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Monte Carlo simulations of secondary electron emissiomftiin metal foils after
fast proton impact require reliable interaction crossieastwith the target under
consideration. Total and energy differential inelastmssrsections have been derived
for aluminum, copper, and gold thin-metal foils within tHame-wave first Born
approximation (PWFBA) that factorizes the double crossisednto the generalized
oscillator strength and kinematic factors. The generdlazsillator strength or Bethe
surface of the medium is obtained by using a semi-empirigatal oscillator strength
distribution published in the literature and an extensigo@thm based on the
delta-oscillator model. Energy differential, total, andpgping cross sections are then
obtained by simple integrations. Comparisons with oth&utations and
experimental values from the literature show that our moéfets a good agreement
in the energy range considered. As a final step, the crossseeind a transport
model for copper have been implemented into the Monte Ceatiktstructure code
PARTRAC where simulations of secondary electron emissi&tisa from copper foil

have been performed.
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1 Introduction

1.1 Initial facts and observations

The study of ionizing radiation is considered by many to begth the work of the
German physicist Wilhelm Conrad Réntgen and the discovEXt cays in 1895
[1,2]. Although the effects of X- rays on materials were motially well understood,
shortly after the announcement of its discovery, they wecegnized as an important
tool for medical diagnosis, but unfortunately for many pats, X-rays were widely
adopted without a previous systematic and serious studg dbise-effect properties.
It later became evident that X-rays could severely damagjedical tissue and
demanded a serious analysis not only of its possible apigicabut also of its

ionization effects.

To understand a phenomenon such as ionizing radiation iavie e ability to
completely describe its properties in particular, for @md reasons, its effects on
biological medium, for example, water and hydrocarbonsreMyenerally, it includes
the reliable capacity to accurately generate, measurepmaict its effects in all
relevant systems. For the last 75 years, this has been amgrjgmed effort that
includes scientific work specially in physics, chemistryldiology that are
developing the necessary theories and techniques whdgistyisystems from full
bodies of experimental animals to base deoxyribonuclecc@INA) sequences in
target cells. Progressing from full organisms down to &ssa cell, to chromosome,
and to the gene, finally, the diverse biological effects ofzong radiation can all
ultimately be interpreted, understood, and explainedrimseof disruptions in these

building blocks or base sequences [3, 4].



1.2 Motivation and objectives

This particular study is part of a research project inidedelew years ago at East
Carolina University, with two main purposes: To study tlesport of secondary
electrons in condensed phase and its spectra distributien wmitted from the targets
and also to provide rigorous tests for Monte Carlo-basedyeugparticle track

structure models used in radiobiology.

The tests began with preliminary comparisons between arpatal results of doubly
differential electron-yields using two distinct experim& techniques (time of flight
and electrostatic) for hydrocarbon targets (electrotdgiat 45 degrees from GjH
C>Hg, and GHg) and the simulation results from the event-by-event clthpgeticle
track structure Monte Carlo (MC) code PARTRAC using its semipirical cross
section models for liquid water. The main purpose was tothessimulation at the
fundamental physics level or before any reactions takespl&mce discrepancies were
observed between the results obtained from experimentARARAC at the low and
high energy ranges(50 eV and> 1 keV) and could not be completely clarified from
this preliminary test on hydrocarbon foils using the waterss sections available in
PARTRAC, the project was extended to provide experimergtd tbr amorphous solid
water (ASW) and other important biological tissues. Exatan of the results from
ASW are currently been done and the experimental data @atdom metals are very

consistent and will provide an excellent testing ground [5]

Therefore, to make this starting test possible, new cressems representative of the
metals, which are used as substrate in the experiment, sn¢ete calculated and
implemented into PARTRAC using the similar plane-wave Bibwory as it was
previously done for water cross-sections used in PARTRA(S.tb fulfill this initial
step that | began the study of the interaction of fast chapgeticles in

condensed-phase media to obtain the necessary backgmuoalttlate these



cross-sections for aluminum, copper, and gold. This wogkiires the

accomplishment of the following main steps:

e Collect and study key resources in classical electrodyosiamd dielectric

theory

e Study the plane wave first Born approximation (PWFBA) foratggion of

sources or projectiles

¢ Understand the oscillator strength concept for the aratepresentation of the

targets

e Research and construct the optical oscillator strengthS0ddthe relevant

target materials

e Research a simple dispersion algorithm for the constmafdhe generalized

oscillator strength (GOS)

e Compare between the classical electrodynamics collisiciane and the full

guantum mechanical treatment

e Search for key quantities and expressions that are reléwatfite determination

of the desired differential inelastic cross sections (DICS

e develop and optimize numerical procedures for the calmuaif DICS, total

cross sections (TCS), and consistency tests

e Format and graphically represent the obtained DICS and EBRSilations and

compare them with well known results



It is hoped that this study in association with others thatanrently being performed
can help the group answer the questions that were set siadesihdata on carbon
foils. For instance, it is desired to understand the phemomef metal and water
foil-charging and its relation with the reduction of low egg electron-yields based on

the physical properties of the foils [5].



2 Theory

2.1 Basic principles
2.1.1 Cross-sections

An incident charged particle interacts with another by ergra Coulomb force on it
that depends simultaneously on the charge of both paracldshe distance of
separation between them [6, 7]. Unfortunatelly, the studye atomic structure and
properties of materials usually involves the simultanaotesaction of a large amount
of charged particles, which is known as a many body problerhigimpossible to be
precisely solved. Therefore, statistical tools must beleyga when dealing with such
problems, and if statistical fluctuations can be minimizgddiking a large number of
measurements, the searched properties and values cartredrds an average over
them. It is from this necessity that the concept of cross@ecbmes to play a

fundamental role in atomic physics.

Without being concerned with the precise way in which andant particle interacts
simultaneously with a large number of target particlessfimg exchanging energy
and momentum with all of them, the desired properties aexiiafl by setting the
measurement devices to only “count” or detect the partitiassatisfy a pre-defined
physical property. In an extremelly simplified way, this i@erimentally done by
setting the detector’s position with respect to the incigemticle’s direction, adjusting
the detector’s sensitivity, or measuring the scatterirmgjga’s time-of-flight if the
scattered particle’s momentum and energy are desired. frefollowing picture, see
figure 1, the analytical representation of the cross seétioa particular event can be

constructed as:



Let an incident flux of particles per unit of target’s ardas, interact with a material.
The scattered flux of particles within a solid and = sin6d08d¢, dNs, measured
from the center of the interaction area on the target to thectter’s position is then

expected to be proportional to this incident flux, which cambitten as

dNs(6,) da(6,9)
daQ  dQ

Jinc7 (l)
wherew is a proportionality constant, known as differential iatetron

cross-section that can then be expressed as

dQ Jinc dQ ’

The total cross-section is given by

_ [do(6.9) [T ?"da(8,9)
0_/ng_/o sm@d@/o quo. 3)



{6,4)
Scattered
particles
z within a solid
A angle do
i
Incident
particles
—- —
- > ¥
—-
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Figure 1: Diagram for the scattering of an incident flux oftjzdes Jin.
After interaction with the target, only the flux of particlgt have
been scatteredNs( 60, @) within a solid angledQ in the direction defined
by the plane angle8 and ¢ will be considered in the determination of the
proportionality factor between the incident flux and thetterad flux

known as the differential cross secti (g"").



