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CHAPTER 1: Introduction

A graph G is a finite nonempty set of objects, called vertices (singular vertex ), to-

gether with a (possibly empty) set of unordered pairs of distinct vertices, called edges.

The set of vertices of the graph G is called the vertex set of G, denoted by V (G), and

the set of edges is called the edge set of G, denoted by E(G). The edge e = {u, v}

is said to join the vertices u and v. If e = {u, v} is an edge of G, then u and v

are adjacent vertices, while u and e are incident, as are v and e. Furthermore, if e1

and e2 are distinct edges of G incident with a common vertex, then e1 and e2 are

adjacent edges. It is convenient to henceforth denote an edge by uv or vu rather than

by {u, v}. The cardinality of the vertex set of a graph G is called the order of G

and is denoted by n(G), or more simply by n when the graph under consideration is

clear, while the cardinality of its edge set is the size of G, denoted by m(G) or m. A

(n,m)-graph has order n and size m. The graph of order n = 1 is called the trivial

graph. A nontrivial graph has at least two vertices.

A subgraph of a graph G is a graph all of whose vertices belong to V (G) and all

of whose edges belong to E(G). If H is a subgraph of G, then we write H ⊆ G. If a

subgraph H of G contains all the vertices of G, then H is called a spanning subgraph

of G.

If G is a graph, we form its complement, G, by taking the vertex set of G and

joining two vertices by an edge whenever they are not joined in G. If H is a subgraph

of G, then the graph G\E(H) is the complement of G relative to H.

An important type of subgraph that we will encounter is an induced subgraph.

If W is a nonempty subset of vertices of a graph G, then the subgraph 〈W 〉 of G

induced by W is the graph having vertex set W and whose edge set consists of all

those edges of G incident with two vertices in W . A subgraph H of G is called a
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vertex-induced subgraph, or simply induced subgraph, of G if H = 〈W 〉 for some subset

W of V (G). Hence, if H is an induced subgraph of G, then every edge of G incident

with two vertices in V (H) belongs to E(H) (so two vertices are adjacent in H if and

only if they are adjacent in G). When the context may be unclear, we denote the

induced subgraph of G by G〈W 〉 and the induced subgraph of G by G〈W 〉. Similarly,

if F is a nonempty subset of edges of G, then the subgraph 〈F 〉 induced by F is the

graph whose vertex set consists of all those vertices of G incident with an edge in

F and whose edge set is F . A subgraph J of a graph G is called an edge-induced

subgraph of G if J = 〈F 〉 for some subset F of E(G).

A complete graph or clique is a graph in which every two distinct vertices are

adjacent. The complete graph of order n is denoted by Kn and is called an n-clique.

The empty graph is a graph containing no edges.

Let u and v be two (not necessarily distinct) vertices of a graph G. A u-v walk in

G is a finite, alternating sequence of vertices and edges that begin with the vertex u

and ends with the vertex v and in which each edge of the sequence joins the vertex

that precedes it to the vertex that follows it in the sequence. The number of edges

in the walk is called the length of the walk. If all the edges of a walk are different,

then the walk is called a trail. If, in addition, all the vertices are different, then the

trail is called a path. A u-v walk is closed if u = v and open otherwise. A closed walk

in which all the edges are different is a closed trail. A closed trail which contains at

least three vertices is called a circuit. A circuit which does not repeat any vertices

(except the first and last) is called a cycle. The length of a cycle (or circuit) is the

number of edges in the cycle (or circuit). A cycle of length n is an n-cycle. A cycle

is even if its length is even; otherwise it is odd.

A circulant graph Cn{k0, k1} is a graph with vertex set {v0, v1, . . . , vn−1}, and

edge set {{vi, vi+j} : i ∈ {0, 1, . . . , n − 1} and j ∈ {k0, k1}}. All arithmetic on the
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indices is assumed to be modulo n.

Of particular importance for us will be bipartite graphs. A bipartite graph is a

graph whose vertex set can be partitioned into two sets V1 and V2 (called partite

sets) in such a way that each edge of the graph joins a vertex of V1 to a vertex

of V2. A complete bipartite graph is a bipartite graph with partite sets V1 and V2

having the added property that every vertex of V1 is adjacent to every vertex of V2.

If |V1| = r and |V2| = s, then this graph is denoted by K(r, s) or, more commonly,

Kr,s. A complete bipartite graph of the form K1,s is called a star graph. A complete

bipartite graph Kn,n is called an n-biclique. A useful and well-known characterization

of bipartite graphs is the following: A nontrivial graph G is bipartite if and only if it

contains no odd cycles.

Let v be a vertex of a graph G. The degree of v is the number of edges of G incident

with v. The degree of v is denoted by degGv, or simply d(v) if G is clear from the

context. The minimum degree of G is the minimum degree among the vertices of G

and is denoted δ(G), while the maximum degree of G is the maximum degree among

the vertices of G and is denoted ∆(G).

A vertex is called odd or even depending on whether its degree is odd or even. A

vertex of degree 0 in a graph G is called an isolated vertex and a vertex of degree 1

is an end-vertex of G. We say that a graph is regular if all its vertices have the same

degree. In particular, if the degree of each vertex is r, then the graph is regular of

degree r or is r-regular.

A well-known and useful theorem in graph theory, called the Handshaking Lemma,

states that in any graph, the sum of all the vertex degrees is equal to twice the number

of edges. A consequence of the Handshaking Lemma is that in any graph G there is

an even number of odd vertices.

We say two graphs, G and H, are isomorphic if there is a one-to-one mapping φ
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from V (G) onto V (H) such that φ preserves adjacency; that is, uv ∈ E(G) if and

only if φ(u)φ(v) ∈ E(H). If G and H are isomorphic, then we write G ∼= H.

A graph G is connected if there exists a path in G between any two of its vertices,

and is disconnected otherwise. Every disconnected graph can be partitioned into

connected subgraphs, called components. A component of a graph G is a maximal

connected subgraph. Two vertices u and v in a graph G are connected if u = v, or if

u 6= v and there is a u − v path in G. The number of components of G is denoted

k(G); of course, k(G) = 1 if and only if G is connected.

For a connected graph G, we define the distance d(u,v) between two vertices u

and v as the minimum of the lengths of the u− v paths of G. If G is a disconnected

graph, then the distance between two vertices in the same component of G is defined

as above. However, if u and v belong to different components of G, then d(u, v) is

undefined.

We now introduce the concept of the neighborhood of a vertex.

Let G be a graph. Then the open neighborhood of a vertex v ∈ V (G) is N(v) =

{u ∈ V |uv ∈ E(G)}. In general, we define the open neighborhood of a subset X ⊆

V (G) by N(X) = ∪x∈XN(x). The closed neighborhood of a vertex v is N [v] =

{v}∪N(v) and in general, the closed neighborhood of a subset X ⊆ V (G) by N [X] =

X ∪N(X).

For x ∈ X, the private neighborhood of x relative to X is defined as PN(x,X) =

N [x]\N [X −{x}]. The elements of PN(x,X) are the private neighbors of x (relative

to X).

A set D ⊆ V (G) is a dominating set of G (in which case D is said to dominate G)

if each vertex in V (G)\D is adjacent to a vertex in D, and D is a minimal dominating

set if no proper subset of D dominates G.

The earliest ideas of dominating sets date back to the origins of chess, where
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one wishes to cover or dominate various opposing pieces or various squares of the

chessboard. In 1862 de Jaenisch [13] posed the problem of finding the minimum

number of queens that can be placed on a chessboard so that each square of the

chessboard is attacked or dominated by at least one of the queens. A graph may

be formed from an n × n chessboard by taking the squares as the vertices and two

vertices are adjacent if a queen situated on one square covers the other. Computing

the domination number of the latter graph is equivalent to finding the number of

queens that can be placed on a chessboard so that each square of the chessboard is

is attacked or dominated by at least one of the queens.

The classical problems of covering chessboards with the minimum number of chess

pieces rekindled interest in dominating concepts. Ultimately, the theory of domination

was formalized by Berge [2] in 1958 and Ore [17] in 1962. Ore coined the term

‘domination number’, although Berge was the first to define it as the coefficient of

external stability.

Some applications for the concept of a dominating set include the following: Berge

[1] mentions the problem of keeping a number of strategic locations under surveillance

by a set of radar stations. The minimum number of radar stations needed to survey all

the locations is the domination number of the associated graph. In a similar vein, Liu

[16] discusses the application of domination to communications in a network, where

a dominating set represents a set of cities which, acting as transmission stations, can

transmit messages to every city in the network.

As a further example, a desirable property for a committee from a collection of

people might be that every nonmember know at least one member of the committee,

for ease of communication. A committee with this property is a dominating set of

the acquaintance graph of the set of people.

The following well-known result characterises dominating sets which are minmal
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dominating sets:

Proposition 1.1. [17] A dominating set D is a minimal dominating set if and only

if PN(d,D) 6= ∅ for each d ∈ D.

This condition motivates the definition of an irredundant set :

Let 〈X〉 be the subgraph of G induced by X ⊆ V (G). A set of vertices X in a

graph G is irredundant if each vertex x ∈ X is either isolated in 〈X〉 or else has a

private neighbor y ∈ V (G)\X, which is adjacent to x and to no other vertex of X.

In other words, a set X ⊆ V (G) is irredundant if PN(x,X) 6= ∅ for each x ∈ X.

A set X is independent if every two distinct vertices in X are nonadjacent. A set

X is maximal irredundant if no proper superset of X is irredundant. Thus, a set D is

a minimal dominating set if and only if it is dominating and irredundant. However,

an irredundant set, or even a maximal irredundant set, is not necessarily dominating.

It is easy to see that the concept of irredundance extends that of independence, for

if X is independent, then x ∈ PN(x,X) for each x ∈ X, hence X is irredundant.

Extremal sets of these types are related by the following two well-known results:

Proposition 1.2. [2] If X is maximal independent, then X is minimal dominating.

Proposition 1.3. [12] If X is minimal dominating, then X is maximal irredundant.

The domination number γ(G) and the upper domination number Γ(G) (indepen-

dent domination number i(G) and independence number β(G); irredundance number

ir(G) and upper irredundance number IR(G)) are defined, respectively, to be the

smallest and largest number of vertices in a minimal dominating (maximal indepen-

dent; maximal irredundant) set of G. The following string of inequalities is obvious

from the definitions and the relationships which exist amongst the three concepts
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(also see [12]):

ir(G) ≤ γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G) ≤ IR(G).

Since irredundance is a generalization of independence and since classical Ramsey

numbers can also be defined using independent sets instead of cliques, it seems natural

to develop a theory of irredundant Ramsey numbers. Irredundance has received much

attention in the literature (see [15] for an extensive bibliography).

1.1 Definitions

Let G1, G2, ..., Gt be an arbitrary t-edge coloring of Kp, where for each i ∈ {1, 2, ..., t},

Gi is the spanning subgraph of Kp consisting of all edges colored with color i. The

classical Ramsey number r(q1, q2, ...qt), is usually defined in terms of the existence of

cliques of the subgraphs Gi. Since a clique of Gi corresponds to an independent set

of the complement Gi, r(q1, q2, ...qt) may also be defined using independence. In fact,

r(q1, q2, ...qt) is the smallest value of p such that for all t-edge colorings of Kp, there

is an i ∈ {1, 2, ..., t} for which β(Gi) ≥ qi.

The irredundant Ramsey number s(q1, q2, ..., qt) is analogously defined as the small-

est p such that for all t-edge colorings of Kp, there is an i ∈ {1, 2, ..., t} for which

IR(Gi) ≥ qi. Since any independent set is irredundant, the irredundant Ramsey

numbers exist by Ramsey’s theorem and satisfy s(q1, q2, ...qt) ≤ r(q1, q2, ..., qt) for all

q1, q2, ..., qt.

The mixed Ramsey number t(m,n), introduced in [10], is the smallest p such that

for every graph G of order p, IR(G) ≥ m or β(G) ≥ n.

We have the following lemma:
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Lemma 1.4. The inequality chain s(m,n) ≤ t(m,n) ≤ r(m,n) holds for all m,n ≥ 1.

Proof. First we will show t(m,n) ≤ r(m,n). Let p = r(m,n). In any bicoloring,

R and B, of the edges of Kp, either we have an independent set of size m in the

blue graph 〈B〉 or an independent set of size n in the red graph 〈R〉. Since every

independent set is also an irredundant set, then in any two coloring of Kp we have an

irredundant set of size m in 〈B〉 or an independent set of size n in 〈R〉. By definition,

t = t(m,n) is the smallest such number where this is true so t ≤ p = r(m,n). Now we

will show s(m,n) ≤ t(m,n). Let t = t(m,n). Then t is the smallest natural number

such that in any red-blue edge coloring of Kt there is an irredundant set of cardinality

m in 〈B〉 or an independent set of cardinality n in 〈R〉. Since every independent set

is also an irredundant set, we have an irredundant set of size n in 〈R〉. By definition,

s = s(m,n) is the smallest number such that this is true so s(m,n) ≤ t = t(m,n).

