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The 16 April 2011 EF3 Tornado in Greene County,
Eastern North Carolina

THOMAS M. RICKENBACH
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This paper presents a case study of an EF3 tor-

nado that adversely impacted Greene and Pitt

Counties in eastern North Carolina on 16 April

2011. This was one of the most damaging and

longest-lived of the multiple tornados that oc-

curred across central and eastern North Carolina

that day, the most extensive outbreak in North

Carolina since 1984. This event occurred during

the month (April 2011) with the largest number

of tornadoes on record in the United States. The

focus of this case study was to examine the rela-

tionship between the mesocyclone evolution and

the location and intensity of surface damage asso-

ciated with the EF3 tornado. Results indicated

that the initial contraction and spin up of the

mesocyclone circulation preceded EF3 damage by

about 20 minutes. At the time of mesocyclone in-

tensification, the damage swath and tornado

were situated much closer to the mesocyclone cen-

ter than in the formative and dissipating stages.

The weakened mesocyclone passed directly over a

meteorological station at East Carolina Univer-

sity’s West Research Campus, providing a rare op-

portunity for surface measurements associated

with a weakening tornadic mesocyclone.

Este trabajo presenta un estudio de caso de un

tornado EF3 que impactó negativamente los con-

dados de Greene y Pitt en el este de Carolina del

Norte el 16 de abril de 2011. Este fue uno de los

más dañinos y de más larga duración de los múlti-

ples tornados que se produjeron en el centro y el

este de Carolina del Norte ese mismo día, el brote

más extenso en Carolina del Norte desde 1984.

Este evento tuvo lugar durante el mes (abril de

2011) con el mayor número de tornados en el

registro en los Estados Unidos. El objetivo de este

estudio fue examinar la relación entre la evolu-

ción del mesociclón y la ubicación e intensidad de

los daños en la superficie asociados con el tornado

EF3. Los resultados indicaron que la contracción

inicial y el giro de la circulación del mesociclón

precedió los daños del EF3 por unos 20 minutos.

Al momento de intensificación del mesociclón,

la franja de daños y el tornado se encontraban

mucho más cerca del centro del mesociclón que en

las etapas de formación y disipación. El mesoci-

cón debilitado pasó directamente sobre una esta-

ción meteorológica del West Research Campus de

East Carolina University, proporcionando una

oportunidad única para las mediciones de la su-

perficie asociada con un debilitamiento del meso-

ciclón de tornados.
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introduction

On the afternoon and early evening of
16 April 2011, a significant tornado out-
break affected much of central and east-
ern North Carolina, producing fatalities as
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Figure 1. Location and tracks of confirmed tornadoes on 16 April 2011 within the

NWS Newport/Morehead City Office warning area (from NWSFO 2011).

well as extensive damage to structures and
buildings across the region. This was the
most damaging and widespread tornado
outbreak since the 28 March 1984 event
in central North Carolina, where such oc-
currences are much less frequent than in
the Midwestern U.S. (Fujita and Steigler
1985; Gyakum and Barker 1988). The 16
April 2011 tornadoes in North Carolina
were part of a larger-scale outbreak across
the southeastern United States that re-
sulted in 875 tornadoes for the month of
April, the largest monthly total in the
United States on record (Hoerling 2011).
In particular the 25–28 April outbreak
across several southeastern states, which
included the Tuscaloosa, Alabama EF5 tor-

nado, was the costliest tornado outbreak
in the United States, with approximately
321 deaths and over $10 billion in damage
(NOAA Extreme Weather summary 2011).

Twelve tornadoes were confirmed with-
in the National Weather Service Newport/
Morehead City office warning area on 16
April 2011 in eastern North Carolina, with
additional tornadoes near Raleigh (NWSFO
2011). The tornado outbreak in eastern
North Carolina occurred within a 230 km
long swath extending southwest to north-
east from Mt. Olive in Duplin County to
Duck in Dare County along the Outer
Banks (Figure 1). The most significant of
these in terms of damage and duration oc-
curred in Greene County near the town of
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Snow Hill (between Goldsboro and Green-
ville), with an enhanced Fujita scale (EF)
intensity rating (McDonald 2002) of EF3.
This tornado destroyed several businesses
and homes, and severely damaged several
schools in Greene County as it traversed a
29 km path of up to 300 m in width. The
National Weather Service (NWSFO 2011)
estimated that maximum wind speeds as-
sociated with the Snow Hill tornado in-
ferred from structural damage reached
67–72 m s-1 (150–160 miles hr-1). Approx-
imately one hour following the damage in
Greene County, the same supercell thun-
derstorm produced another tornado that
resulted in twelve confirmed deaths north
of Williamston (Figure 1), about 65 km
northeast of Snow Hill (NWS Tornado
Damage Survey 2011).