2.1.2 From Maxwell’'s equations to differential cross-seabns

The above over-simplified pictorial description of the expental determination of a
differential cross-section can theoretically be more cletay described from
ab-initio classical electrodynamics that obviously stémdom the well known four

fundamental Maxwell’s equations|[6,7,/8, 9]

In the following equations, |€fl = O,E= E(T,t),D=D(T,t),B=B(T,t),
H=H(T.t),A= K(?,t), J="T(T,t),andp = p(T,t).
oD
UxH=—+J 4
% ot (4)
0B
UXE=——
X ot’ (5)
0-B=0, ()
and
0-D=p, (7)

where the electrical displacement and induced magnetedie respectively defined

as

D =¢E (8)

and



B = poH. 9

To study the interaction of an incident electromagnetidfaie, for example, to an
incident charged particle approaching the target with éefienergy and momentum,
we need to obtain the wave equation that describes the méeidg Recognizing the

vector identity

Ox (OxA)=0(0-A) — 0%A, (10)

the wave equation is obtained after following some basjesst&hich start by taking

the curl of the Faraday’s Law. Following, is the completegdion.

Dx(DxE):Dx(—%)

0(0-E)—0%E = —HO%(D x H)

PN e el (PE L2
D(so) 0%E souodt<dt+£o



10

Note that

o
Il

7

Eo

is the phase velocity of the moving radiation in vacuum, \whgcoften referred as the
speed of “light in vacuum” witlgy and Lip being the electric permitivity and magnetic

permeability of free space.

This wave equation is then the point of departure for expigiall the properties of
interest involving, for example, propagation, reflectigefraction, and in special for
this study the scattering processes with single and mastreh atoms involving free

and bound electrons.

Looking back into the wave-equation, we can interpret itraagsociation between
induced source terms on the right of the equation, given égthrent and charge
densities, and the field they generate. Therefore, by apptely representing the
response of the target to an incident electric field throbghcurrent and charge
densities induced in the material, the new field resultiogifthe induction process

can be in principle calculated.

The objective is then to solve the wave equation for the tadialectric fielde(r,t) in

the presence of accelerated source terms representecely foeund electrons and
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combine this field with the incident polarization agent atuntive field to obtain the

resulting scattering wave.

2.2 The electric field due to an induced current charge densjt

To solve the wave equation
a—Z—CZDZ S @Jrczm (11)
ot? & | ot P

for E(r,t), in the presence of source terms, we can treat the quantitieba
parentheses on the left of equation 11 as an operator antieosslving forE(r,t)

for arbitrary sources with the form

E(r,t) = /[G(r,t)] [source]dr, (12)

whereG(r,t) represents the Green’s or response function due to theesterr
[10,[11]. This can be considerably simplified if we move tot#@poralw and spatial
k frequency domains that are connected to the coordimgpp@ce through the

Fourier-Laplace transforms

ilwt— K. dwdk
E(?,t):/k/wEkwe ek r)(2n>4 (13)

and
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Ekw://E(?,t)ei(“’t_k'?)drdt, (14)
rJt

wheredw anddk correspond to scalar volume elemettig, = E(k, w), and

w = w +iw, with @y > 0. This is necessary for the convergence of equation 14 when

t — oo,

Thus, in Laplace-Fourier space, the wave equation in opefatm simplifies to

1 i )
(0~ K¢ Bro = —— [(~10) ko + 1Kk (15)
0

which can be solved for the electric field.

The path is clear now. If we construct appropriate model$tfersourced(r,t) and

p(r,t), we can obtain the electric field from equation 15.

Using the equation for charge conservation

ap
0-3+ -5 =0, (16)

which is derived by taking the divergence of Ampere’s Law #ralknown vector

relation- (O x A) = 0, the charge density can be written as

(17)
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Finally, the electric field can be written as

W | ko — k(Ko ko)
Exw = _8_0 [ W2 — K2c2 ] ) (18)

wherek = kkg with k = 27

Equation 18 can be further simplified if we adopt a coordisgttem oriented around
the propagation direction defined by the unit ved?@rplease see figure 2, and
decompose the source &g, = Jrke + |J|_kw\Eo with transverse and longitudinal

components. It can then be finally be expressed as

10 Jrke

Ekw = _E_Om, (19)

with its real-space representation

Frke® (@=KT) deodk
w0 = [ (%) T e e 0
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]
Lk T JI[-:n

Figure 2. Coordinate system in the direction of the propagaif the incident
waveky. This simplifies the expression describing the radiation
field Ex,, through the decomposition d§,, into longitudinal

JLkw and transverséry,, components.



15

2.3 Modeling the current charge density
2.3.1 The point radiator

Lets initially consider the case of an accelerating freetedm that is small when
compared with the wavelength of the radiating field, thusvalhg us to represent its
charge density by a Dirac delta function [[6| 7, 8]. Thus, tlevimg electron can be

expressed as a current density given by

J=qn(r,t) V' (r,t), (21)

whereq is the chargen represents the particle number density, anthe particle’s

velocity.

The real-space and Laplace-Fourier space current denargerepectively

1= —e3(r)V (1),

where in Cartesian coordinatésr) = d(x)d(y)d(2),

and

Jew = —€V (W), (22)

with transverse component
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Jrkw = —€VT(W). (23)

Substituting this current density back into equation 20iategrating we can
recognize the expected connection between the radiatedafiel the particle’s

acceleration given by

e dvy(t—r/c)
 AegCqr dt

(24)

and

E_ ear(t—r/c)

25
ATTE0C2r (25)

2.3.2 Scattering power for the oscillating free electron

The Poynting vector (energy flow or power per unit area) ictetenagnetic theory is

given by [6/ 7]

S(T,t)=ExH. (26)

Again from Faraday’s Law and the definition of magnetic ingtutwe can derive the

Magnetic fieldH as follows



17

JoB
OXxE=——
8 ot

B = uoH
JoH

ik x Exg = | wHoHke»

from which we obtain

&n ~
Hiw = 1/ — Ko % Exc, 27)
Ho

1

wherew = kc,with ¢ = N

for propagation in free space.

Using the vector identitA x (B x C) = (A-C)B— (A-B)C and the fact that for

transverse wavds) - E = 0, we obtain

S(T.t) = = |Eko, (28)
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whereZy = fe‘—g is the impedance of free space.

Noting thatatr = |a'1| = |§sin9 the radiated powe@(?,t) can be represented by
the acceleration, which reveals the familiar form for theatie radiation[[6, [7], see

figure 3 below.

STty = | a|%sinf 0,

= 29
1672gnC3r2 (29)

or

dP  €alsifo

dQ ~  16m2ecd (30)

where’S(T,t) = Pko, for dA=r2dQ.

