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The cartography of hurricane advisories is challenged with communicating complex 

information regarding hazards and spatio-temporal uncertainty. This research presents an 

exploratory geovisualization study assessing how hurricane advisory maps are perceived. In an 

experimental laboratory setting, study compared student responses to official National Hurricane 

Center advisory maps and alternative test map products.  Research measured human behavioral 

response and environmental perception using eye-tracking, electroencephalograms (EEG), 

electrocardiography (ECG), electromyography (EMG), and a survey questionnaire to support 

analysis of participants' objective and expressed responses to competing geovisualization 

products.  This approach allows the investigation of biometric responses with digital precision in 

order to infer cartographic design effects on individual map readers.  
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CHAPTER 1: INTRODUCTION 

 

With scientific confidence despite public uncertainty, climate change is under way in the 

21st century.  Climate change will have effects on tropical storm activities across the globe 

including the possibility of greater intensity tropical storms in the Northern Atlantic region 

(Knutson et. al., 2010).  The number and intensity of storms under future climate remains 

uncertain, but one thing is clear: hurricanes are the most dangerous natural phenomena occurring 

in United States.  Hurricanes Katrina and Andrew are estimated as the costliest tropical cyclones 

worldwide, while the Galveston Hurricane of 1900 was the deadliest natural disaster in United 

States history (Blake et. al., 2007).  Even more deadly have tropical cyclones occurred in the 

Central America and Asia, where human  loss of life were in the hundreds of thousands.  The 

1970 Bhola cyclone that struck Bangladesh was the deadliest tropical cyclone ever recorded, 

with up to 500,000 deaths (Reilly, 2009).  Surprisingly, most of the population in the area was 

aware of the risk, but only few sought refuge in fortified structures.  In these regions, information 

about the approaching tropical storms is limited and difficult to disseminate.  Evacuation 

processes and disaster preparedness are not adequate given regional potential risk.  Public risk 

misperception of the hazard is not unique to Asia, it is observed across North America as well. 

With many impending disasters, large populations have ignored recommended evacuation 

orders.   The public apparently often misunderstands the message given by government officials, 

denies the risk, or gambles with the odds.  The National Oceanic and Atmospheric 

Administration’s (NOAA) National Hurricane Center storm advisories may be misunderstood by 

the general public.  Public misunderstanding of the advisories, coupled with the perceived lower 

hurricane risk (weather from recent historical events or personal experience or lack of 
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awareness) highlights the need for better storm advisory communication. 

The primary purpose of this research is to investigate NOAA National Hurricane Center 

(NHC) hurricane advisories by comparing their embedded risk graphics against alternative 

forecast graphics developed at the Renaissance Computing Institute (RENCI) Regional 

Engagement Center at East Carolina University (RENCI@ECU.)  In this study author focuses 

comparison of human responses to the NOAA and RENCI advisory products using biometric, 

eye recording and demographic data. 

 

Present State of Knowledge 

Hazard risk perception and cartographic design have received increasing attention in 

research studies with a focus mainly on survey-based research. Use of eye-tracking and often 

biometric data in risk perception research is an innovative approach with new conceptual and 

theoretical applications. However, the lack of mature, accepted methodologies to study risk 

perception and map cartography using these new research approaches requires a review of 

research drawn from various academic disciplines. 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 2: LITERATURE REVIEW 

Cartography and Cognition 

Geographers use visualization to communicate and present geographic information. Most 

often thematic maps are used to display the spatial patterns of geographic phenomena through 

space. Visualization also allows us to investigate and compare spatial patterns in different time 

periods.  

Many scientists use the term “geographic visualization” to define spatial data 

presentation to the user.  More generally, the term “visualization” has its origins in other sciences 

used to depict graphically scientific data or research findings.  Scientists outside geography 

display large multivariate data sets, such as in medicine, chemistry and physics (Slocum et. al., 

2008).  These ideas were used by geographers also so the notion of “geographic visualization” 

was created.  Slocum and others define this term as “… a private activity in which unknowns are 

revealed in a highly interactive environment, while communication on traditional printed maps 

as a public activity in which knows are presented in a no interactive environment.”  

Arguably the most common thematic map type is the choropleth map.  In this geographic 

visualization enumeration units are presented in different colors or color shades and depict 

different magnitudes of events (Slocum et. al., 2008).  By using appropriate visualization 

techniques and tools geographers present valuable information to the user.  But use of too many 

colors or complex representation presents a danger of confusing the map user by making it more 

difficult to interpret information without carefully examining the legend.  According to Slocum 

and others cartographers should pursue a logical progression of the legend colors so spatial 

pattern of the map could be revealed. 

Geographers have relatively recently turned their research focus on advanced 
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visualization techniques, but cartography has been a part of art and emerging field of 

science since the Middle Ages when maps were designed as functional and beautiful forms of 

art.  In this period, map communication took a relatively subordinate role in importance. WWII 

changed many things in modern society and had its impact on cartography as well. Military map 

production in this historic period was focused on user-friendly or more functional maps for 

military purposes. Work of Arthur Robinson illustrated that creating map as art form lead users 

to subjective understanding of geographic information (MacEachren, 1995). He called out for 

more functionality in maps and pointed out the importance of testing maps in an objective 

manner. 

Following WWII, geography and cartography went through a change in paradigm, and 

cartographers changed their view on how to create more effective, communicative maps for the 

public.  Effective map cognition became an important aspect of design as it was discovered that 

some map symbols are more effective in “sending the message” (Slocum et al., 2008). 

 Brain cognition and user perception became primary areas of investigation for cartographers. 

Slocum further stressed the importance of information acquisition and long term memory in 

creating more informative maps.  Many geographers use the term “perception” in their  research, 

In cartography it primarily explains how map readers react to the map symbols.  How a map is 

understood by individual cognition and perception is key to revealing why certain maps work for 

some people and others do not.  Perception deals with our initial reaction to map symbols, while 

cognition deals with perception and a person’s thought processes, prior experience, and memory 

(Slocum et al., 2008).  Slocum gives the example of contour lines on a topographic map, where 

readers can interpret lines without looking at legend.  The differences in cognitive understanding 

largely arise from a person’s past map reading experience and memory.  Cognition thus 
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considers perception and the thought processes of prior experience and memory.  The concept of 

cognition can further be broken down into the three types of memory: iconic memory, short-term 

and long-term visual memory (MacEachren 1995, Slocum et al., 2008). 

 

 

 

 

 

 

 

 

        

 

 

                     

 

      

Figure 1: The forms of memory used in communicating specific information (after Slocum et al., 

2008.).  

 

 

Iconic memory deals with initial perception of an object. Visual information is then 

passed on to the short-term visual memory (Figure 1.)  Only selected information is passed on 
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and keeping information in short-term visual memory requires constant attention.  From here 

information is passed on to long-term visual memory. 

  The change from maps as art to functional maps has caused cartographers to focus on 

examining why certain map symbols portray information more effectively.  This research path is 

very closely related to psychology where scientists are trying to understand vision and visual 

cognition and how people see the real world, not controlled two-dimensional, laboratory test 

stimuli (MacEachren, 1995).  The cognitive research approach provides a theoretical basis for 

map symbol processing explanation and allows us to evaluate map symbology and design.  This 

notion is paramount for this research because the author will investigate individual cognition of a 

currently operational map product of the National Oceanographic and Atmospheric 

Administration (NOAA) National Hurricane Center (NHC) and another, experimental map 

designed by the Renaissance Computing Institute (RENCI) Engagement Center at East Carolina 

University. 

A successful map design ideally would be intuitive and popular with the targeted map 

user.  Nothing speaks to the user better then well organized and presented map.  Before the map 

design even begins, a cartographer has to think about all aspects of the map: information, color, 

legend, primary map user, static versus dynamic and other aspects.  Ignoring one of these factors 

could lead to poor map design and subsequent user confusion. 

Jacques Bertin, the French cartographer famous in his work in information visualization, 

organizes these design variables in position, size, value, texture, color, orientation, and shape 

(Aerts et al., 2003).  Variables very important for this research are color and size.  Gengler goes 

further and explains that visual graphics are understood through cognition “decoding visual 

stimuli” and the goal of cartographer is to reduce cognitive effort of the user with better map 
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design (Gengler et al., 1995).  Map design should be simple and memorable, so the reader can 

identify map variables with minimal effort. 

For Cynthia Brewer, an active cartographic researcher, focuses her studies on color and 

argues the importance of color in map design.  For univariate data Brewer suggests using 

sequential color schemes:  light colors for low data values and dark for high data values (Slocum 

et al., 2008).  Brewer also successfully developed online tool, “Color Brewer,” to help users 

chose appropriate color schemes for their maps (Harrower and Brewer, 2003).  For bipolar data - 

a diverging scheme, where two hues diverge from a common light hue or natural gray.  Brewer 

and her colleagues successfully tested these color scheme ideas in experimental conditions but 

noticed that certain colors work better based on map user age group.  Color is also associated 

through cognition and cultural backgrounds.  People even in different countries understand color 

differently. 

It is also important before designing the map to determine who the primary user of the 

map is.  Is map going to be general or specific?  Will the user acquire information from the map 

while investigating it or by recalling if from long term memory (Slocum et al., 2008)?  If a user 

has to investigate the map, he/she will have to use more cognition in this process, versus very 

popular maps recognized by a majority of the people: isoline contour maps (e.g., Slocum’s 

topographic map example). 

With new technological advancements in computer aided cartographic design, it is easy 

to produce dynamic maps, characterized by continuous change while the map is viewed. 

Researchers have found evidence that dynamic maps allow user to absorb more information 

(Slocum et al., 2008, Fabrikant et al., 2008).  With additional information, intuitively perceived, 

users are likely to draw better conclusions about spatial-temporal geographic phenomena from 
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these maps. 

 

Cone of Uncertainty 

Higher quantities and more complex information are frequently portrayed in 

contemporary cartographic visualizations using geospatial data and methods.  However, more 

information in the display does not mean that more appropriate information is effectively 

reaching the end user.  Data analysis effectiveness decrease as the complexity of the data 

increases in a visual presentation.  Displays may become illegible because of visual clutter and 

massive over-plotting associated with large volumes of data (Andrienko et al., 2008). 

 

Figure 2: Tropical storm Isidore in 2002 NHC. 
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The “cone of uncertainty” (COU) is a National Hurricane Center (NHC) hurricane 

forecast graphic depicting potential storm tracks (Figure 2).  The NHC recently removed their 

forecasted storm track line (the line of a forecaster’s best estimate, often a manual creation drawn 

from computer models) because many people believed that the area along the black line, the best 

forecast track, is higher in danger while ignoring both the size and severity of the storm impact 

extending beyond the track.  In essence, the public may be prone to misperceiving the cone as an 

impact area, not as a range of possible tracks, and this perception could be exacerbated if the 

forecast track line were included.  Another concern is that the NHC cone boundaries may cause 

the public to assume no imminent risk beyond the boundary, even though boundaries in reality 

represent a range of uncertainty about the track of the storm eye (Steed et al., 2009).  The cone of 

uncertainty does not provide any direct information about impact risk.  It arguably provides too 

many different pieces of information, including the projected track line, the cone, areas under a 

hurricane watch, areas under a tropical storm warning and different sustained wind speeds 

(Broad et al., 2007). Steed et al., (2009) agrees that NHC advisories contain several 

heterogeneous data types that are difficult to represent graphically in a single map graphic.  The 

map legend in NHC advisories may be overloaded with information, and as the study conducted 

by Wainer and Francolini (1980) showed, that memorization of legend content  is very difficult, 

if not impossible. 

An alternative approach might be to design a more simplistic hurricane forecast map.  

Ideally, new graphic designs should be empirically tested in controlled experiments before their 

adoption over an existing one (Wainer and Francolini 1980, Broad et al., 2007, Steed et al., 

2009).  Such measurement and testing of map design is a primary goal of this study.  Evaluation 

of this map design is difficult since statistical techniques, alternative acceptable means of 
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evaluating tools, and methods for visual exploration and analysis must be developed (Andrienko 

et al., 2008).  Newly developed methodologies used in the expanding field of eye-tracking 

studies could provide new insights.  

 Map design for hurricane advisories should be intuitive and informative so readers do 

not have to look at the legend frequently to understand the map communication. A new graphic, 

nonetheless, may have an initial “learning curve” as the graphical elements are cognitively 

processed for the first time.  White color is used in NHC COU representation and gives 

information where the eye of the storm could be within 72 hours.  Research by geographers 

Steed et al., (2009) and Kumler and Groop (1990) found that continuous-tone color maps are 

more effective then black and white maps. The NHC COU does not include a continuous-tone 

color map (only white), so there is potential improvement in risk perception and communicating 

confidence of the forecast track with the design incorporating color gradients.  Ultimately, the 

majority of people in this study may prefer color-tone maps over white or monochromatic 

designs (Slocum et al., 2008, p.298).   

