ABSTRACT
IRREDUNDANT AND MIXED RAMSEY NUMBERS
by
Ann Wells Clifton
November, 2012

Chair: Dr. Johannes Hattingh
Major Department: Mathematics

The irredundant Ramsey number $s(m, n)$ is the smallest p such that in every twocoloring of the edges of K_{p} using colors red (R) and blue (B), either the blue subgraph contains an m-element irredundant set or the red subgraph contains an n-element irredundant set. The mixed irredundant Ramsey number $t(m, n)$ is the smallest number p such that in every two-coloring of the edges of K_{p} using colors red (R) and blue (B), either the blue subgraph contains an m-element irredundant set or the red subgraph contains an n-element independent set. This thesis provides all known results for irredundant and mixed Ramsey numbers.

A Thesis
Presented to
The Faculty of the Department of Mathematics
East Carolina University

In Partial Fulfillment of the Requirements for the Degree
Master of Arts in Mathematics

by
Ann Wells Clifton
November, 2012

Copyright 2012, Ann Wells Clifton

by
Ann Wells Clifton

APPROVED BY:
DIRECTOR OF THESIS:

Dr. Johannes Hattingh
COMMITTEE MEMBER:

Dr. Chris Jantzen
COMMITTEE MEMBER:

Dr. Heather Ries
COMMITTEE MEMBER:

Dr. Krishnan Gopalakrishnan
CHAIR OF THE DEPARTMENT OF MATHEMATICS:

Dr. Johannes Hattingh
DEAN OF THE
GRADUATE SCHOOL:

ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Johannes Hattingh for showing me the ways of mathematical research while being encouraging, laid back, and fun to work with. To the ECU Mathematics faculty and staff, I wish to express my appreciation for all their encouragement and enthusiasm.

This thesis is dedicated to Dr. Robert Bernhardt, without whose wisdom and guidance I would never have discovered the beauty of mathematics.

TABLE OF CONTENTS

1 Introduction 1
1.1 Definitions 7
1.2 Useful Results 10
2 Irredundant Ramsey Numbers $s(m, n)$ 14
3 Mixed Ramsey Numbers $t(m, n)$ 28
3.1 Mixed Ramsey Numbers $t(3,7)$ and $t(3,8)$ 30
3.1.1 \quad The Ramsey number $t(3,7)$ 33
3.1.2 The Ramsey number $t(3,8)$ 37
The lower bound $t(3,8)>21$ 37
Properties of any (3, 8, 22)-graph 38
The maximum degree of G is not 5 39
G is not 4-regular 40
4 Conclusion 53
References 54

CHAPTER 1: Introduction

A graph G is a finite nonempty set of objects, called vertices (singular vertex), together with a (possibly empty) set of unordered pairs of distinct vertices, called edges. The set of vertices of the graph G is called the vertex set of G, denoted by $V(G)$, and the set of edges is called the edge set of G, denoted by $E(G)$. The edge $e=\{u, v\}$ is said to join the vertices u and v. If $e=\{u, v\}$ is an edge of G, then u and v are adjacent vertices, while u and e are incident, as are v and e. Furthermore, if e_{1} and e_{2} are distinct edges of G incident with a common vertex, then e_{1} and e_{2} are adjacent edges. It is convenient to henceforth denote an edge by $u v$ or $v u$ rather than by $\{u, v\}$. The cardinality of the vertex set of a graph G is called the order of G and is denoted by $n(G)$, or more simply by n when the graph under consideration is clear, while the cardinality of its edge set is the size of G, denoted by $m(G)$ or m. A (n, m)-graph has order n and size m. The graph of order $n=1$ is called the trivial graph. A nontrivial graph has at least two vertices.

A subgraph of a graph G is a graph all of whose vertices belong to $V(G)$ and all of whose edges belong to $E(G)$. If H is a subgraph of G, then we write $H \subseteq G$. If a subgraph H of G contains all the vertices of G, then H is called a spanning subgraph of G.

If G is a graph, we form its complement, \bar{G}, by taking the vertex set of G and joining two vertices by an edge whenever they are not joined in G. If H is a subgraph of G, then the graph $G \backslash E(H)$ is the complement of G relative to H.

An important type of subgraph that we will encounter is an induced subgraph.
If W is a nonempty subset of vertices of a graph G, then the subgraph $\langle W\rangle$ of G induced by W is the graph having vertex set W and whose edge set consists of all those edges of G incident with two vertices in W. A subgraph H of G is called a
vertex-induced subgraph, or simply induced subgraph, of G if $H=\langle W\rangle$ for some subset W of $V(G)$. Hence, if H is an induced subgraph of G, then every edge of G incident with two vertices in $V(H)$ belongs to $E(H)$ (so two vertices are adjacent in H if and only if they are adjacent in G). When the context may be unclear, we denote the induced subgraph of G by $G\langle W\rangle$ and the induced subgraph of \bar{G} by $\bar{G}\langle W\rangle$. Similarly, if F is a nonempty subset of edges of G, then the subgraph $\langle F\rangle$ induced by F is the graph whose vertex set consists of all those vertices of G incident with an edge in F and whose edge set is F. A subgraph J of a graph G is called an edge-induced subgraph of G if $J=\langle F\rangle$ for some subset F of $E(G)$.

A complete graph or clique is a graph in which every two distinct vertices are adjacent. The complete graph of order n is denoted by K_{n} and is called an n-clique. The empty graph is a graph containing no edges.

Let u and v be two (not necessarily distinct) vertices of a graph G. A $u-v$ walk in G is a finite, alternating sequence of vertices and edges that begin with the vertex u and ends with the vertex v and in which each edge of the sequence joins the vertex that precedes it to the vertex that follows it in the sequence. The number of edges in the walk is called the length of the walk. If all the edges of a walk are different, then the walk is called a trail. If, in addition, all the vertices are different, then the trail is called a path. A $u-v$ walk is closed if $u=v$ and open otherwise. A closed walk in which all the edges are different is a closed trail. A closed trail which contains at least three vertices is called a circuit. A circuit which does not repeat any vertices (except the first and last) is called a cycle. The length of a cycle (or circuit) is the number of edges in the cycle (or circuit). A cycle of length n is an n-cycle. A cycle is even if its length is even; otherwise it is odd.

A circulant graph $C_{n}\left\{k_{0}, k_{1}\right\}$ is a graph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, and edge set $\left\{\left\{v_{i}, v_{i+j}\right\}: i \in\{0,1, \ldots, n-1\}\right.$ and $\left.j \in\left\{k_{0}, k_{1}\right\}\right\}$. All arithmetic on the
indices is assumed to be modulo n.
Of particular importance for us will be bipartite graphs. A bipartite graph is a graph whose vertex set can be partitioned into two sets V_{1} and V_{2} (called partite sets) in such a way that each edge of the graph joins a vertex of V_{1} to a vertex of V_{2}. A complete bipartite graph is a bipartite graph with partite sets V_{1} and V_{2} having the added property that every vertex of V_{1} is adjacent to every vertex of V_{2}. If $\left|V_{1}\right|=r$ and $\left|V_{2}\right|=s$, then this graph is denoted by $K(r, s)$ or, more commonly, $K_{r, s}$. A complete bipartite graph of the form $K_{1, s}$ is called a star graph. A complete bipartite graph $K_{n, n}$ is called an n-biclique. A useful and well-known characterization of bipartite graphs is the following: A nontrivial graph G is bipartite if and only if it contains no odd cycles.

Let v be a vertex of a graph G. The degree of v is the number of edges of G incident with v. The degree of v is denoted by $\operatorname{deg}_{G} v$, or simply $d(v)$ if G is clear from the context. The minimum degree of G is the minimum degree among the vertices of G and is denoted $\delta(G)$, while the maximum degree of G is the maximum degree among the vertices of G and is denoted $\Delta(G)$.

A vertex is called odd or even depending on whether its degree is odd or even. A vertex of degree 0 in a graph G is called an isolated vertex and a vertex of degree 1 is an end-vertex of G. We say that a graph is regular if all its vertices have the same degree. In particular, if the degree of each vertex is r, then the graph is regular of degree r or is r-regular.

A well-known and useful theorem in graph theory, called the Handshaking Lemma, states that in any graph, the sum of all the vertex degrees is equal to twice the number of edges. A consequence of the Handshaking Lemma is that in any graph G there is an even number of odd vertices.

We say two graphs, G and H, are isomorphic if there is a one-to-one mapping ϕ
from $V(G)$ onto $V(H)$ such that ϕ preserves adjacency; that is, $u v \in E(G)$ if and only if $\phi(u) \phi(v) \in E(H)$. If G and H are isomorphic, then we write $G \cong H$.

A graph G is connected if there exists a path in G between any two of its vertices, and is disconnected otherwise. Every disconnected graph can be partitioned into connected subgraphs, called components. A component of a graph G is a maximal connected subgraph. Two vertices u and v in a graph G are connected if $u=v$, or if $u \neq v$ and there is a $u-v$ path in G. The number of components of G is denoted $k(G)$; of course, $k(G)=1$ if and only if G is connected.

For a connected graph G, we define the distance $d(u, v)$ between two vertices u and v as the minimum of the lengths of the $u-v$ paths of G. If G is a disconnected graph, then the distance between two vertices in the same component of G is defined as above. However, if u and v belong to different components of G, then $d(u, v)$ is undefined.

We now introduce the concept of the neighborhood of a vertex.
Let G be a graph. Then the open neighborhood of a vertex $v \in V(G)$ is $N(v)=$ $\{u \in V \mid u v \in E(G)\}$. In general, we define the open neighborhood of a subset $X \subseteq$ $V(G)$ by $N(X)=\cup_{x \in X} N(x)$. The closed neighborhood of a vertex v is $N[v]=$ $\{v\} \cup N(v)$ and in general, the closed neighborhood of a subset $X \subseteq V(G)$ by $N[X]=$ $X \cup N(X)$.

For $x \in X$, the private neighborhood of x relative to X is defined as $P N(x, X)=$ $N[x] \backslash N[X-\{x\}]$. The elements of $P N(x, X)$ are the private neighbors of x (relative to X).

A set $D \subseteq V(G)$ is a dominating set of G (in which case D is said to dominate G) if each vertex in $V(G) \backslash D$ is adjacent to a vertex in D, and D is a minimal dominating set if no proper subset of D dominates G.

The earliest ideas of dominating sets date back to the origins of chess, where
one wishes to cover or dominate various opposing pieces or various squares of the chessboard. In 1862 de Jaenisch [13] posed the problem of finding the minimum number of queens that can be placed on a chessboard so that each square of the chessboard is attacked or dominated by at least one of the queens. A graph may be formed from an $n \times n$ chessboard by taking the squares as the vertices and two vertices are adjacent if a queen situated on one square covers the other. Computing the domination number of the latter graph is equivalent to finding the number of queens that can be placed on a chessboard so that each square of the chessboard is is attacked or dominated by at least one of the queens.

The classical problems of covering chessboards with the minimum number of chess pieces rekindled interest in dominating concepts. Ultimately, the theory of domination was formalized by Berge [2] in 1958 and Ore [17] in 1962. Ore coined the term 'domination number', although Berge was the first to define it as the coefficient of external stability.

Some applications for the concept of a dominating set include the following: Berge [1] mentions the problem of keeping a number of strategic locations under surveillance by a set of radar stations. The minimum number of radar stations needed to survey all the locations is the domination number of the associated graph. In a similar vein, Liu [16] discusses the application of domination to communications in a network, where a dominating set represents a set of cities which, acting as transmission stations, can transmit messages to every city in the network.

As a further example, a desirable property for a committee from a collection of people might be that every nonmember know at least one member of the committee, for ease of communication. A committee with this property is a dominating set of the acquaintance graph of the set of people.

The following well-known result characterises dominating sets which are minmal
dominating sets:

Proposition 1.1. [17] A dominating set D is a minimal dominating set if and only if $P N(d, D) \neq \emptyset$ for each $d \in D$.

This condition motivates the definition of an irredundant set:
Let $\langle X\rangle$ be the subgraph of G induced by $X \subseteq V(G)$. A set of vertices X in a graph G is irredundant if each vertex $x \in X$ is either isolated in $\langle X\rangle$ or else has a private neighbor $y \in V(G) \backslash X$, which is adjacent to x and to no other vertex of X. In other words, a set $X \subseteq V(G)$ is irredundant if $P N(x, X) \neq \emptyset$ for each $x \in X$.

A set X is independent if every two distinct vertices in X are nonadjacent. A set X is maximal irredundant if no proper superset of X is irredundant. Thus, a set D is a minimal dominating set if and only if it is dominating and irredundant. However, an irredundant set, or even a maximal irredundant set, is not necessarily dominating. It is easy to see that the concept of irredundance extends that of independence, for if X is independent, then $x \in P N(x, X)$ for each $x \in X$, hence X is irredundant. Extremal sets of these types are related by the following two well-known results:

Proposition 1.2. [2] If X is maximal independent, then X is minimal dominating.

Proposition 1.3. [12] If X is minimal dominating, then X is maximal irredundant.

The domination number $\gamma(G)$ and the upper domination number $\Gamma(G)$ (independent domination number $i(G)$ and independence number $\beta(G)$; irredundance number $\operatorname{ir}(G)$ and upper irredundance number $\operatorname{IR}(G)$) are defined, respectively, to be the smallest and largest number of vertices in a minimal dominating (maximal independent; maximal irredundant) set of G. The following string of inequalities is obvious from the definitions and the relationships which exist amongst the three concepts
(also see [12]):

$$
i r(G) \leq \gamma(G) \leq i(G) \leq \beta(G) \leq \Gamma(G) \leq I R(G)
$$

Since irredundance is a generalization of independence and since classical Ramsey numbers can also be defined using independent sets instead of cliques, it seems natural to develop a theory of irredundant Ramsey numbers. Irredundance has received much attention in the literature (see [15] for an extensive bibliography).

1.1 Definitions

Let $G_{1}, G_{2}, \ldots, G_{t}$ be an arbitrary t-edge coloring of K_{p}, where for each $i \in\{1,2, \ldots, t\}$, G_{i} is the spanning subgraph of K_{p} consisting of all edges colored with color i. The classical Ramsey number $r\left(q_{1}, q_{2}, \ldots q_{t}\right)$, is usually defined in terms of the existence of cliques of the subgraphs G_{i}. Since a clique of G_{i} corresponds to an independent set of the complement $\overline{G_{i}}, r\left(q_{1}, q_{2}, \ldots q_{t}\right)$ may also be defined using independence. In fact, $r\left(q_{1}, q_{2}, \ldots q_{t}\right)$ is the smallest value of p such that for all t-edge colorings of K_{p}, there is an $i \in\{1,2, \ldots, t\}$ for which $\beta\left(\overline{G_{i}}\right) \geq q_{i}$.

The irredundant Ramsey number $s\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ is analogously defined as the smallest p such that for all t-edge colorings of K_{p}, there is an $i \in\{1,2, \ldots, t\}$ for which $I R\left(\overline{G_{i}}\right) \geq q_{i}$. Since any independent set is irredundant, the irredundant Ramsey numbers exist by Ramsey's theorem and satisfy $s\left(q_{1}, q_{2}, \ldots q_{t}\right) \leq r\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ for all $q_{1}, q_{2}, \ldots, q_{t}$.

The mixed Ramsey number $t(m, n)$, introduced in [10], is the smallest p such that for every graph G of order $p, \operatorname{IR}(\bar{G}) \geq m$ or $\beta(G) \geq n$.

We have the following lemma:

Lemma 1.4. The inequality chain $s(m, n) \leq t(m, n) \leq r(m, n)$ holds for all $m, n \geq 1$.

Proof. First we will show $t(m, n) \leq r(m, n)$. Let $p=r(m, n)$. In any bicoloring, R and B, of the edges of K_{p}, either we have an independent set of size m in the blue graph $\langle B\rangle$ or an independent set of size n in the red graph $\langle R\rangle$. Since every independent set is also an irredundant set, then in any two coloring of K_{p} we have an irredundant set of size m in $\langle B\rangle$ or an independent set of size n in $\langle R\rangle$. By definition, $t=t(m, n)$ is the smallest such number where this is true so $t \leq p=r(m, n)$. Now we will show $s(m, n) \leq t(m, n)$. Let $t=t(m, n)$. Then t is the smallest natural number such that in any red-blue edge coloring of K_{t} there is an irredundant set of cardinality m in $\langle B\rangle$ or an independent set of cardinality n in $\langle R\rangle$. Since every independent set is also an irredundant set, we have an irredundant set of size n in $\langle R\rangle$. By definition, $s=s(m, n)$ is the smallest number such that this is true so $s(m, n) \leq t=t(m, n)$. Thus, we have $s(m, n) \leq t(m, n) \leq r(m, n)$, as desired.

The same recurrence inequality which holds for $r(m, n)$ also holds for $s(m, n)$ and $t(m, n)$:

Proposition 1.5. For all integers $m, n \geq 2, x(m, n) \leq x(m-1, n)+x(m, n-1)$ while strict inequality holds if $x(m-1, n)$ and $x(m, n-1)$ are both even, where $x \in\{r, t, s\}$.

Proof. We illustrate the proof for $x=r$, and remark that the proof is similar when $x \in\{t, s\}$.