The total power radiated immediately follows from the in@n of equation 30,

_8m( e&al?
P=3 (167'[28003) ' (31)

Note that the average radiated power, which is used in thoelkedion of the
differential cross section for the radiation of an accatmtaharged electron in the

direction defined by the acceleration vec®(T’,t) can be expressed as [6, 7]

S = %Re[E x H*] (32)
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Figure 3: siff 8 radiation pattern of a small accelerated charge.
2.3.3 The scattering cross-section of a single free electro

Now that we know the radiation power of the point oscillatee, can calculate the
scattering cross section by defining it as the ratio betwleemverage scattered power

Py and the average total incident pow@fi l,

og=—-. (33)

Let a free electron experience the oscillatory Lorentzdorc



E):—e[Ei—I—VXBi],

when in the presence of an incident field

The equation of motion is then given by

ma

The magnetic induction in this case is expressed as

Bi(r

= —el[E +V x Bi].

7t)

B ko x Ej(T,t)
=

20

(34)

(35)

(36)

(37)

Thus, we can neglect the x B, in equation 36 since it is proportional ¥gc, which

is very small for non-relativistic velocities and equat@&simplifies to

(38)
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The transverse component is obviously obtained by

. e .
ar = asinf = —E|Ei\sm9. (39)
Introducing the electron radiug = ﬁ, the scattered electric field in the direction

6 with respect to the polarization direction of the incidestdj

_EIE[SING _i-r/c)

E(T.,t)= 40
can be more compactly written as
(1) = —elBISING iwtr/e) (41)

r

Therefore, the single free-electron scattering cross@sefThomson) can be written as

3
o — < _ 16712 ggméc3 (42)

SI L /2 ER

or

Oc = —l¢. (43)
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The differential form follows as,

do. 1 dP

40 ~ [s/da 44
or

dOe 2

90 = r2sir? 6. (45)

2.3.4 Scattering by bound electrons

The approach for the calculation of the scattering crosasefor bound electrons is
similar to the one used for free electrons as described alsonst a connection
between the radiated field and the charged particles’ aatie is constructed. The
acceleration is then obtained from a model for the motiomefdharges and the cross
section is finally obtained from the radiated power and th& fwower. What changes

in each case is the equation of motion.

The model we will use for bound electrons accounts for therdis binding energies
of each electron and considers that the relatively massiekens with charge-Ze
does not respond dynamically to the high frequency incifleld. On the other hand,
the electrons are set in oscillatory motion with frequemapased by the passing
electromagnetic field. The response of each electron tonthdent field is directly

related to their individual resonance frequency that reflde different restoring
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forces upon them. Thus, the influence of the incident fielchemtotion of a particular
electron depends on how close the incident frequency isstoebsonance frequency of

that particular electron.

Let the equation of motion of a bound electron be expressed as

= —e[E + V x Bi], (46)

which involves the acceleratlcﬂaxT of the electron with mass, a dissipative force to
. . . dxX .

account for the energy loss with a damping fagtalefined bymy=4-, and a restoring

forcemw?2X for an oscillatory motion with resonance frequenay Again we can

neglect thev' x B;j term for non-relativistic velocities.

For an incident field of the fornE (T°,t) = E;e~'®*, we can expect the displacement,
velocity, and acceleration to contain the san&”* time dependence. Therefore, the

eqguation can be written as

[M(—iw)?X +my(—iw) X +mwéX = —eEj| e ', (47)

from which we finally obtain

- e—iwt ﬁ
W? — W +iyw m

(48)

and
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(49)

Following the same, already given, free-electron proocesiuhe semi-classical

scattering cross section for a bound electron of resonaageéncyuw is given by

0—8—7Tr2 d
-3 (P - W)’ + (yw)?

(50)

2.3.5 Scattering by many-electron atom

Using an electron distribution for this semi-classical rlaaf multi-electron atom that

can be written as

NP =S (T - ATL)), (51)

wherer is the nucleus’ coordinaté\ T the vector displacement from the nucleus, and
Z the total number of electrons held by the atom, we can wréectiarge distribution

as

IT, ) =—e Z5(?—A?S(t))75(t). (52)
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Applying the Born approximation, which neglects the eféatie to neighboring
electrons and assumes that(t) will be dominated by the incident field only and
following steps similar to the ones for bound electrons,chifare all well explained in

[6],18,[12) 13], first the current density is again expresséd-mw space by

Z AN
o=y e’ AT 9 (w), (53)
S=

and the electric field is given by

el (—ioo)e‘?)'(?*ﬁﬁs)V’Ts(oo)e*i‘*’t dkdw
E(T0 = __S;/k/w (w— ke)(w+ ke) (2m* (54)

Letting Ts= T — AT, we finally obtain

E(T) t) _ e z §>TS(t - rS/C) (55)
’ 471E0C2 S; rs '

The complete form involving the angular dependence is gyen

E(T,t) = _$f(A?,w)‘Ei|Sineefiw(tfr/c), (56)

where
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R
Z e insK.AT
we s
f(AK, W) = . . (57)
is the complex atomic scattering factor.
The differential and total scattering cross sections aga thritten as
do :
E:rg,|f|zsm29 (58)

and

o= §r§|f|2. (59)
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2.4 The atomic scattering factor and the oscillator strendt

R A
The atomic scattering factor in equation 57 presents a faasgre 2 K-4T's,

please see figure 4, to account for the different positionise€lectrons in the atom. A
simplification is possible for the case of forward scattgamd also in the long
wavelength limit. In each of these two cases, the atomitextag factorf (AV, w)

reduces to

W2

A
f0<w):glw2—w§+iyw' (60)
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Figure 4: Many-electron atom in three random electronic¢iapeonfigurations.
Although some electrons may experience the same incidasiegh the
Vi direction, the scattering field due to each electron hagdigbhase

as seen by an observer in tliker direction.
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Letting gs , known as the oscillator strength of the atom, indicategrémion of
oscillators of the system associated with a given resonfiagaency it is then

required that

ZgS: Z7 (61)

S

which allows the re-writing of the forward atomic scatteriiactor to be

= f(w) +ifd(w). (62)

The forward atomic scattering factor, is usually calcuddig first obtaining the
imaginary partfg(w) from photo-absorption experiments. The absorption coeffic

(1) is measured ané(w) calculated through

_2reA
=AM

(). (63)

Finally, Kramers-Kronig relations are used to derive thad part.

This classical approach brings to light two important feasiof the cross-section
calculation in the more general case of scattering from dalectrons: First, it shows
that the target’s response to a specific type of interactaonbe described by a single
complex quantity named the atomic scattering factor. Sécand more important, it

offers a way to link the theory with experiment through theedaination of absorption
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coefficients of materials. Although not complete, the dlzdtheory description of
interaction cross sections presents these two propertidsas that will remain in the
treatment of the interaction between fast charged pastahel single atoms as given by

Bethe’s full quantum theory and in condensed-phase taugatg the dielectric theory.
2.5 Bethe theory and the GOS of a material

Tracing back the theoretical work that lead to current usideding of the inelastic
interaction between charged particles and the stoppingpofymaterials, among
many important contributions we can mention some key sgpagdrk: N. H. D. Bohr
in 1913 for his derivation of an explicit formula for the sppg power for heavy
charged particles using full classical treatment thaeckin part on intuition and
insight due to the not yet available quantum theory; to H. &th® for the development
of the full quantum theory of stopping power of materials asgphase or by single
atomic interaction in the 1930s [14,/15, 16]; to E. Fermi fr $emi-classical theory
for the energy-loss in gasses and in condensed materid|4¢l¥ Lindhard, J.
Hubbard and R. H. Ritchie in the 1950s for showing that théaste interaction of
charged patrticles in condensed-phase materials is besiluEgs by the dielectric
function of the medium [18], and to U. Fano for applying theldctric theory to
various penetration phenomena and extending Bethe’sythea@ondensed-phase

materials in 1963 [19].