In general, greater use color is the preferred representation technique for the labeling and 

categorization of information (Slocum et al., 2008).  Future NHC COU graphics might be more 

effective by including color and simpler legends to improve advisory communication message to 

the public and other users.  The COU might also benefit by not using discrete color-coded 

polygons, because these present additional information in the map due to layer occlusion issues 

(Steed et al., 2009).  Continuous color representation can be used as a better cartographic design 

alternative.  Furthermore, NHC advisory maps with strong, saturated colors in the foreground 

diminish effectiveness of the cone representation.  Steed et al., (2009) suggested the use dull or 

muted background colors to emphasize cold-warm color contrast between the background and 
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the foreground cone of uncertainty. 

Hazard Risk Perception 

Hurricane hazard risk perception has recently received more attention by hazard 

researchers due to the growing population and development of coastal United States (Peacock et 

al., 2004).  Many risk perception studies are focused on investigating populations in hazard-

prone areas affected by tropical storms, tornados, earthquakes and various technological hazards.  

Hazard risk perception is a complex individual and social phenomena influenced by the number 

of demographic and cultural characteristics.  Researchers agree on basic risk perception 

influencing factors but also mention that this phenomenon is not consistent across geographic 

areas or populations.  Primary factors influencing risk perception include age, gender, ethnicity, 

place of residence and past hazard experience (Peacock et al., 2004). 

Hurricane risk perception is similar to other hazard risk perceptions regarding factors of 

influence.  For example, family decisions on hurricane evacuation are affected by the severity of 

the hurricane and the likelihood of a nearby landfall.  Individual perception of risk, increasing 

awareness of scientific uncertainty, diversity of information sources, and past experiences are 

emerging as more significant aspects of household response (Dow and Cutter, 2001).  The 

highest evacuation response rates to the threat of strong storms have been quantified in high risk 

areas, among mobile home owners, households with children, and tourists (Dow and Cutter, 

2001).  The decision to ignore evacuation orders is frequently justified by the feeling that one’s 

home is “safe,” concern over access to homes after the storm passes, protecting the property, job 

responsibilities, pets left in the property, and a variety of indirect costs accumulated during 

evacuation (travel and housing).  

Some case studies have found that age has a negative effect on risk perception.  However, 
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past hurricane experience has major role in risk perception (Dow and Cutter 2001).  This 

influence holds even if the experience is indirect, where a family member has suffered a loss. 

The significance of experience does not necessarily diminish over time, but the public has low 

risk perception during prolonged “quiet hurricane seasons.”  However, statistical analysis 

suggests that longer-term residents are more likely to disregard evacuation orders (Dow and 

Cutter 2001; Peacock et al., 2004).  Nonetheless, these residents also invest a great deal of time 

staying well informed on hurricane issues.  There can also be considerable disagreement between 

public risk perceptions and expert risk analysis. Research has generally found that individuals 

with higher levels of knowledge are more likely to undertake protective actions or adjustments.  

However individuals with higher levels of knowledge and experience may also become 

overconfident and consider themselves and their household invulnerable (Peacock et al., 2004). 

 Women perceive risks differently from men and have a higher probability of perceiving 

disaster and hazard events as more dangerous than men (Dow and Cutter 2001; Peacock et al., 

2004).  In general, women, racial and ethnic minorities, individuals of low income and little 

education tend to have higher perception of risk from natural hazards.  Families with children are 

more likely to evacuate, while households with elderly are less likely to evacuate. 

Relatively little research has been conducted on the influence of a respondent’s location 

and proximity to their perception of risk, especially perceptions to hurricanes. The role of 

proximity and geographic location is indeed an under-examined relationship in explaining the 

perception of risk, particularly with regards to hurricanes. Peacock et al. (2004) found that 

hurricane risk perception is higher in concomitantly higher wind hazard zones. Hence, 

individuals that have experienced hurricane damage have significantly higher levels of perceived 

risk.  Additional studies may provide important information on the correlation between 
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individual geographic location and the degree to which they perceive risk from natural hazards. 

 

Eye-tracking 

Eye movement research has been conducted by psychologists and other researchers for 

over century now (Wade and Tatler, 2005).  Research was mostly done on static displays to learn 

how people read texts and view various static graphic displays such as advertisements, works of 

art, diagrams and other images (Fabricant et al., 2008).  With advancements in computer 

technologies, eye tracking research has transitioned to focus on digital images rendered on 

computer screens. The birth of the Internet and personal computers prompted eye-movement 

research on Internet websites, computer operating system, and graphic user interfaces. Scientists 

are interested in innovating the design and usability of the applications and particularly creating 

“user-friendly” design.  

Cartographers have utilized eye-tracking recording as early as the 1970s to investigate 

how people view and interpret static maps with a goal of creating better, more informative and 

user friendly maps (Wade and Tatler, 2005, Fabrikant et al., 2008).  During the 1970s and 1980s, 

cartographers increased their interest in eye-tracking research, but until recently the collection of 

eye-movement data in academic cartography has almost disappeared (Fabrikant et al., 2008). 

Factors influencing the downward trend  in eye-tracking studies could have been the expensive, 

complex hardware and the difficulties in analyzing more complex data.   

Eye-tracking data analysis methods and software reemerged the in late 1990s and early 

2000s.  Eye-tracking research produces high volumes of data.  For example, a 30 minute 

recording will give around 60,000-100,000 data points depending on the temporal resolution 

(gaze points per second).  This is the one of reasons why raw eye-tracking data is seldom used 
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directly, and instead is filtered based on gaze duration (Fabrikant et al., 2008).  No fully 

developed, mature methodology exists for analyzing eye-tracking data, especially for analyses 

investigating cascading images or map animations.  Some researchers (Wilson, 2006; Fabrikant 

et al., 2008), found themselves in a situation where they had to create their own spatial-temporal 

analysis software beyond that available in eye-movement recording software.  Some academics 

suggest that eye-tracking studies do not provide new information which is not already known to 

cartographers (Franklin et al., 2008).  In the past researchers may have also tended to focus their 

studies on where people looked without getting at the how and why of the map reading 

(Fabrikant et al., 2008). 

 Fabrikant et. al., (2008) developed custom spatial-analytical software using an Adobe 

Flash user interface software.  This research group also promoted a technique, Sequence 

Alignment Analysis (SAA), as a useful method for analyzing eye-tracking data.  The Sequence 

Alignment Analysis method is also the primary method in Shoval and Isaacson’s (2007) research 

on tourist behavior in sites of an historic old town. 

Eye tracking data analysis is similar in concept with time geography (Pred, 1977; Kwan, 

2004) because both approaches use temporal data for analysis.  Shoval and Isaacson (2006) 

define Time geography as space-time analysis, which focus on the human time –space 

constraints and analyses of patterns of human space-time activity (Figure 3).  This branch of 

geographic research was developed by Swedish geographers in 1960s, and studies of human 

spatial behavior have increased since the 1970s with a number of them analyzing place and 

space, a subject that has become a key interest within the social sciences (Fabrikant et al., 2008). 

According to well known time geographer Mei-Po Kwan, this paradigm allows the investigation 

of  “…complex interaction between space and time and their joint effect on the structure of 
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human activity patterns in particular locations.” 

                  

 Figure 3: Space-time system and space-time path of time geography (after Shaw et al., 2008). 

 

Time geography poses different kinds of questions from classic regional and historical 

geographers, as well as “modern” human geographers.  The time-geography framework also 

holds the promise of identifying new questions of social and scholarly significance (Pred, 1977).  

This approach has different insights into the complex structure of society, particularly structure 

and interactions between people, people and environment, people and human made objects. 

Time-geography analyses social structure and human behaviors. One of the levels of 

analysis deals with human behavior in time-space sequences for different time scale 

observations.  In essence, an individual’s life can be graphically described as a trajectory of 

movement in time and space at the same time (Pred, 1977).    

 Human activity through time and space is not only of interest to geographers, but also 

transportation researchers, who construct urban models based on urban activity patterns in travel. 
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New developments in digital information technologies like geographic information systems 

(GIS) have highlighted the importance of the time-space phenomena research in the scientific 

community.  However,  many researchers (Fabrikant et al., 2008; Shoval  and Isaacson 2007; 

West et al., 2006; Wilson, 2006) agree that space –time analysis has fundamental problems in 

aggregating data into generalized types of varied activities and at the same time extracting 

patterns.  Transportation researchers found themselves in difficulty defining and comparing 

household activity patterns (Wilson, 2008) or measuring similarity of activity patterns.   

To date, no consensus has formed regarding the unit of analysis in travel forecasting. 

However, according to Shoval and Isaacson (2007), understanding the sequence of activities in 

space and time allows one to understand an additional integral dimension of activity and to 

recognize patterns that exist within dimension. These authors also point out other research 

challenges in human spatial behavior, such as how to record spatial activity and how to pinpoint 

the location of activity in space at all given times.    

Time geography principles are very focused in depicting spatial-time patterns in various 

phenomena like migration, residential mobility, shopping, travel (Kwan, 2004).  Time geography 

as geographic research branch is gaining momentum in scholarly outlets, and recently the 

International Journal of Geographic Information Science published a special issue volume 

entirely focused on time.  Many GIS researchers (Kwan, 2004; Hongbo, 2006; Shoval 2007; 

Demsar, 2010) used this concept to develop new space-time software platforms or GIS methods 

were geographers could investigate three dimensional pattern.  This very unique perspective to 

the time problems by these researchers allowed them to unveil otherwise invisible patterns from 

very complex data sets. 

Time geography concept provides theoretical base for eye tracking data analysis, where 
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physical movement in geographic space is replaced by eye movement in the computer screen. 

Geographic coordinates replaced by pixel location on the computer display. 

 

Biometric Measurements and Cartography 

Biometric measurements have been used by psychology, medical, and cognitive scientists 

with the purpose of understanding human emotion, arousal and cognition.  In geography this 

kind of approach has not been used.  Most cognitive scientists use some kind of stimulus, usually 

sound or picture, to create a reaction in a research subject.  The subject’s biometric measures are 

then recorded and analyzed against each other for different patterns.  Scientists often use known 

benchmark stimuli recognized by an international scholarly community to have certain effects on 

participants.  These benchmark stimuli are internationally recognized as pleasant, neutral or 

unpleasant stimuli.  According to Lane (200) these stimuli reliably evoke, in the laboratory 

conditions, psychological and physiological reactions that vary systematically over the range of 

expressed emotions.  

Richard D. Lane and others (2000) indicate that emotions involve multiple responses and 

are highly variable in their psycho-physiological composition.  Physiological reactions are just a 

part of the emotion indices and are related to emotions.  Facial muscle patterns, blushing are 

examples (Lane et. al. 2000). 

“Arousal” is defined as state of being awake in physiological sciences and is less salient 

than valence in accounting for substantial variance in evaluative reactions (Lane at. el. 2000).  

Valence in neuroscience is the emotional value associated with a stimulus; for example, pictures 

of scenic view could have a positive valence.  Bipolar scales define this activity parameter, 

extending from an unaroused state  (calm, relaxed, sleepy, etc.) to high arousal (exited, 
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stimulated, wide awake, etc.).  For some researchers, valence and arousal is the primary or 

foundational dimension of emotion which can be measured with biometric instruments (Lane at. 

el. 2000).  Electroencephalography (EEG) which records persons brain electrical activity. 

Lane (2000) assumes that emotion is organized by the brain’s motivational systems and 

what by physiological and behavioral reactions to affective stimuli should also reflect this 

organization, co-varying significantly with valence (referring to the emotional value associated 

with a stimulus) and/or arousal.  To assess this hypothesis, Lane uses electromyogram (EMG) 

instruments to measure brow and cheek muscle movement.  EMG is an electromyogram - 

recording the electrical activity produced by skeletal muscles.  Study findings suggest that brow 

muscles significantly contract when a picture is rated as unpleasant and response is moderate 

when viewing neutral materials and shows relaxation below baseline for pictures rated as highly 

pleasant.  The dimensional correlation between valence reports and brow muscle EMG is quite 

high.  When brow EMG activity is averaged over pictures ranked from most to least pleasant for 

each subject, a strong linear relationship is obtained for pleasant judgment and brow EMG 

activity (Lane at. el. 2000). 

Bradley and others (1993) found that larger corrugators EMG or eyebrow muscle 

movement for unpleasant materials and demonstrated stronger facial EMG responsiveness in 

female subjects.  Codispoti (2001) found similar changes in corrugators (eyebrow) EMG while 

viewing pictures.  Larger changes occurred when processing unpleasant pictures as compared to 

pleasant or neutral materials.  Corrugator EMG activity was also significantly lower when 

processing pleasant, compared to neutral pictures (Codispoti at. al., 2001).  Lang and others in 

1993 found significant linear trends inversely related to pleasure ranks to the most unpleasant 

contents and dipping below baseline for very pleasant stimuli.  This negative correlation was 
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significant only in 52% of the sample data. 