Let $N=x(m-1, n)+x(m, n-1)$ and take any bicoloring of K_{N} in red and blue, (R, B), and let $v \in V\left(K_{N}\right)$. Let M represent the set of vertices adjacent to v with a red edge and let L represent the set of vertices adjacent to v with a blue edge. So, $|M|+|L|+1=N=x(m-1, n)+x(m, n-1)$. Now either $|M| \geq x(m-1, n)$ or $|L| \geq x(m, n-1)$ since otherwise $|M|<x(m-1, n)$ and $|L|<x(m, n-1)$
imply $x(m-1, n)+x(m, n-1)-1=|M|+|L|<x(m-1, n)+x(m, n-1) \leq$ $x(m-1, n)-1+x(m, n-1)-1=x(m-1, n)+x(m, n-1)-2$, producing a contradiction.

Now suppose $x(m-1, n)$ and $x(m, n-1)$ are both even and suppose that $x(m, n)=$ $x(m-1, n)+x(m, n-1)$. Let $N^{\prime}=x(m-1, n)+x(m, n-1)-1$. Then there exists a two coloring (R, B) of K_{N} such that neither the graph induced by $R,\langle R\rangle$, has an m-clique nor the graph induced by $B,\langle B\rangle$, has an n-clique. Let $v \in V\left(K_{N^{\prime}}\right)$, and define M and L as before.

If $|M| \geq x(m-1, n)$, then $\langle M\rangle$ has a red $(m-1)$-clique or a blue n-clique, and so $\langle M\rangle$ has a red m-clique, by considering v, or a blue n-clique, which is a contradiction. So, $|M| \leq x(m-1, n)-1$, and, similarly, $|L| \leq x(m, n-1)-1$.

Suppose $|M| \leq x(m-1, n)-2$ and $|L| \leq x(m, n-1)-2$. Then, $|M|+|L| \leq$ $x(m-1, n)-2+x(m, n-1)-2$. But, $|M|+|L|=N^{\prime}-1$, so, $x(m-1, n)-2+$ $x(m, n-1)-2 \geq|M|+|L|=N^{\prime}-1=((x(m-1, n)+x(m, n-1))-1)-1$ implying $-4 \geq-2$, a contradiction. Thus, $|M| \geq x(m-1, n)-1$ or $|L| \geq x(m, n-1)-1$. If $|M| \geq x(m-1, n)-1$, then $|M|=x(m-1, n)-1$, and so $x(m, n-1)-1 \leq|L|=$ $N^{\prime}-1-|M| \leq N^{\prime}-1-|M|=x(m-1, n)+x(m, n-1)-1-1-(x(m-1, n)-1)=$ $x(m, n-1)-1$, whence $|L|=x(m, n-1)-1$. Similarly, if $|L|=x(m, n-1)-1$, then $|M|=x(m-1, n)-1$. Thus, $d_{R}(v)=x(m-1, n)-1$ for all $v \in V\left(K_{N^{\prime}}\right)$.

So, $\sum_{v \in V\left(K_{N^{\prime}}\right)} d_{R}(v)=2 q(\langle R\rangle)$. Now we have $N \cdot(x(m-1, n)-1)=2 \cdot n(\langle R\rangle)$. But N^{\prime} and $x(m-1, n)-1$ are both odd, and the product of two odd numbers is odd, a contradiction.

Note that unlike the case for $s(m, n)$ and $r(m, n), t(m, n) \neq t(n, m)$ in general.

1.2 Useful Results

In this section we prove results which are used extensively throughout the remainder of the thesis.

For ease of explanation, we sometimes abbreviate $I R(G)$ and $I R(\bar{G})$ to $I R$ and $\overline{I R}$. Also, we frequently refer to the edges of G and the edges of \bar{G} as red edges and blue edges, respectively, and also sometimes denote G by R and \bar{G} by B. By the red neighbors R_{v} and the blue neighbors B_{v} of a vertex v, we mean the neighbors of v in R and in B, respectively. So, for each vertex $v, V(G)$ can be partitioned into the sets $V(G)=\{v\} \cup R_{v} \cup B_{v}$.

We begin by proving necessary and sufficient conditions for a graph G to satisfy $I R(\bar{G}) \geq m$, but first we introduce some notation. Let $K_{n, n}, n \geq 3$, denote the complete bipartite graph with partite sets $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$. Let $C(n)$ be defined by $C(n)=K_{n, n} \backslash\left\{u_{i} w_{i} \mid i \in\{1,2, \ldots, n\}\right\}$. Denote by $C(n)+K_{\ell}$ the graph obtained by joining every vertex of K_{ℓ} to every vertex of $C(n)$; if $\ell=0$ we take $C(n)+K_{\ell}$ to mean $C(n)$.

Proposition 1.6. [10] \bar{G} has an irredundant set of size m if and only if one of the following statements holds:
(a) $K_{m} \subseteq G$;
(b) there exist integers k, ℓ with $k \geq 3, \ell \geq 0$, and $k+\ell=m$ such that G contains the graph $C(k)+K_{\ell}$ and G does not contain the edges $u_{i} w_{i}, i \in\{1,2, \ldots k\}$

Proof. Suppose \bar{G} has an irredundant set X of size m. Let k and l be the number of non-isolates and isolates of $\bar{G}\langle X\rangle$, respectively. Note that $k+\ell=m . k=1$ is impossible and if $k=0$, then X is an independent set of size m in \bar{G}, in which case (a) holds. For $k \geq 2$, let $U=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ be the set of non-isolates in $\bar{G}\langle X\rangle$ and let w_{i} be a private neighbor of u_{i} in $\bar{G}, i \in\{1,2, \ldots k\}$. The $G\langle X\rangle$ contains the graph
$C(k)+K_{\ell}$ while it does not contain the edges $u_{i} w_{i}, i \in\{1,2, \ldots, k\}$. Hence, if $k \geq 3$, then (b) holds and if $k=2$, then $\left(X-\left\{u_{2}\right\}\right) \cup\left\{w_{2}\right\}$ is an independent set of size m in \bar{G}, in which case (a) holds.

Conversely, if (a) holds then \bar{G} contains an independent, and hence irredundant, set of size m. If (b) holds, then $V\left(K_{\ell}\right) \cup U$ is an irredundant set of size m in \bar{G} as $V\left(K_{\ell}\right)$ is an independent set in \bar{G} and each vertex $u_{i} \in U$ has a private neighbor w_{i} in \bar{G}, $i \in\{1,2, \ldots, k\}$.

Corollary 1.7. [3] A graph contains a 3-element irredundant set if and only if its complement contains a K_{3} or an induced C_{6}.

Proof. By Proposition 1.6, the complement contains a K_{3} or a C_{6} as a subgraph. If the complement does not contain a K_{3}, then a C_{6} is induced.

The following result is immediate.

Lemma 1.8. If (R, B) is a two-coloring of the edges of a complete graph such that $\langle B\rangle$ contains no m-element irredundant set and $\langle R\rangle$ contains no n-element irredundant set, then $\Delta_{R}<s(m-1, n)$ and $\Delta_{B}<s(m, n-1)$.

When applying Corollary 1.7 , we refer to a red 6 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ where the edges $v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}$ are blue as a red 6 -cycle with blue diagonals.

A graph G of order p such that $I R(\bar{G})<m$ and $I R(G)<n$ is called an (m, n, p)graph. Note that if v is any vertex of an (m, n, p)-graph G, then the subgraph $\left\langle R_{v}\right\rangle$ of G is an ($m-1, n, \operatorname{deg}(v))$-graph while the subgraph $\left\langle B_{v}\right\rangle$ of G is an ($m, n-1, p-1-\operatorname{deg}(v)$)graph. This observation is used in the following result.

Proposition 1.9. [14] If G is an (m, n, p)-graph, $m, n \geq 2$, then

$$
p-s(m, n-1) \leq \delta(G) \leq \Delta(G) \leq s(m-1, n)-1
$$

Proof. For a vertex v of maximum degree, $\left\langle R_{v}\right\rangle$ is an $(m-1, n, \Delta(G))$-graph. Hence, $\Delta(G)<s(m-1, n)$. For a vertex v of minimum degree, $\left\langle B_{v}\right\rangle$ is an $(m, n-1, p-1-$ $\delta(G))$-graph. Hence, $p-1-\delta(G)<s(m, n-1)$.

Proposition 1.10. If G is a graph of order p with $\operatorname{IR}(\bar{G})<m$ and $\beta(G)<n$ for $m, n \geq 2$, then $p-t(m, n-1) \leq \delta(G) \leq \Delta(G) \leq t(m-1, n)-1$.

Proof. Similar to that of Proposition 1.9.

Proposition 1.11. [14] Suppose that (R, B) is a two-coloring of the edges of a complete graph in which $\langle B\rangle$ contains no 3-element irredundant set. For an arbitrary vertex v, let $Y=R_{v}$ and let $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\} \subseteq B_{v}$ be such that at most one of the sets $Y_{i}=\left\{y \mid y \in Y, x_{i} y \in R\right\},(i=1, \ldots, p)$ is empty. Then $\left\langle R_{X}\right\rangle$ is bipartite.

Proof. First we recall that a graph is bipartite if and only if it contains no odd cycles. Thus, it suffices to show that $\left\langle R_{X}\right\rangle$ contains no odd cycles.

Since, by assumption, $\langle B\rangle$ has no 3 -element irredundant set, by Corollary 1.7 its complement, $\langle R\rangle$, does not contain a K_{3} or induced C_{6}. Hence, $\left\langle B_{Y}\right\rangle$ is complete.

We now state three observations that are used during our proof.
(i) If $x_{1} x_{2} x_{3}$ is a path in $\langle X\rangle_{R}$, then either $Y_{1} \subseteq Y_{3}$ or $Y_{3} \subseteq Y_{1}$. In particular, if Y_{1} and Y_{3} are nonempty, then so is $Y_{1} \cap Y_{3}$.

Suppose $y_{1} \in Y_{1}-Y_{3}$ and $y_{3} \in Y_{3}-Y_{1}$. Then $v y_{1} x_{1} x_{2} x_{3} y_{2} v$ is an induced C_{6} in $\langle R\rangle$, a contradiction.
(ii) Suppose that $x_{1} x_{2} x_{3} x_{4} x_{5}$ is a path in $\left\langle R_{X}\right\rangle$ and the edges $x_{1} x_{4}$ and $x_{2} x_{5}$ are in B. Then either $Y_{1} \cap Y_{3} \cap Y_{5}=\emptyset$ or $Y_{2} \cap Y_{4}=\emptyset$. If $y_{1} \in Y_{1} \cap Y_{2} \cap Y_{3}$ and $y_{2} \in Y_{2} \cap Y_{4}$, then $y_{1} x_{1} x_{2} y_{2} x_{4} x_{5} y_{1}$ is an induced C_{6} in $\langle R\rangle$. (iii) Suppose $x_{1} x_{2} x_{3} x_{4} x_{5}$ is a path in $\left\langle R_{X}\right\rangle$ and that the edges $x_{1} x_{4}$ and $x_{2} x_{5}$ are in B and each of the sets Y_{1}, \ldots, Y_{5} are nonempty. Then $Y_{1} \subset Y_{3}$.

Otherwise, (i) implies that $Y_{3} \subseteq Y_{1}$, so $Y_{1} \cap Y_{3} \cap Y_{5}$ is nonempty since $Y_{3} \subseteq Y_{1}$ implies $Y_{3} \cap Y_{5}$ is nonempty. But $Y_{2} \cap Y_{4}$ is also nonempty which contradicts (ii).

Now suppose $\left\langle R_{X}\right\rangle$ is not bipartite and let $x_{1} x_{2}, \ldots, x_{2 k+1} x_{1}$ be its shortest odd cycle. Then all of the chords $x_{i} x_{i+3}$ are in B. For example, $x_{1} x_{4}$ and $x_{2} x_{5}$ are in B.

We know $k>1$ since there is no K_{3} in $\langle R\rangle$ by assumption.
Now we want to eliminate $k=2$. Suppose that $x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ is a cycle in $\left\langle R_{X}\right\rangle$ and note that we may assume Y_{1}, \ldots, Y_{4} to be nonempty sets. Then by (i) we have vertices $y_{1} \in Y_{1} \cap Y_{3}$ and $y_{2} \in Y_{2} \cap Y_{4}$. There is no K_{3} in $\langle R\rangle$, so edges $x_{1} y_{2}, x_{4} y_{1}$, and $v x_{5}$ are in $\langle B\rangle$. Now $v y_{1} x_{1} x_{5} x_{4} y_{2} v$ is an induced C_{6} in $\langle R\rangle$. Hence, $k \neq 2$.

For $k=3$, we may assume Y_{1}, \ldots, Y_{6} nonempty and observe that by (iii) $Y_{1} \subseteq Y_{3}$ and $Y_{6} \subseteq Y_{4}$. (To see the latter, consider the path $x_{6} x_{5} x_{4} x_{3} x_{2}$ in $\left\langle R_{X}\right\rangle$ and apply (iii).) Now we have $Y_{3} \cap Y_{4}=\emptyset$, but (i) gives $Y_{1} \cap Y_{6} \neq \emptyset$. Thus, $k \neq 3$.

For $k>3$, we may assume that the path $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}$ is a segment of an odd cycle in $\left\langle R_{X}\right\rangle$ and that each of the sets Y_{1}, \ldots, Y_{8} is nonempty. Then (iii) gives both $Y_{4} \subseteq Y_{6}$ and $Y_{6} \subseteq Y_{4}$ giving us the desired contradiction.

Therefore, $\left\langle R_{X}\right\rangle$ contains no odd cycles and is hence bipartite.

CHAPTER 2: Irredundant Ramsey Numbers $s(m, n)$

We have $s(1, n)=s(n, 1)=1$ and $s(2, n)=s(n, 2)=2$ for all $n \geq 1$.
Theorem 2.1. [3] $s(3,3)=6$
Proof. Note that $s(3,3) \leq r(3,3)=6$. Now, the graph C_{5} contains neither a red K_{3} nor a red 6 -cycle. Thus, by Corollary $1.7, \operatorname{IR}(\bar{G}) \leq 2$. As C_{5} is self-complementary, $I R(G) \leq 2$. Thus, $s(3,3) \geq 6$.

Theorem 2.2. [3] $s(3,4)=8$
Proof. Suppose G is a $(3,4,8)$-graph. As $s(3,3)=6$ and $s(2,4)=4$, it follows from Proposition 1.9 that $8-6 \leq \delta(G) \leq \Delta(G) \leq 4-1$ so each vertex of G has degree 2 or 3 .

Suppose v has degree 3 in G. All four vertices of B_{v} send red edges to R_{v}, for otherwise R_{v} together with a vertex of B_{v} would constitute a 4 -vertex independent set in G. Thus, at least one of the three vertices of R_{v} must receive two red edges from B_{v}. It follows that v is adjacent to a vertex w with $d(w)=3$.

Since there is no red triangle, $N(v) \cap N(w)=\emptyset$. Let $N(v)=\left\{v_{1}, v_{2}, w\right\}$ and $N(w)=$ $\left\{w_{1}, w_{2}, v\right\}$ and let the remaining two vertices of G be x and y.

Case 1: Suppose $x y \in E(G)$ is red. Vertex x sends a red edge to $\left\{v_{1}, v_{2}\right\}$, for otherwise $\left\langle\left\{w, v_{1}, v_{2}, x\right\}\right\rangle$ is a blue K_{4}. Assume $x v_{1}$ is red. Similarly, to avoid the blue $K_{4},\left\langle\left\{v, w_{1}, w_{2}, x\right\}\right\rangle$, we take $x w_{1}$ to be red. If $y v_{1}$ is red, there would be a red K_{3}. Thus, $y v_{1}$ is red and, similarly, $y w_{2}$ is red. Now both $v_{2} w_{1}$ and $v_{1} w_{2}$ must be red as otherwise $v v_{2} y x w_{1} w v$ or $v v_{1} x y w_{2} w v$ would be a red 6 -cycle with blue diagonals. Every vertex in G now has degree 3. Hence, there can be no more red edges. However, $\left\{v, v_{2}, w_{1}, w\right\}$ is an irredundant set in G, a contradiction of $I R(G)<4$. Case 2: Suppose $x y \in E(G)$ is blue. Each vertex of $\left\{v_{1}, v_{2}, w_{1}, w_{2}\right\}$ sends a red edge
to either x or y. For example, if $v_{2} x$ and $v_{2} y$ are blue, then $\left\{w, v_{2}, x, y\right\}$ is a blue K_{4}. Now, there is a red edge between $\left\{v_{1}, v_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$, otherwise these vertices form a blue K_{4}. We may assume without loss of generality that $v_{2} x$ and $v_{2} w_{1}$ are red. So $w_{1} x$ is blue. As w_{1} must send a red edge to x or y, the edge $w_{1} y$ is red and the remaining edges to v_{2} and w_{1} are blue. The set $X=\left\{v_{1}, x, y, w_{2}\right\}$ is irredundant in G since $v \in P N\left(v_{1}, X\right), v_{2} \in P N(x, X), w_{1} \in P N(y, X)$, and $w \in P N\left(w_{2}, X\right)$. This is a contradiction of $\operatorname{IR}(G)<4$.

Thus, G has no vertices of degree 3 , so G must be 2-regular. Therefore, G has an independent set of size 4, again contradicting $\operatorname{IR}(G)<4$. Hence, $s(3,4) \leq 8$.

To show $s(3,4) \geq 8$ we note that $\overline{I R}\left(C_{7}\right)=2$ and $\operatorname{IR}\left(C_{7}\right)=3$.