Summarizing what is presented in detail by Inokuti [13,/13l,16], Bethe’s inelastic
differential cross section for fast collisions, where tledoeity of the incident particle
is much greater than the electron’s mean orbital velocith@&shell under
consideration, is constructed under the first Born apprakion of the interaction field
and views the collision as a suden and small external pextiorbin the target’s field
caused by the projectile. Under these considerations xir@gsion of the differential

cross-section for the exchange of energy and momentunrizesdnto two distinct
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terms - a kinematical term involving properties of the pctije only and a term, called

the generalized oscillator strength (GOS), which storethaltarget’s properties.

The expression is given by

don = 2niz%e*(mv?) g *[en(a)[*d(Ina), (64)

whereZ, v, andm are respectively the electric charge, the velocity, andekemass of

the incident particleg is the electron’s chargEK> = ﬁ(?i — ?f) is the projectile’s

—
2
change in momentum, armp= (ﬁzifn) the recoil energy, which are all related

exclusively to the projectildsn(q)|? represents the conditional probability that the
target-atom undergoes a transition from ground-s@3teo an excited statg) when
receiving a momentum transfer BK after the collisiongn(q) is called the

inelastic-scattering form factor and carries the dynarofdke target atom only.

Realizing the connection between the form factor and theli@noptical dipole
oscillator strength,, Bethe introduced a new quantity called the generalizetlatsc

strength, which is related to the inelastic-scatteringiféactor by

fole) = len(a)[%, (65)

and to the dipole oscilator strength through

fo= S M7, (66)
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where

2
, (67)

1 N z
M%: |£/L’Un jleijodrl...drz

whereag is the Bohr radiusz the total number of electrong; a component ofj, and
finally, g(ry,...,rz) andyn(ry,...,r;) are the many-body eigenfunctions for the ground

and excited states respectively.

Recalling similarity with the classical derivation from-abtio electrodynamics, in the
long wavelength limit, the optical oscillator strengthis proportional to
photon-absorption cross section, which offers an extremgbortant link between

Bethe’s theory and experimental results.
2.6 GOS Hartree-Fock approximation for single atomic collsion

As well explained in[[13, 14, 15, 19], for large impact enesgithe excitation or
ionization in the encounter of a proton with cha@yeand mas$ with an atom in the

first Born approximation can be written as [20] 21]

QOn(E) =

21Z2M Omex d
P / )29 (68)
q

S f
E(En— Eo) (@

min

whereE is the energy of the incident particlgjs its change in momentum after

scattering, anéy andE, are the eigenvalues of the initial and final states of thestarg

The GOS for a particular transitiofg, () is defined as

fon(a) = q—22<En ~ Eo)leon(a) % (69)
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where

4

Eon(q) = ;//W;ﬁ(rl,...,rs)exp(iqzs)lio(rl,...,rs)drl...drs. (70)

Wo(r1,...rs) andWp(r1,...rs) are respectively the eigenfunctions of the initial and final

states of the target.

Note that the necessary functions needed to describe tied and final states of the
target are only available for the simplest targets and aqmation techniques to
derive these functions must be employed for more completesyswith more than
one electron. A common method is the Hartree-Fock appraxamavhich neglects
nuclei kinetic energy and adopts constant repulsion betweem [22] 23]. In this

approximation, the electronic Hamiltonian is described as

NMZ NNl

N
He.ecz—i;%m?—i;gﬁ+i;ém, (1)

and when inserted into the Sdllifiger equation

HeecPeec = EdecPalecs (72)

provides the solution
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Peec = Paec({ri}; {Ra}), (73)

which describes the motion of the electrons with explicjteledence on the electronic
coordinates and parametric dependence on the nucleariicatasl Same as the

electronic energy

Edec = Edec({Ra}). (74)

The parametric dependence means that, for different agraagts of the nuclefPg e

is a different function of the electronic coordinates.

In the Hartree-Fock theory, the many-electron wave fumgtichich describes the
electron’s motion and spin are composed by the product odaaunction or orbital
W(r) and a spin orbitad (r, 1) or 3(r,]). Since the Hartree product does not account
for antisymmetry¥(rq,r2) = —W(rp,r1) and correlation, they are modified by
representing the wave functions as single Slater detentesar as a linear
combination of them to supply antisymmetry and correlapooperties. For a two

electron system, for example, it can be written as

12 Xi(ry) Xxj(ra)
Xi(r2) Xj(rz2)

W(ry,rp) = : (75)

wra(r1)

wherex(r) = or

w(r)B(r,1)
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Finally, for a general N-electron system we writel[22, 23]

Xi(ry) Xj(r) .. Xk(ro)

Wity rp) = (N1 12 Xi(r2)  Xxi(r2) . Xk(r2) . (76)

Xirn) Xi(rn) - Xk(rn)

A clear presentation of the Hartree-Fock method is give2#) P3].
2.7 DICS in condensed-phase - modeling the energy-loss fuiomn
2.7.1 The key quantity - energy-loss function

Finally, we reach the point where we can present in more ldb&atheoretical
approach that will be used in this work for the determinabbthe inelastic
cross-sections for the interaction of fast protons andas in uniform and isotropic
thin foils of aluminum, copper, and gold. In principle, taare two methods from
where we can derive inelastic cross-sections: the micmescm which the
Hamiltonian of the system is constructed and the eigeniomgptimized and linked
to the material’s dynamic-factor or inelastic form-factming approximation methods
as the Hartree-Fock self-consistent method conciselyritescabove, and the

macroscopic or dielectric function formalism.

As it was first shown by Lindhard, Hubbard, and Ritchie in t880s [18], for
condensed-phase systems where its many-body featuresrgrgtiong and cannot be
neglected, the inelastic interaction of charged particé®st described by the
dielectric properties of the medium (dielectric formaljswhere the

energy-loss-function is the key quantity of the theory drwhn be obtained
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experimentally from spectroscopic techniques. An impuréalvantage of this method
is that the energy-loss function, in the long wavelengthtlican be constructed from

optical measurements [24].