The challenge in tornado forecasting
generally is that not all mesocyclones, the
parent circulation within most tornadic su-
percell thunderstorms, produce tornadoes
(Donaldson and Desrochers 1990; Burgess
et al. 1993). Trapp et al. (2005) found that
only 26 percent of mesocyclones in their
sample, objectively identified with the
NEXt-generation RADar (NEXRAD), were
tornadic. About half of the subset of meso-
cyclones that are strong and long-lived fail
to produce tornadoes, underscoring the un-
resolved forecast problem of unambigu-
ously inferring the presence of a tornado
from the NEXRAD-observed mesocyclone
(Brooks et al. 1994; Trapp 1999). Moreover,
the intensity of the mesocyclone circulation
seen by the NEXRADs is not a unique surro-
gate for the presence, strength, or precise
location of an embedded tornado circula-
tion (Wakimoto et al. 2003). It is therefore
important to examine those characteristics
of NEXRAD-observed mesocyclones that
are linked to verified tornado sightings with

known damage attributes. This is particu-
larly important for this case because EF3 tor-
nadoes are much less common in eastern
North Carolina compared to the well-stud-
ied Great Plains of the United States (Ras-
mussen et al. 1994; Trapp et al. 2005).

This paper presents a case study of the
16 April 2011 EF3 tornado near Snow Hill,
North Carolina. The radar reflectivity and
radial velocity data from the Morehead
City NEXRAD is described first, which
forms the basis for the analysis. Next an
overview is given of the large-scale mete-
orological conditions on the day of the
outbreak. Results are then presented from
an analysis of the radar-observed meso-
cyclone evolution in the context of the lo-
cation of verified tornado sightings and
damage, prior to, during, and following
the tornado event. The study connects
damage reports and photographic obser-
vations of the weakening EF3 tornado to
the evolving radar reflectivity and radial
velocity structure of the parent mesocy-
clone in Greene and Pitt counties, North
Carolina on 16 April 2011. Finally, surface
meteorological observations at the East
Carolina University (ECU) West Research
Campus (WRC) provide a rare opportunity
to document the weakening stage of the
tornadic mesocyclone, which passed very
near the WRC site.

data and methods

This work is based primarily on analysis
of radar reflectivity and radial velocity data
from the NEXRAD radar located in More-
head City, North Carolina (station identifier
KMHX) approximately 100 km southeast of
the Greene County tornado on 16 April
2011. At the time of the tornado, the KMHX
NEXRAD was collecting data at 17 elevation
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angles every five minutes with a resolution
of 0.5\ in azimuth and 0.25 km along each
radial (in super-resolution mode, Torres
and Curtis 2007). For this study, level II
NEXRAD data were ingested, visualized
and analyzed using the National Climatic
Data Center’s Weather and Climate Toolkit
(NCDC WCT; Ansari et al. 2009). The radar
data was exported from the NCDC WCT to
ArcGIS (Geographic Information Systems)
format, which allowed for a more detailed
visualization of structural features of the su-
percell and mesocyclone with respect to the
location of road networks, structures, and
towns. From 2116 to 2214 UTC (1716 to
1814 local time), thirteen radar volume
scans separated in time by approximately
five minutes sampled the tornadic supercell
as it moved from near Goldsboro in Wayne
County to just west of Greenville in Pitt
County, a distance of about 50 km.

The supercell and mesocyclone struc-
ture was examined from each radar vol-
ume scan at the lowest elevation angle
(0.48\, or about 1.7 km above the surface
based on the nominal range of the super-
cell from the radar). For each scan, the
following attributes of the supercell and
mesocyclone structure were determined:
maximum reflectivity in the supercell,
qualitative structure features of the super-
cell reflectivity pattern, the location,
speed, and direction of mesocyclone cen-
ter, strongest radial velocity values in the
mesocyclone, and the mesocyclone diame-
ter. Storm-relative maxima in the meso-
cyclone radial velocity were determined
by first dealiasing (unfolding) the velocity
values exceeding the Nyquist interval of
29.65 m s-1 (57.6 kt), and then subtracting
the component of storm motion along the
radar beam from each velocity maximum.