Suppose the hypothesis of Proposition 1.11 is satisfied. We can claim a p-element set X such that $\langle X\rangle_{R}$ is bipartite. Then X contains a $\left\lceil\frac{p}{2}\right\rceil$-element set that is independent in $\langle R\rangle$. Thus, if $\left\lceil\frac{p}{2}\right\rceil \geq n-1$, this set together with v yields an n-element independent set in $\langle R\rangle$. This observation gives rise to short proofs of the known facts $s(3,5) \leq 12$ and $s(3,6) \leq 15$.

Theorem 2.3. [3] $s(3,5)=12$.

Proof. Consider a bicoloring of K_{12}. By Proposition 1.9:

$$
\begin{aligned}
p-s(m, n-1) & \leq \delta_{R} \leq \Delta_{R} \leq s(m-1, n)-1 \\
12-s(3,4) & \leq \delta_{R} \leq \Delta_{R} \leq s(2,5)-1 \\
12-8 & \leq \delta_{R} \leq \Delta_{R} \leq 5-1 \\
4 & \leq \delta_{R} \leq \Delta_{R} \leq 4
\end{aligned}
$$

Thus, $\langle R\rangle$ is 4-regular. Let v be any vertex of G. Every vertex of B_{v} sends red edges to R_{v}, for otherwise R_{v} together with a vertex of B_{v} would constitute a 5-vertex independent set in G, a contradiction of $\operatorname{IR}(G)<5$. Therefore, Proposition 1.9 can be applied using $X=B_{v}$. We thus find an independent set of order $\left\lceil\frac{7}{2}\right\rceil+1=5$, contradicting $\operatorname{IR}(G)<5$.

To show $s(3,5) \geq 12$, we display an 11-vertex graph with $\overline{I R}=2$ and $I R=4$ in Figure 2.1.

Figure 2.1: An 11-vertex graph with $\overline{I R}=2$ and $I R=4$.

Theorem 2.4. [4] $s(3,6)=15$.

Proof. We look at a bicoloring of K_{15}. Applying Proposition 1.9 we have,

$$
\begin{gathered}
p-s(m, n-1) \leq \delta_{R} \leq \Delta_{R} \leq s(m-1, n)-1 \\
15-s(3,5) \leq \delta_{R} \leq \Delta_{R} \leq s(2,6)-1 \\
15-12 \leq \delta_{R} \leq \Delta_{R} \leq 6-1 \\
3 \leq \delta_{R} \leq \Delta_{R} \leq 5 .
\end{gathered}
$$

So $\langle R\rangle$ has 15 vertices all of which have degree 3,4 , or 5 . As no graph has an odd number of odd vertices, there exists at least one vertex, v, of degree 4 . We want to avoid a 6 -element independent set in $\langle R\rangle$. If there were three vertices of B_{v}, each adjacent to all of the vertices of R_{v} in $\langle B\rangle$, then there would be a 6 -element independent set in $\langle R\rangle$ if any two of these three were adjacent in $\langle B\rangle$ and a 3 -element independent set in $\langle B\rangle$ otherwise. Thus, at least eight vertices are sending red edges. That is, at most two of the vertices of B_{v} are completely joined to R_{v} in $\langle B\rangle$. We may apply Proposition 1.11 to $X \subset B_{v}$ with $|X|=9$. Thus we obtain an independent set in $\langle R\rangle$ with $\lceil 9 / 2\rceil+1=6$ vertices. Thus, $s(3,6) \leq 15$.

We present a 14 -vertex graph that has $\overline{I R}=2$ and $I R=5$ in Figure 2.2 to show $s(3,6) \geq 15$. (It is tedious, but possible, to prove this by hand, but it can also be verified by computer using the program of [8].)

Figure 2.2: A 14 -vertex graph with $\overline{I R}=2$ and $I R=5$.

Theorem 2.5. [11] $s(3,7)=18$.

First we give some results that are used throughout the proof.

Lemma 2.6. If G is a (3,7)-graph of order 18, then $3 \leq \delta(G) \leq \Delta(G) \leq 6$.

Proof. By Proposition 1.9 we have

$$
18-s(3,6) \leq \delta(G) \leq \Delta(G) \leq s(2,7)-1
$$

giving the desired result.

Lemma 2.7. Suppose G satisfies $I R(\bar{G})<3$ and v is a vertex of degree at least 2. If v_{1}, v_{2}, and $v_{3} \in V(G) \backslash N[v]$ and $v_{1} v_{2}, v_{2} v_{3} \in E(G)$, then either $N\left(v_{1}\right) \cap N(v) \subseteq$ $N\left(v_{3}\right) \cap N(v)$ or $N\left(v_{3}\right) \cap N(v) \subseteq N\left(v_{1}\right) \cap N(v)$.

Proof. Suppose there are vertices u_{1} and u_{2} satisfying $u_{1} \in\left(N\left(v_{1}\right) \backslash N\left(v_{3}\right)\right) \cap N(v)$ and $u_{2} \in\left(N\left(v_{3}\right) \backslash N\left(v_{1}\right)\right) \cap N(v)$. Then the 6 -cycle $v u_{1} v_{1} v_{2} v_{3} u_{2} v$, where $v v_{2}, u_{1} v_{3}, v_{1} u_{2} \notin$ $E(G)$ implies that $I R(\bar{G}) \geq 3$, a contradiction of our assumption that $I R(\bar{G})<3$.

It suffices to show that $s(3,7) \leq 18$ as the circulant graph $C_{17}\{1,4\}$ is a $(3,7)$ graph implying $s(3,7) \geq 18$.

We now present the proof that $s(3,7) \leq 18$ due to Chen and Rousseau in $[7]$.

Proof. We assume to the contrary that G is a (3,7)-graph with 18 vertices. Then $3 \leq \delta(G) \leq \Delta(G) \leq 6$ by Lemma 2.6. Now, let $v \in G$ with $d(v)=\Delta(G)$. Let $d(u, v)$ denote the distance in G from u to v and for each positive integer i set $V_{i}=\{u \mid d(u, v)=i\}$ and $V_{>i}=\cup_{j>i} V_{j}$.

Since $d(v) \leq 6$ we have that $\left|V_{>1}\right| \geq 11$. Then, $\left|V_{2}\right| \leq 9$ by Proposition 1.11. As G is a $(3,7)$-graph and $N(v)$ is an independent set, it follows that $G\left\langle V_{>2}\right\rangle$ is a $(3,7-\Delta(G))$ graph.

Claim 2.8. The degree of v is $d(v)=\Delta(G)=4$.
Proof. Since $G\left\langle V_{>2}\right\rangle$ is a $(3,7-\Delta(G))$-graph, we have $d(v) \leq 4$ as $s(3,1)=1$ and $s(3,2)=3$. Suppose $d(v)=\Delta(G)=3$. Then, $\left|V_{2}\right| \leq 2|N(v)|=6$. Since $G\left\langle V_{>2}\right\rangle$ is a
$(3,4)$-graph and $s(3,4)=8$, we have $\left|V_{>2}\right| \leq 7$. Hence,

$$
18=|V(G)| \leq 1+3+6+7=17
$$

a contradiction.

Claim 2.9. Either $\left|V_{2}\right|=9$ and $\left|V_{>2}\right|=4$ or $\left|V_{2}\right|=8$ and $\left|V_{>2}\right|=5$. In addition, $V_{>3}=\emptyset$.

Proof. As $d(v)=4$, it follows that $G\left\langle V_{>2}\right\rangle$ is a (3,3)-graph and $\left|V_{>2}\right| \leq 5$. By Proposition 1.11, we have that $\left|V_{2}\right| \leq 9$. Since $\left|V_{2}\right|+\left|V_{>2}\right|=13$, there are two cases: (a) $\left|V_{2}\right|=9$ and $\left|V_{>2}\right|=4$ or (b) $\left|V_{2}\right|=8$ and $\left|V_{>2}\right|=5$. If (a) holds and $w \in V_{>3}$, then Proposition 1.11 yields a 7 -element independent set consisting of v, w, and five vertices from V_{2}. Thus, $V_{>3}=\emptyset$. In case (b), we must have $G\left\langle V_{>2}\right\rangle \cong C_{5}$ and it follows that $V_{>3}=\emptyset$ as $\delta(G) \geq 3$.

Let (X, Y) be a bipartition of $G\left\langle V_{2}\right\rangle$. Let c denote the number of components of $G\left\langle V_{2}\right\rangle$ and for $i=1,2,3, \ldots, c$, let $\left(X_{i}, Y_{i}\right)$ be bipartitions of these components. We may assume $V_{2}=X \cup Y$, with $X=\cup X_{i}, Y=\cup Y_{i}$, and $\left|X_{i}\right| \geq\left|Y_{i}\right|$ for $i=1,2,3, \ldots, c$. (We note that Y_{i} may be empty if $\left|X_{i}\right|=1$). If S and T are disjoint sets of vertices in G, we say that there is an $S T$ edge if $N(S) \cap T \neq \emptyset$.

Claim 2.10. The bipartition (X, Y) must satisfy $4 \leq|X| \leq 5$ and $3 \leq|Y| \leq 4$. If $|X|=5$, then $V_{3} \subset N(X)$. If $|Y|=4$, then for every nonadjacent pair $W=$ $\left\{w_{i}, w_{j}\right\} \subset V_{3}$ there is a $W X$ edge and $a W Y$ edge.

Proof. Claim 2.10 follows as $8 \leq\left|V_{2}\right| \leq 9$ and the independence number of $G\left\langle V_{2} \cup\right.$ $\left.V_{3}\right\rangle \leq 5$.

Claim 2.11. For any vertex $w \in V_{3}$ and any connected component $\left(X_{i}, Y_{i}\right)$ of (X, Y), either $N(w) \cap X_{i}=\emptyset$ or $N(w) \cap Y_{i}=\emptyset$.

Proof. Claim 2.11 follows as $G\left\langle V_{2} \cup\{w\}\right\rangle$ is a bipartite graph.
Claim 2.12. If $|Y|=4$ and $\left|X_{i}\right| \geq 2$, then $\left|N(x) \cap V_{3}\right| \leq 1$ for any $x \in X_{i}$.
Proof. Suppose there exists a vertex $x_{1} \in X_{i}$ such that $N\left(x_{1}\right) \cap V_{3} \supset W=\left\{w_{1}, w_{2}\right\}$. By Claim 2.11, there is no $W Y_{i}$ edge. Thus, by Claim 2.10, as $|Y|=4$, there is a $W\left(Y \backslash Y_{i}\right)$ edge, say $w z_{3}$ where $w \in W$. Also, there is an edge joining W to $X \backslash X_{i}$, say $w^{\prime} z_{2}$ where $w^{\prime} \in W$, since otherwise $W \cup Y_{i} \cup\left(X \backslash X_{i}\right)$ is an independent set of at least 6 vertices. Indeed, if $|X|=4$, then $|W|=2$ and $\left|X_{i}\right|=a=\left|Y_{i}\right|$. We have

$$
|W|+\left|Y_{i}\right|+\left|X \backslash X_{i}\right|=2+a+(|X|-a)=2+|X| \geq 2+4=6
$$

Now, if $|X|=5$, then as $|W|=2$ and $a=\left|X_{i}\right|=\left|Y_{i}\right|+1$ we have

$$
|W|+\left|Y_{i}\right|+\left|X \backslash X_{i}\right|=2+a-1+|X|-a=|X|+1 \geq 5+1=6
$$

Since x_{1} is adjacent to w_{1} and w_{2}, and to at least one vertex in Y_{i}, x_{1} is adjacent to precisely one vertex in V_{1}, say u_{1}. Now $d\left(x_{1}\right)=\Delta(G)=4$. Since $\left|X_{i}\right| \geq 2$, there exists $x_{2} \neq x_{1}$ such that $x_{2} \in X_{i}$. Then, as $H=\left\langle X_{i} \cup Y_{i}\right\rangle$ is connected, there exists a path P from x_{1} to x_{2}. Let $x_{1}, z_{1}, x_{2}^{\prime}, x_{2}$ be the vertices of P. We have that x_{1} and x_{2}^{\prime} (which may equal x_{2}) must have the common neighbor in $u_{1} \in V_{1}$. Now $x_{1} w z_{3}$ is a path, so x_{1} and z_{3} must have the common neighbor $u_{1} \in V_{1}$. Now, $d\left(u_{1}\right)=\Delta(G)=4$. But, $x_{1} w^{\prime} z_{2}$ is a path so x_{1} and z_{2} must have a common neighbor V_{1} which must also be u_{1}, implying $d\left(u_{1}\right) \geq 5$, a contradiction.

We proceed with the proof divided into cases according to the structure of connected components and values of $\left|V_{2}\right|$ and $\left|V_{3}\right|$.

Case 2.13. $\left|V_{2}\right|=9$ and $\left|V_{3}\right|=4$.

As the independence number of $G\left\langle V_{2}\right\rangle$ is at most 5 , it follows that $|X|=5$ and $|Y|=4$. Without loss of generality, we assume that $\left|X_{1}\right|=\left|Y_{1}\right|+1$ and $\left|X_{i}\right|=\left|Y_{i}\right|$ for $i \neq 1$. By Claim 2.10, $N(X) \supset V_{3}$. Furthermore, in this case, we have $N\left(X_{1}\right) \supset$ V_{3}, since if $w \in V_{3}$ and $w \notin N\left(X_{1}\right)$, then $G\left\langle V_{2} \cup\{w\}\right\rangle$ would contain a 6 -element independent set by Claim 2.11.

Suppose that (X, Y) is connected, that is, $\left|X_{1}\right|=5$ and $\left|Y_{1}\right|=4$. Then, by Claim 2.11, there is no $V_{3} Y_{1}$ edge. Hence there is a pair of independent vertices in $G\left\langle V_{3}\right\rangle$ and $G\left\langle Y \cup V_{3}\right\rangle$ contains a 6 -element independent set, a contradiction.

Thus $1 \leq\left|X_{1}\right| \leq 4$. Since $N\left(X_{1}\right) \supset V_{3}$ and the neighborhood of any vertex in G is an independent set, $\left|X_{1}\right| \geq 2$. If $2 \leq\left|X_{1}\right| \leq 3$, then since $N\left(X_{1}\right) \supset V_{3}$, there exists a vertex $x_{1} \in X_{1}$ such that $\left|N\left(x_{1}\right) \cap V_{3}\right| \geq 2$. This contradicts Claim 2.12. Therefore, $\left|X_{1}\right|=4,\left|Y_{1}\right|=3$, and $\left|X_{2}\right|=\left|Y_{2}\right|=1$. Now let $X_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, X_{2}=\left\{x_{5}\right\}$, $Y_{1}=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $Y_{2}=\left\{y_{4}\right\}$. There is no $Y_{1} V_{3}$ edge by Claim 2.11. We consider the graph induced by the set $\left\{w_{1}, w_{2}, w_{3}, w_{4}, x_{5}, y_{4}\right\}$. This graph contains no triangle, so it must contain a 3 -element independent set. Three such vertices together with Y_{1} constitute a 6 -element independent set, a contradiction.

Case 2.14. $\left|V_{2}\right|=8$ and $\left|V_{3}\right|=5$ with $|X|=|Y|=4$.
Since $G\left\langle V_{3}\right\rangle$ is a $(3,3)$-graph, it is a 5 -cycle. Let $G\left\langle V_{3}\right\rangle=w_{1} w_{2} w_{3} w_{4} w_{5} w_{1}$. In this case, $\left|X_{i}\right|=\left|Y_{i}\right|$ for $i=1,2, \ldots, c$. We say that a pair of nonadjacent vertices $W=\left\{w_{i}, w_{j}\right\} \subset V_{3}$ has the property $P(k)$ if there is a $W X_{k}$ edge and a $W Y_{k}$ edge. For each nonadjacent pair $\left\{w_{i}, w_{j}\right\}$ there is at least one k for which $\left\{w_{i}, w_{j}\right\}$ has property $P(k)$. Since otherwise, $G\left\langle V_{2} \cup\left\{w_{i}, w_{j}\right\}\right\rangle$ has a 6 -element independent set by Claim 2.11.

Notice that C_{5} has five pairs of nonadjacent vertices and $c \leq 4$. Then for some k there are two pairs of nonadjacent vertices, say $\left\{w_{1}, w_{3}\right\}$ and $\left\{w_{i}, w_{j}\right\}$, having property
$P(k)$, by the pigeonhole principle.
Now we show that $\left|X_{k}\right|=\left|Y_{k}\right| \geq 2$. Suppose, instead, that $X_{k}=\left\{x_{1}\right\}$ and $Y_{k}=\left\{y_{1}\right\}$. We may assume $w_{1} x_{1} \in E(G)$ and $w_{3} y_{1} \in E(G)$. Since G contains no $K_{3}, w_{2} \notin\left\{w_{i}, w_{j}\right\}$. Hence, without loss of generality, we may assume $w_{i}=w_{1}$ and $w_{j}=w_{4}$. Then we must have $w_{4} y_{1} \in E(G)$ so $\left\{y_{1}, w_{3}, w_{4}\right\}$ is a triangle, a contradiction.