Thus, we have s(m,n) ≤ t(m,n) ≤ r(m,n), as desired.

The same recurrence inequality which holds for r(m,n) also holds for s(m,n) and

t(m,n):

Proposition 1.5. For all integers m,n ≥ 2, x(m,n) ≤ x(m−1, n)+x(m,n−1) while

strict inequality holds if x(m−1, n) and x(m,n−1) are both even, where x ∈ {r, t, s}.

Proof. We illustrate the proof for x = r, and remark that the proof is similar when

x ∈ {t, s}.

Let N = x(m − 1, n) + x(m,n − 1) and take any bicoloring of KN in red and

blue, (R,B), and let v ∈ V (KN). Let M represent the set of vertices adjacent to v

with a red edge and let L represent the set of vertices adjacent to v with a blue edge.

So, |M | + |L| + 1 = N = x(m − 1, n) + x(m,n − 1). Now either |M | ≥ x(m − 1, n)

or |L| ≥ x(m,n − 1) since otherwise |M | < x(m − 1, n) and |L| < x(m,n − 1)
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imply x(m − 1, n) + x(m,n − 1) − 1 = |M | + |L| < x(m − 1, n) + x(m,n − 1) ≤

x(m − 1, n) − 1 + x(m,n − 1) − 1 = x(m − 1, n) + x(m,n − 1) − 2, producing a

contradiction.

Now suppose x(m−1, n) and x(m,n−1) are both even and suppose that x(m,n) =

x(m− 1, n) + x(m,n− 1). Let N ′ = x(m− 1, n) + x(m,n− 1)− 1. Then there exists

a two coloring (R,B) of KN such that neither the graph induced by R, 〈R〉, has an

m-clique nor the graph induced by B, 〈B〉, has an n-clique. Let v ∈ V (KN ′), and

define M and L as before.

If |M | ≥ x(m− 1, n), then 〈M〉 has a red (m− 1)-clique or a blue n-clique, and so

〈M〉 has a red m-clique, by considering v, or a blue n-clique, which is a contradiction.

So, |M | ≤ x(m− 1, n)− 1, and, similarly, |L| ≤ x(m,n− 1)− 1.

Suppose |M | ≤ x(m − 1, n) − 2 and |L| ≤ x(m,n − 1) − 2. Then, |M | + |L| ≤

x(m − 1, n) − 2 + x(m,n − 1) − 2. But, |M | + |L| = N ′ − 1, so, x(m − 1, n) − 2 +

x(m,n− 1)− 2 ≥ |M |+ |L| = N ′− 1 = ((x(m− 1, n) +x(m,n− 1))− 1)− 1 implying

−4 ≥ −2, a contradiction. Thus, |M | ≥ x(m− 1, n)− 1 or |L| ≥ x(m,n− 1)− 1. If

|M | ≥ x(m− 1, n)− 1, then |M | = x(m− 1, n)− 1, and so x(m,n− 1)− 1 ≤ |L| =

N ′−1−|M | ≤ N ′−1−|M | = x(m−1, n) +x(m,n−1)−1−1− (x(m−1, n)−1) =

x(m,n − 1) − 1, whence |L| = x(m,n − 1) − 1. Similarly, if |L| = x(m,n − 1) − 1,

then |M | = x(m− 1, n)− 1. Thus, dR(v) = x(m− 1, n)− 1 for all v ∈ V (KN ′).

So,
∑

v∈V (KN′ ) dR(v) = 2q(〈R〉). Now we have N · (x(m− 1, n)− 1) = 2 · n(〈R〉).

But N ′ and x(m − 1, n) − 1 are both odd, and the product of two odd numbers is

odd, a contradiction.

Note that unlike the case for s(m,n) and r(m,n), t(m,n) 6= t(n,m) in general.



10

1.2 Useful Results

In this section we prove results which are used extensively throughout the remainder

of the thesis.

For ease of explanation, we sometimes abbreviate IR(G) and IR(G) to IR and

IR. Also, we frequently refer to the edges of G and the edges of G as red edges and

blue edges, respectively, and also sometimes denote G by R and G by B. By the red

neighbors Rv and the blue neighbors Bv of a vertex v, we mean the neighbors of v in

R and in B, respectively. So, for each vertex v, V (G) can be partitioned into the sets

V (G) = {v} ∪Rv ∪Bv.

We begin by proving necessary and sufficient conditions for a graph G to satisfy

IR(G) ≥ m, but first we introduce some notation. Let Kn,n, n ≥ 3, denote the com-

plete bipartite graph with partite sets U = {u1, u2, ..., un} and W = {w1, w2, ...wn}.

Let C(n) be defined by C(n) = Kn,n\{uiwi|i ∈ {1, 2, ..., n}}. Denote by C(n) + K`

the graph obtained by joining every vertex of K` to every vertex of C(n); if ` = 0 we

take C(n) +K` to mean C(n).

Proposition 1.6. [10] G has an irredundant set of size m if and only if one of the

following statements holds:

(a) Km ⊆ G;

(b) there exist integers k, ` with k ≥ 3, ` ≥ 0, and k + ` = m such that G contains

the graph C(k) +K` and G does not contain the edges uiwi, i ∈ {1, 2, ...k}

Proof. Suppose G has an irredundant set X of size m. Let k and l be the number

of non-isolates and isolates of G〈X〉, respectively. Note that k + ` = m. k = 1 is

impossible and if k = 0, then X is an independent set of size m in G, in which case

(a) holds. For k ≥ 2, let U = {u1, u2, ..., u`} be the set of non-isolates in G〈X〉 and

let wi be a private neighbor of ui in G, i ∈ {1, 2, ...k}. The G〈X〉 contains the graph
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C(k) +K` while it does not contain the edges uiwi, i ∈ {1, 2, ..., k}. Hence, if k ≥ 3,

then (b) holds and if k = 2, then (X − {u2}) ∪ {w2} is an independent set of size m

in G, in which case (a) holds.

Conversely, if (a) holds then G contains an independent, and hence irredundant, set

of size m. If (b) holds, then V (K`)∪U is an irredundant set of size m in G as V (K`)

is an independent set in G and each vertex ui ∈ U has a private neighbor wi in G,

i ∈ {1, 2, ..., k}.

Corollary 1.7. [3] A graph contains a 3-element irredundant set if and only if its

complement contains a K3 or an induced C6.

Proof. By Proposition 1.6, the complement contains a K3 or a C6 as a subgraph. If

the complement does not contain a K3, then a C6 is induced.

The following result is immediate.

Lemma 1.8. If (R,B) is a two-coloring of the edges of a complete graph such that 〈B〉

contains no m-element irredundant set and 〈R〉 contains no n-element irredundant

set, then ∆R < s(m− 1, n) and ∆B < s(m,n− 1).

When applying Corollary 1.7, we refer to a red 6-cycle v1v2v3v4v5v6v1 where the

edges v1v4, v2v5, v3v6 are blue as a red 6-cycle with blue diagonals.

A graph G of order p such that IR(G) < m and IR(G) < n is called an (m,n,p)-

graph. Note that if v is any vertex of an (m,n,p)-graph G, then the subgraph 〈Rv〉 of

G is an (m-1,n,deg(v))-graph while the subgraph 〈Bv〉 of G is an (m,n-1,p-1-deg(v))-

graph. This observation is used in the following result.

Proposition 1.9. [14] If G is an (m,n,p)-graph, m,n ≥ 2, then

p− s(m,n− 1) ≤ δ(G) ≤ ∆(G) ≤ s(m− 1, n)− 1.
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Proof. For a vertex v of maximum degree, 〈Rv〉 is an (m− 1, n,∆(G))-graph. Hence,

∆(G) < s(m− 1, n). For a vertex v of minimum degree, 〈Bv〉 is an (m,n− 1, p− 1−

δ(G))-graph. Hence, p− 1− δ(G) < s(m,n− 1).

Proposition 1.10. If G is a graph of order p with IR(G) < m and β(G) < n for

m,n ≥ 2, then p− t(m,n− 1) ≤ δ(G) ≤ ∆(G) ≤ t(m− 1, n)− 1.

Proof. Similar to that of Proposition 1.9.

Proposition 1.11. [14] Suppose that (R,B) is a two-coloring of the edges of a com-

plete graph in which 〈B〉 contains no 3-element irredundant set. For an arbitrary

vertex v, let Y = Rv and let X = {x1, x2, ..., xp} ⊆ Bv be such that at most one of

the sets Yi = {y|y ∈ Y, xiy ∈ R}, (i = 1, ..., p) is empty. Then 〈RX〉 is bipartite.

Proof. First we recall that a graph is bipartite if and only if it contains no odd cycles.

Thus, it suffices to show that 〈RX〉 contains no odd cycles.

Since, by assumption, 〈B〉 has no 3-element irredundant set, by Corollary 1.7 its

complement, 〈R〉, does not contain a K3 or induced C6. Hence, 〈BY 〉 is complete.

We now state three observations that are used during our proof.

(i) If x1x2x3 is a path in 〈X〉R, then either Y1 ⊆ Y3 or Y3 ⊆ Y1. In particular, if Y1

and Y3 are nonempty, then so is Y1 ∩ Y3.

Suppose y1 ∈ Y1 − Y3 and y3 ∈ Y3 − Y1. Then vy1x1x2x3y2v is an induced C6 in

〈R〉, a contradiction.

(ii) Suppose that x1x2x3x4x5 is a path in 〈RX〉 and the edges x1x4 and x2x5 are in

B. Then either Y1 ∩ Y3 ∩ Y5 = ∅ or Y2 ∩ Y4 = ∅.

If y1 ∈ Y1∩Y2∩Y3 and y2 ∈ Y2∩Y4, then y1x1x2y2x4x5y1 is an induced C6 in 〈R〉.

(iii) Suppose x1x2x3x4x5 is a path in 〈RX〉 and that the edges x1x4 and x2x5 are in

B and each of the sets Y1, ..., Y5 are nonempty. Then Y1 ⊂ Y3.
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Otherwise, (i) implies that Y3 ⊆ Y1, so Y1 ∩ Y3 ∩ Y5 is nonempty since Y3 ⊆ Y1

implies Y3 ∩ Y5 is nonempty. But Y2 ∩ Y4 is also nonempty which contradicts (ii).

Now suppose 〈RX〉 is not bipartite and let x1x2, . . . , x2k+1x1 be its shortest odd

cycle. Then all of the chords xixi+3 are in B. For example, x1x4 and x2x5 are in B.

We know k > 1 since there is no K3 in 〈R〉 by assumption.

Now we want to eliminate k = 2. Suppose that x1x2x3x4x5x1 is a cycle in 〈RX〉

and note that we may assume Y1, ..., Y4 to be nonempty sets. Then by (i) we have

vertices y1 ∈ Y1 ∩ Y3 and y2 ∈ Y2 ∩ Y4. There is no K3 in 〈R〉, so edges x1y2, x4y1,

and vx5 are in 〈B〉. Now vy1x1x5x4y2v is an induced C6 in 〈R〉. Hence, k 6= 2.

For k = 3, we may assume Y1, . . . , Y6 nonempty and observe that by (iii) Y1 ⊆ Y3

and Y6 ⊆ Y4. (To see the latter, consider the path x6x5x4x3x2 in 〈RX〉 and apply

(iii).) Now we have Y3 ∩ Y4 = ∅, but (i) gives Y1 ∩ Y6 6= ∅. Thus, k 6= 3.

For k > 3, we may assume that the path x1x2x3x4x5x6x7x8 is a segment of an odd

cycle in 〈RX〉 and that each of the sets Y1, . . . , Y8 is nonempty. Then (iii) gives both

Y4 ⊆ Y6 and Y6 ⊆ Y4 giving us the desired contradiction.

Therefore, 〈RX〉 contains no odd cycles and is hence bipartite.



CHAPTER 2: Irredundant Ramsey Numbers s(m,n)

We have s(1, n) = s(n, 1) = 1 and s(2, n) = s(n, 2) = 2 for all n ≥ 1.

Theorem 2.1. [3] s(3, 3) = 6

Proof. Note that s(3, 3) ≤ r(3, 3) = 6. Now, the graph C5 contains neither a red K3

nor a red 6-cycle. Thus, by Corollary 1.7, IR(G) ≤ 2. As C5 is self-complementary,

IR(G) ≤ 2. Thus, s(3, 3) ≥ 6.

Theorem 2.2. [3] s(3, 4) = 8

Proof. Suppose G is a (3,4,8)-graph. As s(3, 3) = 6 and s(2, 4) = 4, it follows from

Proposition 1.9 that 8− 6 ≤ δ(G) ≤ ∆(G) ≤ 4− 1 so each vertex of G has degree 2

or 3.

Suppose v has degree 3 in G. All four vertices of Bv send red edges to Rv, for otherwise

Rv together with a vertex of Bv would constitute a 4-vertex independent set in G.