Storm motion was estimated by tracking
the center of the mesocyclone circulation
as indicated in the radial velocity field at
the lowest elevation angle. The diameter
of the mesocyclone was defined as the
horizontal distance between the velocity
maxima through the mesocyclone center.

The NWS issued a preliminary assess-
ment of the tornado track and EF rating
along with a general description of the
damage extent and location across Greene
and Pitt counties (NWSFO 2011). A de-
tailed map indicating the Greene County
tax parcels with tornado damage was ob-
tained from the Greene County Tax Office
following their independent damage as-
sessment (http://www.co.greene.nc.us).
Guided by these reports, the author con-
ducted an informal damage survey to as-
certain the start and end points of the dam-
age swath from northern Wayne County
near Goldsboro to southern Pitt County
west of Greenville. This information was
integrated to form the basis for the dam-
age locations and EF ratings discussed
later in the paper. Photographic evidence
of the EF3 tornado in the town of Snow
Hill came from video taken by an emer-
gency medical technician from outside the
Greene County Emergency Services Build-
ing. The video was shot from a vantage
point approximately 1 km east-southeast
of the tornado at the time it produced the
most extensive damage associated with the
entire event.

The Department of Geography at East
Carolina University (ECU) maintains an au-
tomated weather station at the ECU West
Research Campus in central Pitt County.
The station provides wind measurements
on a 10 m tower located in an unobstructed
open field, as well as other standard surface
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Figure 2. National Weather Service surface analysis on 16 April 2011 1200 UTC,

the morning of the tornado event. Surface map shows pressure (mb, solid lines) and frontal locations.

Source: http://www.hpc.ncep.noaa.gov/dailywxmap/index.html.

meteorological parameters such as pres-
sure, temperature, precipitation, relative
humidity, and solar radiation. All param-
eters were sampled at 0.1 Hz and averaged
over a five-minute period. The mesocyclone
center passed within 1 km of the WRC sta-
tion about 5 minutes following the last ob-
served EF0 damage associated with the
tornado. These data will be discussed in
Section 6.

synoptic setting

On 16 April 2011 the eastern third of
the United States was under the influence
of a large extratropical cyclone. The sur-
face and upper air situation on the morn-
ing of the tornado event is presented in
Figures 2 and 3. At 1200 UTC a low pres-
sure center [ 996 mb was located over the

Great Lakes with a strong cold front ex-
tending south through Ohio, the Virginias
and Carolinas and down through Georgia
and the Florida panhandle. A warm front
extended eastward from a developing re-
gion of low pressure in western Virginia,
extending across North Carolina and mov-
ing slowly northward. The 1200 UTC up-
per air chart representing the height of the
500 mb pressure surface showed a deep
trough extending southward along the
Mississippi Valley to the west of North Car-
olina. The 17 April 0000 UTC sounding at
Morehead City (Figure 4), during the tor-
nado outbreak, indicated 28 m s-1 (55 kt)
shear between the surface and 2 km with
southerly winds veering to southwesterly
in that layer. The sounding indicated an
environment of strong instability with val-
ues of convective available potential en-
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Figure 3. National Weather Service 500 mb upper air analysis on 16 April 2011 1200 UTC,

the morning of the tornado event. Map gives 500 mb height (0.1 x m, solid lines), wind vectors, and

temperature (oC, dotted lines). Source: http://www.hpc.ncep.noaa.gov/dailywxmap/index.html.

ergy (CAPE) in excess of 2300 J kg-1.
Taken together, the large-scale environ-
ment was conducive to the formation of
potentially tornadic supercell thunder-
storms across central and eastern North
Carolina.