As $\left|X_{k}\right|=\left|Y_{k}\right| \geq 2$, we have $c \leq 3$. In this case, three pairs of nonadjacent vertices in V_{3}, say $\left\{w_{1}, w_{3}\right\},\left\{w_{1}, w_{4}\right\}$, and $\left\{w_{i}, w_{j}\right\}$, have property $P(k)$ for some k by the pigeonhole principle. Without loss of generality, we assume that $w_{1} \in N\left(Y_{k}\right)$ and $\left\{w_{3}, w_{4}\right\} \subseteq N\left(X_{k}\right)$. By Claim 2.12, $\left|N(x) \cap V_{3}\right| \leq 1$ for $x \in X_{k}$. Note that in this case, the same argument shows that $\left|N(y) \cap V_{3}\right| \leq 1$ for $y \in Y_{k}$. Assume that $\left\{x_{1} w_{3}, x_{2} w_{4}, y_{1} w_{1}\right\} \subset E(G)$.

Now suppose $\left|X_{k}\right|=\left|Y_{k}\right|=2$. Since $G\left\langle X_{k} \cup Y_{k}\right\rangle$ is connected, we may assume $x_{1} y_{1} \in E(G)$. The 6 -cycle $w_{1} y_{1} x_{1} w_{3} w_{4} w_{5} w_{1}$, where $w_{1} w_{3}, y_{1} w_{4}, x_{1} w_{5} \notin E(G)$, implies $\operatorname{IR}(\bar{G}) \geq 3$, a contradiction.

Thus $\left|X_{k}\right|=\left|Y_{k}\right| \geq 3$. In this case, we have $c \leq 2$. Now there are four pairs of nonadjacent vertices satisfying $P(k)$ for some k. In particular, we have $N\left(X_{k} \cup Y_{k}\right) \supseteq$ V_{3}. If $\left|X_{k}\right|=\left|Y_{k}\right|=3$, let $X_{k}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y_{k}=\left\{y_{1}, y_{2}, y_{3}\right\}$. Without loss of generality, we may assume that $\left|N\left(X_{k}\right) \cap V_{3}\right| \geq 3, x_{1} w_{1} \in E(G)$, and $x_{3} w_{3} \in E(G)$. Now we must have $\left|N\left(X_{k}\right) \cap V_{3}\right|=3$ and $\left|N\left(x_{1}\right) \cap V_{3}\right|=\left|N\left(x_{2}\right) \cap V_{3}\right|=\left|N\left(x_{3}\right) \cap V_{3}\right|=1$ by Claim 2.12. Suppose $u \in V_{1} \cap N\left(x_{1}\right) \cap N\left(x_{3}\right)$. Then the 6 -cycle $u x_{1} w_{1} w_{2} w_{3} x_{3} u$ where $u w_{2}, x_{1} w_{3}, w_{1} x_{3} \notin E(G)$ implies that $I R(\bar{G}) \geq 3$, a contradiction.

Thus, there exist vertices $u_{1}, u_{2} \in V_{1}$ such that $u_{1} \in N\left(x_{1}\right) \backslash N\left(x_{3}\right)$ and $u_{2} \in$ $N\left(x_{3}\right) \backslash N\left(x_{1}\right)$. If $y \in Y_{k}$ is adjacent to both x_{1} and x_{3}, then the 6 -cycle $x_{1} y x_{3} u_{2} v u_{1} x_{1}$ with $x_{1} u_{2}, y v, x_{3} u_{1} \notin E(G)$ implies $\operatorname{IR}(\bar{G}) \geq 3$, a contradiction.

Since $G\left(X_{k} \cup Y_{k}\right)$ is connected, we may assume y_{1} is adjacent to both x_{1} and x_{2}
and y_{3} is adjacent to both x_{2} and x_{3}. Thus, $N\left(x_{2}\right) \cap V_{1} \supseteq\left(N\left(x_{1}\right) \cup N\left(x_{3}\right)\right) \cap V_{1}$ (since otherwise, there is a 6 -cycle with no adjacent pair of opposite vertices). Now $\left|N\left(x_{2}\right) \cap V_{1}\right| \geq 2,\left|N\left(x_{2}\right) \cap Y_{1}\right| \geq 2$, and $\left|N\left(x_{2}\right) \cap V_{3}\right|=1$ implying $d\left(x_{2}\right)>4$ which contradicts $\Delta(G)=4$.

Thus $X_{k}=X$ and $Y_{k}=Y$ so (X, Y) is connected. We have either $N\left(w_{i}\right) \cap X=\emptyset$ or $N\left(w_{i}\right) \cap Y=\emptyset$ for any vertex $w_{i} \in V_{3}$, by Claim 2.11. Since $G\left\langle V_{3}\right\rangle$ is a 5 -cycle, there are two nonadjacent vertices $w_{i}, w_{j} \in V_{3}$ so that either $\left(N\left(w_{i}\right) \cup N\left(w_{j}\right)\right) \cap X=\emptyset$ or $\left(N\left(w_{i}\right) \cup N\left(w_{j}\right)\right) \cap Y=\emptyset$, which contradicts Claim 2.10.

Case 2.15. $|X|=5$ and $|Y|=3$.
By Claim 2.10, $N(X) \supset V_{3}$. We assume $\left|X_{1}\right|>\left|Y_{1}\right|$, and $\left|X_{2}\right|=\left|Y_{2}\right|+1$ if $\left|X_{1}\right|=\left|Y_{1}\right|+1$.

Subcase 2.16. $\left|X_{1}\right|=\left|Y_{1}\right|+2$
In this case, $N\left(X_{1}\right) \supseteq V_{3}$. As $\left(X_{1}, Y_{1}\right)$ is connected, there is a vertex, say y_{1}, such that $\left|N\left(y_{1}\right) \cap X_{1}\right| \geq 3$. Assume that $N\left(y_{1}\right) \supseteq\left\{x_{1}, x_{2}, x_{3}\right\}$. Then by Lemma 2.7 there is a vertex $u_{1} \in V_{1}$ such that $N\left(u_{1}\right) \supseteq\left\{x_{1}, x_{2}, x_{3}\right\}$. Thus, $N\left(u_{1}\right)=\left\{v, x_{1}, x_{2}, x_{3}\right\}$.

If $\left|X_{1}\right|=3$, there are two vertices, x_{1} and x_{2}, such that $\left|N\left(\left\{x_{1}, x_{2}\right\}\right) \cap V_{3}\right|=4$. Without loss of generality, we may assume that $N\left(x_{1}\right) \cap V_{3}=\left\{w_{1}, w_{3}\right\}$ and $N\left(x_{2}\right) \cap$ $V_{3}=\left\{w_{2}, w_{4}\right\}$. Now the 6 -cycle $u_{1} x_{1} w_{1} w_{5} w_{4} x_{2} u_{1}$ where $u_{1} w_{5}, x_{1} w_{4}, w_{1} x_{2} \notin E(G)$ implies that $I R(\bar{G}) \geq 3$, a contradiction.

If $\left|X_{1}\right|=4$, we denote $X_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, Y_{1}=\left\{y_{1}, y_{2}\right\}, X_{2}=\left\{x_{5}\right\}$, and $Y_{2}=\left\{y_{3}\right\}$. As $\Delta(G)=4$, we have $x_{4} y_{1} \notin E(G)$ so $x_{4} y_{2} \in E(G)$. Without loss of generality, assume that $x_{3} y_{2} \in E(G)$. Then $N\left(x_{4}\right) \cap V_{1} \subseteq N\left(x_{3}\right) \cap V_{1}$, by Lemma 2.7. Let $N\left(x_{4}\right) \cap V_{1}=\left\{u_{2}\right\}$. Then $N\left(u_{2}\right) \supseteq\left\{v, x_{3}, x_{4}\right\}$. Thus, $\left|N\left(u_{2}\right) \cap\left\{x_{5}, y_{3}\right\}\right| \leq 1$ since $d\left(u_{2}\right) \leq 4$. Assume that $y_{3} \notin N\left(u_{2}\right)$. Then, since $\left|N\left(y_{3}\right) \cap V_{3}\right| \leq 2$, there are two nonadjacent vertices, w_{1} and w_{3}, which are not adjacent to y_{3}. Since $N\left(X_{1}\right) \supseteq V_{3}$,
$N\left(\left\{w_{1}, w_{3}\right\}\right) \cap Y_{1}=\emptyset$. Hence $Y \cup\left\{u_{1}, u_{2}, w_{1}, w_{3}\right\}$ forms an independent set of 7 vertices, a contradiction.

Thus $X_{1}=X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and $Y_{1}=Y=\left\{y_{1}, y_{2}, y_{3}\right\}$. As $N(X) \supseteq V_{3}$, $N(Y) \cap V_{3}=\emptyset$. Without loss of generality, we assume that $\left\{x_{4} y_{2}, x_{3} y_{2}\right\} \subseteq E(G)$. Since $x_{4} u_{1} \notin E(G), N\left(x_{4}\right) \cap V_{1} \subseteq N\left(x_{3}\right) \cap V_{1}$. Assume $u_{2} \in N\left(x_{4}\right) \cap V_{1}$. If there is a vertex $x_{i}, i=1,2$, such that $N\left(x_{i}\right) \cap V_{1} \supseteq N\left(x_{3}\right) \cap V_{1}$, then $N\left(u_{2}\right)=\left\{v, x_{i}, x_{3}, x_{4}\right\}$. Hence $Y \cup\left\{u_{1}, u_{2}, w_{1}, w_{3}\right\}$ forms an independent set of 7 vertices, a contradiction.

Thus we have $N\left(x_{3}\right) \cap V_{1} \supseteq N\left(x_{i}\right) \cap V_{1}$ for each $i=1,2,4$. Since $d\left(x_{3}\right) \leq 4$, we have $N\left(x_{3}\right) \cap V_{1}=\left\{u_{1}, u_{2}\right\}$. Notice that (X, Y) is connected. By Lemma 2.7, $N\left(x_{3}\right) \cap V_{1} \supseteq$ $N\left(x_{5}\right) \cap V_{1}$. In particular, we have $u_{2} x_{5} \in E(G)$. Again, $Y \cup\left\{u_{1}, u_{2}, w_{1}, w_{3}\right\}$ forms an independent set, a contradiction.

Subcase 2.17. $\left|X_{1}\right|=\left|Y_{1}\right|+1=3$, and $\left|X_{2}\right|=\left|Y_{2}\right|+1=2$
Let $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, Y_{1}=\left\{y_{1}, y_{2}\right\}, X_{2}=\left\{x_{4}, x_{5}\right\}$, and $Y_{2}=\left\{y_{3}\right\}$. Since there is no independent set of six vertices in $G\left\langle V_{>1}\right\rangle$, we have $N(X) \supset V_{3}$ and for any nonadjacent pair of vertices $W=\left\{w_{i}, w_{j}\right\}$ in V_{3} there is a $W X_{1}$ edge and a $W X_{2}$ edge. Thus $\left|N\left(X_{i}\right) \cap V_{3}\right| \geq 3$ for $i=1,2$.

By Lemma 2.7, there is a vertex $u_{1} \in V_{1}$ such that $N\left(u_{1}\right) \supseteq\left\{x_{4}, x_{5}\right\}$. Since $\left|N\left(X_{2}\right) \cap V_{3}\right| \geq 3$, we assume $N\left(x_{5}\right) \cap V_{3}=\left\{w_{1}, w_{3}\right\}$. As $N\left(\left\{w_{1}, w_{3}\right\}\right) \cap X_{1} \neq \emptyset$, we assume $w_{1} x_{3} \in E(G)$. By Lemma 2.7, $u_{1} x_{3} \in E(G)$. Now $N\left(u_{1}\right)=\left\{v, x_{3}, x_{4}, x_{5}\right\}$. Without loss of generality, assume $N\left(x_{3}\right) \cap N\left(x_{2}\right) \cap Y_{1} \neq \emptyset$. Since $x_{2} u_{1} \notin E(G)$, there is a vertex $u_{2} \in V_{1}$ such that $N\left(u_{1}\right) \supseteq\left\{x_{2}, x_{3}\right\}$. Hence, $N\left(x_{3}\right)=\left\{u_{1}, u_{2}, w_{1}\right\} \cup$ $\left(N\left(x_{3}\right) \cap Y_{1}\right)$ and $N\left(x_{2}\right) \cap V_{1}=\left\{u_{2}\right\}$. By Lemma 2.7, we have $u_{2} \in N\left(x_{1}\right) \cap V_{1}$ since $\left(X_{1}, Y_{1}\right)$ is connected. Thus $N\left(u_{2}\right)=\left\{v, x_{1}, x_{2}, x_{3}\right\}$.

If $\left|N\left(x_{1}\right) \cap V_{3}\right|=2$, assume that $N\left(x_{1}\right) \cap V_{3}=\left\{w_{i}, w_{j}\right\}$ for nonadjacent w_{i} and w_{j}. Then $N\left(x_{1}\right) \cap V_{1}=\left\{u_{2}\right\}$. By Lemma 2.7, $\left(N\left(w_{1}\right) \cup N\left(w_{3}\right)\right) \cap\left\{x_{4}, x_{5}\right\}=\emptyset$, a
contradiction. Thus $\left|N\left(x_{1}\right) \cap V_{3}\right|=1$. Similarly, $\left|N\left(x_{2}\right) \cap V_{3}\right|=\left|N\left(x_{3}\right) \cap V_{3}\right|=1$. As $\left|N\left(X_{1}\right) \cap V_{3}\right| \geq 3$, there are two nonadjacent vertices in $N\left(X_{1}\right) \cap V_{3}$. Without loss of generality, assume $x_{1} w_{2}, x_{2} w_{4} \in E(G)$. The 6 -cycle $u_{2} x_{1} w_{2} w_{3} w_{4} x_{2} u_{2}$ where opposite vertices are nonadjacent, implies $I R(\bar{G}) \geq 3$, a contradiction.

Subcase 2.18. $\left|X_{1}\right|=\left|X_{2}\right|=2$ and $\left|X_{3}\right|=\left|Y_{1}\right|=\left|Y_{2}\right|=\left|Y_{3}\right|=1$.
Let $X_{1}=\left\{x_{1}, x_{2}\right\}, X_{2}=\left\{x_{3}, x_{4}\right\}, X_{3}=\left\{x_{5}\right\}, Y_{1}=\left\{y_{1}\right\}, Y_{2}=\left\{y_{2}\right\}$, and $Y_{3}=\left\{y_{3}\right\}$. Then $\left\{x_{1} y_{1}, x_{2} y_{1}, x_{3} y_{2}, x_{4} y_{2}, x_{5} y_{3}\right\} \subset E(G)$. Clearly, $N\left(X \backslash\left\{x_{5}\right\}\right) \supset V_{3}$. Hence we may assume $\left|N\left(x_{1}\right) \cap V_{3}\right|=2$. Without loss of generality, assume $N\left(x_{1}\right) \cap$ $V_{3}=\left\{w_{1}, w_{3}\right\}$. So $\left(N\left(w_{1}\right) \cup N\left(w_{2}\right)\right) \cap Y_{1}=\emptyset$. Since $d\left(x_{1}\right) \leq 4,\left|N\left(x_{1}\right) \cap V_{1}\right|=1$. Let $N\left(x_{1}\right) \cap V_{1}=\left\{u_{1}\right\}$. By Lemma 2.7, $u_{1} x_{2} \in E(G)$.

Suppose $N\left(\left\{w_{1}, w_{3}\right\}\right) \cap X_{2}=\emptyset$. As there is no independent set of six vertices in $G\left\langle V_{>1}\right\rangle, N\left(w_{1}\right) \cup N\left(w_{3}\right) \supset\left\{x_{5}, y_{3}\right\}$. By Lemma 2.7, $N\left(u_{1}\right) \supset\left\{x_{5}, y_{3}\right\}$, implying $d\left(u_{1}\right) \geq 5$, a contradiction. Hence $N\left(\left\{w_{1}, w_{3}\right\}\right) \cap X_{2} \neq \emptyset$. Without loss of generality, assume $x_{3} w_{1} \in E(G)$. Then $u_{1} x_{3} \in E(G)$ by Lemma 2.7, and $N\left(u_{1}\right)=\left\{v, x_{1}, x_{2}, x_{3}\right\}$. So $N\left(x_{4}\right) \cap V_{1} \subset N\left(x_{3}\right) \cap V_{1}$, by Lemma 2.7. Since $\left|N\left(x_{3}\right) \cap V_{1}\right| \leq 2$, we may assume $N\left(x_{3}\right) \cap V_{1}=\left\{u_{1}, u_{2}\right\}$ and $N\left(x_{4}\right) \cap V_{1}=\left\{u_{2}\right\}$.

Then $N\left(x_{3}\right) \cap V_{3}=\left\{w_{1}\right\}$. Since $N\left(X \backslash\left\{x_{5}\right\}\right) \supset V_{3}$, we have $N\left(x_{2}\right) \cup N\left(x_{4}\right) \supset$ $\left\{w_{2}, w_{4}, w_{5}\right\}$. In particular, there is $i=2$ or 4 such that $\left|N\left(x_{i}\right) \cap\left\{w_{2}, w_{4}, w_{5}\right\}\right|=2$.

