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Abstract The paper is devoted to the investigation of the notion of sufficiency in quantum
statistics. Three kinds of this notion are considered: plain sufficiency (called simply: suf-
ficiency), Petz’s sufficiency, and Umegaki’s sufficiency. The problem of the existence and
structure of the minimal sufficient subalgebra is analyzed in some detail, conditions yielding
equivalence of the three modes of sufficiency are considered, and quantum Basu’s theorem
is obtained. Moreover, it is shown that an interesting “factorization theorem” of Jenčová and
Petz needs some corrections to hold true.

Keywords Quantum sufficiency · Von Neumann algebra · Conditional expectation ·
Normal states

1 Introduction

Let M be a von Neumann algebra, let N be its von Neumann subalgebra, and let {ρθ :
θ ∈ Θ} be a family of normal states on M. The most general notion of sufficiency of the
subalgebra N for the family {ρθ : θ ∈ Θ} was introduced by Petz in [5, 6] as a generalization
of sufficiency in Umegaki’s sense considered earlier in [8, 9]. It was further investigated in
[1, 2]. In this setup the sufficiency of N means the existence of a two-positive map α : M→
N such that

ρθ ◦ α = ρθ , θ ∈ Θ.

(Note that if the map α is a conditional expectation then we get sufficiency in Umegaki’s
sense.) However, it seems equally interesting to investigate a natural generalization of this
notion which would consist in giving up the, rather technical, requirement of two-positivity
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Poland
e-mail: anluczak@math.uni.lodz.pl

mailto:anluczak@math.uni.lodz.pl


3424 Int J Theor Phys (2014) 53:3423–3433

and replacing it by mere positivity. This approach is additionally motivated by considera-
tions from quantum hypothesis testing theory. To briefly explain this standpoint assume that
we are given a finite number of states {ρ1, . . . , ρn} which can occur with a priori proba-
bilities (π1, . . . , πn), respectively, and we seek a measurement M = (M1, . . . ,Mn) which
minimizes the so-called Bayes risk

r(M,π) =
n∑

i,j=1

πiL(i, j)ρi(Mj ),

where L(i, j) are real numbers (the function (i, j) �→ L(i, j) is called a loss func-
tion), and measurement M = (M1, . . . ,Mn) means positive operators Mj ∈ M such that∑n

j=1 Mj = 1. Now it is clear that an appropriate notion of sufficiency for this problem
would consist in the existence of a positive unital map α : M → N into a von Neumann
subalgebra N of M such that ρi ◦ α = ρi for all i, since then N = (N1, . . . ,Nn) defined as
Nj = α(Mj) is a measurement in N such that r(N,π) = r(M,π), so an optimal measure-
ment can be found in the subalgebra N. Exactly the same argument applies if one considers
the minimax risk instead of the Bayes one.

The investigation of this general form of sufficiency is the purpose of the paper. In par-
ticular, we examine various questions concerning the notion of minimality, show that un-
der the additional assumption of completeness all the three notions of sufficiency: the one
considered in the paper, Petz’s sufficiency and Umegaki’s sufficiency coincide, and obtain
a quantum version of Basu’s theorem. We also comment on a “factorization theorem” by
Jenčová and Petz showing by means of examples that in its present form it does not hold
and needs some corrections.

It is worth noting that the analysis of minimality in the first part of the paper can be
adapted to Petz’s definition of sufficiency yielding a new description of the minimal suffi-
cient subalgebra.

2 Preliminaries and Notation

Let M be an arbitrary von Neumann algebra with identity 1.
A state on M is a bounded positive linear functional ρ : M → C of norm one. A state

is called normal if it is continuous in the σ -weak topology on M. For a normal state ρ its
support, denoted by s(ρ), is defined as the smallest projection in M such that ρ(s(ρ)) =
ρ(1). We have

ρ
(
s(ρ)A

)= ρ
(
A s(ρ)

)= ρ(A), A ∈ M,

and if ρ(s(ρ)A s(ρ)) = 0 for s(ρ)A s(ρ) ≥ 0 then s(ρ)A s(ρ) = 0.
Let {ρθ : θ ∈ Θ} be a family of normal states on a von Neumann algebra M. This family

is said to be faithful if for each positive element A ∈ M from the equality ρθ(A) = 0 for all
θ ∈ Θ it follows that A = 0. It is seen that the faithfulness of the family is equivalent to the
relation

∨

θ∈Θ

s(ρθ ) = 1.