Accordingly, at 1600 UTC on 16 April
2011 The National Weather Service Storm
Prediction Center placed the eastern two-
thirds of North Carolina, southern Vir-
ginia, and eastern South Carolina under a
tornado watch, emphasizing the potential
for EF2 or greater tornadoes in that re-
gion. By 1930 UTC, radar indicated a
northeast to southwest oriented line of 4–
5 supercell thunderstorms across central

North Carolina (Figure 5) moving east-
ward ahead of the advancing cold front.

supercell evolution and
damage swath

This section outlines the evolving radar
reflectivity and radial velocity structure of
the supercell thunderstorm that produced
the EF3 tornado in central Greene County,
eastern North Carolina. The analysis cov-
ers the period from 2126 UTC to 2214
UTC during which time the supercell ex-
ited eastern Wayne County, traversed
Greene County, and entered southwestern
Pitt County. This analysis emphasizes the
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Figure 4. Sounding from Morehead City, North Carolina on 17 April 2011 0000 UTC, about 125 km

southeast of and two hours following the tornado event in Snow Hill. Source: University of Wyoming

(http://weather.uwyo.edu/upperair/sounding.html).

irculation and central position of the
mesocyclone and the supercell reflectivity
structure from the lowest tilt angle of the
radar scan (nominally 1.6–1.9 km above
ground level at the range of the supercell).
The supercell and mesocyclone structure
is also placed in context with the location
and intensity of the damage swath from
the tornado.

At 2126 UTC the KMHX NEXRAD indi-
cated a supercell thunderstorm in the vicin-
ity of Goldsboro in central Wayne County
approaching the town of Elroy (Figures 6

and 7). A mesocyclone was centered 2 km
south of the reflectivity core, within a well-
defined weak echo region. Over the next five
minutes the supercell moved northeastward
at about 22 m s-1 (50 mi hr-1), crossed U.S.
Highway 70 and passed 4 km northwest of
the town of LaGrange (Figures 8 and 9). By
2135 UTC the enhanced reflectivity on the
southern edge of the weak echo region had
expanded and had nearly detached from
the supercell core (Figure 10). At this time
the mesocyclone center was located with-
in the now bounded weak echo region
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Figure 5. Regional radar composite for 16 April 2011 at 1930 UTC. (Source: http://nmq.ou.edu).

(BWER), suggesting the establishment of a
strong coherent updraft (Browning and
Foote 1976; Knupp et al. 1998). At this loca-
tion, near the intersection of Wayne, Lenoir
and Greene counties just southwest of the
community of Jason, several snapped pine
trees and minor roof damage to a small
house were noted by the author several days
after the event. Based on the damage, the
National Weather Service (NWS Newport/
Morehead City Public Information State-
ment issued 19 April 2011) estimated the
surface wind speed at this location to be
about 36 m s-1 (80 mi hr-1), corresponding to
an EF0 tornado (the location of EF0 damage
is indicated on Figure 10 and similar fig-
ures). There were no confirmed visual sight-
ings of a tornado at that time and location.

The mesocyclone center was located about
1 km northwest of the surface damage and
continued to move northeast along North
Carolina Highway 903 (between Highway
13 and Highway 258) toward Snow Hill.

The next ten minutes saw significant
changes to the mesocyclone and reflectiv-
ity structure of the storm. From 2135 UTC
to 2145 UTC, the BWER filled in nearly
completely (Figures 10–15), while a low
reflectivity notch cut into the southwestern
portion of the supercell south of the core
(visible at 2145 UTC, Figure 14). Such fea-
tures are often associated with the descent
of the rear-flank downdraft, which is
thought to be an important precursor to
tornado genesis by tilting horizontal vor-
ticity downward into the boundary layer



Figure 6. Regional map of radar reflectivity (dBZ) from the KMHX NEXRAD on 16 April 2011 centered

on Snow Hill, Greene County, North Carolina for 2126 UTC. The radar is located 115 km (70 miles)

southeast of Snow Hill. For scale, line segment is approximately 5 km.

Figure 7. Regional map of ground-relative radial velocity (knots) from the KMHX NEXRAD on 16 April

2011 centered on Snow Hill, Greene County, North Carolina for 2126 UTC. The radar is located 115

km (70 miles) southeast of Snow Hill. For scale, line segment is approximately 5 km.



Figure 8. Regional map of radar reflectivity (dBZ) as in Figure 6, but for 21:30 UTC. The mesocyclone

center is located at the open end of the line segment indicating the northeastward motion of the center.

Black squares indicating the location in five-minute intervals prior to the current image.

Figure 9. Regional map of ground-relative radial velocity (knots) as in Figure 7, but for 21:30 UTC. The

mesocyclone center is located at the open end of the line segment indicating the northeastward motion of

the center. Black squares indicating the location in five-minute intervals prior to the current image.



Figure 10. As in Figure 6 and Figure 8, but for 21:35 UTC.

Figure 11. As in Figure 7 and Figure 9, but for 21:35 UTC.