In this approach, the dielectric constant of the medaisgeneralized to address
absorption of energy, through the energy-lass hw dependence, and scattering
properties, through the momentum trangfer hK dependence, of the target medium

to external perturbations. It is then a complex dielectaction that can be written as

e(w,q) = &1(w,q) +i&2(w,q), (77)

wherew andq are respectively the energy and momentum transfer Kvibtieing a

scalar for uniform and isotropic materials. Usually, th@gmary component of the
dielectric functions(w, q) is obtained from experiment and the real term derived from
Kramers-Kronig relations [6, 11, 25, 126]. The energy-lagsction, which plays a
central role in the slowing-down of fast charged partickethen defined as

[13,/18/19[ 24, 27, 28].

(78)

Na(w,q) = O L -1 } B £2(W,q)

wa)]  e2(w,q) +e5(w,q)’

wherel] [s(gv,lfﬂ} represents the imaginary partﬂﬁlq)'
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2.7.2 Link with the differential cross-section and GOS

In the non-relativistic limit and under the first Born appiroation, the fundamental
element from which we can derive all the other desired qgtiastis the double
differential inelastic macroscopic cross-section (DD)@t is expressed by

[13,127/28]

&’z 1 na(waq)

where

is the energy loss functiofp = 28.816(p—AZ> Y2 is the nominal plasma energy in
electron-volts([20]ag is the Bohr radiusk is the total energy of the incident particle,
w the energy-lossy = hk is the linear momentum transferedithe atomic number of
the material, and finallﬂw the generalized oscilator strength of the material from
which inelastic inverse mean free-pa&th= M9, and electronic stopping-power

—aw _ M@, follows from [24,27] 28]

ax =

) ) 2
M(')(E):/de/dqdzdzw. (80)
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Thus we can see that through the G@%’—Q) the DDCIS can be calculated using a

df(w,0)

gw > from

two-step process consisting first of obtaining the opticaitlor OOS,

experiment and implementing the momentum dependencytaraly through a
model. The model we will use is the so calldescillator model, which was first
presented by J. C. Ashley [30]. Thdsoscillator dispersion model connects the
energy-loss function of the material with the optical eydiass function, and hence

experimental optical data, through

WD[— 1 ]:/OXdV\/V\/D{—s(Tl\M)]6[W—(V\/+(ﬁk)2/2)]. (81)

Thus relating the GOS with the OOS through

df(wq) df(w—(Rk)?/2)
dw dw (82)

This method was first introduced by the Oak Ridge group (R.iehig, J, C. Ashley,

and co-workers) [30].

Finally, we can write the desired single relation betweenRIDICS and the OOS with

implemented momentum dependence through the deltaatscithodel as

d?z 1 Ep?11df(w—qg?/2
(Ewg) = oo P 2 AT G2
dgdw 2a0Z E wq dw

(83)

This is the fundamental searched relation that connect®EHES with our initial
semi-empirical OOS data. From successive integrationganghen obtain SDCS,
TCS and other desired quantities necessary for the MC stranlaf the secondary
electron emission from the targets.
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2.8 Monte Carlo simulation of radiation transport

For completeness, the end of this document provides twdtsesfuMC simulations
using PARTRAC, a Monte Carlo code designed by GSF (The Naktieesearch
Center for Environment and Health of Germany) [31]. Theyanvaccomplished and
kindly provided by Dr. Michael Dingfelder after the inplentation of our interaction

models.
2.8.1 Tracking of a charged particle

In Monte Carlo simulation, the interaction of primary chedgarticles with other
medium, consists of random sequences of free flights, wheenet@raction between
projectile and target takes place (original physical stdtke particle is conserved),
ending with the occurence of an event (some change in théomiephysical state of
the particle). This event is characterized by a possible do$ransfer of certain
amount of energy, change in direction of movement, and casiply cause ionizations
or generation of secondary particles. For the analiticalusnerical description of all
this to be possible, an interaction model or a set of diffeaéoross-sections (DCS)
for each type of event under consideration needs to be imgaiead into the MC
simulation routines. These DCSs will then serve to deteerttie normalized
probability distribution functions (PDF) of the random iedoles needed to describe a
“track.” With appropriate inverse methods, the fundamlkesg@ation involving the
corresponding cummulative distribution functions (CDR)l@ random number
§=10,1[,cdf(yp) = faw pdf(x)dx = &, can be written as a relation between the
desired random variablg andé, ¢ = f(&). Finally, histories can be generated by
sampling methods and quantitative information is obtaimgdveraging them over

many calculations. Following is a more detail explanatidthes process.



40
2.8.2 The probability distribution function and sampling methods

As previously said, to describe the physical state (itsggnand momentum for
example) of a particle as it travels or interacts with somgeteamaterial, we need the
relevant random variables. These are obtained from randomplgng their respective
probability distribution function (PDFs). In general,shs accomplished with the use
of random generators that produce uniform distributedeandumbers € [0,1] .

The desired random variablgsre then obtained by solving the following sampling
equation, involving the cumulative distribution function the left and uniform

random variable on the right, farusing inverse transform methods [32] 33]

/ p(X)dx = £, (84)

min

wherep(x) is the probability distribution function of andé are random numbers.

Now, letting the particle’s direction be defined by the paad azimuthal angle® and
@, the energy-loss per event lay and assuming that the particle could possibly
interact with the target through one out-of-two exclusiesgible scattering methods

or B, the scattering model for each kind of collision can be writas

d?0a(E;w, 6)
dwdQ

and

d?og(E;w, 8)
dwdQ
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respectively for collisions or interactions typ&sindB, wherekE is the initial energy

of the projectiledQ is a solid angle element in the directiéng.

The total cross-sections (per target element) are

20p8(E;W, 0)
dwdQ

E m
UAB(E):/O dW/o 2nsin6d9d (85)

The PDFs of the energy-loss and polar scattering angle @tvidual events are

. 2mtsing | d?oap(E;w, 0)
Pre(E6) = B9 e

(86)

wherepa g(E; w8)dwd8 gives the normalized probability that, in a scattering ¢wén
typeA or B, the particle loses energy in the interyal w+ dw) and suffers deflection
into the solid anglelQ in the directiond, @, relative to the initial direction. For an

azimuthal symmetric system, the azimuthal scatteringeapet collision is uniformly

distributed within the interval0, 2rT) with probability distribution function

p(p) = o (87)

Finally, the probability distribution for the discrete om variable that defines the

kind of interaction in a single event can be written as
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oa

Pa = U_T (88)
and
_ 98
PB = or ; (89)

whereoT = oa + op Is the total interaction cross section.