Thus, at least one of the three vertices of Rv must receive two red edges from Bv. It

follows that v is adjacent to a vertex w with d(w) = 3.

Since there is no red triangle, N(v)∩N(w) = ∅. Let N(v) = {v1, v2, w} and N(w) =

{w1, w2, v} and let the remaining two vertices of G be x and y.

Case 1: Suppose xy ∈ E(G) is red. Vertex x sends a red edge to {v1, v2}, for

otherwise 〈{w, v1, v2, x}〉 is a blue K4. Assume xv1 is red. Similarly, to avoid the blue

K4, 〈{v, w1, w2, x}〉, we take xw1 to be red. If yv1 is red, there would be a red K3.

Thus, yv1 is red and, similarly, yw2 is red. Now both v2w1 and v1w2 must be red

as otherwise vv2yxw1wv or vv1xyw2wv would be a red 6-cycle with blue diagonals.

Every vertex in G now has degree 3. Hence, there can be no more red edges. However,

{v, v2, w1, w} is an irredundant set in G, a contradiction of IR(G) < 4.

Case 2: Suppose xy ∈ E(G) is blue. Each vertex of {v1, v2, w1, w2} sends a red edge
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to either x or y. For example, if v2x and v2y are blue, then {w, v2, x, y} is a blue

K4. Now, there is a red edge between {v1, v2} and {w1, w2}, otherwise these vertices

form a blue K4. We may assume without loss of generality that v2x and v2w1 are red.

So w1x is blue. As w1 must send a red edge to x or y, the edge w1y is red and the

remaining edges to v2 and w1 are blue. The set X = {v1, x, y, w2} is irredundant in

G since v ∈ PN(v1, X), v2 ∈ PN(x,X), w1 ∈ PN(y,X), and w ∈ PN(w2, X). This

is a contradiction of IR(G) < 4.

Thus, G has no vertices of degree 3, so G must be 2-regular. Therefore, G has an

independent set of size 4, again contradicting IR(G) < 4. Hence, s(3, 4) ≤ 8.

To show s(3, 4) ≥ 8 we note that IR(C7) = 2 and IR(C7) = 3.

Suppose the hypothesis of Proposition 1.11 is satisfied. We can claim a p-element

set X such that 〈X〉R is bipartite. Then X contains a dp
2
e-element set that is inde-

pendent in 〈R〉. Thus, if dp
2
e ≥ n − 1, this set together with v yields an n-element

independent set in 〈R〉. This observation gives rise to short proofs of the known facts

s(3, 5) ≤ 12 and s(3, 6) ≤ 15.

Theorem 2.3. [3] s(3, 5) = 12.

Proof. Consider a bicoloring of K12. By Proposition 1.9:

p− s(m,n− 1) ≤ δR ≤ ∆R ≤ s(m− 1, n)− 1

12− s(3, 4) ≤ δR ≤ ∆R ≤ s(2, 5)− 1

12− 8 ≤ δR ≤ ∆R ≤ 5− 1

4 ≤ δR ≤ ∆R ≤ 4

.
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Thus, 〈R〉 is 4-regular. Let v be any vertex of G. Every vertex of Bv sends red edges

to Rv, for otherwise Rv together with a vertex of Bv would constitute a 5-vertex

independent set in G, a contradiction of IR(G) < 5. Therefore, Proposition 1.9 can

be applied using X = Bv. We thus find an independent set of order d7
2
e + 1 = 5,

contradicting IR(G) < 5.

To show s(3, 5) ≥ 12, we display an 11-vertex graph with IR = 2 and IR = 4 in

Figure 2.1.

Figure 2.1: An 11-vertex graph with IR = 2 and IR = 4.

Theorem 2.4. [4] s(3, 6) = 15.

Proof. We look at a bicoloring of K15. Applying Proposition 1.9 we have,

p− s(m,n− 1) ≤ δR ≤ ∆R ≤ s(m− 1, n)− 1

15− s(3, 5) ≤ δR ≤ ∆R ≤ s(2, 6)− 1

15− 12 ≤ δR ≤ ∆R ≤ 6− 1

3 ≤ δR ≤ ∆R ≤ 5.
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So 〈R〉 has 15 vertices all of which have degree 3, 4, or 5. As no graph has an odd

number of odd vertices, there exists at least one vertex, v, of degree 4. We want

to avoid a 6-element independent set in 〈R〉. If there were three vertices of Bv,

each adjacent to all of the vertices of Rv in 〈B〉, then there would be a 6-element

independent set in 〈R〉 if any two of these three were adjacent in 〈B〉 and a 3-element

independent set in 〈B〉 otherwise. Thus, at least eight vertices are sending red edges.

That is, at most two of the vertices of Bv are completely joined to Rv in 〈B〉. We

may apply Proposition 1.11 to X ⊂ Bv with |X|=9. Thus we obtain an independent

set in 〈R〉 with d9/2e+ 1 = 6 vertices. Thus, s(3, 6) ≤ 15.

We present a 14-vertex graph that has IR = 2 and IR = 5 in Figure 2.2 to show

s(3, 6) ≥ 15. (It is tedious, but possible, to prove this by hand, but it can also be

verified by computer using the program of [8].)

Figure 2.2: A 14-vertex graph with IR = 2 and IR = 5.

Theorem 2.5. [11] s(3, 7) = 18.

First we give some results that are used throughout the proof.

Lemma 2.6. If G is a (3,7)-graph of order 18, then 3 ≤ δ(G) ≤ ∆(G) ≤ 6.



18

Proof. By Proposition 1.9 we have

18− s(3, 6) ≤ δ(G) ≤ ∆(G) ≤ s(2, 7)− 1

giving the desired result.

Lemma 2.7. Suppose G satisfies IR(G) < 3 and v is a vertex of degree at least 2.

If v1, v2, and v3 ∈ V (G)\N [v] and v1v2, v2v3 ∈ E(G), then either N(v1) ∩ N(v) ⊆

N(v3) ∩N(v) or N(v3) ∩N(v) ⊆ N(v1) ∩N(v).

Proof. Suppose there are vertices u1 and u2 satisfying u1 ∈ (N(v1)\N(v3))∩N(v) and

u2 ∈ (N(v3)\N(v1)) ∩ N(v). Then the 6-cycle vu1v1v2v3u2v, where vv2, u1v3, v1u2 /∈

E(G) implies that IR(G) ≥ 3, a contradiction of our assumption that IR(G) < 3.

It suffices to show that s(3, 7) ≤ 18 as the circulant graph C17{1, 4} is a (3, 7)-

graph implying s(3, 7) ≥ 18.

We now present the proof that s(3, 7) ≤ 18 due to Chen and Rousseau in [7].

Proof. We assume to the contrary that G is a (3,7)-graph with 18 vertices. Then

3 ≤ δ(G) ≤ ∆(G) ≤ 6 by Lemma 2.6. Now, let v ∈ G with d(v) = ∆(G). Let

d(u, v) denote the distance in G from u to v and for each positive integer i set

Vi = {u|d(u, v) = i} and V>i = ∪j>iVj.

Since d(v) ≤ 6 we have that |V>1| ≥ 11. Then, |V2| ≤ 9 by Proposition 1.11. As G is a

(3,7)-graph and N(v) is an independent set, it follows that G〈V>2〉 is a (3, 7−∆(G))-

graph.

Claim 2.8. The degree of v is d(v) = ∆(G) = 4.

Proof. Since G〈V>2〉 is a (3, 7 − ∆(G))-graph, we have d(v) ≤ 4 as s(3, 1) = 1 and

s(3, 2) = 3. Suppose d(v) = ∆(G) = 3. Then, |V2| ≤ 2|N(v)| = 6. Since G〈V>2〉 is a



19

(3,4)-graph and s(3, 4) = 8, we have |V>2| ≤ 7. Hence,

18 = |V (G)| ≤ 1 + 3 + 6 + 7 = 17,

a contradiction.

Claim 2.9. Either |V2| = 9 and |V>2| = 4 or |V2| = 8 and |V>2| = 5. In addition,

V>3 = ∅.

Proof. As d(v) = 4, it follows that G〈V>2〉 is a (3,3)-graph and |V>2| ≤ 5. By

Proposition 1.11, we have that |V2| ≤ 9. Since |V2|+ |V>2| = 13, there are two cases:

(a) |V2| = 9 and |V>2| = 4 or (b) |V2| = 8 and |V>2| = 5. If (a) holds and w ∈ V>3,

then Proposition 1.11 yields a 7-element independent set consisting of v, w, and five

vertices from V2. Thus, V>3 = ∅. In case (b), we must have G〈V>2〉 ∼= C5 and it

follows that V>3 = ∅ as δ(G) ≥ 3.

Let (X, Y ) be a bipartition of G〈V2〉. Let c denote the number of components of

G〈V2〉 and for i = 1, 2, 3, ..., c, let (Xi, Yi) be bipartitions of these components. We

may assume V2 = X ∪Y , with X = ∪Xi, Y = ∪Yi, and |Xi| ≥ |Yi| for i = 1, 2, 3, ..., c.

(We note that Yi may be empty if |Xi| = 1). If S and T are disjoint sets of vertices

in G, we say that there is an ST edge if N(S) ∩ T 6= ∅.

Claim 2.10. The bipartition (X, Y ) must satisfy 4 ≤ |X| ≤ 5 and 3 ≤ |Y | ≤ 4.

If |X| = 5, then V3 ⊂ N(X). If |Y | = 4, then for every nonadjacent pair W =

{wi, wj} ⊂ V3 there is a WX edge and a WY edge.

Proof. Claim 2.10 follows as 8 ≤ |V2| ≤ 9 and the independence number of G〈V2 ∪

V3〉 ≤ 5.

Claim 2.11. For any vertex w ∈ V3 and any connected component (Xi, Yi) of (X, Y ),

either N(w) ∩Xi = ∅ or N(w) ∩ Yi = ∅.
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Proof. Claim 2.11 follows as G〈V2 ∪ {w}〉 is a bipartite graph.

Claim 2.12. If |Y | = 4 and |Xi| ≥ 2, then |N(x) ∩ V3| ≤ 1 for any x ∈ Xi.

Proof. Suppose there exists a vertex x1 ∈ Xi such that N(x1)∩V3 ⊃ W = {w1, w2}.

By Claim 2.11, there is no WYi edge. Thus, by Claim 2.10, as |Y | = 4, there is a

W (Y \Yi) edge, say wz3 where w ∈ W . Also, there is an edge joining W to X\Xi,

say w′z2 where w′ ∈ W , since otherwise W ∪ Yi ∪ (X\Xi) is an independent set of at

least 6 vertices. Indeed, if |X| = 4, then |W | = 2 and |Xi| = a = |Yi|. We have

|W |+ |Yi|+ |X\Xi| = 2 + a+ (|X| − a) = 2 + |X| ≥ 2 + 4 = 6.

Now, if |X| = 5, then as |W | = 2 and a = |Xi| = |Yi|+ 1 we have

|W |+ |Yi|+ |X\Xi| = 2 + a− 1 + |X| − a = |X|+ 1 ≥ 5 + 1 = 6.

Since x1 is adjacent to w1 and w2, and to at least one vertex in Yi, x1 is adjacent to

precisely one vertex in V1, say u1. Now d(x1) = ∆(G) = 4. Since |Xi| ≥ 2, there

exists x2 6= x1 such that x2 ∈ Xi. Then, as H = 〈Xi ∪ Yi〉 is connected, there exists a

path P from x1 to x2. Let x1, z1, x
′
2, x2 be the vertices of P . We have that x1 and x′2

(which may equal x2) must have the common neighbor in u1 ∈ V1. Now x1wz3 is a

path, so x1 and z3 must have the common neighbor u1 ∈ V1. Now, d(u1) = ∆(G) = 4.

But, x1w
′z2 is a path so x1 and z2 must have a common neighbor V1 which must also

be u1, implying d(u1) ≥ 5, a contradiction.

We proceed with the proof divided into cases according to the structure of con-

nected components and values of |V2| and |V3|.

Case 2.13. |V2| = 9 and |V3| = 4.
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As the independence number of G〈V2〉 is at most 5, it follows that |X| = 5 and

|Y | = 4. Without loss of generality, we assume that |X1| = |Y1| + 1 and |Xi| = |Yi|

for i 6= 1. By Claim 2.10, N(X) ⊃ V3. Furthermore, in this case, we have N(X1) ⊃

V3, since if w ∈ V3 and w /∈ N(X1), then G〈V2 ∪ {w}〉 would contain a 6-element

independent set by Claim 2.11.

Suppose that (X, Y ) is connected, that is, |X1| = 5 and |Y1| = 4. Then, by Claim 2.11,

there is no V3Y1 edge. Hence there is a pair of independent vertices in G〈V3〉 and

G〈Y ∪ V3〉 contains a 6-element independent set, a contradiction.