Figure 12. As in Figure 6 and Figure 8, but for 21:40 UTC.

Figure 13. As in Figure 7 and Figure 9, but for 21:40 UTC.



Figure 14. As in Figure 6 and Figure 8, but for 21:45 UTC.

Figure 15. As in Figure 7 and Figure 9, but for 21:45 UTC.
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Figure 16. Still image from video of the EF3 tornado, 1 km to the west-southwest, at the time

(approximately 21:45 UTC) when the tornado severely damaged a neighborhood along Highway 13

in west Snow Hill (courtesy of Mr. Matthew Galloway, Greene County Emergency Services).

(Davies-Jones 2000). At this time the
radar-observed mesocyclone was observed
to contract and intensify, with several
folded radial velocity range gates within 2
km of the mesocyclone center (Figure 15).
The mesocyclone center passed about 1 km
northwest of the first significant damage
(EF3) associated with this event. A farm-
house along Warrentown Road near North
Carolina Highway 903, about 3.3 km
southwest of the town of Snow Hill, sus-
tained significant roof damage, with a
large metal shed wrapped in the upper
branches of a tree 9 m above the ground
noted by the author. A swath 100 m wide
of snapped and damaged large trees was
carved through the forested area around
the farm, consistent with tornado damage.

The first documented tornado sighting,
from video taken by a Greene County emer-
gency medical technician, occurred 2.5 km
northeast of the damaged farmhouse as
the tornado approached west Snow Hill at
approximately 2145–2150 UTC (1745–
1750 local time). A still image from the
video footage (Figure 16) shows the tor-
nado about 1 km west-southwest of the
camera, as the tornado entered a neighbor-
hood along Highway 13 in west Snow Hill.
Several houses were completely destroyed,
resulting in several injuries but fortunately
no deaths. The debris from one house was
scattered 100 m northward across High-
way 13 while another house was displaced
10 m northeastward off its foundation
(aerial photo shown in Figure 17). The di-
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Figure 17. Aerial photo of EF3 damage to the neighborhood along Highway 13. View is to the

northeast. Highway 13 runs left to right (courtesy of the National Weather Service).

rection of downed trees and scattered
building debris was consistent with EF3
damage from a strong southwesterly wind
estimated at 71.5 m s-1 (160 mi hr-1) by a
National Weather Service Newport/More-
head City public information statement
(NCDC Storm Event Database 2011). At
this time (2145 UTC) the mesocyclone cen-
ter at the lowest radar scan (1.65 km above
the surface) moved closest to the location
of damage, to within 0.5 km northwest of
the damage swath. The intensification of
the mesocyclone structure and observa-
tions of damage from a strong tornado cor-
responded in time to a degradation of the
bounded weak echo structure, consistent
with previously published case studies
(Lemon and Doswell 1979). As the tor-
nado passed 0.5 km northeast of Highway
13, video footage showed large suspended
debris at least 0.25 km above the surface

moving northeastward along the south-
eastern edge of the tornado. Based on the
damage swath and on foreground trees
and structures in the video, the tornado
was approximately 300 m in diameter at
that time. The tornado continued moving
northeastward at 24 m s-1 (54 mi hr-1) and
produced EF3 damage through 2155 UTC.
Specifically, the tornado inflicted roof and
significant structural damage to Greene
County Middle School in Snow Hill as well
as extensive damage to several farmhouses
and mobile homes in north-central Greene
County, 3 km southwest of the town of
Farmville.

The radar imagery from 2150–2155
UTC (Figures 18–21) suggest that the
mesocyclone center continued to fill in
with precipitation, degrading the hook
echo structure, as the system approached
Farmville. The mesocyclone center be-



Figure 18. As in Figure 6 and Figure 8, but for 21:50 UTC.

Figure 19. As in Figure 7 and Figure 9, but for 21:50 UTC.



Figure 20. As in Figure 6 and Figure 8, but for 21:55 UTC.

Figure 21. As in Figure 7 and Figure 9, but for 21:55 UTC.
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came displaced from 0.5 km to about 2 km
northwest of the damage swath during
this period, while the circulation inferred
from the radial velocity pattern appeared
to weaken and expand in diameter (further
discussion later in the paper). The damage
(EF1) 3 km south of Farmville was limited
to scattered snapped pine trees and minor
roof damage to farm structures (NCDC
Storm Event Database 2011), with no ap-
parent damage between that point and
Farmville. This observation led the Na-
tional Weather Service to conclude the tor-
nado lifted from the surface in that region.
EF1 damage resumed on the south end of
downtown Farmville, with snapped and
uprooted trees and minor roof damage to
an apartment complex.