Cheek muscle movement according to Lane is involved in the smile response.  Cheek 

activity increases for stimuli which subjects rate as pleasant and is greatest for materials judged 

to be high in affective valence, and almost nonexistent for pictures rates in moderate regions of 

the valence dimension.  For materials rated as most unpleasant, there is a tendency of cheek 

muscle activity increase again.  Lang et. al. (1993) found greater zygomatic muscle (cheek 

muscle) responses for pictures ranked as pleasant, smallest for neutral stimuli and slightly higher 

at the lowest valance ranks.  Unlike corrugators activity, zygomatic activity increased linearly 

with ranked arousal.   

Heart rate activity is similar to facial muscle movement trends, with unpleasant stimuli 

producing more initial heart rate decrease or deceleration, and pleasant stimuli producing greater 

peak acceleration (Lane et al., 2000). As an index of emotional state, cardiac rate is less 

straightforward than other physiological measures. “Furthermore the primary direction of heart 

rate change varies with the type of mental processing ( e.g., heart rate is accelerative in recalling 

memory images and decelerative in orienting to external stimuli)” (Lane et al. 2000).  Bradley et 

al. (1993) examined averaged heart rates for individual slide presentations. It demonstrated a 

significant effect of picture valence. Viewing pleasant or neutral pictures did not produce 

difference in heart rate response.  On the other hand, unpleasant pictures produced deceleration 

over the trials.  In Codispoti et al. (2001), heart rate response to pictures differed dramatically 

with a classic pattern of  an initial deceleration, followed by acceleration, and a secondary 

deceleration time. On the other hand, average heart rate change did not significantly vary across 

the content of the picture.  Lang et al. (1993) found peak heart rate response larger when viewing 

stimuli ranked as more pleasant. This finding was affirmed by a significant linear trend where 
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61% of the subjects in this experiment had a positive correlation between valence judgments and 

cardiac acceleration. 

Thus, overall there is significantly greater heart rate deceleration for unpleasant pictures, 

and relatively greater peak acceleration for pleasant materials, particularly during the first 

viewing. 

Electrodermal activity (EDA) is a useful measure of arousal (Lane et al., 2000). In recent 

studies, the amount of skin conductance activity increased linearly as ratings of arousal 

increased, regardless of emotional valence.  Studies indicated that EDA is higher for pictures that 

were rated as highly pleasant and highly unpleasant. A significant linear relationship emerges in 

which unit increases in rates arousal (regardless of valence) are associated with an increase in 

EDA reactivity.   Bradley et al., (1993) in their study determined that average skin conductance 

for pleasant and unpleasant slides were larger than for neutral pictures and that unpleasant 

pictures had slightly larger responses than pleasant stimuli.  Codispoti et al. (2001) showed that 

picture content affects skin conductance magnitude where larger increases in EDA associated 

with emotional pictures (pleasant or unpleasant) compared to neutral pictures. However,  no 

differences were found in EDA when processing pleasant, compared to unpleasant.  Lang et al. 

(1993) found that skin conductance response increased  monotonically with ranked arousal. 77% 

of their subjects showed positive conductance/arousal correlations. 

Electroencephalographic (EEG) technology measures brain wave signals and is another 

important aspect of this biometric research.  One innovative approach is to  measure and 

compare EEG readings  of participants during map viewing.  As with eye-tracking data, EEG 

data acquired during this study is voluminous.  EEG data analysis is also problematic since brain 

wave signals are  unpredictable and highly complex.  EEG data has temporal pattern, noises and 
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signal, and is a realization of a random process (Niedermeyer, 2005).  It is highly difficult to 

identify trends, patterns and cognitive meaning of events in raw EEG data.  These types of 

problems may be solved using pattern  recognition analysis techniques (Niedermeyer,  2005). 

EEG  technology reads brain activity with a help of electrodes mounted on the 

participants head.  The electric potentials generated by single neurons are far too small to be 

picked by this technology.  Therefore, EEG activity always reflects the summation of the 

synchronous activity of thousands or millions of neurons that have similar spatial orientation.  

Even then the relevant electric signals are so small that they must be amplified by the EEG 

system.  Brain wave activity is represented in the frequency domain which is divided into 

frequency classes.  Most of the brain signal observed in the scalp EEG is in the range of 1–20 

Hz. Alpha is the frequency range from 8 Hz to 12 Hz.    Activity in this range is seen in the 

posterior regions of the  EEG  signals are brought out by closing the eyes and by relaxation and 

have been noted to weaken with eye opening or mental exertion. Lane (2000) explained EEG 

waves (10-13Hz) with emotional calm and a progressive increase in frequency with increasing 

intensity of emotional arousal (from anxiety to rage and panic). 

Beta is the frequency range from 12 Hz to about 30 Hz.  They are usually observed on 

both sides in symmetrical distribution and are most evident frontally.  Beta activity is closely 

linked to motor behavior and is generally attenuated during active movements.  Low amplitude 

beta with multiple and varying frequencies is often associated with active, busy or anxious 

thinking and active concentration.  It is the dominant rhythm in patients who are alert or anxious 

or who have their eyes open (Niedermeyer, 2005) . Gamma is the frequency range of 

approximately 30–100 Hz. Gamma rhythms are thought to represent the binding of different 

populations of neurons together into a network for the purpose of carrying out a certain cognitive 
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or motor function ( Niedermeyer, 2005). 

EEG measurement is promoted by experiment stimuli producing brain activity in 

different frequencies.  Signal frequencies above 12 Hz is the primary interest of this study, 

because it represents cognitive load of the brain from stimuli.  A higher frequency in one of the 

NHC COU advisories would represent higher cognitive load and arousal of participant.  More 

cognitive load explains better stimuli for the user and better  map communication. 

EEG is widely used in medicine to investigate brain activities during patient epilepsy, 

patients with sleep apneas, brain injury or mental illness and other. Montgomery et. al. (1995) 

and others in 1994 argued the need to use this technology in investigating brain response during 

cognitive tasks.  In particular, EEG activity correlated to subject performance and quantify brain 

activity changes by cognitive stimuli (Montgomery, 1995). 

In order to raise the signal-to-noise ratio sufficiently to reveal the general characteristics 

(characteristic peaks at certain electrode sites), it is necessary to average a large number of 

stimulus-gated EEG recordings. A marker signal is usually fed into one the  EEG channels to 

mark the moment of stimulus presentation, then epochs of a given length following such markers 

are selected and averaged. Epochs containing artifacts are identified visually, so that they can be 

excluded from the analysis. (Montgomery, 1995) 

Montgomery et. al. (1995) and  team used a digital cognitive task presentation system to 

deliver stimuli to participants while EEG signals were recorded. Mental arithmetic problems 

were presented on volunteers. This research revealed  that the subjects’ neural activity is directly 

and highly correlated with task performance, and EEG analysis provides a way of isolating those 

areas of the brain that are directly related to a task performance. 

Klimesch (1999), provides evidence that EEG oscillations in the alpha and the theta band 
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reflect cognitive and memory performance. In particular event-related changes indicate that the 

extent of upper alpha desynchronization is positively correlated with (semantic) long-term 

memory performance.  Keil et al.)2002) discovered specific enhancement for pleasant pictures 

over left-hemisphere regions in the late P3 signals. 

In a physiological sense, EEG power reflects the number of neurons that discharge 

synchronously (Niedermeyer, 2005). Because brain volume and the thickness of the cortical 

layer is positively correlated with intelligence, it is tempting to assume that EEG power too, is a 

measure that reflects the capacity or performance of cortical information processing. EEG power 

measurements are strongly affected by factors such as age, arousal and type of cognitive 

demands during actual task performance (Niedermeyer,  2005). During actual task demands, the 

extent of alpha power suppression is positively correlated with cognitive performance and 

memory performance in particular. 

Synthesis of the literature 

The proposed research incorporates literature review from very disparate disciplines of 

cartography, geography, psychology, psychophysiology and neuroscience.  The disciplines are 

interested in investigation of stimuli influence to the user.  In geography and cartography these 

images usually are maps.  Map design evaluation is very common in cartography, but map 

evaluation from psychophysiology and cognitive science perspective is rare or noneexistent.  

Most geographic researchers investigate maps with subjective questionnaires and surveys. Some 

research has been done evaluating web maps, but only with a map usability perspective.  The 

map reading itself  has rarely been investigated using eye recording or psychophysiology 

methods.  This thesis will try to fill this gap in current research. 

 



 
 

CHAPTER 3: DATA AND METHODS 

Study Design 

This study arose from a project of RENCI at ECU that investigates perception of 

hurricane hazards.  A main research hypothesis is that NOAA NHC Hurricane advisories 

communicate risk less effectively as compared to an experimental, RENCI-developed hurricane 

risk map.  The study null hypothesis is that no difference is measured between the control and 

test stimulus collected during experiment.  

The main objectives of this project are in the analysis of the eye-tracking, 

Electroencephalography (EEG), Electromyography  (EMG),  Electrocardiography (ECG) 

and survey data gathered in the hurricane risk perception study conducted by RENCI at ECU.  

From the prior literature review and personal communication with Dr. Nicholas Murray ( 

Visual Motor Laboratory, Department of Exercise and Sports Science), I formulated hypotheses 

regarding eye-tracking and biometric data.  First, specific  eye-tracking and biometric indicator 

measures distinguish between  more effective, map communication in the comparing advisory 

maps.  Second, ECG or heart rate would also be higher in more effective hurricane advisories.  

Then, higher EMG measure of brow movement would indicate negative emotions of the 

participant and show effectiveness of better map communication. Exploratory and descriptive 

statistics and spatial analysis would proceed a set of logistic regressions with use of  biometric 

and demographic measures to prediction of participant map advisory preference. 

Hypotheses 

 Eye-tracking fixation numbers will be lower in the RENCI advisory map legend 

compared to NHC advisory legend. 

 ECG or heart rate will be higher in RENCI advisory map. 
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 EMG measures of brow movement will be higher in RENCI advisory map. 

A sample of 35  student participants were tested in a laboratory environment using eye-

tracking and biometric instruments. Each student participant  also completed a survey designed 

to investigate hurricane advisory communication effectiveness.  A project committee consisting 

of Dr. Crawford, Dr. Allen, Dr. Murray and Dr. Kain developed hypothetical hurricane scenario 

and processed an Institutional Board of Review (IRB) for the methods. Participants were 

presented with the following scenario:  

 

Scenario 

Imagine that it is 11:30 PM on Wednesday, September 17, 2011 and Hurricane Laurie is 

approaching the east coast of the United States. In a moment, you will see a series of maps 

produced by the National Hurricane Center that show the storm eye and forecast positions 

beginning at 5AM Sunday, September 14 and updated every five hours to the most recent 

advisory map for 11PM Wednesday, September 17. Study the maps you will be shown.  The first 

forecast map will be visible for 20 seconds with following forecast maps updating automatically 

every few seconds.  At the end we will ask you a series of survey questions. 

During the first phase of the experiment 35 -  student participant biometric data was 

recorded.  Due to the technical issues with eye movement recording equipment additional 

participant eye movement data  had to be  captured.  During the second phase, 21 participant eye 

movement and survey questionnaires data were recorded 

 The experimental design consisted of two groups, where each group received a different 

sequence of images. To avoid bias from order, learning and fatigue the first group of  test 

subjects will see NOAA NHC advisories (see Figure 4) first and RENCI hurricane advisories 
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second (Figure 5).  The second group of test subjects will see RENCI hurricane advisories first 

and NOAA NHC advisories second. A survey questionair will be the conducted after the eye-

tracking and biometric recordings.   

NOAA NHC Hurricane advisories where recreated using ArcGIS software.  Hurricane 

Isabel 2003 was chosen as the base hurricane for this experiment, because this storm was last 

major storm to hit the NC coast. NOAA stores only graphical data of the historic hurricanes and 

images have different geographical extent so more reliable data source had to be obtained. 

Hurricane evacuation software for emergency managers – HURREVAC2000 was chosen as 

more accurate data source.  Hurricane data came in shapefile standard format for all Hurricane 

Isabel advisories from the HURREVAC database.  Map design essentials (symbology, color, 

label annotation, typography, layout, logos and legend) were manipulated in ArcMap to mimic 

the original NHC Hurricane Isabel advisories of 2003. With a purpose to make this experiment 

more realistic as possible hurricane name and date was changed to the Hurricane “Laurie,” for 

2011.  
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Figure 4: NOAA NHC Hurricane advisory for fictional Hurricane “Laurie”. 