Thus 1 ≤ |X1| ≤ 4. Since N(X1) ⊃ V3 and the neighborhood of any vertex in G is

an independent set, |X1| ≥ 2. If 2 ≤ |X1| ≤ 3, then since N(X1) ⊃ V3, there exists a

vertex x1 ∈ X1 such that |N(x1) ∩ V3| ≥ 2. This contradicts Claim 2.12. Therefore,

|X1| = 4, |Y1| = 3, and |X2| = |Y2| = 1. Now let X1 = {x1, x2, x3, x4}, X2 = {x5},

Y1 = {y1, y2, y3} and Y2 = {y4}. There is no Y1V3 edge by Claim 2.11. We consider

the graph induced by the set {w1, w2, w3, w4, x5, y4}. This graph contains no triangle,

so it must contain a 3-element independent set. Three such vertices together with Y1

constitute a 6-element independent set, a contradiction.

Case 2.14. |V2| = 8 and |V3| = 5 with |X| = |Y | = 4.

Since G〈V3〉 is a (3,3)-graph, it is a 5-cycle. Let G〈V3〉 = w1w2w3w4w5w1. In

this case, |Xi| = |Yi| for i = 1, 2, ..., c. We say that a pair of nonadjacent vertices

W = {wi, wj} ⊂ V3 has the property P (k) if there is a WXk edge and a WYk edge.

For each nonadjacent pair {wi, wj} there is at least one k for which {wi, wj} has

property P (k). Since otherwise, G〈V2 ∪{wi, wj}〉 has a 6-element independent set by

Claim 2.11.

Notice that C5 has five pairs of nonadjacent vertices and c ≤ 4. Then for some k

there are two pairs of nonadjacent vertices, say {w1, w3} and {wi, wj}, having property
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P (k), by the pigeonhole principle.

Now we show that |Xk| = |Yk| ≥ 2. Suppose, instead, that Xk = {x1} and

Yk = {y1}. We may assume w1x1 ∈ E(G) and w3y1 ∈ E(G). Since G contains

no K3, w2 /∈ {wi, wj}. Hence, without loss of generality, we may assume wi = w1

and wj = w4. Then we must have w4y1 ∈ E(G) so {y1, w3, w4} is a triangle, a

contradiction.

As |Xk| = |Yk| ≥ 2, we have c ≤ 3. In this case, three pairs of nonadjacent

vertices in V3, say {w1, w3}, {w1, w4}, and {wi, wj}, have property P (k) for some k

by the pigeonhole principle. Without loss of generality, we assume that w1 ∈ N(Yk)

and {w3, w4} ⊆ N(Xk). By Claim 2.12, |N(x) ∩ V3| ≤ 1 for x ∈ Xk. Note that in

this case, the same argument shows that |N(y) ∩ V3| ≤ 1 for y ∈ Yk. Assume that

{x1w3, x2w4, y1w1} ⊂ E(G).

Now suppose |Xk| = |Yk| = 2. Since G〈Xk ∪ Yk〉 is connected, we may assume

x1y1 ∈ E(G). The 6-cycle w1y1x1w3w4w5w1, where w1w3, y1w4, x1w5 /∈ E(G), implies

IR(G) ≥ 3, a contradiction.

Thus |Xk| = |Yk| ≥ 3. In this case, we have c ≤ 2. Now there are four pairs of

nonadjacent vertices satisfying P (k) for some k. In particular, we have N(Xk∪Yk) ⊇

V3. If |Xk| = |Yk| = 3, let Xk = {x1, x2, x3} and Yk = {y1, y2, y3}. Without loss of

generality, we may assume that |N(Xk) ∩ V3| ≥ 3, x1w1 ∈ E(G), and x3w3 ∈ E(G).

Now we must have |N(Xk)∩V3| = 3 and |N(x1)∩V3| = |N(x2)∩V3| = |N(x3)∩V3| = 1

by Claim 2.12. Suppose u ∈ V1 ∩ N(x1) ∩ N(x3). Then the 6-cycle ux1w1w2w3x3u

where uw2, x1w3, w1x3 /∈ E(G) implies that IR(G) ≥ 3, a contradiction.

Thus, there exist vertices u1, u2 ∈ V1 such that u1 ∈ N(x1)\N(x3) and u2 ∈

N(x3)\N(x1). If y ∈ Yk is adjacent to both x1 and x3, then the 6-cycle x1yx3u2vu1x1

with x1u2, yv, x3u1 /∈ E(G) implies IR(G) ≥ 3, a contradiction.

Since G(Xk ∪ Yk) is connected, we may assume y1 is adjacent to both x1 and x2
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and y3 is adjacent to both x2 and x3. Thus, N(x2) ∩ V1 ⊇ (N(x1) ∪ N(x3)) ∩ V1

(since otherwise, there is a 6-cycle with no adjacent pair of opposite vertices). Now

|N(x2) ∩ V1| ≥ 2, |N(x2) ∩ Y1| ≥ 2, and |N(x2) ∩ V3| = 1 implying d(x2) > 4 which

contradicts ∆(G) = 4.

Thus Xk = X and Yk = Y so (X, Y ) is connected. We have either N(wi)∩X = ∅

or N(wi) ∩ Y = ∅ for any vertex wi ∈ V3, by Claim 2.11. Since G〈V3〉 is a 5-cycle,

there are two nonadjacent vertices wi, wj ∈ V3 so that either (N(wi)∪N(wj))∩X = ∅

or (N(wi) ∪N(wj)) ∩ Y = ∅, which contradicts Claim 2.10.

Case 2.15. |X| = 5 and |Y | = 3.

By Claim 2.10, N(X) ⊃ V3. We assume |X1| > |Y1|, and |X2| = |Y2| + 1 if

|X1| = |Y1|+ 1.

Subcase 2.16. |X1| = |Y1|+ 2

In this case, N(X1) ⊇ V3. As (X1, Y1) is connected, there is a vertex, say y1, such

that |N(y1) ∩X1| ≥ 3. Assume that N(y1) ⊇ {x1, x2, x3}. Then by Lemma 2.7 there

is a vertex u1 ∈ V1 such that N(u1) ⊇ {x1, x2, x3}. Thus, N(u1) = {v, x1, x2, x3}.

If |X1| = 3, there are two vertices, x1 and x2, such that |N({x1, x2}) ∩ V3| = 4.

Without loss of generality, we may assume that N(x1) ∩ V3 = {w1, w3} and N(x2) ∩

V3 = {w2, w4}. Now the 6-cycle u1x1w1w5w4x2u1 where u1w5, x1w4, w1x2 /∈ E(G)

implies that IR(G) ≥ 3, a contradiction.

If |X1| = 4, we denote X1 = {x1, x2, x3, x4}, Y1 = {y1, y2}, X2 = {x5}, and

Y2 = {y3}. As ∆(G) = 4, we have x4y1 /∈ E(G) so x4y2 ∈ E(G). Without loss of

generality, assume that x3y2 ∈ E(G). Then N(x4)∩ V1 ⊆ N(x3)∩ V1, by Lemma 2.7.

Let N(x4)∩ V1 = {u2}. Then N(u2) ⊇ {v, x3, x4}. Thus, |N(u2)∩ {x5, y3}| ≤ 1 since

d(u2) ≤ 4. Assume that y3 /∈ N(u2). Then, since |N(y3) ∩ V3| ≤ 2, there are two

nonadjacent vertices, w1 and w3, which are not adjacent to y3. Since N(X1) ⊇ V3,
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N({w1, w3}) ∩ Y1 = ∅. Hence Y ∪ {u1, u2, w1, w3} forms an independent set of 7

vertices, a contradiction.

Thus X1 = X = {x1, x2, x3, x4, x5} and Y1 = Y = {y1, y2, y3}. As N(X) ⊇ V3,

N(Y ) ∩ V3 = ∅. Without loss of generality, we assume that {x4y2, x3y2} ⊆ E(G).

Since x4u1 /∈ E(G), N(x4) ∩ V1 ⊆ N(x3) ∩ V1. Assume u2 ∈ N(x4) ∩ V1. If there is a

vertex xi, i = 1, 2, such that N(xi) ∩ V1 ⊇ N(x3) ∩ V1, then N(u2) = {v, xi, x3, x4}.

Hence Y ∪ {u1, u2, w1, w3} forms an independent set of 7 vertices, a contradiction.

Thus we have N(x3)∩V1 ⊇ N(xi)∩V1 for each i = 1, 2, 4. Since d(x3) ≤ 4, we have

N(x3)∩V1 = {u1, u2}. Notice that (X, Y ) is connected. By Lemma 2.7, N(x3)∩V1 ⊇

N(x5) ∩ V1. In particular, we have u2x5 ∈ E(G). Again, Y ∪ {u1, u2, w1, w3} forms

an independent set, a contradiction.

Subcase 2.17. |X1| = |Y1|+ 1 = 3, and |X2| = |Y2|+ 1 = 2

Let X1 = {x1, x2, x3}, Y1 = {y1, y2}, X2 = {x4, x5}, and Y2 = {y3}. Since there

is no independent set of six vertices in G〈V>1〉, we have N(X) ⊃ V3 and for any

nonadjacent pair of vertices W = {wi, wj} in V3 there is a WX1 edge and a WX2

edge. Thus |N(Xi) ∩ V3| ≥ 3 for i = 1, 2.

By Lemma 2.7, there is a vertex u1 ∈ V1 such that N(u1) ⊇ {x4, x5}. Since

|N(X2) ∩ V3| ≥ 3, we assume N(x5) ∩ V3 = {w1, w3}. As N({w1, w3}) ∩X1 6= ∅, we

assume w1x3 ∈ E(G). By Lemma 2.7, u1x3 ∈ E(G). Now N(u1) = {v, x3, x4, x5}.

Without loss of generality, assume N(x3) ∩ N(x2) ∩ Y1 6= ∅. Since x2u1 /∈ E(G),

there is a vertex u2 ∈ V1 such that N(u1) ⊇ {x2, x3}. Hence, N(x3) = {u1, u2, w1} ∪

(N(x3) ∩ Y1) and N(x2) ∩ V1 = {u2}. By Lemma 2.7, we have u2 ∈ N(x1) ∩ V1 since

(X1, Y1) is connected. Thus N(u2) = {v, x1, x2, x3}.

If |N(x1) ∩ V3| = 2, assume that N(x1) ∩ V3 = {wi, wj} for nonadjacent wi and

wj. Then N(x1) ∩ V1 = {u2}. By Lemma 2.7, (N(w1) ∪ N(w3)) ∩ {x4, x5} = ∅, a
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contradiction. Thus |N(x1)∩ V3| = 1. Similarly, |N(x2)∩ V3| = |N(x3)∩ V3| = 1. As

|N(X1) ∩ V3| ≥ 3, there are two nonadjacent vertices in N(X1) ∩ V3. Without loss of

generality, assume x1w2, x2w4 ∈ E(G). The 6-cycle u2x1w2w3w4x2u2 where opposite

vertices are nonadjacent, implies IR(G) ≥ 3, a contradiction.

Subcase 2.18. |X1| = |X2| = 2 and |X3| = |Y1| = |Y2| = |Y3| = 1.

Let X1 = {x1, x2}, X2 = {x3, x4}, X3 = {x5}, Y1 = {y1}, Y2 = {y2}, and

Y3 = {y3}. Then {x1y1, x2y1, x3y2, x4y2, x5y3} ⊂ E(G). Clearly, N(X\{x5}) ⊃ V3.

Hence we may assume |N(x1) ∩ V3| = 2. Without loss of generality, assume N(x1) ∩

V3 = {w1, w3}. So (N(w1)∪N(w2))∩ Y1 = ∅. Since d(x1) ≤ 4, |N(x1)∩ V1| = 1. Let

N(x1) ∩ V1 = {u1}. By Lemma 2.7, u1x2 ∈ E(G).

Suppose N({w1, w3}) ∩ X2 = ∅. As there is no independent set of six vertices

in G〈V>1〉, N(w1) ∪ N(w3) ⊃ {x5, y3}. By Lemma 2.7, N(u1) ⊃ {x5, y3}, implying

d(u1) ≥ 5, a contradiction. Hence N({w1, w3}) ∩X2 6= ∅. Without loss of generality,

assume x3w1 ∈ E(G). Then u1x3 ∈ E(G) by Lemma 2.7, and N(u1) = {v, x1, x2, x3}.

So N(x4) ∩ V1 ⊂ N(x3) ∩ V1, by Lemma 2.7. Since |N(x3) ∩ V1| ≤ 2, we may assume

N(x3) ∩ V1 = {u1, u2} and N(x4) ∩ V1 = {u2}.

Then N(x3) ∩ V3 = {w1}. Since N(X\{x5}) ⊃ V3, we have N(x2) ∪ N(x4) ⊃

{w2, w4, w5}. In particular, there is i = 2 or 4 such that |N(xi) ∩ {w2, w4, w5}| = 2.