The northernmost extent of damage
from this tornado event occurred 5 km
northeast of Farmville, along the southern
edge of Highway 121. Though no struc-
tures were present, the author noted that
at this location three large pine trees were
snapped 5 m above the base toward the
north while a wooden fence remained in-
tact, consistent with EF0 damage. The
mesocyclone center passed to within 1 km
southeast of the EF0 damage location
northeast of Farmville by 2205 UTC (Fig-
ures 22–25), while a small but well-
defined weak echo region reformed in the
supercell reflectivity field near the meso-
cyclone core. At this time the mesocyclone
passed directly over the automated weather
station at East Carolina University’s West
Research Campus. Over the next ten min-
utes (2209–2214 UTC, Figures 26–29), the
weak echo region filled in once again and
the mesocyclone appeared to weaken and
lose definition as it passed 2 km southeast of
the town of Falkland, west of Greenville. No

damage was observed or reported in that
vicinity. About 45 minutes later at 2255 UTC
(beyond the time frame of the present anal-
ysis) this same supercell produced an EF3
tornado near the town of Askewville in Ber-
tie County (75 km northeast of Farmville),
resulting in 12 deaths (NWS Tornado Dam-
age Survey 2011).

evolution of mesocyclone
structure

Between 2116 UTC and 2214 UTC the
maximum radial velocity in the meso-
cyclone at the lowest elevation angle was
identified from analysis of each data point
spaced every 0.25 km along the radar
beam, in the vicinity of the mesocyclone
core. The intensity of the mesocyclone cir-
culation was characterized by the differ-
ence between maximum storm-relative,
dealiased radial velocity values on both
sides of the circulation center. The meso-
cyclone diameter was defined as the dis-
tance between the two maximum radial
velocity values. The highest radar reflec-
tivity value of the associated supercell core
was also found from perusal of each range
gate. These parameters were identified
and determined for each five-minute radar
scan between 2116 UTC and 2214 UTC.

The resulting time series of the radar-
observed difference in storm-relative ra-
dial velocity maxima across the meso-
cyclone, diameter of the mesocyclone, and
maximum supercell core reflectivity (Fig-
ure 30) suggest a connection in this case
between the evolving mesocyclone struc-
ture and the occurrence of a damaging tor-
nado, in a manner described by Burgess et
al. (1993). The time series suggests two
periods of supercell intensification within



Figure 22. As in Figure 6 and Figure 8, but for 22:00 UTC.

Figure 23. As in Figure 7 and Figure 9, but for 22:00 UTC.



Figure 24. As in Figure 6 and Figure 8, but for 22:05 UTC.

Figure 25. As in Figure 7 and Figure 9, but for 22:05 UTC.



Figure 26. As in Figure 6 and Figure 8, but for 22:09 UTC.

Figure 27. As in Figure 7 and Figure 9, but for 22:09 UTC.



Figure 28. As in Figure 6 and Figure 8, but for 22:14 UTC.

Figure 29. As in Figure 7 and Figure 9, but for 22:14 UTC.
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Figure 30. Time series from KMHX NEXRAD data of the maximum radar reflectivity value (dBZ) in the

supercell core (solid line), difference in storm-relative radial velocity maxima (knots) across the

mesocyclone center (dashed line), and mesocyclone diameter (km x 10; dotted line).

Shading indicates the periods of tornado damage.

the hour of analysis. In the first period, as
the supercell passed the vicinity of Golds-
boro (2116–2126 UTC), the mesocyclone
diameter decreased from 3 km to 1 km
while the maximum radial velocity differ-
ence increased from 80 to 105 kt (Figure
30). The maximum core reflectivity in-
creased from 68.5 to 75.5 dBZ very likely
associated with hail, a conclusion sup-
ported by a spotter observation of 2.2 cm
hail at 2112 UTC in the town of Shine near
the core location (NCDC Storm Event
Database 2011). During this same period,
the bounded weak echo region was par-
ticularly well-defined (Figure 6). These
observations suggest a contraction and
spin-up of the mesocyclone circulation in
step with an increase in the amount or size
(or both) of hail in the supercell core, lo-

cated on the northern periphery of the cir-
culation. Wakimoto et al. (1998) empha-
sized vortex stretching as the primary
mechanism for mesocyclone intensifica-
tion, a process that is consistent with the
observed mesocyclone contraction and
spin-up in this case. However, this first pe-
riod of mesocyclone intensification did not
coincide with a tornado on the ground, as
suggested by the lack of any damage be-
tween the towns of Elroy and LaGrange in
eastern Wayne County (Figure 6).

