper, and gold with

their corresponding distribution of oscillators per shell.

Following are also given the edge energies or threshold energies for the corresponding

shells, which were selected to distinct one shell from another. Please note, especially

in the case of gold, that the nomenclature used for the shellsdo not correspond to the

standard classification. This was due to difficulties encountered to distinct the

subshells. Where we say K, L, M, N, O, and P -shells, in the caseof gold, some are

actually sub-shells named L1, L2, and L3 and so on. For our purposes, what is

important for this simulation is to know where the distinctions are made by their

corresponding edge-energies. Specially between what is consider inner and

outer-shells.
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3.3.1 Aluminum edge-energies

• L-edgew > 74 eV

• K-edgew > 8.979 eV

3.3.2 Copper edge-energies

• L-edgew > 950 eV

• K-edgew > 9.979 keV

3.3.3 Gold edge-energies

• O-edgew > 150 eV

• N-edgew > 2.21keV

• M-edgew > 11.92 keV

• L-edgew > 13.70 keV

• K-edgew > 80.72 keV



59

Figure 14: Aluminum OOS K, L, and M shell separation
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Figure 15: Copper OOS K, L, and MN shell separation
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Figure 16: Gold OOS K, L, M, N, O, and P shell separation



62

The construction of the shell-coefficients was done in a three step process as follows:

First, a particular shell and its spectrum of participationis identified. In the case of the

aluminum K-shell, its participation starts atw > 8.979 eV , as indicated above.

Second, if other shells overlap in the same energy range, theOOS of the considered

shell is appropriately subtracted from the OOS of these overlaping shells. Finally,

normalization is obtained by dividing the resulting shell-OOS by the total OOS in the

considered spectrum. The result is a coefficient that rangesfrom 0 to 1 that indicates

how strong is the participation of a certain OOS-shell in a particular spectrum. Again

using the aluminum K-shell OOS as an example, we can see that its corresponding

coefficient should be 0 forw < 8.979eV, and assume a value 0< Ck < 1 for

w > 8.979eV. Please, refer to figures 17 through 19 for the completevalues of the

shell-coefficients for aluminum, copper, and gold.

The differential and total cross-sections can then be obtained by multiplying these

coefficients by the previously calculated differential andtotal cross-sections using the

complete oscillator strength distributions. Again, please see figures 17 through 19, for

the graphical representations of the shell-coefficients for aluminum, copper, and gold.

Note that their sum at any point in the spectrum must equal to 1.
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Figure 17: Aluminum shell coefficients.
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Figure 18: Cooper shell coefficients.
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Figure 19: Gold shell coefficients.
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3.4 Agular distribution of primary and secondary particles

So far, we have considered only the particle’s initial energy and its mean free path for

the determination of their track structure or MC simulation. To complete the modeling

of the simulation of the track-structure of a primary or secondary particle, as they

travel through the target foil, we also need to know the direction that they will take

after an event, elastic or inelastic, takes place. More specifically, we must know their

respective angular probability distribution functions from which the angular variables

θ , andφ can be obtained by appropriate sampling methods. There are four cases to be

considered:

• The angular distribution of fast proton source particles

• The angular distribution of primary electrons that can alsocause further

ionizations

• The angular distribution of secondary electrons induced byelectron impact

• The angular distribution of secondary electron induced by proton impact

3.4.1 Angular distribution of primary protons

For the proton as primary particle, due to its overwhelmingly bigger mass with respect

to the mass of the target electrons (mp ≈ 1836me) and with initial momentumpi also

much greater than the momentum transferq, (pi � q), it is then justifiable to consider

that they will approximately travel in straight lines through the material from the

beginning of the simulation to the end. The kinematics resulting in such approximation

follows:
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From classical collision theory and due the dramatic difference between the masses of

the fast primary protons and the secondary electrons, we canconclude that there will

be a very small transfer of energy and momentum between theseparticles. Applying

the case of elastic maximum energy transfer, or “head-on” type of collision, to a target

initially at rest, we then obtain from the ratio of the kinetic energiesf1 and f2 as

follows:

f1 =
K1 f

K1i
=

(
m1−m2

m1+m2

)2

(103)

and

f2 =
K2 f

K1i
, (104)

whereK1 f , K1i, K2 f , m1, andm2 are respectively the final and initial kinetic energies of

the projectile, the final kinetic energy of the target, and the masses of the projectile and

target.

From the conservation of energy we can write

f1 + f2 = 1, (105)

which results in

f2 = 1− f1 =
4m1m2

(m1+m2)
2 . (106)

Therefore, a maximum energy tranfer of

K2 f =
4m1m2

(m1+m2)
2K1i, (107)
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occurs from which we can see that ifm1 � m2, K2 f ' 4m2K1i
m1

� K1i.