 

The next step was to create the experimental RENCI advisory in the fashion which would 

improve cartographic design and hazard risk communication as discussed in the literature 

review.  The basic design had to be easy to understand and intuitive for the reader. NHC 

advisories lack color and representation of risk of hurricane effects outside the traditional white 

cone of uncertainty.  For the RENCI advisory cone graphic, a buffer was applied represent storm 

effects beyond the cone and colored to show different levels of storm effects inside it. Buffer 

distance was chosen arbitrary and applied to all advisories equally.  This gives an implicit 

indication of relative storm risk zones and safe zones.  Color inside the cone was calculated 

using cost distance from the forecasted storm track line and the current storm center location. 

While the continuous tone is not an explicit, quantitative mapping of the historical probabilistic 

error (used by NHC to determine the width of the cone), it nonetheless provides a surrogate for 
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such relative probability (i.e., distance from the forecast track) without an unintentioned focus on 

a particular line. 

Hurricane Laurie advisory maps where created from the 36th advisory to final 48th 

advisory adapted from Hurricane Isabel track. These advisories were placed in a PowerPoint 

presentation as a slide show sequence (slides advancing every 7 seconds) to simulate major 

hurricane track. A sequence of advisories will simulate imminent and evolving hurricane risk for 

the experiment participants. Advisories are the hazard risk communication tools, so the eye-

tracking and biometric instrumentation could capture subject behaviors and risk perception of the 

participants (Table 1.). 

 

Figure 5: NOAA NHC Hurricane advisory for fictional Hurricane “Laurie”. 

 

A relatively small sample size of 35  is used in the current study, because of the high 

technological demands of recording data with these  techniques (pre- and post-processing) and  a 
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time and budget constraints.  Participant sample size is a concern, because it will be difficult to 

extrapolate the study results to a larger population (Duchowski, 2007).  To justify sample size in 

this study, similar historical data would be desirable.  In fact, most eye-tracking studies are done 

using small number of participants like one described by Duchowski (2007) used 16, Thomsen 

and Fulton (2007) – 63, Henderson et. al. (2000) – 24.  As in this study, most of the time eye-

tracking studies are conducted in recruiting a convenience sample, such as high school or college 

student participants (Duchowski, 2007).    

Eye-tracking captures very precise and objective data and is capable of identifying 

behavioral  differences with high statistical significance.  Lenth (2001) summarizes this issue and 

gives good examples on how to choose the sample size.  Using two-sample t test software, we 

find that a minimum sample size of the n=23 per group is needed to achieve  the stated 

robustness goals (Lenth, 2001).  Since map design is theoretically  different from each other, this 

level of difference will be easily achieved through this experiment.  Participant numbers are 

sufficient to answer key questions about cartographic design of hurricane advisories and risk 

communication.  The  methodological approach developed in this study is also likely to be 

scalable to future, larger scale research studies concerning hazard risk perception.  

 

Data Acquisition 

The data were acquired during a laboratory experiment using student volunteers, ages 

ranging from 19-21 years old  (freshmen level students).  A number of demographic questions 

are asked in the survey with the aim of determining age, gender, education, major, place of 

residence, and each participant’s hurricane experience.  
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An Applied Science Laboratories (ASL; Waltham, MA) 5000 SU eye movement system 

is used to collect eye tracking data.  The 5000 SU system is a video-based monocular corneal 

reflection system that measures the point of gaze relative to video images recorded by a 

headband mounted scene camera and an eye camera.  The system has the capability to measure 

pupil position and corneal reflex, which are used to compute visual gaze with respect to the 

optics(Janelle et al. 2000.)   System accuracy was ±0.5º visual angle with precision of 1º in both 

vertical and horizontal directions with a sampling rate of 60Hz.  Recalibration of the eye 

monitoring equipment was performed continually with manual offset commands throughout the 

data collection process for each subject.  

Eye-tracking data consist of the following eye-tracking metrics: fixation duration (gaze), 

fixation rate, fixation duration mean, number of fixations, fixation sequence (scan path), areas of 

interest (AOI), gaze percent of time per AOI, number of fixations per AOI, gaze duration mean 

per AOI.   Fixation naturally corresponds to the desire to maintain person’s gaze on an object of 

interest.  The signal is classified as a fixation provided the duration of the stationary signal 

exceeds a predetermined threshold.  Fixation sequence is an indicator of position and sequence 

similarity among different viewers (Duchowski, 2007).  AOI is determined during data 

processing, with initial areas of interest including the map legend, hurricane cone areas, North 

Carolina, South Carolina and Virginia states areas, and forecast hurricane landfall area.  

Fixation number and duration in AOI is directly influenced by the cognitive load of the 

brain, so we can make the assumption that devoting more fixations to a region may mean that 

more cognitive effort is being exerted (Duchowski, 2007).  More cognitive loading for the map 

area means more time is spent to understand the meaning of the stimuli in the particular map 

area. From this notion we can hypothesize that lower fixation number in the map legend is direct 
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influence of more effective map communication.  This hypothesis is paramount in comparing the 

two hurricane advisory maps.   

Table 1 summarizes the biometric data captured during experiment which will be used in 

this study.  Biometric data has wide  range of information about participants emotions, arousal 

and cognitive load.   

Instrument Measure Type 

Biopac Systems MP35 

amplifier 

EMG 
Zygomaticus major (Cheek 

muscle) 

EMG 
Corrugator supercilii (Brow 

muscle) 

Biopac Systems MP35 

amplifier (EDA finger 

transducer) 

EDA 
Sweat gland activity 

 

Neuroscan EEG 64-Channel 

NuAmps system 

EEG Beta 1 

EEG Alpha 

Applied Science Laboratories 

(ASL, Watham, MA) 6000 SU 

eye movement system 

Eye Fixation 

Biocom system Heart Rate BMP 

Table 1: Data acquisition instruments used to obtain study data.  Information provided by: Dr. N. 

Murray (Visual Motor Laboratory, ECU) 
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Analytical Strategy 

Primary objective of this research is to compare the NOAA NHC hurricane advisory map 

cartography (Cone of Uncertainty) with an experimental RENCI hurricane advisory map 

cartography. The research uses objective biometric and demographic measurements to 

distinguish map effectiveness using cartographic design.  More effective cartographic design is 

hypothetically  to have significantly different measure versus a less effective counterpart.  

Objectives: 

 Compare biometric and eye fixation data for significant differences.  

 Analyze biometric data through time 

 Analyze fixation sequences during the experiment for unique patterns based on 

viewed hurricane advisory 

 Display common eye fixation patterns based on space-time cube principles. 

 Analyze spatial distribution of eye fixations using exploratory spatial and 

statistical analysis techniques: 

 Kernel density estimation comparison 

 Geographically weighted regression 

 Moran’s I 

 LISA 

 G-Statistic 

 Nearest neighbor statistic 

 Test differences in predictive ability of effectiveness using a logistic regression 

model for hurricane advisory preference variable. 
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The first step is to analyze difference in biometric averages through hurricane advisory 

viewing time period. Since biometric and eye-tracking data do not usually have a normal 

distribution, non-parametric Mann-Whithey U test will be applied. 

The second step is to analyze biometric data for groups  through time. Biometric data 

average through time will be correlated by image slide. Pearson’s correlation between biometric 

measure and slide will be determined. Correlation coefficients between two groups will be 

compared. 

 

Eye Recordings 

Fixation sequence analysis is a very important aspect of this research and allows us to 

understand the  viewing,  information search behavior, and direct cognitive loading of the brain 

for each individual as well as discovering similar groupings from an objective data source.  

For this analysis five Areas of Interest (AOI) were selected. These areas correspond to 

most important areas of the Hurricane advisory map:  Cone of Uncertainty, Map Legend, North 

Carolina, South Carolina and Virginia. 

For viewing and search behavior analysis, the author uses EyePatterns software , which 

allows the investigator to identify similar and different fixation patterns (West et al. 2006).   

Simple string search function in this software provides for identifying fixation patterns 

that match a certain sequence (Coltekin et al., 2010). The order of fixation is also an important 

aspect of this research, and it can be performed on the collapsed or not collapsed sequence. A 

collapsed sequence is a “compressed” version of original sequence. 

                   CCCCLLLNNNNNN = CLN 

Example of original sequence and collapsed sequence. 
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The most popular sequence similarity detection algorithms is Levenshein dissimilarity 

measure described by West, 2006;  Fabrikant, 2008; and Issacson in 2007. This string-editing 

algorithm measures the similarity of two string sequences by counting the number of necessary 

insertion, deletion and substitution steps to convert one string into other (Coltekin et al. 2010). 

For example string-editing distance between “Piece” and “Peace” is 2, since you have to 

perform two steps to get the target word: 

Step 1.  “Piece” > “Peece” (substitute “i” for “e”) 

Step2.  “Peece” > “Peace”(substitute “e” for “a”) 

Needleman and Wunsch’s global sequence alignment algorithm employs a scoring 

scheme to align two sequences by introducing a reward for matching and gaps, but a penalty for 

mismatches (Coltekin et al. 2010). This method also produces the similarity matrix.  

 

 

 

 

 

 

 

 

 

Figure 6: Sequence dendogram example. 
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Eyepatterns software also employs hierarchical average linkage clustering (West et al. 

2006),  by parsing similar sequences into a sequence dendogram - where more similar sequences 

have highest similarity score (see Figure 6).  

After similar viewing patterns are discovered,  the next step in this study was to verify 

and visualize similar sequences using advanced GIS geovisualization techniques.  The author 

used time-space cube principles to verify and represent similar fixation sequences.  This 

methodology allows visual comparison of fixation sequences in three dimensions. X and Y 

representing computer screen dimensions and Z representing time.  

3D fixation sequence polylines were visualized using ArcScene, 3D GIS visualization 

platform.  During investigation similar fixation sequences derived from EyePatterns software 

were plotted together to see how similar sequences actually are.  

EyePatterns allows calculation of  transition frequencies between events in a sequence, 

this method is good in identifying transitions between two AOI’s which will allow to indicate 

measure of transition between primary interest of this research – transition in Map legend and 

Cone of Uncertainty of the Hurricane advisory. This software visualizes these transitions 

between AOI in the form of a transition matrix. From here averages can be calculated and 

compared. 

 

Spatial Methods 

Spatial analysis of eye fixation data will be performed in this study.  Using spatial cluster 

detection and cluster evaluation measures, spatial distribution differences will be evaluated.  In 

order to determine the differences in group fixation clusters, kernel density estimation had to be 

calculated.  Kernel density estimation produces fixation density map as a cell format raster.  It 



36 
 

associates each known point (in this case fixation points) with a kernel function for the purpose 

of estimation.  It is expressed as a bivariate probability density function centered at the known 

point and tapering off to 0 over a defined bandwidth or a window area (Chang, 2008).  Kernel 

density function input is the known points and output is the density raster showing expected 

values.  Kernel density estimation was calculated for the two eye-tracking data test groups as a 

two separate raster files. 

Density maps from here will be visually compared and later subtracted from each other 

so differences can be observed and gratified as a difference surface. 

Geographic weighted regression (GWR) was used to analyze spatially varying 

relationships of NOAA group fixation kernel density estimation map (“heat map”) and RENCI 

group fixation heat map.  GWR allows us to understand the difference in two heat maps with 

statistical significance (Fotheringham, 2002). 

This regression generates a separate regression equation for every observation analyzed 

in the study area and presents spatial variation in the results. GWR model uses Gaussian weights 

as inverse function of distance  in calculations of spatial relationships between observation. 

GWR incorporates local spatial relationships into regression (Fotheringham, 2002). Traditional 

spatial models do not account for “local effects” in global regression models. this leaves out 

large residuals which usually are spatially correlated (Fotheringham describes such as parameters 

spatial non-stationarity.)  A solution to this problem is to derive a global spatial regression for 

different research area or to use GWR.   

GWR Fixed spatial kernel was used in this research. Using spatial kernel regression, each 

data point is weighted by its distance from the regression point. “Data points closer to the 
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regression point are weighted more heavily in the local regression than are data points further 

away” (Fotheringham, 2002). 

Spatial autocorrelation analysis Moran’s I and LISA was conducted for the fixation 

points and its duration as an attribute. Analysis of spatial autocorrelation considers the point 

locations and the variation of an attribute at the locations.  This spatial analysis measures the 

relationship among values of a variable according to the spatial arrangement of the values 

(Chang, 2008).  The relationship between values may be described as highly correlated if like 

values are spatially close to each other and random if no clustering can be detected. A measure of 

spatial autocorrelation is Moran’s I which detects the presence of the clustering of similar values.   

Moran’s I is calculated by:  

 

           

W ij (d) = spatial weight 

X = mean of X 

X i = value of location i 

X j = value of location j 

S 2 = variance of X 

X in this research represents eye fixation value for particular location. X is calculated by 

using Kernel density estimation function. Kernel density of 4 screen pixels aggregated for two 

groups.   