Figure 30 illustrated that from 2130
UTC to 2135 UTC the mesocyclone cir-
culation weakened only slightly (to 96 kt
storm relative velocity difference) while
the diameter broadened from 1 km to 6
km, suggesting an increase in the overall
angular momentum of the circulation. The



206 rickenbach

location of the mesocyclone center at this
time (2135 UTC) passed 1 km northwest
of the first observed tornado damage
(EF0) from this event (Figures 10 and 11),
with several snapped trees and minor roof
damage to a house near the intersection of
Greene, Lenoir and Wayne Counties. This
apparent touchdown of the EF0 tornado at
2135 UTC coincided with the start of a
second period of mesocyclone intensifi-
cation between 2135 UTC and 2150 UTC
with a very similar pattern to the first (Fig-
ure 30). The mesocyclone diameter con-
tracted from 6 km to 3 km while the storm
relative velocity difference increased from
96 to 133 knots. A second increase of core
radar reflectivity (to 74 dBZ) occurred
within this period, at 2145 UTC, corre-
sponding to the time and location of 4.5
cm hail observed two miles west of Snow
Hill (NCDC Storm Event Database 2011).
It was during this period that the tornado
damage increased from EF1 to EF3 as the
tornado approached Snow Hill. These ob-
servations are consistent with the study of
Funk et al. (1999) who noted for their case
a decrease in mesocyclone diameter as the
associated weak tornado intensified. At
2145 UTC, near the time and location of
the most severe damage in the neighbor-
hood along US Highway 13 (Figures 14
and 15), the mesocyclone center passed
within less than 0.5 km of the damage
swath.

The supercell core and mesocyclone en-
tered a weakening phase from 2150–2204
UTC as the tornado continued toward
Farmville. The tornado damage decreased
to EF1 intensity about 5 kilometers south-
west of downtown Farmville. By the time of
the EF1 damage in Farmville (snapped
trees and roof damage to an apartment
complex), the mesocyclone diameter had

increased from 3 km to 9 km, with the
storm relative velocity difference dropping
to 59 knots, suggesting a significant spin-
down of the circulation (again consistent
with Funk et al. 1999). The mesocyclone
center passed by 2204 UTC to within 1 km
of the northward limit of damage (EF0,
three snapped pine trees) from the tor-
nado. By then the maximum core reflec-
tivity value had decreased to 65 dBZ. The
time series of Figure 30 suggested further
weakening to 2214 UTC, at which time the
analysis period ended.

surface data near the
weakening mesocyclone

The Geography Department at East
Carolina University maintains an auto-
mated weather station at ECU’s West Re-
search Campus (WRC), about 10 km west
of downtown Greenville (Figure 6). For-
tuitously, the WRC site was located in the
path of the center of the weakening meso-
cyclone about 2 km east of the northern-
most extent of EF0 damage from the tor-
nado near 22:05 UTC (Figures 24 and 25).
Shown in Figure 31 are time series of 5-
minute averaged wind speed, pressure,
and wind direction taken from the WRC
site over a twelve-hour period centered on
the time of mesocyclone passage. Over the
six hours prior to passage (1600–2200
UTC), southeasterly winds gradually shifted
to south-southeasterly at about 15 m s-1 as
pressure dropped from 1009 mb to 999 mb,
consistent with the approach of a strong sur-
face cold front. At 2200 UTC pressure began
to fall rapidly from 998.69 mb to a local min-
imum of 997.04 mb at 2205 UTC, a 1.65 mb
drop in five minutes (returning to 999.1 mb
by 2220 UTC), at the low end of typical sur-
face pressure minima observed with meso-