If i = 2, then N(x2) ∩ V1 = {u1}. By Lemma 2.7 and as N(x3) = {w1, y2, u1, u2},

(N(x2)∩V3)∪{x3, x4, x5, y1, v} is an independent set, a contradiction. Thus, |N(x4)∩

{w2, w4, w5}| = 2. As N(x1) ∩ {w2, w4, w5} = ∅, N(x2) ∩ N(x4) ∩ V3 6= ∅. Similarly,

we can show that N(x2) ∩ V3 ⊆ N(x4) ∩ V3. Thus, V3 = N(X1 ∪ X2) ∩ V3 =

N({x1, x4}) ∩ V3 6= V3, a contradiction.

Subcase 2.19. |X1| = 1, |Y1| = 0, |X2| = |Y2|+ 1, and |Xi| = |Yi| for i 6= 1, 2.

Set X1 = {x1}. Since N(x1) is an independent set, |N(x1) ∩ V3| ≤ 2. We assume
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N(x1) ∩ V3 ⊆ {w2, w5}. By Proposition 1.11, N(X2) ⊃ {w1, w3, w4}. In particular,

|X2| ≥ 2. Since |(V2\{x1}) ∪ {w1, w3}| = 9, G〈(V2\{x1}) ∪ {w1, w3}〉 is not bipartite.

Hence there is a k 6= 1, 2 such that either N(w1) ∩ Xk 6= ∅ and N(w3) ∩ Yk 6= ∅ or

N(w1) ∩ Yk 6= ∅ and N(w3) ∩Xk 6= ∅.

Without loss of generality, we assume N(w1)∩X3 6= ∅ and N(w3)∩Y3 6= ∅. Since

|N(w1)∩V2| ≤ 2, N(w1)∩V2 ⊂ X2∪X3. Thus N(w4)∩Y3 6= ∅ as G〈V2\{x1}〉∪{w1, w4}

is not bipartite. Since there is no triangle in G and w3w4 ∈ E(G), we have |Y3| ≥ 2.

Hence, |X2| = |X3| = |Y3| = 2 and |Y2| = 1. Set X2 = {x2, x3}, X3 = {x4, x5},

Y2 = {y1}, and Y3 = {y2, y3}.

Since N(x2)∪N(x3) ⊃ {w1, w3, w4}, without loss of generality we assume x2w1 ∈

E(G). Since N(w3) ∩N(w4) = ∅, without loss of generality we assume that

{x2w1, x2w3, x3w4, x4w1, y2w3, y3w4} ⊆ E(G). Since d(x2) ≤ 4 we have |N(x2)∩V1| =

1. Let N(x2) ∩ V1 = {u1}. By Lemma 2.7, N(u1) ⊃ {x3, x4, y2}. Thus N(u1) ⊃

{v, x2, x3, x4, y2}, which contradicts d(u1) ≤ 4.

For the proof of s(4, 4) ≤ 13 we need an algorithm described in [9]. This algorithm

constructs all the (4, 4, 13)-graphs G in which a vertex v has degree five with the

vertices in NR(v) = {1, 2, 3, 4, 5} having degrees d1, d2, d3, d4, d5 respectively where

di ∈ {5, 6, 7} for i = 1, 2, 3. It takes as input all (3, 4, 5)-graphs and all (3, 4, 7)-

graphs and gives as output all (4, 4, 13)-graphs as specified, if any exist. Note that if

G is a (4, 4, p)-graph and v is a vertex with degree d in G, then G is also a (4, 4, p)-

graph and v has degree p− 1− d in G. Thus, if we show that no (4, 4, p)-graph has

a vertex of degree d, we will also have shown that no (4, 4, p)-graph has a vertex of

degree p− 1− d.

Theorem 2.20. [9] s(4, 4) = 13.
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Proof. Suppose G is a (4, 4, 13)-graph. Since s(3, 4) = 8, it follows from Proposi-

tion 1.9 that 5 ≤ δ(G) ≤ ∆(G) ≤ 7. The algorithm described above can be used

to show that G has no vertex of degree 5 and hence also no vertex of degree 7. A

slight adjustment of the algorithm shows that G cannot be 6-regular. It follows that

s(4, 4) ≤ 13. An example of a (4, 4, 12)-graph which shows that s(4, 4) > 12 appears

in the following figure.

Figure 2.3: An 11-vertex graph with IR = 2 and IR = 4.



CHAPTER 3: Mixed Ramsey Numbers t(m,n)

In this chapter, we provide all known results of the mixed Ramsey number. We recall

that the mixed Ramsey number is the smallest p such that for every graph G of order

p, IR(G) ≥ m or β(G) ≥ n.

We note that t(1, n) = t(n, 1) = 1 and t(2, n) = t(n, 2) = n for all n > 1.

Theorem 3.1. [10]

(a) t(3,3)=6

(b) t(3,4)=9

(c) t(4,3)=8

(d) t(5,3)=13.

Proof. (a) Follows from the observation that s(3, 3) ≤ t(3, 3) ≤ r(3, 3) and s(3, 3) =

r(3, 3) = 6.

(b) First we have that t(3, 4) ≤ r(3, 4) = 9 and we may easily verify that the graphs

G1 and G3 depicted in Figure 3.1 satisfy β(G1) = β(G3) = 3 and (by Corollary 1.7)

IR(G1) = IR(G3) = 2. Thus, t(3, 4) > 8.

(c) As s(4, 3) ≤ t(4, 3) ≤ r(4, 3) we have 8 ≤ t(4, 3) ≤ 9. We also note that the

graphs G1, G2, and G3 in Figure 3.1 are the only 8-vertex graphs G with β(G) = 2

and β(G) = 3. Therefore, G1, G2, and G3 are the only 8-vertex graphs G with

β(G) = 2 and β(G) = 3. It is easy to see that each of G1, G2, and G3 have an

irredundant set of cardinality four (an irredundant set is denoted by the circular

vertices). As IR(G) ≥ β(G), every 8-vertex graph G therefore satisfies β(G) ≥ 3 or

IR(G) ≥ 4. Hence, t(4, 3) = 8.

(d) By Proposition 1.5, t(5, 3) ≤ t(4, 3) + t(5, 2) = 8 + 5 = 13. The graph G depicted

in Figure 3.2 is a 12-vertex graph with β(G) = 2 and IR(G) = 4. (We can easily
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verify this by computer (see [8]) or directly, a routine but tedious exercise.)

Figure 3.1: Graphs G1, G2 and G3 used in the proof of Theorem 3.1.

Figure 3.2: A graph G with β(G) = 2 and IR(G) = 4.

Theorem 3.2. [10] t(3, 5) = 12.

Proof. Suppose G is a 12-vertex graph with IR(G) < 3 and β(G) < 5. Since t(3, 4) =

9 and t(2, 5) = 5, it follows from Proposition 1.10 that 12−9 ≤ δ(G) ≤ ∆(G) ≤ 5−1

so 3 ≤ δ(G) ≤ ∆(G) ≤ 4.

Suppose v has degree 4. Then each vertex of Bv must send a red edge to Rv, for

otherwise Rv together with a vertex of Bv would constitute an independent set of

cardinality five, contradicting β(G) < 5. Thus, Proposition 1.11 can be applied using

X = Bv. We therefore find an independent set of d7
2
e+1 = 5 vertices, a contradiction
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of IR(G) < 5.

Hence, G is 3-regular. Let v be any vertex of G. At most two vertices of Bv send no

red edges to Rv, for otherwise Rv together with two vertices of Bv would constitute

an independent set of cardinality five. Therefore Bv contains a 7-vertex set X that

complies with the hypothesis of Proposition 1.11. It follows that there exists an

independent set with d7
2
e+ 1 = 5 vertices, a contradiction.

Theorem 3.3. t(3, 6) = 15

Proof. The proof of t(3, 6) ≤ 15 is similar to the proof of s(3, 6) ≤ 15 in Theorem 2.4.

That t(3, 6) ≥ 15 follows from s(3, 6) ≤ t(3, 6) and s(3, 6) = 15.

3.1 Mixed Ramsey Numbers t(3, 7) and t(3, 8)

The following is based on [5].

In this chapter, we show that t(3, 7) = 18 and t(3, 8) = 22.

Using the fact that s(m,n) ≤ t(m,n) ≤ r(m,n) and Propostion 1.5 we know that

18 = s(3, 7) ≤ t(3, 7) ≤ min{t(2, 7) + t(3, 6), r(3, 7)} = min{7 + 15, 23} = 22,

18 = s(3, 7) ≤ s(3, 8) ≤ t(3, 8) ≤ min{t(2, 8)+t(3, 7), r(3, 8)} = min{8+22, 28} = 28.

Before presenting the proofs, we first prove a corollary of Proposition 1.11:

Corollary 3.4. If there is a star in 〈V>1(v)〉red with three end-vertices x1, x2, and

x3 ∈ V2(v), then x1, x2, and x3 are joined by means of red edges to a common vertex

in V1(v).

Proof. If x1, x2, and x3 are not joined by means of red edges to a common vertex in

V1(v), then each pair of vertices from the set {x1, x2, x3} must have a distinct common
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neighbor in V1(v) by Proposition 1.11. But then these three common neighbors in

V1(v) and {x1, x2, x3} form a red 6-cycle with blue diagonals in 〈V1(v) ∪ V2(v)〉, a

contradiction by Corollary 1.7.

As 〈V2(v) ∪ {u}〉red is a bipartite graph for any u ∈ V>2(v) by Proposition 1.11,

it follows that 〈V2(v)〉red must itself be bipartite. In the proofs of t(3, 7) = 18 and

t(3, 8) = 22, we use the symbol c to denote the number of components of 〈V2(v)〉red

and we denote the bipartitions of these components by (X`, Y`), for all ` = 1, ..., c.

We may assume, without loss of generality, that |X`| ≥ |Y`| for all ` = 1, ..., c. Define

X = ∪c
`=1X` and Y = ∪c

`=1Y`. Then |X| ≥ |Y |. We have the following six useful

results.

Lemma 3.5. Let v be any vertex of a (3, n, p)-graph and suppose x ∈ V>2(v).

(a) If x sends a red edge to X`, then x sends no red edge to Y` and vice versa for any

` = 1, ..., c.

(b) If |X| ≥ n − 2 and there is exactly one ` ∈ {1, ..., c} such that |X`| > |Y`|, then

each vertex in V3(v) sends a red edge to X`.

(c) If |Y | ≥ n− 3, then there exists, for each edge uw in 〈V3(v)〉blue, an ` ∈ {1, ..., c}

such that u sends a red edge to X` and w sends a red edge to Y`.

(d) If |Y | ≥ n−3 and there is an odd cycle in 〈V≥3(v)〉blue, then the pairs of red edges

sent to V2(v) by the edges of this cycle according to part (c) above go to at least two

components of the bipartite graph 〈V2〉red.

(e) If |Y | ≥ n− 3, ∆(R) = 4 and Z is a partite set of a component of 〈V2(v)〉red such

that |Z| ≥ 2, then any vertex z ∈ Z sends at most one red edge to V3(v).

(f) If |X| ≥ n− 2, then V>3(v) = ∅.

Proof. (a) If the statement of the lemma is false, then an odd cycle results in the

bipartite graph 〈V2(v) ∪ {x}〉red guaranteed by Proposition 1.11.
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(b) Suppose |X| ≥ n− 2 and that there is exactly one ` ∈ {1, ..., c} such that |X`| >

|Y`| and that there is a vertex u ∈ V3(v) sending no red edge to X`. It follows by part

(a) that u does not send a red edge to both Xi and Yi, for all i = 1, ..., c. Therefore, we

may select from Xi or Yi the part, say Zi, from each component i ∈ {1, ..., c} sending

no red edge to u. But then |
⋃c

i=1 Zi| =
∑c

i=1 |Xi| ≥ n−2 and hence {u, v}∪(
⋃c

i=1 Zi)

is an independent set of cardinality at least n in the red subgraph of the (3, n, p)-

graph, a contradiction.

(c) Suppose |Y | ≥ n−3 and that there is a blue edge uw in V3(v), but no i ∈ {1, ..., c}

for which u sends a red edge to Xi and w sends a red edge to Yi. Then we may select

from Xi or Yi the part, say Zi, from each component i ∈ {1, ..., c} sending no red

edge to either u or to w by part (a). But then |
⋃c

i=1 Zi| ≥
∑c

i=1 |Yi| ≥ n − 3 and

hence {u, v, w} ∪ (
⋃c

i=1 Zi) is an independent set of cardinality at least n in the red

subgraph of the (3, n, p)-graph, a contradiction.

(d) Suppose all the pairs of red edges sent to V2(v) by the edges of the odd blue cycle

in 〈V≥3〉 according to part (c) above go to the same component, say (X ′, Y ′), of V2(v).

Then it follows by part (a) above that each vertex of the blue cycle in 〈V≥3〉 sends red

edges to either X ′ or Y ′, but not to both. Therefore, the vertices of the blue cycle

in 〈V≥3〉 send red edges to X ′ or Y ′ in alternating fashion as one traverses the blue

cycle, but this is impossible since the blue cycle is odd.