The values Moran’s I takes on are anchored at the expected value E(I) for random pattern 

(Chang, 2008).  If Moran’s I is closer to E(I) than the pattern is random. If greater than E(I), than 

Equation 1: 
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points have similar values and if Moran’s I is smaller than E(I) adjacent points have different 

values. 

 

Equation 2:  E(I)= 
1

1





n
 

Local Indicators of Spatial Association (LISA) a local version of Moran’s I produces “hot 

spot” analysis where high positive or high negative Z scores suggests the presence of clusters - 

hot spots or cold spots. 

G-statistic detects clustering of similar high or low values. A high G(d) value points to a 

clustering of high values, and a low G(d) value shows a clustering of a low values.   

G- statistic is calculated using equation: 

                   

 

W ij (d) = spatial weight for distance - d 

X i = value of location i 

X j = value of location j 

And expected value of G(d) is expressed as: 

                     

 

The nearest neighbor statistic is the ratio of the observed average distance between 

nearest neighbors to the expected average for a hypothetical random distribution. If the ratio 

value is lower than 1 it means that point pattern is more clustered then random. If the ratio value 

is greater than 1, then the point pattern is more dispersed than random. 

 

Equation 3:  

Equation 4: 
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Logistic Regression 

The final stage of this study is to understand which hurricane advisory is more preferred 

by the participants and why.  Binary Logistic regression was constructed using survey answer to 

the question: which hurricane advisory map test subject prefers - NOAA NHC or 

RENCI@ECU?  Survey demographic data, eye-tracking and biometric data (EEG, EMG, and 

ECG) are independent variables for this model.  The demographic, eye-tracking and biometric 

measures will allow to understand why particular advisory was chosen and explained it with 

statistical significance. 

Logistic regression is used to predict a categorical variable from a set of predictor 

variables.  Logistic regression has been especially popular with medical research in which the 

dependent variable is whether or not a patient has a disease. 

The  logistic regression in this research is used in order to predict participant’s answer.  

In logistic regression, the binary categorical outcome is the probability of  choosing NOAA or 

RENCI hurricane advisory. 

Logistic regression is presented in this equation: 

Equation 5: Pi = e
βXi

 / 1 + e 
Xi

  

The probability of choosing one of the advisories  by the participant Pi is portrayed  as a 

function of biometric or demographic indicator(s) as independent variables. These variables are 

accounted for in the matrix (X) and the relative influence of each factor on the choosing one of 

the advisories is reflected in the size of its estimated coefficient (β). The response of this 

probability to the linear combination of independent indicators  is expressed graphically as in 

Figure 7. 
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Figure 7: Logistic curve relating probability of advisory preference to biometric or demographic 

attributes.  

 

 

after probability is calculated its results are linearized forming the odds – the ration of 

probability for two possible outcomes taken by the natural log of odds. 

Equation 6:  logit(i) = ln (pi/1-pi) = 0 + 1X1i + 2X2i + 3X3i 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 4: RESULTS 

Biometric Data Analysis 

During the first phase of the experiment 35 -  student participant biometric data was 

recorded.  Due to the technical issues with eye movement recording equipment additional 

participant eye movement data  had to be  captured.  During the second phase, 21 participant eye 

movement and survey questionnaires data were recorded. 

The first phase of experiment (N=35) participant average age was 22 years with an 

average of 3 years of higher education (Figure 8 and 9).  27 participant’s home state was North 

Carolina. 8 out of 35 students experienced hurricane evacuation.  On average students rated 

themselves as having below average knowledge and understanding of hurricanes (Figure 11). 

Most data recording was done in months of March and April. Most participants listed the 

Weather Channel as primary weather related news source. 
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Figure 8: Histogram of participant’s age. 

 

Figure 9: Histogram of participant’s age. 
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Figure 10: Histogram of participant’s home state 

 

 

Figure 11: Histogram of participant’s self-rated knowledge of hurricanes. 
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For the first phase 33 participant biometric data (EEG, ECG and EMG) was used in data 

analysis while all 35 survey data was used in survey data analysis. Only 12 participant eye 

movement data could be used in this study from the first phase.  For the second phase,  16 eye 

movement  recordings were used in eye movement analysis. 

The data from the two groups was analyzed in Statistical Package for the Social Sciences 

(SPSS) for statistical analysis. NOAA and RENCI group descriptive statistics were calculated 

and non-parametric tests on the outcome differences performed.     

Group averages for biometric and eye-tracking data are showed in Table 2.  All averages 

are higher for RENCI test group, especially for cheek and EDA data.  Higher increasing EDA 

and HR are associated with high arousal, while increasing brow and  cheek muscle movement is 

associated with negative and positive effect or emotion respectively.  Eye movement fixation 

metrics are different for the two groups.  Total fixation number and fixation number average per 

participant for NOAA  group is  higher, perhaps indicating  a less efficient search strategy 

(Coltekin et. al, 2010) and explained as higher user confusion. The same conclusion arises from 

analysis of fixation average for two groups, 308.2 and 298 respectively. Higher fixation numbers 

also indicates larger cognitive loading, this could be construed as poorer map design (or 

complexity.) 
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Group Averages NOAA RENCI  Significance 

Brow 0.000581 V 0.000659 V 0.311 

Cheek 0.000609 V 0.00516 V 0.406 

EDA 5.680227 µS 8.375907 µS 0.429 

HR 72.106515 BPM 73.64791 BPM 0.914 

Frontal EEG 0.368 0.427 F(1, 496) = 3.724, p < .05  

Fixation number 4315 4175 0.662 

Fixation average 308.2143 298.2143 0.468 

Fixation duration mean 0.209924 0.226755 0.532 

Fixations in Legend 895 1262 0.141 

Fixation in Legend per 

square pixel 

0.006635134 0.006038 

 

0.818 

Table 2: Eye movement, biometric data averages, and significance (Mann-Whithey U test) 

 

 

Eye fixation data is very important for the map legend. This metric show how many times 

participants looked at the map legend. In cartography more effective map would have less 

fixations in the legend equal to lesser user confusion and better map cartography overall. 

Fixation count in the map legend is larger for RENCI group 1262 then in NOAA group – 895 

this occurs because RENCI maps has larger map legend area. For this analysis both group map 

legends were buffered equally  to account for eye movement recording error which allows to 

count eye fixations in the map legend (Figure 12.)  

The legend fixation number in map legend area was divided by the legend area in square 

pixels.  From this metric -   RENCI maps has less fixations per square pixel than NOAA maps 

(0.0060 and 0.0066 respectively). This implies that NOAA maps have poorer map cartography 

compare to RENCI map cartography.  
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Figure 12: NOAA hurricane advisory slide and polygon (red) were fixation classified as legend 

fixations. 

 

 

Fixation duration mean is another key attribute in fixation analysis. For RENCI group 

this measure is higher - 0.226755 and for NOAA group lower - 0.209924.  This measure explains 

that fixations are longer for RENCI group, meaning better map design and shows that 

participants spend more time in searching for information in the NOAA maps.  In this case 

NOAA maps are also more difficult to interpret, perhaps less familiar as well.  The Mann-

Whithey U test was used to determine statistical significance for two groups, but in both cases no 

statistical difference was found (total fixation difference in N = 28). 

While fixation data accounts for cognitive loading of the brain, biometric data helps to 

understand how participants felt and reacted during the experiment.  Biometric data analysis 
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reveals that Heart Rate – HR, electro dermal activity – EDA and facial muscle movement (brow 

and cheek) does not have normal distribution (Figure 13 and 14.).  

 

Figure 13:  Brow muscle movement histogram. 
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Figure 14: Electro Dermal Activity  (EDA)  histogram. 

 

Figure 15: Left Frontal Dominance Color Cone. Data source: Dr. N. Murray (VML). 
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Brain wave activity data recorded by EEG was processed and analyzed by Dr. N. Murray 

(VML) with analysis output  shown in Table 2.  The RENCI hurricane advisory map had larger 

alpha wave activity in left frontal brain area, which according to Keil and Dr. Murray (Keil et al., 

2002) implies pleasant pictures, enhancing the EEG signal over left-hemisphere regions. This 

notion suggests larger, positive effect to the user from the RENCI maps.  

Many cognitive research scientists correlate biometric data with stimuli by ranking its 

content as neutral, pleasant, or unpleasant and observing participants’ biometric reaction to the 

stimuli. In this research the author assumed  that all hurricane advisory maps are unpleasant in 

their content under real life situations, but unpleasantness has different levels so  all hurricane 

advisory maps were ranked from 1 to 12 (1 is least unpleasant and 12 is most unpleasant.)  The 

first advisory map represents the hurricane at the longest distance to the mainland over the 

period, and map twelve represents the hurricane when closest to landfall. Pearson correlations 

were calculated by correlating pictures’ unpleasantness rank to the particular biometric measure 

to understand which hurricane advisory is more effective through time. A more unpleasant map 

will thus be understood as a more effective map design in communicating hurricane risk. 

Brow muscle movement is associated with unpleasant stimuli (picture, sound) (Lane and 

Nadel, 2000).  Both groups had similar brow muscle movement, but RENCI group brow muscle 

average was higher than NOAA group explaining higher negative effect to the map user. 

Correlation of brow muscle movement and ranked hurricane advisory images reveal that no 

correlation exists between two measures in both groups (Table 3.). This explains that participants 

for both groups did not see maps more unpleasantly, although the stimuli theoretically was getting more 

unpleasant thru time. 
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Correlation 

coefficients 
NOAA Significance RENCI Significance 

Brow 0.07 0.944 0.093 0.322 

Cheek -0.043 0.65 0.0723 0.442 

EDA -0.546 0.001 -0.564 0.001 

HR 0.187 0.05 0.269 0.004 

Table 3: Group biometric measures Pearson correlation to the map stimuli thru time. 

 

Cheek muscle movement increases for stimuli rated as pleasant or most unpleasant 

underlie violent pictures (Lane and Nadel, 2000). Cheek muscle movement averages were 

different, but no statistical difference was detected.  NOAA group cheek muscle movement was 

larger than RENCI group by  8 times, which could be explained by RENCI maps being more 

pleasant to the user.  As with brow muscle movement, cheek muscle movement correlation to 

map stimuli was none existent for both groups (Table 3). 

Electro dermal activity or EDA is usually used to measure arousal and it usually increases 

as ratings of arousal increase (Lane and Nadel, 2000.)  This increase is inferred by viewing 

highly pleasant or highly unpleasant slide images. EDA activity average for both groups were 

quit high NOAA group average of 5.68 µSiemens and RENCI group 8.38 µSiemens that is 1.48 

times larger than NOAA group average.  
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Figure 16: Electro dermal activity (EDA) and Heart rate (HR) for both groups thru time. 
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Time series acroos both groups reveal that EDA does not show high variability during 

this experiment, but the differernce beetween two groups is quite large. The RENCI group has 

much higher EDA during the experiment. This information allows us to conclude that RENCI 

slides produced higher arousal of the user, but not significantly different. 

Large EDA for both groups is a good result, but correlation was negative for both groups 

(NOAA -0.54, RENCI -0.56). Even participants whose initial viewing was more negative images 

did not increase their arousal, but in fact, the opposite occurred, a decrease through time (Figure 

16).  Although EDA decreased through the experiment time, its distinctive difference between 

the NHC and RENCI cones is quite a good  result for  this study.  Given its color and stronger 

figure-ground relationship, the larger EDA for RENCI is not an unexpected result. In addition, 

EDA is not constant during the experiment but spikes at the beginnng, which is not unusual 

finding (Figure 17).  Very often participants “get worried”  by the first slides and gradually 

addapt to experiment and EDA starts to drop and similar effect of images are observed in 

biometric measurments by Lane and others  in 2000.  Similar responses are observed in HR 

through time and discussed later in the chapter. After the initial spike and following drop in EDA 

activivy, we observe increased EDA in 40 to 60 seconds of this experiment for the both groups. 

This is also an interesting finding, because an increase is not associated with a posted hurricane 

warning which appears at the advisory at 60 seconds mark in the experiment. The increase is 

probably influenced by an effect of the spatial proximity decreasing as the hurricane approaches 

land (and the cone intersects the State of NC boundary) ” visualized by the slide animation. 

Participants gradually adapt to the slide animation and start to anticipate the next slide after this 

period, but by the end of slide animation participants start to expect the end of experiment and 
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their EDA starts to increase. This increase is also influenced by the participants’ foreknowledge 

that they will have to answer questions about the slide animation just viewed.  