Figure 31. Time series of surface meteorological variables from the ECU West Research Campus

weather station, on 16 April 2011. Upper panel shows pressure (mb, dotted line) and wind speed (m

s-1, solid line), lower panel shows pressure (mb, dotted line) and wind direction (degrees, solid line).
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cyclones (Bluestein 1983). Five minutes la-
ter, the surface wind speed spiked to a local
maximum of 32.3 m s-1 (72 mi hr-1, EF0 in-
tensity) at 2210 UTC above the background
wind speed of 18–19 m s-1. This wind speed
maximum coincided precisely with a rapid
shift in wind direction from 120\ to 205\
from 2210–2215 UTC. The sense and tim-
ing of the wind shift, and the wind speed
maximum following the pressure mini-
mum, is very consistent with the radar-
observed passage of a strong cyclonic cir-
culation within 0.25 km northeast of the
WRC site between 2205 UTC and 2215
UTC. The WRC data provided direct evi-
dence that a surface circulation associated
with the mesocyclone reached EF0 poten-
tial, though no tree or structural damage
was observed at the site. Taken together,
these observations suggest that the remnant
surface circulation from a dissipating meso-
cyclone passed over the WRC site at approx-
imately 2210 UTC corresponding to the
northernmost extent of damaging surface
winds associated with this event. Though it
is possible that a dissipating EF0 tornado oc-
curred at this time near the WRC site, there
were no observations or direct evidence to
confirm that hypothesis.

Interestingly, a similar pressure mini-
mum and wind direction shift occurred at
the WRC site about 35 minutes later, at
2245 UTC. This event was not accompan-
ied by a wind maximum at WRC. Perusal of
the radar data at that time revealed that
another mesocyclone (from the supercell
located 5 km north of Goldsboro at 2205
UTC seen in Figure 24) passed approx-
imately 7 km to the northwest of the WRC
site by 2245 UTC. Though located much
farther from the WRC site than the event
under study, the similar pressure drop sug-
gests a stronger mesocyclone, as suggested

by the radial velocity couplet (not shown).
However, no damage beyond a single
snapped tree was found in that area (along
Route 222 at Falkland), suggesting that
likely only strong surface wind gusts ac-
companied that mesocyclone. After 2300
UTC to 0400 UTC (17 April) surface winds
shifted to west-southwesterly and weak-
ened to below 10 m s-1, while pressure
climbed to 1003 mb, all consistent with the
passage of the surface cold front through
Pitt County at that time (not shown).

conclusions

This paper presented an overview of a
significant tornado event on 16 April 2011
between 2100–2200 UTC, which affected
Wayne, Greene, and Pitt counties in east-
ern North Carolina. This event was one of a
record number of tornadoes in the United
States for a single month (April 2011). The
tornado occurred as part of a line of super-
cell thunderstorms ahead of an approach-
ing cold front associated with a strong mid-
dle-latitude cyclone. The study presented
analysis of the evolving mesocyclone struc-
ture within a supercell thunderstorm ob-
served by NEXRAD radar, in the context of
the location of verified tornado sightings
and property damage as indicated by dam-
age reports and surface meteorological ob-
servations. The focus of the case study was
to examine the relationship between the
mesocyclone evolution and the location
and intensity of surface damage associated
with this EF3 tornado, which occurred in a
region where such events are much less
common than in the well-studied Great
Plains region of the U.S.

During the one-hour analysis period,
radar observations suggested two periods of
mesocyclone intensification as the supercell
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moved northeastward through Wayne and
Greene counties. Damage consistent with
an EF0 tornado commenced as the meso-
cyclone began its second, more intense pe-
riod of spin-up and contraction, culminating
in EF3 damage from a confirmed 300 m
wide tornado on the ground near the town
of Snow Hill. The initial contraction and
spin up of the mesocyclone circulation pre-
ceded EF3 damage by about 20 minutes. At
the time of mesocyclone intensification, the
damage swath and visual observation of the
tornado were situated much closer to the
mesocyclone center—within 1 km to the
southeast—as the weak echo region began
to collapse.

The mesocyclone subsequently wid-
ened and weakened as surface damage
from the tornado decreased to EF0 inten-
sity. The weakened mesocyclone passed di-
rectly over a meteorological station at
ECU’s West Research Campus, providing a
rare opportunity for surface measure-
ments associated with a weakening tor-
nadic mesocyclone. Near the northern ex-
tent of EF0 damage, surface observations
at the ECU WRC in the vicinity of the meso-
cyclone center suggested that the remnant
circulation of the dissipating mesocyclone
passed directly over the WRC station.

Future work may include assessment of
tornado preparedness and warning re-
sponse in the rural communities of Greene
County in response to this event.
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