(e) Suppose Z and Z ′ are the partite sets of a component of the bipartite graph

〈V2(v)〉red such that |Z| ≥ 2. Since 〈Z〉red is connected, there is a red path z1z
′z2 in

〈V2(v)〉red with z1, z2 ∈ Z and z′ ∈ Z ′. If z1 is joined by means of red edges to two

vertices w,w′ ∈ V3(v), then ww′ is a blue edge (in order to avoid the formation of a

red K3). But then we may assume by part (c) that the blue edge ww′ sends a red

edge wx to a vertex x ∈ X`, and another red edge w′y to a vertex y ∈ Y`. Moreover,

x, y /∈ Z by part (a). It also follows by Proposition 1.11 that each pair of endpoints
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of the red paths xwz1, z1w
′y and z2z

′z1 must each have a (not necessarily distinct)

common neighbor in V1(v), but this is a contradiction, because then z1 or one of these

common neighbors will have a red degree larger than ∆(R) = 4.

(f) Suppose |X| ≥ n− 2 and that u ∈ V>3(v). Then {u, v} ∪X is an independent set

of cardinality at least n in the red subgraph of the (3, n, p)-graph, a contradiction.

By combining the results of Lemma 3.5, we have the following useful result.

Corollary 3.6. If |X| ≥ n − 2, |Y | ≥ n − 3 and there is exactly one ` ∈ {1, ..., c}

such that |X`| > |Y`|, then

(a) the pair of red edges sent by any edge in 〈V3(v)〉blue to V2(v) necessarily goes to a

balanced component of 〈V2(v)〉red, i.e., not to the component (X`, Y`).

(b) |X`| ≥ |V3(v)| if ∆(R) = 4 and |X`| ≥ 2.

3.1.1 The Ramsey number t(3, 7)

Suppose there exists a (3, 7, 18)-graph. Let G and G be the red and blue subgraphs,

respectively, and denote the minimum and maximum red degrees of G respectively

by δ(G) and ∆(G). Suppose v is a vertex of red degree ∆(G). As t(2, 7) = 7 and

t(3, 6) = 15, it follows by Proposition 1.10 that

3 ≤ δ(G) ≤ ∆(G) ≤ 6.

It is, however, possible to improve the bounds on ∆(G).

Lemma 3.7. 3 ≤ δ(G) ≤ ∆(G) ≤ 4

Proof. Suppose first that ∆(G) = 6. Then V>2(v) = ∅, for the existence of an element

v ∈ V>2(v) would induce an independent set {v} ∪ V>2(v) of cardinality 7 in G. It

follows by Proposition 1.11 that 〈V2(v)〉red is bipartite and since |V2(v)| = 11, this
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bipartite graph has a partite set, say Z, of cardinality at least 6. But then {v} ∪ Z

is an independent set of cardinality at least 7 in G, a contradiction.

Suppose next that ∆(G) = 5. If 〈V>2(v)〉red has two independent vertices u and w.

Then {u,w} ∪ V1(v) is an independent of cardinality 7 in G, a contradiction. Hence,

if |V>2(v)| ≥ 3, then V>2(v) induces a red K3 in G. Therefore, |V>2(v)| ≤ 2, and so

|V2(v)| = 18 − 1 − 5 − |V>2(v)| ≥ 10. As 〈V2(v) ∪ {z}〉red is bipartite for any vertex

z ∈ V>2(v) by Proposition 1.11, it must have a partite set, say Z ′, of cardinality at

least 6. But then {v} ∪ Z ′ is an independent set of cardinality at least 7 in G, again

a contradiction.

Figure 3.3: If ∆(G) = 3, then 〈V>2(v)〉red is isomorphic to E10 or E11 [[6], Table 5]
.

Lemma 3.8. ∆(G) = 4

Proof. Suppose ∆(G) = 3. Then it follows by Lemma 3.7 that G is 3-regular and so

|V2(v)| ≤ 6. However, if |V2(v)| < 6, then |V>2(v)| ≥ 9, and as t(3, 4) = 9, it follows

that there is an irredundant set Z of cardinality 3 in 〈V>2(v)〉blue or an independent

set Z ′ of cardinality 4 in 〈V>2(v)〉red. In the former case, Z is also an irredundant set

of cardinality 3 in G, a contradiction. In the latter case, Z ′ ∪V1(v) is an independent

set of cardinality 7 in G, a contradiction. Thus, |V2(v)| = 6 and |V>2(v)| = 8.

According to [[6], Table 5] 〈V>2(v)〉red must therefore be isomorphic to the red sub-

graph of one of only two possible (3, 4, 8)-graphs; these red subgraphs E10 and E11
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are shown in Figure 3.3. Clearly, 〈V>2(v)〉red 6∼= E11 as at least one vertex of V>2(v)

must be adjacent to a vertex of V2(v), but E11 is already cubic. If 〈V>2(v)〉red ∼= E10,

then, since each vertex of V2(v) is adjacent to a vertex in V1(v) and G is cubic, there

is only one way to draw the edges between V1(v) and V2(v), as shown in Figure 3.4.

Also, since G is cubic, all vertices of degree 2 in E10 must be in V3(v), and all vertices

of degree 3 in E10 must be in V4(v), as shown in Figure 3.4. Since y1 is adjacent to

exactly one vertex in V2(v), we may assume without loss of generality that y1 is not

adjacent to either x3 or x4. But then {v1, v3, x3, x4, y1, z1, z3} is an independent set

of cardinality 7 in G, a contradiction.

Figure 3.4: Part of the (3,7,18)-graph (G,G) if ∆(G) = 3.

The following properties of G may be deduced from Lemma 3.8.

Lemma 3.9. V1(v) is an independent set of cardinality 4 in G. Furthermore, 8 ≤

|V2(v)| ≤ 9, 4 ≤ |V3(v)| ≤ 5, and V>3(v) = ∅.

Proof. It follows by Lemma 3.8 that |V1(v)| = 4. In order to avoid triangles in

〈{v} ∪ V1(v)〉red, it follows that 〈V>2(v)〉red must be edgeless.

Now suppose |V>2(v)| ≥ 6. As t(3, 3) = 6, it follows that, in order to avoid a red K3
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in G, the subgraph 〈V>2(v)〉red must have an independent set, say Z, of cardinality 3.

But then the set V1(v) ∪ Z of cardinality 7 is independent in G. This contradiction

shows that |V>2(v)| ≤ 5, and hence |V2(v)| ≥ 8.

Suppose next that |V2(v)| ≥ 10. Then 〈V2(v) ∪ {w}〉red is bipartite for any vertex

w ∈ V>2(v) by Proposition 1.11, and hence has a partite set, say Z ′, of cardinality at

least 6. But then {v} ∪ Z ′ is an independent set of cardinality at least 7 in G. This

contradiciton shows that |V2(v)| ≤ 9 and hence that |V>2(v)| ≥ 4.

If |V2(v)| = 9, then 〈V2(v)〉red has a partite set of cardinality at least 5 and hence

it follows by Lemma 3.5 (f) that V>3(v) = ∅. Suppose, therefore, that |V2(v)| = 8

and hence |V>2(v)| = 5. Then, in order to avoid red triangles, 〈V>2(v)〉red must be a

5-cycle. However, if any vertex of this 5-cycle is in 〈V>3(v)〉red, then that vertex will

have degree 2 in G, contradicting the result of Lemma 3.7. This contradiction shows

that V>3(v) must be empty.

We may now prove our first main result of this section.

Theorem 3.10. t(3, 7) = 18.

Proof. It follows by Lemma 3.9 that there are two cases to consider.

Case i : |V1(v)| = 4, |V2(v)| = 9, and |V3(v)| = 4. This case may be proven to be

impossible by following the exact same arguments as in Case 1 of the proof that

s(3, 7) ≤ 18 in [4], because in these arguments no irredundant set of cardinality 7 is

ever avoided which is not also an independent set of cardinality 7.

Case ii : |V1(v) = 4, |V2(v)| = 8, and |V3(v)| = 5. This case may be proven to be

impossible by following the exact same arguments as in Case 2 and 3 of the proof

that s(3, 7) ≤ 18 in [4] for the same reason as cited above.
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3.1.2 The Ramsey number t(3, 8)

In this section, we show that t(3, 8) = 22. We begin by producing a (3, 8, 21)-graph

in the first subsection, showing that t(3, 8) > 21. We show in the following subsection

that if a (3, 8, 22)-graph exists, each vertex of such a coloring must have red degree 4

or 5. This is followed by a proof in the third subsection that no vertex of a (3, 8, 22)-

graph can, in fact, have red degree 5, and hence that the red subgraph of such a

coloring must be 4-regular. It is finally shown in the last subsection, by considering

a number of exhaustive cases, that the assumption of the existence of a 4-regular

subgraph of a (3, 8, 22)-graph leads to a contradiction in each case, implying that

t(3, 8) ≤ 22.

The lower bound t(3, 8) > 21

Consider the graph H of order 21 in Figure 3.5. It is easily verifiable that H is

triangle-free and has no 6-cycle in which all three diagonals are absent. It therefore

follows by Corollary 1.7 that H has no irredundant set of cardinality 3. Furthermore,

H has no independent set of order 8, so that the red-blue edge coloring (H,H) is a

(3, 8, 21)-graph.

Figure 3.5: The red subgraph H of a (3, 8, 21)-graph (H,H).
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Properties of any (3, 8, 22)-graph

Suppose there exists a (3, 8, 22)-graph G, and denote the minimum and maximum

degrees of G by δ(G) and ∆(G), respectively. Suppose v is a vertex of red degree

∆(G) in this coloring. Then it follows by Proposition 1.10 that

4 ≤ δ(G) ≤ ∆(G) ≤ 7.

The coloring G has the following properties.

Lemma 3.11. V1(v) is an independent set of G, |V2(v)| ≤ 11 and |V>2(v)| < t(3, 8−

∆(G)).

Proof. V1(v) is an independent set in G, because it induces a clique in G in order to

avoid triangles in 〈{v}∪V1(v)〉red, which are prohibited by Corollary 1.7. Furthermore,

|V1(v)| = ∆(G).

Suppose |V2(v)| ≥ 12 and let w ∈ V>2(v). Then it follows, by Proposition 1.11, that

X = V2(v) ∪ {w} induces a bipartite subgraph of order at least 13 in G. One of the

partite sets, say A, of this bipartite subgraph has cardinality at least 7. But then

the set A ∪ {v} is an independent set of cardinality at least 8 in G, a contradiction.

Hence, |V2(v)| ≤ 11.

Now suppose |V>2(v)| ≥ t(3, 8−∆(G)). Then, 〈V>2(v)〉red possesses an independent

set I of cardinality 8−∆(G). But then V1(v)∪ I is an independent set of cardinality

8 in G, a contradiction. Hence |V>2(v)| < t(3, 8−∆(G)).

It is possible to improve the bounds on ∆(G).

Lemma 3.12. 4 ≤ δ(G) ≤ ∆(G) ≤ 5.

Proof. Suppose ∆(G) = 7. Then |V1(v)| = 7, |V2(v)| ≤ 11 and |V>2(v)| < t(3, 1) = 1

by Lemma 3.11, and so |V1(v)|+ |V2(v)|+ |V>2(v)| < 7 + 11 + 1 = 19, a contradiction.
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Next suppose ∆(G) = 6. Then |V1(v)| = 6, |V2(v)| ≤ 11 and |V>2(v)| < t(3, 2) = 3

by Lemma 3.11, and so |V1(v)| + |V2(v)| + |V>2(v)| < 6 + 11 + 3 = 20, again a

contradiction.

The maximum degree of G is not 5

Suppose ∆(G) = 5. Then it follows by Lemma 3.11 that |V1(v)| = 5, |V2(v)| ≤ 11 and

|V>2(v)| ≤ 5. But since |V1(v)|+|V2(v)|+|V>2(v)| = 21, it must hold that |V2(v)| = 11

and |V>2(v)| = 5.