2.8.3 Random track generation

Now, with the necessary probability distribution functof®DFs) and a random
generator suplying random numbers uniformly distributethe interval € [0,1] at

hand, a random track is simulated as follows:

The length between events, where the particle moves freiiyput interacting with
the medium (free-path), the type of event (scattering maisha) that will take place,
the change in direction, and the energy-loss in the everalar@ndom variables that
are sampled from their corresponding PDFs. The positiorerf @vent can be written

as

T>I’1+:|. = T>n + ad7 (90)
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wherea is the random variable sampled from the free-path RBF(X,y, 2), is the
position vector of an event in the medium, ahet (u,v,w) is the direction cosines of
the direction of flight. The energy-lossand the polar scattering angdeare sampled
from the distributionpa g(E; w, 8) with a suitable sampling technique and the

azimuthal angle is generated from a uniform distributiothiminterval(0, 217) as

Q= 2mE. (91)

2.8.4 An example using a hypothetical mean-free-path PDF

Let a statistical model or PDF for the mean-free-path ofasenparticle be represented

by the following exponential function

pdf(x) =e % (92)

Noting that this function is already normalized,

/ e Xdx = 1, (93)
0

we can obtain the CDF and its relation wgh= [0, 1] from

A
f()\):/o edx=1-e?=¢. (94)

This results in a implicit relation involving our desirechdom variabled and a set of
random number§. By inverse methods we finally obtain the explicit relatibattcan

be written as



A(E) =—In(1-&),

from which we can sample the mean-free-path of the paridlem an uniform
random distributiorf = [0, 1] given by an random generator. Following, please see
figure 5, is the graphical representations of the meangetk+andom distribution

after 10000 runs of the random generator using our hypathletkponential pdf.

Mean free path random sampling
Based on a hypothetical pdf
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Figure 5: Graphical representation of the mean-free-path & hypothetical

PDF. Each point represents a possible value for the mearpfith that

is obtained from equation 95. The graph shows 10,000 pormss

of the random generator. The final result is taken as an a@enagy them.

A full explanation of this process can be foundlin|[31,32,.33]



3 Procedures

3.1 Consistency test for the OOS - sum-rule test

Our starting point is the verification of of Bethe’s sum-rafehe initially available

semi-empirical optical-oscillator-strength-data ofralaum, copper, and gold defined

as [14]15]
/ dfwa=0y, (96)
0 dw
where% is the OOSw is the energy-loss gridy is the linear momentum transfer,

andZ the number of electrons per atom in the material.

Since the OOS is constructed in part from experiment [25gnlindex of refraction
and extinction coefficients are used to construct the digbsftinction and the energy
loss function of the medium under consideration, pleassseion (G) of this
document, and in part with a extrapolation-scheme for tgadr-energy shells, this

test verifies if any normalization factor needs to be appieithe data.

The numerical integration of the OOS is also a good point tdywand optimize the
numerical inrtegration routines. The optimization of tinekgy loss step sizaw for

the numerical integration in the energy loss domawvas accoplished by force where
direct integration of the OOS as function of step size wasdord compared with an
approximately three percent allowed error band with resjeethe optimum total

number of atomic electrons that have the well known valuds3p9, and 79,
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respectively for aluminum, copper, and gold. It was fourat the best results were
obtained by first dividing the OOS into three regions withidist energy loss steps
wheredwl anddw3 values were maintained constantiatl = 1.00x10~° Hartrees or
2.72x 10~* eV for w < 4.00 Hartrees or 108 eV, anddw3 = 1.00 x 10* Hartree or
272 eV forw > 3.50x 107 Hartree or 9.52 keV. By varing the energy loss step size
dw?2 of the second interval in the energy loss domain, whed8 4 w < 3.50 x 107
Hartrees, the OOS integration could be optimized. The apticralue ofdw2 was
found to be 100x 102 Hartrees or @72 eV, please see figure 6. Following are also
given the graphical representations of the OOS for all thraterials. Please, see

figures 7 through 9.
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Figure 6: Analysis of the integration routine used in thegnation of the OOS.
The integration results is shown as function of the eneogg-bte@w?2.
The optimum results are values that stay within approxim&g@ercent
of the total number of electrons por atom of the target maiteri

(Aluminum Z = 13, copper Z =29, and gold Z = 79).
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3.1.1 Aluminum O0OS
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Figure 7: Optical oscillator strength density distributf aluminum (Z = 13).
Obtained partially from experimental data [25] and palgtiiiom

NIST [26] forw > 1.0 keV.
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3.1.2 Copper OOS
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Figure 8: Optical oscillator strength density distributf copper (Z = 29).
Obtained partially from experimental data [25] and palgtiiiom

NIST [26] forw > 1.0 keV.
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3.1.3 Gold O0OS
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Figure 9: Optical oscillator strength density distributaf gold (Z = 79).

Obtained partially from experimental data [25] and palgtiiiom

NIST [26] forw > 1.0 keV.
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3.2 Limits of integration

From the kinematics of the collision we can define the follogvinterval of integration
for the momentum spademin, gmax). Recalling the relations between linear

momentum and the energy of the incident particle we can write

Ginit = V 2mE (97)

where:ginit is the initial linear momentum magnitude of the incidenttjote, E the

incident particle’s total kinetic energy, anglits mass.

Now, for a possible loss of energyduring the collision with a target, it is clear that
the incident particle’s magnitude of linear momentum casuase values from a

minimum of

Gin = Ginit — 0 = V2m(VE — /(E —w)) (98)
to a maximum of
Omax = Ginit + 9 = V2M(VE + /(E —w)) (99)

where:qd = /2m(E —w).

Following are graphical representations of these limitiiastion of energy-loss for
electrons at 10 eV and 1 keV, and proton sources at 100 eV, MeV]please see

figures 10 through 13.
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Momentum transfer limits for 10 MeV proton impact
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As expected for the convergence of the integral over lineanentum, see next
paragraph for the calculation of the differential inversean-free-path, the limits

converge to the single valugin = Qmax = V2mME asw — E.

Therefore, the first integration of equation 83 defines osat fimportant relation. The
single differential macroscopic cross-section or theetidhtial inverse-mean free-path

(DIMFP) can then be written as

dz _ 1 Ep?1l [Wmx1df(w— q2/2)
d_vv<E’W’ q) = —Zaozfv_v/q g dw dq (100)
or more conveniently
dz 1 Ep?l [Prdf(w— q2/2)
d_W<E’W’ q) = —ZaOZ?V_V/p —aw dp (101)

where:p, p1,andp, are respectively Ig, INgmin, and INgmax.

Finally, a second integration over the energy-loss liméfres the other necessary
guantity for the construction of the probability distrilmn functions for the MC
simulation of the interaction. The inverse-mean-fredrfi¥IFP) can then be written

as

1 Ep? W1 /qf“aX1dfw q2/2) (102)

(E) " 2aZ E

Note that the IMFRZ(E) or macroscopic total cross section is related to the
microscopic total cross-secti@nE) through the simple relatioh(E) = No(E),
whereN is the number density of the target.
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3.3 Shell separation

So far, the calculation of the differential and total crgsstions using the total OOS as
described in figures 7 through 9 respectively for aluminuopper, and gold returns
the necessary quantities for the MC simulation without ptioyg information about

the initial energy of ejection of the secondary particlethiemcase of ionization events.
Similar to the case where the tracking of the primary patiés only possible if we
know, during all the simulation time, the energy and diracif these particles, to
“track” possible secondary electrons, we also need to kiheiv initial energies and

ejection angle distributions.