         

 

Figure 17: Coorelation of EDA with time for both groups. 
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Heart rate (HR) is another important biometric to measure when trying to understand the 

emotional value of the stimuli. The HR averages for both groups were quite similar. However, it 

was a little higher for RENCI group than NOAA group. Figure 18 shows heart rate variability 

through time, illustrating HR for RENCI slides that is continuously larger than NOAA slides and 

correlating higher participant arousal during the experiment. It is important to point out that HR 

starts to increase at 60 seconds into the experiment. This is the time where participants starFt to 

see a hurricane warnning for the coastal areas of  North Carolina for the first time in the 

advisory. From that point in time, both groups show increasing HR, but the RENCI group heart 

rate is higher and furthermore accelerates to higher rate. This investigation reveals that the 

RENCI hurricane advisories caused higher participant arousal even after they saw looming 

hurricane warnnings.  

When investigating HR metrics, scholars have particularly focused on acceleration and 

deceleration patterns (Lane and Nadel, 2000.) For both groups, this classic trihasic pattern is 

visible – initial deceleration followed by acceleration and a second deceleration. “Affective 

valence” (referring to the emotional value associated with a stimulus) contributes to the amount 

of initial deceleration and acceleratory activity, with unpleasant stimuli producing more initial 

deceleration, and pleasant stimuli producing greater peak acceleration” (Lane and Nadel, 2000.)   

Figure  18 investigation reveal inconclusive results where RENCI map produce more 

negative and more positive impact to the user. A change pattern after the first four slides also 

reveals an acceleration trend for for both groups (see Fig. 18).  Overall RENCI slides produced  

higher effect to the partisipant than NOAA slides this result could be understood as positive, 

since hihger influence is welcome in any case. 
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Figure 18: Heart Rate change over time. 

 

Fixation Sequence and Time Space Analysis 

Fixation sequence analysis is a very important aspect of this research and allows us to 

understand the viewing and information search behavior for each individual and discover similar 

groups from an objective data source.  

Hurricane Laurie advisory 36 is the first advisory participants see in this research, and 

this image is also one the longest images, lasting 20 seconds.  As such, the image is not affected 

by the learning differential and later map and symbolization changes in the advisories and the 

warnings.  For these reasons, the first advisory was chosen for conducting fixation sequence 

analysis. 

For this analysis five Areas of Interest (AOI) were created. These areas correspond to the 

most important areas of the hurricane advisory map:  Cone of Uncertainty, Map Legend, North 
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Carolina boundary, Virginia boundary, and South Carolina boundary (Table 4). Each areas was 

delineated and encoded for analysis in the EyePatterns software.  

EyePatterns Code Areas of Interest (AOI) 

L Map Legend 

C Cone of Uncertainty 

V Virginia state areas 

N North Carolina state area 

S South Carolina state area 

O Other areas of the map 

 Table 4: Eye fixation sequence analysis AOI’s. 

 

Fixation data was intersected with AOI polygons to produce a fixation sequence code for 

each AOI.  The next step was to sort the code file by the time sequence based on the fixation 

events. The author used Python script to extract code sequences to fit EyePatterns software 

format. All fixation sequence codes were split into two groups based on RENCI and NOAA 

groups. 
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Legend

Cone
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Other

 

Figure 19: Hurricane advisory Areas of Interest (AOI) used for Fixation sequence analysis. 

 

Figure 20: Fixation sequences in EyePatterns software. 
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EyePattens software (West et al., 2006) allows user to identify similar and different 

fixation patterns.  It also employs hierarchical average linkage clustering by paring similar 

sequences in a sequence dendogram, a branching diagram representing a hierarchy of categories 

based on degree of similarity or number of shared characteristics  (West et al., 2006). In essence, 

more similar sequences have higher similarity scores.  

Hierarchical average linkage clustering was preformed for combined data from phase one 

and phase two experiment sets (12 people from phase one and 16 people from phase two). Figure 

21 depicts an output dendogram from this operation. Three major fixation sequence clusters are 

clearly visible, because fewer branches that are between 2 sequences in the dendogram, the more 

similar those sequences are. (West et al., 2006.) 

 Cluster A – harbors majority fixation sequences of RENCI group, clusters B and C are 

essentially two different sequence clusters and they have majority of NOAA group clusters.  

From this result, we can conclude that fixation sequence clustering is based on the participant’s 

being either in NOAA or RENCI groups. 
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Figure 21:  Hierarchical average linkage clustering by EyePatterns. 

 

EyePatterns software allows one to identify similar fixation sequences, but the next step 

in this study was to verify and visualize similar sequences using advanced GIS geovisualization 

techniques.  The author used time-space cube principles to verify and represent similar fixation 

  

                      A  B 

C 
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sequences.  This methodology allows visual comparison of fixation sequences in three 

dimensions.  X and Y representing computer screen dimensions and Z representing time.  

To conduct this investigation regular fixation sequence polylines had to be transformed to 

3D  polylines. The author used a custom ArcScript developed by Neal Banerjee (script available 

at: http://arcscripts.esri.com/details.asp?dbid=14549 ) to perform these transformations. 

3D fixation sequence polylines were visualized using ArcScene, a 3D desktop GIS 

visualization platform.  During investigation similar fixation sequences derived from EyePatterns 

software were plotted together to see how similar sequences actually are.  The similarity in 

fixation sequences were observed and they followed the similar trends. 

 

Figure 22: 2D image of two fixation sequences identify as similar by EyePatterns cluster A. 

 

Figure 22 shows fixation sequences clearly illustrating the similar fixation patterns in the 

same map areas. But this image does not portray how similar participant fixation sequences are 

http://arcscripts.esri.com/ContactAuthor.asp?dbid=14549
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in time. Use of ArcScene 3D imaging and rotation capability allowed to examine whether these 

sequences have similar fixation sequences in time, too.  In other words, two participants looked 

at the similar map areas at the similar time. 

 

 

Figure 23: 3D image of two fixation sequences identified as similar by EyePatterns in cluster A. 

 

Figure 23 shows the same sequences as in Figure 22, with the difference being display in 

3D.  Fixation sequences in this image are indeed similar not just in fixation location, but it is 

similar in time when these fixations occurred.  The height of the 3D line represent time, from 

bottom to top is 20 sec time lapse. The blue line represents participant S14, and the brown line is 

participant S11.  Space-time cube investigation reveal that those two participants spent half of 

their time in the cone of uncertainty of the map  S11 participant briefly looked at the USA 

Time 
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mainland. And half of their time they spent looking at the Map legend.  This space-time pattern 

was observed for a majority of cluster A  fixation sequences identified as similar by EyePatterns.  

 

Figure 24: 2D image of two fixation sequences identify as similar by EyePatterns cluster B. 
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Figure 25: 3D image of two fixation sequences identify as similar by EyePatterns cluster B. 

Cluster A had a majority of  RENCI group participants (n=8 ), while cluster B and C had 

mostly NOAA group participants (n=10 ).  The investigation of clusters B and C reveals different 

fixation sequence patterns. A majority of the time these participants spent in the cone of 

uncertainty of the map, only seldom venturing to the map legend for the cluster B, while for 

cluster C  participant fixation sequences are more similar to cluster A. 

This methodology allows the investigation of the viewing patterns in great detail and is 

clearly a robust method for investigating human behavior in space and time. 

EyePatterns allows calculation of transition frequencies between events in a sequence, 

this method is good in identifying transitions between two AOI’s which will allow one to assess 

specific transitions of primary interest to this research – i.e., transition from reading Map legend 

and the Cone of Uncertainty of the hurricane advisory. The software visualizes these transitions 

between AOI in the form of  a transition matrix. 
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 L C V N S O To-Total 

L 0 6 0 0 0 37 43 

C 7 0 0 11 0 42 60 

V 1 1 0 1 0 4 7 

N 0 3 3 0 0 10 16 

S 0 0 0 0 0 0 0 

O 37 48 3 4 0 0 92 

From-Total 45 58 6 16 0 93 218 

Transition matrix NOAA group. 

 

 L C V N S O To-Total 

L 0 12 0 0 0 24 36 

C 12 0 1 10 2 27 52 

V 0 1 0 1 0 1 3 

N 2 6 2 0 0 3 13 

S 0 1 0 1 0 0 2 

O 28 25 0 2 0 0 55 

From-Total 42 45 3 14 2 55 161 

Figure 26: Transition matrix RENCI group. 

 

The number of transitions between AOI’s  determine which group is more efficient in 

understanding map cartography between the two groups.  Matrix tables show transitions between 

AOI’s. Total column on the right hand represents transitions towards particular AOI and the  

total column on the bottom of the transition matrix represents transitions from particular AOI.  

For example in NOAA group transition matrix where was 43 transitions to the legend 

map area (L), 6 of these transitions occurred from map cone of uncertainty (C) and rest of them 

came from other map areas (O). 
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Transition matrixes revealed that there where 43 fixation transitions to the Legend 

(indicated as L in the matrix) from all map areas in the NOAA group and 36 transitions in the 

RENCI group. This measure is a key to understanding the map search efficacy and participant 

viewing confusion. More efficient map would have smaller number of transition to the map 

Legend, from this notion we can conclude a slightly higher search confusion in the NOAA map 

reading group, because it has higher number of fixation transitions to the map legend (L in the 

matrix Figure 26). 

 

Kernel Density Estimation and Geographically Weighted Regression (GWR) 

Kernel density estimation associates each known point (in this case fixation points) with 

a kernel function for the purpose of estimation.  It is expressed as a bivariate probability density 

function centered at the known point and tapering off to 0 over a defined bandwidth or a window 

area (Chang 2008).  Kernel density function input includes the known points; output is the 

density raster showing expected values.   

For this analysis eye fixations for two groups were extracted by time, where experiment 

participants viewed NOAA hurricane advisories or RENCI hurricane advisories for the first time. 

Fixations for individuals were combined into two groups representing NOAA and RENCI 

groups. 

For each group Kernel density estimation was performed producing a fixation “heat map” 

for each group as a raster (Figure 27 and 28).  Rasters were produced using fixation density per 4 

square screen pixels and  search radius of  34 pixels.  The author classified rasters with a defined 

equal interval of  0.0 - 0.007 square pixels.  Resulting classified map areas 1 to 5 thus  represent 

fixation density areas, from very low to very high.  
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As expected, the eye fixation density is very different between the two groups. NOAA 

group density has much higher values than RENCI group and reaches a very high density in the 

center areas of the hurricane cone of uncertainty. 

Another noticeable difference is the spatial distributions of the two density maps. NOAA 

group eye fixation density is very clustered around the center part of the cone of uncertainty and 

the legend, while the RENCI group eye fixation has a much wider spread  in the cone of 

uncertainty and the legend areas.  The distribution of  eye fixations is also elongated in the 

NOAA group as compared to RENCI group.  These fixation differences can be explained due to 

the fact that RENCI cone is much wider, so more fixations are registered in the cone. These 

results are expected because the RENCI map design was based on the philosophy that more risk 

exists beyond  the projected hurricane track line, so more spread is observed in RENCI group 

fixation density.  NOAA group eye fixation concentration by the projected hurricane track line is 

also a predictable result, because many scholars believe that too much attention has been paid to 

this single line (Steed et al., 2009). Fixation density in map legends is similar in both groups. 
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Figure 27: Eye fixation kernel density estimation for NOAA group. 
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Figure 28: Eye fixation kernel density estimation for RENCI group. 

The differences in the two groups’ maps are visible, but for  more detailed understanding, 

we can divide the RENCI group fixation density map from NOAA group fixation density map to 

highlight differential fixation (Figure 29).  

The green color in Fig. 29 represents map areas where fixation density in the NOAA 

group was higher than RENCI group, while red color represents areas where fixation density in 

the NOAA group was lower than RENCI group. 

This map clearly indicates differences in the two maps. The NOAA group had more 

fixation in the center line area of the cone,  while RENCI maps had higher fixation density in 

outer periphery of cone.  In the maps’ legends the NOAA group had higher density of fixation in 
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the top left of the legend while RENCI group had higher fixation density in the top right and 

lower parts of its legend.  Differences in the map legend fixations shows that participants in 

NOAA group were spending more time on the legend’s basic information about the storm, while 

the RENCI group participants were more concentrated in viewing lower part of the RENCI 

legend, the area where new legend information was attached.   

Figure 29: Eye fixation kernel density estimation comparison for two groups. 

 

Geographically weighted regression (GWR) was  used to analyze spatially varying 

relationships of NOAA group fixation heat map and RENCI group fixation heat map.  GWR 

allows for the analysis of the difference in two heat maps with statistical significance.  
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This regression generates a separate regression equation for every observation analyzed 

in the study area and presents spatial variation in the results. The GWR model uses Gaussian 

weights as inverse functions of distance in calculations of spatial relationships between 

observations. GWR incorporates local spatial relationships into regression (Fotheringham 2002).  