The subgraph 〈V2(v)〉red of G is bipartite by Proposition 1.11. Suppose 〈V2(v)〉red

comprises c components and denote the partite sets of 〈V2(v)〉red by X =
⋃c

`=1X` and

Y =
⋃c

`=1 Y`. Then we may assume that |X| = 6 and |Y | = 5, and that 〈V2(v)〉red

has exactly one component, say (Xc, Yc), for which |Xc| = |Yc| + 1, while all other

components are balanced (that is, |X`| = |Y`| for all ` = 1, ..., c − 1). Note that

|V>3(v)| = ∅ by Lemma 3.5 (f). Hence, 〈V3(v)〉red must be a 5-cycle, in order to avoid

triangles in G and G. Furthermore, |Xc| ≥ 3, for if |Xc| ≤ 2, then it would follow by

Lemma 3.5 (b) that at least three vertices in V3(v) send red edges to some vertex in

Xc, thus forming a triangle in G. Since 〈V3(v)〉blue contains an odd cycle by Lemma 3.5

(d), we conclude that 〈V2(v)〉red must have at least two balanced components (that

is, at least three components in total). Note that, since 〈V3(v)〉red is a 5-cycle, only

one pair of red edges can go to a (1,1)-component of 〈V2〉red (for otherwise a K3 will

be forced in G). In view of these restrictions and |Xc| ≥ 3, it necessarily follows that

|X1| = |Y1| = 1, |X2| = |Y2| = |Y3| = 2, and |X3| = 3. (3.1)

Note that the component (X2, Y2) must receive four pairs of red edges from V3(v),

since the component (X1, Y1) can only receive on such pair of edges.
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We show that the cardinalities in (3.1) lead to a contradiction, and hence that

our supposition that ∆(G) = 5 was wrong. Denote the 5-cycle of 〈V3(v)〉red by

w1w2w3w4w5w1. In order to avoid triangles in G, it follows by Lemma 3.5 (a) that

the pairs of red edges sent by the five edges of 〈V3(v)〉blue to V2(v) must occur in

alternating fashion between the partite sets X2 and Y2, as shown in Figure 3.6. But

then the edge x2y2 must be blue in order to avoid a red 6-cycle x2y2w4w2w5w3x2

with blue diagonals; notice that the edges x2w2 and y2w5 are blue by Lemma 3.5 (a).

Similarly, the edge x2y1 must be blue in order to avoid a red 6-cycle x2y1w2w4w1w3x2

with blue diagonals. But then x2 is isolated in the component (X2, Y2) of 〈V2(v)〉red,

a contradiction.

Figure 3.6: A part of (G,G) if ∆(G) = 5.

G is not 4-regular

If G is 4-regular, then it follows by Lemma 3.11 that |V2(v)| ≤ 11 and |V>2(v)| <

t(3, 4) = 9. Therefore, if G is 4-regular, then there are five cases to consider, as

outlined in Table 3.1. Note that |Y | ≤ |X| ≤ 6 in order to avoid an independent set

{v} ∪X of cardinality 8 in G; hence the five cases in the table.

Lemma 3.13. Case I in Table 3.1 is impossible.
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Case |V1(v)| |V2(v)| |V≥3(v)| |X| |Y | Considered
I 4 11 6 6 5 in Lemma 3.13
IIa 4 10 7 5 5 in Lemma 3.14
IIb 4 10 7 6 4 in Lemma 3.15
IIIa 4 9 8 5 4 in Lemma 3.18
IIIb 4 9 8 6 3 in Lemma 3.18

Table 3.1: Five cases to consider if G is 4-regular.

Proof. In Case I in Table 3.1 it follows by Lemma 3.5 (f) that V>3(v) = ∅ and

hence that |V3(v)| = 6. Furthermore, since 6 = |X| > |Y | = 5, there is exactly one

component of the bipartite graph 〈V2(v)〉red, say (Xk, Yk), for which |Xk| > |Yk|, while

all other components have partite sets of equal cardinalities. It follows by Lemma 3.5

(b) that |Xk| 6= 1, since ∆(G) = 4. Hence it follows by Corollary 3.6 (b) that

|Xk| ≥ |V3(v)| = 6. But since |Xk| ≤ |X| = 6, we must have that |Xk| = 6, so that

〈V2(v)〉red has only one component. Furthermore, since r(3, 3) = 6 and since 〈V3(v)〉red

contains no K3, it follows that 〈V3(v)〉blue contains a K3, contradicting Lemma 3.5

(d).

Lemma 3.14. Case IIa in Table 3.1 is impossible.

Proof. As 〈V≥3(v)〉red contains no independent set of cardinality 4, it must be the red

subgraph of a t(3, 4)-avoidance graph, i.e., one of the graphs E1 − E8 in [[6], Figure

1(a)-(h)]. Note that there are only eight avoidance graphs of order 7 for s(3, 4) [[6],

Table 3], and since β(G) ≤ IR(G) for any graph G, it follows that this set of avoidance

s(3, 4)-graphs is also a complete set of avoidance t(3, 4)-graphs of order 7. However,

since ∆(Ei) ≤ 3 for all i = 1, ..., 8 (as G is 4-regular) and since only vertices of Ei

with degree 4 can be in 〈V>3(v)〉red, we have that V>3(v) = ∅.

Furthermore, it follows by Lemma 3.5 (d) that the pairs of red edges sent by the edges

of a triangle in 〈V3(v)〉blue to V2(v) must go to at least two different components of

〈V2(v)〉red. This implies that each triangle in 〈V3(v)〉blue sends at least five red edges
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to V2(v). Note that if such a triangle sends exactly five red edges to V2(v), then its

vertices send respectively 1, 2, and 2 red edges to V2(v) as they are traversed around

the triangle. The complement of each of the avoidance graphs E3, E4, E7 , and E8

has a triangle violating the above condition. Therefore, 〈V3(v)〉red must be isomorphic

to E1, E2, E5, or E6, shown in Figure 3.7.

Figure 3.7: In case IIa of Table 3.1 〈V3(v)〉red must be isomorphic to E1, E2, E5, or
E6.

Let A and B be two disjoint subsets of the vertex set of G. Then we denote by

Er(A,B) the number of edges of G joining vertices in A with vertices in B, while

Er(A) denotes the number of edges of G joining two vertices of A. Since the sum of

the vertex degrees in G over V3(v) is

|V3(v)| × δ(G) = 7× 4 = Er(V2(v), V3(v)) + 2Er(V3(v)), (3.2)

and

Er(G) = Er({v}, V1(v)) + Er(V1(v), V2(v)) + Er(V2(v)) + Er(V2(v), V3(v)) + Er(V3(v))

= 4 + 12 + Er(V2(v)) + (28− 2Er(V3(v))) + Er(V3(v))

= 44 + Er(V2(v))− Er(V3(v))

= 44,
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as Er(G) = 22×4
2

= 44. Thus,

Er(V2(v)) = Er(V3(v)). (3.3)

Furthermore, we observe from Figure 3.7 that Er(V3(v)) = 6, 7, or 8, and hence we

have three subcases to consider.

Subcase i: Er(V3(v)) = 6. In this subcase, it follows by (3.2) thatEr(V2(v), V3(v)) =

28 − 12 = 16. No vertex x ∈ V2(v) can receive three red edges from V3(v), for oth-

erwise x would be isolated in 〈V2(v)〉red, which is impossible, since all components of

〈V2(v)〉red are balanced in Case IIa. It follows by Lemma 3.5 (e) that each vertex in

V2(v) receiving two red edges from V3(v) must be in a (1, 1)-component of 〈V2(v)〉red.

Furthermore, if 〈V2(v)〉red has more than three (1, 1)-components, then the maximum

number of edges in 〈V2(v)〉red is 5, contradicting the fact that Er(V2(v)) = 6. There-

fore, to accommodate all 16 red edges from V3(v), it follows that 〈V2(v)〉red necessarily

comprises three (1, 1)-components and one (2, 2)-component, in which case each of

the six vertices in the (1, 1)-components of 〈V2(v)〉red receives exactly two red edges

from V3(v).

Let 〈{x1, y1}〉red be a (1, 1)-component of 〈V2(v)〉red, and let N(x1) ∩ V3(v) =

{w1, w2} and N(y1)∩V3(v) = {w3, w4}. Note that w1, w2, w3, and w4 are all distinct

in order to avoid triangles in G. It follows by Lemma 3.5 (c) that the blue edge w1w2

must send a pair of red edges, w1x2 and w2y2, to some component of 〈V2(v)〉red.

Furthermore, it follows by Proposition 1.11 and the fact that x1 has degree 4 that x1,

x2, and y2 must all have one common neighbor, u, in V1(v). Note that since x2 and y2

are both adjacent to u, both x2 and y2 must be in the (2, 2)-component of 〈V2(v)〉red

in which case x2y2 must be blue in order to avoid a red K3 in G. Similarly, as the

(2, 2)-component of 〈V2(v)〉red contains exactly three red edges, the blue edge w3w4



44

must also send red edges to x2 and y2, but this contradicts Lemma 3.5 (e).

Subcase ii: Er(V3(v)) = 7. In this subcase it follows by (3.2) thatEr(V2(v), V3(v)) =

28− 14 = 14. Again, since no vertex in V2(v) can receive three red edges from V3(v),

there must be at least four vertices, x1, y1, x3, and y3, in V2(v) which each receives two

red edges from V3(v). Hence there are at least two (1, 1)-components in 〈V2(v)〉red.

Since Er(V2(v)) = 7, there can be at most three (1, 1)-components in 〈V2(v)〉red. With-

out loss of generality, let x1 and y1 be in the same (1, 1)-component of 〈V2(v)〉red, and

let w1, w2, w3, and w4 be the neighbors of x1 and y1 in V3(v). As in subcase i, the

blue edge w1w2 must send a pair of red edges, say w1x2 and w2y2, to some component

of 〈V2(v)〉red. Also, x1, x2, and y2 must have a common neighbor, say u, in V1(v).

Since V3(v) contains exactly seven vertices, it follows by the pigeonhole principle that

at least one of x3 or y3 must be joined by means of a red edge to one of w1, w2, w3,

or w4. We may therefore assume that x3w1 is red. But then x1, x2, and x3 must all

have a common neighbor in V1(v), implying d(x1) > 4 and d(u) > 4, a contradiction

of ∆(G) = 4.

Subcase iii: Er(V3(v)) = 8 (implying Er(V2(v)) = 8 and 〈V3(v)〉red ∼= E6). In this

subcase, it follows by (3.2) that Er(V2(v), V3(v)) = 28− 16 = 12. There are at least

two vertices, x1 and x2 say, in V2(v) that each receive two red edges from V3(v). Label

the vertices of V3(v) as in Figure 3.8.

We consider to which pairs of vertices in V3(v) the vertices x1 and x2 can send red

edges. Note that x1 cannot send red edges to pairs of vertices of the form {w4, wi}

or {w7, wj}, where w4wi and w7wj are blue edges, since w4 or w7 will be saturated

in terms of its red degree, therefore either contradicting Lemma 3.5 (c) or forming a

red K3 in G. Hence the vertex x1 must send red edges to two nonadjacent vertices

in {w1, w2, w3, w5, w6}. However, x1 may not send red edges to the following pairs of

vertices:
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• {w2, w6}, for otherwise x1w2w3w4w5w6x1 would form a red 6-cycle with blue
diagonals,

• {w2, w5}, by symmetry, for the same reason as above,

• {w1, w5}, for otherwise x1w1w2w3w4w5x1 would form a red 6-cycle with blue
diagonals,

• {w1, w6}, by symmetry, for the same reason as above.

Figure 3.8: A subgraph of G in Subcase iii.

Therefore, the only pairs of vertices in V3(v) to which the vertex x1 may send red

edges are {w1, w6}, {w1, w3}, or {w3, w5}. First consider the case where x1 sends red

edges to {w1, w3} and x2 sends red edges to {w1, w6} or {w3, w5}. Suppose, without

loss of generality, that x2 sends red edges to {w1, w6}. Then, w1 is saturated in terms

of its red degree, which means that the blue edge w1w3 cannot send a pair of red

edges to V2(v) as dictated by Lemma 3.5. We conclude, without loss of generality,

that x1 must send red edges to {w1, w6}, while x2 sends red edges to {w3, w5} (see

Figure 3.8).

Note that x1x2 must be blue, for otherwise x1x2w5w4w7w1x1 would form a red

6-cycle with blue diagonals. Therefore x1 and x2 are in different (1, 1)-components

of 〈V2(v)〉red, and the blue edges w1w6 and w3w5 must send pairs of red edges to the

remaining components of 〈V2(v)〉red. Suppose, without loss of generality, that w1, w3,
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and w6 send red edges to z1, z2 ∈ X and z3 ∈ Y , as shown in Figure 3.8. Then we can

select two vertices, v1 and v2, from Y which are not joined by means of red edges to the

saturated vertices {w1, w3, w6}, which means that 〈{v, v1, v2, x′1, x′2, w1, w5, w6}〉blue is

a clique of order 8 in G, a contradiction.

Lemma 3.15. Case IIb in Table 3.1 is impossible.

Proof. In this case, there are two possibilities to consider, namely where 〈V2(v)〉red

has two unbalanced components, or where 〈V2(v)〉red has one unbalanced component.

We consider the case where 〈V2(v)〉red has two unbalanced components first.

Let (Xi, Yi) be the components in question with |Xi| = |Yi| + 1 for i = 1, 2. It

follows by Lemma 3.5 (f) that V>3(v) = ∅. Every vertex w ∈ V3(v) must send a red

edge to X1∪X2 in order to avoid the clique of order 8 in G induced by {v, w}∪X1∪X2

together with the partite sets of the balanced components of 〈V2(v)〉red which do not

receive red edges from w. Let t denote the number of red edges incident with vertices

in X1 ∪X2. Then

t = Er(X1 ∪X2, V3(v)) + Er(X1 ∪X2, Y1 ∪ Y2) + Er(X1 ∪X2, V1(v))

≥ 7 + (2|X1| − 2) + (2|X2| − 2) + |X1|+ |X2|

= 3 + 3|X1|+ 3|X2|.