This lead us to consider for the simulation that the primary fast protons will travel

through the material without being deflected by the target electrons.

3.4.2 Angular distribution of primary electrons

In the case of primary electrons, the interaction with target electrons can be explained

by using eleastic and binary knematics as follows:

Let an incident (primary) electron emerge from a proton impact with initial kinetic

energyE and final energyE −w respectively before and after its binary encounter with

a target electron. Relatively fast but still classic impactallows us to simplify our

calculations by considering the target electron to be initially at rest and to acquire an

energyw after the collision. Under these approximations we can easily obtain the

scattering angle of the projectile electronθ as follows. Please see figure 26.

From these known energies we can define the corresponding initial, final, and

transferred momenta as

pi =
√

2mE (108)

p f =
√

2m(E −w) (109)

q =
√

2mw (110)

We finally obtain the scattering angle of the incident electron, after its interaction with

a target electron, that can be written as
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cosθ =
E −w√
E(E −w)

(111)

Figure 20: Classical scattering kinematics. An incident particle with initial

kinetic energyE loses energyw after its collision with a free electron.

The energyw that is acquired by the target. The incident particle is

scattered in an angleθ with respect to its original trajectory.

3.4.3 Angular distribution of electrons induced by electron impact

In the case of electron-induced emissions, these secondaryelectrons will be emitted at

90o with respect to the direction of the primary electrons. The models are based on

results from experiments involving gas-phase targets and photo-ionization data.

The emission angles for these electrons, known as secondaryelectrons, comes from

two sources:
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For energy transfersw < 100 eV, the experimental data from Opal et al. [34, 35] were

used. For energy transfersw = 100 eV, non-relativistically, the secondary electron is

emitted perpendicular to the scattered primary electron following approximately

ionization by photon impact where the electrons are ejectedin the direction of the

perpendicular field [36, 37].

3.4.4 Angular distribution of electrons induced by proton impact

Following the steps from Dingfelder et al. in [27] and references therein, the

interaction between the fast protons and the target electrons can be separated into two

types - close or hard collisions and soft collisions due to dipole interactions. This

involving theory is usually called the mixed binary and Bethe theory or binary

encounter dipole model [38].

In summary, it implements or includes the angular dependency into the Bethe
coefficients by hand that can be written as

A(w,θ) = A(w). f1(θ) (112)

and

B(w,θ) = B(w). f2(θ) (113)

The functionsf1(θ) and f2(θ) are modelled based respectively on data from

photo-electron emission and binary theory.

3.4.5 Determination of A(w) and B(w)

The proportionality between the Bethe coefficientsA(w) andB(w), which account

respectively for the “soft” and “hard” interaction terms, and the energy-loss function

were used for the calculation of these coefficients. They canbe written as
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A(w) =
1
2

η2(w,0) (114)

and

B(w) =
1
2

η2(w,0)ln

[
4(k̄a0)

2
(

Ry
w

)2
]

+ J1+ J2, (115)

where the auxiliary integralsJ1 andJ2 can be written respectively as

J1(w) =

ˆ ∞

q
η2(w,q)

dq
q

(116)

and

J2(w) =

ˆ q

0
[η2(w,q)−η2(w,0)]

dq
q

. (117)

In the auxiliary integralsJ1 andJ2, q is an introduced value, independent ofE, that

separates the high-q and low-q domains. Dingfelder et al. in[27] presents the

complete derivations.

Note that, in the assymptotic region,E � w, the First Born approximation differential

cross-section can be substituted by the Bethe differentialcross-section, which can be

written as

dΣ
dw

=
1

πa0E

[
A(w) ln

(
E
Ry

)
+B(w)+O

(w
E

)]
, (118)

wherea0 is the Bohr radius,w the energy-loss,E the particle’s kinetic energy,Ry is the

Rydenberg energy (13.6 eV). The Bethe total cross-section, after integration of

equation 118, was than used to check our Bethe coefficient calculation results. Please
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refer to the graphs of the total cross-sections at the end of this document where our

PWFBA calculations are plotted together with the Bethe total cross-sections, which

rely onA(w) andB(w), showing a good agreement in the high energy spectrum.

Finally, to complete the angular profile of the particles, inthis case independent of the

their type, the azimuthal direction is defined by the polar angleφ and obtained from an

uniform distribution in the interval(0,2π) from which random sampling takes place.

Following are the calculated Bethe coefficients for aluminum, copper, and gold based

on their respectively energy-loss functions as previouslydescribed by relations 114,

115, 116, and 117.
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3.4.6 Aluminum, copper, and gold Bethe coefficients

Figure 21: Bethe A coefficient, as defined in equation 114, foraluminum.
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Figure 22: Bethe B coefficient, as defined in equation 115, foraluminum.