 GWR fixed spatial kernel was used in this research, because kernel density estimation 

produces fixation heat map with  equal interval cells. Using spatial kernel regression each data 

point is weighted by its distance from the regression point. “Data points closer to the regression 

point are weighted more heavily in the local regression than are data points further away” 

(Fotheringham 2002). 

For the purpose of analyzing spatial variation of the heat map with Geographically 

Weighted Regression (GWR),  the following transformations were performed:  1) each group’s 

Kernel density estimation raster (search radius 34, cell size 10) density raster converted to a 

shapefile; 2) spatial joins of two heat map shapefiles were created; and 3) a final shapefile was 

created having two attributes,  both  heat map raster attributes as dependant and independent 

variables. 

The dependant variable for this analysis was the NOAA group density values, with the 

RENCI group density values as the predictor. GWR analysis correlates both layers and gives 

estimate of local correlation as local R square. Figure 30 shows R square values for two layers. 

Both heat map layers are positively correlated, where high positive correlation is in the edges of 

cone of uncertainty and map legend areas. 
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Figure 30: GWR analysis local R square. 
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Figure  31:  GWR Beta. 

 

GWR coefficient is mostly positive throughout the advisory map (Figure 31.) showing 

positive relationship between two advisory maps. Weak negative relationship is observed in the 

lower-right and lower-left corners of the advisory, areas where participants spent the least 

amount of time.  Weak positive relationship is observed across majority of the advisory with 

stronger relationship in cone of uncertainty area and the upper-left corner of the map. 

Figure 32 shows GWR results standardized residuals.  The results are similar to RENCI – 

NOAA heat map difference map in Figure 29.  GWR over predicts  green areas and under 

predicts in the red and orange areas of Fig. 32. However, GWR statistics corroborate and affirm 

that the two heat maps are truly different.  The NOAA heat map has higher values in the center 
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of its cone and legend, while the RENCI fixation heat map has higher values spread more widely 

than the NOAA map in its cone and legend area. 

 

Figure 32: GWR analysis of fixation density for two groups. 
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Figure 33: GWR analysis of fixation density for two groups’ significance test. 

 

The next step was to estimate the significance of these differences.  The GWR coefficient 

was divided by regression standard error to get the T statistic values for this GWR model 

(C1_GRID_CO/StdErr_C1GRID, or T = coefficient/standard error). Figure 33 shows the 

significance of GWR results.  As expected most of the map areas, around the maps cone and the 

legend, are significantly different. 
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Spatial Pattern Analysis 

Spatial autocorrelation analysis using Moran’s I, LISA and nearest neighbor statistics was 

conducted for the eye fixation points and their duration attribute.  Analysis results were 

compared between the two test groups.  Hurricane advisories in this experimental setting are 

different, and spatial autocorrelation would occur in the different areas and at different intensity.  

For example, a high interest area of this study is the map legend which in theory should have 

different number of fixation and fixation duration between two test groups.   

The nearest neighbor analysis was conducted for the same dataset.  For both groups, the  

ratio value was lower than 1, indicating clustering of nearest eye fixation points. The RENCI 

group nearest neighbor ratio is lower than the NOAA group statistic, indicating that fixation 

points are more clustered in RENCI advisory maps. This result comes unexpected since literature 

and cartographic design suggested higher clustering of NOAA group fixations. 

NNA indicator NOAA group RENCI group 

Observed mean distance 7.68 6.91 

Expected mean distance 10.87 10.67 

Nearest neighbor Ratio 0.71 0.64 

Z – score -29.13 -34.38 

p value 0.001 0.001 

Table 5: Nearest neighbor analysis results. 

 

For both groups, Moran’s I is much greater that E(I), which suggests that adjacent 

fixation points have similar values and are spatially correlated.  The NOAA group’s Moran’s I 

indicator was larger than the RENCI group, indicating larger spatial correlation.  
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Moran’s I indicators NOAA group RENCI group 

Global Moran’s I Index 0.0309 0.0214 

Expected Index -0.000383 -0.000371 

Variance 0.000004 0.000005 

Z score 15.78 9.85 

p-value 0.001 0.001 

Table 6: Moran’s I analysis results. 

 

LISA analysis revealed clustering of high and low fixation duration values.  For the 

RENCI group, clustering of High-High values occurred in the  center of the cone and coastal 

North Carolina.  High-High fixation duration value clustering is also observed in the map legend.   

For the NOAA  group, the same High-High clustering pattern is observed, except there is 

no clustering in the map legend, and clustering of High values in notably narrower for this group 

(Figure 34). 

High-High fixation duration clustering pattern is very similar to fixation density patterns. 

NOAA group having more elongated narrow clustering in the center of the cone and RENCI 

group having more wider spread of clustering.  In RENCI group  LISA maps we also observe 

High-High clustering of high duration fixations.  This result is similar with earlier discovered 

notion that participants find  information easier in RENCI map versus NOAA maps or could be 

that observed patterns in RENCI maps are related to the fact that participants are learning new 

map cartography. 
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Figure 34: LISA  analysis of eye fixations. 
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Logistic Regression 

The final stage of this study is to find biometric and  demographic indicators which 

explain participants’ hurricane advisory preference .  A logistic regression was constructed using 

survey answers to the question:  Which hurricane advisory map each test subject prefers – 

NOAA NHC or RENCI@ECU?  Survey demographic data  and biometric data (EEG, EMG, and 

ECG)  was used as independent variables for this model.  27 out of 32 participants preferred 

RENCI hurricane advisory in survey questioner, and only 5 out of 32 preferred NOAA hurricane 

advisory. 

 For a logistic regression, the predicted dependent variable is a participants’ advisory map 

preference as indicated in Q43 in the model and independent variables are demographic and 

biometric indicators. 
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Variable Description Data Source 

Q43 Hurricane advisory preference Survey 

Brow Brow Facial muscle 

movement 

VML 

Cheek Cheek Facial muscle 

movement 

VML 

EDA Electrodermel activity VML 

HR Heart rate in beats per minute VML 

Age participants age Survey 

Gender participants gender Survey 

Dist participants residence place 

proximity to the hurricane 

land fall 

Survey 

EvaExp participants hurricane 

evacuation experience 

Survey 

Knowledge participants knowledge of 

weather 

Survey 

Table 7:  Demographic and biometric indicators used in model creation (VML is biometric data 

collected with instrumentation of the ECU Visual Motor Laboratory). 

 

The author of this research decided to construct two separate logistic regression models; one for 

biometric data  and one for demographic data. 

The logistic regression model for the biometric data was developed first.  Variables in the final 

model were
 
selected with a step-down procedure where the decision to remove

 
terms was based 

on a likelihood-ratio test.  All potential predictors
 
were first included in the “full” model, then 

predictors were
 
sequentially removed if their removal did not result in a significant

 
change in the 

log-likelihood.   



80 
 

 Stepping down  for biometric data from this full model resulted in the
 
sequential removal of 

Brow (p = 0.91), EDA (p = 0.326)  and HR (p = 0.12) predictors.  Overall success rate in 

classification was 83.9 %. 

Even though the model correctly predicted a high number of  participant hurricane advisory 

preferences, its  predictions were emphatically one-sided ( predicted all RENCI advisory 

choices, but only predicted 16 percent NOAA advisory choices), and overall  model was not 

statistically significant (p = 0.24). 

 

 

B S.E. Wald df Sig. Exp(B) 

Step 1 Cheek 2511.156 2152.123 1.361 1 .243 . 

Constant -3.131 1.485 4.444 1 .035 .044 

Table 8: Variables in step-down model for biometric predictor variables. 

 

 

 Observed Predicted 

 Q43 Percentage 

Correct  RENCI NOAA 

 Q43 RENCI 25 0 100.0 

NOAA 5 1 16.7 

Overall Percentage   83.9 

Table 9:  Classification Table for biometric predictor variables. 

 

Each biometric indictor was also analyzed separately by constructing separate logistic 

regressions for each biometric indicators. Investigation results produced the following table 

where multiple model results are presented.  Only one biometric indicator out of four produced a 
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significant results (p = 0.048)  for predicting user hurricane advisory preference. The brow facial 

muscle movement indicator had highest overall classification percentage (87.5%), it also had one 

of the lowest log likelihood indicators, indicating better model performance.  

 -2 Log 

likelihood 

B Wald Cox & 

Snell R 

Square 

Predicted 

percentage 

correct 

Significance Exp(B) 

Brow 26.543 3769.5 3.91 .127 87.5 0.048  

Cheek 26.250 2211.0 1.09 .135 84.4 0.30  

EDA 30.327 0.035 0.14 .004 80.6 0.71 1.036 

HR 28.679 -0.035 1.81 .067 84.4 0.18 0.965 

Table 10: Logistic regression model output for each biometric indicator. 

 

For demographic predictor variables, the same step-down logistic regression analysis was 

constructed. Stepping down  for demographic  data from this full model resulted in the
 
sequential 

removal of  all  predictors. 

As with biometric predictors, logistic regression models for each demographic variable 

were also produced.  The following table shows model output parameters. All variables produced 

highly correct prediction classifications, but none of the variables had statistically significant 

results.  
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 -2 Log 

likelih

ood 

B Wald Cox & 

Snell R 

Square 

Predicted 

percentage 

correct 

Signifi-

cance 

Exp(B) 

Age 34.319 0.08 0.26 0.07 79.4 0.61 1.086 

Gender 34.394 0.36 0.18 0.005 79.4 0.67 1.435 

Distance 31.660 2.03E-6 1.36E-6 0.082 79.4 0.134 1.0 

EvaExp 34.454 0.34 0.12 0.004 79.4 0.725 1.4 

Knowledge 34.562 0.07 0.01 0.000 79.4 0.91 1.072 

Table 11: Logistic regression model output for each demographic indicator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 5: DISCUSSION AND CONCLUSIONS 

 

The purpose of this research was to compare NOAA NHC hurricane advisory and an 

experimental RENCI hurricane advisory cartographic design using biometric, eye tracking, and 

demographic data recorded during the experiment. 

The literature review revealed a need for more objective ways to investigate map 

cartographic design. In this research the NOAA hurricane advisory  maps were changed to 

address the common cartographic perception issues, such as color and also to explore the 

hurricane risk perception via a wider cone of uncertainty.  The RENCI hurricane advisories were 

theoretically designed to be more superior than NOAA advisories, incorporating color within the 

cone of uncertainty to convey a risk gradient,  stronger figure-ground contrast, and also an 

expanded zone of hurricane risk beyond the extent of the standard cone of uncertainty. 

Both maps were tested in a  laboratory under experimental conditions, and indicators 

averages were compared.  The results for this research did not had many statistically significant 

results, but some results were promising and should be considered as first steps towards further 

investigation as well as operational decisions with risk map communication.  

Eye fixation data revealed results that were theoretically expected by the author of this 

research, but did not  had statistical significance. Fixations are considered an indicator of the 

user’s cognitive loading. On the other hand, more cognitive loading does not inherently mean 

better map design. Purpose of experimental RENCI hurricane advisory was to produce more 

understandable and higher risk perception map leading to more intuitive map which every one 

could easily recognize and which would produce lesser cognitive loading of the brain. Higher 
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total and average fixation counts were observed for NOAA hurricane advisories proving 

the  raised  hyphosesis at the beginning of this research. 

The map legend is a key is successful map design. In essence, a more user-friendly map 

would have less eye fixation in the map legend, because user would not have to spend much time 

there to understand the map.  Fixation metrics indicated that less fixation per square pixels in the 

map legend were in RENCI hurricane advisories. This observation and the transition matrix 

indicators  were good result, but it did not had no statistical significance to prove the hypothesis 

posed that for lesser fixation counts in the RENCI maps. 

Brow muscle movement is associated with unpleasant stimuli according to Lane and 

others (Lane et al., 2000).  Both groups had similar brow muscle movement, but the RENCI 

group brow muscle average was higher than the NOAA group, explaining higher negative effect 

on the map user.  On other hand the NOAA group cheek muscle movement was larger than 

RENCI group by  8 times.  This could be explained by the RENCI maps being more pleasing to 

the user. EDA recordings were also higher for RENCI group, indicating higher arousal to the 

user.  These findings allow us to conclude that the RENCI slides were more plesant for 

participants and  increased their arousal. 

Eye fixation sequence analysis indicated that similar sequences arguably exist in the 

fixation data.  EyePatterns software outlined three different sequences based on the hurricane 

advisory being viewed participants.  Transition matrices calculated by EyePatterns confirmed 

that more NOAA group participants transitioned to the legend of the map, indicating higher map 

user confusion. 
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The spatial distribution of eye fixation data revealed the preliminary theories that NOAA 

hurricane advisory maps have more clustered fixations in the cone of uncertainty.  These 

fixations were positioned along the center line of the cone of uncertainty.  On other hand, the 

RENCI fixations had a wider distribution of fixation in the cone of uncertainty, which was 

expected during the initial design of the advisory (i.e., wider cone.).  Statistical analysis of 

fixation clustering also affirms these findings, the NOAA group fixations are more spatially 

autocorrelated then RENCI group fixations. 