Let P be a projection in a von Neumann algebra M. A reduced von Neumann algebra
MP is defined as

MP = {
PAP |P (H) : A ∈M

}
.
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Let M and N be von Neumann algebras. A linear map α : M → N is called normal if
it is continuous in the σ -weak topologies on M and N, respectively. It is called unital if
α(1) = 1.

For an arbitrary subset A of B(H) by W ∗(A) we shall denote the von Neumann algebra
generated by A, i.e. the smallest von Neumann algebra containing A.

Let M be a von Neumann algebra, let {ρθ : θ ∈ Θ} be a family of normal states on M,
and let N be a von Neumann subalgebra of M. N is said to be sufficient for the family of
states {ρθ : θ ∈ Θ} if there exists a linear positive normal unital map α : M→N such that

ρθ ◦ α = ρθ , for all θ ∈ Θ.

If the map α above is two-positive then N is said to be sufficient in Petz’s sense, and if it
is a conditional expectation onto N then N is said to be sufficient in Umegaki’s sense. If the
algebra N is sufficient and contained in any other sufficient (sufficient in Petz’s or Umegaki’s
sense, respectively) algebra then N is said to be minimal. It is clear that a minimal sufficient
(in any sense) subalgebra is unique (if it exists).

3 Minimal Sufficient Subalgebras

The existence of sufficient subalgebras of a von Neumann algebra M is obvious because M

itself is certainly sufficient. However, with minimality the question is more subtle.

Theorem 1 Let {ρθ : θ ∈ Θ} be a faithful family of normal states on a von Neumann alge-
bra M. There exists the minimal sufficient subalgebra of the algebra M.

Proof Let S be the family of all normal positive unital maps on M such that the states ρθ

are invariant with respect to the maps from S . It is seen that S is a non-empty (because
it contains the identity map) semigroup. Let A be the set of the fixed points of the maps
from S , i.e.

A = {
A ∈M : α(A) = A for all α ∈ S

}
. (1)

From the ergodic theorem for von Neumann algebras (see [7]) it follows that A is a JW ∗-
algebra, i.e. a σ -weakly closed linear subspace of B(H) containing the unit 1, closed with
respect to the ∗-operation and the Jordan product A ◦ B = (AB + BA)/2, and there exists a
positive normal unital projection E from M onto A such that

ρθ ◦E = ρθ for all θ ∈ Θ,

and

E(A ◦ B) = A ◦E(B), for all A ∈A, B ∈M.

Denote by Mmin the von Neumann algebra generated by A, Mmin = W ∗(A). Clearly, Mmin

is sufficient.
Let N be an arbitrary sufficient subalgebra of the algebra M, and let α : M → N be a

map defining this sufficiency. Then α ∈ S , and for arbitrary A ∈ A we have A = α(A) ∈ N,
which shows that A ⊂ N, consequently, Mmin ⊂N and thus Mmin is minimal. �
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Remark 1 If in the proof of the above theorem we defined S as the family of all normal
two-positive unital maps on M such that the states ρθ are S-invariant, then from the ergodic
theorem for von Neumann algebras in [3], it would follow that A is a von Neumann algebra
and the map E is a conditional expectation. Consequently, A would be minimal sufficient in
Umegaki’s sense. Thus Theorem 1 in this setup would give the existence and a description
of the minimal sufficient in Umegaki’s sense subalgebra of M. It is interesting to compare
the above description of minimality with the one given in [1] where the minimal sufficient in
Umegaki’s sense subalgebra of M is characterized as the von Neumann algebra generated
by the Connes’ cocycles [Dρθ : Dω]t , t ∈ R, θ ∈ Θ , where ω is a faithful normal state on
M expressed as a convex combination of some ρθ .

Also, it is worth noticing how using ergodic theory for von Neumann algebras gives a
simple proof of the existence of minimal sufficient subalgebra in any sense, especially when
compared with an involved proof of this fact only for Petz’s sufficiency obtained with the
help of the Connes’ cocycles (see [1, 2, 4]).