Let ε = t− (3 + 3|X1|+ 3|X2|). So, 3 + 3|X1|+ 3|X2|+ ε ≤ 4|X1|+ 4|X2| implies

3 + ε ≤ |X1|+ |X2|. (3.4)

We show that there is a pair of vertices in V3(v) which have a common neighbor

x1 ∈ Xi such that |Xi| ≥ 2, for some i ∈ {1, 2}. Since |X1| + |X2| ≥ 3, we have that

|X1| ≥ 2 or |X2| ≥ 2. Assume, without loss of generality, that |X1| ≥ 2. Suppose
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every vertex in X1 sends at most one red edge to V3(v). Then the remaining vertices in

V3(v) send red edges to X2. If |X2| = 1 (implying |X1| = 5, |Y1| = |Y | = 4, |Y2| = 0),

then |{v} ∪N r(X2) ∪X1| ≥ 1 + 2 + 5 = 8 in G, a contradiction. So, |X2| ≥ 2. Since

|V3(v)| = 7 and |X| = 6 (|X1| ≤ 4), there exist two vertices w1, w2 ∈ V3(v) that send

red edges to a vertex x1 ∈ X2. Assume therefore, without loss of generality, that

x1 ∈ X2, x1w1, x1w2 are red, and |X2| ≥ 2.

As |X2| ≥ 2 there is a red path x1yx2 with x1, x2 ∈ X2 and y ∈ Y2. By

Proposition 1.11, N r(x1)∩N r(x2)∩V1(v) = {u} ∈ V1(v) thus saturating the vertex x1.

Now, the vertices w1 and w2 can send at most one red edge to V2(v)\X2, for otherwise

u or x1 will be oversaturated in order to accomodate the common neighbors in V1(v)

of the endpoints of the red paths of order 3 formed in V2(v)∪V3(v), as necessitated by

Proposition 1.11. However, if this additional red edge does not go to X1, or if w1 and

w2 do not send additional red edges to V3(v), then a clique of order 8 is induced in G

by {v, w1, w2} ∪X1 ∪X2 together with the partite sets of the balanced components

of 〈V2(v)〉red that do not receive a red edge from either w1 or w2.

Assume therefore, without loss of generality, that w2x3 is red, for some x3 ∈ X1.

Then, ux3 is red by Proposition 1.11. Note that ε ≥ 1 since w2 now sends two edges

to X1 ∪ X2. We now consider, as subcases, the possible cardinalities of X1 and X2.

Note that if |X1| ≥ 2, then ε ≥ 2 since x3 is part of a red path of order three whose

endpoints have a common neighbor in V1(v) other than u, by Proposition 1.11.

Before continuing, we note the following two useful observations.

Observation 3.16. Let S = {p1, p2, p3, p4, p5}. If 〈S〉red ⊆ 〈V2(v)〉red is a path

p1p2p3p4p5 of order 5, then the pairs of vertices {p1, p3}, {p2, p4}, and {p3, p5} all

have distinct common neighbors in V1(v).

Proof. It follows by Proposition 1.11 that all three pairs of vertices must have common
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neighbors in V1(v). To avoid triangles in G, only the pairs of vertices {p1, p3} and

{p3, p5} can possibly share a common neighbor in V1(v). Suppose p1, p3, and p5 all

have the same common neighbor, u1, and that p2 and p4 have the same common

neighbor, u2, in V1(v). Then u1p1p2u2p4p5u1 is a red 6-cycle with blue diagonals, a

contradiction.

Observation 3.17. If y ∈ Y and |Xi| = |Yi|+ 1 for i = 1, 2, then Er({y}, X) ≤ 2.

Proof. Suppose, to the contrary, that there is a vertex y2 ∈ Y which sends red edges

to x1, x2, x3 ∈ X. Then x1, x2, and x3 must have a common neighbor, u1 6= u, in

V1(v) by Corollary 3.4. But then 〈{u, u1} ∪ Y ∪ {w1, w2}〉blue is a clique of order 8 in

G, a contradiction.

From the above observations it is easy to see that 〈V2(v)〉red cannot contain a

(4, 3)-component (or larger): It follows by Observation 3.17 that 〈Xi ∪Yi〉red is either

a path of order 7 or else Xi contains a vertex x which sends three red edges to Yi.

In both cases all the common neighbors cannot be accommodated (either because x

is oversaturated in terms of its red degree or there are not enough vertices in V1(v),

as may be seen by applying Observation 3.16 on the three subpaths of order 5 of

p1, ..., p7 starting with p1, p2, and p3, respectively). We therefore complete the proof

of the lemma by considering two subcases.

Subcase i: |X1| = 2. Since ε ≥ 1, it follows by (3.4) that |X1| + |X2| ≥ 4 and

hence |X1| ≥ 2. But then ε ≥ 2 implying that |X1| ≥ 3 by (3.4). Therefore, |X1| = 3,

and it follows by Observation 3.17 that 〈X1 ∪ Y1〉red is a path, p1p2p3p4p5, of order 5.

But then it follows by Observation 3.16 that ε ≥ 3, since p3 sends two red edges to

V1(v), contradicting the cardinality of |X1| in view of (3.4).

Subcase ii: |X2| = 3. In this subcase 〈X2 ∪ Y2〉red is a path of order 5, so ε ≥ 2.

Thus, |X1|+ |X2| ≥ 5, and so |X1| ≥ 2. If |X1| = 2, then ε ≥ 3, again a contradiction,
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as above. We conclude that |X1| = 3. But if 〈X1 ∪ Y1〉red and 〈X2 ∪ Y2〉red each

contains a path of order 5, then the required number of unique common neighbors

forces d(v) > 4 = ∆(G), a contradiction.

The final possibility to consider is when 〈V2(v)〉red has only one unbalanced com-

ponent, (X1, Y1), with |X1| = |Y1| + 2. Using a similar argument to that used to

obtain (3.4), it may be shown that |X1| ≥ 4 + ε. As |X1| ≤ 6, we have that ε ≤ 2.

Notice that if ε = 2, then 〈V2(v)〉red comprises only one component, and V3(v) sends

no red edges to Y . But then V3(v) ∪ Y ∪ {v} induces a clique of order 8 in G since

〈V3(v)〉blue must contain a triangle. We therefore conclude that ε ≤ 1.

We complete the proof by showing that the above inequality cannot be satisfied.

The subgraph 〈X1 ∪ Y1〉red must either be a connected graph containing a cycle or

must contain an induced path of order 5, p1p2p3p4p5. In the former case, ε ≥ 1. In

the latter case, it follows by Observation 3.16 that p3 sends two red edges to V1(v)

and so again, ε ≥ 1. Note that it now follows that |X1| = 5. Also, as before, there

must be two vertices in V3(v), w1 and w2, which send red edges to x1 ∈ X1. Using a

similar argument as in the subcase with two unbalanced components, it follows that

w1 or w2 must send a red edge to X1 − {x1} in order to avoid a clique of order 8 in

G, implying ε ≥ 2.

Lemma 3.18. Cases IIIa and IIIb in Table 3.1 are impossible.

Proof. In both cases, |V≥3(v)| = 8, so 〈V≥3(v)〉red has to be the red subgraph of a

(3, 4, 8)-coloring, i.e., one of the graphs E10 or E11 in Figure 3.9, for otherwise a

triangle would result in G or else a clique of order 8 would be induced in G by the

vertices in V1(v) together with four vertices in V≥3(v). Since neither E10 nor E11 has

a vertex of degree 4, it follows in both cases that, in fact, V≥4(v) = ∅.

We first consider the possibility that 〈V3(v)〉red ∼= E10 with vertices labeled as
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Figure 3.9: The only two possibilities for the red subgraph of a (3,4,8)-graph [[6],
Table 4].

in Figure 3.9. Each of the vertices w1, w2, w3, and w4 has two neighbors in V2(v).

We show that these neighbors are, in fact, distinct, i.e., that there are eight such

neighbors in total. Without loss of generality, we show only that the neighbors of w1

are distinct from those of w2, w3, and w4. First, w1 and w4 cannot have a common

neighbor in V2(v), for otherwise a triangle would result in G. Furthermore, if w1 and

w3 have a common neighbor, y, in V2(v), then the red 6-cycle with blue diagonals

w3yw1w4x3x4w3 results in (G,G), unless the edge x3y is red. But, w3yw1x2x1w2w3 is

similarly a red 6-cycle with blue diagonals in (G,G), unless the edge x1y is red. But

x1y and x3y cannot both be red, for this would oversaturate the vertex y. A similar

argument shows that w1 and w2 cannot have a common neighbor (in this case the

two red 6-cycles with blue diagonals are w2yw1x2x4w3w2 and w2yw1w4x3x1w2).

Define Z1 = (N(w1)∩V2(v))∪{x} and Zi = N(wi)∩V2(v) for all i ∈ {2, 3, 4}, and

let xv1 be red without loss of generality, as shown in Figure 3.10. Then each pair of

vertices in Zi must have a common neighbor, vi, in V1(v) by Proposition 1.11, for all

i ∈ {1, 2, 3, 4}. Note that N(w2) ∪ {w1, v1}, N(w3) ∪ {w4, v1}, and N(w4) ∪ {w3, v1}

each forms a clique of order 6 in G. Therefore, in order to avoid a clique of order 8 in

G, there must be a red edge between Z2 and {v3, v4}, between Z3 and {v2, v4}, and
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Figure 3.10: A part of (G,G) in the cases IIIa and IIIb, if 〈V3(v)〉red ∼= E11.

Z4 and {v2, v3}. Hence there are three red edges between Z2∪Z3∪Z4 and {v2, v3, v4}.

Since G is 4-regular, there cannot be any red edges between Z1 and {v2, v3, v4}. But

then a clique of order 8 is induced in G by the vertices in Z1 ∪ {v2, v3, v4, w3, w4}, a

contradiction.

Consider next the possibility that 〈V3(v)〉red ∼= E11 with vertices labelled w1, ..., w8

as in Figure 3.9(b). In Case IIIa of Table 3.1 the vertices in {v, wi, wj}∪X will induce

a clique of order 8 in G if a blue edge wiwj in V3(v) sends both its red edges to Y .

Similarly, the vertices in {v, wi, wj, wk} ∪ Y will induce a clique of order 8 in G if a

blue triangle wiwjwk in V3(v) sends all its red edges to X in Case IIIa of Table 3.1.

Label the vertices in V3(v) by means of the symbols x and y to indicate whether the

vertices send red edges to X or Y , respectively. Thus, in order to avoid a clique of

order 8 in G, the vertices in V3(v) should be labeled x and y in such a way that

the endpoints of every blue edge in V3(v) are not both labeled y, and such that the

vertices of a blue triangle in V3(v) are not all labeled x. We show that this is not

possible. Since not all vertices in V3(v) can be labeled x, some vertex, w1 say, must

be labeled y. To avoid labeling both endpoints of blue edges in V3(v) with the symbol

y, the vertices w3, w4, w6, and w7 must all be labeled x. Furthermore, in order to
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avoid labeling all the vertices of the triangles 〈{w3, w6, w8}〉blue and 〈{w2, w4, w7}〉blue

with the symbol x, the vertices w2 and w8 must both be labeled y. But then both

endpoints of the blue edge w2w8 in V3(v) are labeled y, a contradiction.

The following result therefore holds in view of Lemmas 3.13, 3.14, 3.15, 3.18.

Theorem 3.19. t(3, 8) = 22.



CHAPTER 4: Conclusion

Using the results of this thesis and various sources, we have the following table:

Irredundant Mixed irredundant Classical
Ramsey Number Ramsey Number Ramsey Number

s(3, 3) = 6 t(3, 3) = 6 r(3, 3) = 6
s(3, 4) = 6 t(4, 3) = 8 r(3, 4) = 9
s(3, 5) = 12 t(3, 4) = 9 r(3, 5) = 14
s(3, 6) = 7 t(3, 5) = 12 r(3, 6) = 18
s(3, 7) = 18 t(5, 3) = 13 r(3, 7) = 23
s(4, 4) = 13 t(3, 6) = 15 r(3, 8) = 28

t(6, 3) = 17 r(3, 9) = 36
t(4, 4) = 14 r(4, 4) = 18
t(3, 7) = 18 r(4, 5) = 25
t(3, 8) = 22

Table 4.1: Ramsey numbers known exactly.

Using the results of the previous chapter and the fact that s(m,n) ≤ t(m,n) ≤ r(m,n),

it also follows that

14 ≤ t(4, 5) ≤ 25, 14 ≤ t(5, 4) ≤ 25,
18 ≤ t(7, 3) ≤ 23, 18 ≤ t(8, 3) ≤ 28,
18 ≤ s(3, 8) ≤ 22, 13 ≤ s(4, 5) ≤ 25.

These are the six smallest unknown Ramsey numbers involving the graph theoretic

notion of irredundance, and are certainly worthy of further investigation.
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