The final stage of this research aimed to determine the best biometric and demographic 

predictors of hurricane advisory map preference. This analysis determined that brow muscle 

movement was the best indicator for predicting the user’s hurricane advisory preference. 

However, prediction was asymmetric, with the logistic model, despite a weak significance level, 

predicting the vast majority of subjects preferring the RENCI cone versus few choosing the 

NOAA cone.  

Over all the experiment did not produce many strongly statistically significant results. 

This may have occurred because the experiment did not used completely different hurricane 

advisories, but instead author used similar, albeit modified, versions of the current NOAA 

product.  In many cases neuroscientists in their research use images from a different spectrum of 

emotions, like pleasant and unpleasant pictures, so significant responses could be detected.  In 

addition, the low number of participants and the convenience sample of university students used 

in this research could also have lead to unsatisfactory statistical significance. The author believes 

that higher number of participants and a wider cross-section of population would have produced 

statistically significant results for both hurricane advisories. Another factor influencing 

statistically insignificant results is that this experiment is far from a real-life situation, wherein 
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the majority of experiment executed during the months of March and April or outside  the peak 

hurricane season. In addition, the experiment was conducted in a synthetic laboratory setting 

with little real danger experienced.    

Nonetheless, the research affirms many expected relationships, such as large differences 

in biometric indicators for EDA, cheek and brow muscle movement.  Eye fixation density was 

visibly and statistically different from each other. This is a significant result, since the density 

and some biometric measurement differences where anticipated before the experiment has 

begun.  This research provided other results which were anticipated like higher heart rate, lower 

fixation count in the map and higher electro dermal activity. 

This research did not included survey questions about actual risk perception of the 

participant. To investigate relationships between biometric data and other survey answers is 

beyond the scope of this study and future research is highly needed to unlock new findings. 

The next step in conducting more successful cartographic design comparison and 

hurricane risk perception evaluation would be the design of a completely different hurricane 

advisory and comparing it to the NOAA NHC design.  The author of this research would also 

suggest the use of baseline stimuli, internationally recognized as neutral, pleasant, or unpleasant. 

This would allow the comparison of both maps to the known stimuli and achieve clarification 

were these maps stand on a benchmark scale in comparison to documented emotions. Another 

suggestion is to conduct such experiments during the hurricane season, and preferably in the 

peak August and September months.  Finally, this research included only a small number of 

participants, and a next step would be to expand to more participants and especially a population 

with higher home state and hurricane experience variation. Future cartographic design and 

hurricane risk perception studies using the described methods could also investigate the 
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indicators at a finer scale where differences could be compared between participants or 

predictively at the individual level based on gender, age and experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

REFERENCES 

Aerts, C. J. H. J., K. C. Clarke and A. D. Keuper. 2003. Testing Popular Visualization 

Techniques for Representing Model Uncertainty. Cartography and Geographic 

Information Science. 30(3): 249-261.  

 

Andrienko, G., N. Andrienko, J. Dykes, S. I. Fabrikant and M. Washowicz. 2008. 

Geovisualization of dynamics, movement and change: key issues and developing 

approaches in visualization research. Information  visualization  7: 173-180. 

 

Bojko, A. 2006.  Using Eye Tracking to Compare Web Page Designs: A Case Study. Journal of 

Usability Studies. 1(3). 

 

Blake, S. E., E. N. Rappaport, C. W. Landsea. 2007. The deadliest, costliest, and most intense 

United States tropical cyclones from 1851 to 2006.  NOAA Technical Memorandum 

NWS TPC-5. 

 

Bradley, M. M., P. J. Lang,  B. N. Cuthbert. 1993. Emotion, Novelty, and the  startle reflex: 

habituation in humans.  Behavioral neuroscience. 107(6): 970-980. 

 

Chang, Kang-Tsung. 2008. Introduction to Geographic Information Systems. McGraw-Hill 4
th

 

ed. 

 

Christopher, M. J., C. H. Hillman and B. D. Hatfield. 2000. Concurrent Measurement of 

Electroencephalographic and Ocular Indices of Attention during Rifle Shooting: An 

Exploratory Case Study. International Journal of Sports Vision. 6(1): 21-29. 

 

Codispoti, M., M. M. Bradley, P.J. Lang. 2001. Affective reactions to briefly presented pictures. 

Psychophysiology. 38: 474-478. 

 

 

Coltekin, A., S. Garlandini, B. Heil, S. I. Fabrikant. 2009. Evaluating the Effectiveness of 

interactive map interface designs: a case study with eye movement analysis. Cartography 

and Geographic Information Science. 36: 5-17. 

 

Coltekin, A., S. I. Fabrikant, and M. Lacayo. 2010. Exploring the efficiency of users, visual 

analytics strategies based on sequence analysis of the eye movement recordings. 

International Journal of Geographical Information Science. 10(24): 1559-1575. 

 

Demsar, U. and K. Virrantaus. 2010. Space-time density of trajectories: exploring spatio-

temporal patterns in movement data.  International Journal of Geographical science. 

24(10): 1527-1542. 

 

Donthu, Naveen. 1991. Comparing market areas using kernel density estimation. Journal of the 

Academy of Marketing Science. 19(4): 323-332.  



 
 

 

Dow, K. and S. L. Cutter. 2000. Public orders and personal opinions: household strategies for 

hurricane risk assessment. Enviromental Hazards 2: 143-155. 

 

Duchowski, Andrew. 2007.  Eye Tracking methodology. Theory and practice. Springer 2
nd

 ed. 

 

Fabrikant, S. I., S. R. Hespanka, N. Andrienko, G. Andrienko and D. R. Montello. 2008. Novel  

Method to measure inference affordance in static small-multiple map displays 

representing dynamic processes. The Cartographic Journal  45(3): 201-215. 

 

Gengler, C.E., D. B. Klenosky and  M. S. Mulvey. 1995. Improving the graphic representation of 

means-ends results. International Journal of research in marketing. 12: 245-256. 

 

Gaudart, J., B. Poudiougou, A. Dicko, S. Ranque, O. Toure, I. Sagara, M. Diallo, S. Diawara, A. 

Quattara, M. Diakite and O. K. Doumbo. 2006. Space-time clustering of childhood 

malaria at the household level: a dynamic cohort in a Mali village. BMC Public Health  6. 

 

Harrower, M. and C.  A. Brewer. 2003. ColorBrewer.org: An online tool for selecting color 

schemes for maps. The cartographic Journal. 40(1): 27-37. 

 

Henderson, M. J., C.  C. Williams, M. S. Castelhano and R. J. Falk. 2002. Eye Movements and 

Picture Processing During Recognition. Perception & Psychophysics. 

 

Hongbo,  Su. 2006. Spatio-temporal GIS Design for Exploring Interactions of Human Activities. 

Cartography and Geographic Information Science. 33(1). 

 

Kenneth, B., A. Leiserwitz, J. Weinkle and M. Steketee. 2007. Misinterpretations of the “Cone 

of Uncertainty” in Florida during the 2004 Hurricane season. American Meteorological 

Society. 5. 

 

Keil A., M. M. Bradley, O. Hauk, B. Rockstroh, Th. Elbert and P. J. Lang. 2002. Large-scale 

neural correlatates of affective picture processing. Psychophysiology. 39: 641-649. 

 

Knutson, R.Th., J. L.Mcride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J. P. Kossin, 

A. K. Srivastava and M. Sugi. 2010. Tropical cyclones and climate change. Nature 

geosciences 3. 

 

Kwan, M.P., 2004: GIS Methods in Time-Geographic Research: Geocomputation and 

Geovisualization of Human Activity Patterns. Geogr. Ann., 86 B (4): 267–280. 

 

Lang, J. P., M. K. Greenwald, M. M. Bradley and A. O. Hamm. 1993. Looking At pictures: 

Affective, facial, visceral, and behavioral reactions. Psychophysiology 30:261-273.  

 

Lane, D. R. and L. Nadel. 2000. Cognitive Neuroscience of emotion. Oxford University Press. 

 

 



 
 

Lenth, V. R. 2001. Some practical guidelines for effective sample-size determination. 

 

MacEachren, A.M.  and D.R.F. Taylor. 1994. Visualization in Modern Cartography. Pergamon 

vol. 2. 

 

MacEachren, A. M. 1995. How Maps Work: Representation, Visualization, and Design. New 

York: Guilford. 

 

Montgomery, D. L., R. W. Montgomery, R. Guisado. 1995. Rheoencephalographic and 

electroencephalographic measures of cognitive workload: analytical procedures. 

Biological Psychology 40 143-159. 

 

Niedermeyer, Ernst 2005. Electroecephalography: basic principles, clinical applications, and 

related fields.  Lippincott Williams and Wilkins 5th ed. 

 

Ohme, R., D. Reykowska, D. Wiener, A. Choromanska. 2010. Application of frontal EEG 

asymmetry to advertising research. Journal of economic psychology. 31(5): 785-793. 

 

Pred, Allen. 1977. The Choreography of Existence: Comments on Hagerstrand’s Time-

Geography and its usefulness. Economic Geography. 53(2): 207-221. 

 

Reilly, Benjamin. 2009. Disaster and Human History: Case Studies in Nature, Society and 

Catastrophe. McFarland. 

 

Rogerson, A. Allen. 2006. Statistical methods for geography: a student’s guide. Sage 2
nd

 ed.  

 

Shaw, S-L, H.Yu and L. S. Bombom. 2008. A Space-Time GIS Approach to Exploring Large 

Individual-based Spatiotemporal  Datasets. Transactions in GIS.  12(4): 425–441. 

 

Sheehan, T. J. and L. M. DeChello. A space-time analysis of the proportion of late stage breast 

cancer in Massachusetts, 1988 to 1997. 2005. International Journal of Health 

Geographic’s 4(15). 

 

Shoval, N. and M. Isaacson 2007. Sequence Alignment as a Method for Human Activity 

Analysis in Space and Time. Annals of the Association of American Geographers 92(2): 

282–297. 

 

Slocum T. A., R. B. McMaster, F. C. Kessler and H. H. Howard. 2008. Thematic Cartography 

and Geovisualization. Pearson 2
nd

 ed. 

 

Steed, C., T. J. Jankun-Kelly, J. E. Swan II. 2009. Illustrative Visualization Techniques for 

hurricane advisory information. In Proceedings of the Oceans '09 MTS/IEEE Biloxi 

Technical Program. 

 

Wade, N. and Tatler, B. (2005). The Moving Tablet of the Eye: The origins of modern eye 

movement research. Oxford University Press, Oxford, UK 



 
 

 

Wainer, H. and C. M. Francolini. 1980. An empirical inquiry concerning human understanding 

of two-variable color maps. The American Statistician. 34(2): 81-93. 

 

Walter, G. P., S. D. Brody and W. Highfield. 2005. Hurricane risk perceptions among Florida’s 

single family homeowners. Lanscape and Urban Planning. 73: 120-135. 

 

West, J. H,  A. R. Rozanski and K. S. Karn. 2006. eye Patterns: Software for Identifying Patterns 

and Similarities Across Fixation Sequences. Proceedings, 2006 Symposium on Eye 

tracking Research & Applications, San Diego, CA, Mar. 27–29, 2006: 149–154. 

 

Wilson, C. 2006. Reliability of Sequence Alignment Analysis of Social Processes: Monte Carlo 

tests of ClustalG software. Environment and Planning 38: 187–204. 

 

Wilson, C., A. Harvey, and J. Thompson. 1999. ClustalG: Software for Analysis of Activities 

and Sequential Events. Proceedings, Longitudinal Research in Social Sciences: A 

Canadian Focus, Windermere Manor, London, Ontario, Canada, Oct. 25–27, 1999. 

 

Wilson, Clarke. 2008. Activity patterns in space and time: calculating representative Hagerstrand 

trajectories. Transportation. 35: 485-499. 

 

Wulder, A. M., J. C. White, N. C.  Coops, T. Nelson and B. Boots. 2007. Using local spatial 

autocorrelation to compare outputs from a forest growth model. Ecological Modelling. 

209: 264-276. 

Thomsen, R. S. and K. Fulton. 2007. Adolescents’ Attention to Responsibility Messages in 

Magazine Alcohol Advertisements: An Eye-Tracking Approach. Journal of Adolescent 

Health. 41: 27–34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

APPENDIX A: NHC HURRICANE ADVISORIES USED IN RESSEARCH 

 

 

 



 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

APPENDIX B: IRB FORM 

 



 
 

 



 
 

 



 
 

 



 
 

 



 
 

 



 
 

 



 
 

 



 
 

 



 
 

 



 
 

 