The assumption of the faithfulness of the states in question is essential as the following
example shows.

Example 1 Let M = B(C3), and let ψ1, ψ2 be vectors of the standard basis in C
3

ψ1 =
⎛

⎝
1
0
0

⎞

⎠ , ψ2 =
⎛

⎝
0
1
0

⎞

⎠ .

Define the states ρ1 and ρ2 as

ρ1(A) = 〈ψ1|Aψ1〉, ρ2(A) = 〈ψ2|Aψ2〉, A ∈M,

and consider von Neumann algebras

M1 =
⎧
⎨

⎩

⎡

⎣
a 0 0
0 b 0
0 0 b

⎤

⎦ : a, b ∈C

⎫
⎬

⎭ , M2 =
⎧
⎨

⎩

⎡

⎣
a 0 0
0 b 0
0 0 a

⎤

⎦ : a, b ∈C

⎫
⎬

⎭ .

Define maps Ei : M →Mi , i = 1,2, by the formulas

E1

⎛

⎝

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

⎞

⎠=
⎡

⎣
a11 0 0
0 a22 0
0 0 a22

⎤

⎦

E2

⎛

⎝

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

⎞

⎠=
⎡

⎣
a11 0 0
0 a22 0
0 0 a11

⎤

⎦ .

It is easily verified that Ei is a conditional expectation onto Mi such that the states ρ1 and
ρ2 are Ei -invariant, thus the algebras M1 and M2 are sufficient in Umegaki’s sense for the
family {ρ1, ρ2}. Suppose that there exists the minimal sufficient subalgebra Mmin. Then

Mmin ⊂ M1 ∩M2 = C1,
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so Mmin =C1, which is impossible since the algebra C1 is sufficient only for one (arbitrary)
state, namely, if ρ is any state then the map α defining sufficiency must be of the form

α(A) = ρ(A)1.

Now drop the assumption of the faithfulness of the family {ρθ : θ ∈ Θ}. Put

P =
∨

θ∈Θ

s(ρθ ),

and consider the reduced algebra MP . Denote its elements by AP , thus

AP = PAP |P (H),

and

MP = {AP : A ∈M}.
Define a “restriction” of the states ρθ to the algebra MP by the formula

ρP
θ (AP ) = ρθ (PAP ) = ρθ(A). (2)

Observe that they are well defined, since if

PA1P |P (H) = PA2P |P (H),

then obviously

PA1P = PA2P.

The family {ρP
θ : θ ∈ Θ} is faithful, so according to Theorem 1 there exists the minimal suf-

ficient subalgebra M0
P of MP for this family. The algebra M0

P can be considered “minimal”
in the sense described in the following theorem.

Theorem 2 Let {ρθ : θ ∈ Θ} be an arbitrary family of normal states on a von Neumann
algebra M. For each sufficient for this family von Neumann subalgebra N of M we have
M0

P ⊂ NP , where by a slight abuse of notation (P need not belong to N) we set NP =
{PAP |P (H) : A ∈N}. (Warning: NP need not be an algebra.)

Proof Let N be a sufficient subalgebra, and let α : M → N be a map defining this suffi-
ciency. Define a map αP : MP → NP ⊂ MP by the formula

αP (AP ) = (
α(PAP)

)
P

= Pα(PAP)P |P (H).

This map is clearly linear normal and positive. For the map α we have

ρθ

(
Pα

(
P ⊥)P

)= 0, for all θ ∈ Θ,

and since Pα(P ⊥)P ≥ 0 we get

Pα
(
P ⊥)P = 0.

From this equality we obtain

Pα(P )P = P,
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which implies

αP (1P(H)) = Pα(P )P |P (H) = P |P (H) = 1P(H),

so αP is unital. Further, for each θ ∈ Θ we have

ρP
θ

(
αP (AP )

)= ρθ

(
Pα(PAP)P

)= ρθ (PAP ) = ρP
θ (AP ),

showing that the states ρP
θ are αP -invariant. Take arbitrary AP ∈ M0

P . From the description
of the minimal sufficient subalgebra obtained in the proof of Theorem 1 it follows that
αP (AP ) = AP , consequently, AP ∈NP , thus M0

P ⊂ NP . �

The next two examples bear a direct connection to the factorization theorem in [1]
([1, Theorem 4]). For this reason we shall use the notation employed there.