The B coefficients as indicated by the dashed line are actually

negative in value.
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Figure 23: Bethe A coefficient, as defined in equation 114, forcopper.
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Figure 24: Bethe B coefficient, as defined in equation 115, forcopper.

The B coefficients as indicated by the dashed line are actually

negative in value.
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Figure 25: Bethe A coefficient, as defined in equation 114, forgold.
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Figure 26: Bethe B coefficient, as defined in equation 115, forgold.

The B coefficients as indicated by the dashed line are

actually negative in value.



4 Results

Finally, we present the complete set of single differentialinverse-mean-free-paths and

the total macroscopic cross sections or inverse-mean-free-paths for electron and proton

impact in isotropic and homogeneous aluminum, copper, and gold thin foils. We also

show the PARTRAC simulation of the forward and backward electron yields from 0.1

micron thick copper foil after a 6 MeV proton impact.

Our calculations using the (PWFBA) are also compared with our calculations using the

Bethe approach and other well known published data. For the inverse mean free path

and stopping power of the foils for electron source the data was compared with results

from Fernandez-Varea. et al. [39, 40]. The proton impact calculations were compared

with well known data from ICRU report 49 [41].
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4.1 Electron impact in aluminum, copper, and gold thin foils

4.1.1 Aluminum DIMFP, IMFP, and STP

Figure 27: DIMFP of electrons in aluminum
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Figure 28: IMFP of electrons in aluminum. Data from

Fernandez- Varea et al. can be found in [39].
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Figure 29: STP of aluminum for electron source. Data from

Fernandez- Varea et al. can be found in [39].
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4.1.2 Copper DIMFP, IMFP, and STP

Figure 30: DIMFP of electrons in copper
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Figure 31: IMFP of electrons in copper. Data from

Fernandez- Varea et al. can be found in [39].
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Figure 32: STP of copper for electron source. Data from

Fernandez- Varea et al. can be found in [39].
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4.1.3 Gold DIMFP, IMFP, and STP

Figure 33: DIMFP of electrons in gold
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Fig 34: IMFP of electrons in gold. Data from

Fernandez- Varea et al. can be found in [40].
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Figure 35: STP of gold for electron source. Data from

Fernandez- Varea et al. can be found in [40].
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4.2 Proton impact in aluminum, copper, and gold thin foils

4.2.1 Aluminum DIMFP, IMFP, and mass STP

Figure 36: DIMFP of protons in aluminum
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Figure 37: IMFP of protons in aluminum
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Figure 38: Mass STP of aluminum for proton source
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4.2.2 Copper DIMFP, IMFP, and mass STP

Figure 39: DIMFP of protons in copper
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Figure 40: IMFP of protons in copper
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Figure 41: Mass STP of copper for proton source



95

4.2.3 Gold DIMFP, IMFP, and mass STP

Figure 42: DIMFP of protons in gold
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Figure 43: IMFP of protons in gold
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Figure 44: Mass STP of gold for proton source
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4.3 Electron yields from 0.1 micron copper foil after 6 MeV proton

impact

4.3.1 Forward electron yields

Figure 45: MC simulation of forward electron yields from copper foil.

Simulation data provided by Dr. Michael Dingfelder.
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4.3.2 Backward electron yields

Figure 46: MC simulation of backward electron yields from copper foil.

Simulation data provided by Dr. Michael Dingfelder.



5 Conclusion and Remarks

In summary, the simulation of the secondary electron emission from a thin copper foil

after fast proton impact has been accomplished using the Monte Carlo code PARTRAC

after implementation of interaction cross sections calculated from dielectric theory

under the PWFBA. This aloowed us to connect the most important quantity of the

theory, the DDCS, to the GOS through a simple dispersion algorithm known as the

δ -oscillator model and the available OOS of the target. Afterthe DDCS was defined,

the important quantities for the simulation could all be obtained by simple quadrature

numerical methods.

As expected, the results are in agreement within the energy range (> 1 keV for

electron impact and> 1 MeV for proton impact) in which the incident particle is

considerd fast but still nonrelativistic compared with theaverage speed of the target

electrons. Although ourδ -oscillator model includes only the Bethe-ridge or the binary

region of the surface and is clearly not the best representation available of these

targets, equation 81, it satifies the simplicity requirement. It allows a simplification

that is evident from our equation for the GOS and DDCS defined by equations 82 and

83 and obviously the numerical procedures for their implementation.

The continuation of this work could possibly concentrate onimprovements in two

fields:
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• In the modelling of the Bethe surface of these targets. Rather than using a simple

δ - function, the Bethe-ridge could be expanded with functions (Gaussian type

functions) that allow for a greater momentum exchange interval around the

binary ridge.

• In the numerical implementation - using more dynamical integration routines

that account for pre-defined maximum allowed errors in placeof simple

quadrature schemes.
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