To fulfill this requirement, the oscillator strength dibtitions were separated into
shells from where coefficients of proportionality could b&#dduced and calculated
based on the complete oscillator distribution and sum rideBowing, please see
figures 14 through 16, are the oscillator strength of alumincopper, and gold with

their corresponding distribution of oscillators per shell

Following are also given the edge energies or thresholdyesefor the corresponding
shells, which were selected to distinct one shell from agotRlease note, especially
in the case of gold, that the nomenclature used for the stheliot correspond to the
standard classification. This was due to difficulties entenadl to distinct the
subshells. Where we say K, L, M, N, O, and P -shells, in the ohgeld, some are
actually sub-shells named L1, L2, and L3 and so on. For oyrgaes, what is
important for this simulation is to know where the distincts are made by their
corresponding edge-energies. Specially between whanhsaer inner and

outer-shells.
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3.3.1 Aluminum edge-energies

e L-edgew > 74 eV

e K-edgew > 8.979 eV

3.3.2 Copper edge-energies

e L-edgew > 950 eV

e K-edgew > 9.979 keV

3.3.3 Gold edge-energies

O-edgew > 150 eV

N-edgew > 2.21keV

M-edgew > 11.92 keV

L-edgew > 13.70 keV

K-edgew > 80.72 keV



Optical Oscillator Strength

Aluminum K, L, and M shells
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Optical Oscillator Strength

Copper K, L, and MN shells
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Optical Oscillator Strength

Gold K, L, M, N, O, and P Shells
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The construction of the shell-coefficients was done in agtlstep process as follows:

First, a particular shell and its spectrum of participai®ientified. In the case of the
aluminum K-shell, its participation starts\at> 8.979 eV , as indicated above.
Second, if other shells overlap in the same energy rang®@fe of the considered
shell is appropriately subtracted from the OOS of theselaperg shells. Finally,
normalization is obtained by dividing the resulting shel®S by the total OOS in the
considered spectrum. The result is a coefficient that rafigesO0 to 1 that indicates
how strong is the participation of a certain OOS-shell in @ipalar spectrum. Again
using the aluminum K-shell OOS as an example, we can sedsl@trresponding
coefficient should be 0 fav < 8.979eV, and assume a value<@Cy < 1 for

w > 8.979eV. Please, refer to figures 17 through 19 for the comphdtees of the

shell-coefficients for aluminum, copper, and gold.

The differential and total cross-sections can then be nethby multiplying these
coefficients by the previously calculated differential aothl cross-sections using the
complete oscillator strength distributions. Again, pkease figures 17 through 19, for
the graphical representations of the shell-coefficientali@aninum, copper, and gold.

Note that their sum at any point in the spectrum must equal to 1
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3.4 Agular distribution of primary and secondary particles

So far, we have considered only the particle’s initial egergd its mean free path for
the determination of their track structure or MC simulati®da complete the modeling
of the simulation of the track-structure of a primary or setary particle, as they
travel through the target foil, we also need to know the dioecthat they will take
after an event, elastic or inelastic, takes place. MoreiBpaity, we must know their
respective angular probability distribution functionsrfr which the angular variables
8, andg can be obtained by appropriate sampling methods. Ther@aredses to be

considered:

The angular distribution of fast proton source particles

The angular distribution of primary electrons that can aksase further

ionizations

The angular distribution of secondary electrons inducedlbgtron impact

The angular distribution of secondary electron induceddoygm impact

3.4.1 Angular distribution of primary protons

For the proton as primary particle, due to its overwhelmyrmgiger mass with respect
to the mass of the target electroms,(~ 1836me) and with initial momentunp; also
much greater than the momentum transfefp; > q), it is then justifiable to consider
that they will approximately travel in straight lines thghuthe material from the
beginning of the simulation to the end. The kinematics tesyin such approximation

follows:



67

From classical collision theory and due the dramatic déffiee between the masses of
the fast primary protons and the secondary electrons, weaaeiude that there will

be a very small transfer of energy and momentum between gagteles. Applying

the case of elastic maximum energy transfer, or “head-gpeé tf collision, to a target

initially at rest, we then obtain from the ratio of the kiree#inergiesf; and fo as

follows:
L L (ml_W)z (103)
K1 my + My
and
Kot
fo=—=, 104
2= 1s (104)

whereKz¢, Kij, Kof, my, andmp are respectively the final and initial kinetic energies of
the projectile, the final kinetic energy of the target, aneltasses of the projectile and

target.

From the conservation of energy we can write

fi+fr=1, (105)
which results in
4
fp=1—fy=—— 2 (106)
(mg +my)

Therefore, a maximum energy tranfer of

Kot = ———Kqyj, (107)
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occurs from which we can see thanif > my, Ko ~ 4”‘2Tf” < Kjyj.

This lead us to consider for the simulation that the primast protons will travel

through the material without being deflected by the targsttedns.
3.4.2 Angular distribution of primary electrons

In the case of primary electrons, the interaction with taejectrons can be explained

by using eleastic and binary knematics as follows:

Let an incident (primary) electron emerge from a proton iotpéth initial kinetic
energyE and final energ¥ — w respectively before and after its binary encounter with
a target electron. Relatively fast but still classic impatdws us to simplify our
calculations by considering the target electron to beadhytiat rest and to acquire an
energyw after the collision. Under these approximations we canyeabtain the

scattering angle of the projectile electrBras follows. Please see figure 26.

From these known energies we can define the correspondiraj,ifinal, and

transferred momenta as

pi = v2mE (108)
Pt = v/2M(E —w) (109)
g=vamw (110)

We finally obtain the scattering angle of the incident elact@after its interaction with

a target electron, that can be written as
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cosO = _E-w (111)
E(E—w)

172

Figure 20: Classical scattering kinematics. An incidemtiplg with initial

kinetic energyE loses energyv after its collision with a free electron.

The energyw that is acquired by the target. The incident particle is

scattered in an angl@ with respect to its original trajectory.

3.4.3 Angular distribution of electrons induced by electram impact

In the case of electron-induced emissions, these secortanyons will be emitted at
9(° with respect to the direction of the primary electrons. Thmlals are based on

results from experiments involving gas-phase targets aotbpionization data.

The emission angles for these electrons, known as secoabigtyons, comes from

two sources:
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For energy transfens < 100 eV, the experimental data from Opal et al.| [34, 35] were
used. For energy transfans> 100 eV, non-relativistically, the secondary electron is
emitted perpendicular to the scattered primary electrdoviing approximately
ionization by photon impact where the electrons are ejactéue direction of the

perpendicular field [36, 37].
3.4.4 Angular distribution of electrons induced by proton impact

Following the steps from Dingfelder et al. in [27] and refezes therein, the
interaction between the fast protons and the target elextran be separated into two
types - close or hard collisions and soft collisions due b interactions. This
involving theory is usually called the mixed binary and Betheory or binary

encounter dipole model [38].

In summary, it implements or includes the angular dependemo the Bethe
coefficients by hand that can be written as

A(w, 0) = A(w).f1(0) (112)
and
B(w, 8) = B(w).f2(0) (113)

The functionsf1(0) and f2(8) are modelled based respectively on data from

photo-electron emission and binary theory.