Example 2 Let M = B(H), with dimH = ∞, and let

∞∑

i=1

Pi = 1

be a countable partition of the identity such that the Pi are finite-dimensional projections.
Denote

Hi = Pi(H), di = dimHi .

Let {ρi : i = 1,2, . . . } be normal states such that s(ρi) = Pi , and denote by Di their density
matrices, i.e.

ρi(A) = trDiA, A ∈ B(H).

The family {ρi : i = 1,2, . . . } is faithful and from the condition on the support we obtain
Di ≤ Pi . Denote by c

(i)
k , k = 1, . . . , di , the eigenvalues of Di , and let

S(ρi) = −
di∑

k=1

c
(i)
k log c

(i)
k (log ≡ log2)

be the entropy of the state ρi . Choose our states ρi in such a way that S(ρi) ≤ c for all i,
where c is a given constant.

Put

ω =
∞∑

i=1

1

2i
ρi .

The density matrix of ω has the form

Dω =
∞∑

i=1

1

2i
Di,

so for the entropy of ω we get

S(ω) = −
∞∑

i=1

di∑

k=1

c
(i)
k

2i
log

c
(i)
k

2i
= −

∞∑

i=1

1

2i

di∑

k=1

c
(i)
k

[
log c

(i)
k − log 2i

]
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= −
∞∑

i=1

1

2i

[
di∑

k=1

c
(i)
k log c

(i)
k −

di∑

k=1

ic
(i)
k

]
=

∞∑

i=1

1

2i

[
S(ρi) + i

]

≤ c +
∞∑

i=1

i

2i
< ∞.

The pair (M, {ρi : i = 1,2, . . . }) constitutes what in [1] is called a statistical experiment
dominated by a faithful normal state ω. Let M0 be a von Neumann subalgebra of M defined
as

M0 =
{ ∞∑

i=1

aiPi : ai ∈C, sup
1≤i<∞

|ai | < ∞
}

. (3)

Define a map E : M→ M0 by the formula

E(A) =
∞∑

i=1

ρi(A)Pi, A ∈M. (4)

It is easily seen that E is a normal conditional expectation such that the states ρi are
E-invariant, so M0 is sufficient for {ρi : i = 1,2, . . . } in Umegaki’s sense. Clearly, ω is
also E-invariant, consequently, M0 is invariant with respect to the modular automorphism
group {σω

t }. For each B =∑∞
i=1 aiPi ∈ M0 we have

ρj (B) =
∞∑

i=1

aiρj (Pi) = aj = tr

(
1

dj

Pj

)( ∞∑

i=1

aiPi

)
= tr

(
1

dj

Pj

)
B,

which means that the density matrix of the restricted state ρj |M0 is

Dj,0 = 1

dj

Pj .

The inequality Di ≤ Pi shows that Di commutes with each Pj , so Di ∈M′
0 for all i, thus∑∞

i=1(1/2i )Di ∈ M′
0. But

∑∞
i=1(1/2i )Di is the density matrix of the state ω, and the last

relation shows that it is also the density matrix of ω1 = ω|M′
0. Calculating Dj,0Dω1 we get

Dj,0Dω1 = 1

dj

Pj

∞∑

i=1

1

2i
Di = 1

2j dj

Dj .

Now the factorization theorem, [1, Theorem 4], states that there is z ∈M0 ∩M′
0 = M0 such

that

Dj = Dj,0Dω1z, for all j,

which means that

Dj = 1

2j dj

Djz for all j.

This is possible only for

z =
∞∑

i=1

2idiPi,
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but then

2idi ≥ 2i → ∞,

thus z is unbounded. This contradiction shows that the factorization theorem in its present
form fails.

What we have seen above is not the only trouble with the factorization theorem. Namely,
it employs the density matrices Dj,0,Dω1 of the states ρj |M0 and ω1 = ω|M′

0, respectively.
But in order that such density matrices exist the canonical trace tr on M = B(H) restricted
to the algebras M0 and M′

0 must be semifinite. The following simple example shows that
this is not guaranteed by the assumptions of the factorization theorem.