If $i=2$, then $N\left(x_{2}\right) \cap V_{1}=\left\{u_{1}\right\}$. By Lemma 2.7 and as $N\left(x_{3}\right)=\left\{w_{1}, y_{2}, u_{1}, u_{2}\right\}$, $\left(N\left(x_{2}\right) \cap V_{3}\right) \cup\left\{x_{3}, x_{4}, x_{5}, y_{1}, v\right\}$ is an independent set, a contradiction. Thus, $\mid N\left(x_{4}\right) \cap$ $\left\{w_{2}, w_{4}, w_{5}\right\} \mid=2$. As $N\left(x_{1}\right) \cap\left\{w_{2}, w_{4}, w_{5}\right\}=\emptyset, N\left(x_{2}\right) \cap N\left(x_{4}\right) \cap V_{3} \neq \emptyset$. Similarly, we can show that $N\left(x_{2}\right) \cap V_{3} \subseteq N\left(x_{4}\right) \cap V_{3}$. Thus, $V_{3}=N\left(X_{1} \cup X_{2}\right) \cap V_{3}=$ $N\left(\left\{x_{1}, x_{4}\right\}\right) \cap V_{3} \neq V_{3}$, a contradiction.

Subcase 2.19. $\left|X_{1}\right|=1,\left|Y_{1}\right|=0,\left|X_{2}\right|=\left|Y_{2}\right|+1$, and $\left|X_{i}\right|=\left|Y_{i}\right|$ for $i \neq 1,2$.
Set $X_{1}=\left\{x_{1}\right\}$. Since $N\left(x_{1}\right)$ is an independent set, $\left|N\left(x_{1}\right) \cap V_{3}\right| \leq 2$. We assume
$N\left(x_{1}\right) \cap V_{3} \subseteq\left\{w_{2}, w_{5}\right\}$. By Proposition 1.11, $N\left(X_{2}\right) \supset\left\{w_{1}, w_{3}, w_{4}\right\}$. In particular, $\left|X_{2}\right| \geq 2$. Since $\left|\left(V_{2} \backslash\left\{x_{1}\right\}\right) \cup\left\{w_{1}, w_{3}\right\}\right|=9, G\left\langle\left(V_{2} \backslash\left\{x_{1}\right\}\right) \cup\left\{w_{1}, w_{3}\right\}\right\rangle$ is not bipartite. Hence there is a $k \neq 1,2$ such that either $N\left(w_{1}\right) \cap X_{k} \neq \emptyset$ and $N\left(w_{3}\right) \cap Y_{k} \neq \emptyset$ or $N\left(w_{1}\right) \cap Y_{k} \neq \emptyset$ and $N\left(w_{3}\right) \cap X_{k} \neq \emptyset$.

Without loss of generality, we assume $N\left(w_{1}\right) \cap X_{3} \neq \emptyset$ and $N\left(w_{3}\right) \cap Y_{3} \neq \emptyset$. Since $\left|N\left(w_{1}\right) \cap V_{2}\right| \leq 2, N\left(w_{1}\right) \cap V_{2} \subset X_{2} \cup X_{3}$. Thus $N\left(w_{4}\right) \cap Y_{3} \neq \emptyset$ as $G\left\langle V_{2} \backslash\left\{x_{1}\right\}\right\rangle \cup\left\{w_{1}, w_{4}\right\}$ is not bipartite. Since there is no triangle in G and $w_{3} w_{4} \in E(G)$, we have $\left|Y_{3}\right| \geq 2$. Hence, $\left|X_{2}\right|=\left|X_{3}\right|=\left|Y_{3}\right|=2$ and $\left|Y_{2}\right|=1$. Set $X_{2}=\left\{x_{2}, x_{3}\right\}, X_{3}=\left\{x_{4}, x_{5}\right\}$, $Y_{2}=\left\{y_{1}\right\}$, and $Y_{3}=\left\{y_{2}, y_{3}\right\}$.

Since $N\left(x_{2}\right) \cup N\left(x_{3}\right) \supset\left\{w_{1}, w_{3}, w_{4}\right\}$, without loss of generality we assume $x_{2} w_{1} \in$ $E(G)$. Since $N\left(w_{3}\right) \cap N\left(w_{4}\right)=\emptyset$, without loss of generality we assume that $\left\{x_{2} w_{1}, x_{2} w_{3}, x_{3} w_{4}, x_{4} w_{1}, y_{2} w_{3}, y_{3} w_{4}\right\} \subseteq E(G)$. Since $d\left(x_{2}\right) \leq 4$ we have $\left|N\left(x_{2}\right) \cap V_{1}\right|=$ 1. Let $N\left(x_{2}\right) \cap V_{1}=\left\{u_{1}\right\}$. By Lemma 2.7, $N\left(u_{1}\right) \supset\left\{x_{3}, x_{4}, y_{2}\right\}$. Thus $N\left(u_{1}\right) \supset$ $\left\{v, x_{2}, x_{3}, x_{4}, y_{2}\right\}$, which contradicts $d\left(u_{1}\right) \leq 4$.

For the proof of $s(4,4) \leq 13$ we need an algorithm described in [9]. This algorithm constructs all the $(4,4,13)$-graphs G in which a vertex v has degree five with the vertices in $N_{R}(v)=\{1,2,3,4,5\}$ having degrees $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ respectively where $d_{i} \in\{5,6,7\}$ for $i=1,2,3$. It takes as input all (3,4,5)-graphs and all (3,4,7)graphs and gives as output all $(4,4,13)$-graphs as specified, if any exist. Note that if G is a $(4,4, p)$-graph and v is a vertex with degree d in G, then \bar{G} is also a $(4,4, p)$ graph and v has degree $p-1-d$ in \bar{G}. Thus, if we show that no $(4,4, p)$-graph has a vertex of degree d, we will also have shown that no $(4,4, p)$-graph has a vertex of degree $p-1-d$.

Theorem 2.20. [9] $s(4,4)=13$.

Proof. Suppose G is a $(4,4,13)$-graph. Since $s(3,4)=8$, it follows from Proposition 1.9 that $5 \leq \delta(G) \leq \Delta(G) \leq 7$. The algorithm described above can be used to show that G has no vertex of degree 5 and hence also no vertex of degree 7. A slight adjustment of the algorithm shows that G cannot be 6 -regular. It follows that $s(4,4) \leq 13$. An example of a $(4,4,12)$-graph which shows that $s(4,4)>12$ appears in the following figure.

Figure 2.3: An 11-vertex graph with $\overline{I R}=2$ and $I R=4$.

CHAPTER 3: Mixed Ramsey Numbers $t(m, n)$

In this chapter, we provide all known results of the mixed Ramsey number. We recall that the mixed Ramsey number is the smallest p such that for every graph G of order $p, I R(\bar{G}) \geq m$ or $\beta(G) \geq n$.

We note that $t(1, n)=t(n, 1)=1$ and $t(2, n)=t(n, 2)=n$ for all $n>1$.

Theorem 3.1. [10]
(a) $t(3,3)=6$
(b) $t(3,4)=9$
(c) $t(4,3)=8$
(d) $t(5,3)=13$.

Proof. (a) Follows from the observation that $s(3,3) \leq t(3,3) \leq r(3,3)$ and $s(3,3)=$ $r(3,3)=6$.
(b) First we have that $t(3,4) \leq r(3,4)=9$ and we may easily verify that the graphs G_{1} and G_{3} depicted in Figure 3.1 satisfy $\beta\left(G_{1}\right)=\beta\left(G_{3}\right)=3$ and (by Corollary 1.7) $I R\left(\overline{G_{1}}\right)=I R\left(\overline{G_{3}}\right)=2$. Thus, $t(3,4)>8$.
(c) As $s(4,3) \leq t(4,3) \leq r(4,3)$ we have $8 \leq t(4,3) \leq 9$. We also note that the graphs G_{1}, G_{2}, and G_{3} in Figure 3.1 are the only 8-vertex graphs G with $\beta(\bar{G})=2$ and $\beta(G)=3$. Therefore, $\overline{G_{1}}, \overline{G_{2}}$, and $\overline{G_{3}}$ are the only 8 -vertex graphs G with $\beta(G)=2$ and $\beta(\bar{G})=3$. It is easy to see that each of G_{1}, G_{2}, and G_{3} have an irredundant set of cardinality four (an irredundant set is denoted by the circular vertices). As $\operatorname{IR}(G) \geq \beta(G)$, every 8 -vertex graph G therefore satisfies $\beta(G) \geq 3$ or $I R(\bar{G}) \geq 4$. Hence, $t(4,3)=8$.
(d) By Proposition 1.5, $t(5,3) \leq t(4,3)+t(5,2)=8+5=13$. The graph G depicted in Figure 3.2 is a 12 -vertex graph with $\beta(\bar{G})=2$ and $I R(G)=4$. (We can easily
verify this by computer (see [8]) or directly, a routine but tedious exercise.)

Figure 3.1: Graphs G_{1}, G_{2} and G_{3} used in the proof of Theorem 3.1.

Figure 3.2: A graph G with $\beta(\bar{G})=2$ and $I R(G)=4$.

Theorem 3.2.[10] $t(3,5)=12$.

Proof. Suppose G is a 12-vertex graph with $\operatorname{IR}(\bar{G})<3$ and $\beta(G)<5$. Since $t(3,4)=$ 9 and $t(2,5)=5$, it follows from Proposition 1.10 that $12-9 \leq \delta(G) \leq \Delta(G) \leq 5-1$ so $3 \leq \delta(G) \leq \Delta(G) \leq 4$.

Suppose v has degree 4. Then each vertex of B_{v} must send a red edge to R_{v}, for otherwise R_{v} together with a vertex of B_{v} would constitute an independent set of cardinality five, contradicting $\beta(G)<5$. Thus, Proposition 1.11 can be applied using $X=B_{v}$. We therefore find an independent set of $\left\lceil\frac{7}{2}\right\rceil+1=5$ vertices, a contradiction
of $\operatorname{IR}(G)<5$.
Hence, G is 3-regular. Let v be any vertex of G. At most two vertices of B_{v} send no red edges to R_{v}, for otherwise R_{v} together with two vertices of B_{v} would constitute an independent set of cardinality five. Therefore B_{v} contains a 7 -vertex set X that complies with the hypothesis of Proposition 1.11. It follows that there exists an independent set with $\left\lceil\frac{7}{2}\right\rceil+1=5$ vertices, a contradiction.

Theorem 3.3. $t(3,6)=15$
Proof. The proof of $t(3,6) \leq 15$ is similar to the proof of $s(3,6) \leq 15$ in Theorem 2.4. That $t(3,6) \geq 15$ follows from $s(3,6) \leq t(3,6)$ and $s(3,6)=15$.

3.1 Mixed Ramsey Numbers $t(3,7)$ and $t(3,8)$

The following is based on [5].
In this chapter, we show that $t(3,7)=18$ and $t(3,8)=22$.
Using the fact that $s(m, n) \leq t(m, n) \leq r(m, n)$ and Propostion 1.5 we know that

$$
\begin{gathered}
18=s(3,7) \leq t(3,7) \leq \min \{t(2,7)+t(3,6), r(3,7)\}=\min \{7+15,23\}=22, \\
18=s(3,7) \leq s(3,8) \leq t(3,8) \leq \min \{t(2,8)+t(3,7), r(3,8)\}=\min \{8+22,28\}=28
\end{gathered}
$$

Before presenting the proofs, we first prove a corollary of Proposition 1.11:

Corollary 3.4. If there is a star in $\left\langle V_{>1}(v)\right\rangle_{\text {red }}$ with three end-vertices x_{1}, x_{2}, and $x_{3} \in V_{2}(v)$, then x_{1}, x_{2}, and x_{3} are joined by means of red edges to a common vertex in $V_{1}(v)$.

Proof. If x_{1}, x_{2}, and x_{3} are not joined by means of red edges to a common vertex in $V_{1}(v)$, then each pair of vertices from the set $\left\{x_{1}, x_{2}, x_{3}\right\}$ must have a distinct common
neighbor in $V_{1}(v)$ by Proposition 1.11. But then these three common neighbors in $V_{1}(v)$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$ form a red 6 -cycle with blue diagonals in $\left\langle V_{1}(v) \cup V_{2}(v)\right\rangle$, a contradiction by Corollary 1.7.

As $\left\langle V_{2}(v) \cup\{u\}\right\rangle_{\text {red }}$ is a bipartite graph for any $u \in V_{>2}(v)$ by Proposition 1.11, it follows that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ must itself be bipartite. In the proofs of $t(3,7)=18$ and $t(3,8)=22$, we use the symbol c to denote the number of components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ and we denote the bipartitions of these components by $\left(X_{\ell}, Y_{\ell}\right)$, for all $\ell=1, \ldots, c$. We may assume, without loss of generality, that $\left|X_{\ell}\right| \geq\left|Y_{\ell}\right|$ for all $\ell=1, \ldots, c$. Define $X=\cup_{\ell=1}^{c} X_{\ell}$ and $Y=\cup_{\ell=1}^{c} Y_{\ell}$. Then $|X| \geq|Y|$. We have the following six useful results.

Lemma 3.5. Let v be any vertex of $a(3, n, p)$-graph and suppose $x \in V_{>2}(v)$.
(a) If x sends a red edge to X_{ℓ}, then x sends no red edge to Y_{ℓ} and vice versa for any $\ell=1, \ldots, c$.
(b) If $|X| \geq n-2$ and there is exactly one $\ell \in\{1, \ldots, c\}$ such that $\left|X_{\ell}\right|>\left|Y_{\ell}\right|$, then each vertex in $V_{3}(v)$ sends a red edge to X_{ℓ}.
(c) If $|Y| \geq n-3$, then there exists, for each edge uw in $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$, an $\ell \in\{1, \ldots, c\}$ such that u sends a red edge to X_{ℓ} and w sends a red edge to Y_{ℓ}.
(d) If $|Y| \geq n-3$ and there is an odd cycle in $\left\langle V_{\geq 3}(v)\right\rangle_{b l u e}$, then the pairs of red edges sent to $V_{2}(v)$ by the edges of this cycle according to part (c) above go to at least two components of the bipartite graph $\left\langle V_{2}\right\rangle_{\text {red }}$.
(e) If $|Y| \geq n-3, \Delta(R)=4$ and Z is a partite set of a component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ such that $|Z| \geq 2$, then any vertex $z \in Z$ sends at most one red edge to $V_{3}(v)$.
(f) If $|X| \geq n-2$, then $V_{>3}(v)=\emptyset$.

Proof. (a) If the statement of the lemma is false, then an odd cycle results in the bipartite graph $\left\langle V_{2}(v) \cup\{x\}\right\rangle_{\text {red }}$ guaranteed by Proposition 1.11.
(b) Suppose $|X| \geq n-2$ and that there is exactly one $\ell \in\{1, \ldots, c\}$ such that $\left|X_{\ell}\right|>$ $\left|Y_{\ell}\right|$ and that there is a vertex $u \in V_{3}(v)$ sending no red edge to X_{ℓ}. It follows by part (a) that u does not send a red edge to both X_{i} and Y_{i}, for all $i=1, \ldots, c$. Therefore, we may select from X_{i} or Y_{i} the part, say Z_{i}, from each component $i \in\{1, \ldots, c\}$ sending no red edge to u. But then $\left|\bigcup_{i=1}^{c} Z_{i}\right|=\sum_{i=1}^{c}\left|X_{i}\right| \geq n-2$ and hence $\{u, v\} \cup\left(\bigcup_{i=1}^{c} Z_{i}\right)$ is an independent set of cardinality at least n in the red subgraph of the $(3, n, p)$ graph, a contradiction.
(c) Suppose $|Y| \geq n-3$ and that there is a blue edge $u w$ in $V_{3}(v)$, but no $i \in\{1, \ldots, c\}$ for which u sends a red edge to X_{i} and w sends a red edge to Y_{i}. Then we may select from X_{i} or Y_{i} the part, say Z_{i}, from each component $i \in\{1, \ldots, c\}$ sending no red edge to either u or to w by part (a). But then $\left|\bigcup_{i=1}^{c} Z_{i}\right| \geq \sum_{i=1}^{c}\left|Y_{i}\right| \geq n-3$ and hence $\{u, v, w\} \cup\left(\bigcup_{i=1}^{c} Z_{i}\right)$ is an independent set of cardinality at least n in the red subgraph of the $(3, n, p)$-graph, a contradiction.
(d) Suppose all the pairs of red edges sent to $V_{2}(v)$ by the edges of the odd blue cycle in $\left\langle V_{\geq 3}\right\rangle$ according to part (c) above go to the same component, say $\left(X^{\prime}, Y^{\prime}\right)$, of $V_{2}(v)$. Then it follows by part (a) above that each vertex of the blue cycle in $\left\langle V_{\geq 3}\right\rangle$ sends red edges to either X^{\prime} or Y^{\prime}, but not to both. Therefore, the vertices of the blue cycle in $\left\langle V_{\geq 3}\right\rangle$ send red edges to X^{\prime} or Y^{\prime} in alternating fashion as one traverses the blue cycle, but this is impossible since the blue cycle is odd.
(e) Suppose Z and Z^{\prime} are the partite sets of a component of the bipartite graph $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ such that $|Z| \geq 2$. Since $\langle Z\rangle_{\text {red }}$ is connected, there is a red path $z_{1} z^{\prime} z_{2}$ in $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ with $z_{1}, z_{2} \in Z$ and $z^{\prime} \in Z^{\prime}$. If z_{1} is joined by means of red edges to two vertices $w, w^{\prime} \in V_{3}(v)$, then $w w^{\prime}$ is a blue edge (in order to avoid the formation of a red K_{3}). But then we may assume by part (c) that the blue edge $w w^{\prime}$ sends a red edge $w x$ to a vertex $x \in X_{\ell}$, and another red edge $w^{\prime} y$ to a vertex $y \in Y_{\ell}$. Moreover, $x, y \notin Z$ by part (a). It also follows by Proposition 1.11 that each pair of endpoints
of the red paths $x w z_{1}, z_{1} w^{\prime} y$ and $z_{2} z^{\prime} z_{1}$ must each have a (not necessarily distinct) common neighbor in $V_{1}(v)$, but this is a contradiction, because then z_{1} or one of these common neighbors will have a red degree larger than $\Delta(R)=4$.
(f) Suppose $|X| \geq n-2$ and that $u \in V_{>3}(v)$. Then $\{u, v\} \cup X$ is an independent set of cardinality at least n in the red subgraph of the (3, $n, p)$-graph, a contradiction.