3.4.5 Determination of A(w) and B(w)

The proportionality between the Bethe coefficiefts/) andB(w), which account
respectively for the “soft” and “hard” interaction termsdithe energy-loss function

were used for the calculation of these coefficients. Theybeawritten as
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1
A(W) = 5n2(w.0) (114)
and

2
B(w) = %nz(w, 0)In [4(an>2 (RWV) +d+ &, (115)

where the auxiliary integraly andJ, can be written respectively as

(W) = /q na(w, q)% (116)

and

() | " 120w Q) — 12(w,0)] = 117)

In the auxiliary integralg; andJo, g is an introduced value, independentgfthat
separates the high-q and low-q domains. Dingfelder et g2 dhpresents the

complete derivations.

Note that, in the assymptotic regida,> w, the First Born approximation differential
cross-section can be substituted by the Bethe differetriiels-section, which can be

written as

o () o))

whereag is the Bohr radiusy the energy-los<; the particle’s kinetic energRy is the
Rydenberg energy (18 eV). The Bethe total cross-section, after integration of

equation 118, was than used to check our Bethe coefficiecladion results. Please
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refer to the graphs of the total cross-sections at the enai®tibcument where our
PWFBA calculations are plotted together with the Bethel tmtass-sections, which

rely onA(w) andB(w), showing a good agreement in the high energy spectrum.

Finally, to complete the angular profile of the particlesthis case independent of the
their type, the azimuthal direction is defined by the polaglap and obtained from an

uniform distribution in the interval0, 27) from which random sampling takes place.

Following are the calculated Bethe coefficients for aluminaopper, and gold based
on their respectively energy-loss functions as previodsicribed by relations 114,

115, 116, and 117.



3.4.6 Aluminum, copper, and gold Bethe coefficients
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Figure 21: Bethe A coefficient, as defined in equation 114afeminum.
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The B coefficients as indicated by the dashed line are agtuall

negative in value.
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Bethe Coefficients
A(w) coefficient for gold
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Figure 25: Bethe A coefficient, as defined in equation 114g&id.
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4 Results

Finally, we present the complete set of single differentia¢rse-mean-free-paths and
the total macroscopic cross sections or inverse-meanpfdes for electron and proton
impact in isotropic and homogeneous aluminum, copper, afditgin foils. We also
show the PARTRAC simulation of the forward and backward tetecyields from 0.1

micron thick copper foil after a 6 MeV proton impact.

Our calculations using the (PWFBA) are also compared wittcalculations using the
Bethe approach and other well known published data. Fontrexse mean free path

and stopping power of the foils for electron source the dats @ompared with results
from Fernandez-Varea. et al. [39,/40]. The proton impactudations were compared

with well known data from ICRU report 49 [41].



4.1 Electron impact in aluminum, copper, and gold thin foils

4.1.1 Aluminum DIMFP, IMFP, and STP
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Inverse mean free path

Electrons in Aluminum
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Figure 28: IMFP of electrons in aluminum. Data from

Fernandez- Varea et al. can be found_in [39].
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4.1.2 Copper DIMFP, IMFP, and STP
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Figure 30: DIMFP of electrons in copper
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Inverse mean free path

Electrons in copper
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Figure 31: IMFP of electrons in copper. Data from

Fernandez- Varea et al. can be found_in [39].
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Stopping power

Electrons on Copper
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Figure 32: STP of copper for electron source. Data from

Fernandez- Varea et al. can be found_in [39].



4.1.3 Gold DIMFP, IMFP, and STP
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Figure 33: DIMFP of electrons in gold
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Inverse mean free path

Electrons in Gold
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Fig 34: IMFP of electrons in gold. Data from

Fernandez- Varea et al. can be foundin [40].
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Stopping power

Electrons on Gold
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Figure 35: STP of gold for electron source. Data from

Fernandez- Varea et al. can be found’in [40].
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4.2 Proton impact in aluminum, copper, and gold thin foils

4.2.1 Aluminum DIMFP, IMFP, and mass STP

Differential inverse mean free path

Protons in aluminum
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Figure 36: DIMFP of protons in aluminum
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Inverse Mean Free Path

Protons in Aluminum
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Figure 37: IMFP of protons in aluminum
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Figure 38: Mass STP of aluminum for proton source



4.2.2 Copper DIMFP, IMFP, and mass STP
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Figure 39: DIMFP of protons in copper
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Inverse Mean Free Path

Protons in Copper
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Figure 40: IMFP of protons in copper

10’

E [eV]

93



94

[A2IN] A
01 01 Lol _ol
ol

LI I I _ LI I I I I _ LI I I I
b

A -

./r
b

u . i
5 o -
5 ° i
L R, o -
- 2 i

o
- S -
g o
L . - o
6.{r o e # -
.ﬂ.ﬁ.m 0®
2. o ©
:.,,.n.._._u oo o0 © o
i £ NADI == Treell P )
Yomsmp e [ TTmem—e=—TT
L1 1 1 1 _ L1 1 | | 1 1 _ L1 1 | |

1addoo ur suojoig

Iomod surddoig ssepy

[/ _wo A2 N] xp/ap(d/1)

Figure 41: Mass STP of copper for proton source



4.2.3 Gold DIMFP, IMFP, and mass STP
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Figure 42: DIMFP of protons in gold
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Protons in Gold
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Figure 43: IMFP of protons in gold
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Mass Stopping Power

Protons in Gold
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Figure 44: Mass STP of gold for proton source
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4.3 Electron yields from 0.1 micron copper foil after 6 MeV proton

impact

4.3.1 Forward electron yields
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Figure 45: MC simulation of forward electron yields from gep foil.

Simulation data provided by Dr. Michael Dingfelder.



4.3.2 Backward electron yields
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Figure 46: MC simulation of backward electron yields fronpper foil.

Simulation data provided by Dr. Michael Dingfelder.
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5 Conclusion and Remarks

In summary, the simulation of the secondary electron emisom a thin copper foil
after fast proton impact has been accomplished using theéMoarlo code PARTRAC
after implementation of interaction cross sections cal@d from dielectric theory
under the PWFBA. This aloowed us to connect the most impbgiaantity of the
theory, the DDCS, to the GOS through a simple dispersiorrightgon known as the
o-oscillator model and the available OOS of the target. AttterDDCS was defined,
the important quantities for the simulation could all beadted by simple quadrature

numerical methods.

As expected, the results are in agreement within the enargyer(- 1 keV for

electron impact and- 1 MeV for proton impact) in which the incident particle is
considerd fast but still nonrelativistic compared with #verage speed of the target
electrons. Although oud-oscillator model includes only the Bethe-ridge or the bjna
region of the surface and is clearly not the best representavailable of these
targets, equation 81, it satifies the simplicity requiretnéirallows a simplification

that is evident from our equation for the GOS and DDCS defineelduations 82 and

83 and obviously the numerical procedures for their impletaiton.

The continuation of this work could possibly concentrateroprovements in two

fields:
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¢ In the modelling of the Bethe surface of these targets. Raftiag using a simple
0- function, the Bethe-ridge could be expanded with fundif@aussian type
functions) that allow for a greater momentum exchangevateround the

binary ridge.

¢ In the numerical implementation - using more dynamicalgraé&on routines
that account for pre-defined maximum allowed errors in ptE@@mple

guadrature schemes.
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