Example 3 We copy the setup of Example 2 with the only difference that now the projections
Pi are infinite dimensional and the eigenvalues of the density matrices Di are all the same
and equal 1

2k , k = 1,2, . . . . The entropies of ρi are

S(ρi) = −
∞∑

k=1

1

2k
log

1

2k
= 2,

and for the entropy of ω we get

S(ω) = −
∞∑

i=1

∞∑

k=1

1

2i

1

2k
log

1

2i

1

2k
= 4.

Defining M0 and E by formulas (3) and (4), respectively, we again obtain that E is a normal
conditional expectation such that the states ρi are E-invariant, so M0 is sufficient for {ρi :
i = 1,2, . . . } in Umegaki’s sense, and that M0 is invariant with respect to the modular
automorphism group {σω

t }. However, the factorization theorem does not hold because there
are no density matrices of the states ρj |M0.

Now, a careful inspection of the considerations before the factorization theorem
([1, p. 269]) shows that its conclusion holds in a slightly weaker sense. Namely, a uni-
tary group {zt } in the center of the algebra M′

0 ∩M is defined (line 11 from bottom of page)
and it is concluded that zt = zit for some positive element z in the center. But this is wrong,
because the generator of a unitary group in a von Neumann algebra needn’t belong to this
algebra (it may be unbounded); instead, it is affiliated with the algebra. (This is exactly the
situation in our Example 2 where z is affiliated with M0.) Thus the basic formula of the
factorization theorem would read

Dθ = Dθ,0Dω1z (cf. formula (12) in [1]), (5)

for some positive operator z affiliated with the center of M′
0 ∩ M, but still under the as-

sumption that the densities Dθ, Dθ,0 and Dω1 of φθ , φθ |M0 and ω|M′
0 ∩ M, respectively,

exist.
We show elsewhere that for finite von Neumann algebras the factorization theorem with

formula (5) holds with an appropriately defined notion of density matrix which guarantees
its existence.
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4 Completeness, Ancillarity and Quantum Basu’s Theorem

Analogously to the classical case we can define completeness of a quantum statistic, or more
generally, of a von Neumann algebra.

A von Neumann algebra M is said to be complete with respect to a family of states
{ρθ : θ ∈ Θ} if for each A ∈ M from the equality ρθ(A) = 0 for all θ ∈ Θ it follows that
A = 0.

It is immediately seen that the completeness of the algebra M with respect to {ρθ : θ ∈ Θ}
is equivalent to separating the points of this algebra by {ρθ : θ ∈ Θ}.

It turns out that for complete subalgebras sufficiency is equivalent to sufficiency in
Umegaki’s (and thus Petz’s) sense.

Theorem 3 Let {ρθ : θ ∈ Θ} be a family of normal states on a von Neumann algebra M,
and let N be a von Neumann subalgebra of M sufficient and complete with respect to this
family. Then N is sufficient in Umegaki’s sense.

Proof Let α : M → N be a map defining the sufficiency of N. For an arbitrary T ∈ N and
arbitrary θ ∈ Θ we have

ρθ

(
α(T )

)= ρθ (T ),

which on account of the completeness of N gives the equality

α(T ) = T .

Thus α is a positive projection of norm one from M onto N, i.e. a conditional expectation. �

The next theorem shows a connection between complete and minimal algebras.

Theorem 4 Let {ρθ : θ ∈ Θ} be a faithful family of normal states on a von Neumann alge-
bra M, and let N be a von Neumann subalgebra of M sufficient and complete with respect
to this family. Then N is minimal.