By combining the results of Lemma 3.5, we have the following useful result.

Corollary 3.6. If $|X| \geq n-2,|Y| \geq n-3$ and there is exactly one $\ell \in\{1, \ldots, c\}$ such that $\left|X_{\ell}\right|>\left|Y_{\ell}\right|$, then
(a) the pair of red edges sent by any edge in $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ to $V_{2}(v)$ necessarily goes to a balanced component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, i.e., not to the component $\left(X_{\ell}, Y_{\ell}\right)$.
(b) $\left|X_{\ell}\right| \geq\left|V_{3}(v)\right|$ if $\Delta(R)=4$ and $\left|X_{\ell}\right| \geq 2$.

3.1.1 The Ramsey number $t(3,7)$

Suppose there exists a (3, 7, 18)-graph. Let G and \bar{G} be the red and blue subgraphs, respectively, and denote the minimum and maximum red degrees of G respectively by $\delta(G)$ and $\Delta(G)$. Suppose v is a vertex of red degree $\Delta(G)$. As $t(2,7)=7$ and $t(3,6)=15$, it follows by Proposition 1.10 that

$$
3 \leq \delta(G) \leq \Delta(G) \leq 6
$$

It is, however, possible to improve the bounds on $\Delta(G)$.

Lemma 3.7. $3 \leq \delta(G) \leq \Delta(G) \leq 4$

Proof. Suppose first that $\Delta(G)=6$. Then $V_{>2}(v)=\emptyset$, for the existence of an element $v \in V_{>2}(v)$ would induce an independent set $\{v\} \cup V_{>2}(v)$ of cardinality 7 in G. It follows by Proposition 1.11 that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ is bipartite and since $\left|V_{2}(v)\right|=11$, this
bipartite graph has a partite set, say Z, of cardinality at least 6 . But then $\{v\} \cup Z$ is an independent set of cardinality at least 7 in G, a contradiction.

Suppose next that $\Delta(G)=5$. If $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ has two independent vertices u and w. Then $\{u, w\} \cup V_{1}(v)$ is an independent of cardinality 7 in G, a contradiction. Hence, if $\left|V_{>2}(v)\right| \geq 3$, then $V_{>2}(v)$ induces a red K_{3} in G. Therefore, $\left|V_{>2}(v)\right| \leq 2$, and so $\left|V_{2}(v)\right|=18-1-5-\left|V_{>2}(v)\right| \geq 10$. As $\left\langle V_{2}(v) \cup\{z\}\right\rangle_{\text {red }}$ is bipartite for any vertex $z \in V_{>2}(v)$ by Proposition 1.11, it must have a partite set, say Z^{\prime}, of cardinality at least 6 . But then $\{v\} \cup Z^{\prime}$ is an independent set of cardinality at least 7 in G, again a contradiction.

Figure 3.3: If $\Delta(G)=3$, then $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ is isomorphic to E_{10} or E_{11} [[6], Table 5]

Lemma 3.8. $\Delta(G)=4$

Proof. Suppose $\Delta(G)=3$. Then it follows by Lemma 3.7 that G is 3 -regular and so $\left|V_{2}(v)\right| \leq 6$. However, if $\left|V_{2}(v)\right|<6$, then $\left|V_{>2}(v)\right| \geq 9$, and as $t(3,4)=9$, it follows that there is an irredundant set Z of cardinality 3 in $\left\langle V_{>2}(v)\right\rangle_{\text {blue }}$ or an independent set Z^{\prime} of cardinality 4 in $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$. In the former case, Z is also an irredundant set of cardinality 3 in \bar{G}, a contradiction. In the latter case, $Z^{\prime} \cup V_{1}(v)$ is an independent set of cardinality 7 in G, a contradiction. Thus, $\left|V_{2}(v)\right|=6$ and $\left|V_{>2}(v)\right|=8$. According to [[6], Table 5] $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ must therefore be isomorphic to the red subgraph of one of only two possible (3,4,8)-graphs; these red subgraphs E_{10} and E_{11}
are shown in Figure 3.3. Clearly, $\left\langle V_{>2}(v)\right\rangle_{\text {red }} \not \approx E_{11}$ as at least one vertex of $V_{>2}(v)$ must be adjacent to a vertex of $V_{2}(v)$, but E_{11} is already cubic. If $\left\langle V_{>2}(v)\right\rangle_{\text {red }} \cong E_{10}$, then, since each vertex of $V_{2}(v)$ is adjacent to a vertex in $V_{1}(v)$ and G is cubic, there is only one way to draw the edges between $V_{1}(v)$ and $V_{2}(v)$, as shown in Figure 3.4. Also, since G is cubic, all vertices of degree 2 in E_{10} must be in $V_{3}(v)$, and all vertices of degree 3 in E_{10} must be in $V_{4}(v)$, as shown in Figure 3.4. Since y_{1} is adjacent to exactly one vertex in $V_{2}(v)$, we may assume without loss of generality that y_{1} is not adjacent to either x_{3} or x_{4}. But then $\left\{v_{1}, v_{3}, x_{3}, x_{4}, y_{1}, z_{1}, z_{3}\right\}$ is an independent set of cardinality 7 in G, a contradiction.

Figure 3.4: Part of the (3,7,18)-graph (G, \bar{G}) if $\Delta(G)=3$.

The following properties of G may be deduced from Lemma 3.8.

Lemma 3.9. $V_{1}(v)$ is an independent set of cardinality 4 in G. Furthermore, $8 \leq$ $\left|V_{2}(v)\right| \leq 9,4 \leq\left|V_{3}(v)\right| \leq 5$, and $V_{>3}(v)=\emptyset$.

Proof. It follows by Lemma 3.8 that $\left|V_{1}(v)\right|=4$. In order to avoid triangles in $\left\langle\{v\} \cup V_{1}(v)\right\rangle_{\text {red }}$, it follows that $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ must be edgeless.

Now suppose $\left|V_{>2}(v)\right| \geq 6$. As $t(3,3)=6$, it follows that, in order to avoid a red K_{3}
in G, the subgraph $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ must have an independent set, say Z, of cardinality 3 . But then the set $V_{1}(v) \cup Z$ of cardinality 7 is independent in G. This contradiction shows that $\left|V_{>2}(v)\right| \leq 5$, and hence $\left|V_{2}(v)\right| \geq 8$.

Suppose next that $\left|V_{2}(v)\right| \geq 10$. Then $\left\langle V_{2}(v) \cup\{w\}\right\rangle_{\text {red }}$ is bipartite for any vertex $w \in V_{>2}(v)$ by Proposition 1.11, and hence has a partite set, say Z^{\prime}, of cardinality at least 6 . But then $\{v\} \cup Z^{\prime}$ is an independent set of cardinality at least 7 in G. This contradiciton shows that $\left|V_{2}(v)\right| \leq 9$ and hence that $\left|V_{>2}(v)\right| \geq 4$. If $\left|V_{2}(v)\right|=9$, then $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has a partite set of cardinality at least 5 and hence it follows by Lemma 3.5 (f) that $V_{>3}(v)=\emptyset$. Suppose, therefore, that $\left|V_{2}(v)\right|=8$ and hence $\left|V_{>2}(v)\right|=5$. Then, in order to avoid red triangles, $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ must be a 5 -cycle. However, if any vertex of this 5 -cycle is in $\left\langle V_{>3}(v)\right\rangle_{\text {red }}$, then that vertex will have degree 2 in G, contradicting the result of Lemma 3.7. This contradiction shows that $V_{>3}(v)$ must be empty.

We may now prove our first main result of this section.

Theorem 3.10. $t(3,7)=18$.

Proof. It follows by Lemma 3.9 that there are two cases to consider.
Case $i:\left|V_{1}(v)\right|=4,\left|V_{2}(v)\right|=9$, and $\left|V_{3}(v)\right|=4$. This case may be proven to be impossible by following the exact same arguments as in Case 1 of the proof that $s(3,7) \leq 18$ in [4], because in these arguments no irredundant set of cardinality 7 is ever avoided which is not also an independent set of cardinality 7 .
Case $i i:\left|V_{1}(v)=4,\left|V_{2}(v)\right|=8\right.$, and $| V_{3}(v) \mid=5$. This case may be proven to be impossible by following the exact same arguments as in Case 2 and 3 of the proof that $s(3,7) \leq 18$ in $[4]$ for the same reason as cited above.

3.1.2 The Ramsey number $t(3,8)$

In this section, we show that $t(3,8)=22$. We begin by producing a $(3,8,21)$-graph in the first subsection, showing that $t(3,8)>21$. We show in the following subsection that if a $(3,8,22)$-graph exists, each vertex of such a coloring must have red degree 4 or 5 . This is followed by a proof in the third subsection that no vertex of a $(3,8,22)$ graph can, in fact, have red degree 5, and hence that the red subgraph of such a coloring must be 4-regular. It is finally shown in the last subsection, by considering a number of exhaustive cases, that the assumption of the existence of a 4-regular subgraph of a $(3,8,22)$-graph leads to a contradiction in each case, implying that $t(3,8) \leq 22$.

The lower bound $t(3,8)>21$

Consider the graph H of order 21 in Figure 3.5. It is easily verifiable that H is triangle-free and has no 6 -cycle in which all three diagonals are absent. It therefore follows by Corollary 1.7 that H has no irredundant set of cardinality 3. Furthermore, H has no independent set of order 8 , so that the red-blue edge coloring (H, \bar{H}) is a (3, 8, 21)-graph.

Figure 3.5: The red subgraph H of a (3, 8, 21)-graph (H, \bar{H}).

Properties of any ($3,8,22$)-graph

Suppose there exists a $(3,8,22)$-graph G, and denote the minimum and maximum degrees of G by $\delta(G)$ and $\Delta(G)$, respectively. Suppose v is a vertex of red degree $\Delta(G)$ in this coloring. Then it follows by Proposition 1.10 that

$$
4 \leq \delta(G) \leq \Delta(G) \leq 7
$$

The coloring G has the following properties.
Lemma 3.11. $V_{1}(v)$ is an independent set of $G,\left|V_{2}(v)\right| \leq 11$ and $\left|V_{>2}(v)\right|<t(3,8-$ $\Delta(G))$.

Proof. $V_{1}(v)$ is an independent set in G, because it induces a clique in \bar{G} in order to avoid triangles in $\left\langle\{v\} \cup V_{1}(v)\right\rangle_{\text {red }}$, which are prohibited by Corollary 1.7. Furthermore, $\left|V_{1}(v)\right|=\Delta(G)$.

Suppose $\left|V_{2}(v)\right| \geq 12$ and let $w \in V_{>2}(v)$. Then it follows, by Proposition 1.11, that $X=V_{2}(v) \cup\{w\}$ induces a bipartite subgraph of order at least 13 in G. One of the partite sets, say A, of this bipartite subgraph has cardinality at least 7 . But then the set $A \cup\{v\}$ is an independent set of cardinality at least 8 in G, a contradiction. Hence, $\left|V_{2}(v)\right| \leq 11$.

Now suppose $\left|V_{>2}(v)\right| \geq t(3,8-\Delta(G))$. Then, $\left\langle V_{>2}(v)\right\rangle_{\text {red }}$ possesses an independent set I of cardinality $8-\Delta(G)$. But then $V_{1}(v) \cup I$ is an independent set of cardinality 8 in G, a contradiction. Hence $\left|V_{>2}(v)\right|<t(3,8-\Delta(G))$.

It is possible to improve the bounds on $\Delta(G)$.
Lemma 3.12. $4 \leq \delta(G) \leq \Delta(G) \leq 5$.
Proof. Suppose $\Delta(G)=7$. Then $\left|V_{1}(v)\right|=7,\left|V_{2}(v)\right| \leq 11$ and $\left|V_{>2}(v)\right|<t(3,1)=1$ by Lemma 3.11, and so $\left|V_{1}(v)\right|+\left|V_{2}(v)\right|+\left|V_{>2}(v)\right|<7+11+1=19$, a contradiction.

Next suppose $\Delta(G)=6$. Then $\left|V_{1}(v)\right|=6,\left|V_{2}(v)\right| \leq 11$ and $\left|V_{>2}(v)\right|<t(3,2)=3$ by Lemma 3.11 , and so $\left|V_{1}(v)\right|+\left|V_{2}(v)\right|+\left|V_{>2}(v)\right|<6+11+3=20$, again a contradiction.

The maximum degree of G is not 5

Suppose $\Delta(G)=5$. Then it follows by Lemma 3.11 that $\left|V_{1}(v)\right|=5,\left|V_{2}(v)\right| \leq 11$ and $\left|V_{>2}(v)\right| \leq 5$. But since $\left|V_{1}(v)\right|+\left|V_{2}(v)\right|+\left|V_{>2}(v)\right|=21$, it must hold that $\left|V_{2}(v)\right|=11$ and $\left|V_{>2}(v)\right|=5$.

The subgraph $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ of G is bipartite by Proposition 1.11. Suppose $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ comprises c components and denote the partite sets of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ by $X=\bigcup_{\ell=1}^{c} X_{\ell}$ and $Y=\bigcup_{\ell=1}^{c} Y_{\ell}$. Then we may assume that $|X|=6$ and $|Y|=5$, and that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has exactly one component, say $\left(X_{c}, Y_{c}\right)$, for which $\left|X_{c}\right|=\left|Y_{c}\right|+1$, while all other components are balanced (that is, $\left|X_{\ell}\right|=\left|Y_{\ell}\right|$ for all $\ell=1, \ldots, c-1$). Note that $\left|V_{>3}(v)\right|=\emptyset$ by Lemma 3.5 (f). Hence, $\left\langle V_{3}(v)\right\rangle_{\text {red }}$ must be a 5 -cycle, in order to avoid triangles in G and \bar{G}. Furthermore, $\left|X_{c}\right| \geq 3$, for if $\left|X_{c}\right| \leq 2$, then it would follow by Lemma 3.5 (b) that at least three vertices in $V_{3}(v)$ send red edges to some vertex in X_{c}, thus forming a triangle in G. Since $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ contains an odd cycle by Lemma 3.5 (d), we conclude that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ must have at least two balanced components (that is, at least three components in total). Note that, since $\left\langle V_{3}(v)\right\rangle_{\text {red }}$ is a 5-cycle, only one pair of red edges can go to a (1,1)-component of $\left\langle V_{2}\right\rangle_{\text {red }}$ (for otherwise a K_{3} will be forced in G). In view of these restrictions and $\left|X_{c}\right| \geq 3$, it necessarily follows that

$$
\begin{equation*}
\left|X_{1}\right|=\left|Y_{1}\right|=1,\left|X_{2}\right|=\left|Y_{2}\right|=\left|Y_{3}\right|=2, \text { and }\left|X_{3}\right|=3 . \tag{3.1}
\end{equation*}
$$

Note that the component $\left(X_{2}, Y_{2}\right)$ must receive four pairs of red edges from $V_{3}(v)$, since the component $\left(X_{1}, Y_{1}\right)$ can only receive on such pair of edges.

We show that the cardinalities in (3.1) lead to a contradiction, and hence that our supposition that $\Delta(G)=5$ was wrong. Denote the 5 -cycle of $\left\langle V_{3}(v)\right\rangle_{\text {red }}$ by $w_{1} w_{2} w_{3} w_{4} w_{5} w_{1}$. In order to avoid triangles in G, it follows by Lemma 3.5 (a) that the pairs of red edges sent by the five edges of $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ to $V_{2}(v)$ must occur in alternating fashion between the partite sets X_{2} and Y_{2}, as shown in Figure 3.6. But then the edge $x_{2} y_{2}$ must be blue in order to avoid a red 6 -cycle $x_{2} y_{2} w_{4} w_{2} w_{5} w_{3} x_{2}$ with blue diagonals; notice that the edges $x_{2} w_{2}$ and $y_{2} w_{5}$ are blue by Lemma 3.5 (a). Similarly, the edge $x_{2} y_{1}$ must be blue in order to avoid a red 6 -cycle $x_{2} y_{1} w_{2} w_{4} w_{1} w_{3} x_{2}$ with blue diagonals. But then x_{2} is isolated in the component $\left(X_{2}, Y_{2}\right)$ of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, a contradiction.

$V_{1}(v)$

Figure 3.6: A part of (G, \bar{G}) if $\Delta(G)=5$.

G is not 4-regular

If G is 4-regular, then it follows by Lemma 3.11 that $\left|V_{2}(v)\right| \leq 11$ and $\left|V_{>2}(v)\right|<$ $t(3,4)=9$. Therefore, if G is 4 -regular, then there are five cases to consider, as outlined in Table 3.1. Note that $|Y| \leq|X| \leq 6$ in order to avoid an independent set $\{v\} \cup X$ of cardinality 8 in G; hence the five cases in the table.

Lemma 3.13. Case I in Table 3.1 is impossible.

Case	$\left\|V_{1}(v)\right\|$	$\left\|V_{2}(v)\right\|$	$\left\|V_{\geq 3}(v)\right\|$	$\|X\|$	$\|Y\|$	Considered
I	4	11	6	6	5	in Lemma 3.13
IIa	4	10	7	5	5	in Lemma 3.14
IIb	4	10	7	6	4	in Lemma 3.15
IIIa	4	9	8	5	4	in Lemma 3.18
IIIb	4	9	8	6	3	in Lemma 3.18

Table 3.1: Five cases to consider if G is 4-regular.

Proof. In Case I in Table 3.1 it follows by Lemma 3.5 (f) that $V_{>3}(v)=\emptyset$ and hence that $\left|V_{3}(v)\right|=6$. Furthermore, since $6=|X|>|Y|=5$, there is exactly one component of the bipartite graph $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, say $\left(X_{k}, Y_{k}\right)$, for which $\left|X_{k}\right|>\left|Y_{k}\right|$, while all other components have partite sets of equal cardinalities. It follows by Lemma 3.5 (b) that $\left|X_{k}\right| \neq 1$, since $\Delta(G)=4$. Hence it follows by Corollary 3.6 (b) that $\left|X_{k}\right| \geq\left|V_{3}(v)\right|=6$. But since $\left|X_{k}\right| \leq|X|=6$, we must have that $\left|X_{k}\right|=6$, so that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has only one component. Furthermore, since $r(3,3)=6$ and since $\left\langle V_{3}(v)\right\rangle_{\text {red }}$ contains no K_{3}, it follows that $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ contains a K_{3}, contradicting Lemma 3.5 (d).

Lemma 3.14. Case IIa in Table 3.1 is impossible.

Proof. As $\left\langle V_{\geq 3}(v)\right\rangle_{\text {red }}$ contains no independent set of cardinality 4, it must be the red subgraph of a $t(3,4)$-avoidance graph, i.e., one of the graphs $E_{1}-E_{8}$ in [[6], Figure $1(\mathrm{a})-(\mathrm{h})]$. Note that there are only eight avoidance graphs of order 7 for $s(3,4)[[6]$, Table 3], and since $\beta(G) \leq I R(G)$ for any graph G, it follows that this set of avoidance $s(3,4)$-graphs is also a complete set of avoidance $t(3,4)$-graphs of order 7 . However, since $\Delta\left(E_{i}\right) \leq 3$ for all $i=1, \ldots, 8$ (as G is 4-regular) and since only vertices of E_{i} with degree 4 can be in $\left\langle V_{>3}(v)\right\rangle_{\text {red }}$, we have that $V_{>3}(v)=\emptyset$.

Furthermore, it follows by Lemma 3.5 (d) that the pairs of red edges sent by the edges of a triangle in $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ to $V_{2}(v)$ must go to at least two different components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. This implies that each triangle in $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ sends at least five red edges
to $V_{2}(v)$. Note that if such a triangle sends exactly five red edges to $V_{2}(v)$, then its vertices send respectively 1,2 , and 2 red edges to $V_{2}(v)$ as they are traversed around the triangle. The complement of each of the avoidance graphs E_{3}, E_{4}, E_{7}, and E_{8} has a triangle violating the above condition. Therefore, $\left\langle V_{3}(v)\right\rangle_{\text {red }}$ must be isomorphic to E_{1}, E_{2}, E_{5}, or E_{6}, shown in Figure 3.7.

Figure 3.7: In case IIa of Table $3.1\left\langle V_{3}(v)\right\rangle_{\text {red }}$ must be isomorphic to E_{1}, E_{2}, E_{5}, or E_{6}.

Let A and B be two disjoint subsets of the vertex set of G. Then we denote by $E^{r}(A, B)$ the number of edges of G joining vertices in A with vertices in B, while $E^{r}(A)$ denotes the number of edges of G joining two vertices of A. Since the sum of the vertex degrees in G over $V_{3}(v)$ is

$$
\begin{equation*}
\left|V_{3}(v)\right| \times \delta(G)=7 \times 4=E^{r}\left(V_{2}(v), V_{3}(v)\right)+2 E^{r}\left(V_{3}(v)\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{aligned}
E^{r}(G) & =E^{r}\left(\{v\}, V_{1}(v)\right)+E^{r}\left(V_{1}(v), V_{2}(v)\right)+E^{r}\left(V_{2}(v)\right)+E^{r}\left(V_{2}(v), V_{3}(v)\right)+E^{r}\left(V_{3}(v)\right) \\
& =4+12+E^{r}\left(V_{2}(v)\right)+\left(28-2 E^{r}\left(V_{3}(v)\right)\right)+E^{r}\left(V_{3}(v)\right) \\
& =44+E^{r}\left(V_{2}(v)\right)-E^{r}\left(V_{3}(v)\right) \\
& =44,
\end{aligned}
$$

as $E^{r}(G)=\frac{22 \times 4}{2}=44$. Thus,

$$
\begin{equation*}
E^{r}\left(V_{2}(v)\right)=E^{r}\left(V_{3}(v)\right) \tag{3.3}
\end{equation*}
$$

Furthermore, we observe from Figure 3.7 that $E^{r}\left(V_{3}(v)\right)=6,7$, or 8 , and hence we have three subcases to consider.

Subcase i : $E^{r}\left(V_{3}(v)\right)=6$. In this subcase, it follows by (3.2) that $E^{r}\left(V_{2}(v), V_{3}(v)\right)=$ $28-12=16$. No vertex $x \in V_{2}(v)$ can receive three red edges from $V_{3}(v)$, for otherwise x would be isolated in $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, which is impossible, since all components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ are balanced in Case IIa. It follows by Lemma 3.5 (e) that each vertex in $V_{2}(v)$ receiving two red edges from $V_{3}(v)$ must be in a $(1,1)$-component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. Furthermore, if $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has more than three $(1,1)$-components, then the maximum number of edges in $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ is 5 , contradicting the fact that $E^{r}\left(V_{2}(v)\right)=6$. Therefore, to accommodate all 16 red edges from $V_{3}(v)$, it follows that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ necessarily comprises three (1,1)-components and one (2,2)-component, in which case each of the six vertices in the $(1,1)$-components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ receives exactly two red edges from $V_{3}(v)$.

Let $\left\langle\left\{x_{1}, y_{1}\right\}\right\rangle_{\text {red }}$ be a $(1,1)$-component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, and let $N\left(x_{1}\right) \cap V_{3}(v)=$ $\left\{w_{1}, w_{2}\right\}$ and $N\left(y_{1}\right) \cap V_{3}(v)=\left\{w_{3}, w_{4}\right\}$. Note that w_{1}, w_{2}, w_{3}, and w_{4} are all distinct in order to avoid triangles in G. It follows by Lemma 3.5 (c) that the blue edge $w_{1} w_{2}$ must send a pair of red edges, $w_{1} x_{2}$ and $w_{2} y_{2}$, to some component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. Furthermore, it follows by Proposition 1.11 and the fact that x_{1} has degree 4 that x_{1}, x_{2}, and y_{2} must all have one common neighbor, u, in $V_{1}(v)$. Note that since x_{2} and y_{2} are both adjacent to u, both x_{2} and y_{2} must be in the $(2,2)$-component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ in which case $x_{2} y_{2}$ must be blue in order to avoid a red K_{3} in G. Similarly, as the $(2,2)$-component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ contains exactly three red edges, the blue edge $w_{3} w_{4}$
must also send red edges to x_{2} and y_{2}, but this contradicts Lemma 3.5 (e).
Subcase ii: $E^{r}\left(V_{3}(v)\right)=7$. In this subcase it follows by (3.2) that $E^{r}\left(V_{2}(v), V_{3}(v)\right)=$ $28-14=14$. Again, since no vertex in $V_{2}(v)$ can receive three red edges from $V_{3}(v)$, there must be at least four vertices, x_{1}, y_{1}, x_{3}, and y_{3}, in $V_{2}(v)$ which each receives two red edges from $V_{3}(v)$. Hence there are at least two (1,1)-components in $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. Since $E^{r}\left(V_{2}(v)\right)=7$, there can be at most three $(1,1)$-components in $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. Without loss of generality, let x_{1} and y_{1} be in the same $(1,1)$-component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, and let w_{1}, w_{2}, w_{3}, and w_{4} be the neighbors of x_{1} and y_{1} in $V_{3}(v)$. As in subcase i, the blue edge $w_{1} w_{2}$ must send a pair of red edges, say $w_{1} x_{2}$ and $w_{2} y_{2}$, to some component of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. Also, x_{1}, x_{2}, and y_{2} must have a common neighbor, say u, in $V_{1}(v)$. Since $V_{3}(v)$ contains exactly seven vertices, it follows by the pigeonhole principle that at least one of x_{3} or y_{3} must be joined by means of a red edge to one of w_{1}, w_{2}, w_{3}, or w_{4}. We may therefore assume that $x_{3} w_{1}$ is red. But then x_{1}, x_{2}, and x_{3} must all have a common neighbor in $V_{1}(v)$, implying $d\left(x_{1}\right)>4$ and $d(u)>4$, a contradiction of $\Delta(G)=4$.

Subcase iii: $E^{r}\left(V_{3}(v)\right)=8$ (implying $E^{r}\left(V_{2}(v)\right)=8$ and $\left\langle V_{3}(v)\right\rangle_{\text {red }} \cong E_{6}$). In this subcase, it follows by (3.2) that $E^{r}\left(V_{2}(v), V_{3}(v)\right)=28-16=12$. There are at least two vertices, x_{1} and x_{2} say, in $V_{2}(v)$ that each receive two red edges from $V_{3}(v)$. Label the vertices of $V_{3}(v)$ as in Figure 3.8.

We consider to which pairs of vertices in $V_{3}(v)$ the vertices x_{1} and x_{2} can send red edges. Note that x_{1} cannot send red edges to pairs of vertices of the form $\left\{w_{4}, w_{i}\right\}$ or $\left\{w_{7}, w_{j}\right\}$, where $w_{4} w_{i}$ and $w_{7} w_{j}$ are blue edges, since w_{4} or w_{7} will be saturated in terms of its red degree, therefore either contradicting Lemma 3.5 (c) or forming a red K_{3} in G. Hence the vertex x_{1} must send red edges to two nonadjacent vertices in $\left\{w_{1}, w_{2}, w_{3}, w_{5}, w_{6}\right\}$. However, x_{1} may not send red edges to the following pairs of vertices:

- $\left\{w_{2}, w_{6}\right\}$, for otherwise $x_{1} w_{2} w_{3} w_{4} w_{5} w_{6} x_{1}$ would form a red 6 -cycle with blue diagonals,
- $\left\{w_{2}, w_{5}\right\}$, by symmetry, for the same reason as above,
- $\left\{w_{1}, w_{5}\right\}$, for otherwise $x_{1} w_{1} w_{2} w_{3} w_{4} w_{5} x_{1}$ would form a red 6 -cycle with blue diagonals,
- $\left\{w_{1}, w_{6}\right\}$, by symmetry, for the same reason as above.

Figure 3.8: A subgraph of G in Subcase iii.

Therefore, the only pairs of vertices in $V_{3}(v)$ to which the vertex x_{1} may send red edges are $\left\{w_{1}, w_{6}\right\},\left\{w_{1}, w_{3}\right\}$, or $\left\{w_{3}, w_{5}\right\}$. First consider the case where x_{1} sends red edges to $\left\{w_{1}, w_{3}\right\}$ and x_{2} sends red edges to $\left\{w_{1}, w_{6}\right\}$ or $\left\{w_{3}, w_{5}\right\}$. Suppose, without loss of generality, that x_{2} sends red edges to $\left\{w_{1}, w_{6}\right\}$. Then, w_{1} is saturated in terms of its red degree, which means that the blue edge $w_{1} w_{3}$ cannot send a pair of red edges to $V_{2}(v)$ as dictated by Lemma 3.5. We conclude, without loss of generality, that x_{1} must send red edges to $\left\{w_{1}, w_{6}\right\}$, while x_{2} sends red edges to $\left\{w_{3}, w_{5}\right\}$ (see Figure 3.8).

Note that $x_{1} x_{2}$ must be blue, for otherwise $x_{1} x_{2} w_{5} w_{4} w_{7} w_{1} x_{1}$ would form a red 6 -cycle with blue diagonals. Therefore x_{1} and x_{2} are in different $(1,1)$-components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$, and the blue edges $w_{1} w_{6}$ and $w_{3} w_{5}$ must send pairs of red edges to the remaining components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$. Suppose, without loss of generality, that w_{1}, w_{3},
and w_{6} send red edges to $z_{1}, z_{2} \in X$ and $z_{3} \in Y$, as shown in Figure 3.8. Then we can select two vertices, v_{1} and v_{2}, from Y which are not joined by means of red edges to the saturated vertices $\left\{w_{1}, w_{3}, w_{6}\right\}$, which means that $\left\langle\left\{v, v_{1}, v_{2}, x_{1}^{\prime}, x_{2}^{\prime}, w_{1}, w_{5}, w_{6}\right\}\right\rangle_{\text {blue }}$ is a clique of order 8 in \bar{G}, a contradiction.

Lemma 3.15. Case IIb in Table 3.1 is impossible.

Proof. In this case, there are two possibilities to consider, namely where $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has two unbalanced components, or where $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has one unbalanced component. We consider the case where $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has two unbalanced components first.

Let $\left(X_{i}, Y_{i}\right)$ be the components in question with $\left|X_{i}\right|=\left|Y_{i}\right|+1$ for $i=1,2$. It follows by Lemma 3.5 (f) that $V_{>3}(v)=\emptyset$. Every vertex $w \in V_{3}(v)$ must send a red edge to $X_{1} \cup X_{2}$ in order to avoid the clique of order 8 in \bar{G} induced by $\{v, w\} \cup X_{1} \cup X_{2}$ together with the partite sets of the balanced components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ which do not receive red edges from w. Let t denote the number of red edges incident with vertices in $X_{1} \cup X_{2}$. Then

$$
\begin{aligned}
t & =E^{r}\left(X_{1} \cup X_{2}, V_{3}(v)\right)+E^{r}\left(X_{1} \cup X_{2}, Y_{1} \cup Y_{2}\right)+E^{r}\left(X_{1} \cup X_{2}, V_{1}(v)\right) \\
& \geq 7+\left(2\left|X_{1}\right|-2\right)+\left(2\left|X_{2}\right|-2\right)+\left|X_{1}\right|+\left|X_{2}\right| \\
& =3+3\left|X_{1}\right|+3\left|X_{2}\right|
\end{aligned}
$$

Let $\epsilon=t-\left(3+3\left|X_{1}\right|+3\left|X_{2}\right|\right)$. So, $3+3\left|X_{1}\right|+3\left|X_{2}\right|+\epsilon \leq 4\left|X_{1}\right|+4\left|X_{2}\right|$ implies

$$
\begin{equation*}
3+\epsilon \leq\left|X_{1}\right|+\left|X_{2}\right| \tag{3.4}
\end{equation*}
$$

We show that there is a pair of vertices in $V_{3}(v)$ which have a common neighbor $x_{1} \in X_{i}$ such that $\left|X_{i}\right| \geq 2$, for some $i \in\{1,2\}$. Since $\left|X_{1}\right|+\left|X_{2}\right| \geq 3$, we have that $\left|X_{1}\right| \geq 2$ or $\left|X_{2}\right| \geq 2$. Assume, without loss of generality, that $\left|X_{1}\right| \geq 2$. Suppose
every vertex in X_{1} sends at most one red edge to $V_{3}(v)$. Then the remaining vertices in $V_{3}(v)$ send red edges to X_{2}. If $\left|X_{2}\right|=1$ (implying $\left|X_{1}\right|=5,\left|Y_{1}\right|=|Y|=4,\left|Y_{2}\right|=0$), then $\left|\{v\} \cup N^{r}\left(X_{2}\right) \cup X_{1}\right| \geq 1+2+5=8$ in G, a contradiction. So, $\left|X_{2}\right| \geq 2$. Since $\left|V_{3}(v)\right|=7$ and $|X|=6\left(\left|X_{1}\right| \leq 4\right)$, there exist two vertices $w_{1}, w_{2} \in V_{3}(v)$ that send red edges to a vertex $x_{1} \in X_{2}$. Assume therefore, without loss of generality, that $x_{1} \in X_{2}, x_{1} w_{1}, x_{1} w_{2}$ are red, and $\left|X_{2}\right| \geq 2$.

As $\left|X_{2}\right| \geq 2$ there is a red path $x_{1} y x_{2}$ with $x_{1}, x_{2} \in X_{2}$ and $y \in Y_{2}$. By Proposition 1.11, $N^{r}\left(x_{1}\right) \cap N^{r}\left(x_{2}\right) \cap V_{1}(v)=\{u\} \in V_{1}(v)$ thus saturating the vertex x_{1}. Now, the vertices w_{1} and w_{2} can send at most one red edge to $V_{2}(v) \backslash X_{2}$, for otherwise u or x_{1} will be oversaturated in order to accomodate the common neighbors in $V_{1}(v)$ of the endpoints of the red paths of order 3 formed in $V_{2}(v) \cup V_{3}(v)$, as necessitated by Proposition 1.11. However, if this additional red edge does not go to X_{1}, or if w_{1} and w_{2} do not send additional red edges to $V_{3}(v)$, then a clique of order 8 is induced in \bar{G} by $\left\{v, w_{1}, w_{2}\right\} \cup X_{1} \cup X_{2}$ together with the partite sets of the balanced components of $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ that do not receive a red edge from either w_{1} or w_{2}.