Proof Let Mmin be the minimal sufficient subalgebra and let α : M→ Mmin be a map defin-
ing this sufficiency. The algebra N is, according to Theorem 3, sufficient in Umegaki’s sense;
let E : M→ N be a conditional expectation with respect to which the states ρθ are invariant.
For each A ∈M and each θ ∈ Θ we have

ρθ

(
E
(
α(A)

))= ρθ

(
α(A)

)= ρθ(A)

and since E(α(A)) ∈ N, and α(A) ∈Mmin ⊂ N by the minimality of Mmin, the completeness
of N yields

E
(
α(A)

)= α(A) = A for each A ∈N

thus for each A ∈ N we have A = α(A) ∈Mmin, which shows that N ⊂ Mmin, so N = Mmin,
consequently, N is minimal. �

Remark 2 The assumption of the faithfulness of the family {ρθ : θ ∈ Θ} was exploited only
for obtaining the existence of the minimal sufficient algebra. It is easily seen that the proof
of the above theorem without this assumption remains the same if this existence is taken for
granted.
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Our final aim is a quantum counterpart of the classical Basu theorem. For this we need
the notions of ancillarity and independence which are again fully analogous to those in the
classical case.

A subalgebra N of M is said to be ancillary with respect to the family of states
{ρθ : θ ∈ Θ} if ρθ |N is the same for all θ ∈ Θ .

Let ρ be a state on a von Neumann algebra M, and let N and R be two von Neumann
subalgebras of the algebra M. The algebras N and R are said to be independent in the state
ρ if for any T ∈ N, R ∈ R we have

ρ(T R) = ρ(T )ρ(R).

We have the following quantum Basu’s theorem.

Theorem 5 Let {ρθ : θ ∈ Θ} be a family of normal states on a von Neumann algebra M,
and let N and R be von Neumann subalgebras of M.

(i) If N is ancillary, and R is sufficient and complete with respect to {ρθ }, then N and R

are independent in each state ρθ .
(ii) If the family {ρθ } is faithful and such that no two states in it have mutually orthogonal

supports, R is sufficient with respect to {ρθ }, and N and R are independent in each
state ρθ , then N is ancillary with respect to {ρθ }.

Proof (i) Set ρθ |N = ω. Since R is sufficient and complete we infer on account of Theo-
rem 3 that it is sufficient in Umegaki’s sense. Let E : M → R be a conditional expectation
onto R such that the states ρθ are E-invariant. For arbitrary θ ∈ Θ and arbitrary T ∈ N we
obtain the equality

ρθ

(
E(T ) − ω(T )1

)= ρθ(T ) − ω(T ) = 0

and the completeness of R gives

E(T ) = ω(T )1.

For arbitrary R ∈R, T ∈N and θ ∈ Θ the equality above, the E-invariance of the states ρθ ,
and properties of a conditional expectation yield

ρθ(RT ) = ρθ

(
E(RT )

)= ρθ

(
RE(T )

)= ρθ

(
ω(T )R

)

= ρθ (R)ω(T ) = ρθ (R)ρθ (T ),

which proves the independence of the algebras N and R in the state ρθ .
(ii) We shall employ the setup and notation of Theorem 1. We have A ⊂ Mmin ⊂ R, and

let E : M → A be the projection as in the proof of Theorem 1. For any θ ∈ Θ , R ∈ A, and
T ∈N, we have on account of the relation ρθ (RT ) = ρθ(R)ρθ (T ) = ρθ(T R), and properties
of E, the equality

ρθ (R)ρθ (T ) = ρθ (R ◦ T ) = ρθ

(
E(R ◦ T )

)= ρθ (R ◦ET ),

yielding

ρθ

(
R ◦ (ET − ρθ (T )1

))= 0.
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Taking R = (ET − ρθ(T )1)∗ we obtain

ρθ

((
ET − ρθ(T )1

)∗(
ET − ρθ(T )1

))= 0,

which gives the equality
(
ET − ρθ (T )1

)
s(ρθ ) = 0,

i.e.

(ET ) s(ρθ ) = ρθ(T ) s(ρθ ). (6)

In particular, it follows that ET commutes with all supports s(ρθ ), so for arbitrary θ1, θ2 ∈ Θ

we get from (6)

ρθ1(T ) s(ρθ1) s(ρθ2) = (ET ) s(ρθ1) s(ρθ2) = s(ρθ1)(ET ) s(ρθ2)

= ρθ2(T ) s(ρθ1) s(ρθ2).

Since by assumption s(ρθ1) s(ρθ2) �= 0, we obtain ρθ1(T ) = ρθ2(T ) showing the claim. �
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source are credited.
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