Assume therefore, without loss of generality, that $w_{2} x_{3}$ is red, for some $x_{3} \in X_{1}$. Then, $u x_{3}$ is red by Proposition 1.11. Note that $\epsilon \geq 1$ since w_{2} now sends two edges to $X_{1} \cup X_{2}$. We now consider, as subcases, the possible cardinalities of X_{1} and X_{2}. Note that if $\left|X_{1}\right| \geq 2$, then $\epsilon \geq 2$ since x_{3} is part of a red path of order three whose endpoints have a common neighbor in $V_{1}(v)$ other than u, by Proposition 1.11.

Before continuing, we note the following two useful observations.
Observation 3.16. Let $S=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$. If $\langle S\rangle_{\text {red }} \subseteq\left\langle V_{2}(v)\right\rangle_{\text {red }}$ is a path $p_{1} p_{2} p_{3} p_{4} p_{5}$ of order 5, then the pairs of vertices $\left\{p_{1}, p_{3}\right\},\left\{p_{2}, p_{4}\right\}$, and $\left\{p_{3}, p_{5}\right\}$ all have distinct common neighbors in $V_{1}(v)$.

Proof. It follows by Proposition 1.11 that all three pairs of vertices must have common
neighbors in $V_{1}(v)$. To avoid triangles in G, only the pairs of vertices $\left\{p_{1}, p_{3}\right\}$ and $\left\{p_{3}, p_{5}\right\}$ can possibly share a common neighbor in $V_{1}(v)$. Suppose p_{1}, p_{3}, and p_{5} all have the same common neighbor, u_{1}, and that p_{2} and p_{4} have the same common neighbor, u_{2}, in $V_{1}(v)$. Then $u_{1} p_{1} p_{2} u_{2} p_{4} p_{5} u_{1}$ is a red 6 -cycle with blue diagonals, a contradiction.

Observation 3.17. If $y \in Y$ and $\left|X_{i}\right|=\left|Y_{i}\right|+1$ for $i=1,2$, then $E^{r}(\{y\}, X) \leq 2$.

Proof. Suppose, to the contrary, that there is a vertex $y_{2} \in Y$ which sends red edges to $x_{1}, x_{2}, x_{3} \in X$. Then x_{1}, x_{2}, and x_{3} must have a common neighbor, $u_{1} \neq u$, in $V_{1}(v)$ by Corollary 3.4. But then $\left\langle\left\{u, u_{1}\right\} \cup Y \cup\left\{w_{1}, w_{2}\right\}\right\rangle_{\text {blue }}$ is a clique of order 8 in \bar{G}, a contradiction.

From the above observations it is easy to see that $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ cannot contain a $(4,3)$-component (or larger): It follows by Observation 3.17 that $\left\langle X_{i} \cup Y_{i}\right\rangle_{\text {red }}$ is either a path of order 7 or else X_{i} contains a vertex x which sends three red edges to Y_{i}. In both cases all the common neighbors cannot be accommodated (either because x is oversaturated in terms of its red degree or there are not enough vertices in $V_{1}(v)$, as may be seen by applying Observation 3.16 on the three subpaths of order 5 of p_{1}, \ldots, p_{7} starting with p_{1}, p_{2}, and p_{3}, respectively). We therefore complete the proof of the lemma by considering two subcases.

Subcase i : $\left|X_{1}\right|=2$. Since $\epsilon \geq 1$, it follows by (3.4) that $\left|X_{1}\right|+\left|X_{2}\right| \geq 4$ and hence $\left|X_{1}\right| \geq 2$. But then $\epsilon \geq 2$ implying that $\left|X_{1}\right| \geq 3$ by (3.4). Therefore, $\left|X_{1}\right|=3$, and it follows by Observation 3.17 that $\left\langle X_{1} \cup Y_{1}\right\rangle_{\text {red }}$ is a path, $p_{1} p_{2} p_{3} p_{4} p_{5}$, of order 5 . But then it follows by Observation 3.16 that $\epsilon \geq 3$, since p_{3} sends two red edges to $V_{1}(v)$, contradicting the cardinality of $\left|X_{1}\right|$ in view of (3.4).

Subcase ii: $\left|X_{2}\right|=3$. In this subcase $\left\langle X_{2} \cup Y_{2}\right\rangle_{\text {red }}$ is a path of order 5 , so $\epsilon \geq 2$. Thus, $\left|X_{1}\right|+\left|X_{2}\right| \geq 5$, and so $\left|X_{1}\right| \geq 2$. If $\left|X_{1}\right|=2$, then $\epsilon \geq 3$, again a contradiction,
as above. We conclude that $\left|X_{1}\right|=3$. But if $\left\langle X_{1} \cup Y_{1}\right\rangle_{\text {red }}$ and $\left\langle X_{2} \cup Y_{2}\right\rangle_{\text {red }}$ each contains a path of order 5 , then the required number of unique common neighbors forces $d(v)>4=\Delta(G)$, a contradiction.

The final possibility to consider is when $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ has only one unbalanced component, $\left(X_{1}, Y_{1}\right)$, with $\left|X_{1}\right|=\left|Y_{1}\right|+2$. Using a similar argument to that used to obtain (3.4), it may be shown that $\left|X_{1}\right| \geq 4+\epsilon$. As $\left|X_{1}\right| \leq 6$, we have that $\epsilon \leq 2$. Notice that if $\epsilon=2$, then $\left\langle V_{2}(v)\right\rangle_{\text {red }}$ comprises only one component, and $V_{3}(v)$ sends no red edges to Y. But then $V_{3}(v) \cup Y \cup\{v\}$ induces a clique of order 8 in \bar{G} since $\left\langle V_{3}(v)\right\rangle_{\text {blue }}$ must contain a triangle. We therefore conclude that $\epsilon \leq 1$.

We complete the proof by showing that the above inequality cannot be satisfied. The subgraph $\left\langle X_{1} \cup Y_{1}\right\rangle_{\text {red }}$ must either be a connected graph containing a cycle or must contain an induced path of order $5, p_{1} p_{2} p_{3} p_{4} p_{5}$. In the former case, $\epsilon \geq 1$. In the latter case, it follows by Observation 3.16 that p_{3} sends two red edges to $V_{1}(v)$ and so again, $\epsilon \geq 1$. Note that it now follows that $\left|X_{1}\right|=5$. Also, as before, there must be two vertices in $V_{3}(v), w_{1}$ and w_{2}, which send red edges to $x_{1} \in X_{1}$. Using a similar argument as in the subcase with two unbalanced components, it follows that w_{1} or w_{2} must send a red edge to $X_{1}-\left\{x_{1}\right\}$ in order to avoid a clique of order 8 in \bar{G}, implying $\epsilon \geq 2$.

Lemma 3.18. Cases IIIa and IIIb in Table 3.1 are impossible.

Proof. In both cases, $\left|V_{\geq 3}(v)\right|=8$, so $\left\langle V_{\geq 3}(v)\right\rangle_{\text {red }}$ has to be the red subgraph of a $(3,4,8)$-coloring, i.e., one of the graphs E_{10} or E_{11} in Figure 3.9, for otherwise a triangle would result in G or else a clique of order 8 would be induced in \bar{G} by the vertices in $V_{1}(v)$ together with four vertices in $V_{\geq 3}(v)$. Since neither E_{10} nor E_{11} has a vertex of degree 4, it follows in both cases that, in fact, $V_{\geq 4}(v)=\emptyset$.

We first consider the possibility that $\left\langle V_{3}(v)\right\rangle_{\text {red }} \cong E_{10}$ with vertices labeled as

Figure 3.9: The only two possibilities for the red subgraph of a (3,4,8)-graph [[6], Table 4].
in Figure 3.9. Each of the vertices w_{1}, w_{2}, w_{3}, and w_{4} has two neighbors in $V_{2}(v)$. We show that these neighbors are, in fact, distinct, i.e., that there are eight such neighbors in total. Without loss of generality, we show only that the neighbors of w_{1} are distinct from those of w_{2}, w_{3}, and w_{4}. First, w_{1} and w_{4} cannot have a common neighbor in $V_{2}(v)$, for otherwise a triangle would result in G. Furthermore, if w_{1} and w_{3} have a common neighbor, y, in $V_{2}(v)$, then the red 6 -cycle with blue diagonals $w_{3} y w_{1} w_{4} x_{3} x_{4} w_{3}$ results in (G, \bar{G}), unless the edge $x_{3} y$ is red. But, $w_{3} y w_{1} x_{2} x_{1} w_{2} w_{3}$ is similarly a red 6 -cycle with blue diagonals in (G, \bar{G}), unless the edge $x_{1} y$ is red. But $x_{1} y$ and $x_{3} y$ cannot both be red, for this would oversaturate the vertex y. A similar argument shows that w_{1} and w_{2} cannot have a common neighbor (in this case the two red 6 -cycles with blue diagonals are $w_{2} y w_{1} x_{2} x_{4} w_{3} w_{2}$ and $w_{2} y w_{1} w_{4} x_{3} x_{1} w_{2}$).

Define $Z_{1}=\left(N\left(w_{1}\right) \cap V_{2}(v)\right) \cup\{x\}$ and $Z_{i}=N\left(w_{i}\right) \cap V_{2}(v)$ for all $i \in\{2,3,4\}$, and let $x v_{1}$ be red without loss of generality, as shown in Figure 3.10. Then each pair of vertices in Z_{i} must have a common neighbor, v_{i}, in $V_{1}(v)$ by Proposition 1.11, for all $i \in\{1,2,3,4\}$. Note that $N\left(w_{2}\right) \cup\left\{w_{1}, v_{1}\right\}, N\left(w_{3}\right) \cup\left\{w_{4}, v_{1}\right\}$, and $N\left(w_{4}\right) \cup\left\{w_{3}, v_{1}\right\}$ each forms a clique of order 6 in \bar{G}. Therefore, in order to avoid a clique of order 8 in \bar{G}, there must be a red edge between Z_{2} and $\left\{v_{3}, v_{4}\right\}$, between Z_{3} and $\left\{v_{2}, v_{4}\right\}$, and

Figure 3.10: A part of (G, \bar{G}) in the cases IIIa and IIIb, if $\left\langle V_{3}(v)\right\rangle_{\text {red }} \cong E_{11}$.
Z_{4} and $\left\{v_{2}, v_{3}\right\}$. Hence there are three red edges between $Z_{2} \cup Z_{3} \cup Z_{4}$ and $\left\{v_{2}, v_{3}, v_{4}\right\}$. Since G is 4-regular, there cannot be any red edges between Z_{1} and $\left\{v_{2}, v_{3}, v_{4}\right\}$. But then a clique of order 8 is induced in \bar{G} by the vertices in $Z_{1} \cup\left\{v_{2}, v_{3}, v_{4}, w_{3}, w_{4}\right\}$, a contradiction.

Consider next the possibility that $\left\langle V_{3}(v)\right\rangle_{\text {red }} \cong E_{11}$ with vertices labelled w_{1}, \ldots, w_{8} as in Figure 3.9(b). In Case IIIa of Table 3.1 the vertices in $\left\{v, w_{i}, w_{j}\right\} \cup X$ will induce a clique of order 8 in \bar{G} if a blue edge $w_{i} w_{j}$ in $V_{3}(v)$ sends both its red edges to Y. Similarly, the vertices in $\left\{v, w_{i}, w_{j}, w_{k}\right\} \cup Y$ will induce a clique of order 8 in \bar{G} if a blue triangle $w_{i} w_{j} w_{k}$ in $V_{3}(v)$ sends all its red edges to X in Case IIIa of Table 3.1. Label the vertices in $V_{3}(v)$ by means of the symbols x and y to indicate whether the vertices send red edges to X or Y, respectively. Thus, in order to avoid a clique of order 8 in \bar{G}, the vertices in $V_{3}(v)$ should be labeled x and y in such a way that the endpoints of every blue edge in $V_{3}(v)$ are not both labeled y, and such that the vertices of a blue triangle in $V_{3}(v)$ are not all labeled x. We show that this is not possible. Since not all vertices in $V_{3}(v)$ can be labeled x, some vertex, w_{1} say, must be labeled y. To avoid labeling both endpoints of blue edges in $V_{3}(v)$ with the symbol y, the vertices w_{3}, w_{4}, w_{6}, and w_{7} must all be labeled x. Furthermore, in order to
avoid labeling all the vertices of the triangles $\left\langle\left\{w_{3}, w_{6}, w_{8}\right\}\right\rangle_{\text {blue }}$ and $\left\langle\left\{w_{2}, w_{4}, w_{7}\right\}\right\rangle_{\text {blue }}$ with the symbol x, the vertices w_{2} and w_{8} must both be labeled y. But then both endpoints of the blue edge $w_{2} w_{8}$ in $V_{3}(v)$ are labeled y, a contradiction.

The following result therefore holds in view of Lemmas 3.13, 3.14, 3.15, 3.18.

Theorem 3.19. $t(3,8)=22$.

CHAPTER 4: Conclusion

Using the results of this thesis and various sources, we have the following table:

Irredundant Ramsey Number	Mixed irredundant Ramsey Number	Classical Ramsey Number
$s(3,3)=6$	$t(3,3)=6$	$r(3,3)=6$
$s(3,4)=6$	$t(4,3)=8$	$r(3,4)=9$
$s(3,5)=12$	$t(3,4)=9$	$r(3,5)=14$
$s(3,6)=7$	$t(3,5)=12$	$r(3,6)=18$
$s(3,7)=18$	$t(5,3)=13$	$r(3,7)=23$
$s(4,4)=13$	$t(3,6)=15$	$r(3,8)=28$
	$t(6,3)=17$	$r(3,9)=36$
	$t(4,4)=14$	$r(4,4)=18$
	$t(3,7)=18$	$r(4,5)=25$
	$t(3,8)=22$	

Table 4.1: Ramsey numbers known exactly.

Using the results of the previous chapter and the fact that $s(m, n) \leq t(m, n) \leq r(m, n)$, it also follows that

$$
\begin{array}{ll}
14 \leq t(4,5) \leq 25, & 14 \leq t(5,4) \leq 25, \\
18 \leq t(7,3) \leq 23, & 18 \leq t(8,3) \leq 28, \\
18 \leq s(3,8) \leq 22, & 13 \leq s(4,5) \leq 25
\end{array}
$$

These are the six smallest unknown Ramsey numbers involving the graph theoretic notion of irredundance, and are certainly worthy of further investigation.

REFERENCES

[1] Berge, C. (1962). The theory of graphs and its applications. Translated by Alison Doig. Methuen \& Co. Ltd., London.
[2] Berge, C. (1976). Graphs and hypergraphs. North-Holland Publishing Co., Amsterdam, revised edition. Translated from the French by Edward Minieka, NorthHolland Mathematical Library, Vol. 6.
[3] Brewster, R. C., Cockayne, E. J., and Mynhardt, C. M. (1989). Irredundant Ramsey numbers for graphs. J. Graph Theory, 13(3):283-290.
[4] Brewster, R. C., Cockayne, E. J., and Mynhardt, C. M. (1990). The irredundant Ramsey number $s(3,6)$. Quaestiones Math., 13(2):141-157.
[5] Burger, A. P., Hattingh, J. H., and van Vuuren, J. H. (2012). The mixed irredundant Ramsey numbers $t(3,7)=18$ and $t(3,8)=22$. Submitted.
[6] Burger, A. P. and van Vuuren, J. H. (2011). Avoidance colourings for small nonclassical Ramsey numbers. Discrete Math. Theor. Comput. Sci., 13(2):81-96.
[7] Chen, G. and Rousseau, C. C. (1995). The irredundant Ramsey number $s(3,7)$. J. Graph Theory, 19(2):263-270.
[8] Cockayne, E. J. (1980). A Fortran program for computation of extremum dominating, independent and irredundant sets in graphs. Univ. of Victoria Math. Dept. Internal Report DM-209-IR.
[9] Cockayne, E. J., Exoo, G., Hattingh, J. H., and Mynhardt, C. M. (1992). The irredundant Ramsey number $s(4,4)$. Utilitas Math., 41:119-128.
[10] Cockayne, E. J., Hattingh, J. H., Kok, J., and Mynhardt, C. M. (1990). Mixed Ramsey numbers and irredundant Turán numbers for graphs. Ars Combin., 29(C):57-68. Twelfth British Combinatorial Conference (Norwich, 1989).
[11] Cockayne, E. J., Hattingh, J. H., and Mynhardt, C. M. (1991). The irredundant Ramsey number $s(3,7)$. Utilitas Math., 39:145-160.
[12] Cockayne, E. J., Hedetniemi, S. T., and Miller, D. J. (1978). Properties of hereditary hypergraphs and middle graphs. Canad. Math. Bull., 21(4):461-468.
[13] De Jaenisch, C. F. (1862). Traite des applications de l'analyse mathematiques au jeu des echecs. Leningrad.
[14] Hattingh, J. H. (1990). On irredundant Ramsey numbers for graphs. J. Graph Theory, 14(4):437-441.
[15] Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. (1998). Fundamentals of domination in graphs, volume 208 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York.
[16] Liu, C. L. (1968). Introduction to combinatorial mathematics. McGraw-Hill Book Co., New York.
[17] Ore, O. (1962). Theory of graphs. American Mathematical Society Colloquium Publications, Vol. XXXVIII. American Mathematical Society, Providence, R.I.

